Sample records for deep arid system

  1. Ecohydrological control of deep drainage in arid and semiarid regions

    USGS Publications Warehouse

    Seyfried, M.S.; Schwinning, S.; Walvoord, Michelle Ann; Pockman, W. T.; Newman, B.D.; Jackson, R.B.; Phillips, F.M.

    2005-01-01

    The amount and spatial distribution of deep drainage (downward movement of water across the bottom of the root zone) and groundwater recharge affect the quantity and quality of increasingly limited groundwater in arid and semiarid regions. We synthesize research from the fields of ecology and hydrology to address the issue of deep drainage in arid and semiarid regions. We start with a recently developed hydrological model that accurately simulates soil water potential and geochemical profiles measured in thick (>50 m), unconsolidated vadose zones. Model results indicate that, since the climate change that marked the onset of the Holocene period 10 000–15 000 years ago, there has been no deep drainage in vegetated interdrainage areas and that continuous, relatively low (<−1 MPa) soil water potentials have been maintained at depths of 2–3 m. A conceptual model consistent with these results proposes that the native, xeric‐shrub‐dominated, plant communities that gained dominance during the Holocene generated and maintained these conditions. We present three lines of ecological evidence that support the conceptual model. First, xeric shrubs have sufficiently deep rooting systems with low extraction limits to generate the modeled conditions. Second, the characteristic deep‐rooted soil–plant systems store sufficient water to effectively buffer deep soil from climatic fluctuations in these dry environments, allowing stable conditions to persist for long periods of time. And third, adaptations resulting in deep, low‐extraction‐limit rooting systems confer significant advantages to xeric shrubs in arid and semiarid environments. We then consider conditions in arid and semiarid regions in which the conceptual model may not apply, leading to the expectation that portions of many arid and semiarid watersheds supply some deep drainage. Further ecohydrologic research is required to elucidate critical climatic and edaphic thresholds, evaluate the role of important physiological processes (such as hydraulic redistribution), and evaluate the role of deep roots in terms of carbon costs, nutrient uptake, and whole‐plant development.

  2. A Comparison of Nannochloropsis salina Growth Performance in Two Outdoor Pond Designs: Conventional Raceways versus the ARID Pond with Superior Temperature Management

    DOE PAGES

    Crowe, Braden; Attalah, Said; Agrawal, Shweta; ...

    2012-01-01

    The present study examines how climatic conditions and pond design affect the growth performance of microalgae. From January to April of 2011, outdoor batch cultures of Nannochloropsis salina were grown in three replicate 780 L conventional raceways, as well as in an experimental 7500 L algae raceway integrated design (ARID) pond. The ARID culture system utilizes a series of 8-20 cm deep basins and a 1.5 m deep canal to enhance light exposure and mitigate temperature variations and extremes. The ARID culture reached the stationary phase 27 days earlier than the conventional raceways, which can be attributed to its superiormore » temperature management and shallower basins. On a night when the air temperature dropped to -9°C, the water temperature was 18°C higher in the ARID pond than in the conventional raceways. Lipid and fatty acid content ranged from 16 to 25% and from 5 to15%, respectively, as a percentage of AFDW. Palmitic, palmitoleic, and eicosapentaenoic acids comprised the majority of fatty acids. While the ARID culture system achieved nearly double the volumetric productivity relative to the conventional raceways (0.023 versus 0.013 g L -1day -1), areal biomass productivities were of similar magnitude in both pond systems (3.47 versus 3.34 g m -2day -1), suggesting that the ARID pond design has to be further optimized, most likely by increasing the culture depth or operating at higher cell densities while maintaining adequate mixing.« less

  3. A comparison of Nannochloropsis salina growth performance in two outdoor pond designs: conventional raceways versus the ARID pond with superior temperature management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, Braden J.; Attalah, Said; Agrawal, Shweta

    2012-10-01

    The present study examines how climatic conditions and pond design affect the growth performance of microalgae. From January to April of 2011, outdoor batch cultures of Nannochloropsis salina were grown in three replicate 780 L conventional raceways, as well as in an experimental 7500 L ARID (Algae Raceway Integrated Design) pond. The ARID culture system utilizes a series of 8 to 20 cm deep basins and a 1.5 m deep canal to enhance light exposure and mitigate temperature variations and extremes. The ARID culture reached the stationary phase 27 days earlier than the conventional raceways, which can be attributed tomore » its superior temperature management and shallower basins. On a night when the air temperature dropped to -9 °C, the water temperature was 18 °C higher in the ARID pond than in the conventional raceways. Lipid and fatty acid content ranged from 16 - 25 % and 5 - 15 %, respectively, as a percentage of AFDW. Palmitic, palmitoleic, and eicosapentaenoic acid comprised the majority of fatty acids. While the ARID culture system achieved nearly double the volumetric productivity relative to the conventional raceways (0.023 vs 0.013 g L-1day-1), areal biomass productivities were of similar magnitude in both pond systems (3.34 vs. 3.47 g m-2day-1), suggesting that the ARID pond design has to be further optimized, most likely by increasing the culture depth or operating at higher cell densities while maintaining adequate mixing.« less

  4. Deep Soil Recharge in Arid and Semi-Arid Regions: New Evidences in MU-US Sandy Land of China

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Yang, W.; Zhan, H.

    2017-12-01

    Precipitation induced recharge is an important source of groundwater budget but it is very difficult to quantify in arid and semiarid regions. In this study, a newly invented lysimeter was used to monitor deep soil recharge (DSR) under 200 cm depth in MU-US sandy land in western China under three kinds of landforms (mobile dune, semi-fixed dune, and fixed dune). We found that the annual DSRs in such three different kinds of landforms varied significantly. Specifically, the annual DSRs were 224.1 mm (50.5% of the annual precipitation), 71.1 mm (50.5% of the annual precipitation), and 1.3 mm (0.3% of the annual precipitation) in mobile dune, semi-fixed dune, and fixed dune, respectively. We also found that vegetation coverage and precipitation pattern significantly affected DSR. A 24-hr precipitation event with the precipitation amount greater than 8 mm was able to infiltrate soil deeper than 200 cm and contributed to ground water recharge directly. Vegetation was a dominant factor influencing infiltration in the fixed sand dune. Our research revealed that precipitation induced DSR in arid and semi-arid regions was a complex process that required long-term monitoring and innovative system analysis of interrelated factors such as precipitation strength and pattern, meteorological parameters, and dynamic soil moisture. Key words: Precipitation pattern, sand dune groundwater, deep soil recharge, infiltration.

  5. Enhanced Deep Blue Aerosol Retrieval Algorithm: The Second Generation

    NASA Technical Reports Server (NTRS)

    Hsu, N. C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A. M.; Hansell, R.; Seftor, C. S.; Huang, J.; Tsay, S.-C.

    2013-01-01

    The aerosol products retrieved using the MODIS collection 5.1 Deep Blue algorithm have provided useful information about aerosol properties over bright-reflecting land surfaces, such as desert, semi-arid, and urban regions. However, many components of the C5.1 retrieval algorithm needed to be improved; for example, the use of a static surface database to estimate surface reflectances. This is particularly important over regions of mixed vegetated and non- vegetated surfaces, which may undergo strong seasonal changes in land cover. In order to address this issue, we develop a hybrid approach, which takes advantage of the combination of pre-calculated surface reflectance database and normalized difference vegetation index in determining the surface reflectance for aerosol retrievals. As a result, the spatial coverage of aerosol data generated by the enhanced Deep Blue algorithm has been extended from the arid and semi-arid regions to the entire land areas.

  6. Hydrologic processes in deep vadose zones in interdrainage arid environments

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Scanlon, Bridget R.; Hogan, James F.; Phillips, Fred M.; Scanlon, Bridget R.

    2004-01-01

    A unifying theory for the hydrology of desert vadose zones is particularly timely considering the rising population and water stresses in arid and semiarid regions. Conventional models cannot reconcile the apparent discrepancy between upward flow indicated by hydraulic gradient data and downward flow suggested by environmental tracer data in deep vadose zone profiles. A conceptual model described here explains both hydraulic and tracer data remarkably well by incorporating the hydrologic role of desert plants that encroached former juniper woodland 10 to 15 thousand years ago in the southwestern United States. Vapor transport also plays an important role in redistributing moisture through deep soils, particularly in coarse-grained sediments. Application of the conceptual model to several interdrainage arid settings reproduces measured matric potentials and chloride accumulation by simulating the transition from downward flow to upward flow just below the root zone initiated by climate and vegetation change. Model results indicate a slow hydraulic drying response in deep vadose zones that enables matric potential profiles to be used to distinguish whether precipitation episodically percolated below the root zone or was completely removed via evapotranspiration during the majority of the Holocene. Recharge declined dramatically during the Holocene in interdrainage basin floor settings of arid and semiarid basins. Current flux estimates across the water table in these environmental settings, are on the order of 0.01 to 0.1 mm yr-1 and may be recharge (downward) or discharge (upward) depending on vadose zone characteristics, such as soil texture, geothermal gradient, and water table depth. In summary, diffuse recharge through the basin floor probably contributes only minimally to the total recharge in arid and semiarid basins.

  7. Extensive Green Roof Species and Soilless Media Evaluations in Semi-arid Colorado

    EPA Science Inventory

    In the high elevation, semi-arid climate of Colorado, green roofs have not been scientifically tested. This research examined alternative plant species, soilless media blends and plant interactions on an existing, modular-extensive (shallow, 10 cm deep) green roof in Denver, Colo...

  8. Farming system context drives the value of deep wheat roots in semi-arid environments

    PubMed Central

    Lilley, Julianne M.; Kirkegaard, John A.

    2016-01-01

    The capture of subsoil water by wheat roots can make a valuable contribution to grain yield on deep soils. More extensive root systems can capture more water, but leave the soil in a drier state, potentially limiting water availability to subsequent crops. To evaluate the importance of these legacy effects, a long-term simulation analysis at eight sites in the semi-arid environment of Australia compared the yield of standard wheat cultivars with cultivars that were (i) modified to have root systems which extract more water at depth and/or (ii) sown earlier to increase the duration of the vegetative period and hence rooting depth. We compared simulations with and without annual resetting of soil water to investigate the legacy effects of drier subsoils related to modified root systems. Simulated mean yield benefits from modified root systems declined from 0.1–0.6 t ha−1 when annually reset, to 0–0.2 t ha−1 in the continuous simulation due to a legacy of drier soils (mean 0–32mm) at subsequent crop sowing. For continuous simulations, predicted yield benefits of >0.2 t ha−1 from more extensive root systems were rare (3–10% of years) at sites with shallow soils (<1.0 m), but occurred in 14–44% of years at sites with deeper soils (1.6–2.5 m). Earlier sowing had a larger impact than modified root systems on water uptake (14–31 vs 2–17mm) and mean yield increase (up to 0.7 vs 0–0.2 t ha−1) and the benefits occurred on deep and shallow soils and in more years (9–79 vs 3–44%). Increasing the proportion of crops in the sequence which dry the subsoil extensively has implications for the farming system productivity, and the crop sequence must be managed tactically to optimize overall system benefits. PMID:26976814

  9. Farming system context drives the value of deep wheat roots in semi-arid environments.

    PubMed

    Lilley, Julianne M; Kirkegaard, John A

    2016-06-01

    The capture of subsoil water by wheat roots can make a valuable contribution to grain yield on deep soils. More extensive root systems can capture more water, but leave the soil in a drier state, potentially limiting water availability to subsequent crops. To evaluate the importance of these legacy effects, a long-term simulation analysis at eight sites in the semi-arid environment of Australia compared the yield of standard wheat cultivars with cultivars that were (i) modified to have root systems which extract more water at depth and/or (ii) sown earlier to increase the duration of the vegetative period and hence rooting depth. We compared simulations with and without annual resetting of soil water to investigate the legacy effects of drier subsoils related to modified root systems. Simulated mean yield benefits from modified root systems declined from 0.1-0.6 t ha(-1) when annually reset, to 0-0.2 t ha(-1) in the continuous simulation due to a legacy of drier soils (mean 0-32mm) at subsequent crop sowing. For continuous simulations, predicted yield benefits of >0.2 t ha(-1) from more extensive root systems were rare (3-10% of years) at sites with shallow soils (<1.0 m), but occurred in 14-44% of years at sites with deeper soils (1.6-2.5 m). Earlier sowing had a larger impact than modified root systems on water uptake (14-31 vs 2-17mm) and mean yield increase (up to 0.7 vs 0-0.2 t ha(-1)) and the benefits occurred on deep and shallow soils and in more years (9-79 vs 3-44%). Increasing the proportion of crops in the sequence which dry the subsoil extensively has implications for the farming system productivity, and the crop sequence must be managed tactically to optimize overall system benefits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Quantification and Characterization of Chloride Sources in the Rio Grande, Southwestern United States

    NASA Astrophysics Data System (ADS)

    Lacey, H. F.; Phillips, F. M.; Tidwell, V.; Hogan, J.; Bastien, E.; Oelsner, G.

    2005-12-01

    Salinization of rivers is a problem in the southwestern United States as well as in other semiarid and arid regions of the world. Arid and semiarid rivers including the Rio Grande often exhibit increasing salinity with distance downstream, which is commonly attributed to irrigated agriculture. Increased river salinity causes economic losses by reducing crop productivity, rendering the water unsuitable for many municipal and industrial uses, and corroding or plugging pipes. Although most salinization of the Rio Grande takes place in the United States, many of the effects are felt in Mexico. Recent studies have found that salinization of the Rio Grande is geologically controlled by the addition of deep saline brines at several distinct locations. However, these additions of deep brine have not been well quantified. We have designed a model using a system dynamics software program to analyze Rio Grande chloride data. The model uses historical chloride and gaging station data and high-resolution synoptic chloride samples collected between 2000 and 2005 to characterize and quantify additions of deep brine to the river. The model has also been used to evaluate the effect of the construction of Elephant Butte Reservoir on the chloride balance of the river using chloride concentration data from 1905-1907. The model can also be used to evaluate future climatic and management scenarios in order to plan for the future water needs of the basin.

  11. Application of a fully integrated surface-subsurface physically based flow model for evaluating groundwater recharge from a flash flood event

    NASA Astrophysics Data System (ADS)

    Pino, Cristian; Herrera, Paulo; Therrien, René

    2017-04-01

    In many arid regions around the world groundwater recharge occurs during flash floods. This transient spatially and temporally concentrated flood-recharge process takes place through the variably saturated zone between surface and usually the deep groundwater table. These flood events are characterized by rapid and extreme changes in surface flow depth and velocity and soil moisture conditions. Infiltration rates change over time controlled by the hydraulic gradients and the unsaturated hydraulic conductivity at the surface-subsurface interface. Today is a challenge to assess the spatial and temporal distribution of groundwater recharge from flash flood events under real field conditions at different scales in arid areas. We apply an integrated surface-subsurface variably saturated physically-based flow model at the watershed scale to assess the recharge process during and after a flash flood event registered in an arid fluvial valley in Northern Chile. We are able to reproduce reasonably well observed groundwater levels and surface flow discharges during and after the flood with a calibrated model. We also investigate the magnitude and spatio-temporal distribution of recharge and the response of the system to variations of different surface and subsurface parameters, initial soil moisture content and groundwater table depths and surface flow conditions. We demonstrate how an integrated physically based model allows the exploration of different spatial and temporal system states, and that the analysis of the results of the simulations help us to improve our understanding of the recharge processes in similar type of systems that are common to many arid areas around the world.

  12. Potassium metasomatism of volcanic and sedimentary rocks in rift basins, calderas and detachment terranes

    NASA Technical Reports Server (NTRS)

    Chapin, C. E.; drographic basins.

    1985-01-01

    The chemical, mineralogical, and oxygen-isotopic changes accompanying K-metasomatism are described. The similarities with diagenetic reactions in both deep marine and alkaline, saline-lake environments are noted. The common occurrence of K-metasomatism in upper-plate rocks of detachment terranes indicates that the early stage of severe regional extension causes crustal downwarping and, in arid to semi-arid regions, development of closed hydrographic basins.

  13. Groundwater studies in arid areas in Egypt using LANDSAT satellite images

    NASA Technical Reports Server (NTRS)

    Elshazly, E. M.; Abdelhady, M. A.; Elshazly, M. M.

    1977-01-01

    Various features are interpreted which have strong bearing on groundwater in the arid environment. These include the nature of geological and lithologic units, structural lineaments, present and old drainage systems, distribution and form of water pools, geomorphologic units, weathering surfaces and other weathering phenomena, desert soils, sand dunes and dune sand accumulations, growths of natural vegetation and agriculture, and salt crusts and other expressions of salinization. There are many impressive examples which illustrate the significance of satellite image interpretation on the regional conditions of groundwater which could be traced and interconnected over several tens or even several hundreds of kilometers. This is especially true in the northern Western Desert of Egypt where ground water issuing from deep strata comes to the surface along ENE-WSW and ESE-WNW fault lines and fracture systems. Another striking example is illustrated by the occurrence of fresh to brackish groundwater on the Mediterranean Sea Coastal Zone of the Western Desert where the groundwater is found in the form of lenses floating on the saline sea water.

  14. Using Sentinel-2A multispectral imagery to explore for deep groundwater resources in the Ceres-Tankwa Karoo, Western Cape, South Africa: Significance for the 'water-energy(-food) nexus' in an arid region

    NASA Astrophysics Data System (ADS)

    Hartnady, Chris; Wise, Edward; Hartnady, Michael; Olianti, Camille; Hay, E. Rowena

    2017-04-01

    The Ceres-Tankwa region is an arid region in the south-western part of the main Karoo Basin, underlain by folded and faulted strata of the Cape and lower Karoo Supergroups in the syntaxis zone between the Western and Southern branches of the Cape Fold Belt. Explored for oil in the mid-1960s, with the drilling of the >3000 m deep KL1/65 borehole, the area recently attracted attention as a potential shale-gas prospect with the drilling in 2015 of the 671 m-deep KZF-1 research borehole on the farm Zandfontein (de Kock et al, 2016). KZF-1 encountered no positive indication of methane gas in the carbonaceous shale target but intersected a strong flow of deep groundwater from fractures in the basal Dwyka tillite. The accidental discovery of deep artesian groundwater, probably originating from the underlying Cape Supergroup aquifers and of significantly better quality than the shallow aquifer utilised by local farmers, has important implications for future development here. Using 13-channel multispectral data from the European Space Agency satellite Sentinel-2A, a false-colour composite image, centred about the KZF-1 location, was assembled by combination of selected spectral band-ratios. Stratigraphic layering and associated folding within the hitherto undivided, pelitic Tierberg Formation (Ecca Group), is revealed in striking new detail, together with narrow lines of stratal offset corresponding to previously unmapped faults. KZF-1 is evidently sited within an anomalous NE/SW-striking belt, unlike the general NNW/SSE strike of Cape-Karoo sequence strata in the north-western part of the image. Associated with a notable strike change of a lower Tierberg marker unit, subparallel to and aligned with a similar trend in the Swartruggens mountain foothills to the SW, a deep-seated, controlling, NE/SW-striking fault structure may continue downwards from the lower Karoo units into the underlying Cape strata, providing hydraulic connection. With the looming threat of global warming and increasing water scarcity in semi-arid regions, deep artesian groundwater systems provide a long-term solution to future demands for water, food and power. In contrast to shale-gas development, which competes for the scarce water resource and poses a substantial pollution threat, an alternative, synergistic and conjunctive development of solar energy, specifically Concentrating Solar Power plants facilitated by the deep artesian groundwater resource, is envisaged for the Ceres-Tankwa and other parts of the Southern Karoo, in a proposed "Sores-Kamma (Sun-Water) Initiative". In this effort, Sentinel-2A-based lithological mapping is integrated with a new digital elevation model, providing geomorphometry and morphotectonic interpretations, and with the systematic monitoring of surface- and groundwater fluxes using a conjunction of radar satellite, Global Navigation Satellite Systems and microgravity approaches. Reference De Kock, M.O., Beukes, N.J., Götz, A.E., Cole, D., Birch, A., Withers, A. and Van Niekerk, H.S. 2016. Open file progress report on exploration of the southern Karoo Basin through CIMERA-KARIN borehole KZF-1 in the Tankwa Karoo, Witzenberg (Ceres) District. 12 pp. Available online at http://www.cimera.co.za/index.php/karin-feedback

  15. Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Wei, Wei; Chen, Liding; Mo, Baoru

    2012-12-01

    SummarySoil moisture is an effective water source for plant growth in the semi-arid Loess Plateau of China. Characterizing the response of deep soil moisture to land use and afforestation is important for the sustainability of vegetation restoration in this region. In this paper, the dynamics of soil moisture were quantified to evaluate the effect of land use on soil moisture at a depth of 2 m. Specifically, the gravimetric soil moisture content was measured in the soil layer between 0 and 8 m for five land use types in the Longtan catchment of the western Loess Plateau. The land use types included traditional farmland, native grassland, and lands converted from traditional farmland (pasture grassland, shrubland and forestland). Results indicate that the deep soil moisture content decreased more than 35% after land use conversion, and a soil moisture deficit appeared in all types of land with introduced vegetation. The introduced vegetation decreased the soil moisture content to levels lower than the reference value representing no human impact in the entire 0-8 m soil profile. No significant differences appeared between different land use types and introduced vegetation covers, especially in deeper soil layers, regardless of which plant species were introduced. High planting density was found to be the main reason for the severe deficit of soil moisture. Landscape management activities such as tillage activities, micro-topography reconstruction, and fallowed farmland affected soil moisture in both shallow and deep soil layers. Tillage and micro-topography reconstruction can be used as effective countermeasures to reduce the soil moisture deficit due to their ability to increase soil moisture content. For sustainable vegetation restoration in a vulnerable semi-arid region, the plant density should be optimized with local soil moisture conditions and appropriate landscape management practices.

  16. Deep arid system hydrodynamics 1. Equilibrium states and response times in thick desert vadose zones

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Plummer, Mitchell A.; Phillips, Fred M.; Wolfsberg, Andrew V.

    2002-01-01

    Quantifying moisture fluxes through deep desert soils remains difficult because of the small magnitude of the fluxes and the lack of a comprehensive model to describe flow and transport through such dry material. A particular challenge for such a model is reproducing both observed matric potential and chloride profiles. We propose a conceptual model for flow in desert vadose zones that includes isothermal and nonisothermal vapor transport and the role of desert vegetation in supporting a net upward moisture flux below the root zone. Numerical simulations incorporating this conceptual model match typical matric potential and chloride profiles. The modeling approach thereby reconciles the paradox between the recognized importance of plants, upward driving forces, and vapor flow processes in desert vadose zones and the inadequacy of the downward‐only liquid flow assumption of the conventional chloride mass balance approach. Our work shows that water transport in thick desert vadose zones at steady state is usually dominated by upward vapor flow and that long response times, of the order of 104–105 years, are required to equilibrate to existing arid surface conditions. Simulation results indicate that most thick desert vadose zones have been locked in slow drying transients that began in response to a climate shift and establishment of desert vegetation many thousands of years ago.

  17. More than ten million years of hyper-aridity recorded in the Atacama Gravels

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Bao, Huiming; Reich, Martin; Hemming, Sidney R.

    2018-04-01

    The Atacama Desert's hyper-aridity is closely linked to the development of world-class copper and nitrate/iodine ores and to regional tectonics and global paleoclimate changes in the Cenozoic era. The timing when the hyper-aridity commenced remains controversial, with proposed ages ranging from Late Oligocene to Pleistocene. In this study, we provide an independent constraint on the initiation of Atacama hyper-aridity utilizing a 100-m deep profile within the Atacama Gravels and underneath porphyry copper deposit in Spence, northern Chile. The overall high concentration of sulfate (up to 10 wt%) and a multimodal distribution of water soluble salt (sulfates, chlorides and nitrates) indicate multiple generations of sedimentation and salt accumulation events under semi-arid to hyper-arid climate conditions. The multiple sulfate isotope compositions (Δ17O, δ18O, δ34S) of the upper section (-15.0 to -34.5 m) are close to those of modern hyperarid surface sulfates, while the lower section (-34.5 to -65 m) displays a depth dependent isotope trend that is best interpreted as marking a period of climate change from semi-arid to hyper-arid. When these data are combined with new chronological 40Ar/39Ar dates obtained from a volcanic ash layer at depth of -28.0 m, our results show that hyper-arid condition in the Atacama Desert was prevailing at least prior to 9.47 Ma and may go back as old as the middle Miocene.

  18. The Last Interglacial in the Levant: Perspective from the ICDP Dead Sea Deep Drill Core

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Torfstein, A.; Stein, M.; Kushnir, Y.; Enzel, Y.; Haug, G. H.

    2014-12-01

    Sediments recovered by the ICDP Dead Sea Deep Drilling Project provide a new perspective on the climate history of the Levant during the last interglacial period MIS5. They record the extreme impacts of an intense interglacial characterized by stronger insolation, warmer mean global temperatures, and higher sea-levels than the Holocene. Results show both extreme hyper-aridity during MIS5e, including an unprecedented drawdown of Dead Sea water levels, and the impacts of a strong precession-driven African monsoon responsible for a major sapropel event (S5) in the eastern Mediterranean. Hyper-arid conditions at the beginning of MIS5e prior to S5 (~132-128 ka) are evidenced by halite deposition, indicating declining Dead Sea lake levels. Surprisingly, the hyper-arid phase is interrupted during the MIS5e peak (~128-120 ka), coinciding with the S5 sapropel, which is characterized by a thick (23 m) section of silty detritus (without any halite) whose provenance indicates southern-sourced wetness in the watershed. Upon weakening of the S5 monsoon (~120-115 ka), the return of extreme aridity resulted in an unprecedented lake level drawdown, reflected by massive salt deposition, and followed by a sediment hiatus (~115-100 ka) indicating prolonged low lake level. The resumption of section follows classic Levant patterns with more wetness during cooler MIS5b and hyper-aridity during warmer MIS5a. The ICDP core provides the first evidence for a direct linkage between an intense precession-driven African monsoon and wetness at the high subtropical latitude (~30N) of the Dead Sea watershed. Combined with coeval deposition of Negev speleothems and travertines, and calcitification of Red Sea corals, the evidence indicates a wet climatic corridor that could facilitate homo sapiens migration out of Africa during the MIS5e peak. In addition, the MIS 5e hyper-arid intervals may provide an important cautionary analogue for the impact of future warming on regional water resources.

  19. Water, heat, and vapor flow in a deep vadose zone under arid and hyper-arid conditions: a numerical study.

    NASA Astrophysics Data System (ADS)

    Madi, Raneem; de Rooij, Gerrit H.

    2017-04-01

    Groundwater recharge in arid regions is notoriously difficult to quantify. One reason is data scarcity: reliable weather records (rainfall, potential evapotranspiration rate, temperature) are typically lacking, the soil properties over the entire extent of the often very deep vadose zone are usually unknown, and the effect of sparse vegetation, wadis, (biological) soil crusts, and hard pans on infiltration and evaporation is difficult to quantify. Another reason is the difficulty of modeling the intricately coupled relevant processes over extended periods of time: coupled flow of liquid water, water vapor, and heat in a very deep soil in view of considerable uncertainty at the soil surface as indicated above, and over large spatial extents. In view of this myriad of problems, we limited ourselves to the simulation of 1-dimensional coupled flow of water, heat, and vapor in an unvegetated deep vadose zone. The conventional parameterizations of the soil hydraulic properties perform poorly under very dry conditions. We therefore selected an alternative that was developed specifically for dry circumstances and modified another to eliminate the physically implausible residual water content that rendered it of limited use for desert environments. The issue of data scarcity was resolved by using numerically generated rainfall records combined with a simple model for annual and daily temperature fluctuations. The soil was uniform, and the groundwater depth was constant at 100 m depth, which provided the lower boundary condition. The geothermal gradient determined the temperature at the groundwater level. We generated two scenarios with 120 years of weather in an arid and a hyper-arid climate. The initial condition was established by first starting with a somewhat arbitrary unit gradient initial condition corresponding to a small fraction of the annual average rainfall and let the model run through the 120-year atmospheric forcing. The resulting profile of matric potential and temperature was used as the initial condition for the warm-up period of the model (240 years) during which the weather record was repeated, which was then followed by the 120-year cycle we used for analysis. We will present the initial results of our analysis: - the dynamics (or lack thereof) of groundwater recharge and the role of wet years (or clusters of years) and droughts on the amount of recharge - the speed with which the atmospheric input signal travels downward, and the damping of the signal on its way down - the role of vapor flow under geothermal conditions

  20. Deep Percolation in Arid Piedmont Slopes: Multiple Lines of Evidence Show How Land Use Change and Ecohydrological Properties Affect Groundwater Recharge

    NASA Astrophysics Data System (ADS)

    Schreiner-McGraw, A.; Vivoni, E. R.; Browning, D. M.

    2017-12-01

    A critical hydrologic process in arid regions is the contribution of episodic streamflow in ephemeral channels to groundwater recharge. This process has traditionally been studied in channels that drain large watersheds (10s to 100s km2). In this study, we aim to characterize the provision of the ecosystem services of surface and groundwater supply in a first-order watershed (4.6 ha) in an arid piedmont slope of the Jornada Experimental Range (JER). We use an observational and modeling approach to estimate deep percolation. During a 6 year study period, we observed 428 mm of percolation (P) and 39 mm of runoff (Q); ratios of P to rainfall (R) of P/R = 0.27 and Q/R = 0.02. Utilizing an instrument network and site measurements, we determine that percolation occurs primarily inside channel reaches when these receive runoff from upland hillslopes and find that a monthly rainfall threshold of 62 mm is needed for significant percolation to be generated. In order to quantify the mechanisms leading to this threshold response, we develop a channel transmission loss module for the TIN-based Real-time Integrated Basin Simulator (tRIBS) and test the model thoroughly against the available observations over the study period. For these purposes, we make use of image classifications from Unmanned Aerial Vehicle flights, a ground-based phenocam, and species-level measurements to parameterize vegetation processes in the model. We then conduct an extensive set of sensitivity experiments to determine the relative roles of channel, soil, and vegetation properties on modifying the relation between monthly rainfall and percolation. Additionally, we test how the observed vegetation transitions in the JER over the last 150 years affect the deep percolation and runoff estimates. By quantifying mechanisms through which vegetation changes affect water resource provision, this work provides new insights on the ecohydrological controls on the water yield of arid piedmont slopes.

  1. Intraspecific variation in the use of water sources by the circum-Mediterranean conifer Pinus halepensis.

    PubMed

    Voltas, Jordi; Lucabaugh, Devon; Chambel, Maria Regina; Ferrio, Juan Pedro

    2015-12-01

    The relevance of interspecific variation in the use of plant water sources has been recognized in drought-prone environments. By contrast, the characterization of intraspecific differences in water uptake patterns remains elusive, although preferential access to particular soil layers may be an important adaptive response for species along aridity gradients. Stable water isotopes were analysed in soil and xylem samples of 56 populations of the drought-avoidant conifer Pinus halepensis grown in a common garden test. We found that most populations reverted to deep soil layers as the main plant water source during seasonal summer droughts. More specifically, we detected a clear geographical differentiation among populations in water uptake patterns even under relatively mild drought conditions (early autumn), with populations originating from more arid regions taking up more water from deep soil layers. However, the preferential access to deep soil water was largely independent of aboveground growth. Our findings highlight the high plasticity and adaptive relevance of the differential access to soil water pools among Aleppo pine populations. The observed ecotypic patterns point to the adaptive relevance of resource investment in deep roots as a strategy towards securing a source of water in dry environments for P. halepensis. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Habitat requirements and burrowing depths of rodents in relation to shallow waste burial sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gano, K.A.; States, J.B.

    1982-05-01

    The purpose of this paper is to provide a review of the literature and summarize information on factors affecting habitat selection and maximum recorded burrowing depths for representative small mammals that we consider most likely to inhibit waste burial sites in arid and semi-arid regions of the West. The information is intended for waste management designers who need to know what to expect from small mammals that may be present at a particular site. Waste repositories oculd be designed to exclude the deep burrowing rodents of a region by creating an unattractive habitat over the waste. Summaries are given formore » habitat requirements of each group along with generalized modifications that could be employed to deter habitation. Representatives from the major groups considered to be deep burrowers are discussed. Further, detailed information about a particular species can be obtained from the references cited.« less

  3. Simulating the impact of no-till systems on field water fluxes and maize productivity under semi-arid conditions

    NASA Astrophysics Data System (ADS)

    Mupangwa, W.; Jewitt, G. P. W.

    Crop output from the smallholder farming sector in sub-Saharan Africa is trailing population growth leading to widespread household food insecurity. It is therefore imperative that crop production in semi-arid areas be improved in order to meet the food demand of the ever increasing human population. No-till farming practices have the potential to increase crop productivity in smallholder production systems of sub-Saharan Africa, but rarely do because of the constraints experienced by these farmers. One of the most significant of these is the consumption of mulch by livestock. In the absence of long term on-farm assessment of the no-till system under smallholder conditions, simulation modelling is a tool that provides an insight into the potential benefits and can highlight shortcomings of the system under existing soil, climatic and socio-economic conditions. Thus, this study was designed to better understand the long term impact of no-till system without mulch cover on field water fluxes and maize productivity under a highly variable rainfall pattern typical of semi-arid South Africa. The simulated on-farm experiment consisted of two tillage treatments namely oxen-drawn conventional ploughing (CT) and ripping (NT). The APSIM model was applied for a 95 year period after first being calibrated and validated using measured runoff and maize yield data. The predicted results showed significantly higher surface runoff from the conventional system compared to the no-till system. Predicted deep drainage losses were higher from the NT system compared to the CT system regardless of the rainfall pattern. However, the APSIM model predicted 62% of the annual rainfall being lost through soil evaporation from both tillage systems. The predicted yields from the two systems were within 50 kg ha -1 difference in 74% of the years used in the simulation. In only 9% of the years, the model predicted higher grain yield in the NT system compared to the CT system. It is suggested that NT systems may have great potential for reducing surface runoff from smallholder fields and that the NT systems may have potential to recharge groundwater resources through increased deep drainage. However, it was also noted that the APSIM model has major shortcomings in simulating the water balance at this level of detail and that the findings need to be confirmed by further field based and modelling studies. Nevertheless, it is clear that without mulch or a cover crop, the continued high soil evaporation and correspondingly low crop yields suggest that there is little benefit to farmers adopting NT systems in semiarid environments, despite potential water resources benefits downstream. In such cases, the potential for payment for ecosystem services should be explored.

  4. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Young, R. R.; Huth, N.

    2011-11-01

    The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr-1 rainfall), such as parts of Australia's Murray-Darling Basin (MDB). In this unique study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8-1.2 m depth under perennial vegetation and at 2.0-2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91-229 t ha-1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥10 m depth that is not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m-1 at 21 to 37 m depth (N = 5), whereas deeper groundwater was less saline (290 mS m-1) with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM) software package predicted deep drainage of 3.3-9.5 mm yr-1 (0.7-2.1% rainfall) based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total), and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge negligible due to low rainfall and large potential evapotranspiration, transient hydrological conditionsafter changes in land use and a thick clay dominated vadose zone. This is in contrast to regional groundwater modelling that assumes annual recharge of 0.5% of rainfall. Importantly, it was found that leaching from episodic deep drainage could not cause discharge of saline groundwater in the area, since the water table was several meters below the incised river bed.

  5. Assessment of the soil water balance by the combination of cosmic ray neutron sensing and eddy covariance technique in an irrigated citrus orchard (Marrakesh, Morocco)

    NASA Astrophysics Data System (ADS)

    Mroos, Katja; Baroni, Gabriele; Er-Raki, Salah; Francke, Till; Khabba, Said; Jarlan, Lionel; Hanich, Lahoucine; Oswald, Sascha E.

    2014-05-01

    Irrigation water requirement plays a crucial role in many agricultural areas and especially in arid and semi-arid landscapes. Improvements in the water management and the performance of the irrigation systems require a correct evaluation of the hydrological processes involved. However, some difficulties can arise due to the heterogeneity of the soil-plant system and of the irrigation scheme. To overcome these limitations, in this study, the soil water balance is analyzed by the combination of the Eddy Covariance technique (EC) and Cosmic Ray neutron Sensing (CRS). EC provides the measurement of the actual evapotranspiration over the area as it was presented in many field conditions. Moreover CRS showed to be a valuable approach to measure the root zone soil moisture integrated in a footprint of ~30 ha. In this way, the combination of the two methodologies should provide a better analysis of the soil water balance at field scale, as opposed to point observations, e.g. by TDR, evaporimeter and fluxmeter. Then, this could increase the capability to assess the irrigation efficiency and the agricultural water management. The study is conducted in a citrus orchard situated in a semi-arid region, 30 km southwest of Marrakesh (Morocco). The site is flat and planted with trees of same age growing in parallel rows with drip irrigation lines and application of fertilizer and pesticides. The original soil seems modified on the surface by the agricultural use, creating differences between trees, rows and lines. In addition, the drip irrigation creates also a spatial variability of the water flux distribution in the field, making this site an interesting area to test the methodology. Particular attention is given to the adaptation of the standard soil sampling campaign used for the calibration of the CRS and the introduction of a weighing function. Data were collected from June to December 2013, which corresponds to the high plant transpiration. Despite the intention of the farmer to maintain constant soil water contents in the root zone throughout the period, the CRS results showed a relatively strong dynamic of the soil water conditions at field scale and respond well to the EC measurements. Strong spatial heterogeneities and the difficulties of direct comparison between the different scales of measurements pose a challenge for full quantification of the water balance. Further analysis will address the assessment of the irrigation efficiency at different scales and of deep percolation. Keywords: Cosmic Ray Sensing, deep percolation, Eddy Covariance, evapotranspiration, irrigation, Morocco, soil moisture, semi-arid;

  6. Influence of climate on deep-water clastic sedimentation: application of a modern model, Peru-Chile Trough, to an ancient system, Ouachita Trough

    USGS Publications Warehouse

    Edgar, N. Terence; Cecil, C. Blaine

    2003-01-01

    Traditionally, an abrupt and massive influx of siliciclastic sediments into an area of deposition has been attributed to tectonic uplift without consideration of the influence of climate or climatic change on rates of weathering, erosion, transportation, and deposition. With few exceptions, fluvial sediment transport is minimal in both extremely arid climates and in perhumid (everwet) climates. Maximum sediment transport occurs in climates characterized by strongly seasonal rainfall, where the effect of vegetation on erosion is minimal. The Peru–Chile trench and Andes Mountain system (P–CT/AMS) of the eastern Pacific Ocean clearly illustrates the effects of climate on rates of weathering, erosion, transport, and deep-sea sedimentation. Terrigenous sediment is virtually absent in the arid belt north of lat. 30° S in the P–CT, but in the belt of seasonal rainfall south of lat. 30° S terrigenous sediment is abundant. Spatial variations in the amount and seasonality of annual precipitation are now generally accepted as the cause for this difference. The spatial variation in sediment supply to the P–CT appears to be an excellent modern analogue for the temporal variation in sediment supply to certain ancient systems, such as the Ouachita Trough in the southern United States. By comparison, during the Ordovician through the early Mississippian, sediment was deposited at very slow rates as the Ouachita Trough moved northward through the southern hemisphere dry belt (lat. 10° S to lat. 30° S). The deposystem approached the tropical humid zone during the Mississippian, coincident with increased coarse clastic sedimentation. By the Middle Pennsylvanian (Atokan), the provenance area and the deposystem moved well into the tropical humid zone, and as much as 8,500 m of mineralogically mature (but texturally immature) quartz sand was introduced and deposited. This increase in clastic sediment deposition traditionally has been attributed solely to tectonic activity. However, we contend that the principal control on the introduction of abundant terrigenous sediment was the movement of the deposystem from an arid or semiarid climate into a seasonally wetter climatic regime. The physical and mineralogical maturity of the quartz sand is the result of tropical weathering in provenance areas.

  7. Spatial and temporal dynamics of deep percolation, lag time and recharge in an irrigated semi-arid region

    NASA Astrophysics Data System (ADS)

    Nazarieh, F.; Ansari, H.; Ziaei, A. N.; Izady, A.; Davari, K.; Brunner, P.

    2018-05-01

    The time required for deep percolating water to reach the water table can be considerable in areas with a thick vadose zone. Sustainable groundwater management, therefore, has to consider the spatial and temporal dynamics of groundwater recharge. The key parameters that control the lag time have been widely examined in soil physics using small-scale lysimeters and modeling studies. However, only a small number of studies have analyzed how deep-percolation rates affect groundwater recharge dynamics over large spatial scales. This study examined how the parameters influencing lag time affect groundwater recharge in a semi-arid catchment under irrigation (in northeastern Iran) using a numerical modeling approach. Flow simulations were performed by the MODFLOW-NWT code with the Vadose-Zone Flow (UZF) Package. Calibration of the groundwater model was based on data from 48 observation wells. Flow simulations showed that lag times vary from 1 to more than 100 months. A sensitivity analysis demonstrated that during drought conditions, the lag time was highly sensitive to the rate of deep percolation. The study illustrated two critical points: (1) the importance of providing estimates of the lag time as a basis for sustainable groundwater management, and (2) lag time not only depends on factors such as soil hydraulic conductivity or vadose zone depth but also depends on the deep-percolation rates and the antecedent soil-moisture condition. Therefore, estimates of the lag time have to be associated with specific percolation rates, in addition to depth to groundwater and soil properties.

  8. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau.

    PubMed

    Wang, Jian; Fu, Bojie; Lu, Nan; Zhang, Li

    2017-12-31

    Water is a limiting factor and significant driving force for ecosystem processes in arid and semi-arid areas. Knowledge of plant water uptake pattern is indispensable for understanding soil-plant interactions and species coexistence. The 'Grain for Green' project that started in 1999 in the Loess Plateau of China has led to large scale vegetation change. However, little is known about the water uptake patterns of the main plant species that inhabit in this region. In this study, the seasonal variations in water uptake patterns of three representative plant species, Stipa bungeana, Artemisia gmelinii and Vitex negundo, that are widely distributed in the semi-arid area of the Loess Plateau, were identified by using dual stable isotopes of δ 2 H and δ 18 O in plant and soil water coupled with a Bayesian mixing model MixSIAR. The soil water at the 0-120cm depth contributed 79.54±6.05% and 79.94±8.81% of the total water uptake of S. bungeana and A. gmelinii, respectively, in the growing season. The 0-40cm soil contributed the most water in July (74.20±15.20%), and the largest proportion of water (33.10±15.20%) was derived from 120-300cm soils in August for A. gmelinii. However, V. negundo obtained water predominantly from surface soil horizons (0-40cm) and then switched to deep soil layers (120-300cm) as the season progressed. This suggested that V. negundo has a greater degree of ecological plasticity as it could explore water sources from deeper soils as the water stress increased. This capacity can mainly be attributed to its functionally dimorphic root system. V. negundo may have a competitive advantage when encountering short-term drought. The ecological plasticity of plant water use needs to be considered in plant species selection and ecological management and restoration of the arid and semi-arid ecosystems in the Loess Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Climate change and the collapse of the Akkadian empire: Evidence from the deep sea

    NASA Astrophysics Data System (ADS)

    Cullen, H. M.; Demenocal, P. B.; Hemming, S.; Hemming, G.; Brown, F. H.; Guilderson, T.; Sirocko, F.

    2000-04-01

    The Akkadian empire ruled Mesopotamia from the headwaters of the Tigris-Euphrates Rivers to the Persian Gulf during the late third millennium B.C. Archeological evidence has shown that this highly developed civilization collapsed abruptly near 4170 ± 150 calendar yr B.P., perhaps related to a shift to more arid conditions. Detailed paleoclimate records to test this assertion from Mesopotamia are rare, but changes in regional aridity are preserved in adjacent ocean basins. We document Holocene changes in regional aridity using mineralogic and geochemical analyses of a marine sediment core from the Gulf of Oman, which is directly downwind of Mesopotamian dust source areas and archeological sites. Our results document a very abrupt increase in eolian dust and Mesopotamian aridity, accelerator mass spectrometer radiocarbon dated to 4025 ± 125 calendar yr B.P., which persisted for ˜300 yr. Radiogenic (Nd and Sr) isotope analyses confirm that the observed increase in mineral dust was derived from Mesopotamian source areas. Geochemical correlation of volcanic ash shards between the archeological site and marine sediment record establishes a direct temporal link between Mesopotamian aridification and social collapse, implicating a sudden shift to more arid conditions as a key factor contributing to the collapse of the Akkadian empire.

  10. Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile

    USGS Publications Warehouse

    Neilson, Julia W.; Quade, Jay; Ortiz, Marianyoly; Nelson, William M.; Legatzki, Antje; Tian, Fei; LaComb, Michelle; Betancourt, Julio L.; Wing, Rod A.; Soderlund, Carol A.; Maier, Raina M.

    2012-01-01

    Nearly half the earth's surface is occupied by dryland ecosystems, regions susceptible to reduced states of biological productivity caused by climate fluctuations. Of these regions, arid zones located at the interface between vegetated semiarid regions and biologically unproductive hyperarid zones are considered most vulnerable. The objective of this study was to conduct a deep diversity analysis of bacterial communities in unvegetated arid soils of the Atacama Desert, to characterize community structure and infer the functional potential of these communities based on observed phylogenetic associations. A 454-pyrotag analysis was conducted of three unvegetated arid sites located at the hyperarid-arid margin. The analysis revealed communities with unique bacterial diversity marked by high abundances of novel Actinobacteria and Chloroflexi and low levels of Acidobacteria and Proteobacteria, phyla that are dominant in many biomes. A 16S rRNA gene library of one site revealed the presence of clones with phylogenetic associations to chemoautotrophic taxa able to obtain energy through oxidation of nitrite, carbon monoxide, iron, or sulfur. Thus, soils at the hyperarid margin were found to harbor a wealth of novel bacteria and to support potentially viable communities with phylogenetic associations to non-phototrophic primary producers and bacteria capable of biogeochemical cycling.

  11. Effects of groundwater abstraction on two keystone tree species in an arid savanna national park.

    PubMed

    Shadwell, Eleanor; February, Edmund

    2017-01-01

    In arid systems with no surface water, deep boreholes in ephemeral river beds provide for humans and animals. With continually increasing infrastructure development for tourism in arid wildlife parks such as the Kgalagadi Transfrontier Park in southern Africa, we ask what effects increased abstraction may have on large trees. Large trees in arid savannas perform essential ecosystem services by providing food, shade, nesting sites and increased nutrients for many other plant and animal species and for this are regarded as keystone species. We determine seasonal fluctuations in the water table while also determining the water source for the dominant large tree species in the Auob and Nossob rivers in the Park. We also determine the extent to which these trees are physiologically stressed using leaf δ 13 C, xylem pressure potentials, specific leaf area and an estimate of canopy death. We do this both upstream and downstream of a low water use borehole in the Auob River and a high water use borehole in the Nossob River. Our results show that the trees are indeed using deep groundwater in the wet season and that this is the same water used by people. In the dry season, trees in the Auob downstream of the active borehole become detached from the aquifer and use more isotopically enriched soil water. In the Nossob in the dry season, all trees use isotopically enriched soil water, and downstream of the active borehole use stomatal regulation to maintain leaf water potentials. These results suggest that trees in the more heavily utilised Nossob are under more water stress than those trees in the Auob but that trees in both rivers demonstrate physiological adaptation to the changes in available water with smaller heavier leaves, no significant canopy dieback and in the dry season in the Nossob stomatal regulation of leaf water potentials. An increase in abstraction of groundwater particularly at the Nossob borehole may cause an additional draw down of the water table adding to the physiological stress demonstrated in our study. The managers of the Kgalagadi Transfrontier Park have a mandate that includes biodiversity conservation. To fulfil this mandate, upper and lower thresholds for groundwater abstraction that allow for an adequate ecological reserve have to be determined.

  12. Effects of groundwater abstraction on two keystone tree species in an arid savanna national park

    PubMed Central

    2017-01-01

    Background In arid systems with no surface water, deep boreholes in ephemeral river beds provide for humans and animals. With continually increasing infrastructure development for tourism in arid wildlife parks such as the Kgalagadi Transfrontier Park in southern Africa, we ask what effects increased abstraction may have on large trees. Large trees in arid savannas perform essential ecosystem services by providing food, shade, nesting sites and increased nutrients for many other plant and animal species and for this are regarded as keystone species. Methods We determine seasonal fluctuations in the water table while also determining the water source for the dominant large tree species in the Auob and Nossob rivers in the Park. We also determine the extent to which these trees are physiologically stressed using leaf δ13C, xylem pressure potentials, specific leaf area and an estimate of canopy death. We do this both upstream and downstream of a low water use borehole in the Auob River and a high water use borehole in the Nossob River. Results Our results show that the trees are indeed using deep groundwater in the wet season and that this is the same water used by people. In the dry season, trees in the Auob downstream of the active borehole become detached from the aquifer and use more isotopically enriched soil water. In the Nossob in the dry season, all trees use isotopically enriched soil water, and downstream of the active borehole use stomatal regulation to maintain leaf water potentials. These results suggest that trees in the more heavily utilised Nossob are under more water stress than those trees in the Auob but that trees in both rivers demonstrate physiological adaptation to the changes in available water with smaller heavier leaves, no significant canopy dieback and in the dry season in the Nossob stomatal regulation of leaf water potentials. Discussion An increase in abstraction of groundwater particularly at the Nossob borehole may cause an additional draw down of the water table adding to the physiological stress demonstrated in our study. The managers of the Kgalagadi Transfrontier Park have a mandate that includes biodiversity conservation. To fulfil this mandate, upper and lower thresholds for groundwater abstraction that allow for an adequate ecological reserve have to be determined. PMID:28149693

  13. Mapping Prosopis spp. with Landsat 8 data in arid environments: Evaluating effectiveness of different methods and temporal imagery selection for Hargeisa, Somaliland

    NASA Astrophysics Data System (ADS)

    Ng, Wai-Tim; Meroni, Michele; Immitzer, Markus; Böck, Sebastian; Leonardi, Ugo; Rembold, Felix; Gadain, Hussein; Atzberger, Clement

    2016-12-01

    Prosopis spp. is a fast and aggressive invader threatening many arid and semi-arid areas globally. The species is native to the American dry zones and was introduced in Somaliland for dune stabilization and fuel wood production in the 1970⿿s and 1980⿿s. Its deep rooting system is capable of tapping into the groundwater table thereby reducing its reliance on infrequent rainfalls and near-surface water. The competitive advantage of Prosopis is further fuelled by the hybridization of the many introduced subspecies that made the plant capable of adapting to the new environment and replacing endemic species. This study aimed to test the mapping accuracy achievable with Landsat 8 data acquired during the wet and the dry seasons within a Random Forest (RF) classifier, using both pixel- and object-based approaches. Maps are produced for the Hargeisa area (Somaliland), where reference data was collected during the dry season of 2015. Results were assessed through a 10-fold cross-validation procedure. In our study, the highest overall accuracy (74%) was achieved when applying a pixel-based classification using a combination of the wet and dry season Earth observation data. Object-based mapping were less reliable due to the limitations in spatial resolution of the Landsat data (15⿿30 m) and problems in finding an appropriate segmentation scale.

  14. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Young, R. R.; Huth, N.

    2012-04-01

    The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr-1 rainfall, potential evapotranspiration >2000 mm yr-1) such as parts of Australia's Murray-Darling Basin (MDB). In this rare study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8-1.2 m depth under perennial vegetation and at 2.0-2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91-229 t ha-1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥ 10 m depth that was not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m-1 at 21 to 37 m depth (N = 5), whereas deeper groundwater was less saline (290 mS m-1) with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM) software package predicted deep drainage of 3.3-9.5 mm yr-1 (0.7-2.1% rainfall) based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent soil water content, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total), and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge appears to be negligible due to low rainfall and large potential evapotranspiration, transient hydrological conditions after changes in land use and a thick clay dominated vadose zone. This is in contrast to regional groundwater modelling that assumes annual recharge of 0.5% of rainfall. Importantly, it was found that leaching from episodic deep drainage could not cause discharge of saline groundwater in the area, since the water table was several meters below the incised river bed.

  15. Sensitivity of Vadose Zone Water Fluxes to Climate Shifts in Arid Settings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfletschinger, H.; Prömmel, K.; Schüth, C.

    2014-01-01

    Vadose zone water fluxes in arid settings are investigated regarding their sensitivity to hydraulic soil parameters and meteorological data. The study is based on the inverse modeling of highly defined soil column experiments and subsequent scenario modeling comparing different climate projections for a defined arid region. In arid regions, groundwater resources are prone to depletion due to excessive water use and little recharge potential. Especially in sand dune areas, groundwater recharge is highly dependent on vadose zone properties and corresponding water fluxes. Nevertheless, vadose zone water fluxes under arid conditions are hard to determine owing to, among other reasons, deepmore » vadose zones with generally low fluxes and only sporadic high infiltration events. In this study, we present an inverse model of infiltration experiments accounting for variable saturated nonisothermal water fluxes to estimate effective hydraulic and thermal parameters of dune sands. A subsequent scenario modeling links the results of the inverse model with projections of a global climate model until 2100. The scenario modeling clearly showed the high dependency of groundwater recharge on precipitation amounts and intensities, whereas temperature increases are only of minor importance for deep infiltration. However, simulated precipitation rates are still affected by high uncertainties in the response to the hydrological input data of the climate model. Thus, higher certainty in the prediction of precipitation pattern is a major future goal for climate modeling to constrain future groundwater management strategies in arid regions.« less

  16. An overview of nitrate sources and operating processes in arid and semiarid aquifer systems.

    PubMed

    Gutiérrez, Mélida; Biagioni, Richard N; Alarcón-Herrera, Maria Teresa; Rivas-Lucero, Bertha A

    2018-05-15

    Nitrate concentration in most aquifers in arid and semi-arid areas has increased in the past several decades as a result of human activities. Under the predominantly oxic conditions of these aquifers, denitrification is inhibited, allowing nitrate, a soluble and stable form of nitrogen (N), to accumulate. Because of its close association with municipal and agricultural wastes, nitrate is commonly used as an indicator of anthropogenic contamination. Aquifers affected by agricultural waste may contain salts from irrigation returns and herbicides in addition to nitrates. Preventing leakage from soil to deeper parts of the aquifer is thus a priority in the sustainable management of aquifers in arid and semiarid areas. Studies report a wide range of nitrate concentrations distributed non-uniformly within the aquifer, with roughly 40% and 20% of sampled wells exceeding 50mg/L nitrate in shallow and deep parts of the aquifer respectively. In aquifers at risk of becoming contaminated, nitrate isotopes (δ 15 N, δ 18 O, Δ 17 O) can be used to identify the source of nitrogen as mineral or organic fertilizer, sewage, or atmospheric deposition. A variety of mathematical models (crop, hydrological, geochemical, or a combination of them) have been successful in identifying best practices that minimize N leakage without negatively affecting crop yield. In addition, field research in crop management, e.g., conservation agriculture, has yielded promising results in determining the adequate dosage and time of application of fertilizers to reduce N losses. Examples of key dryland aquifers impacted by nitrate are discussed, and some of the most pressing challenges to achieve sustainability are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Development of vegetation based soil quality indices for mineralized terrane in arid and semi-arid regions

    Treesearch

    S. W. Blecker; L. L. Stillings; M. C. Amacher; J. A. Ippolito; N. M. DeCrappeo

    2012-01-01

    Soil quality indices (SQIs) are often management driven and attempt to describe key relationships between above- and below-ground parameters. In terrestrial systems, indices that were initially developed and modified for agroecosystems have been applied to non-agricultural systems in increasing number. We develop an SQI in arid and semi-arid ecosystems of the Western...

  18. Probability of detecting perchlorate under natural conditions in deep groundwater in California and the Southwestern United States

    USGS Publications Warehouse

    Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    We use data from 1626 groundwater samples collected in California, primarily from public drinking water supply wells, to investigate the distribution of perchlorate in deep groundwater under natural conditions. The wells were sampled for the California Groundwater Ambient Monitoring and Assessment Priority Basin Project. We develop a logistic regression model for predicting probabilities of detecting perchlorate at concentrations greater than multiple threshold concentrations as a function of climate (represented by an aridity index) and potential anthropogenic contributions of perchlorate (quantified as an anthropogenic score, AS). AS is a composite categorical variable including terms for nitrate, pesticides, and volatile organic compounds. Incorporating water-quality parameters in AS permits identification of perturbation of natural occurrence patterns by flushing of natural perchlorate salts from unsaturated zones by irrigation recharge as well as addition of perchlorate from industrial and agricultural sources. The data and model results indicate low concentrations (0.1-0.5 μg/L) of perchlorate occur under natural conditions in groundwater across a wide range of climates, beyond the arid to semiarid climates in which they mostly have been previously reported. The probability of detecting perchlorate at concentrations greater than 0.1 μg/L under natural conditions ranges from 50-70% in semiarid to arid regions of California and the Southwestern United States to 5-15% in the wettest regions sampled (the Northern California coast). The probability of concentrations above 1 μg/L under natural conditions is low (generally <3%).

  19. Rainwater harvesting to enhance water productivity of rainfed agriculture in the semi-arid Zimbabwe

    NASA Astrophysics Data System (ADS)

    Kahinda, Jean-marc Mwenge; Rockström, Johan; Taigbenu, Akpofure E.; Dimes, John

    Zimbabwe’s poor are predominantly located in the semi-arid regions and rely on rainfed agriculture for their subsistence. Decline in productivity, scarcity of arable land, irrigation expansion limitations, erratic rainfall and frequent dry spells, among others cause food scarcity. The challenge faced by small-scale farmers is to enhance water productivity of rainfed agriculture by mitigating intra-seasonal dry spells (ISDS) through the adoption of new technologies such as rainwater harvesting (RWH). The paper analyses the agro-hydrological functions of RWH and assesses its impacts (at field scale) on the crop yield gap as well as the Transpirational Water Productivity ( WPT). The survey in six districts of the semi-arid Zimbabwe suggests that three parameters (water source, primary use and storage capacity) can help differentiate storage-type-RWH systems from “conventional dams”. The Agricultural Production Simulator Model (APSIM) was used to simulate seven different treatments (Control, RWH, Manure, Manure + RWH, Inorganic Nitrogen and Inorganic Nitrogen + RWH) for 30 years on alfisol deep sand, assuming no fertiliser carry over effect from season to season. The combined use of inorganic fertiliser and RWH is the only treatment that closes the yield gap. Supplemental irrigation alone not only reduces the risks of complete crop failure (from 20% down to 7% on average) for all the treatments but also enhances WPT (from 1.75 kg m -3 up to 2.3 kg m -3 on average) by mitigating ISDS.

  20. Abrupt hydroclimate disruption across the Australian arid zone 50 ka coincident with human colonization

    NASA Astrophysics Data System (ADS)

    Miller, G. H.; Fogel, M. L.; Magee, J. W.; Gagan, M. K.

    2016-12-01

    Although many studies focus on how climate change impacted ancient societies, in Australia a growing body of evidence indicates that activities of the earliest human colonizers in turn altered the Australian climate. We utilize the stable isotopes of carbon and oxygen preserved in near-continuous 100 ka time series of avian eggshell from five regions across the Australian arid zone to reconstruct ecosystem status (d13C) and effective moisture (d18O). Training sets of sub-modern samples provide the basis for the reconstructions. Together, d13C and d18O provide independent estimates of ecosystem status and climate over the past 100 ka from the same dated sample, reducing correlation uncertainties between proxies. Changes in eggshell d13C document a dramatic reduction of palatable summer-wet C4 grasses in all regions between 50 and 45 ka, that has persisted through to modern times. Continuous 100 ka records of effective moisture derived from eggshell d18O show moist conditions from 100 to 60 ka, with variable drying after 60 ka, but the strong shift toward greatest aridity is coincident with the onset of the last glacial maximum 30 ka ago, 15 ka after the observed ecosystem restructuring. Combining the d13C and d18O time-series shows that an abrupt and permanent restructuring of the moisture/ecosystem balance occurred between 50 and 45 ka. Additional studies show that most large monsoon-fed inland arid-zone lakes carried permanent water at least intermittently between 120 and 50 ka, but never experienced permanent deep-water status after 45 ka, despite a wide range of global climate states, including the early Holocene when most other monsoon systems were reinvigorated. The lack of exceptional climate shifts either locally or globally between 60 and 40 ka eliminates climate as the cause of the ecosystem restructuring and persistent lake desiccation. Collectively these data suggest the wave of human colonization across Australia in altered land surface characteristics in a way that reduced the efficiency of the climate system to deliver monsoon moisture to the continental interior. This explanation will now be tested with climate modeling.

  1. Long-term Satellite Observations of Asian Dust Storm: Source, Pathway, and Interannual Variability

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina

    2008-01-01

    Among the many components that contribute to air pollution, airborne mineral dust plays an important role due to its biogeochemical impact on the ecosystem and its radiative-forcing effect on the climate system. In East Asia, dust storms frequently accompany the cold and dry air masses that occur as part of springtime cold front systems. Outbreaks of Asian dust storms occur often in the arid and semi-arid areas of northwestern China -about 1.6x10(exp 6) square kilometers including the Gobi and Taklimakan deserts- with continuous expanding of spatial coverage. These airborne dust particles, originating in desert areas far from polluted regions, interact with anthropogenic sulfate and soot aerosols emitted from Chinese megacities during their transport over the mainland. Adding the intricate effects of clouds and marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from their sources. Furthermore, these aerosols, once generated over the source regions, can be transported out of the boundary layer into the free troposphere and can travel thousands of kilometers across the Pacific into the United States and beyond. In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol properties (e.g., optical thickness, single scattering albedo) over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. This new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. Reasonable agreements have been achieved between Deep Blue retrievals of aerosol optical thickness and those directly from AERONET sunphotometers over desert and semi-desert regions. New Deep Blue products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. Long-term satellite measurements (1998 - 2007) from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with the Asian dust storm outbreaks. In addition, monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.

  2. Environmental physiology of a small marsupial inhabiting arid floodplains.

    PubMed

    Warnecke, L; Cooper, C E; Geiser, F; Withers, P C

    2010-09-01

    Giles' planigale (Planigale gilesi) is among the smallest extant marsupials and inhabits deep soil cracks in arid floodplains. We examined whether its physiology shows specific adaptations to its extreme habitat. Metabolic rate, body temperature, evaporative water loss and thermal conductance were measured for eight planigales (average mass 9 g) exposed to four different ambient temperatures ranging from 10 degrees C to 32 degrees C. Water economy and respiratory variables were measured for the first time in this species. All of these standard physiological variables conformed to allometrically-predicted values for a marsupial. All variables were significantly affected by ambient temperature, except tidal volume and dry thermal conductance. Metabolic rate increased substantially at low ambient temperatures, as required to maintain a relatively constant body temperature of about 32-34 degrees C. This increased oxygen demand was accommodated by increased ventilation rather than increased oxygen extraction. Planigales had a comparatively high point of relative water economy of 19.1 degrees C, consistent with their small body size and arid habitat. Torpor reduced energy expenditure by 79% and evaporative water loss by 62%. Our study suggests that torpor use, along with behavioural adaptations, suffice for P. gilesi to live underground in arid habitats without further physiological adaptations. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  3. Multiple Sulfate Isotopic Evidence on the Formation of Oxide Copper Ore at Spence, Atacama Desert, Northern Chile

    NASA Astrophysics Data System (ADS)

    Sun, T.; Bao, H.; Reich, M.; Palacios, C.

    2007-12-01

    In the Atacama Desert of northern Chile, one of the world's richest metallogenic provinces, porphyry copper deposits are characterized by the unique occurrence of atacamite in their oxidized zones. The origin and formation of the oxide zone of these copper deposits is, however, controversial. It was proposed that Cl-rich deep formation water pumping-up events along faults by earthquakes, after onset of the hyperaridity, were required (Cameron et al., 2007). Their model would imply that supplies of saline deep formation water from fractures to the surface should have left behind a homogeneous or fracture-controlled salt profile from surface down to the oxide zone. While no excluding the deep formation water model in other deposit, here we propose that, in our sampling region, the alternative saline source, which is critical for atacamite formation, could be locally evaporated groundwater, Cl-rich salts leached from arid surface by meteoric water, or brines from eastern salar basins at a time when the climate in northern Chile was changing from arid to hyperarid. At this climate transition, arid- requiring minerals such as atacamite in the oxide zone were formed and, more importantly, preserved upon evaporation beneath the surface alluvial deposits. Since salt accumulation at the surface remain active during hyperarid condition, our model would predict that water-soluble salt profile from surface to the oxide zone should have a characteristic pattern: salts with an atmospheric component on the surface gradually transitioning to salts of the oxide ore zone on the bottom and a mixing zone in between. To test these two alternative models, we focus on sulfate salts, one of the common water-soluble salts in arid environments. An added advantage is that sulfate accumulated on desert surface has a secondary atmospheric component that bears a unique triple oxygen isotope signature, easily distinguishable from sulfate formed by the oxidation of sulfide minerals at the oxide ore zone. Samples were collected from a drill core that extends from surface soil to an oxide zone where gypsum and jarosite coexist with atacamite at Spence, a supergene enriched copper porphyry deposit located between Calama and Antofagasta. We found that at 15 to ~100 m depths, the Δ17O and δ34S both decrease while the δ18O increases steadily with depths, suggesting a binary mixing of two distinct sulfate sources, with the surface sulfate having Δ17O, δ34S, and δ18O at +0.55‰, +5.80‰, and +10.80‰, while the deep oxide-ore- zone sulfate at -0.23‰, +3.6‰, and+19.8‰, respectively. The surface sulfate has reached a maximum depth of ~ 50 meters, as marked by the disappearance of positive Δ17O signals at that depth. The intact preservation of this transitional sulfate mixing profile supports our model, a model that does not require a deep formation water source for atacamite formation in oxide zone of Spence copper porphyry deposit.

  4. TEM study of a silicate-carbonate-microbe interface prepared by focused ion beam milling

    NASA Astrophysics Data System (ADS)

    Benzerara, Karim; Menguy, Nicolas; Guyot, François; Vanni, Christian; Gillet, Philippe

    2005-03-01

    The biogeochemical alteration of an Mg-Fe orthopyroxene, reacted for 70 yr under arid conditions in a desert environment, was studied by transmission electron microscopy. For this purpose, an electron transparent cross-section of the interface between a single microorganism, an orthopyroxene and nanometer-sized calcite crystals, was prepared with a focused ion beam system. X-ray energy dispersive spectrometry and electron energy loss spectroscopy allowed one to clearly distinguish the microorganism en route to fossilization from the nanometer-sized calcite crystals, showing the usefulness of such a protocol for identifying unambiguously traces of life in rocks. A 100-nm-deep depression was observed in the orthopyroxene close to the microorganism, suggesting an enhanced dissolution mediated by the microbe. However, an Al- and Si-rich amorphous altered layer restricted to the area just below the microorganism could be associated with decreased silicate dissolution rates at this location, suggesting complex effects of the microorganism on the silicate dissolution process. The close association observed between silicate dissolution and carbonate formation at the micrometer scale suggests that Urey-type CO 2 sequestration reactions could be mediated by microorganisms under arid conditions.

  5. [Succession pattern of artificial vegetation community and its ecological mechanism in an arid desert region].

    PubMed

    Xu, Cailin; Li, Zizhen

    2003-09-01

    Focusing on the artificial vegetation protection system of the Shapotou section of Baotou-Lanzhou railway in the arid desert region of China, this paper examined the dynamics of dominant plant species and the succession pattern of artificial plant community in the process of establishing and developing regional artificial vegetation. It also studied the driving force and the ecologically intrinsic mechanism of the community succession. The results demonstrated that the species composition of the artificial vegetation dramatically changed after 40 years of succession, from original artificial plant community of shrub and semi-shrub to artificial-natural desert plant community with annual herb dominated. During the process of succession, the importance values of artificial shrubs, such as Caragana korshinskii and Hedysarum scoparius, decreased and gradually retreated from the artificial plant community, while the naturally multiplied annual herb, such as Eragrostis poaeoides, Bassia dasyphylla, Salsola ruthenica, Chloris virgata and etc., were presented one after another and gradually became dominant. Besides, Artemisia ordosica always played a key role in the community due to its ability of naturally sowing and self-replacement. This type of succession pattern was closely related to the shortage of precipitation resource in this region and the formation of soil crust which inhibited the reproduction of shrub and perennial herb with deep root systems. This study provided a theoretical ground for realizing persistent development of artificial plant community.

  6. Hydrologic Connectivity: a Framework to Understand Threshold Behaviour in Semi-Arid Landscapes.

    NASA Astrophysics Data System (ADS)

    Saco, Patricia; Rodriguez, Jose; Keesstra, Saskia; Moreno-de las Heras, Mariano; Sandi, Steven; Baartman, Jantiene; Cerdà, Artemi

    2017-04-01

    Anthropogenic activities and climate change are imposing an unprecedented pressure on arid and semi-arid ecosystems, where shortage of water can trigger shifts in landscapes' structures and function leading to degradation and desertification. Hydrological connectivity is a useful framework for understanding water redistribution and scaling issues associated to runoff and sediment production, since human and/or natural disturbances alter the surface water availability and pathways increasing/decreasing connectivity. In this presentation, we illustrate the use of the connectivity framework for several examples of dryland systems that are analysed at a variety of spatial and temporal scales. In doing so, we draw particular attention to the analysis of co-evolution of system structures and function, and how they drive threshold behaviour leading to desertification and degradation. We first analyse the case of semi-arid rangelands, where feedbacks between decline in vegetation density and landscape erosion reinforces degradation processes driven by changes in connectivity until a threshold is crossed above which the return to a functional system is unlikely. We then focus on semi-arid wetlands, where decreases in water volumes promotes dryland vegetation encroachment that changes drainage conditions and connectivity potentially reinforcing redistribution of flow paths to other wetland areas. The examples presented highlight the need to incorporate a co-evolutionary framework for the analysis of changing connectivity patterns and the emergence of thresholds in arid and semi-arid systems.

  7. New optically stimulated luminescence ages provide evidence of MIS3 and MIS2 eolian activity on Black Mesa, northeastern Arizona, USA

    USGS Publications Warehouse

    Ellwein, A.L.; Mahan, S.A.; McFadden, L.D.

    2011-01-01

    Eolian deposition on the semiarid southern Colorado Plateau has been attributed to episodic aridity during the Quaternary Period. However, OSL ages from three topographically controlled (e.g. falling) dunes on Black Mesa in northeastern Arizona indicate that eolian sediments there were deposited in deep tributary valleys as early as 35-30. ka, with most sand deposited before 20. ka. In contrast, the oldest OSL ages for sand sheets fall within the Pleistocene-Holocene climatic transition (~. 12-8. ka). Thus most eolian sediment accumulated on Black Mesa under climatic conditions that were in general cooler, moister, and more variable than today, not more arid, pointing to a considerable increase in sediment supply. ?? 2010 University of Washington.

  8. Shallow Horizontal GCHP Effectiveness in Arid Climate Soils

    NASA Astrophysics Data System (ADS)

    North, Timothy James

    Ground coupled heat pumps (GCHPs) have been used successfully in many environments to improve the heating and cooling efficiency of both small and large scale buildings. In arid climate regions, such as the Phoenix, Arizona metropolitan area, where the air condi-tioning load is dominated by cooling in the summer, GCHPs are difficult to install and operate. This is because the nature of soils in arid climate regions, in that they are both dry and hot, renders them particularly ineffective at dissipating heat. The first part of this thesis addresses applying the SVHeat finite element modeling soft-ware to create a model of a GCHP system. Using real-world data from a prototype solar-water heating system coupled with a ground-source heat exchanger installed in Menlo Park, California, a relatively accurate model was created to represent a novel GCHP panel system installed in a shallow vertical trench. A sensitivity analysis was performed to evaluate the accuracy of the calibrated model. The second part of the thesis involved adapting the calibrated model to represent an ap-proximation of soil conditions in arid climate regions, using a range of thermal properties for dry soils. The effectiveness of the GCHP in the arid climate region model was then evaluated by comparing the thermal flux from the panel into the subsurface profile to that of the prototype GCHP. It was shown that soils in arid climate regions are particularly inefficient at heat dissipation, but that it is highly dependent on the thermal conductivity inputted into the model. This demonstrates the importance of proper site characterization in arid climate regions. Finally, several soil improvement methods were researched to evaluate their potential for use in improving the effectiveness of shallow horizontal GCHP systems in arid climate regions.

  9. Interaction between groundwater and trees in an arid site: Potential impacts of climate variation and groundwater abstraction on trees

    NASA Astrophysics Data System (ADS)

    Yin, Lihe; Zhou, Yangxiao; Huang, Jinting; Wenninger, Jochen; Zhang, Eryong; Hou, Guangcai; Dong, Jiaqiu

    2015-09-01

    The understanding of the interaction between groundwater and trees is vital for sustainable groundwater use and maintenance of a healthy ecosystem in arid regions. The short- and long-term groundwater contribution to tree water use was investigated using the HYDRUS-1D model and stable isotopes. For the short-term simulation, the ratio between the actual transpiration (Ta) and potential transpiration (Tp) approached almost ∼1.0 due to the constant groundwater uptake. The results from the short-term simulation indicated that the groundwater contribution to tree water use ranged between 53% and 56% in the dry season (May-June) and 16-19% in the wet period (August-September). Isotopic analysis indicated that groundwater contributed to 45% of plant water use in the dry season, decreasing to 4-12% during the wet period. Because of canopy interception and transpiration, groundwater recharge only occurred after heavy rainfall and accounted for 3-8% of the total heavy rainfall. For the long-term simulation, Ta/Tp ranged between 0.91 and 1.00 except in 2007 (0.78), when the water table declined because of groundwater abstraction. In the scenario simulation for deep water table conditions caused by anthropogenic activities, Ta/Tp ranged between 0.09 and 0.40 (mean = 0.22) that is significantly lower than the values in the natural conditions. In conclusion, vegetation restoration in arid zones should be cautious as over-planting of trees will decrease the groundwater recharge and potentially cause a rapid drop in water table levels, which in turn may result in the death of planted trees. Trees adapt to arid regions by adopting root patterns that allow soil water uptake by shallow roots and groundwater use by deep roots, thus climatic variation itself may not bring severe negative impact on trees. However, anthropogenic activities, such as groundwater abstraction, will result in significant water table decline that will reduce actual transpiration of trees significantly according to the results from the scenario simulation.

  10. The ICDP Dead Sea deep drill cores: records of climate change and tectonics in the Levant

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Stein, M.; Ben-Avraham, Z.; Agnon, A.; Ariztegui, D.; Brauer, A.; Haug, G. H.; Ito, E.; Kitagawa, H.; Torfstein, A.

    2012-12-01

    The Dead Sea drainage basin sits at the boundary of the Mediterranean and the Saharan climate zones, and the basin is formed by the Dead Sea transform fault. The ICDP-funded Dead Sea Deep Drilling Project recovered the longest and most complete paleo-environmental and paleo-seismic record in the Middle East, drilling holes of ~450 and ~350 meters in deep (~300 m below the lake level) and shallow sites (~3 m), respectively, and. The sediments record the evolving environmental conditions (e.g. droughts, rains, floods, dust-storms), as well as tectonics (earthquake layers). The core can be dated using 14C on organic materials, U-Th on inorganic aragonite, stable isotopes, and layer counting. They were opened, described, and XRF-scanned during June to November 2011, the first sampling party took place in July 2012, and study is now underway. Some important conclusions can already be drawn. The stratigraphy reflects the climate conditions. During wet climate intervals the lithology is typically varve-like laminated aragonite and detritus (aad), reflecting summer and winter seasons, respectively, and sequences of mud. Gypsum layers reflect more arid climate, and salt (halite) indicates extreme aridity. The Dead Sea expands during glacials, and the portion of the core that corresponds to the last glacial Lisan Formation above the shoreline is easily recognized in the core based on the common lithological sequence, and this allows us to infer a broad scale age model. Interglacials show all the lithologic facies (aad, mud, gypsum, salt), reflecting extreme climate variability, while glacials contain the aad, mud, and gypsum but lack salt layers. Thus we estimate that the deep site hole extends into MIS 7 (to ~200,000 years). Thin (up to several cm thick) seismic layers occur throughout the core, but thick (up to several meters) landslide deposits only occur during glacial intervals. The most dramatic discovery is evidence of an extreme dry interval during MIS 5 at the deep site. There is a ~40 cm thick interval of partly rounded pebbles in the core at ~235 m below the lake floor. It is the only clean pebbly unit in the core, and resembles a beach deposit. Below the layer there is ~45 meters of mainly salt. These observations indicate a severe dry interval during MIS 5. This observation has implications for the Middle East today, where the Dead Sea level is dropping at rates >1m/year, as all the countries in the area are using all the runoff. GCM models indicate a more arid future in the region. The core shows that the runoff nearly stopped during the last interglacial without human intervention. Dating is underway to constrain the timing of the extreme drydown.

  11. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.

    2014-01-08

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P&T) operations have had minimal impact on the contaminant plume – primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exitsmore » the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (“brownfield”) scenario for Tuba City. This alternative approach would have low risks, similar to the current P&T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations.« less

  12. Geoenvironmental and structural studies for developing new water resources in arid and semi-arid regions using remote sensing and GIS

    NASA Astrophysics Data System (ADS)

    Amer, Reda Mohammed

    2011-12-01

    Water crises are rising with increasing world population and decreasing of freshwater resources. This problem is magnified in the arid and semi-arid regions because surface water resources are very limited and highly unreliable and therefore groundwater is the primary source of water supply in these regions. This study presents an integrated approach for the identification of groundwater occurrences using remote sensing, geological, and geophysical data, and establishing sustainable paths to groundwater management. The Central Eastern Desert (CED) of Egypt was selected as a test site for this study because its climate is arid and there is an urgent need to identify potential areas for groundwater accumulations. Field investigations indicated that the CED has three types of aquifers; shallow alluvial (SA), and fracture zone (FZ) aquifers in the valley depressions, and deep aquifers in the sedimentary succession that range in age from Late Cretaceous to Recent in the marginal extensional sub-basins (ESB) along the Red Sea coast. I developed three models: (1) a Geographic Information System (GIS) model for groundwater potential in the SA and FZ shallow aquifers; (2) a kinematic model for the development of the ESB; and (3) a groundwater budget model for the ESB aquifers. The GIS model is based on the analysis of remote sensing data of the Phased Array L-band Synthetic Aperture Radar, the Landsat Enhanced Thematic Mapper Plus, and the Advanced Spaceborne Thermal Emission and Reflection Radiometer digital elevation model. The model was evaluated and proven successful against the existing shallow water wells, and by geophysical surveys using Ground Penetrating Radar and Geoelectric methods. The kinematic model indicated that the ESB were formed in the orthogonal rifting phase in the late Oligocene that is followed by oblique rifting phase during the early Miocene which resulted to the en-echelon pattern of the inland ESB and nucleation of the rift depression into segments separated by oblique-slip accommodation zones. The groundwater budget model shows that the ESB aquifers have considerable amounts of paleowater that can be purified and used for drinking. The renewable groundwater of SA and FZ aquifers can be used for herding, irrigation, and ore dressing in the mining zones.

  13. Emerging crops in the USDA arid lands germplasm collection

    USDA-ARS?s Scientific Manuscript database

    The USDA National Plant Germplasm System maintains collections of several emerging crops for arid lands at the National Arid Land Plant Genetic Resources Unit in Parlier, CA (NALPGRU). The guayule, jojoba, and prickly pear collections are most active in terms of current research and crop development...

  14. Precipitation and nitrogen interactions in arid ecosystems

    USDA-ARS?s Scientific Manuscript database

    Arid and semi-arid ecosystems are among the most impoverished terrestrial systems in terms of water and nitrogen (N) availability. Productivity (NPP) is generally low, soil N pools are small and N loss through percolation is assumed to be negligible. Increased water availability can stimulate both N...

  15. Drought versus heat: What's the major constraint on Mediterranean green roof plants?

    PubMed

    Savi, Tadeja; Dal Borgo, Anna; Love, Veronica L; Andri, Sergio; Tretiach, Mauro; Nardini, Andrea

    2016-10-01

    Green roofs are gaining momentum in the arid and semi-arid regions due to their multiple benefits as compared with conventional roofs. One of the most critical steps in green roof installation is the selection of drought and heat tolerant species that can thrive under extreme microclimate conditions. We monitored the water status, growth and survival of 11 drought-adapted shrub species grown on shallow green roof modules (10 and 13cm deep substrate) and analyzed traits enabling plants to cope with drought (symplastic and apoplastic resistance) and heat stress (root membrane stability). The physiological traits conferring efficiency/safety to the water transport system under severe drought influenced plant water status and represent good predictors of both plant water use and growth rates over green roofs. Moreover, our data suggest that high substrate temperature represents a stress factor affecting plant survival to a larger extent than drought per se. In fact, the major cause influencing seedling survival on shallow substrates was the species-specific root resistance to heat, a single and easy measurable trait that should be integrated into the methodological framework for screening and selection of suitable shrub species for roof greening in the Mediterranean. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. An ecological engineering approach for keeping water from reaching interred wastes in arid or semiarid regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.E.

    1997-12-31

    This paper describes application of a soil-plant cover system (SPCS) to preclude water from reaching interred wastes in arid and semiarid regions. Where potential evapotranspiration far exceeds precipitation, water can be kept from reaching buried wastes by (1) providing a sufficiently deep cap of soil to store precipitation that falls while plants are dormant and (2) maintaining plant cover to deplete soil moisture during the growing season, thereby emptying the storage reservoir. Research at the Idaho National Engineering Laboratory (INEL) has shown that 2 m of soil is adequate to store moisture from snowmelt and spring rains. Healthy stands ofmore » perennial grasses and shrubs adapted to the INEL climate use all available soil moisture, even during a very wet growing season. However, burrowing by small mammals or ants may affect the performance of a SPCS by increasing infiltration of water. Intrusion barriers of gravel and cobble can be used to restrict burrowing, but emplacement of such barriers affects soil moisture storage and plant rooting depths. A replicated field experiment to investigate the implications of those effects is in progress. Incorporation of an SPCS should be considered in the design of isolation barriers for shallow land burial of hazardous wastes in and regions.« less

  17. Study of quaternary aquifers in Ganga Plain, India: focus on groundwater salinity, fluoride and fluorosis.

    PubMed

    Misra, Anil Kumar; Mishra, Ajai

    2007-06-01

    In marginal and central alluvial plains (Ganga Plain) of India, the inland salinity is continuously increasing, canal network and arid to semi-arid climatic conditions that led to excessive evapotranspiration concentrates the salt in soil and thereby escalating the groundwater salinity. In Mat Tahsil, Mathura district (Ganga Plain) study on shallow and deep aquifer salinity and fluoride was carried out in August 2001 and 2004. Groundwater salinity in some parts is more then 4000 microOmega(-1)/cm. This region is severely affected by endemic fluorosis due to consumption of fluoride-contaminated water. Analysis of F(-), Na(+), K(+), Cl(-) and HCO(3)(-) was carried out at 30 sites of dugwells and borewells. Result shows that there is a variation and continuous escalation in the groundwater salinity and fluoride concentration in deep and shallow aquifers on the basis of analysis. Classification of salinity levels was carried out in 2001 and 2004. The deep aquifers (borewells) are found more saline as compare to the shallow aquifers (dugwells) while F(-), Na(+), K(+), Cl(-) and HCO(3)(-) shows high concentration in shallow aquifers. The fluoride concentration in the groundwater of these villages showed values from 0.1 to 2.5mg/l, severe enough to cause dental and skeletal fluorosis among the inhabitants, especially children of these villages. One of the major effects of inland salinity in this region is from saline groundwater, which is reaching the land surface and causing soil salinisations and water logging in the NE and SE parts of Mat block.

  18. Predicting deep percolation with eddy covariance under mulch drip irrigation

    NASA Astrophysics Data System (ADS)

    Ming, Guanghui; Tian, Fuqiang; Hu, Hongchang

    2016-04-01

    Water is essential for the agricultural development and ecological sustainability of the arid and semi-arid oasis with rare precipitation input and high evaporation demand. Deep percolation (DP) defined as excess irrigation water percolating below the plant root zone will reduce irrigation water use efficiency (WUE). But the DP was often ignored in mulch drip irrigation (MDI) which has reached the area of 1.6 million hectares in Xinjiang, the northwest of China. In this study DP experiments were conducted at an agricultural experiment station located within an irrigation district in the Tarim River Basin for four cotton growing periods. First it was detected the irrigation water infiltrated into the soil layers below 100cm and the groundwater level responded to the irrigation events well. Then DP below 100cm soil layers was calculated using the soil water balance method with the aid of eddy covariance (with the energy balance closure of 0.72). The negative DP (groundwater contribution to the crop-water use through capillary rising) at the seedling and harvesting stages can reach 77mm and has a good negative correlation with the groundwater level and positive correlation with potential evaporation. During the drip irrigation stage approximately 45% of the irrigation became DP and resulted in the low irrigation WUE of 0.6. The DP can be 164mm to 270mm per year which was positive linearly correlated to irrigation depth and negative linear correlated to irrigation interval. It is better to establish the irrigation schedule with small irrigation depth and given frequently to reduce deep percolation and meet crop needs.

  19. Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial

    NASA Astrophysics Data System (ADS)

    Torfstein, Adi; Goldstein, Steven L.; Kushnir, Yochanan; Enzel, Yehouda; Haug, Gerald; Stein, Mordechai

    2015-02-01

    Sediment cores recovered by the Dead Sea Deep Drilling Project (DSDDP) from the deepest basin of the hypersaline, terminal Dead Sea (lake floor at ∼725 m below mean sea level) reveal the detailed climate history of the lake's watershed during the last interglacial period (Marine Isotope Stage 5; MIS5). The results document both a more intense aridity during MIS5 than during the Holocene, and the moderating impacts derived from the intense MIS5e African Monsoon. Early MIS5e (∼133-128 ka) was dominated by hyperarid conditions in the Eastern Mediterranean-Levant, indicated by thick halite deposition triggered by a lake-level drop. Halite deposition was interrupted however, during the MIS5e peak (∼128-122 ka) by sequences of flood deposits, which are coeval with the timing of the intense precession-forced African monsoon that generated Mediterranean sapropel S5. A subsequent weakening of this humidity source triggered extreme aridity in the Dead Sea watershed and resulting in the biggest known lake level drawdown in its history, reflected by the deposition of thick salt layers, and a capping pebble layer corresponding to a hiatus at ∼116-110 ka. The DSDDP core provides the first evidence for a direct association of the African monsoon with mid subtropical latitude climate systems effecting the Dead Sea watershed. Combined with coeval deposition of Arabia and southern Negev speleothems, Arava travertines, and calcification of Red Sea corals, the evidence points to a climatically wet corridor that could have facilitated homo sapiens migration "out of Africa" during the MIS5e peak. The hyperaridity documented during MIS5e may provide an important analogue for future warming of arid regions of the Eastern Mediterranean-Levant.

  20. Appraisal of salinity and fluoride in a semi-arid region of India using statistical and multivariate techniques.

    PubMed

    Mor, Suman; Singh, Surender; Yadav, Poonam; Rani, Versha; Rani, Pushpa; Sheoran, Monika; Singh, Gurmeet; Ravindra, Khaiwal

    2009-12-01

    Various physico-chemical parameters, including fluoride (F(-)), were analyzed to understand the hydro-geochemistry of an aquifer in a semi-arid region of India. Furthermore, the quality of the shallow and deep aquifer (using tube well and hand pumps) was also investigated for their best ecological use including drinking, domestic, agricultural and other activities. Different multivariate techniques were applied to understand the groundwater chemistry of the aquifer. Findings of the correlation matrix were strengthened by the factor analysis, and this shows that salinity is mainly caused by magnesium salts as compared to calcium salts in the aquifer. The problem of salinization seems mainly compounded by the contamination of the shallow aquifers by the recharging water. High factor loading of total alkalinity and bicarbonates indicates that total alkalinity was mainly due to carbonates and bicarbonates of sodium. The concentration of F(-) was found more in the deep aquifer than the shallow aquifer. Further, only a few groundwater samples lie below the permissible limit of F(-), and this indicates a risk of dental caries in the populace of the study area. The present study indicates that regular monitoring of groundwater is an important step to avoid human health risks and to assess its quality for various ecological purposes.

  1. Deep groundwater quantity and quality in the southwestern US

    NASA Astrophysics Data System (ADS)

    Kang, M.; Ayars, J. E.; Jackson, R. B.

    2017-12-01

    Groundwater demands are growing in many arid regions and adaptation through the use of non-traditional resources during extreme droughts is increasingly common. One such resource is deep groundwater, which we define as deeper than 300 m and up to several kilometer-depths. Although deep groundwater has been studied in the context of oil and gas, geothermal, waste disposal, and other uses, it remains poorly characterized, especially for the purposes of human consumption and irrigation uses. Therefore, we evaluate deep groundwater quantity and quality within these contexts. We compile and analyze data from water management agencies and oil and gas-based sources for the southwestern US, with a detailed look at California's Central Valley. We also use crop tolerance thresholds to evaluate deep groundwater quality for irrigation purposes. We find fresh and usable groundwater volume estimates in California's Central Valley to increase by three- and four-fold respectively when depths of up to 3 km are considered. Of the ten basins in the southwestern US with the most data, we find that the Great Basin has the greatest proportions of fresh and usable deep groundwater. Given the potentially large deep groundwater volumes, it is important to characterize the resource, guard against subsidence where extracted, and protect it for use in decades and centuries to come.

  2. Arid Green Infrastructure for Water Control and Conservation State of the Science and Research Needs for Arid/Semi-Arid Regions

    EPA Science Inventory

    Green infrastructure is an approach to managing wet weather flows using systems and practices that mimic natural processes. It is designed to manage stormwater as close to its source as possible and protect the quality of receiving waters. Although most green infrastructure pract...

  3. Simulated changes in aridity from the last glacial maximum to 4xCO2

    NASA Astrophysics Data System (ADS)

    Greve, Peter; Roderick, Michael L.; Seneviratne, Sonia I.

    2017-11-01

    Aridity is generally defined as the ‘degree to which a climate lacks moisture to sustain life in terrestrial ecosystems’. Several recent studies using the ‘aridity index’ (the ratio of potential evaporation to precipitation), have concluded that aridity will increase with CO2 because of increasing temperature. However, the ‘aridity index’ is—counterintuitively—not a direct measure of aridity per se (when defined as above) and there is widespread evidence that contradicts the ‘warmer is more arid’ interpretation. We provide here an assessment of multi-model changes in a broad set of aridity metrics over a large range of atmospheric CO2 concentrations ranging from conditions at the last glacial maximum to 4xCO2, using an ensemble of simulations from state-of-the-art Earth system models. Most measures of aridity do not show increasing aridity on global scales under conditions of increasing atmospheric CO2 concentrations and related global warming, although we note some varying responses depending on the considered variables. The response is, furthermore, more nuanced at regional scales, but in the majority of regions aridity does not increase with CO2 in the majority of metrics. Our results emphasize that it is not the climate models that project overwhelming increases of aridity with increasing CO2, but rather a secondary, offline, impact model—the ‘aridity index’—that uses climate model output as input.

  4. The role of nurse functional types in seedling recruitment dynamics of alternative states in rangelands

    NASA Astrophysics Data System (ADS)

    López, Dardo R.; Cavallero, Laura

    2017-02-01

    In arid ecosystems, recruitment dynamics are limited by harsh environmental conditions and greatly depend on the net outcome of the balance between facilitation and competition. This outcome can change as a consequence of degradation caused by livestock overgrazing. Also, distinct plant species may show a differential response to a common neighbour under the same environmental conditions. Therefore, ecosystem degradation could affect the net balance of plant-plant interactions, which can also depend on the functional traits of potential nurse species. The aim of this study is to assess the influence of alternative degradation states on (i) the density of seedlings of perennial species emerging in four microsite types, and on (ii) the relative interaction intensity (RII) between seedlings and potential nurses belonging to three functional types (deep- and shallow-rooted shrubs, and tussock grasses). During three years, we recorded seedling density of perennial species in four alternative degradation states in grass-shrubby steppes from northwestern Patagonia. The density of emerged seedlings of perennial species decreased sharply as degradation increased, showing non-linear responses in most microsites. Seedling density underneath deep-rooted shrubs was higher than underneath shallow-rooted shrubs and tussock grasses. Also, deep-rooted shrubs were the only functional type that recorded seedling emergence in highly degraded states. Deep-rooted shrubs had facilitative effects on the seedlings emerging and surviving underneath them, independently of ecosystem degradation. In contrast, RII between shallow-rooted shrubs and recently emerged seedlings, switched from positive effects in the less degraded states, to negative effects in the most degraded state. Tussock grasses recorded the weakest intensity of facilitative interactions with recently emerged seedlings, switching to competitive interactions as degradation increased. Our results suggest that species with key functional traits should be considered in management and restoration plans for rangelands with different degradation levels, since they have a strong influence in the net outcome of plant-plant interactions and in the recruitment dynamics of arid ecosystems.

  5. Catchment-scale groundwater recharge and vegetation water use efficiency

    NASA Astrophysics Data System (ADS)

    Troch, P. A. A.; Dwivedi, R.; Liu, T.; Meira, A.; Roy, T.; Valdés-Pineda, R.; Durcik, M.; Arciniega, S.; Brena-Naranjo, J. A.

    2017-12-01

    Precipitation undergoes a two-step partitioning when it falls on the land surface. At the land surface and in the shallow subsurface, rainfall or snowmelt can either runoff as infiltration/saturation excess or quick subsurface flow. The rest will be stored temporarily in the root zone. From the root zone, water can leave the catchment as evapotranspiration or percolate further and recharge deep storage (e.g. fractured bedrock aquifer). Quantifying the average amount of water that recharges deep storage and sustains low flows is extremely challenging, as we lack reliable methods to quantify this flux at the catchment scale. It was recently shown, however, that for semi-arid catchments in Mexico, an index of vegetation water use efficiency, i.e. the Horton index (HI), could predict deep storage dynamics. Here we test this finding using 247 MOPEX catchments across the conterminous US, including energy-limited catchments. Our results show that the observed HI is indeed a reliable predictor of deep storage dynamics in space and time. We further investigate whether the HI can also predict average recharge rates across the conterminous US. We find that the HI can reliably predict the average recharge rate, estimated from the 50th percentile flow of the flow duration curve. Our results compare favorably with estimates of average recharge rates from the US Geological Survey. Previous research has shown that HI can be reliably estimated based on aridity index, mean slope and mean elevation of a catchment (Voepel et al., 2011). We recalibrated Voepel's model and used it to predict the HI for our 247 catchments. We then used these predicted values of the HI to estimate average recharge rates for our catchments, and compared them with those estimated from observed HI. We find that the accuracies of our predictions based on observed and predicted HI are similar. This provides an estimation method of catchment-scale average recharge rates based on easily derived catchment characteristics, such as climate and topography, and free of discharge measurements.

  6. Contrasting hydraulic architecture and function in deep and shallow roots of tree species from a semi-arid habitat

    PubMed Central

    Johnson, Daniel M.; Brodersen, Craig R.; Reed, Mary; Domec, Jean-Christophe; Jackson, Robert B.

    2014-01-01

    Background and Aims Despite the importance of vessels in angiosperm roots for plant water transport, there is little research on the microanatomy of woody plant roots. Vessels in roots can be interconnected networks or nearly solitary, with few vessel–vessel connections. Species with few connections are common in arid habitats, presumably to isolate embolisms. In this study, measurements were made of root vessel pit sizes, vessel air-seeding pressures, pit membrane thicknesses and the degree of vessel interconnectedness in deep (approx. 20 m) and shallow (<10 cm) roots of two co-occurring species, Sideroxylon lanuginosum and Quercus fusiformis. Methods Scanning electron microscopy was used to image pit dimensions and to measure the distance between connected vessels. The number of connected vessels in larger samples was determined by using high-resolution computed tomography and three-dimensional (3-D) image analysis. Individual vessel air-seeding pressures were measured using a microcapillary method. The thickness of pit membranes was measured using transmission electron microscopy. Key Results Vessel pit size varied across both species and rooting depths. Deep Q. fusiformis roots had the largest pits overall (>500 µm) and more large pits than either shallow Q. fusiformis roots or S. lanuginosum roots. Vessel air-seeding pressures were approximately four times greater in Q. fusiformis than in S. lanuginosum and 1·3–1·9 times greater in shallow roots than in deep roots. Sideroxylon lanuginosum had 34–44 % of its vessels interconnected, whereas Q. fusiformis only had 1–6 % of its vessels connected. Vessel air-seeding pressures were unrelated to pit membrane thickness but showed a positive relationship with vessel interconnectedness. Conclusions These data support the hypothesis that species with more vessel–vessel integration are often less resistant to embolism than species with isolated vessels. This study also highlights the usefulness of tomography for vessel network analysis and the important role of 3-D xylem organization in plant hydraulic function. PMID:24363350

  7. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina).

    PubMed

    Nicolli, Hugo B; Bundschuh, Jochen; García, Jorge W; Falcón, Carlos M; Jean, Jiin-Shuh

    2010-11-01

    In oxidizing aquifers, arsenic (As) mobilization from sediments into groundwater is controlled by pH-dependent As desorption from and dissolution of mineral phases. If climate is dry, then the process of evaporative concentration contributes further to the total concentration of dissolved As. In this paper the principal As mobility controls under these conditions have been demonstrated for Salí River alluvial basin in NW Argentina (Tucumán Province; 7000 km(2)), which is representative for other basins or areas of the predominantly semi-arid Chaco-Pampean plain (1,000,000 km(2)) which is one of the world's largest regions affected by high As concentrations in groundwater. Detailed hydrogeochemical studies have been performed in the Salí River basin where 85 groundwater samples from shallow aquifers (42 samples), deep samples (26 samples) and artesian aquifers (17 samples) have been collected. Arsenic concentrations range from 11.4 to 1660 μg L(-1) leaving 100% of the investigated waters above the provisional WHO guideline value of 10 μg L(-1). A strong positive correlation among As, F, and V in shallow groundwaters was found. The correlations among those trace elements and U, B and Mo have less significance. High pH (up to 9.2) and high bicarbonate (HCO(3)) concentrations favour leaching from pyroclastic materials, including volcanic glass which is present to 20-25% in the loess-type aquifer sediments and yield higher trace element concentrations in groundwater from shallow aquifers compared to deep and artesian aquifers. The significant increase in minor and trace element concentrations and salinity in shallow aquifers is related to strong evaporation under semi-arid climatic conditions. Sorption of As and associated minor and trace elements (F, U, B, Mo and V) onto the surface of Fe-, Al- and Mn-oxides and oxi-hydroxides, restricts the mobilization of these elements into groundwater. Nevertheless, this does not hold in the case of the shallow unconfined groundwaters with high pH and high concentrations of potential competitors for adsorption sites (HCO(3), V, P, etc.). Under these geochemical conditions, desorption of the above mentioned anions and oxyanions occurs as a key process for As mobilization, resulting in an increase of minor and trace element concentrations. These geochemical processes that control the concentrations of dissolved As and other trace elements and which determine the groundwater quality especially in the shallow aquifers, are comparable to other areas with high As concentrations in groundwater of oxidizing aquifers and semi-arid or arid climate, which are found in many parts of the world, such as the western sectors of the USA, Mexico, northern Chile, Turkey, Mongolia, central and northern China, and central and northwestern Argentina. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Greywater reuse through a bioretention system prototype in the arid region.

    PubMed

    Chowdhury, Rezaul K

    2015-01-01

    The concept of a greywater-fed bioretention system in arid regions was investigated in this study. Bioretention systems are conventionally used as a source control mechanism for urban runoff. Nevertheless, in arid regions, where rain and urban runoff are not an abundant water resource, their application is limited. Greywater (residential wastewater without toilet and kitchen sources) is comparatively less polluted and has the potential for reuse in irrigation and non-potable water uses. However, selection of an appropriate treatment is a challenge. A prototype bioretention system was made and its ability to improve greywater quality was monitored for more than 10 consecutive days. A vegetative and non-vegetative system were monitored separately. After 24 hours of retention in both systems, greywater quality was improved significantly. Both systems performed almost equally well; however, the vegetative system (with canary reed grass, Phalaris arundinacea) was found to be more effective in reducing the sodium and chemical oxygen demand contents. The study revealed that the concept of the greywater-fed bioretention system has the potential to add multi-functional benefits (greywater treatment, water conservation, landscape aesthetic and biodiversity) to the arid regions' urban environment.

  9. Ecosystem Services and Reallocation Choices: A Framework for Preserving Semi-Arid Regions in the Southwest

    USDA-ARS?s Scientific Manuscript database

    Conservation of freshwater systems is a paramount issue in the semi-arid Southwestern U.S. Over time, these systems have been degraded by anthropogenic activities and, more recently, are threatened by climate change. For water reallocation efforts to succeed in preserving these systems, a policy mak...

  10. Comparative analysis of diversity and utilization of edible plants in arid and semi-arid areas in Benin.

    PubMed

    Segnon, Alcade C; Achigan-Dako, Enoch G

    2014-12-23

    Agrobiodiversity is said to contribute to the sustainability of agricultural systems and food security. However, how this is achieved especially in smallholder farming systems in arid and semi-arid areas is rarely documented. In this study, we explored two contrasting regions in Benin to investigate how agroecological and socioeconomic contexts shape the diversity and utilization of edible plants in these regions. Data were collected through focus group discussions in 12 villages with four in Bassila (semi-arid Sudano-Guinean region) and eight in Boukoumbé (arid Sudanian region). Semi-structured interviews were carried out with 180 farmers (90 in each region). Species richness and Shannon-Wiener diversity index were estimated based on presence-absence data obtained from the focus group discussions using species accumulation curves. Our results indicated that 115 species belonging to 48 families and 92 genera were used to address food security. Overall, wild species represent 61% of edible plants collected (60% in the semi-arid area and 54% in the arid area). About 25% of wild edible plants were under domestication. Edible species richness and diversity in the semi-arid area were significantly higher than in the arid area. However, farmers in the arid area have developed advanced resource-conserving practices compared to their counterparts in the semi-arid area where slash-and-burn cultivation is still ongoing, resulting in natural resources degradation and loss of biodiversity. There is no significant difference between the two areas for cultivated species richness. The interplay of socio-cultural attributes and agroecological conditions explains the diversity of food plants selected by communities. We conclude that if food security has to be addressed, the production and consumption policies must be re-oriented toward the recognition of the place of wild edible plants. For this to happen we suggest a number of policy and strategic decisions as well as research and development actions such as a thorough documentation of wild edible plants and their contribution to household diet, promotion of the ''bringing into cultivation" practices, strengthening of livestock-crop integration.

  11. Constancy in the vegetation of the Amazon Basin during the late Pleistocene: Evidence from the organic matter composition of Amazon deep sea fan sediments

    NASA Astrophysics Data System (ADS)

    Kastner, Thomas P.; Goñi, Miguel A.

    2003-04-01

    Analyses of more than 60 sediment samples from the Amazon deep sea fan show remarkably constant terrigenous biomarkers (lignin phenols and cutin acids) and stable carbon isotopic compositions of organic matter (δ13COM) deposited from 10 to 70 ka. Sediments from the nine Amazon deep sea fan channel-levee systems investigated in this study yielded relatively narrow ranges for diagnostic parameters such as organic carbon (OC) normalized total lignin yields (Λ = 3.1 ± 1.1 mg/100 mg OC), syringyl:vanillyl phenol ratios (S/V = 0.84 ± 0.06), cinnamyl:vanillyl phenol ratios (C/V = 0.08 ± 0.02), isomeric abundances of cutin-derived dihydroxyhexadecanoic acid (f10,16-OH = 0.65 ± 0.02), and δ13COM (-27.6% ± 0.6 ‰). Our measurements support the hypothesis that the vegetation of the Amazon Basin did not change significantly during the late Pleistocene, even during the Last Glacial Maximum. Moreover, the compositions obtained from the Amazon deep sea fan are similar to those of modern Amazon River suspended sediments. Such results strongly indicate that the current tropical rainforest vegetation has been a permanent and dominant feature of the Amazon River watershed over the past 70 k.y. Specifically, we found no evidence for the development of large savannas that had been previously postulated as indicators of increased glacial aridity in Amazonia. Climate models need to be modified to account for the uninterrupted input of moisture to the tropical Amazon region over the late Pleistocene Holocene period.

  12. Validation and Uncertainty Estimates for MODIS Collection 6 "Deep Blue" Aerosol Data

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M.-J.

    2013-01-01

    The "Deep Blue" aerosol optical depth (AOD) retrieval algorithm was introduced in Collection 5 of the Moderate Resolution Imaging Spectroradiometer (MODIS) product suite, and complemented the existing "Dark Target" land and ocean algorithms by retrieving AOD over bright arid land surfaces, such as deserts. The forthcoming Collection 6 of MODIS products will include a "second generation" Deep Blue algorithm, expanding coverage to all cloud-free and snow-free land surfaces. The Deep Blue dataset will also provide an estimate of the absolute uncertainty on AOD at 550 nm for each retrieval. This study describes the validation of Deep Blue Collection 6 AOD at 550 nm (Tau(sub M)) from MODIS Aqua against Aerosol Robotic Network (AERONET) data from 60 sites to quantify these uncertainties. The highest quality (denoted quality assurance flag value 3) data are shown to have an absolute uncertainty of approximately (0.086+0.56Tau(sub M))/AMF, where AMF is the geometric air mass factor. For a typical AMF of 2.8, this is approximately 0.03+0.20Tau(sub M), comparable in quality to other satellite AOD datasets. Regional variability of retrieval performance and comparisons against Collection 5 results are also discussed.

  13. Quantitative Trait Locus Analysis for Deep-Sowing Germination Ability in the Maize IBM Syn10 DH Population

    PubMed Central

    Liu, Hongjun; Zhang, Lin; Wang, Jiechen; Li, Changsheng; Zeng, Xing; Xie, Shupeng; Zhang, Yongzhong; Liu, Sisi; Hu, Songlin; Wang, Jianhua; Lee, Michael; Lübberstedt, Thomas; Zhao, Guangwu

    2017-01-01

    Deep-sowing is an effective measure to ensure seeds absorbing water from deep soil layer and emerging normally in arid and semiarid regions. However, existing varieties demonstrate poor germination ability in deep soil layer and some key quantitative trait loci (QTL) or genes related to deep-sowing germination ability remain to be identified and analyzed. In this study, a high-resolution genetic map based on 280 lines of the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population which comprised 6618 bin markers was used for the QTL analysis of deep-sowing germination related traits. The results showed significant differences in germination related traits under deep-sowing condition (12.5 cm) and standard-germination condition (2 cm) between two parental lines. In total, 8, 11, 13, 15, and 18 QTL for germination rate, seedling length, mesocotyl length, plumule length, and coleoptile length were detected for the two sowing conditions, respectively. These QTL explained 2.51–7.8% of the phenotypic variance with LOD scores ranging from 2.52 to 7.13. Additionally, 32 overlapping QTL formed 11 QTL clusters on all chromosomes except for chromosome 8, indicating the minor effect genes have a pleiotropic role in regulating various traits. Furthermore, we identified six candidate genes related to deep-sowing germination ability, which were co-located in the cluster regions. The results provide a basis for molecular marker assisted breeding and functional study in deep-sowing germination ability of maize. PMID:28588594

  14. Quantitative Trait Locus Analysis for Deep-Sowing Germination Ability in the Maize IBM Syn10 DH Population.

    PubMed

    Liu, Hongjun; Zhang, Lin; Wang, Jiechen; Li, Changsheng; Zeng, Xing; Xie, Shupeng; Zhang, Yongzhong; Liu, Sisi; Hu, Songlin; Wang, Jianhua; Lee, Michael; Lübberstedt, Thomas; Zhao, Guangwu

    2017-01-01

    Deep-sowing is an effective measure to ensure seeds absorbing water from deep soil layer and emerging normally in arid and semiarid regions. However, existing varieties demonstrate poor germination ability in deep soil layer and some key quantitative trait loci (QTL) or genes related to deep-sowing germination ability remain to be identified and analyzed. In this study, a high-resolution genetic map based on 280 lines of the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population which comprised 6618 bin markers was used for the QTL analysis of deep-sowing germination related traits. The results showed significant differences in germination related traits under deep-sowing condition (12.5 cm) and standard-germination condition (2 cm) between two parental lines. In total, 8, 11, 13, 15, and 18 QTL for germination rate, seedling length, mesocotyl length, plumule length, and coleoptile length were detected for the two sowing conditions, respectively. These QTL explained 2.51-7.8% of the phenotypic variance with LOD scores ranging from 2.52 to 7.13. Additionally, 32 overlapping QTL formed 11 QTL clusters on all chromosomes except for chromosome 8, indicating the minor effect genes have a pleiotropic role in regulating various traits. Furthermore, we identified six candidate genes related to deep-sowing germination ability, which were co-located in the cluster regions. The results provide a basis for molecular marker assisted breeding and functional study in deep-sowing germination ability of maize.

  15. A review of research on ecosystem of arid area using RS-GIS in China

    NASA Astrophysics Data System (ADS)

    Han, Hongling

    2007-06-01

    Arid area is classical mountain-oasis-desert ecosystem in North-west China. As the ecosystem has its nature geography character obviously, it has superior to research with remote-sensing and geography information system. The study on arid ecosystem in RS-GIS' way is focused on that the landscape spatial pattern of complex MODS ecosystem, the dynamic development of Land use/land cover, the security of ecological environment of eco-tone and so on. At the same time, the research on the single system is more and more, which has provided more ways and deeper fields of arid area using RS-GIS. Through the use of RS-GIS, desertification, oasis' development, urbanization etc. can be known, which would provide precaution for human-being and suitable ways to adjust the problems.

  16. Effectiveness of Hydraulic Parameterization Strategies for Simulating Moisture Dynamics in a Deep Semi-Arid Vadose Zone

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Schaap, M. G.

    2012-12-01

    Over the past fifteen years, the University of Arizona has carried out four controlled infiltration experiments in a 3600 m2, 15 meter deep vadose zone (Maricopa, Arizona) in which the evolution of moisture content (9 wells, 25 cm resolution), and matric potential (27 locations) was monitored and the subsurface stratigraphy, texture (1042 samples), and bulk density (251 samples) was characterized. In order to simulate the subsurface moisture dynamics it is necessary to define the 3D structure of the subsurface hydraulic characteristics (i.e. moisture retention and hydraulic functions). Several simple to complex strategies are possible ranging from stratigraphy based layering using hydraulic parameters derived from core samples to sophisticated numerical inversions based on 3D geostatistics and site-specific pedotransfer functions. A range of approaches will be evaluated on objective metrics that quantify how well the observed moisture dynamics are matched by simulations. We will evaluate the worth of auxiliary data such as observed matric potentials and quantity the number of texture samples needed to arrive at effective descriptions of subsurface structure. In addition, we will discuss more subjective metrics that evaluate the relative effort involved and estimate monetary cost of each method. While some of the results will only be valid for the studied site, some general conclusions will be possible about the effectiveness of particular methods for other semi-arid sites.

  17. Effects of agriculture and urbanization on quality of shallow ground water in the arid to semiarid western United States, 1993-2004

    USGS Publications Warehouse

    Paul, Angela P.; Seiler, Ralph L.; Rowe, Timothy G.; Rosen, Michael R.

    2007-01-01

    Within the Western United States, agricultural and rural lands are being developed into commercial and residential areas. With changes in land use and increasing population, greater demands are placed on water resources for agricultural, industrial, and domestic supplies. Many areas in the Western United States rely exclusively on ground water as their source of drinking water. Areas that use surface-water resources often need to supplement this supply with ground water.Generally, shallow ground water is susceptible to fluctuating water quality within relatively short time scales and therefore can be used as an indicator of land-use stresses that may, in time, affect deep aquifer systems. This regional study examines data on shallow ground-water quality collected from 1993 to 2004 from 273 agricultural and 181 urban wells from 7 U.S. Geological Survey National Water-Quality Assessment study units in Arizona, California, Nevada, New Mexico, south-central Colorado, and Utah. This report determines important influences that land-use practices may have on the quality of recently recharged ground water, which may ultimately affect deep water supplies within the region.

  18. Intensifying a semi-arid dryland crop rotation by replacing fallow with pea

    USDA-ARS?s Scientific Manuscript database

    Increasing dryland cropping system intensity in the semi-arid central Great Plains by reducing frequency of fallow can add diversity to cropping systems and decrease erosion potential. However elimination of the periodic fallow phase has been shown to reduce yields of subsequent crops in this region...

  19. Malaria vector populations across ecological zones in Guinea Conakry and Mali, West Africa.

    PubMed

    Coulibaly, Boubacar; Kone, Raymond; Barry, Mamadou S; Emerson, Becky; Coulibaly, Mamadou B; Niare, Oumou; Beavogui, Abdoul H; Traore, Sekou F; Vernick, Kenneth D; Riehle, Michelle M

    2016-04-08

    Malaria remains a pervasive public health problem in sub-Saharan West Africa. Here mosquito vector populations were explored across four sites in Mali and the Republic of Guinea (Guinea Conakry). The study samples the major ecological zones of malaria-endemic regions in West Africa within a relatively small distance. Mosquito vectors were sampled from larval pools, adult indoor resting sites, and indoor and outdoor human-host seeking adults. Mosquitoes were collected at sites spanning 350 km that represented arid savannah, humid savannah, semi-forest and deep forest ecological zones, in areas where little was previously known about malaria vector populations. 1425 mosquito samples were analysed by molecular assays to determine species, genetic attributes, blood meal sources and Plasmodium infection status. Anopheles gambiae and Anopheles coluzzii were the major anophelines represented in all collections across the ecological zones, with A. coluzzii predominant in the arid savannah and A. gambiae in the more humid sites. The use of multiple collection methodologies across the sampling sites allows assessment of potential collection bias of the different methods. The L1014F kdr insecticide resistance mutation (kdr-w) is found at high frequency across all study sites. This mutation appears to have swept almost to fixation, from low frequencies 6 years earlier, despite the absence of widespread insecticide use for vector control. Rates of human feeding are very high across ecological zones, with only small fractions of animal derived blood meals in the arid and humid savannah. About 30 % of freshly blood-fed mosquitoes were positive for Plasmodium falciparum presence, while the rate of mosquitoes with established infections was an order of magnitude lower. The study represents detailed vector characterization from an understudied area in West Africa with endemic malaria transmission. The deep forest study site includes the epicenter of the 2014 Ebola virus epidemic. With new malaria control interventions planned in Guinea, these data provide a baseline measure and an opportunity to assess the outcome of future interventions.

  20. The Dynamics of a Semi-Arid Region in Response to Climate and Water - Use Policy

    NASA Technical Reports Server (NTRS)

    Mustard, John F.; Hamburg, Steve; Grant, John A.; Manning, Sara J.; Steinwand, Aaron; Howard, Chris

    2000-01-01

    The objectives of this project were to determine the response of semi-arid ecosystems to the combined forcings of climate variability and anthropogenic stress. Arid and semi-arid systems encompass close to 40% of the worlds land surface. The ecology of these regions are principally limited by water, and as the water resources wax and wane, so should the health and vigor of the ecosystems. Water, however, is a necessary and critical resource for humans living in these same regions. Thus for many and and semi-arid regions the natural systems and human systems are in direct competition for a limited resource. Increasing competition through development of and and semi-arid regions, export of water resources, as well as potential persistent changes in weather patterns are likely to lead to fundamental changes in carrying capacity, resilience, and ecology of these regions. A detailed understanding of these systems respond to forcing on a regional and local scale is required in order to better prepare for and manage future changes in the availability of water. In the Owens Valley CA, decadal changes in rainfall and increased use of groundwater resources by Los Angles (which derives 60-70% of its water from this region) have resulted in a large-scale experiment on the impacts of these changes in semi-arid ecosystems. This project works directly with the Inyo County Water Department (local water authority) and the Los Angles Department of Water and Power (regional demand on water resources) to understand changes, their causes, and impacts. Very detailed records have been kept for a number of selected sites in the valley which provide essential ground truth. These results are then scaled up through remote sensed data to regions scale to assess large scale patterns and link them to the fundamental decisions regarding the water resources of this region. A fundamental goal is to understand how resilient the native ecosystems are to large changes in water resources. Are they are on a spring (remove and return resources, do the systems return to the original state) or a vector (when water returns have the systems fundamentally changed).

  1. Spatial distribution and comparison of aridity indices in Extremadura, southwestern Spain

    NASA Astrophysics Data System (ADS)

    Moral, Francisco J.; Rebollo, Francisco J.; Paniagua, Luis L.; García-Martín, Abelardo; Honorio, Fulgencio

    2016-11-01

    In semi-arid lands with warm climates, aridity is a real hazard, with the threat of desertification because of greater precipitation variability and prolonged droughts. Aridity indices can be used to identify areas prone to desertification. The present study aimed to analyse the spatial distribution of aridity in Extremadura, southwestern Spain, using three indices: the De Martonne aridity index ( I DM), the Pinna combinative index ( I P), and the Food and Agriculture Organization (FAO) aridity index ( I F). Temperature, precipitation, and evapotranspiration data from 90 weather stations located throughout Extremadura and 27 along boundaries with at least 30-year length (within the 1980-2011 period) were used to compute each index at each station. The statistical properties of each aridity index were assessed, and later, they were mapped by means of an integrated geographic information system (GIS) and a multivariate geostatistical (regression-kriging) algorithm in which exhaustive secondary information on elevation was incorporated. Annual and seasonal I DM and I F, and annual I P-kriged maps were generated. According to annual I DM, the semi-arid and Mediterranean conditions are predominant in the region, covering about 70 % of the territory, while about 94 % of the areas are classified as dry and semi-dry Mediterranean based on annual I P and about 86 % are classified as semi-arid and dry categories based on annual I F. The most vulnerable to aridity are the natural regions located to the west, the south, and the southeast of Extremadura, especially during summer, when arid conditions are found across the region. Although the three aridity indices were highly correlated, displaying similar spatial patterns, I DM was preferred because it can better discriminate different climate conditions in Extremadura.

  2. Mathematical Modeling for Evaluation of Field Water Supply Alternatives (Arid and Semi-Arid Regions).

    DTIC Science & Technology

    1981-01-01

    switch box would normally be required to operate the diatomite filter pumps. However, in hot arid regions where ambient water temperatures are re- latively...9 Tactical Water Distribution Systems...................... 9 Temperature of Waters in the Desert ..................... 10...concentration of FAC when loaded; daily FAC; daily water temperature in each tank; weekly pH determination; results of all chemical laboratory

  3. ESR1 gene amplification in endometrial carcinomas: a clinicopathological analysis.

    PubMed

    Rahman, Mohammed Tanjimur; Nakayama, Kentaro; Rahman, Munmun; Ishikawa, Masako; Katagiri, Hiroshi; Katagiri, Atsuko; Ishibashi, Tomoka; Sato, Emi; Iida, Kouji; Ishikawa, Noriyuki; Nakayama, Naomi; Miyazaki, Kohji

    2013-09-01

    This study investigated the clinicopathological significance of estrogen receptor 1 (ESR1) gene amplification and its relationship to phosphatase and tensin homolog (PTEN), human epidermal growth factor receptor 2 (HER2), MutL homolog 1 (MLH1), p53, and AT rich interactive domain 1A (ARID1A) expression in endometrial carcinomas. ESR1 amplification and expression were assessed by fluorescence in situ hybridization and immunohistochemistry. Clinical data were collected by retrospective chart review. ESR1 amplification was identified in 13 out of 111 (11.7%) endometrial carcinomas. No significant association was observed between ESR1 amplification and International Federation of Gynecology and Obstetrics (FIGO) stage (p=0.17), histological grade (p=0.35), lymph node metastasis (p=0.51), or deep myometrial invasion (p=0.46). ESR1 amplification was independent of PTEN, p53, HER2, MLH1, and ARID1A protein expression. Patients without estrogen receptor (ER) or progesterone receptor (PR) expression had shorter progression-free and overall survival than those with ER or PR expression (p<0.01). ESR1 amplification is independent of known clinicopathological factors related to poor prognosis and PTEN, p53, HER2, MLH1, and ARID1A protein expression, suggesting ESR1 amplification may be an early event in endometrial carcinoma development.

  4. Substantial inorganic carbon sink in closed drainage basins globally

    NASA Astrophysics Data System (ADS)

    Li, Yu; Zhang, Chengqi; Wang, Naiang; Han, Qin; Zhang, Xinzhong; Liu, Yuan; Xu, Lingmei; Ye, Wangting

    2017-07-01

    Arid and semi-arid ecosystems are increasingly recognized as important carbon storage sites. In these regions, extensive sequestration of dissolved inorganic carbon can occur in the terminal lakes of endorheic basins--basins that do not drain to external bodies of water. However, the global magnitude of this dissolved inorganic carbon sink is uncertain. Here we present isotopic, radiocarbon, and chemical analyses of groundwater, river water, and sediments from the terminal region of the endorheic Shiyang River drainage basin, in arid northwest China. We estimate that 0.13 Pg of dissolved inorganic carbon was stored in the basin during the mid-Holocene. Pollen-based reconstructions of basin-scale productivity suggest that the mid-Holocene dissolved inorganic carbon sink was two orders of magnitude smaller than terrestrial productivity in the basin. We use estimates of dissolved inorganic carbon storage based on sedimentary data from 11 terminal lakes of endorheic basins around the world as the basis for a global extrapolation of the sequestration of dissolved organic carbon in endorheic basins. We estimate that 0.152 Pg of dissolved inorganic carbon is buried per year today, compared to about 0.211 Pg C yr-1 during the mid-Holocene. We conclude that endorheic basins represent an important carbon sink on the global scale, with a magnitude similar to deep ocean carbon burial.

  5. Impacts of Climate Anomalies on the Vegetation Patterns in the Arid and Semi-Arid Zones of Uzbekistan

    NASA Astrophysics Data System (ADS)

    Dildora, Aralova; Toderich, Kristina; Dilshod, Gafurov

    2016-08-01

    Steadily rising temperature anomalies in last decades are causing changes in vegetation patterns for sensitive to climate change in arid and semi-arid dryland ecosystems. After desiccation of the Aral Sea, Uzbekistan has been left with the challenge to develop drought and heat stress monitoring system and tools (e.g., to monitor vegetation status and/crop pattern dynamics) with using remote sensing technologies in broad scale. This study examines several climate parameters, NDVI and drought indexes within geostatistical method to predict further vegetation status in arid and semi-arid zones of landscapes. This approaches aimed to extract and utilize certain variable environmental data (temperature and precipitation) for assessment and inter-linkages of vegetation cover dynamics, specifically related to predict degraded and recovered zones or desertification process in the drylands due to scarcity of water resources and high risks of climate anomalies in fragile ecosystem of Uzbekistan.

  6. A study of the depth of weathering and its relationship to the mechanical properties of near-surface rocks in the Mojave Desert

    USGS Publications Warehouse

    Stierman, D.J.; Healy, J.H.

    1985-01-01

    Weathered granite extends 70 m deep at Hi Vista in the arid central Mojave Desert of southern California. The low strength of this granite is due to the alteration of biotite and chlorite montmorillonite. Deep weathering probably occurs in most granites, although we cannot rule out some anomalous mechanisms at Hi Vista. Geophysical instruments set in these slightly altered rocks are limited by the unstable behavior of the rocks. Thus, tectonic signals from instruments placed in shallow boreholes give vague results. Geophysical measurements of these weathered rocks resemble measurements of granitic rocks near major faults. The rheology of the rocks in which instruments are placed limits the useful sensitivity of the instruments. ?? 1985 Birkha??user Verlag.

  7. Stability measures in arid ecosystems

    NASA Astrophysics Data System (ADS)

    Nosshi, M. I.; Brunsell, N. A.; Koerner, S.

    2015-12-01

    Stability, the capacity of ecosystems to persist in the face of change, has proven its relevance as a fundamental component of ecological theory. Here, we would like to explore meaningful and quantifiable metrics to define stability, with a focus on highly variable arid and semi-arid savanna ecosystems. Recognizing the importance of a characteristic timescale to any definition of stability, our metrics will be focused scales from annual to multi-annual, capturing different aspects of stability. Our three measures of stability, in increasing order of temporal scale, are: (1) Ecosystem resistance, quantified as the degree to which the system maintains its mean state in response to a perturbation (drought), based on inter-annual variability in Normalized Difference Vegetation Index (NDVI). (2) An optimization approach, relevant to arid systems with pulse dynamics, that models vegetation structure and function based on a trade off between the ability to respond to resource availability and avoid stress. (3) Community resilience, measured as species turnover rate (β diversity). Understanding the nature of stability in structurally-diverse arid ecosystems, which are highly variable, yields theoretical insight which has practical implications.

  8. Preliminary design studies on a nuclear seawater desalination system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibisono, A. F.; Jung, Y. H.; Choi, J.

    2012-07-01

    Seawater desalination is one of the most promising technologies to provide fresh water especially in the arid region. The most used technology in seawater desalination are thermal desalination (MSF and MED) and membrane desalination (RO). Some developments have been done in the area of coupling the desalination plant with a nuclear reactor to reduce the cost of energy required in thermal desalination. The coupling a nuclear reactor to a desalination plant can be done either by using the co-generation or by using dedicated heat from a nuclear system. The comparison of the co-generation nuclear reactor with desalination plant, dedicated nuclearmore » heat system, and fossil fueled system will be discussed in this paper using economical assessment with IAEA DEEP software. A newly designed nuclear system dedicated for the seawater desalination will also be suggested by KAIST (Korea Advanced Inst. of Science and Technology) research team and described in detail within this paper. The suggested reactor system is using gas cooled type reactor and in this preliminary study the scope of design will be limited to comparison of two cases in different operating temperature ranges. (authors)« less

  9. Landsat and GRACE observations of arid wetland dynamics in a dryland river system under multi-decadal hydroclimatic extremes

    NASA Astrophysics Data System (ADS)

    Xie, Zunyi; Huete, Alfredo; Ma, Xuanlong; Restrepo-Coupe, Natalia; Devadas, Rakhesh; Clarke, Kenneth; Lewis, Megan

    2016-12-01

    Arid wetlands are important for biodiversity conservation, but sensitive and vulnerable to climate variability and hydroclimatic events. Amplification of the water cycle, including the increasing frequency and severity of droughts and wet extremes, is expected to alter spatial and temporal hydrological patterns in arid wetlands globally, with potential threats to ecosystem services and their functioning. Despite these pressing challenges, the ecohydrological interactions and resilience of arid wetlands to highly variable water regimes over long time periods remain largely unknown. Recent broad-scale drought and floods over Australia provide unique opportunities to improve our understanding of arid wetland ecosystem responses to hydroclimatic extremes. Here we analysed the ecohydrological dynamics of the Coongie Lakes arid wetland in central Australia, one of the world's largest Ramsar-designated wetlands, using more than two decades (1988-2011) of vegetation and floodwater extent retrievals derived from Landsat satellite observations. To explore the impacts of large-scale hydrological fluctuations on the arid wetland, we further coupled Landsat measurements with Total Water Storage Anomaly (TWSA) data obtained from the Gravity Recovery and Climate Experiment (GRACE) satellites. Pronounced seasonal and inter-annual variabilities of flood and vegetation activities were observed over the wetland, with variations in vegetation growth extent highly correlated with flood extent (r = 0.64, p < 0.05) that ranged from nearly zero to 3456 km2. We reported the hydrological dynamics and associated ecosystem responses to be largely driven by the two phases (El Niño and La Niña) of the El Nino-Southern Oscillation (ENSO) ocean-atmosphere system. Changes in flood and vegetation extent were better explained by GRACE-TWSA (r = 0.8, lag = 0 month) than rainfall (r = 0.34, lag = 3 months) over the water source area, demonstrating that TWS is a valuable hydrological indicator for complex dryland river systems. The protracted Millennium Drought from 2001 to 2009 resulted in long-term absence of major flood events, which substantially suppressed wetland vegetation growth. However, the 2010-11 La Niña induced flooding events led to an exceptionally large resurgence of vegetation, with a mean vegetation growth extent anomaly exceeding the historical average (1988-2011) by more than 1.5 standard deviations, suggesting a significant resilience of arid wetland ecosystems to climate variability. This study showed the ecological functioning of arid wetlands is particularly sensitive to large-scale hydrological fluctuations and extreme drought conditions, and vulnerable to future altered water regimes due to climate change. The methods developed herein can be applied to arid wetlands located in other dryland river systems across the globe.

  10. Elementary and Secondary Education in Arid Lands.

    ERIC Educational Resources Information Center

    Wilson, Herbert B.

    The basic point to be considered in establishing a curriculum for elementary and secondary schools in the arid areas of the world is relevancy. Usually, the educational system of an area reflects the dominant culture of the political power in control. However, the educational system of the dominant culture might not be relevant to the people of…

  11. Use of the recreation opportunity planning system to inventory recreation opportunities of arid lands

    Treesearch

    Perry J. Brown; B. L. Driver; Joseph K. Berry

    1981-01-01

    Recreation opportunity planning, which is being adopted by some land management agencies for recreation input to land management planning, is reviewed for its applicability to arid land situations. Particular attention is given to the inventory and analysis phases of the system and to what we have learned about its implementation during its development.

  12. Arid Green Infrastructure for Water Control and Conservation ...

    EPA Pesticide Factsheets

    Green infrastructure is an approach to managing wet weather flows using systems and practices that mimic natural processes. It is designed to manage stormwater as close to its source as possible and protect the quality of receiving waters. Although most green infrastructure practices were first developed in temperate climates, green infrastructure also can be a cost-effective approach to stormwater management and water conservation in arid and semi-arid regions, such as those found in the western and southwestern United States. Green infrastructure practices can be applied at the site, neighborhood and watershed scales. In addition to water management and conservation, implementing green infrastructure confers many social and economic benefits and can address issues of environmental justice. The U.S. Environmental Protection Agency (EPA) commissioned a literature review to identify the state-of-the science practices dealing with water control and conservation in arid and semi-arid regions, with emphasis on these regions in the United States. The search focused on stormwater control measures or practices that slow, capture, treat, infiltrate and/or store runoff at its source (i.e., green infrastructure). The material in Chapters 1 through 3 provides background to EPA’s current activities related to the application of green infrastructure practices in arid and semi-arid regions. An introduction to the topic of green infrastructure in arid and semi-arid regions i

  13. Aquaporin-mediated changes in hydraulic conductivity of deep tree roots accessed via caves.

    PubMed

    McElrone, Andrew J; Bichler, Justin; Pockman, William T; Addington, Robert N; Linder, C Randal; Jackson, Robert B

    2007-11-01

    Although deep roots can contribute substantially to whole-tree water use, little is known about deep root functioning because of limited access for in situ measurements. We used a cave system on the Edwards Plateau of central Texas to investigate the physiology of water transport in roots at 18-20 m depth for two common tree species, Quercus fusiformis and Bumelia lanuginosa. Using sap flow and water potential measurements on deep roots, we found that calculated root hydraulic conductivity (RHC) fluctuated diurnally for both species and decreased under shading for B. lanuginosa. To assess whether these dynamic changes in RHC were regulated during initial water absorption by fine roots, we used an ultra-low flowmeter and hydroxyl radical inhibition to measure in situ fine root hydraulic conductivity (FRHC) and aquaporin contribution to FRHC (AQPC), respectively. During the summer, FRHC and AQPC were found to cycle diurnally in both species, with peaks corresponding to the period of highest transpirational demand at midday. During whole-tree shade treatments, B. lanuginosa FRHC ceased diurnal cycling and decreased by 75 and 35% at midday and midnight, respectively, while AQPC decreased by 41 and 30% during both time periods. A controlled growth-chamber study using hydroponically grown saplings confirmed daily cycling and shade-induced reductions in FRHC and AQPC. Winter measurements showed that the evergreen Q. fusiformis maintained high FRHC and AQPC throughout the year, while the deciduous B. lanuginosa ceased diurnal cycling and exhibited its lowest annual values for both parameters in winter. Adjustments in FRHC and AQPC to changing canopy water demands may help the trees maintain the use of reliable water resources from depth and contribute to the success of these species in this semi-arid environment.

  14. Clinicopathologic and prognostic relevance of ARID1A protein loss in colorectal cancer.

    PubMed

    Wei, Xiao-Li; Wang, De-Shen; Xi, Shao-Yan; Wu, Wen-Jing; Chen, Dong-Liang; Zeng, Zhao-Lei; Wang, Rui-Yu; Huang, Ya-Xin; Jin, Ying; Wang, Feng; Qiu, Miao-Zhen; Luo, Hui-Yan; Zhang, Dong-Sheng; Xu, Rui-Hua

    2014-12-28

    To explore the association between AT-rich interactive domain 1A (ARID1A) protein loss by immunohistochemistry and both clinicopathologic characteristics and prognosis in patients with colorectal cancer. We retrospectively collected clinicopathologic data and archived paraffin-embedded primary colorectal cancer samples from 209 patients, including 111 patients with colon cancer and 98 patients with rectal cancer. The tumor stage ranged from stage I to stage IV according to the 7(th) edition of the American Joint Committee on Cancer tumor-node-metastasis (TNM) staging system. All patients underwent resection of primary colorectal tumors. The expression of ARID1A protein in primary colorectal cancer tissues was examined by immunohistochemical staining. The clinicopathologic association and survival relevance of ARID1A protein loss in colorectal cancer were analyzed. ARID1A loss by immunohistochemistry was not rare in primary colorectal cancer tumors (25.8%). There were 7.4%, 24.1%, 22.2% and 46.3% of patients with ARID1A loss staged at TNM stage I, II, III and IV, respectively, compared with 20.0%, 22.6%, 27.7% and 29.7% of patients without ARID1A loss staged at TNM stage I, II, III and IV, respectively. In patients with ARID1A loss, the distant metastasis rate was 46.3%. However, only 29.7% of patients without ARID1A loss were found to have distant metastasis. In terms of pathologic differentiation, there were 25.9%, 66.7% and 7.4% with poorly, moderately and well differentiated tumors in patients with ARID1A loss, and 14.2%, 72.3% and 13.5% with poorly, moderately and well differentiated tumors in patients without ARID1A loss, respectively. ARID1A loss was associated with late TNM stage (P = 0.020), distant metastasis (P = 0.026), and poor pathological classification (P = 0.035). However, patients with positive ARID1A had worse overall survival compared to those with negative ARID1A in stage IV colorectal cancer (HR = 2.49, 95%CI: 1.13-5.51). ARID1A protein loss is associated with clinicopathologic characteristics in colorectal cancer patients and with survival in stage IV patients.

  15. The classification and assessment of vulnerability of man-land system of oasis city in arid area

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Lei, Jun; Jin, Fengjun

    2013-12-01

    Oasis city system is the center of the man-land relationship in arid area and it is the most influential spatial and temporal multiple dynamic system. Oasis city system is not only the largest area where artificial disturbances occur at a regional scale but also the most concentrated area of human activity in arid area. In this study, we developed an applicable and convenient method to assess vulnerability of man-land system of oasis cities with vulnerability indicator system, respectively evaluating the sensitivity, adaptability and vulnerability of the eco-environment system, the economic system and the social system. The results showed that the sensitivity and vulnerability of oasis cities in Xinjiang, China have significant differences while their adaptability does little. In order to find the inherent differences in the vulnerability of oasis cities, triangle methodology has been adopted to divide Xinjiang oasis cities into five types. Some adaptive developing policies specific for individual cities are also proposed based on their vulnerability type and constraining factors.

  16. Biogenic Volatile Organic Compounds as Indicators of Change in a Deep Arid Unsaturated Zone, Amargosa Desert, USA

    NASA Astrophysics Data System (ADS)

    Green, C. T.; Baker, R. J.; Luo, W.; Andraski, B. J.; Haase, K.; Stonestrom, D. A.

    2016-12-01

    Biogenic volatile organic compounds (bVOCs) are important agents in atmospheric chemistry, climatic forcing, plant physiology, and ecologic signaling. Despite a marked increase in scientific attention to bVOCs since the 1990s, relatively little is known about bVOC dynamics in soils and virtually nothing is known about bVOCs in deep unsaturated zones. The goal of this study was to systematically explore subsurface bVOCs through characterization and analysis of deep unsaturated zone VOCs in an arid setting. A wide range of VOCs have been sampled from the unsaturated zone at the Amargosa Desert Research Site (ADRS) at least annually for over a decade in the vicinity of a hazardous waste repository in southwestern Nevada. Grid- and transect-based soil gas samples were collected at shallow (0.5-m and 1.5-m) depths, and vertical arrays of samples were collected from three unsaturated zone boreholes ( 10m intervals from 0 to 110 m below ground surface), one of which is in an undisturbed area 3000 m from the waste repository. The VOC data were analyzed to identify bVOCs and processes related to bVOC transport in the deep unsaturated zone. Locally generated bVOCs were identified on the basis of (1) frequency of detections at the remote borehole location, (2) patterns of distribution in shallow unsaturated zone samples around the waste repository, (3) comparisons with atmospheric concentrations, and (4) comparisons with travel blank samples. Several dozen compounds met the criteria to be characterized as bVOCs. The relatively abundant compound m,p-xylene was selected as a tracer for subsequent modeling analysis of vertical and horizontal transport processes in the unsaturated zone. Targeted processes comprised (1) changes in vertical bVOC profiles as a result of ecological shifts, and (2) predominantly horizontal transport of unsaturated-zone gases following installation of the low level nuclear waste repository at the ADRS. To the best of our knowledge the results document, for the first time, the presence of a substantial reservoir of bVOCs in the deep unsaturated zone of a desert ecosystem and demonstrate that such reservoirs can serve as potential windows into past ecological changes and unsaturated zone disturbances.

  17. A geothermal resource in the Puna plateau (Jujuy Province, Argentina): New insights from the geochemistry of thermal fluid discharges

    NASA Astrophysics Data System (ADS)

    Peralta Arnold, Yesica; Cabassi, Jacopo; Tassi, Franco; Caffe, Pablo; Vaselli, Orlando

    2017-04-01

    Several hydrothermal mineralization and thermal fluid discharges are distributed in the high altitude Puna plateau at the eastern border of the Central Volcanic Zone of the Andes in the Jujuy Province, a region where volcanic explosive activity developed from Oligocene-Miocene to Neogene produced giant calderas and huge ignimbrite deposits. This study presents the geochemical and isotopic composition of thermal fluids discharged from Granada, Vilama, Pairique, Coranzulì and Olaroz zones, which are located between S 22°20'- 23°20' and W 66°- 67°. This aim is to provide insights into the physicochemical features of the deep fluid circulating system in order to have a preliminary indication about the geothermal potential in this area. The occurrence of partially mature Na+-Cl- waters suggests that a deep (>5,000 m b.g.l.) hydrothermal reservoir, hosted within the Paleozoic crystalline basement, represents the main fluid source. Regional tectonics, dominated by S-oriented faulting systems that produced a horst and graben tectonics, as well as NE-, NW- and WE-oriented transverse structures, favour the uprising of the deep-originated fluids, including a significant amount (up to 16%) of mantle He. The dry gas phase mainly consists of CO2 mostly produced from subducted C-bearing organic-rich material. The interaction between meteoric water and Cretaceous, Palaeogene to Miocene sediments at shallow depth gives rise to relatively cold Na+-HCO3-type aquifers. Dissolution of evaporitic surficial deposits (salares), produced by the arid climate of the region, strongly affects the chemistry of the thermal springs in the peripheral zones of the study area. Geothermometry in the Na-K-Ca-Mg system suggests equilibrium temperatures up to 200 °C for the deep aquifer, whereas the H2 geothermometer equilibrates at lower temperatures (from 105 to 155 °C), likely corresponding to those of the shallower aquifer. Although the great depth of the main fluid reservoir represents a strong limitation to the exploitation of this geothermal resource, the occurrence of Li- and Ba-rich deposits associated with the hydrothermal fluids may attract financial investments, giving a pulse for the development of this remote region.

  18. Grassland-shrubland state transitions in arid rangelands: Competition matters

    USDA-ARS?s Scientific Manuscript database

    Background: State transition from grassland to shrubland is synonymous with desertification in many arid rangeland systems. Traditional desertification models emphasize abiotic feedbacks that modify the physical environment in ways that promote shrub proliferation and impede grass survival. Inherent...

  19. Implications of water supply for indigenous Americans during Holocene ardity phases on the Southern High Plains, USA

    USGS Publications Warehouse

    Wood, W.W.; Stokes, S.; Rich, J.

    2002-01-01

    Springs in the 40 to 50 large lake basins (>15 km2) on the southern portion of the Southern High Plains (SHP) were active during periods of aridity in the Holocene when there may have been human habitation of the area. Eolian erosion of the lake floors and lunette accretion occurred as groundwater levels declined in response to decreased groundwater recharge. The declining lake floor associated with eolian erosion allowed groundwater evaporative discharge to continue, thus maintaining a groundwater gradient toward the lake. This hydrologic condition was favorable for a relatively continuous spring discharge to the lake, independent of the elevation of the lake floor. To evaluate the postulated dynamic equilibrium critical to this conclusion, 17 optically stimulated ages were determined from a 17.7-m deep core of a lunette adjacent to Double Lakes, Texas (33??13???15???N, 101??54???08???W). The core yielded sediment accumulation dates of 11,500 ?? 1100, 6500 ?? 700, and 4900 ?? 500 yr B.P., corresponding broadly with periods of aridity known from other evidence. Based on analysis of this lunette, it is concluded that springs in Double Lakes basin probably existed throughout the Holocene with discharges similar to those observed historically. We assumed that similar dynamic equilibrium existed in the other large lake basins in the SHP and that these springs could have provided a continuous source of water for indigenous peoples during periods of prolonged aridity. The dynamic equilibrium that is proposed in this study is applicable not only to other arid and semiarid geographic areas with wind-erodible material but also over different geologic times. ?? 2002 University of Washington.

  20. Analysis of water use strategies of the desert riparian forest plant community in inland rivers of two arid regions in northwestern China

    NASA Astrophysics Data System (ADS)

    Chen, Y. N.; Li, W. H.; Zhou, H. H.; Chen, Y. P.; Hao, X. M.; Fu, A. H.; Ma, J. X.

    2014-10-01

    Studies of the water use of the desert riparian forest plant community in arid regions and analyses of the response and adaptive strategies of plants to environmental stress are of great significance to the formulation of effective ecological conservation and restoration strategies. Taking two inland rivers in the arid regions of northwestern China, downstream of the Tarim River and Heihe River Basin as the research target regions, this paper explored the stem water potential, sap flow, root hydraulic lift, and characteristics of plant water sources of the major constructive species in the desert riparian forest, Populus euphratica and Tamarix ramosissima. Specifically, this was accomplished by combining the monitoring of field physiological and ecological indicators, and the analysis of laboratory tests. Then, the water use differences of species in different ecological environments and their ecological significance were analyzed. This study indicated that: (1) in terms of water sources, Populus euphratica and Tamarix ramosissima mainly used deep subsoil water and underground water, but the plant root system in the downstream of the Tarim River was more diversified than that in the downstream of the Heihe River in water absorption, (2) in terms of water distribution, Populus euphratica root possessed hydraulic lift capacity, but Populus euphratica root in the downstream of the Tarim River presented stronger hydraulic lift capacity and more significant ecological effect of water redistribution, (3) in terms of water transport, the plants in the downstream of the Heihe River can adapt to the environment through the current limiting of branch xylem, while plants in the downstream of the Tarim River substantially increased the survival probability of the whole plant by sacrificing weak branches and improving the water acquisition capacity of dominant branches; and (4) in terms of water dissipation, the water use and consumption of Populus euphratica at night exhibited no significant difference, but the water use and consumption of Populus euphratica in the downstream of the Tarim River in the day was significantly higher than that in the downstream of the Heihe River, and the essential reason for this is the groundwater depth. The ecology in the downstream of the Heihe River has been in balance in the maintenance and development stage, while desert riparian forest plants in the downstream of the Tarim River are still in severe arid stress.

  1. Evolution of local facilitation in arid ecosystems.

    PubMed

    Kéfi, Sonia; van Baalen, Minus; Rietkerk, Max; Loreau, Michel

    2008-07-01

    In harsh environments, sessile organisms can make their habitat more hospitable by buffering environmental stress or increasing resource availability. Although the ecological significance of such local facilitation is widely established, the evolutionary aspects have been seldom investigated. Yet addressing the evolutionary aspects of local facilitation is important because theoretical studies show that systems with such positive interactions can exhibit alternative stable states and that such systems may suddenly become extinct when they evolve (evolutionary suicide). Arid ecosystems currently experience strong changes in climate and human pressures, but little is known about the effects of these changes on the selective pressures exerted on the vegetation. Here, we focus on the evolution of local facilitation in arid ecosystems, using a lattice-structured model explicitly considering local interactions among plants. We found that the evolution of local facilitation depends on the seed dispersal strategy. In systems characterized by short-distance seed dispersal, adaptation to a more stressful environment leads to high local facilitation, allowing the population to escape extinction. In contrast, systems characterized by long-distance seed dispersal become extinct under increased stress even when allowed to adapt. In this case, adaptation in response to climate change and human pressures could give the final push to the desertification of arid ecosystems.

  2. Effects of Straw Return in Deep Soils with Urea Addition on the Soil Organic Carbon Fractions in a Semi-Arid Temperate Cornfield

    PubMed Central

    Li, Jiaqi; Lu, Jia; Fan, Qingfeng; Yu, Na; Zhang, Yuling; Dang, Xiuli; Zhang, Yulong

    2016-01-01

    Returning straw to deep soil layers by using a deep-ditching-ridge-ploughing method is an innovative management practice that improves soil quality by increasing the soil organic carbon (SOC) content. However, the optimum quantity of straw return has not been determined. To solve this practical production problem, the following treatments with different amounts of corn straw were investigated: no straw return, CK; 400 kg ha-1 straw, S400; 800 kg ha-1 straw, S800; 1200 kg ha-1 straw, S1200; and 1600 kg ha-1 straw, S1600. After straw was returned to the soil for two years, the microbial biomass C (MBC), easily oxidized organic C (EOC), dissolved organic C (DOC) and light fraction organic C (LFOC) content were measured at three soil depths (0–10, 10–20, and 20–40 cm). The results showed that the combined application of 800 kg ha-1 straw significantly increased the EOC, MBC, and LFOC contents and was a suitable agricultural practice for this region. Moreover, our results demonstrated that returning straw to deep soil layers was effective for increasing the SOC content. PMID:27123594

  3. Effects of Straw Return in Deep Soils with Urea Addition on the Soil Organic Carbon Fractions in a Semi-Arid Temperate Cornfield.

    PubMed

    Zou, Hongtao; Ye, Xuhong; Li, Jiaqi; Lu, Jia; Fan, Qingfeng; Yu, Na; Zhang, Yuling; Dang, Xiuli; Zhang, Yulong

    2016-01-01

    Returning straw to deep soil layers by using a deep-ditching-ridge-ploughing method is an innovative management practice that improves soil quality by increasing the soil organic carbon (SOC) content. However, the optimum quantity of straw return has not been determined. To solve this practical production problem, the following treatments with different amounts of corn straw were investigated: no straw return, CK; 400 kg ha-1 straw, S400; 800 kg ha-1 straw, S800; 1200 kg ha-1 straw, S1200; and 1600 kg ha-1 straw, S1600. After straw was returned to the soil for two years, the microbial biomass C (MBC), easily oxidized organic C (EOC), dissolved organic C (DOC) and light fraction organic C (LFOC) content were measured at three soil depths (0-10, 10-20, and 20-40 cm). The results showed that the combined application of 800 kg ha-1 straw significantly increased the EOC, MBC, and LFOC contents and was a suitable agricultural practice for this region. Moreover, our results demonstrated that returning straw to deep soil layers was effective for increasing the SOC content.

  4. CO2 dynamics in the Amargosa Desert: Fluxes and isotopic speciation in a deep unsaturated zone

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Striegl, Robert G.; Prudic, David E.; Stonestrom, David A.

    2005-01-01

    Natural unsaturated-zone gas profiles at the U.S. Geological Survey's Amargosa Desert Research Site, near Beatty, Nevada, reveal the presence of two physically and isotopically distinct CO2 sources, one shallow and one deep. The shallow source derives from seasonally variable autotrophic and heterotrophic respiration in the root zone. Scanning electron micrograph results indicate that at least part of the deep CO2 source is associated with calcite precipitation at the 110-m-deep water table. We use a geochemical gas-diffusion model to explore processes of CO2 production and behavior in the unsaturated zone. The individual isotopic species 12CO2, 13CO2, and 14CO2 are treated as separate chemical components that diffuse and react independently. Steady state model solutions, constrained by the measured δ13C (in CO2), and δ14C (in CO2) profiles, indicate that the shallow CO2 source from root and microbial respiration composes ∼97% of the annual average total CO2 production at this arid site. Despite the small contribution from deep CO2 production amounting to ∼0.1 mol m−2 yr−1, upward diffusion from depth strongly influences the distribution of CO2 and carbon isotopes in the deep unsaturated zone. In addition to diffusion from deep CO2 production, 14C exchange with a sorbed CO2 phase is indicated by the modeled δ14C profiles, confirming previous work. The new model of carbon-isotopic profiles provides a quantitative approach for evaluating fluxes of carbon under natural conditions in deep unsaturated zones.

  5. Cooling and drying in northeast Africa across the Pliocene

    NASA Astrophysics Data System (ADS)

    Liddy, Hannah M.; Feakins, Sarah J.; Tierney, Jessica E.

    2016-09-01

    Terrestrial records suggest that Northeast Africa experienced drying during the Pliocene; however, these records are often incomplete in time and space, and questions about this shift in climate remain. Here, we use marine sediments from Deep Sea Drilling Project (DSDP) Site 231 in the Gulf of Aden to generate a multi-proxy organic geochemical record of northeast African climate spanning 5.3-2 Ma. This new record provides a regional perspective on climate and serves as context for the fossil record of early hominin evolution. We measured leaf wax carbon (δ13Cwax) and hydrogen (δDwax) isotopic composition and TEX86 (tetraether index of 86 carbons) to investigate past changes in vegetation, aridity, and ocean temperature, respectively. In the earliest Pliocene, we infer warm subsurface ocean temperatures from TEX86, semi-arid conditions on land and extensive C4 grasslands based on δDwax, δ13Cwax and previously published pollen. After 5 Ma, ocean temperatures gradually cooled, and at 4.3 Ma there was a transition to arid conditions on land based on δDwax and pollen. Grasslands yielded to a mid Pliocene landscape of dry shrublands. This drying appears to be an atmospheric response to cooling ocean temperatures, which may reflect changes in tropical ocean circulation, the intensification of Indian Monsoon winds or perhaps other changes associated with Pliocene cooling.

  6. The recharge process in alluvial strip aquifers in arid Namibia and implication for artificial recharge

    NASA Astrophysics Data System (ADS)

    Sarma, Diganta; Xu, Yongxin

    2017-01-01

    Alluvial strip aquifers associated with ephemeral rivers are important groundwater supply sources that sustain numerous settlements and ecological systems in arid Namibia. More than 70 % of the population in the nation's western and southern regions depend on alluvial aquifers associated with ephemeral rivers. Under natural conditions, recharge occurs through infiltration during flood events. Due to the characteristic spatial and temporal variability of rainfall in arid regions, recharge is irregular making the aquifers challenging to manage sustainably and they are often overexploited. This condition is likely to become more acute with increasing water demand and climate change, and artificial recharge has been projected as the apparent means of increasing reliability of supply. The article explores, through a case study and numerical simulation, the processes controlling infiltration, significance of surface water and groundwater losses, and possible artificial recharge options. It is concluded that recharge processes in arid alluvial aquifers differ significantly from those processes in subhumid systems and viability of artificial recharge requires assessment through an understanding of the natural recharge process and losses from the aquifer. It is also established that in arid-region catchments, infiltration through the streambed occurs at rates dependent on factors such as antecedent conditions, flow rate, flow duration, channel morphology, and sediment texture and composition. The study provides an important reference for sustainable management of alluvial aquifer systems in similar regions.

  7. Paleohydrology on Mars constrained by mass balance and mineralogy of pre-Amazonian sodium chloride lakes

    NASA Astrophysics Data System (ADS)

    Melwani Daswani, M.; Kite, E. S.

    2017-09-01

    Chloride-bearing deposits on Mars record high-elevation lakes during the waning stages of Mars' wet era (mid-Noachian to late Hesperian). The water source pathways, seasonality, salinity, depth, lifetime, and paleoclimatic drivers of these widespread lakes are all unknown. Here we combine reaction-transport modeling, orbital spectroscopy, and new volume estimates from high-resolution digital terrain models, in order to constrain the hydrologic boundary conditions for forming the chlorides. Considering a T = 0°C system, we find that (1) individual lakes were >100 m deep and lasted decades or longer; (2) if volcanic degassing was the source of chlorine, then the water-to-rock ratio or the total water volume were probably low, consistent with brief excursions above the melting point and/or arid climate; (3) if the chlorine source was igneous chlorapatite, then Cl-leaching events would require a (cumulative) time of >10 years at the melting point; and (4) Cl masses, divided by catchment area, give column densities 0.1-50 kg Cl/m2, and these column densities bracket the expected chlorapatite-Cl content for a seasonally warm active layer. Deep groundwater was not required. Taken together, our results are consistent with Mars having a usually cold, horizontally segregated hydrosphere by the time chlorides formed.

  8. Water and the arid zone of the United States

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1962-01-01

    In a pluvial period associated with Wisconsin glaciation the closed basin of the Estancia Valley in New Mexico held a lake which, at its maximum extent, was 150 feet deep and had a surface area of 450 square miles. This basin, with a mean elevation of about 6,000 feet, has at present an annual precipitation of about 14 inches.Estimates have been made of the Pleistocene precipitation necessary to maintain this pluvial lake. Instead of the present annual average of 14 inches it has been variously estimated that the precipitation must have been between 20 and 24 inches. Lakes existed during Pleistocene time in many places in the western United States that are now true deserts - with a precipitation of less than 4 inches - and there is abundant evidence that early man lived on the shores of these lakes. He must have adapted himself to the increasing aridity; this adaptation can be seen even at present in the form of floodwater farming practices, which have been highly developed by the Hopi Indians, particularly in northeastern Arizona.A gradually changing climate is only one, and not the most important, of the changing conditions to which man must gradually adjust in his particular relation to the use of water. The changes in his own culture in conjunction with changes in population density are usually even more important determinants of man’s use of and attitude toward his water supplies. In a desert area of Central Arizona, near Florence, the remains of irrigation systems developed by the aborigines to irrigate the alluvial valley floor with water diverted from the Gila River, which was at that time perennial, have been mapped and partially excavated. Irrigated agriculture was not practised nearly so extensively in the arid portions of the United States as in Persia, India, and many Mediterranean countries, nor was the general culture of indigenous American tribes so highly developed. Even in the simple cultures of the American Indians patterns of adjustment to a changing climate and to a changing culture and population level can be discerned. These patterns include, however crudely, the development of irrigated agriculture, floodwater farming, water storage for both stock and community use, spring development, and even efforts at rain-making through the offices of prayers, rattles, and dances. These same patterns, more complex to be sure, can be seen to have characterized the adjustment of modern culture to the limited water supplies of the arid climates, even including the prayers and rattles.An aspect of the development of American culture in the arid areas is probably typical and may have a counterpart in certain of the underdeveloped areas in other parts of the world at the present time. The local civilization of the arid climate usually does not develop to a very high level in situ. The indigenous cultures are usually transfused with new bursts of energy and knowledge by the incursion of other cultures which have developed in other climes. The cultural advances in the Fertile Crescent of Mesopotamia were gradually influenced by the barbarian invasion, which added much to, as well as detracted from, the locally developing society. Similarly the spurt of civilization which has characterized the arid parts of the United States since 1846 was determined by the superposition of a culture from the eastern United States on the essentially Spanish culture which had been developing since the initial exploration of the southwestern desert in 1630.

  9. Speleothem records of western Mediterranean. Hydrological variability along the Last Interglacial Period and marine linkages

    NASA Astrophysics Data System (ADS)

    Torner, Judit; Cacho, Isabel; Moreno, Ana; Stoll, Heather; Belmonte, Anchel; Sierro, Francisco J.; Frigola, Jaime; Martrat, Belen; Fornós, Joan; Arnau Fernández, Pedro; Hellstrom, John; Cheng, Hai; Edwards, R. Lawrence

    2016-04-01

    This study aims to identify and characterize regional hydrological variability in the western Mediterranean region in base to different geochemical parameters (δ18O, δ13C, and Mg/Ca ratios). Speleothems have been recovered from several caves located in southern central Pyrenees one and the others form the Balearic Islands. Their chronologies have been constructed in base on U/Th absolute dating and indicate that the speleothem sequences cover the end of the last interglacial and the glacial inception. One of the most remarkable features of the records is the intense and abrupt shift toward more arid conditions that marks the end of the last interglacial (MIS 5e). Furthermore, our speleothem records also show relatively humid but highly variable hydrological conditions during the interstadial periods from MIS 5c to 5a. These speleothem records have been compared with new generated western Mediterranean marine records from the Balearic Sea (MD99-2343) and Alboran Sea (OPD-977). Marine records include (1) proxies of sea surface temperature and changes in evaporation-precipitation rates based on pair analysis of δ18O and the Mg/Ca ratios in planktonic foraminifera Globigerina bulloides; (2) proxies of deep-water currents associated with the Western Mediterranean Deep Water (WMDW) based on grain size analyses. The results reveal that arid conditions on land were coeval with cold sea surface sub-stages (MIS 5b and 5d), and also with increases in the intensity of the WMDW-related currents. By contrast, humid and hydrological unstable atmosphere conditions were synchronous with sea surface warm sub-stages, and lower WMDW-related currents intensities (MIS 5a, c and e). Consequently, our results highly evidence a strong atmospheric-oceanic coupling, involving parallel changes in both surface but also deep western Mediterranean Sea conditions during the last interglacial period and the glacial inception.

  10. Chloride mass-balance method for estimating ground water recharge in arid areas: Examples from western Saudi Arabia

    USGS Publications Warehouse

    Bazuhair, A.S.; Wood, W.W.

    1996-01-01

    The chloride mass-balance method, which integrates time and aerial distribution of ground water recharge, was applied to small alluvial aquifers in the wadi systems of the Asir and Hijaz mountains in western Saudi Arabia. This application is an extension of the method shown to be suitable for estimating recharge in regional aquifers in semi-arid areas. Because the method integrates recharge in time and space it appears to be, with certain assumptions, particularly well suited for and areas with large temporal and spatial variation in recharge. In general, recharge was found to be between 3 to 4% of precipitation - a range consistent with recharge rates found in other arid and semi-arid areas of the earth.

  11. Active old-field restoration in the most arid lands of the Great Basin

    USDA-ARS?s Scientific Manuscript database

    Restoration of former agricultural fields can be challenging, especially in arid systems, where factors such as wind erosion, water stress, soil alteration, and competition from weeds can strongly affect plant establishment and growth. Experiments were conducted in two former agricultural fields in ...

  12. Assessing the geomorphological vulnerability of arid beach-dune systems.

    PubMed

    Peña-Alonso, Carolina; Gallego-Fernández, Juan B; Hernández-Calvento, Luis; Hernández-Cordero, Antonio I; Ariza, Eduard

    2018-09-01

    In this study, an arid dune vulnerability index (ADVI) is developed using a system of indicators to evaluate the geomorphological vulnerability of beach-dune systems of arid regions. The indicators are comprised of three analytical dimensions (susceptibility, exposure and resilience) and their corresponding sub-indices and variables and were assessed for eleven sites located in four aeolian sedimentary systems of the Canary archipelago (Spain). The selected sites have varying geomorphological characteristics, vegetation types, marine and wind conditions and human pressure degrees, and have seen different trends in their geomorphological evolution since 1960. The eleven sites were separated into three groups according to their different conservation status and different management needs, and the results of the ADVI dimensions and variables were compared and analyzed for these three groups. In general, the results obtained in the analyzed sites reveal that susceptibility and exposure dimensions are related to low-moderate values, while resilience was high. Only one site presented a state of critical vulnerability, due to the loss of its capacity to maintain its geomorphological function in recent decades. Given the lack of knowledge about geomorphological vulnerability processes in foredunes of arid regions, ADVI is the first approximation to geomorphological diagnostic in these environments and can be useful for managers. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Future Freshwater Stress on Small Islands: Population, Aridity and Global Warming Targets

    NASA Astrophysics Data System (ADS)

    Karnauskas, K. B.; Schleussner, C. F.; Donnelly, J. P.; Anchukaitis, K. J.

    2017-12-01

    Small island developing states (SIDS) face multiple threats from anthropogenic climate change, including potential changes in freshwater resource availability. Future freshwater stress, including geographic and seasonal variability, has important implications for climate change adaptation scenarios for vulnerable human populations living on islands across the world ocean. Due to a mismatch in spatial scale between SIDS landforms and the horizontal resolution of global climate models (GCMs), SIDS are mostly unaccounted for in GCMs that are used to make future projections of global climate change and its regional impacts. Specific approaches are required to address this gap between broad-scale model projections and regional, policy-relevant outcomes. Here we apply a recently developed methodology to project future changes in aridity in combination with population projections associated with different shared socioeconomic pathways (SSPs) to evaluate overall changes in freshwater stress in SIDS at warming levels of 1.5°C and 2°C above pre-industrial levels. By accounting for evaporative demand a posteriori, we reveal a robust yet spatially variable tendency towards increasing aridity for 16 million people living on islands by mid-century. Although about half of the islands are projected to experience increased rainfall—predominantly in the deep tropics—projected changes in evaporation are more uniform, shifting the global distribution of changes in island freshwater balance towards greater aridity. In many cases, the magnitude of projected drying is comparable to the amplitude of the estimated observed interannual variability, with important consequences for extreme events. While we find that future population growth will dominate changes in projected freshwater stress especially towards the end of the century, projected changes in aridity are found to compound freshwater stress for the vast majority of SIDS. Particularly across the Caribbean region, a substantial fraction ( 25%) of the large overall freshwater stress projected under 2°C at 2030 can be avoided by limiting global warming to 1.5°C. Our findings add to a growing body of literature on the difference in climate impacts between 1.5°C and 2°C and underscore the need for regionally specific analysis.

  14. Aridity of Central Asia through the Holocene

    NASA Astrophysics Data System (ADS)

    Aizen, E. M.; Aizen, V. B.; Mayewski, P. A.; Zhou, H.; Rodda, C.; Joswiak, D.; Takeuchi, N.; Fujita, K.; Kurbatov, A.; Grigholm, B. O.

    2017-12-01

    The dynamics of aridity in Central Asia for over the past 12,000 years has been analyzed using deep ice core records recovered from the Siberian Altai, Tien Shan and Pamir glaciers. An analysis of aridity in the 20-21 centuries based on the long-term meteorological observations complements the paleo- climate reconstruction. The goal of our research is to examine an aridity (at low and high temperatures) in Central Asia as a complex of characteristics including air temperature-precipitation relationship (Koppen, 1918, Geiger, 1961, Mezencev, 1973), intensity of dust loading and biomass burning. The stable isotope ratio, soluble ionic and insoluble particulate geochemical components and oxalate preserved in ice were considered in relation to climatic and environmental changes; and to determine the main aerosol sources using ground- and upper-level meteorological data. Multivariate statistical methods were employed for examination of the main geo-chemical components responsible for the preserved aridity variability. Insoluble particle concentrations preserved in the ice core were affected mainly by precipitation regimes and wind speed. Concentration of all size particles was found to be negatively correlated with monthly temperatures indicating low temperatures during the dry particle deposition. Two abrupt depletions in stable isotope records, i.e., Younger Dryas and Centurial Sever Drought (CSD), occurred during cold, dry, windy periods of intensified dust storms in large desert areas. When climate became colder and drier, the Central Asian deserts extended, wind speeds increased loading mineral dust to atmosphere, which formed inversion while the convection processes and precipitation occurrence were limited. Warmer and wetter conditions are associated with less dust loading that occurred during the Holocene climate optimum, medieval warm and modern warm periods. The sudden climate transitions are accompanied by the most intensifying mineral dust loading. From the middle of 20th century, the potassium and nitrate ion concentrations significantly increased and reaches almost the same level as it was at the beginning of Holocene and before CSD that was caused by extended forest fires under air temperature growth. Interval between intensive biomass burning decreased during the 20th century.

  15. Fine dust emissions in sandy and silty agricultural soils

    USDA-ARS?s Scientific Manuscript database

    Dust emissions from strong winds are common in arid and semi-arid regions and occur under both natural and managed land systems. A portable field wind tunnel has been developed to allow measurements of dust emissions from soil surfaces to test the premise that dust concentrations are highly correlat...

  16. Response of the shortgrass steppe plant community to fire

    USDA-ARS?s Scientific Manuscript database

    Fire is an important driver of ecological pattern and process in grasslands worldwide, although its role in semi-arid systems is less well known. We utilized published studies and new experimental research to 1) provide a synthesis of existing knowledge of fire in the semi-arid grasslands of the Nor...

  17. Short-term soil responses to late-seeded cover crops in a semi-arid environment

    USDA-ARS?s Scientific Manuscript database

    Cover crops can expand ecosystem services, though sound management recommendations for their use within semi-arid cropping systems is currently constrained by a lack of information. This study was conducted to determine agroecosystem responses to late-summer seeded cover crops under no-till managem...

  18. Phenotypic variations, heritability and correlations in dry biomass, rubber and resin production among guayule germplasm

    USDA-ARS?s Scientific Manuscript database

    Gauyaule (Parthenium argentatum Gray) originated in the Southern Texas and northern Mexico deserts, which suggests it as a good candidate for arid and semi-arid sustainable agricultural systems to produce natural rubber and industrial byproducts. Continued improvement of guayule for higher biomass, ...

  19. Organizing for Education.

    ERIC Educational Resources Information Center

    Walker, W. Hugh

    The arid areas of the world, especially the Middle East and North Africa, need to develop an educational system that is attuned to the needs of the people in order to improve human and institutional competencies required to solve social and economic problems. Since arid areas have special characteristics, it is necessary to find applicable…

  20. Spatial analysis of the annual and seasonal aridity trends in Extremadura, southwestern Spain

    NASA Astrophysics Data System (ADS)

    Moral, Francisco J.; Paniagua, Luis L.; Rebollo, Francisco J.; García-Martín, Abelardo

    2017-11-01

    The knowledge of drought (or wetness) conditions is necessary not only for a rational use of water resources but also for explaining landscape and ecology characteristics. An increase in aridity in many areas of the world is expected because of climate change (global warming). With the aim of analysing annual and seasonal aridity trends in Extremadura, southwestern Spain, climate data from 81 locations within the 1951-2010 period were used. After computing the De Martonne aridity index at each location, a geographic information system (GIS) and multivariate geostatistics (regression kriging) were utilised to map this index throughout the region. Later, temporal trends were analysed using the Mann-Kendall test, and the Sen's estimator was utilised to estimate the magnitude of trends. Maps of aridity trends were generated by ordinary kriging algorithm, providing a visualisation of detected annual and seasonal tendencies. An increase in aridity, as the De Martonne aridity index decreased, was apparent during the study period, mainly in the more humid locations of the north of the region. An increase of the seasonal De Martonne aridity index was also found, but it was only statistically significant in some locations in spring and summer, with the highest decreasing rate in the north of Extremadura. Change year detection was achieved using cumulative sum graphs, obtaining that firstly the change point occurred in spring, in the mid-1970s, later in the annual period in the late 1970s and finally in summer at the end of the 1980s.

  1. Estimates of deep percolation beneath native vegetation, irrigated fields, and the Amargosa-River Channel, Amargosa Desert, Nye County, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Prudic, David E.; Laczniak, Randell J.; Akstin, Katherine C.; Boyd, Robert A.; Henkelman, Katherine K.

    2003-01-01

    The presence and approximate rates of deep percolation beneath areas of native vegetation, irrigated fields, and the Amargosa-River channel in the Amargosa Desert of southern Nevada were evaluated using the chloride mass-balance method and inferred downward velocities of chloride and nitrate peaks. Estimates of deep-percolation rates in the Amargosa Desert are needed for the analysis of regional ground-water flow and transport. An understanding of regional flow patterns is important because ground water originating on the Nevada Test Site may pass through the area before discharging from springs at lower elevations in the Amargosa Desert and in Death Valley. Nine boreholes 10 to 16 meters deep were cored nearly continuously using a hollow-stem auger designed for gravelly sediments. Two boreholes were drilled in each of three irrigated fields in the Amargosa-Farms area, two in the Amargosa-River channel, and one in an undisturbed area of native vegetation. Data from previously cored boreholes beneath undisturbed, native vegetation were compared with the new data to further assess deep percolation under current climatic conditions and provide information on spatial variability.The profiles beneath native vegetation were characterized by large amounts of accumulated chloride just below the root zone with almost no further accumulation at greater depths. This pattern is typical of profiles beneath interfluvial areas in arid alluvial basins of the southwestern United States, where salts have been accumulating since the end of the Pleistocene. The profiles beneath irrigated fields and the Amargosa-River channel contained more than twice the volume of water compared to profiles beneath native vegetation, consistent with active deep percolation beneath these sites. Chloride profiles beneath two older fields (cultivated since the 1960’s) as well as the upstream Amargosa-River site were indicative of long-term, quasi-steady deep percolation. Chloride profiles beneath the newest field (cultivated since 1993), the downstream Amargosa-River site, and the edge of an older field were indicative of recently active deep percolation moving previously accumulated salts from the upper profile to greater depths.Results clearly indicate that deep percolation and ground-water recharge occur not only beneath areas of irrigation but also beneath ephemeral stream channels, despite the arid climate and infrequency of runoff. Rates of deep percolation beneath irrigated fields ranged from 0.1 to 0.5 m/yr. Estimated rates of deep percolation beneath the Amargosa-River channel ranged from 0.02 to 0.15 m/yr. Only a few decades are needed for excess irrigation water to move through the unsaturated zone and recharge ground water. Assuming vertical, one-dimensional flow, the estimated time for irrigation-return flow to reach the water table beneath the irrigated fields ranged from about 10 to 70 years. In contrast, infiltration from present-day runoff takes centuries to move through the unsaturated zone and reach the water table. The estimated time for water to reach the water table beneath the channel ranged from 140 to 1000 years. These values represent minimum times, as they do not take lateral flow into account. The estimated fraction of irrigation water becoming deep percolation averaged 8 to 16 percent. Similar fractions of infiltration from ephemeral flow events were estimated to become deep percolation beneath the normally dry Amargosa-River channel. In areas where flood-induced channel migration occurs at sub-centennial frequencies, residence times in the unsaturated zone beneath the Amargosa channel could be longer. Estimates of deep percolation presented herein provide a basis for evaluating the importance of recharge from irrigation and channel infiltration in models of ground-water flow from the Nevada Test Site.

  2. Constraining the inferred paleohydrologic evolution of a deep unsaturated zone in the Amargosa Desert

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Stonestrom, David A.; Andraski, Brian J.; Striegl, Robert G.

    2004-01-01

    Natural flow regimes in deep unsaturated zones of arid interfluvial environments are rarely in hydraulic equilibrium with near-surface boundary conditions imposed by present-day plant–soil–atmosphere dynamics. Nevertheless, assessments of water resources and contaminant transport require realistic estimates of gas, water, and solute fluxes under past, present, and projected conditions. Multimillennial transients that are captured in current hydraulic, chemical, and isotopic profiles can be interpreted to constrain alternative scenarios of paleohydrologic evolution following climatic and vegetational shifts from pluvial to arid conditions. However, interpreting profile data with numerical models presents formidable challenges in that boundary conditions must be prescribed throughout the entire Holocene, when we have at most a few decades of actual records. Models of profile development at the Amargosa Desert Research Site include substantial uncertainties from imperfectly known initial and boundary conditions when simulating flow and solute transport over millennial timescales. We show how multiple types of profile data, including matric potentials and porewater concentrations of Cl−, δD, δ18O, can be used in multiphase heat, flow, and transport models to expose and reduce uncertainty in paleohydrologic reconstructions. Results indicate that a dramatic shift in the near-surface water balance occurred approximately 16000 yr ago, but that transitions in precipitation, temperature, and vegetation were not necessarily synchronous. The timing of the hydraulic transition imparts the largest uncertainty to model-predicted contemporary fluxes. In contrast, the uncertainties associated with initial (late Pleistocene) conditions and boundary conditions during the Holocene impart only small uncertainties to model-predicted contemporaneous fluxes.

  3. Climate change reduces extent of temperate drylands and intensifies drought in deep soils

    USGS Publications Warehouse

    Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.; Munson, Seth M.; Tietjen, Britta; Hall, Sonia A.; Wilson, Scott D.; Duniway, Michael C.; Jia, Gensuo; Pyke, David A.; Lkhagva, Ariuntsetseg; Jamiyansharav, Khishigbayar

    2017-01-01

    Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in extent and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the twenty first century, temperate drylands may contract by a third, primarily converting to subtropical drylands, and that deep soil layers could be increasingly dry during the growing season. These changes imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the importance of appropriate drought measures and, as a global study that focuses on temperate drylands, highlight a distinct fate for these highly populated areas.

  4. Climate change reduces extent of temperate drylands and intensifies drought in deep soils

    PubMed Central

    Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.; Munson, Seth M.; Tietjen, Britta; Hall, Sonia A.; Wilson, Scott D.; Duniway, Michael C.; Jia, Gensuo; Pyke, David A.; Lkhagva, Ariuntsetseg; Jamiyansharav, Khishigbayar

    2017-01-01

    Drylands cover 40% of the global terrestrial surface and provide important ecosystem services. While drylands as a whole are expected to increase in extent and aridity in coming decades, temperature and precipitation forecasts vary by latitude and geographic region suggesting different trajectories for tropical, subtropical, and temperate drylands. Uncertainty in the future of tropical and subtropical drylands is well constrained, whereas soil moisture and ecological droughts, which drive vegetation productivity and composition, remain poorly understood in temperate drylands. Here we show that, over the twenty first century, temperate drylands may contract by a third, primarily converting to subtropical drylands, and that deep soil layers could be increasingly dry during the growing season. These changes imply major shifts in vegetation and ecosystem service delivery. Our results illustrate the importance of appropriate drought measures and, as a global study that focuses on temperate drylands, highlight a distinct fate for these highly populated areas. PMID:28139649

  5. Evaluation of evapotranspiration and deep percolation under mulched drip irrigation in an oasis of Tarim basin, China

    NASA Astrophysics Data System (ADS)

    Li, Xianwen; Jin, Menggui; Zhou, Nianqing; Huang, Jinou; Jiang, Simin; Telesphore, Habiyakare

    2016-07-01

    Mulched drip irrigation for cotton field is an effective measure for the utilization of saline water, and the regulation of soil water and salt. However, the reasonable methods for quantifying actual evapotranspiration (ET) and deep percolation of recharge to groundwater are still not very well understood, which restricts the accurate regulation of soil water and salt for cotton growth in oasis. In this paper, a set of experiments of mulched drip irrigation with brackish water were conducted in a typical arid region of Tarim basin in southern Xinjiang, China. The irrigation events were recorded, and ET and fluctuations of groundwater table were carefully measured for two consecutive irrigation periods of flowering and bolling stages. A group of upscaling conversion methods were used to quantify the ET, in which canopy structure was considered to estimate the transpiration from leaf scale to a unit of field scale. The groundwater table had a significant response to the irrigation events, thus the deep percolation was estimated using water-table fluctuation method (WTF). Results showed that during the two irrigation events of flowering and bolling stages, the total ET was 31.1 mm with the soil surface evaporation of only 0.4 mm. The total percolation of recharge to groundwater was 48.2 mm which contributed to the groundwater run-off of 22.1 mm. Transpiration of 30.7 mm accounted for 98.6% of the total ET of 31.1 mm and 34.3% of the irrigation water of 90.6 mm. Compared with transpiration, the deep percolation accounted for 53.2% of irrigation water, indicating a serious excessive irrigation that recharged to groundwater. Soil salt budget showed that the salt leached into groundwater was 1.56 times of the input from brackish irrigation water and fertilization during the two irrigation periods. Even for the irrigation practice with brackish water, the accumulated salt of soil profile could also be leached out under large amount of irrigation water (e.g. 90.6 mm for the two irrigation periods, 10 days). However, the waste of enormous water which for instance occupied 53.2% of the irrigation water in this study was not conducive to the sustainable utilization of water resources in the arid oasis. Furthermore, the methods introduced in this paper for ET and deep percolation calculation of cotton filed could be used to quantify the oasis hydrologic cycle of micro-irrigation, to gain a better understanding of the ecological process.

  6. Kidney function and the role of arginine vasotocin in three agamid lizards from habitats of differing aridity in Western Australia.

    PubMed

    Ford, S S; Bradshaw, S D

    2006-05-15

    Western Australian agamid lizards are diverse and inhabit mesic to very arid areas of the state. Although reptilian kidneys are unable to elaborate hyperosmotic urine, we hypothesised that the renal system of lizards inhabiting arid areas would display an enhanced ability to conserve water under the control of the antidiuretic peptide hormone, arginine vasotocin (AVT). To examine this, the renal physiological and endocrine responses to osmotic challenge in three closely-related Australian agamid lizards inhabiting arid, semi-arid, and mesic environments were studied. The species studied were Pogona minor (mesic), Ctenophorus salinarum (semi-arid), and Ctenophorus nuchalis (arid). Circulating AVT was assayed and renal variables such as glomerular filtration rate (GFR), urine flow rate (V), and fractional reabsorption of filtrate FRH2O were measured in response to hypernatraemia, water load, and dehydration. Hypernatraemia and dehydration induced antidiuresis in all three species through similar mechanisms involving both glomerular and tubular responses. However, in salt-loaded P. minor the response was largely glomerular in nature, as FRH2O did not increase relative to the hydrated condition. The magnitude of the antidiuretic response was also greater in P. minor, indicating a greater sensitivity to osmotic challenge. Plasma concentrations of AVT were significantly correlated with FRH2O in P. minor (r2=0.38, P=0.025), but with GFR in C. nuchalis (r2=0.16, P=0.041). We found that the control and mechanisms of renal function among these lizards were largely similar, and there was little support for the hypothesis that arid lizards possess physiological adaptations not present in closely-related mesic lizards. Yet, differences remain in their response to hypernatraemia which may reflect the aridity of their different environments, or their varying habits.

  7. Microbial Diversity in Soil, Sand Dune and Rock Substrates of the Thar Monsoon Desert, India.

    PubMed

    Rao, Subramanya; Chan, Yuki; Bugler-Lacap, Donnabella C; Bhatnagar, Ashish; Bhatnagar, Monica; Pointing, Stephen B

    2016-03-01

    A culture-independent diversity assessment of archaea, bacteria and fungi in the Thar Desert in India was made. Six locations in Ajmer, Jaisalmer, Jaipur and Jodhupur included semi-arid soils, arid soils, arid sand dunes, plus arid cryptoendolithic substrates. A real-time quantitative PCR approach revealed that bacteria dominated soils and cryptoendoliths, whilst fungi dominated sand dunes. The archaea formed a minor component of all communities. Comparison of rRNA-defined community structure revealed that substrate and climate rather than location were the most parsimonious predictors. Sequence-based identification of 1240 phylotypes revealed that most taxa were common desert microorganisms. Semi-arid soils were dominated by actinobacteria and alpha proteobacteria, arid soils by chloroflexi and alpha proteobacteria, sand dunes by ascomycete fungi and cryptoendoliths by cyanobacteria. Climatic variables that best explained this distribution were mean annual rainfall and maximum annual temperature. Substrate variables that contributed most to observed diversity patterns were conductivity, soluble salts, Ca(2+) and pH. This represents an important addition to the inventory of desert microbiota, novel insight into the abiotic drivers of community assembly, and the first report of biodiversity in a monsoon desert system.

  8. "Global warming, continental drying? Interpreting projected aridity changes over land under climate change"

    NASA Astrophysics Data System (ADS)

    Berg, Alexis

    2017-04-01

    In recent years, a number of studies have suggested that, as climate warms, the land surface will globally become more arid. Such results usually rely on drought or aridity diagnostics, such as the Palmer Drought Severity Index or the Aridity Index (ratio of precipitation over potential evapotranspiration, PET), applied to climate model projections of surface climate. From a global perspective, the projected widespread drying of the land surface is generally interpreted as the result of the dominant, ubiquitous warming-induced PET increase, which overwhelms the slight overall precipitation increase projected over land. However, several lines of evidence, based on (paleo)observations and climate model projections, raise questions regarding this interpretation of terrestrial climate change. In this talk, I will review elements of the literature supporting these different perspectives, and will present recent results based on CMIP5 climate model projections regarding changes in aridity over land that shed some light on this discussion. Central to the interpretation of projected land aridity changes is the understanding of projected PET trends over land and their link with changes in other variables of the terrestrial water cycle (ET, soil moisture) and surface climate in the context of the coupled land-atmosphere system.

  9. Development and implementation of a monitoring and information system to increase water use efficiency in arid and semi-arid areas in Limarí, Central Chile (WEIN)

    NASA Astrophysics Data System (ADS)

    Berger, Erich; Balmert, David; Richter, Jürgen

    2016-10-01

    The project WEIN was funded by the Federal Ministry of Education and Research (BMBF | Berlin, Germany) in the framework of the high-tech strategy of Germany's program "KMU-Innovativ". The project started in 2012 and was completed in 2014. In the scope of the project, an integrated system for analysis, monitoring and information at river basin level was developed, which provides relevant information for all stakeholders that are concerned with water resource issues. The main objective of the project was to improve water use efficiency and hence ensure the agricultural production in the region. The pilot region, in which this system was implemented, is the semi-arid Limarí basin in Northern Central Chile. One of the main parts of the project was the development and implementation of a web- and app-based irrigation water ordering and accounting system for local farmers.

  10. Hydrogeologische Erkundung von Grundwasser in der ariden und vulkanisch aufgebauten Westkordillere Boliviens

    NASA Astrophysics Data System (ADS)

    Neumann-Redlin, Christian; Huaranca Olivera, Rodolfo

    2018-03-01

    An area of 2000 km2 in the arid western cordillera of Bolivia was geologically and hydro-geologically surveyed for the purpose of determining locations for borehole drilling in the framework of groundwater reconnaissance. Vertical geoelectrical resistivity soundings were applied to identify areas at depth in which aquifers with a sufficient thickness of fresh groundwater can be expected. A chemical and isotopic inventory of the regionally occurring groundwater revealed the presence of meteorically-recharged fresh and thermal waters as well as highly mineralized waters from fumaroles and a deep reservoir. Due to their chemical and isotopic composition, the latter group shows influences of juvenile water. Carbon fourteen dating performed on the fresh and thermal waters indicates that they were recharged during the last pluvial phase, about 10,500 years ago. The occurrence of these fossil waters explains the discharge of up to 200 l/s from some springs in a now-arid climate with mean precipitation of 100 mm/y and essentially no groundwater recharge. Extremely low contents of tritium of about 0.1 TU confirm the 14C age determinations.

  11. Water use sources of desert riparian Populus euphratica forests.

    PubMed

    Si, Jianhua; Feng, Qi; Cao, Shengkui; Yu, Tengfei; Zhao, Chunyan

    2014-09-01

    Desert riparian forests are the main body of natural oases in the lower reaches of inland rivers; its growth and distribution are closely related to water use sources. However, how does the desert riparian forest obtains a stable water source and which water sources it uses to effectively avoid or overcome water stress to survive? This paper describes an analysis of the water sources, using the stable oxygen isotope technique and the linear mixed model of the isotopic values and of desert riparian Populus euphratica forests growing at sites with different groundwater depths and conditions. The results showed that the main water source of Populus euphratica changes from water in a single soil layer or groundwater to deep subsoil water and groundwater as the depth of groundwater increases. This appears to be an adaptive selection to arid and water-deficient conditions and is a primary reason for the long-term survival of P. euphratica in the desert riparian forest of an extremely arid region. Water contributions from the various soil layers and from groundwater differed and the desert riparian P. euphratica forests in different habitats had dissimilar water use strategies.

  12. Canola integration into semi-arid wheat cropping systems of the inland Pacific Northwestern USA

    USDA-ARS?s Scientific Manuscript database

    The inland Pacific Northwestern USA (iPNW) wheat-producing region has a diversity of environments and soils, yet it lacks crop diversity and is one of the few semi-arid wheat-growing regions without significant integration of oilseeds. Four major agroecological zones, primarily characterised by wate...

  13. Deficit irrigation of peach trees to reduce water consumption

    USDA-ARS?s Scientific Manuscript database

    Lack of water is a major limiting factor for production tree fruits such as peaches in the San Joaquin Valley of California and many other arid- or semi-arid regions in the world. Deficit irrigation can be used in some cropping systems as a water resource management strategy to reduce non-productiv...

  14. Elevated [CO2] modified the drought acclimation response in peanut

    USDA-ARS?s Scientific Manuscript database

    Peanut agroecosystems play a key role in food production and are a major source of protein in many arid and semi-arid regions where extreme weather events are expected to increase in frequency. We are taking a systems-level approach to investigate the response of peanut to elevated [CO2], water defi...

  15. Estimates of Ground-Water Recharge to the Yakima River Basin Aquifer System, Washington, for Predevelopment and Current Land-Use and Land-Cover Conditions

    USGS Publications Warehouse

    Vaccaro, J.J.; Olsen, T.D.

    2007-01-01

    Two models were used to estimate ground-water recharge to the Yakima River Basin aquifer system, Washington for predevelopment (estimate of natural conditions) and current (a multi-year, 1995-2004, composite) land-use and land-cover conditions. The models were the Precipitation-Runoff Modeling System (PRMS) and the Deep Percolation Model (DPM) that are contained in the U.S. Geological Survey's Modular Modeling System. Daily values of recharge were estimated for water years 1950-98 using previously developed PRMS-watershed models for four mainly forested upland areas, and for water years 1950-2003 using DPM applied to 17 semiarid to arid areas in the basin. The mean annual recharge under predevelopment conditions was estimated to be about 11.9 in. or 5,450 ft3/s (about 3.9 million acre-ft) for the 6,207 mi2 in the modeled area. In the modeled areas, recharge ranged from 0.08 in. (1.2 ft3/s) to 34 in. (2,825 ft3/s). About 97 percent of the recharge occurred in the 3,667 mi2 area included in the upland-area models, but much of this quantity is not available to recharge the bedrock hydrogeologic units. Only about 1.0 in., or 187 ft3/s (about 0.14 million acre-ft), was estimated to occur in the 2,540 mi2 area included in the semiarid to arid lowland modeled areas. The mean annual recharge to the aquifer system under current conditions was estimated to be about 15.6 in., or 7,149 ft3/s (about 5.2 million acre-ft). The increase in recharge is due to the application of irrigation water to croplands. The annual quantity of irrigation was more than five times the annual precipitation for some of the modeled areas. Mean annual actual evapotranspiration was estimated to have increased from predevelopment conditions by more than 1,700 ft3/s (about 1.2 million acre-ft) due to irrigation.

  16. Application of the WEAP model in strategic environmental assessment: Experiences from a case study in an arid/semi-arid area in China.

    PubMed

    Gao, Jingjing; Christensen, Per; Li, Wei

    2017-08-01

    This article investigated how the use of a water resources assessment model contributed to one of the first strategic environmental assessments (SEA) conducted for arid/semi-arid regions in China. The study was based on the SEA of a coal industry development plan in Ordos, an arid/semi-arid region of northwest China, where a temporally and spatially simplified version of the WEAP (Water Evaluation And Planning System) model was applied for assessing the impact of the planned activities on local water resource system. Four scenarios were developed to simulate various alternatives using a diverse range of water utilisation measures such as irrigation efficiency, treatment and the reuse of water. The WEAP model itself was found to be a useful tool for efficient water resources assessment in SEA: 1) WEAP provides built-in simulation modules for water assessment, which improve the SEA's efficiency significantly; 2) WEAP temporally has the flexibility in both delivering information on a reasonably aggregated level by evaluating water resource on an annual time step, which fits most SEA cases, and being possible to take a finer time step analysis monthly, weekly even daily; 3) Spatially, WEAP has advantage in dealing with distributed demand sites in large spatial scale. However, although WEAP appears as a useful tool in providing support for decision-making, in this SEA case we experienced difficulty in building a feasible scenario to mitigate the impact of the proposed activities on the local water system, so that solution had to be found outside of the assessed scenarios - which led to the discussion on the fact that the proposed activities in SEA cases are rarely regarded as an uncertainty. Therefore future research on the scope of SEA scenarios could be valuable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Gardens on the Arid Climate

    NASA Astrophysics Data System (ADS)

    Eka Saputra, Weldy

    2017-12-01

    Bahrain is located in the climate of the arid zone which rainfall is low and irregular. This paper discusses the approaches which response to the local context that has been implemented by the government of Bahrain to sustain the quality of the public garden in the arid climate, turning to green. Generally, the approach is an improvement in the central treatment of waste water system plant that used to irrigate the landscaping, agriculture as well as for industry use. These approaches are not the only technologically, but also involves the participation of community to achieve sustainable garden in this country.

  18. Late Cenozoic fluvial successions in northern and western India: an overview and synthesis

    NASA Astrophysics Data System (ADS)

    Sinha, R.; Kumar, R.; Sinha, S.; Tandon, S. K.; Gibling, M. R.

    2007-11-01

    Late Cenozoic fluvial successions are widespread in India. They include the deposits of the Siwalik basin which represent the accumulations of the ancient river systems of the Himalayan foreland basin. Palaeomagnetic studies reveal that fluvial architecture and styles of deposition were controlled by Himalayan tectonics as well as by major climatic fluctuations during the long (∼13 Ma) span of formation. The Indo-Gangetic plains form the world's most extensive Quaternary alluvial plains, and display spatially variable controls on sedimentation: Himalayan tectonics in the frontal parts, climate in the middle reaches, and eustasy in the lower reaches close to the Ganga-Brahmaputra delta. Climatic effects were mediated by strong fluctuations in the SW Indian Monsoon, and Himalayan rivers occupy deep valleys in the western Ganga plains where stream power is high, cut in part during early Holocene monsoon intensification; the broad interfluves record the simultaneous aggradation of plains-fed rivers since ∼100 ka. The eastward increase in precipitation across the Ganga Plains results in rivers with low stream power and a very high sediment flux, resulting in an aggradational mode and little incision. The river deposits of semi-arid to arid western India form important archives of Quaternary climate change through their intercalation with the eolian deposits of the Thar Desert. Although the synthesis documents strong variability-both spatial and temporal-in fluvial stratigraphy, climatic events such as the decline in precipitation during the Last Glacial Maximum and monsoon intensification in the early Holocene have influenced fluvial dynamics throughout the region.

  19. The Sand Land Soil System and Society

    NASA Astrophysics Data System (ADS)

    Mahjoory, R. A.

    Worldwide arid soils such as Latterites from African Savannas to the Xeralfs and Xererts of the Mediterranean Basin Ortents and Orthids of Asian Deserts are uniquely different in their strategic roles for utilizing the land in places where a delicate balance between annual climatic cycles and general trends toward desertification predominate Arid lands cover 1 3 of global land surface and contain irreplaceable natural resources with potential productivity of meeting the demands of more than two billion people and serving as sources and sinks of atmospheric CO2 to combat global warming The soil system in these arid areas are being degraded underutilized and kept in a stage of obliviousness due to inadequate public literacy and most importantly in-sufficient scientific evaluations based on pedology and soil taxonomy standards Implementation of food security projects and sustainable development programs on randomly selected sites and assessment of land degradation worldwide by powerful computers and satellite imagery techniques without field work and identification of Representative Soil Units are data producing and grant attracting but counter productive We live in a world in which there is an order out there and things are precisely measured and categorized for efficient utilization Why not the soils mainly in arid areas How we could generalize the world of soils under our feet by concept of soils are the same Expansion of educational programs quantification of multiple ecosystems within the arid regions through detailed and correlated

  20. Frame Shift/warp Compensation for the ARID Robot System

    NASA Technical Reports Server (NTRS)

    Latino, Carl D.

    1991-01-01

    The Automatic Radiator Inspection Device (ARID) is a system aimed at automating the tedious task of inspecting orbiter radiator panels. The ARID must have the ability to aim a camera accurately at the desired inspection points, which are in the order of 13,000. The ideal inspection points are known; however, the panel may be relocated due to inaccurate parking and warpage. A method of determining the mathematical description of a translated as well as a warped surface by accurate measurement of only a few points on this surface is developed here. The method uses a linear warp model whose effect is superimposed on the rigid body translation. Due to the angles involved, small angle approximations are possible, which greatly reduces the computational complexity. Given an accurate linear warp model, all the desired translation and warp parameters can be obtained by knowledge of the ideal locations of four fiducial points and the corresponding measurements of these points on the actual radiator surface. The method uses three of the fiducials to define a plane and the fourth to define the warp. Given this information, it is possible to determine a transformation that will enable the ARID system to translate any desired inspection point on the ideal surface to its corresponding value on the actual surface.

  1. Rhizobium-Legume Symbiosis and Nitrogen Fixation under Severe Conditions and in an Arid Climate

    PubMed Central

    Zahran, Hamdi Hussein

    1999-01-01

    Biological N2 fixation represents the major source of N input in agricultural soils including those in arid regions. The major N2-fixing systems are the symbiotic systems, which can play a significant role in improving the fertility and productivity of low-N soils. The Rhizobium-legume symbioses have received most attention and have been examined extensively. The behavior of some N2-fixing systems under severe environmental conditions such as salt stress, drought stress, acidity, alkalinity, nutrient deficiency, fertilizers, heavy metals, and pesticides is reviewed. These major stress factors suppress the growth and symbiotic characteristics of most rhizobia; however, several strains, distributed among various species of rhizobia, are tolerant to stress effects. Some strains of rhizobia form effective (N2-fixing) symbioses with their host legumes under salt, heat, and acid stresses, and can sometimes do so under the effect of heavy metals. Reclamation and improvement of the fertility of arid lands by application of organic (manure and sewage sludge) and inorganic (synthetic) fertilizers are expensive and can be a source of pollution. The Rhizobium-legume (herb or tree) symbiosis is suggested to be the ideal solution to the improvement of soil fertility and the rehabilitation of arid lands and is an important direction for future research. PMID:10585971

  2. Geochemical Signature of Natural Water Recharge in the Jungar Basin and Its Response to Climate.

    PubMed

    Zhu, Bingqi; Yu, Jingjie; Rioual, Patrick

    2016-01-01

    This paper analyzed the physico-chemical characteristics of natural waters in a drainage system of the Jungar Basin, northwestern China to identify chemical evolution and recharge mechanisms of natural waters in an arid environment. The waters studied are different in mineralization, but are typically carbonate rivers and alkaline in nature. No Cl-dominated water type occurs, indicating an early stage of water evolution. Regolith and geomorphological parameters controlling ground-surface temperature may play a large role in the geological evolution of the water. Three main morphological and hydrological units are reflected in water physico-chemistry. Climate influences the salinization of natural waters substantially. Direct recharge from seasonal snow and ice-melt water and infiltration of rain to the ground are significant recharge processes for natural waters, but recharge from potential deep groundwater may be less important. The enrichment of ions in lakes has been mainly caused by evaporation rather than through the quality change of the recharged water.

  3. Trees are the solution to wastewater treatment for small communities

    Treesearch

    John G. Mexal; Walter H. Zachritz; T. W. Sammis

    2002-01-01

    The application of municipal wastewater to land for treatment and disposal, or "land farms," was one of the earliest forms of wastewater treatment technology. There has been renewed interest in using these systems in arid regions worldwide to supplement and reuse dwindling water resources. However, arid regions present complex challenges to the use of land...

  4. DETECTING CHANGES IN RIPARIAN HABITAT CONDITIONS BASED ON PATTERNS OF GREENNESS CHANGE: A CASE STUDY FROM THE UPPER SAN PEDRO RIVER BASIN, USA

    EPA Science Inventory

    Healthy riparian ecosystems in arid and semi-arid regions exhibit shifting patterns of vegetation in response to periodic flooding. Their conditions also depend upon the amount of grazing and other human uses. Taking advantage of these system properties, we developed and tested a...

  5. Stormwater Management for TMDLs in an Arid Climate: A Case Study Application of SUSTAIN in Albuquerque, New Mexico

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s (EPA’s) Office of Research and Development and U.S. EPA Region 6 conducted a study that evaluated the use of best management practices (BMPs) for stormwater management in an arid climate. The System for Urban Stormwater Treatment and An...

  6. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    USGS Publications Warehouse

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  7. The Impact of Urban Development in the Arid Zone and its Management.

    NASA Astrophysics Data System (ADS)

    Gat, J. R.

    2002-05-01

    From the experience in humid and semi-arid settings, the immediate impact of urbanization on the hydrological system is the interference with the natural direct infiltration pathways, resulting in a decrease of groundwater recharge as well as the possibility of surface flooding. In contrast, in the arid environment the limited rain amounts and number of rain events makes the contribution of rain of marginal importance in the city's water balance. The major impact of urbanization in the arid zone is the continuous excess of discharge of treated or untreated sewage or water spills, originating from the import of water to the city's water supply. Their effect can be advantageous if properly channeled. On the other hand, the polluting potential of these water excesses as well as the possibility of mobilizing stored salinity in the downstream locations is of concern, if the natural drainage network and its remediation capacity becomes overloaded. Further, since the arid zone hydrological cycle depends naturally on a discontinuous and episodal groundwater recharge pattern, the new situation requires the re-assessment of the eco-hydrological patterns in the downstream location.

  8. Energy Productivity of the High Velocity Algae Raceway Integrated Design (ARID-HV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attalah, Said; Waller, Peter M.; Khawam, George

    The original Algae Raceway Integrated Design (ARID) raceway was an effective method to increase algae culture temperature in open raceways. However, the energy input was high and flow mixing was poor. Thus, the High Velocity Algae Raceway Integrated Design (ARID-HV) raceway was developed to reduce energy input requirements and improve flow mixing in a serpentine flow path. A prototype ARID-HV system was installed in Tucson, Arizona. Based on algae growth simulation and hydraulic analysis, an optimal ARID-HV raceway was designed, and the electrical energy input requirement (kWh ha-1 d-1) was calculated. An algae growth model was used to compare themore » productivity of ARIDHV and conventional raceways. The model uses a pond surface energy balance to calculate water temperature as a function of environmental parameters. Algae growth and biomass loss are calculated based on rate constants during day and night, respectively. A 10 year simulation of DOE strain 1412 (Chlorella sorokiniana) showed that the ARID-HV raceway had significantly higher production than a conventional raceway for all months of the year in Tucson, Arizona. It should be noted that this difference is species and climate specific and is not observed in other climates and with other algae species. The algae growth model results and electrical energy input evaluation were used to compare the energy productivity (algae production rate/energy input) of the ARID-HV and conventional raceways for Chlorella sorokiniana in Tucson, Arizona. The energy productivity of the ARID-HV raceway was significantly greater than the energy productivity of a conventional raceway for all months of the year.« less

  9. Soviet Maintenance Training and the Technological Imperative.

    DTIC Science & Technology

    1980-06-01

    competition arid obligations, the rise of innovators, inventors arid rationalizers , as well as thle irmportance placed on technolo2 ical awareness are...the Communist Party in the training process, socialist competition and obligations, the use of innovators, inventors and rationalizers , as well as the...current military-technical environment . The paper concludes that the Soviets have a workable and relatively effective system for peacetime maintenance

  10. Improving the water use efficiency of olive trees growing in water harvesting systems

    NASA Astrophysics Data System (ADS)

    Berliner, Pedro; Leake, Salomon; Carmi, Gennady; Agam, Nurit

    2017-04-01

    Water is a primary limiting factor for agricultural development in many arid and semi-arid regions in which a runoff generation is a rather frequent event. If conveyed to dyke surrounded plots and ponded, runoff water can thereafter be used for tree production. One of the most promising runoff collection configurations is that of micro-catchments in which water is collected close to the area in which runoff was generated and stored in adjacent shallow pits. The objective of this work was to assess the effect of the geometry of runoff water collection area (shallow pit or trench) on direct evaporative water losses and on the water use efficiency of olive trees grown in them. The study was conducted during the summer of 2013 and 2014. In this study regular micro-catchments with basins of 9 m2 (3 x 3 m) by 0.1 m deep were compared with trenches of one meter deep and one meter wide. Each configuration was replicated three times. One tree was planted in each shallow basin and the distance between trees in the 12 m long trench was four meters. Access tubes for neutron probes were installed in the micro-catchments and trenches (four and seven, respectively) to depths of 2.5 m. Soil water content in the soil profile was monitored periodically throughout drying periods in between simulated runoff events. Transpiration of the trees was estimated from half-hourly sap flow measurements using a Granier system. Total transpiration fluxes were computed for time intervals corresponding to consecutive soil water measurements. During the first year, a large runoff event was simulated by applying once four cubic meters to each plot; and in the second year the same volume of water was split into four applications, simulating a series of small runoff events. In both geometries, trees received the same amount of water per tree. Evaporation from trenches and micro-catchments was estimated as the difference between evapotranspiration obtained computing the differences in total soil water content between two consecutive measurements and transpiration for this interval estimated from sap flow measurements. In both years the evaporation from micro-catchments was significantly larger than that of trenches. The fractional loss due to evaporation from the total applied water for the second year for example, was 53% and 22% for micro-catchments and trenches, respectively. This indicates that a trench geometry reduces the amount of water lost to direct evaporation from the soil, and is thus more efficient in utilizing harvested runoff water.

  11. Effects of conventional and no-tillage soil management and compost and sludge amendment on soil CO2 fluxes and microbial activities

    NASA Astrophysics Data System (ADS)

    Garcia-Gil, Juan Carlos; Haller, Isabel; Soler-Rovira, Pedro; Polo, Alfredo

    2010-05-01

    Soil management exerts a significant influence on the dynamic of soil organic matter, which is a key issue to enhance soil quality and its ecological functions, but also affects to greenhouse gas emissions and C sequestration processes. The objective of the present research was to determine the influence of soil management (conventional deep-tillage and no-tillage) and the application of two different organic amendment -thermally-dry sewage sludge (TSL) and municipal waste compost (MWC)- on soil CO2 fluxes and microbial activities in a long-term field experiment under semi-arid conditions. Both organic amendments were applied at a rate of 30 t ha-1 prior to sowing a barley crop. The experiment was conducted on an agricultural soil (Calcic Luvisol) from the experimental farm "La Higueruela" (Santa Olalla, Toledo). Unamended soils were used as control in both conventional and no-tillage management. During the course of the experiment, soil CO2 fluxes, microbial biomass C (MBC) and enzyme activities involved in the biogeochemical cycles of C, N and P were monitored during 12 months. The results obtained during the experiment for soil CO2 fluxes showed a great seasonal fluctuation due to semi-arid climate conditions. Overall, conventional deep-tillage soils exhibited higher CO2 fluxes, which was particularly larger during the first hours after deep-tillage was performed, and smaller MBC content and significantly lower dehydrogenase, beta-glucosidase, phosphatase, urease and BAA protease activities than no-tillage soils. Both MWC and TSL amendments provoked a significant increase of CO2 fluxes in both conventional and no-tillage soils, which was larger in TSL amended soils and particularly in no-tillage soils. The application of these organic amendments also enhanced MBC content and the overall enzyme activities in amended soils, which indicate a global revitalization of soil microbial metabolism in response to the fresh input of organic compounds that are energy sources for microbial growing, especially with TSL that is a raw organic material with no stabilization treatment.

  12. Increased aridity at the end of the Eemian in the Levant and relationships to global climate

    NASA Astrophysics Data System (ADS)

    Kiro, Y.; Goldstein, S. L.; Kushnir, Y.; Lazar, B.; Stein, M.

    2016-12-01

    Thick layers of halite deposited in the Dead Sea at the end of MIS 5e, revealed by the ICDP Dead Sea Deep Drilling Project cores, indicate extremely arid conditions prevailing in the Levant . Average precipitation during this interval was 50% of the present, and there were strong fluctuations between wetter periods similar to the present-day lasting on the order of millennia, and drought periods with precipitation as low as 20% of the present-day lasting on the order of centuries. At the same time, there were infrequent but intense rainfall events in the southern Levant and flash floods. U-series ages indicate that the hyper-arid conditions prevailed between 120-110 ka, following the `Eemian' Northern Hemisphere insolation peak interval of MIS 5e, and coinciding with decreased high latitude temperatures and atmospheric CO2 (Jouzel et al. 2007, Bereiter et al. 2015). Such conditions are consistent with pollen records from southern Europe indicating that region was warm until 110 ka (Brauer et al., 2007). The hyper-arid interval in the Levant followed a relatively wet period during the Eemian, coinciding with an intense African monsoon and major sapropel deposition in the eastern Mediterranean. Climate models indicate increasing aridity in the Levant between 125 ka and 120 ka; while at 125 ka there was significant summer and winter precipitation, 120 ka was drier than the present. The Levant in the present-day has a Mediterranean climate with dry summers and wet winters, where warmer winters coincide with lower precipitation. While the time interval of 120 ka to 110 ka, following the Eemian, was characterized by decreasing summer insolation, winter insolation increased. This increase in winter insolation may have caused a decrease in the sea-land temperature gradient that resulted in decreased precipitation on land. Bereiter, B. et al., 2015, Antarctic Ice Cores Revised 800KYr CO2 Data Brauer, A et al., 2007, Evidence for last interglacial chronology and environmental change from Southern Europe.: Proceedings of the National Academy of Sciences of the United States of America, v. 104, no. 2, p. 450-455 Jouzel, J. et al., 2007, Orbital and millennial Antarctic climate variability over the past 800,000 years.: Science (New York, N.Y.), v. 317, no. 5839, p. 793-6

  13. A Feasibility Study of Geologic Water Storage in Arid Regions

    NASA Astrophysics Data System (ADS)

    Fairley, J. P.; Preuit, T.

    2001-05-01

    An important control on the carrying capacity of arid and semi-arid regions is the ability to develop and maintain a reliable water supply for domestic and agricultural use. In the semi-arid highlands of southern Peru, the pre-Columbian Incas developed a technique of collecting and storing basin yields by controlling the discharge boundary of an existing aquifer. This water resource management strategy has been dubbed "Geologic Water Storage" (Fairley, in review). Yield from at least one such system near Cuzco, Peru, has provided a reliable source of irrigation water for rural farmers to the present day. The geologic water storage systems of southern Peru suggested the possibility of developing a similar system to water stock in rural Idaho. Annual precipitation in Idaho is about one-third that of southern Peru, and obtaining an adequate stock water supply is often problematic. The application of a simple lumped capacitance model to a selected basin in central Idaho showed that it may be physically and economically feasible to modify the basin characteristics to prolong water availability at the site. A more detailed study of this problem, that includes field characterization of the site, is necessary to substantiate the model results. If further studies and field trials confirm the viability of geologic water storage, this approach may find applications in many rural and developing areas, both nationally and internationally.

  14. ARID1B is a specific vulnerability in ARID1A-mutant cancers

    PubMed Central

    Helming, Katherine C.; Wang, Xiaofeng; Wilson, Boris G.; Vazquez, Francisca; Haswell, Jeffrey R.; Manchester, Haley E.; Kim, Youngha; Kryukov, Gregory V.; Ghandi, Mahmoud; Aguirre, Andrew J.; Jagani, Zainab; Wang, Zhong; Garraway, Levi A.; Hahn, William C.; Roberts, Charles W. M.

    2014-01-01

    Summary Recent studies have revealed that ARID1A is frequently mutated across a wide variety of human cancers and also has bona fide tumor suppressor properties. Consequently, identification of vulnerabilities conferred by ARID1A mutation would have major relevance for human cancer. Here, using a broad screening approach, we identify ARID1B, a related but mutually exclusive homolog of ARID1A in the SWI/SNF chromatin remodeling complex, as the number one gene preferentially required for the survival of ARID1A-mutant cancer cell lines. We show that loss of ARID1B in ARID1A-deficient backgrounds destabilizes SWI/SNF and impairs proliferation. Intriguingly, we also find that ARID1A and ARID1B are frequently co-mutated in cancer, but that ARID1A-deficient cancers retain at least one ARID1B allele. These results suggest that loss of ARID1A and ARID1B alleles cooperatively promotes cancer formation but also results in a unique functional dependence. The results further identify ARID1B as a potential therapeutic target for ARID1A-mutant cancers. PMID:24562383

  15. ARID1B is a specific vulnerability in ARID1A-mutant cancers.

    PubMed

    Helming, Katherine C; Wang, Xiaofeng; Wilson, Boris G; Vazquez, Francisca; Haswell, Jeffrey R; Manchester, Haley E; Kim, Youngha; Kryukov, Gregory V; Ghandi, Mahmoud; Aguirre, Andrew J; Jagani, Zainab; Wang, Zhong; Garraway, Levi A; Hahn, William C; Roberts, Charles W M

    2014-03-01

    Recent studies have revealed that ARID1A, encoding AT-rich interactive domain 1A (SWI-like), is frequently mutated across a variety of human cancers and also has bona fide tumor suppressor properties. Consequently, identification of vulnerabilities conferred by ARID1A mutation would have major relevance for human cancer. Here, using a broad screening approach, we identify ARID1B, an ARID1A homolog whose gene product is mutually exclusive with ARID1A in SWI/SNF complexes, as the number 1 gene preferentially required for the survival of ARID1A-mutant cancer cell lines. We show that loss of ARID1B in ARID1A-deficient backgrounds destabilizes SWI/SNF and impairs proliferation in both cancer cells and primary cells. We also find that ARID1A and ARID1B are frequently co-mutated in cancer but that ARID1A-deficient cancers retain at least one functional ARID1B allele. These results suggest that loss of ARID1A and ARID1B alleles cooperatively promotes cancer formation but also results in a unique functional dependence. The results further identify ARID1B as a potential therapeutic target for ARID1A-mutant cancers.

  16. Groundwater hydrochemistry evolution in cyclone driven hydrological regimes, NW Australia

    NASA Astrophysics Data System (ADS)

    Skrzypek, G.; Dogramaci, S.; Grierson, P.

    2013-12-01

    Groundwater reserves supply the water needs of many arid regions around the world. Aquifer recharge in these regions is primarily depended on the amount and distribution of rainfall, coupled with exceedingly high rates of evaporation and interactions with both local and regional geomorphology and geology. In semi-arid northwest Australia, the majority of rainfall is delivered by large but infrequent cyclonic events and relatively more frequent but low intensity frontal systems. Changes to rainfall patterns due to global climate change may impact hydrological regimes, recharge rates and groundwater hydrochemistry. These changes may significantly restrict freshwater resources in the future. Between 2008 and 2012, we analysed >400 groundwater, surface and rainwater samples for stable isotope composition (δ2H and δ18O) and major ion chemistry. We then developed conceptual geochemical models of groundwater evolution for the Hamersley Basin (>100,000 km2) and a salt inventory for the Fortescue Marsh (the largest wetland in NW Australia) [1,2]. Fresh groundwater from the alluvium (-8.02 × 0.83‰) and fractured aquifers (-8.22 × 0.70‰) were hydrochemically similar and characterised by a very narrow range of δ18O [1]. In contrast, δ18O of saline and brine groundwater (TDS >10 g L-1) varies in wide range from +2.5 to -7.2‰ [2]. Most of the fresh and brackish groundwater reflects modern recharge and is evaporated by <20% prior to recharge. In contrast, highly saline and brine groundwater reflects mixing between modern rainfall, brackish water and older deep groundwater. The Fortescue Marsh primarily acts as a terminal basin for surface water from the upper Fortescue River catchment [2]. The stable isotope composition of the deep brine groundwater under the Marsh suggests a complex evolution, which cannot be explained by evaporation under current climatic conditions. The observed salinity and δ18O values may result from progressive evaporation from highly saline lake that existed in the past, as the dynamic fractionation from brine is much different compared to that in fresh and brackish waters. Therefore, deeper brine groundwater under the Marsh developed under a different climatic regime and that the current salt in the Marsh has accumulated over at least 40,000 years but could have been as long as 700,000 years [2]. Our combined chemical and stable isotope analyses confirm the general dominance of vertical over horizontal flow in the region and decoupling of processes that control water evolution from those that control salt evolution in groundwater. [1] Dogramaci S., Skrzypek G., Dodson W., Grierson P.F., 2012, Stable isotope and hydrochemical evolution of groundwater in the semi-arid Hamersley Basin of sub-tropical northwest Australia. Journal of Hydrology 475: 281-293. [2] Skrzypek G., Dogramaci S., Grierson P.F., 2013, Geochemical and hydrological processes controlling groundwater salinity of a large inland wetland of northwest Australia. Chemical Geology (in press).

  17. Different Water Use Strategies of Juvenile and Adult Caragana intermedia Plantations in the Gonghe Basin, Tibet Plateau

    PubMed Central

    Jia, Zhiqing; Zhu, Yajuan; Liu, Liying

    2012-01-01

    Background In a semi-arid ecosystem, water is one of the most important factors that affect vegetation dynamics, such as shrub plantation. A water use strategy, including the main water source that a plant species utilizes and water use efficiency (WUE), plays an important role in plant survival and growth. The water use strategy of a shrub is one of the key factors in the evaluation of stability and sustainability of a plantation. Methodology/Principal Findings Caragana intermedia is a dominant shrub of sand-binding plantations on sand dunes in the Gonghe Basin in northeastern Tibet Plateau. Understanding the water use strategy of a shrub plantation can be used to evaluate its sustainability and long-term stability. We hypothesized that C. intermedia uses mainly deep soil water and its WUE increases with plantation age. Stable isotopes of hydrogen and oxygen were used to determine the main water source and leaf carbon isotope discrimination was used to estimate long-term WUE. The root system was investigated to determine the depth of the main distribution. The results showed that a 5-year-old C. intermedia plantation used soil water mainly at a depth of 0–30 cm, which was coincident with the distribution of its fine roots. However, 9- or 25-year-old C. intermedia plantations used mainly 0–50 cm soil depth water and the fine root system was distributed primarily at soil depths of 0–50 cm and 0–60 cm, respectively. These sources of soil water are recharged directly by rainfall. Moreover, the long-term WUE of adult plantations was greater than that of juvenile plantations. Conclusions The C. intermedia plantation can change its water use strategy over time as an adaptation to a semi-arid environment, including increasing the depth of soil water used for root growth, and increasing long-term WUE. PMID:23029303

  18. Modeling the Surface Water-Groundwater Interaction in Arid and Semi-Arid Regions Impacted by Agricultural Activities

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Wu, B.; Zheng, Y.

    2013-12-01

    In many semi-arid and arid regions, interaction between surface water and groundwater plays an important role in the eco-hydrological system. The interaction is often complicated by agricultural activities such as surface water diversion, groundwater pumping, and irrigation. In existing surface water-groundwater integrated models, simulation of the interaction is often simplified, which could introduce significant simulation uncertainty under certain circumstance. In this study, GSFLOW, a USGS model coupling PRMS and MODFLOW, was improved to better characterize the surface water-groundwater interaction. The practices of water diversion from rivers, groundwater pumping and irrigation are explicitly simulated. In addition, the original kinematic wave routing method was replaced by a dynamic wave routing method. The improved model was then applied in Zhangye Basin (the midstream part of Heihe River Baisn), China, where the famous 'Silk Road' came through. It is a typical semi-arid region of the western China, with extensive agriculture in its oasis. The model was established and calibrated using the data in 2000-2008. A series of numerical experiments were conducted to evaluate the effect of those improvements. It has been demonstrated that with the improvements, the observed streamflow and groundwater level were better reproduced by the model. The improvements have a significant impact on the simulation of multiple fluxes associated with the interaction, such as groundwater discharge, riverbed seepage, infiltration, etc. Human activities were proved to be key elements of the water cycle in the study area. The study results have important implications to the water resources modeling and management in semi-arid and arid basins.

  19. The influence of annual precipitation, topography, and vegetative cover on soil moisture and summer drought in southern California.

    PubMed

    Miller, P C; Poole, D K

    1983-02-01

    The influence of annual precipitation and vegetation cover on soil moisture and on the length of the summer drought was estimated quantitatively using 9 years of soil moisture data collected at Echo Valley in southern California. The measurements support the conclusions that in the semi-arid mediterranean climate a soil drought will occur regardless of vegetation cover and annual precipitation, but the length of the drought is greatly dependent on soil depth and rockiness. Evergreen species which can survive this drought tend to accentuate the drought, especially in deep soil levels, by developing a canopy with a large transpiring surface.

  20. Assessment of 10 Year Record of Aerosol Optical Depth from OMI UV Observations

    NASA Technical Reports Server (NTRS)

    Ahn, Changwoo; Torres, Omar; Jethva, Hiren

    2014-01-01

    The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption in the near-ultraviolet (UV) spectral region. Another important advantage of using near UV observations for aerosol characterization is the low surface albedo of all terrestrial surfaces in this spectral region that reduces retrieval errors associated with land surface reflectance characterization. In spite of the 13 × 24 square kilometers coarse sensor footprint, the OMI near UV aerosol algorithm (OMAERUV) retrieves aerosol optical depth (AOD) and single-scattering albedo under cloud-free conditions from radiance measurements at 354 and 388 nanometers. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network measured AOD values over multiple stations representing major aerosol episodes and regimes. OMAERUV's performance is also evaluated with respect to those of the Aqua-MODIS Deep Blue and Terra-MISR AOD algorithms over arid and semi-arid regions in Northern Africa. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability.

  1. Root system-based limits to agricultural productivity and efficiency: the farming systems context

    PubMed Central

    Thorup-Kristensen, Kristian; Kirkegaard, John

    2016-01-01

    Background There has been renewed global interest in both genetic and management strategies to improve root system function in order to improve agricultural productivity and minimize environmental damage. Improving root system capture of water and nutrients is an obvious strategy, yet few studies consider the important interactions between the genetic improvements proposed, and crop management at a system scale that will influence likely success. Scope To exemplify these interactions, the contrasting cereal-based farming systems of Denmark and Australia were used, where the improved uptake of water and nitrogen from deeper soil layers has been proposed to improve productivity and environmental outcomes in both systems. The analysis showed that water and nitrogen availability, especially in deeper layers (>1 m), was significantly affected by the preceding crops and management, and likely to interact strongly with deeper rooting as a specific trait of interest. Conclusions In the semi-arid Australian environment, grain yield impacts from storage and uptake of water from depth (>1 m) could be influenced to a stronger degree by preceding crop choice (0·42 t ha–1), pre-crop fallow management (0·65 t ha–1) and sowing date (0·63 t ha–1) than by current genetic differences in rooting depth (0·36 t ha–1). Matching of deep-rooted genotypes to management provided the greatest improvements related to deep water capture. In the wetter environment of Denmark, reduced leaching of N was the focus. Here the amount of N moving below the root zone was also influenced by previous crop choice or cover crop management (effects up to 85 kg N ha–1) and wheat crop sowing date (up to 45 kg ha–1), effects which over-ride the effects of differences in rooting depth among genotypes. These examples highlight the need to understand the farming system context and important G × E × M interactions in studies on proposed genetic improvements to root systems for improved productivity or environmental outcomes. PMID:27411680

  2. Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave.

    PubMed

    Ortiz, Marianyoly; Legatzki, Antje; Neilson, Julia W; Fryslie, Brandon; Nelson, William M; Wing, Rod A; Soderlund, Carol A; Pryor, Barry M; Maier, Raina M

    2014-02-01

    Carbonate caves represent subterranean ecosystems that are largely devoid of phototrophic primary production. In semiarid and arid regions, allochthonous organic carbon inputs entering caves with vadose-zone drip water are minimal, creating highly oligotrophic conditions; however, past research indicates that carbonate speleothem surfaces in these caves support diverse, predominantly heterotrophic prokaryotic communities. The current study applied a metagenomic approach to elucidate the community structure and potential energy dynamics of microbial communities, colonizing speleothem surfaces in Kartchner Caverns, a carbonate cave in semiarid, southeastern Arizona, USA. Manual inspection of a speleothem metagenome revealed a community genetically adapted to low-nutrient conditions with indications that a nitrogen-based primary production strategy is probable, including contributions from both Archaea and Bacteria. Genes for all six known CO2-fixation pathways were detected in the metagenome and RuBisCo genes representative of the Calvin-Benson-Bassham cycle were over-represented in Kartchner speleothem metagenomes relative to bulk soil, rhizosphere soil and deep-ocean communities. Intriguingly, quantitative PCR found Archaea to be significantly more abundant in the cave communities than in soils above the cave. MEtaGenome ANalyzer (MEGAN) analysis of speleothem metagenome sequence reads found Thaumarchaeota to be the third most abundant phylum in the community, and identified taxonomic associations to this phylum for indicator genes representative of multiple CO2-fixation pathways. The results revealed that this oligotrophic subterranean environment supports a unique chemoautotrophic microbial community with potentially novel nutrient cycling strategies. These strategies may provide key insights into other ecosystems dominated by oligotrophy, including aphotic subsurface soils or aquifers and photic systems such as arid deserts.

  3. Hydrologic Monitoring in the Deep Subsurface to Support Repository Performance

    NASA Astrophysics Data System (ADS)

    Hubbell, J. M.; Heath, G. L.; Scott, C. L.

    2007-12-01

    The INL has installed and operated several vadose and ground water monitoring systems in arid and humid sites to depths of about 200m. Some of these systems have been in continuous operation for over 12 years. It is important that the systems be physically robust, simple, yet versatile enough that it can operate for extended time periods with little or no maintenance. Monitoring instruments are frequently installed and run to characterize the site, collect data during site operation, and continue to run for long-term stewardship, necessitating sensors that can be maintained or serviced. Sensors are carefully chosen based on the perceived data requirements over the life of the site. An emphasis is given on direct measurements such as tensiometers (portable and advanced), neutron probe, drain gauge, temperature, wells or sampling for fluids and gases. Other complementary data can include using TDR/capacitance, radiation detectors, and larger scale geophysical techniques (3-d resistivity and EM) for volumetric measurements. Commercially available instruments may have to be modified for their use at greater depths, to allow multiple instruments in a single borehole or to perform the intended monitoring function. Access tubes (some open at the bottom) can be placed to allow insertion of multiple sensors (radiation, neutron and portable sensors/samplers), future drilling/sampling and to install new instruments at a later time. The installation techniques and backfill materials must be chosen and the measurement technique tested to ensure representative data collection for the parameters of interest. The data collection system can be linked to climatic data (precipitation, barometric pressure, snow depth, runoff, surface water sources) that may influence the site's subsurface hydrology. The instruments are then connected to a real-time automated data collection system that collect, stores, and provides access to the data. These systems have been developed that allow easy access, automatic data quality checks with notification, processing, and presentation of the data in real time through the web. The systems can be designed to manipulate/test the system remotely. Data from several sites will be presented showing that continuous monitoring is necessary to detect rapid changes in the deep vadose zone and ground water at fractured rock sites.

  4. Trans-Pecos Photovoltaic Concentration Experiment. Final report for Phase-I system design, 6 June 1978-28 February 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcy, W.M.; Dudek, R.A.

    1979-03-30

    The Trans-Pecos Photovoltaic Concentrating Experiment is the design of a 200 kWe peak photovoltaic concentrating system applied to deep well irrigation in the Trans-Pecos region of Texas. The site selected is typical of deep well irrigation in arid regions of Texas, New Mexico, and Arizona. The existing well utilizes a 200 horse power, three phase, 480 volt induction motor to lift water 540 feet to irrigate 380 acres. The Trans-Pecos Photovoltaic Concentration (PVC) system employs a two axis (azimuth-elevation) tracking parabolic concentrator module that focuses sunlight at 38X concentration on two strings of actively cooled silicon solar cells. The directmore » current from a field of 102 collector modules is converted by a maximum power point electric power conditioning system to three phase alternating current. The power from the power conditioning system is connected through appropriate switchgear in parallel with the utility grid to the well's induction motor. The operational philosophy of the experiment is to displace daytime utility power with solar generated electric power. The solar system is sized to provide approximately 50 percent of the 24 hour energy demand of the motor. This requires an energy exchange with the utility since peak solar power (200 kWe) generated exceeds the peak motor demand (149.2 kWe). The annual energy production is projected to be 511 Mwh using El Paso, Texas solar TMY data. System electrical power production efficiency is projected to be 7.4 percent at the design point, and 7.0 percent on an annual electrical energy production basis. The system is projected to provide 37.8 percent of the 24 hour energy demand of the motor at the design point of March 10, excluding energy delivered to the grid in excess of motor demand. The total energy produced is projected to be 39.0 percent of the 24 hour energy demand of the motor at the design point of March 10.« less

  5. Sedimentology and paleoecology of an Eocene Oligocene alluvial lacustrine arid system, Southern Mexico

    NASA Astrophysics Data System (ADS)

    Beraldi-Campesi, Hugo; Cevallos-Ferriz, Sergio R. S.; Centeno-García, Elena; Arenas-Abad, Concepción; Fernández, Luis Pedro

    2006-10-01

    A depositional model of the Eocene-Oligocene Coatzingo Formation in Tepexi de Rodríguez (Puebla, Mexico) is proposed, based on facies analysis of one of the best-preserved sections, the Axamilpa Section. The sedimentary evolution is interpreted as the retrogradation of an alluvial system, followed by the progressive expansion of an alkaline lake system, with deltaic, palustrine, and evaporitic environments. The analysis suggests a change towards more arid conditions with time. Fossils from this region, such as fossil tracks of artiodactyls, aquatic birds and cat-like mammals, suggest that these animals traversed the area, ostracods populated the lake waters, and plants grew on incipient soils and riparian environments many times throughout the history of the basin. The inferred habitat for some fossil plants coincides with the sedimentological interpretation of an arid to semiarid climate for that epoch. This combined sedimentological-paleontological study of the Axamilpa Section provides an environmental context in which fossils can be placed and brings into attention important biotic episodes, like bird and camelid migrations or the origin of endemic but extinct plants in this area.

  6. Advanced IR sensing technology research in the city of Tomsk, USSR

    NASA Astrophysics Data System (ADS)

    Vavilov, Vladimir P.; Ivanov, A. I.; Isakov, A. V.; Reino, V. V.; Shiryaev, Vladimir V.; Tsvyk, Ruvim S.

    1990-03-01

    Some large scientific organisations in the city of Tomsk, Siberia, USSR are involved into the researchings on the advanced IR sensing technology. They are Polytechnic Institute founded in 1896, Uriiversity of Tomsk founded in 1888, Institute of Atmosphere's Optics, Academy of Sciences arid Institute of Automatized Control Systems and Radio electronics. Main fields are as follows: 1) thermal (IR) nondestructive testing of materials, machines and systems; 2) optoelectronics; 3) laser optics, transmission of infrared through the atmosphere and investigation of energy distribution in laser beams. Researching equipment includes Western and Russian industrial thermovisers, lasers, personal computers, IR detectors etc and some borne-made devices and components. There are optical arid JR detectors Lndustry in Tomsk that allows i.e produce spheric and aspheric mirrors and lenses, JR filters, cadmium-mercury-teilur and indium anlymonide T1 receivers arid to develop the scanning and measuring devices on the base mentioned above. Seine projects to develop the specific Tomsk thermoviser so far have nOt come true so the main accent was made onto the computerized thermographic systems suitable for solution of particular scientific problems.

  7. Detecting changes in riparian habitat conditions based on patterns of greenness change: a case study from the upper San Pedro River Basin, USA

    Treesearch

    K. Bruce Jones; Curtis E. Edmonds; E. Terrance Slonecker; James D. Wickham; Anne C. Neale; Timothy G. Wade; Kurt H. Riitters; William G. Kepner

    2008-01-01

    Healthy riparian ecosystems in arid and semi-arid regions exhibit shifting patterns of vegetation in response to periodic flooding. Their conditions also depend upon the amount of grazing and other human uses. Taking advantage of these system properties, we developed and tested an approach that utilizes historical Landsat data to track changes in the patterns...

  8. The 100th Meridian Climate Divide & Its Present and Future Impact on the Human Geography of the American Great Plains

    NASA Astrophysics Data System (ADS)

    Feldman, J. R.; Seager, R.; Ting, M.; Lis, N.

    2016-12-01

    The 100th meridian has been viewed historically as a symbolic boundary between the more arid western plains in the Midwestern United States, and the more humid eastern half of the country. The purpose of this project is to evaluate the true climatic characteristics of this divide, and to determine its implications for landscape and land use, with a focus on agriculture. An aridity index is first defined as precipitation divided by the potential evapotranspiration, P/PET, where PET is calculated with the Penman-Monteith equation using data from the North American Land Data Assimilation System Phase 2 (NLDAS-2) for the period 1979-2015. The NLDAS-2 is a compilation of observed climate data and output from three land surface models: NOAH, VIC, and MOSAIC. The three models agreed on a clear west-east gradient in aridity, with a boundary dryland boundary at approximately the 100th meridian. The aridity index was then compared to the soil moisture from each model, to determine how it impacts water storage, and the soil moisture was consistent both annually and seasonally. Using USDA data from the 2012 census, the longitudinal distribution of agricultural variables, such as farm size and percent corn of total cropland, were examined. Clear differences were observed in these variables across the aridity boundary, especially in the Northern Plains. We performed regressions between these variables and the aridity index, and found a close relationship between the aridity index and the percent of corn and wheat grown, as well as farm size. To project the potential future changes in agricultural practices due to changes in aridity, we used CMIP5 projections of the aridity index changes over the plains in the period 2040-2060. In tandem with the regression relation, we were able to predict that the percent corn of total cropland may decrease by as much as 20% at all longitudes, and it may not even be feasible to grow east of the 100th meridian. Farm size is expected to increase across the plains. Thus, we began to explore how the farm economy may be impacted by the shifting aridity gradient due to climate change in the coming century.

  9. Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil.

    PubMed

    Raddadi, Noura; Giacomucci, Lucia; Marasco, Ramona; Daffonchio, Daniele; Cherif, Ameur; Fava, Fabio

    2018-05-31

    Water stress is a critical issue for plant growth in arid sandy soils. Here, we aimed to select bacteria producing polyextremotolerant surface-active compounds capable of improving water retention and humidity uptake in sandy soils. From Tunisian desert and saline systems, we selected eleven isolates able to highly emulsify different organic solvents. The bioemulsifying activities were stable with 30% NaCl, at 4 and 120 °C and in a pH range 4-12. Applications to a sandy soil of the partially purified surface-active compounds improved soil water retention up to 314.3% compared to untreated soil. Similarly, after 36 h of incubation, the humidity uptake rate of treated sandy soil was up to 607.7% higher than untreated controls. Overall, results revealed that polyextremotolerant bioemulsifiers of bacteria from arid and desert soils represent potential sources to develop new natural soil-wetting agents for improving water retention in arid soils.

  10. Effect of irrigation systems on temporal distribution of malaria vectors in semi-arid regions

    NASA Astrophysics Data System (ADS)

    Ohta, Shunji; Kaga, Takumi

    2014-04-01

    Previous research models have used climate data to explain habitat conditions of Anopheles mosquitoes transmitting malaria parasites. Although they can estimate mosquito populations with sufficient accuracy in many areas, observational data show that there is a tendency to underestimate the active growth and reproduction period of mosquitoes in semi-arid agricultural regions. In this study, a new, modified model that includes irrigation as a factor was developed to predict the active growing period of mosquitoes more precisely than the base model for ecophysiological and climatological distribution of mosquito generations (ECD-mg). Five sites with complete sets of observational data were selected in semi-arid regions of India for the comparison. The active growing period of mosquitoes determined from the modified ECD-mg model that incorporated the irrigation factor was in agreement with the observational data, whereas the active growing period was underestimated by the previous ECD-mg model that did not incorporate irrigation. This suggests that anthropogenic changes in the water supply due to extensive irrigation can encourage the growth of Anopheles mosquitoes through the alteration of the natural water balance in their habitat. In addition, it was found that the irrigation systems not only enable the active growth of mosquitoes in dry seasons but also play an important role in stabilizing the growth in rainy seasons. Consequently, the irrigation systems could lengthen the annual growing period of Anopheles mosquitoes and increase the maximum generation number of mosquitoes in semi-arid subtropical regions.

  11. Chloride mass-balance method for estimating ground water recharge in arid areas: examples from western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Bazuhair, Abdulghaffar S.; Wood, Warren W.

    1996-11-01

    The chloride mass-balance method, which integrates time and aerial distribution of ground water recharge, was applied to small alluvial aquifers in the wadi systems of the Asir and Hijaz mountains in western Saudi Arabia. This application is an extension of the method shown to be suitable for estimating recharge in regional aquifers in semi-arid areas. Because the method integrates recharge in time and space it appears to be, with certain assumptions, particularly well suited for and areas with large temporal and spatial variation in recharge. In general, recharge was found to be between 3 to 4% of precipitation — a range consistent with recharge rates found in other and and semi-arid areas of the earth.

  12. Soil, plant, and structural considerations for surface barriers in arid environments: Application of results from studies in the Mojave Desert near Beatty, Nevada

    USGS Publications Warehouse

    Andraski, Brian J.; Prudic, David E.; ,

    1997-01-01

    The suitability of a waste-burial site depends on hydrologic processes that can affect the near-surface water balance. In addition, the loss of burial trench integrity by erosion and subsidence of trench covers may increase the likelihood of infiltration and percolation, thereby reducing the effectiveness of the site in isolating waste. Although the main components of the water balance may be defined, direct measurements can be difficult, and actual data for specific locations are seldom available. A prevalent assumption is that little or no precipitation will percolate to buried wastes at an arid site. Thick unsaturated zones, which are common to arid regions, are thought to slow water movement and minimize the risk of waste migration to the underlying water table. Thus, reliance is commonly placed on the natural system to isolate contaminants at waste-burial sites in the arid West.Few data are available to test assumptions about the natural soil-water flow systems at arid sites, and even less is known about how the natural processes are altered by construction of a waste-burial facility. The lack of data is the result of technical complexity of hydraulic characterization of the dry, stony soils, and insufficient field studies that account for the extreme temporal and spatial variations in precipitation, soils, and plants in arid regions. In 1976, the U.S. Geological Survey (USGS) began a long-term study at a waste site in the Mojave Desert. This paper summarizes the findings of ongoing investigations done under natural-site and waste-burial conditions, and discusses how this information may be applied to the design of surface barriers for waste sites in arid environments.The waste-burial site is in one of the most arid parts of the United States and is about 40 km northeast of Death Valley, near Beatty, Nev. (Figure 1). Precipitation averaged 108 mm/yr during 1981-1992. The water table is 85-115 m below land surface (Fischer, 1992). Sediments are largely alluvial and fluvial deposits (Nichols, 1987). Vegetation is sparse; creosote bush is the dominant species. The waste facility has been used for burial of low-level radioactive waste (1962-1992) and hazardous chemical waste (1970 to present). Burial-trench construction includes excavation of native soil, emplacement of waste, and backfilling with previously stockpiled soil. Only the most recently closed hazardous-waste trench (1991) incorporates a plastic liner in the cover. The surfaces of completed burial trenches and perimeter areas are kept free of vegetation.

  13. Impact of lateral flow on the transition from connected to disconnected stream-aquifer systems

    NASA Astrophysics Data System (ADS)

    Xian, Yang; Jin, Menggui; Liu, Yanfeng; Si, Aonan

    2017-05-01

    Understanding the mechanisms by which stream water infiltrates through streambeds to recharge groundwater systems is essential to sustainable management of scarce water resources in arid and semi-arid areas. An inverted water table (IWT) can develop under a stream in response to the desaturation between the stream and underlying aquifer as the system changes from a connected to disconnected status. However, previous studies have suggested that the IWT can only occur at the bottom of a low permeability streambed in which only the vertical flow between the stream and groundwater during disconnection was assumed. In the present study, numerical simulations revealed that the lateral flow induced by capillarity or heterogeneity also plays an essential role on interactions between streams and aquifers. Three pathways were identified for the transition from connection to disconnection in homogenous systems; notably, the lowest point of an IWT can develop not only at the bottom of the streambed but also within the streambed or the aquifer in response to the initial desaturation at, above, or below the interface between the streambed and aquifer (IBSA), respectively. A sensitivity analysis indicated that in wide streams, the lowest point of an IWT only occurs at the bottom of the streambed; however, for a stream half width of 1 m above a 6 m thick sandy loam streambed, the lowest point occurs in the streambed as stream depth is less than 0.5 m. This critical stream depth increases with streambed thickness and decreases with stream width. Thus, in narrow streams the lowest point can also develop in a thick streambed under a shallow stream. In narrow streams, the lowest point also forms in the aquifer if the ratio of the hydraulic conductivity of the streambed to that of the aquifer is greater than the ratio of the streambed thickness to the sum of the stream depth and the streambed thickness; correspondingly, the streambed is thin but relatively permeable and the stream is deep. Furthermore, in heterogeneous streambed systems, two or three pathways can simultaneously occur and various parts of the IWT occur at distinct positions relative to the IBSA. This challenges the commonly held assumption that streambed under a disconnected stream is always fully saturated, and limits the methods which introduce a negative or atmospheric pressure value at the IBSA to calculate seepage rate or assess stream-aquifer connectivity.

  14. Impacts of water development on aquatic macroinvertebrates, amphibians, and plants in wetlands of a semi-arid landscape

    USGS Publications Warehouse

    Euliss, Ned H.; Mushet, David M.

    2004-01-01

    We compared the macroinvertebrate and amphibian communities of 12 excavated and 12 natural wetlands in western North Dakota, USA, to assess the effects of artificially lengthened hydroperiods on the biotic communities of wetlands in this semi-arid region. Excavated wetlands were much deeper and captured greater volumes of water than natural wetlands. Most excavated wetlands maintained water throughout the study period (May to October 1999), whereas most of the natural wetlands were dry by June. Excavated wetlands were largely unvegetated or contained submergent and deep-marsh plant species. The natural wetlands had two well-defined vegetative zones populated by plant species typical of wet meadows and shallow marshes. Excavated wetlands had a richer aquatic macroinvertebrate community that included several predatory taxa not found in natural wetlands. Taxa adapted to the short hydroperiods of seasonal wetlands were largely absent from excavated wetlands. The amphibian community of natural and excavated wetlands included the boreal chorus frog (Pseudacris maculata), northern leopard frog (Rana pipiens), plains spadefoot (Scaphiopus bombifrons), Woodhouse's toad (Bufo woodhousii woodhousii), and tiger salamander (Ambystoma tigrinum). The plains spadefoot occurred only in natural wetlands while tiger salamanders occurred in all 12 excavated wetlands and only one natural wetland. Boreal chorus frogs and northern leopard frogs were present in both wetland types; however, they successfully reproduced only in wetlands lacking tiger salamanders. Artificially extending the hydroperiod of wetlands by excavation has greatly influenced the composition of native biotic communities adapted to the naturally short hydroperiods of wetlands in this semi-arid region. The compositional change of the biotic communities can be related to hydrological changes and biotic interactions, especially predation related to excavation.

  15. [Effect of tillage patterns on the structure of weed communities in oat fields in the cold and arid region of North China].

    PubMed

    Zhang, Li; Zhang, Li; Wu, Dong-Xia; Zhang, Jun-Jun

    2014-06-01

    In order to clarify the effects of tillage patterns on farmland weed community structure and crop production characteristics, based on 10 years location experiment with no-tillage, subsoiling and conventional tillage in the cold and arid region of North China, and supplementary experiment of plowing after 10 years no-tillage and subsoiling, oat was planted in 2 soils under different tillage patterns, and field weed total density, dominant weed types, weed diversity index, field weed biomass and oats yield were measured. The results showed that the regional weed community was dominated by foxtail weed (Setaira viridis); the weed density under long-term no-tillage was 2.20-5.14 times of tillage at different growing stages of oat, but there were no significant differences between conditional tillage and plowing after long-term no-tillage and subsoiling. Field weed Shannon diversity indices were 0.429 and 0.531, respectively, for sandy chestnut soil and loamy meadow soil under no-tillage conditions, and field weed biomass values were 1.35 and 2.26 times of plowing treatment, while the oat biomass values were only 2807.4 kg x hm(-2) and 4053.9 kg x hm(-2), decreased by 22.3% and 46.2%, respectively. The results showed that the weed community characteristics were affected by both tillage patterns and soil types. Long-term no-tillage farmland in the cold and arid region of North China could promote the natural evolution of plant communities by keeping more perennial weeds, and the plowing pattern lowered the annual weed density, eliminated perennial weeds with shallow roots, and stimulated perennial weeds with deep roots.

  16. Spatial and temporal variations of aridity indices in Iraq

    NASA Astrophysics Data System (ADS)

    Şarlak, Nermin; Mahmood Agha, Omar M. A.

    2017-06-01

    This study investigates the spatial and temporal variations of the aridity indices to reveal the desertification vulnerability of Iraq region. Relying on temperature and precipitation data taken from 28 meteorological stations for 31 years, the study aims to determine (1) dry land types and their delineating boundaries and (2) temporal change in aridity conditions in Iraq. Lang's aridity (Im), De Martonne's aridity (Am), United Nations Environmental Program (UNEP) aridity (AIu), and Erinç aridity (IE) indices were selected in this study because of the scarcity of the observed data. The analysis of the spatial variation of aridity indices exhibited that the arid and semi-arid regions cover about 97% of the country's areas. As for temporal variations, it was observed that the aridity indices tend to decrease (statistically significant or not) for all stations. The cumulative sum charts (CUSUMs) were applied to detect the year on which the climate pattern of aridity indices had changed from one pattern to another. The abrupt change point was detected around year 1997 for the majority of the stations. Thus, the spatial and temporal aridity characteristics in Iraq were examined for the two periods 1980-1997 and 1998-2011 (before and after the change-point year) to observe the influence of abrupt change point on aridity phenomena. The spatial variation after 1997 was observed from semi-arid (dry sub humid) to arid (semi-arid) especially at the stations located in northern Iraq, while hyper-arid and arid climatic conditions were still dominant over southern and central Iraq. Besides, the negative temporal variations of the two periods 1980-1997 and 1998-2011 were obtained for almost every station. As a result, it was emphasized that Iraq region, like other Middle East regions, has become drier after 1997. The observed reduction in precipitation and increase in temperature for this region seem to make the situation worse in future.

  17. Problems and Prospects of SWAT Model Application on an Arid/Semi-Arid Watershed in Arizona

    EPA Science Inventory

    In arid/semi-arid regions, precipitation mainly occurs during two periods: long-duration, low-intensity rainfall in winter; and short-duration, high-intensity rainfall in summer. Watersheds in arid/semi-arid regions often release water almost immediately after a storm due to spa...

  18. Alterations in flowering strategies and sexual allocation of Caragana stenophylla along a climatic aridity gradient.

    PubMed

    Xie, Lina; Guo, Hongyu; Ma, Chengcang

    2016-09-15

    Plant can alter reproductive strategies for adaptation to different environments. However, alterations in flowering strategies and sexual allocation for the same species growing in different environments still remain unclear. We examined the sexual reproduction parameters of Caragana stenophylla across four climatic zones from semi-arid, arid, very arid, to intensively arid zones in the Inner Mongolia Steppe, China. Under the relatively favorable climatic conditions of semi-arid zone, C. stenophylla took a K-strategy for flowering (fewer but bigger flowers, and higher seed set). In contrast, under the harsher climatic conditions of intensively arid zone, C. stenophylla took an r-strategy for flowering (more but smaller flowers, and lower seed set). In arid and very arid zones, C. stenophylla exhibited intermediate flowering strategies between K- and r-strategies. In semi-arid, arid and very arid zones, sexual allocation and sexual allocation efficiency (SAE) of C. stenophylla were high, and the population recruitment might be mainly through sexual reproduction; in intensively arid zone, however, sexual allocation and SAE were very low, seed production was very limited, and clonal reproduction might compensate for the decrease in sexual reproduction. Our results suggested that C. stenophylla adapted to the climatic aridity gradient by alterations in flowering strategies and reproductive allocation.

  19. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Carol F., E-mail: carol-webb@omrf.org; Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights:more » • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.« less

  20. Airborne laser-diode-array illuminator assessment for the night vision's airborne mine-detection arid test

    NASA Astrophysics Data System (ADS)

    Stetson, Suzanne; Weber, Hadley; Crosby, Frank J.; Tinsley, Kenneth; Kloess, Edmund; Nevis, Andrew J.; Holloway, John H., Jr.; Witherspoon, Ned H.

    2004-09-01

    The Airborne Littoral Reconnaissance Technologies (ALRT) project has developed and tested a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). The Coastal System Station"s ALRT project, under funding from the Office of Naval Research (ONR), has been designing, developing, integrating, and testing commercial arrays using a Cessna airborne platform over the last several years. This has led to the development of the Airborne Laser Diode Array Illuminator wide field-of-view (ALDAI-W) imaging test bed system. The ALRT project tested ALDAI-W at the Army"s Night Vision Lab"s Airborne Mine Detection Arid Test. By participating in Night Vision"s test, ALRT was able to collect initial prototype nighttime operational data using ALDAI-W, showing impressive results and pioneering the way for final test bed demonstration conducted in September 2003. This paper describes the ALDAI-W Arid Test and results, along with processing steps used to generate imagery.

  1. Deep installations of monitoring instrumentation in unsaturated welded tuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, S.

    1985-12-31

    The major goal of this research is to develop low cost techniques to measure matric potential, moisture content, and to sample liquid and vapor for chemical analysis in the deep unsaturated zones of the arid areas of Nevada. This work has been prompted by the high level waste repository proposed in the unsaturated zone of Yucca Mountain. The work presented focuses on two deep (250 meter) boreholes planned for completion at the southern end of Yucca Mountain in fractured tuff. One borehole will be drilled without water and cased to slightly below the zone of saturation in order to measuremore » the depth to saturation and to collect water samples for analysis. This hole will also be used for routine quarterly neutron logging. Between loggings, vapor liquid water samplers will be suspended in the borehole and packed off at selective screened intervals to collect water vapor for isotopic analysis. The second borehole will be drilled to slightly above the water table and serve as a multiple interval psychrometer installation. Thermocouple psychrometers will be placed in isolated screened intervals within the casing. These boreholes will be used for instrument testing, interference and permeability testing, and to monitor short term fluctuations of soil and rock moisture due to precipitation and recharge.« less

  2. Analysis of soil hydraulic and thermal properties for land surface modeling over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhao, Hong; Zeng, Yijian; Lv, Shaoning; Su, Zhongbo

    2018-06-01

    Soil information (e.g., soil texture and porosity) from existing soil datasets over the Tibetan Plateau (TP) is claimed to be inadequate and even inaccurate for determining soil hydraulic properties (SHP) and soil thermal properties (STP), hampering the understanding of the land surface process over TP. As the soil varies across three dominant climate zones (i.e., arid, semi-arid and subhumid) over the TP, the associated SHP and STP are expected to vary correspondingly. To obtain an explicit insight into the soil hydrothermal properties over the TP, in situ and laboratory measurements of over 30 soil property profiles were obtained across the climate zones. Results show that porosity and SHP and STP differ across the climate zones and strongly depend on soil texture. In particular, it is proposed that gravel impact on porosity and SHP and STP are both considered in the arid zone and in deep layers of the semi-arid zone. Parameterization schemes for porosity, SHP and STP are investigated and compared with measurements taken. To determine the SHP, including soil water retention curves (SWRCs) and hydraulic conductivities, the pedotransfer functions (PTFs) developed by Cosby et al. (1984) (for the Clapp-Hornberger model) and the continuous PTFs given by Wösten et al. (1999) (for the Van Genuchten-Mualem model) are recommended. The STP parameterization scheme proposed by Farouki (1981) based on the model of De Vries (1963) performed better across the TP than other schemes. Using the parameterization schemes mentioned above, the uncertainties of five existing regional and global soil datasets and their derived SHP and STP over the TP are quantified through comparison with in situ and laboratory measurements. The measured soil physical properties dataset is available at https://data.4tu.nl/repository/uuid:c712717c-6ac0-47ff-9d58-97f88082ddc0.

  3. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands

    Treesearch

    J.D. Reeder; G.E. Schuman

    2001-01-01

    We evaluated the effects of livestock grazing on C content of the plant-soil system (to 60 cm) of two semi-arid grasslands: a mixed-grass prairie (grazed 12 years), and a short-grass steppe (grazed 56 years). Grazing treatments included season-long grazing at heavy and light stocking rates, and non-grazed exclosures. Significantly higher soil C (0-30cm) was measured in...

  4. The Tumor Suppressor ARID1A Controls Global Transcription via Pausing of RNA Polymerase II.

    PubMed

    Trizzino, Marco; Barbieri, Elisa; Petracovici, Ana; Wu, Shuai; Welsh, Sarah A; Owens, Tori A; Licciulli, Silvia; Zhang, Rugang; Gardini, Alessandro

    2018-06-26

    AT-rich interactive domain-containing proteins 1A and 1B (ARID1A and ARID1B) are mutually exclusive subunits of the chromatin remodeler SWI/SNF. ARID1A is the most frequently mutated chromatin regulator across all cancers, and ovarian clear cell carcinoma (OCCC) carries the highest prevalence of ARID1A mutations (∼57%). Despite evidence implicating ARID1A in tumorigenesis, the mechanism remains elusive. Here, we demonstrate that ARID1A binds active regulatory elements in OCCC. Depletion of ARID1A represses RNA polymerase II (RNAPII) transcription but results in modest changes to accessibility. Specifically, pausing of RNAPII is severely impaired after loss of ARID1A. Compromised pausing results in transcriptional dysregulation of active genes, which is compensated by upregulation of ARID1B. However, a subset of ARID1A-dependent genes is not rescued by ARID1B, including many p53 and estrogen receptor (ESR1) targets. Our results provide insight into ARID1A-mediated tumorigenesis and unveil functions of SWI/SNF in modulating RNAPII dynamics. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone

    USGS Publications Warehouse

    Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.

    2015-01-01

    Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.

  6. Identification and Validation of Expressed Sequence Tags from Pigeonpea (Cajanus cajan L.) Root

    PubMed Central

    Kumar, Ravi Ranjan; Yadav, Shailesh; Joshi, Shourabh; Bhandare, Prithviraj P.; Patil, Vinod Kumar; Kulkarni, Pramod B.; Sonkawade, Swati; Naik, G. R.

    2014-01-01

    Pigeonpea (Cajanus cajan (L) Millsp.) is an important food legume crop of rain fed agriculture in the arid and semiarid tropics of the world. It has deep and extensive root system which serves a number of important physiological and metabolic functions in plant development and growth. In order to identify genes associated with pigeonpea root, ESTs were generated from the root tissues of pigeonpea (GRG-295 genotype) by normalized cDNA library. A total of 105 high quality ESTs were generated by sequencing of 250 random clones which resulted in 72 unigenes comprising 25 contigs and 47 singlets. The ESTs were assigned to 9 functional categories on the basis of their putative function. In order to validate the possible expression of transcripts, four genes, namely, S-adenosylmethionine synthetase, phosphoglycerate kinase, serine carboxypeptidase, and methionine aminopeptidase, were further analyzed by reverse transcriptase PCR. The possible role of the identified transcripts and their functions associated with root will also be a valuable resource for the functional genomics study in legume crop. PMID:24895494

  7. [Premises to the transboundary environmental crisis in the water tract on the example of water tract of the Kuban-Manych].

    PubMed

    Dementieva, D M; Dementiev, M S

    As a result, of the management of the irrigation system the most part of the runoff headwaters of the river Kuban was transferred to the arid plains of the Stavropol Territory, Rostov Region and Kalmykia Gravity Water via the water tract of the Kuban-Manych. This system was assumed to be supplied by pure mountain water. In fact, 3-4 class contaminated water currently passes to the water intake of the irrigation system (Nevinnomyssky channel). There is a tendency to the further deterioration in the quality of surface waters. It was determined that in the last decades in the catchment area of the upper reaches of the Kuban (Karachaevo-Cherkessia) the population was determined to increase sharply. As a result the discharge of industrial, agricultural, domestic and recreational waste into the river significantly increased. In that in catchment areas there is practically no infrastructure of the acquisition, processing and recycling of waste for the irrigation system. Intensive recreational and transport development of mountainous areas of Karachay-Cherkessia aggravates the situation and may lead to the need for deep water purification for subsequent consumption already in the vast territories of the Central Caucasus. Due to lack of the infrastructure for the water treatment in the upper reaches of the Kuban, it can lead to the serious systemic crisis. It is proposed to start to create in the catchment areas the cost-based system of recycling waste on the base of their processing by pyrolysis.

  8. Long-term analysis of the role of Traganum moquinii plants in the foredune formation of an arid dunefield (Maspalomas, Gran Canaria, Canary Islands).

    NASA Astrophysics Data System (ADS)

    García-Romero, Leví; Hernández-Cordero, Antonio; Hernández-Calvento, Luis; Hesp, Patrick A.

    2017-04-01

    In recent decades, important environmental changes have been detected in dune systems around the world. Vegetation on the foredune provides stability to the coastal dunefields, capturing and accumulating sediments, which is an important function among other ecosystem services. For this reason, vegetation has been used as an indicator when studying anthropogenic and natural processes in the foredunes, especially when an increase of the vulnerability has been detected. Foredunes of arid dunefields have been little studied. They present significant differences with respect to the foredune of other climatic zones. Traganum moquinii is the predominant plant species in the foredune of arid dunefields around the Canary Islands (including South Morocco, Mauritania and other close archipelagos, like Cape Verde). This bush species plays an important geomorphological role: its interaction with the aeolian sedimentary processes generates nebkhas, shadow dunes and arid parabolic shaped dunes. The objective of this work is to show the morphometric evolution of the foredune of an arid dunefield of the Canary Islands, Maspalomas (Gran Canaria), as well as explaining the function of Traganum moquinii on it. One morphometric variable (number of nebkhas) and six morphologic variables of Traganum moquinii species (density, mean distance between Traganum moquinii individuals, number of Traganum moquinii individuals in line one, mean diameter of Traganum moquinii individuals in line one, mean distance between Traganum moquinii individuals in line one, density Traganum moquinii individuals in line one) have been measured in ten observation plots, from the 1960s to the present, through detailed historical aerial photographs and orthophotos, using GIS. The morphometric changes have been identified, and the variables have been related from statistical analysis to detect the function exerted by Traganum moquinii species in the foredune. The change in the number of nebkhas enables the characterization of three types of foredune environments, which lie N-S. Measured variables in the first line of the foredune present significant relations with the number of nebkhas. The changes detected and the relationships observed between variables are related with natural processes and antrophogenic impacts. This information can be useful for arid coastal dune systems management, as well as restoration tasks in arid foredunes.

  9. From leaf to basin: evaluating the impacts of introduced plant species on evapotranspiration fluxes from riparian ecosystems in the southwestern U.S

    NASA Astrophysics Data System (ADS)

    Hultine, K. R.; Bush, S.; Nagler, P. L.; Morino, K.; Burtch, K.; Dennison, P. E.; Glenn, E. P.; Ehleringer, J.

    2010-12-01

    Global change processes such as climate change and intensive land use pose significant threats to water resources, particularly in arid regions where potential evapotranspiration far exceeds annual rainfall. Potentially compounding these shortages is the progressive expansion of introduced plant species in riparian areas along streams, canals and rivers in geographically arid regions. The question of whether these invasive species have had or will have impacts on water resources is currently under intense debate. We identify a framework for assessing when and where introduced riparian plant species are likely to have the highest potential impact on hydrologic fluxes of arid and semi-arid river systems. We focus on three introduced plant systems that currently dominate southwestern U.S. riparian forests: tamarisk (Tamarix spp.), Russian olive (Eleagnus angustifolia), and Russian knapweed (Acroptilon repens). Our framework focuses on two main criteria: 1) the ecophysiological traits that promote establishment of invasive species across environmental gradients, and 2) an assessment of how hydrologic fluxes are altered by the establishment of introduced species at varying scales. The framework identifies when and where introduced species should have the highest potential impact on the water cycle. This framework will assist land managers and policy makers with restoration and conservation priorities to preserve water resources and valued riparian habitat given limited economic resources.

  10. New developments in ground probing radar for Earth resource mapping and planetology

    NASA Astrophysics Data System (ADS)

    Cattermole, P. J.; Junkin, G.; Finkelstein, M. I.; Kingsley, S. P.

    1992-07-01

    Ground probing radar is a well established technique for locating buried objects and has found application in resource mapping. The development of this technology for the Mars exploration programme has lead to lightweight systems with potential applications for investigating shallow geological structures on Earth, Mars and Venus. Recent advances in ground probing radar technology for planetary exploration include the development of single-antenna systems with improved beam focussing into the ground and a move to lower frequencies which considerably extends the depth penetration in dry ground. These systems are designed for mobility and could form the basis of autonomous mapping systems for terrestrial exploration. Such systems would be particularly valuable for water resource surveying in arid and semi-arid regions, where there is a need to have lightweight instrumentation that can be moved into sometimes inhospitable terrain.

  11. Mechanics of aeolian processes: Soil erosion and dust production

    NASA Technical Reports Server (NTRS)

    Mehrabadi, M. M.

    1989-01-01

    Aeolian (wind) processes occur as a result of atmosphere/land-surface system interactions. A thorough understanding of these processes and their physical/mechanical characterization on a global scale is essential to monitoring global change and, hence, is imperative to the fundamental goal of the Earth observing system (Eos) program. Soil erosion and dust production by wind are of consequence mainly in arid and semi arid regions which cover 36 percent of the Earth's land surface. Some recent models of dust production due to wind erosion of agricultural soils and the mechanics of wind erosion in deserts are reviewed and the difficulties of modeling the aeolian transport are discussed.

  12. Multi-objective Optimization of Solar-driven Hollow-fiber Membrane Distillation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nenoff, Tina M.; Moore, Sarah E.; Mirchandani, Sera

    Securing additional water sources remains a primary concern for arid regions in both the developed and developing world. Climate change is causing fluctuations in the frequency and duration of precipitation, which can be can be seen as prolonged droughts in some arid areas. Droughts decrease the reliability of surface water supplies, which forces communities to find alternate primary water sources. In many cases, ground water can supplement the use of surface supplies during periods of drought, reducing the need for above-ground storage without sacrificing reliability objectives. Unfortunately, accessible ground waters are often brackish, requiring desalination prior to use, and underdevelopedmore » infrastructure and inconsistent electrical grid access can create obstacles to groundwater desalination in developing regions. The objectives of the proposed project are to (i) mathematically simulate the operation of hollow fiber membrane distillation systems and (ii) optimize system design for off-grid treatment of brackish water. It is anticipated that methods developed here can be used to supply potable water at many off-grid locations in semi-arid regions including parts of the Navajo Reservation. This research is a collaborative project between Sandia and the University of Arizona.« less

  13. Evaluation of Aerosol Pollution Determination From MODIS Satellite Retrievals for Semi-Arid Reno, NV, USA with In-Situ Measurements

    NASA Astrophysics Data System (ADS)

    Loria-Salazar, S. Marcela

    The aim of the present work is to carry out a detailed analysis of ground and columnar aerosol properties obtained by in-situ Photoacoustic and Integrated Nephelometer (PIN), Cimel CE-318 sunphotometer and MODIS instrument onboard Aqua and Terra satellites, for semi-arid Reno, Nevada, USA in the local summer months of 2012. Satellite determination of local aerosol pollution is desirable because of the potential for broad spatial and temporal coverage. However, retrieval of quantitative measures of air pollution such as Aerosol Optical Depth (AOD) from satellite measurements is challenging because of the underlying surface albedo being heterogeneous in space and time. Therefore, comparisons of satellite retrievals with measurements from ground-based sun photometers are crucial for validation, testing, and further development of instruments and retrieval algorithms. Ground-based sunphotometry and in-situ ground observations show that seasonal weather changes and fire plumes have great influence on the atmosphere aerosol optics. The Apparent Optical Height (AOH) follows the shape of the development of the Convective Boundary Layer (CBL) when fire conditions were not present. However, significant fine particle optical depth was inferred beyond the CBL thereby complicating the use of remote sensing measurements for near-ground aerosol pollution measurements. A meteorological analysis was performed to help diagnose the nature of the aerosols above Reno. The calculation of a Zephyr index and back trajectory analysis demonstrated that a local circulation often induces aerosol transport from Northern CA over the Sierra Nevada Mountains that doubles the Aerosol Optical Depth (AOD) at 500 nm. Sunphotometer measurements were used as a `ground truth' for satellite retrievals to evaluate the current state of the science retrievals in this challenging location. Satellite retrieved for AOD showed the presence of wild fires in Northern CA during August. AOD retrieved using the "dark-target algorithm" may be unrealistically high over the Great Basin. Low correlation was found between AERONET AOD and dark-target algorithm AOD retrievals from Aqua and Terra during June and July. During fire conditions the dark-target algorithm AOD values correlated better with AERONET measurements in August. Use of the Deep-blue algorithm for MODIS data to retrieve AOD did not provide enough points to compare with AERONET in June and July. In August, AOD from deep-blue and AERONET retrievals exhibited low correlation. AEE from MODIS products and AERONET exhibited low correlation during every month. Apparently satellite AOD retrievals need much improvement for areas like semi-arid Reno.

  14. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain

    PubMed Central

    Maestre, Fernando T.; Bowker, Matthew A.; Cantón, Yolanda; Castillo-Monroy, Andrea P.; Cortina, Jordi; Escolar, Cristina; Escudero, Adrián; Lázaro, Roberto; Martínez, Isabel

    2015-01-01

    Biological soil crusts (BSCs), composed of lichens, cyanobacteria, mosses, liverworts and microorganisms, are key biotic components of arid and semi-arid ecosystems worldwide. Despite they are widespread in Spain, these organisms have been historically understudied in this country. This trend is beginning to change as a recent wave of research has been identifying BSCs as a model ecological system. Many studies and research projects carried out in Spain have explored the role of BSCs on water, carbon and nitrogen fluxes, the interactions between BSCs and vascular plants, their dynamics after disturbances, and their response to global change, among other topics. In this article we review the growing body of research on BSCs available from semi-arid areas of Spain, highlighting its importance for increasing our knowledge on this group of organisms. We also discuss how it is breaking new ground in emerging research areas on the ecology of BSCs, and how it can be use to guide management and restoration efforts. Finally, we provide directions for future research on the ecology of BSCs in Spain and abroad. PMID:25908884

  15. Remotely-Sensed Regional-Scale Evapotranspiration of a Semi-Arid Great Basin Desert and its Relationship to Geomorphology, Soils, and Vegetation

    NASA Technical Reports Server (NTRS)

    Laymon, C.; Quattrochi, D.; Malek, E.; Hipps, L.; Boettinger, J.; McCurdy, G.

    1998-01-01

    Landsat thematic mapper data are used to estimate instantaneous regional-scale surface water and energy fluxes in a semi-arid Great Basin desert of the western United States. Results suggest that it is possible to scale from point measurements of environmental state variables to regional estimates of water and energy exchange. This research characterizes the unifying thread in the classical climate-topography-soil-vegetation relation -the surface water and energy balance-through maps of the partitioning of energy throughout the landscape. The study was conducted in Goshute Valley of northeastern Nevada, which is characteristic of most faulted graben valleys of the Basin and Range Province of the western United States. The valley comprises a central playa and lake plain bordered by alluvial fans emanating from the surrounding mountains. The distribution of evapotranspiration (ET) is lowest in the middle reaches of the fans where the water table is deep and plants are small, resulting in low evaporation and transpiration. Highest ET occurs in the center of the valley, particularly in the playa, where limited to no vegetation occurs, but evaporation is relatively high because of a shallow water table and silty clay soil capable of large capillary movement. Intermediate values of ET are associated with large shrubs and is dominated by transpiration.

  16. Remotely-Sensed Regional-Scale Evapotranspiration of a Semi-Arid Great Basin Desert and its Relationship to Geomorphology, Soils, and Vegetation

    NASA Technical Reports Server (NTRS)

    Laymon, C.; Quattrochi, D.; Malek, E.; Hipps, L.; Boettinger, J.; McCurdy, G.

    1997-01-01

    Landsat Thematic Mapper data is used to estimate instantaneous regional-scale surface water and energy fluxes in a semi-arid Great Basin desert of the western United States. Results suggest that it is possible to scale from point measurements of environmental state variables to regional estimates of water and energy exchange. This research characterizes the unifying thread in the classical climate-topography-soil-vegetation relation-the surface water and energy balance-through maps of the partitioning of energy throughout the landscape. The study was conducted in Goshute Valley of northeastern Nevada, which is characteristic of most faulted graben valleys of the Basin and Range Province of the western United States. The valley comprises a central playa and lake plain bordered by alluvial fans emanating from the surrounding mountains. The distribution of evapotranspiration (ET) is lowest in the middle reaches of the fans where the water table is deep and plants are small, resulting in low evaporation and transpiration. Highest ET occurs in the center of the valley, particularly in the playa, where limited to no vegetation occurs, but evaporation is relatively high because of a shallow water table and silty clay soil capable of large capillary movement. Intermediate values of ET are associated with large shrubs and is dominated by transpiration.

  17. Effect of integrating straw into agricultural soils on soil infiltration and evaporation.

    PubMed

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong

    2012-01-01

    Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p < 0.05, and with average errors/biases <10%. Straw mixing exhibited the best effect in terms of soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.

  18. Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes.

    PubMed

    Barrera-Figueroa, Blanca E; Gao, Lei; Diop, Ndeye N; Wu, Zhigang; Ehlers, Jeffrey D; Roberts, Philip A; Close, Timothy J; Zhu, Jian-Kang; Liu, Renyi

    2011-09-17

    Cowpea (Vigna unguiculata) is an important crop in arid and semi-arid regions and is a good model for studying drought tolerance. MicroRNAs (miRNAs) are known to play critical roles in plant stress responses, but drought-associated miRNAs have not been identified in cowpea. In addition, it is not understood how miRNAs might contribute to different capacities of drought tolerance in different cowpea genotypes. We generated deep sequencing small RNA reads from two cowpea genotypes (CB46, drought-sensitive, and IT93K503-1, drought-tolerant) that grew under well-watered and drought stress conditions. We mapped small RNA reads to cowpea genomic sequences and identified 157 miRNA genes that belong to 89 families. Among 44 drought-associated miRNAs, 30 were upregulated in drought condition and 14 were downregulated. Although miRNA expression was in general consistent in two genotypes, we found that nine miRNAs were predominantly or exclusively expressed in one of the two genotypes and that 11 miRNAs were drought-regulated in only one genotype, but not the other. These results suggest that miRNAs may play important roles in drought tolerance in cowpea and may be a key factor in determining the level of drought tolerance in different cowpea genotypes.

  19. Cyanobacterial blooms in stratified and destratified eutrophic reservoirs in semi-arid region of Brazil.

    PubMed

    Dantas, Enio W; Moura, Ariadne N; Bittencourt-Oliveira, Maria do Carmo

    2011-12-01

    This study investigated the dynamics of cyanobacteria in two deep, eutrophic reservoirs in a semi-arid region of Brazil during periods of stratification and destratification. Four collections were carried out at each reservoir at two depths at three-month intervals. The following abiotic variables were analyzed: water temperature, dissolved oxygen, pH, turbidity, water transparency, total phosphorus, total dissolved phosphorus, orthophosphate and total nitrogen. Phytoplankton density was quantified for the determination of the biomass of cyanobacteria. The data were analyzed using CCA. Higher mean phytoplankton biomass values (29.8 mm(3).L(-1)) occurred in the period of thermal stratification. A greater similarity in the phytoplankton communities also occurred in this period and was related to the development of cyanobacteria, mainly Cylindrospermopsis raciborskii (>3.9 mm(3).L(-1)). During the period of thermal destratification, this species co-dominated the environment with Planktothrix agardhii, Geitlerinema amphibium, Microcystis aeruginosa and Merismopedia tenuissima, as well as with diatoms and phytoflagellates. Environmental instability and competition among algae hindered the establishment of blooms more during the mixture period than during the stratification period. Thermal changes in the water column caused by climatologic events altered other physiochemical conditions of the water, leading to changes in the composition and biomass of the cyanobacterial community in tropical reservoirs.

  20. Lake evolution of the terminal area of Shiyang River drainage in arid China since the last glaciation

    USGS Publications Warehouse

    Shi, Q.; Chen, F.-H.; Zhu, Y.; Madsen, D.

    2002-01-01

    Investigations of geomorphology and sedimentology, and analyses of radiocarbon dates, grain size and carbonate of the sediment at the present-dry closed basin in the terminal area of Shiyang River in arid China were conducted to recover the history of palaeolake change since the last glacial. The terminal area was covered by eolian sand before 13,000 14C BP. Lacustrine deposits covered the eolian sand after 13,000 14C BP, but were succeeded rapidly by eolian or fluvial deposits ca. 11,200-10,000 BP. This fact plus the grain-size distribution and CaCO3 content showed that climate was extremely dry during the last glacial, but wet-dry oscillations characterized the late glacial. A single coalescent lake, over 45 m deep and 2130 km2, formed between 10,000-6400 14C BP in the basin. The lake disintegrated into several shallow carbonate lakes or swamps gradually after 6400 14C BP. Eolian sand reached into the most part of the basin during the period. The lake evolution in the area generally reflects the East Asian summer monsoon history forced by Northern hemisphere insolation. Short time-scale lake fluctuations also existed in the area since the last glacial. ?? 2002 Elsevier Science Ltd and INQUA. All rights reserved.

  1. A burrowing frog from the late Paleocene of Mongolia uncovers a deep history of spadefoot toads (Pelobatoidea) in East Asia.

    PubMed

    Chen, Jianye; Bever, Gaberiel S; Yi, Hong-Yu; Norell, Mark A

    2016-01-11

    Fossils are indispensible in understanding the evolutionary origins of the modern fauna. Crown-group spadefoot toads (Anura: Pelobatoidea) are the best-known fossorial frog clade to inhabit arid environments, with species utilizing a characteristic bony spade on their foot for burrowing. Endemic to the Northern Hemisphere, they are distributed across the Holarctic except East Asia. Here we report a rare fossil of a crown-group spadefoot toad from the late Paleocene of Mongolia. The phylogenetic analysis using both morphological and molecular information recovered this Asian fossil inside the modern North American pelobatoid clade Scaphiopodidae. The presence of a spade and the phylogenetic position of the new fossil frog strongly support its burrowing behavior. The late Paleocene age and other information suggestive of a mild climate cast doubt on the conventional assertion that burrowing evolved as an adaptation to aridity in spadefoot toads. Temporally and geographically, the new fossil provides the earliest record of Scaphiopodidae worldwide, and the only member of the group in Asia. Quantitative biogeographic analysis suggests that Scaphiopodidae, despite originating in North America, dispersed into East Asia via Beringia in the Early Cenozoic. The absence of spadefoot toads in East Asia today is a result of extinction.

  2. Assessing the influence of artificially constructed channels in the growth of afforested black mangrove (Avicennia germinans) within an arid coastal region.

    PubMed

    Flores-Verdugo, F; Zebadua-Penagos, F; Flores-de-Santiago, F

    2015-09-01

    Hypersaline conditions are common in sub-tropical latitudes where freshwater availability is seasonal. Hence, hydroperiod plays a crucial role in providing a suitable area for the establishment of new mangrove seedlings. The purpose of this study was to assess the function of hydrological change and irradiance in the growth of afforested black mangrove (Avicennia germinans) along the upper saltpan area by creating six channels of 1 m wide by 0.3 deep and 30 m length. All channels were constructed perpendicular to the main coastline of the Urias lagoon, Pacific coast of Mexico. Seedlings of black mangrove were planted along four of the channels. After ten months, the pore-water salinity concentration within the six channels was reduced by half. Results indicate that there were no significant differences (P > 0.05) in mangrove survival among the channels. However, the optimal growth of black mangroves was near the channels edge. The growth of mangrove seedlings planted under 50% of solar attenuation was 10 times higher as compared to mangroves under direct sunlight. This study shows the feasibility of using channels to enhance tidal flow and decrease hypersaline conditions for future afforestation endeavors in arid coastlines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Aridification as a driver of biodiversity: a case study for the cycad genus Dioon (Zamiaceae).

    PubMed

    Said Gutiérrez-Ortega, José; Yamamoto, Takashi; Vovides, Andrew P; Angel Pérez-Farrera, Miguel; Martínez, José F; Molina-Freaner, Francisco; Watano, Yasuyuki; Kajita, Tadashi

    2018-01-25

    Aridification is considered a selective pressure that might have influenced plant diversification. It is suggested that plants adapted to aridity diversified during the Miocene, an epoch of global aridification (≈15 million years ago). However, evidence supporting diversification being a direct response to aridity is scarce, and multidisciplinary evidence, besides just phylogenetic estimations, is necessary to support the idea that aridification has driven diversification. The cycad genus Dioon (Zamiaceae), a tropical group including species occurring from humid forests to arid zones, was investigated as a promising study system to understand the associations among habitat shifts, diversification times, the evolution of leaf epidermal adaptations, and aridification of Mexico. A phylogenetic tree was constructed from seven chloroplast DNA sequences and the ITS2 spacer to reveal the relationships among 14 Dioon species from habitats ranging from humid forests to deserts. Divergence times were estimated and the habitat shifts throughout Dioon phylogeny were detected. The epidermal anatomy among Dioon species was compared and correlation tests were performed to associate the epidermal variations with habitat parameters. Events of habitat shifts towards arid zones happened exclusively in one of the two main clades of Dioon. Such habitat shifts happened during the species diversification of Dioon, mainly during the Miocene. Comparative anatomy showed epidermal differences between species from arid and mesic habitats. The variation of epidermal structures was found to be correlated with habitat parameters. Also, most of the analysed epidermal traits showed significant phylogenetic signals. The diversification of Dioon has been driven by the aridification of Mexico. The Miocene timing corresponds to the expansion of arid zones that embedded the ancestral Dioon populations. As response, species in arid zones evolved epidermal traits to counteract aridity stress. This case study provides a robust body of evidence supporting the idea that aridification is an important driver of biodiversity. © The Authors 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Identification and functional characterization of a novel bipartite nuclear localization sequence in ARID1A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, Nicholas W.; The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD; Shoji, Yutaka

    2016-01-01

    AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. - Highlights: • We have identified a bipartitemore » nuclear localization sequence (NLS) in ARID1A. • Confirmation of the NLS was performed using GFP constructs. • NLS mutant ARID1A exhibits greater stability than wild-type ARID1A.« less

  5. Genomic and proteomic characterization of ARID1A chromatin remodeller in ampullary tumors

    PubMed Central

    Nastase, Anca; Teo, Jin Yao; Heng, Hong Lee; Ng, Cedric Chuan Young; Myint, Swe Swe; Rajasegaran, Vikneswari; Loh, Jia Liang; Lee, Ser Yee; Ooi, London Lucien; Chung, Alexander Yaw Fui; Chow, Pierce Kah Hoe; Cheow, Peng Chung; Wan, Wei Keat; Azhar, Rafy; Khoo, Avery; Xiu, Sam Xin; Alkaff, Syed Muhammad Fahmy; Cutcutache, Ioana; Lim, Jing Quan; Ong, Choon Kiat; Herlea, Vlad; Dima, Simona; Duda, Dan G; Teh, Bin Tean; Popescu, Irinel; Lim, Tony Kiat Hon

    2017-01-01

    AT rich interactive domain 1A (ARID1A) is one of the most commonly mutated genes in a broad variety of tumors. The mechanisms that involve ARID1A in ampullary cancer progression remains elusive. Here, we evaluated the frequency of ARID1A and KRAS mutations in ampullary adenomas and adenocarcinomas and in duodenal adenocarcinomas from two cohorts of patients from Singapore and Romania, correlated with clinical and pathological tumor features, and assessed the functional role of ARID1A. In the ampullary adenocarcinomas, the frequency of KRAS and ARID1A mutations was 34.7% and 8.2% respectively, with a loss or reduction of ARID1A protein in 17.2% of the cases. ARID1A mutational status was significantly correlated with ARID1A protein expression level (P=0.023). There was a significant difference in frequency of ARID1A mutation between Romania and Singapore (2.7% versus 25%, P=0.04), suggestive of different etiologies. One somatic mutation was detected in the ampullary adenoma group. In vitro studies indicated the tumor suppressive role of ARID1A. Our results warrant further investigation of this chromatin remodeller as a potential early biomarker of the disease, as well as identification of therapeutic targets in ARID1A mutated ampullary cancers. PMID:28401006

  6. Genomic and proteomic characterization of ARID1A chromatin remodeller in ampullary tumors.

    PubMed

    Nastase, Anca; Teo, Jin Yao; Heng, Hong Lee; Ng, Cedric Chuan Young; Myint, Swe Swe; Rajasegaran, Vikneswari; Loh, Jia Liang; Lee, Ser Yee; Ooi, London Lucien; Chung, Alexander Yaw Fui; Chow, Pierce Kah Hoe; Cheow, Peng Chung; Wan, Wei Keat; Azhar, Rafy; Khoo, Avery; Xiu, Sam Xin; Alkaff, Syed Muhammad Fahmy; Cutcutache, Ioana; Lim, Jing Quan; Ong, Choon Kiat; Herlea, Vlad; Dima, Simona; Duda, Dan G; Teh, Bin Tean; Popescu, Irinel; Lim, Tony Kiat Hon

    2017-01-01

    AT rich interactive domain 1A (ARID1A) is one of the most commonly mutated genes in a broad variety of tumors. The mechanisms that involve ARID1A in ampullary cancer progression remains elusive. Here, we evaluated the frequency of ARID1A and KRAS mutations in ampullary adenomas and adenocarcinomas and in duodenal adenocarcinomas from two cohorts of patients from Singapore and Romania, correlated with clinical and pathological tumor features, and assessed the functional role of ARID1A . In the ampullary adenocarcinomas, the frequency of KRAS and ARID1A mutations was 34.7% and 8.2% respectively, with a loss or reduction of ARID1A protein in 17.2% of the cases. ARID1A mutational status was significantly correlated with ARID1A protein expression level (P=0.023). There was a significant difference in frequency of ARID1A mutation between Romania and Singapore (2.7% versus 25%, P=0.04), suggestive of different etiologies. One somatic mutation was detected in the ampullary adenoma group. In vitro studies indicated the tumor suppressive role of ARID1A . Our results warrant further investigation of this chromatin remodeller as a potential early biomarker of the disease, as well as identification of therapeutic targets in ARID1A mutated ampullary cancers.

  7. Between the high mountains and the deserts: reconstructing palaeoenvironments in the Arid Central Asian loess

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, Kathryn; Sprafke, Tobias; Deom, Jean-Marc; Sala, Renato; Nigmatova, Saida

    2017-04-01

    Central Asia lies at the arid core of the largest and most populous continent on Earth - Eurasia - and at the intersection between the major climatic drivers of the North Atlantic westerlies, the polar front and the Asian monsoon. It furthermore represents a global "hotspot" for future desertification, facing a potent combination of sensitive climate dynamics and intensive land use. However, we know little about the role of Central Asia in global climate dynamics past and present. This is largely because we have yet to realise the full potential of the widespread loess archives which extend across the semi-arid piedmonts to the north of the Asian high mountains, at the southern margins of the Silk Road deserts. These records have been largely overlooked by scientific investigation, despite correlations between the well-studied loess archives of Europe and China. In spite of its key position in the northern hemisphere climate circulation systems, the climatic history - and trajectory - of arid Central Asia remains largely unknown. Here we reconstruct palaeoenvironmental change over the last 40 ky from three sites in the loess foothills of the northern Tien Shan. Our emerging sedimentological, palaeopedological, geochemical and geochronological datasets suggest that aeolian deposition in this semi-arid region responds in a more complex way to climate than the classical sequences of the Chinese Loess Plateau and Danube basin. In arid Central Asia, landscapes appear to have responded not only to the cooler and warmer conditions of the glacial and interglacial periods respectively, but also to the availability of moisture. Variations in precipitation patterns may have been out of phase with the ice ages, and the impact of precipitation regime change may have been intensified by an extreme continental climate. Emerging data from the Central Asian loess suggest that past climates may not only have been subject to spatial migration, expansion and contraction of the major climate subsystems, but also the compression and the blockage of system teleconnections. These hypotheses set the scene for future, targeted research based on quantitative palaeoclimate reconstruction from loess records in the heart of Eurasia.

  8. Using Digital Repeat Photography to Link Vegetative Phenology and Carbon Fluxes to Biotic and Abiotic Drivers in Three Semi-arid Systems (New Mexico, USA)

    NASA Astrophysics Data System (ADS)

    Hallmark, A.; Litvak, M. E.; Collins, S. L.

    2015-12-01

    Arid and semi-arid ecosystems account for over 45% of global land cover. While mean annual carbon uptake in these ecosystems is relatively low, aridlands collectively store a significant amount of carbon. There is high inter- and intra-annual variability of plant growth in aridlands, depending largely on the timing and size of rainfall events. This variation is also of great significance, as the variation in annual semi-aridland carbon uptake accounts for ~39% of the inter-annual variability of the global terrestrial carbon sink, the largest percentage of any land cover type. Although arid and semi-arid ecosystems are of global importance, they are understudied. To better understand the drivers and variability of carbon uptake in these critical ecosystems, we utilize a six-year record of digital images (45,000+ images), carbon flux and meteorological data, soil water content, and associated ecological measurements from three eddy covariance tower sites in central New Mexico. These sites include a Chihuahuan Desert/short-grass Plains grassland site, and post-fire successional grassland site, and a creosote-encroached shrubland site, each of which have unique species compositions, carbon fluxes, and reactions to disturbance and resource addition. All images used are co-registered and corrected for radial lens distortions (when necessary) and greenness indices (2GRBi, gcc, and/or NDVI) are calculated for each scene's overall "canopy" and for individual species and plant functional types therein. At all three sites, camera-derived greenness is correlated to measured carbon uptake with fine resolution (R2 up to 0.8), capturing temporal and spatial variation usually not seen in satellite-based imagery. At sites with lower LAI, species-specific ROI's were more correlated to the site's measured carbon flux across shorter time scales. Understanding the biota comprising each image and its contribution to changing scene greenness at different times of year can lead to more accurate carbon flux predictions in semi-arid systems, with species-specific biotic constraints (maximum growth rate, lifespan, and seasonality), growth parameters (light availability, VPD, soil water content, and temperature) as well as community-wide abiotic drivers considered.

  9. Modelling hydrologic and hydrodynamic processes in basins with large semi-arid wetlands

    NASA Astrophysics Data System (ADS)

    Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Pontes, Paulo; Crétaux, Jean-François; Bergé-Nguyen, Muriel; Biancamaria, Sylvain; Gosset, Marielle; Calmant, Stephane; Tanimoun, Bachir

    2018-06-01

    Hydrological and hydrodynamic models are core tools for simulation of large basins and complex river systems associated to wetlands. Recent studies have pointed towards the importance of online coupling strategies, representing feedbacks between floodplain inundation and vertical hydrology. Especially across semi-arid regions, soil-floodplain interactions can be strong. In this study, we included a two-way coupling scheme in a large scale hydrological-hydrodynamic model (MGB) and tested different model structures, in order to assess which processes are important to be simulated in large semi-arid wetlands and how these processes interact with water budget components. To demonstrate benefits from this coupling over a validation case, the model was applied to the Upper Niger River basin encompassing the Niger Inner Delta, a vast semi-arid wetland in the Sahel Desert. Simulation was carried out from 1999 to 2014 with daily TMPA 3B42 precipitation as forcing, using both in-situ and remotely sensed data for calibration and validation. Model outputs were in good agreement with discharge and water levels at stations both upstream and downstream of the Inner Delta (Nash-Sutcliffe Efficiency (NSE) >0.6 for most gauges), as well as for flooded areas within the Delta region (NSE = 0.6; r = 0.85). Model estimates of annual water losses across the Delta varied between 20.1 and 30.6 km3/yr, while annual evapotranspiration ranged between 760 mm/yr and 1130 mm/yr. Evaluation of model structure indicated that representation of both floodplain channels hydrodynamics (storage, bifurcations, lateral connections) and vertical hydrological processes (floodplain water infiltration into soil column; evapotranspiration from soil and vegetation and evaporation of open water) are necessary to correctly simulate flood wave attenuation and evapotranspiration along the basin. Two-way coupled models are necessary to better understand processes in large semi-arid wetlands. Finally, such coupled hydrologic and hydrodynamic modelling proves to be an important tool for integrated evaluation of hydrological processes in such poorly gauged, large scale basins. We hope that this model application provides new ways forward for large scale model development in such systems, involving semi-arid regions and complex floodplains.

  10. The role of East Asian monsoon system in shaping population divergence and dynamics of a constructive desert shrub Reaumuria soongarica

    PubMed Central

    Yin, Hengxia; Yan, Xia; Shi, Yong; Qian, Chaoju; Li, Zhonghu; Zhang, Wen; Wang, Lirong; Li, Yi; Li, Xiaoze; Chen, Guoxiong; Li, Xinrong; Nevo, Eviatar; Ma, Xiao-Fei

    2015-01-01

    Both of the uplift of Qinghai-Tibet Plateau (QTP) and the development of East Asian monsoon system (EAMS) could have comprehensively impacted the formation and evolution of Arid Central Asia (ACA). To understand how desert plants endemic to ACA responded to these two factors, we profiled the historical population dynamics and distribution range shift of a constructive desert shrub Reaumuria soongarica (Tamaricaceae) based on species wide investigation of sequence variation of chloroplast DNA and nuclear ribosomal ITS. Phylogenetic analysis uncovered a deep divergence occurring at ca. 2.96 Mya between the western and eastern lineages of R. soongarica, and ecological niche modeling analysis strongly supported that the monsoonal climate could have fragmented its habitats in both glacial and interglacial periods and impelled its intraspecific divergence. Additionally, the population from the east monsoonal zone expanded rapidly, suggesting that the local monsoonal climate significantly impacted its population dynamics. The isolation by distance tests supported strong maternal gene flow along the direction of the East Asian winter monsoon, whose intensification induced the genetic admixture along the latitudinal populations of R. soongarica. Our results presented a new case that the development of EAMS had prominently impacted the intraspecific divergence and population dynamics of this desert plant. PMID:26510579

  11. The effect of flight altitude to data quality of fixed-wing UAV imagery: case study in Murcia, Spain

    NASA Astrophysics Data System (ADS)

    Anders, Niels; Keesstra, Saskia; Cammeraat, Erik

    2014-05-01

    Unmanned Aerial System (UAS) are becoming popular tools in the geosciences due to improving technology and processing techniques. They can potentially fill the gap between spaceborne or manned aircraft remote sensing and terrestrial remote sensing, both in terms of spatial and temporal resolution. In this study we tested a fixed-wing Unmanned Aerial System (UAS) for the application of digital landscape analysis. The focus was to analyze the effect of flight altitude and the effect to accuracy and detail of the produced digital elevation models, derived terrain properties and orthophotos. The aircraft was equipped with a Panasonic GX1 16MP pocket camera with 20 mm lens to capture normal JPEG RGB images. Images were processed using Agisoft Photoscan Pro which includes the structure-from-motion and multiview stereopsis algorithms. The test area consisted of small abandoned agricultural fields in semi-arid Murcia in southeastern Spain. The area was severely damaged after a destructive rainfall event, including damaged check dams, rills, deep gully incisions and piping. Results suggest that careful decisions on flight altitude are essential to find a balance between the area coverage, ground sampling distance, UAS ground speed, camera processing speed and the accurate registration of specific soil erosion features of interest.

  12. The Climate Effect of the Topographies at the Northern Margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Sha, Y.; Shi, Z.; Liu, X.

    2017-12-01

    The Tibetan Plateau play a crucial role in the formation and evolution of the Asian monsoon-interior aridity climate system. However, the climate effect of other relatively smaller topographies receives less attention. Based on high-resolved general circulation models, we conducted a series of sensitive experiments as with/without mountains, which include the Mongolian Plateau and the Tian Shan Mountains. The numerical simulations reveal the important impacts of the mountain ranges at the northern margins of the Tibetan Plateau. Compared to the main body of the Tibetan Plateau, the uplift of the Mongolian Plateau is essential for the establishment of the strong Siberian High. The East Asian winter monsoon and the westerly jet over the North Pacific Ocean are also significantly strengthened. At present, the Tian Shan Mountains geographically separate the arid interior Asia to the west and east sub-regions. However, the arid west sub-region (Central Asia) and the east sub-region (arid northwestern China) was connected as one large arid region before the uplift of the Tian Shan Mountains. The large arid interior land shares the same precipitation seasonality, with most rains fall in spring and winter while lowest precipitation in summer. After the uplift of the Tian Shan, the large arid region is divided into the west and east sub-regions by the wetter uplifted mountain ranges. More importantly, the precipitation seasonality in the east of the Tian Shan is reversed to be the summer-peak type, which is opposite to that in the Central Asia. The precipitation alteration corresponds well with the change of vertical motion. By the conservation of potential vorticity, the atmosphere stationary waves are modulated. Thus, the remote East Asian monsoon is also modulated. Though enhanced southerly wind blows over East Asia, the monsoon precipitation over the east coast of China and subtropical western Pacific Ocean is significantly reduced as an anticyclonic circulation appears. The Tian Shan also contributes to the intensification of the East Asian winter monsoon.

  13. The beginning of the Buntsandstein cycle (Early-Middle Triassic) in the Catalan Ranges, NE Spain: Sedimentary and palaeogeographic implications

    NASA Astrophysics Data System (ADS)

    Galán-Abellán, Belén; López-Gómez, José; Barrenechea, José F.; Marzo, Mariano; De la Horra, Raúl; Arche, Alfredo

    2013-10-01

    The Early-Middle Triassic siliciclastic deposits of the Catalan Ranges, NE Spain, are dominated by aeolian sediments indicating a predominance of arid climate during this time span, in sharp contrast with the coeval fluvial sediments found in the Castilian Branch of the Iberian Ranges, 300 km to the SW. The NE-SW-oriented Catalan Basin evolved during the Middle-Late Permian as the result of widespread extension in the Iberian plate. This rift basin was bounded by the Pyrenees, Ebro and Montalbán-Oropesa highs. The Permian-Early Triassic-age sediments of the Catalan Basin were deposited in three isolated subbasins (Montseny, Garraf, Prades), separated by intrabasinal highs, but linked by transversal NW-SE oriented faults. The three subbasins show evidence of diachronic evolution with different subsidence rates and differences in their sedimentary records. The Buntsandstein sedimentary cycle started in the late Early Triassic (Smithian-Spathian) in the central and southern domains (Garraf and Prades), with conglomerates of alluvial fan origin followed by fluvial and aeolian sandstones. Source area of the fluvial sediments was nearby Paleozoic highs to the north and west, in contrast with the far-away source areas of the fluvial sediments in the Iberian Ranges, to the SW. These fluvial systems were interacting with migrating aeolian dune fields located towards the S, which developed in the shadow areas behind the barriers formed by the Paleozoic highs. These highs were separating the subbasins under arid and semi-arid climate conditions. The dominating winds came from the east where the westernmost coast of the Tethys Sea was located, and periods of water run-off and fields of aeolian dunes development alternated. Some of the fluvial systems were probably evaporating as they were mixed into the interdune areas, never reaching the sea. From the end of the Smithian to the Spathian, the Catalan Basin and neighbour peri-Tethys basins of the present-day southern France, Sardinia and Minorca islands constituted a geographical arch where arid and semi-arid conditions represented an extension of the prevailed arid and hyper-arid conditions in surrounding areas of the Variscan Belt. Harsh climatic conditions in this area prevented the life recovery in the aftermath of the Permian-Triassic extinction event until the early Anisian, when more humid climate allowed for the colonisation of the area by plants, amphibians and reptiles. The boundary between desert areas and semi-arid and/or seasonal climate domains during the Smithian-Spathian in SW Europe can be precisely established in NE Iberia, between the Catalan-Ebro region and the Castilian Branch of the Iberian Ranges, to the SW.

  14. Variations in fluvial style in the Westwater Canyon Member, Morrison formation (Jurassic), San Juan basin, Colorado plateau

    USGS Publications Warehouse

    Miall, A.D.; Turner-Peterson, C. E.

    1989-01-01

    Techniques of architectural element analysis and lateral profiling have been applied to the fluvial Westwater Canyon Member of the Morrison Formation (Jurassic) in southern San Juan Basin. On a large scale, the sandstone-body architecture consists mainly of a series of tabular sandstone sheets 5-15 m thick and hundreds of meters wide, separated by thin fine-grained units. Internally these sheets contain lateral accretion surfaces and are cut by channels 10-20 m deep and at least 250 m wide. On a more detailed scale, interpretations made from large-scale photomosaics show a complex of architectural elements and bounding surfaces. Typical indicators of moderate- to high-sinuosity channels (lateral accretion deposits) coexist in the same outcrop with downstream-accreted macroform deposits that are typical of sand flats of low-sinuosity, multiple-channel rivers. Broad, deep channels with gently to steeply dipping margins were mapped in several of the outcrops by carefully tracing major bounding surfaces. Locally thick accumulations of plane-laminated and low-angle cross-laminated sandstone lithofacies suggest rapid flow, probably transitional to upper flow regime conditions. Such a depositional style is most typical of ephemeral rivers or those periodically undergoing major seasonal (or more erratic) stage fluctuations, an interpretation consistent with independent mineralogical evidence of aridity. Fining-upward sequences are rare in the project area, contrary to the descriptions of Campbell (1976). The humid alluvial fan model of Galloway (1978) cannot be substantiated and, similarly, the architectural model of Campbell (1976) requires major revision. Comparisons with the depositional architecture of the large Indian rivers, such as the Ganges and Brahmaputra, still seem reasonable, as originally proposed by Campbell (1976), although there is now convincing evidence for aridity and for major stage fluctuations, which differs both from those modern rivers and Campbell's interpretation. ?? 1989.

  15. The long sediment record of lake Challa: a unique equatorial archive, potentially crucial for understanding early human dispersal

    NASA Astrophysics Data System (ADS)

    Van Daele, Maarten; Moernaut, Jasper; De Batist, Marc; Verschuren, Dirk

    2013-04-01

    Lake Challa (Mt. Kilimanjaro, Kenya/Tanzania) is located in a key site for reconstructing the climate and landscape history of equatorial East Africa and hence, climatic influences on the living environment of early modern humans, Homo sapiens. Seismic-reflection data from this crater lake reveal a ~210-m thick sedimentary infill containing distinct seismic-stratigraphic signatures of late-Quaternary lake-level fluctuations. Extrapolation of a well-constrained age model on the cored upper part of the sequence shows that the signatures of these lake-level fluctuations represent a detailed record of climatic moisture-balance variation in equatorial East Africa, continuous over at least the last 140 kyr and encompassing in total ~250 kyr. The most severe aridity occurred during peak Penultimate glaciation immediately before 130 kyr BP (coeval with Heinrich event 11) and during a Last Interglacial 'megadrought' period between ~115 and ~98 kyr BP; in comparison, Last Glacial Maximum (LGM) aridity was modest. The LGM was preceded by ~75,000 years of relatively stable and moist climate conditions interrupted by eleven short-lived dry spells, five of which match the timing of Heinrich events 2 to 6. Also in the lower part of the sedimentary infill the seismic stratigraphy provides evidence for short-lived dry spells, but artefacts and changes in basin geometry complicate their detailed interpretation and dating, respectively. The ICDP deep-drilling project DeepCHALLA aims to core the entire sedimentary sequence, which will allow reconstructing regional climate and ecological dynamics for the past ~250 kyr, i.e., the entire documented existence of anatomically modern humans in East Africa. Knowledge of climate history in this equatorial region, where the northeasterly and southeasterly monsoons strongly interact, is crucial for documenting the severity and geographical distribution of prolonged drought episodes across tropical Africa, and thus for understanding the early dispersal of modern humans from Africa into Eurasia between ~100,000 and ~50,000 years ago.

  16. The influence of foraging mode and arid adaptation on the basal metabolic rates of burrowing mammals.

    PubMed

    White, Craig R

    2003-01-01

    Two competing but nonexclusive hypotheses to explain the reduced basal metabolic rate (BMR) of mammals that live and forage underground (fossorial species) are examined by comparing this group with burrowing mammals that forage on the surface (semifossorial species). These hypotheses suggest that the low BMR of fossorial species either compensates for the enormous energetic demands of subterranean foraging (the cost-of-burrowing hypothesis) or prevents overheating in closed burrow systems (the thermal-stress hypothesis). Because phylogentically informed allometric analysis showed that arid burrowing mammals have a significantly lower BMR than mesic ones, fossorial and semifossorial species were compared within these groups. The BMRs of mesic fossorial and semifossorial mammals could not be reliably distinguished, nor could the BMRs of large (>77 g) arid fossorial and semifossorial mammals. This finding favours the thermal-stress hypothesis, because the groups appear to have similar BMRs despite differences in foraging costs. However, in support of the cost-of-burrowing hypothesis, small (<77 g) arid fossorial mammals were found to have a significantly lower BMR than semifossorial mammals of the similar size. Given the high mass-specific metabolic rates of small animals, they are expected to be under severe energy and water stress in arid environments. Under such conditions, the greatly reduced BMR of small fossorial species may compensate for the enormous energetic demands of subterranean foraging.

  17. Hydraulic integration and shrub growth form linked across continental aridity gradients.

    Treesearch

    H. Jochen Schenk; Susana Espino; Christine M. Goedhart; Marisa Nordenstahl; Hugo I. Martinez Cabrera; Cynthia S. Jones

    2009-01-01

    Both engineered hydraulic systems and plant hydraulic systems are protected against failure by resistance, reparability, and redundancy. A basic rule of reliability engineering is that the level of...

  18. Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code

    NASA Astrophysics Data System (ADS)

    Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia

    2015-04-01

    Keywords: dessication-crack-induced-salinization, preferential flow, conceptual model, numerical model, vadose zone, vertisols, soil water retention function, HYDRUS 2D/3D Vertisols cover a hydrologically very significant area of semi-arid regions often through which water infiltrates to groundwater aquifers. Understanding of water flow and solute accumulation is thus very relevant to agricultural activity and water resources management. Previous works suggest a conceptual model of dessication-crack-induced-salinization where salinization of sediment in the deep section of the vadose zone (up to 4 m) is induced by subsurface evaporation due to convective air flow in the dessication cracks. It suggests that the salinization is induced by the hydraulic gradient between the dry sediment in the vicinity of cracks (low potential) and the relatively wet sediment further from the main cracks (high potential). This paper presents a modified previously suggested conceptual model and a numerical model. The model uses a simple uniform flow approach but unconventionally prescribes the boundary conditions and the hydraulic parameters of soil. The numerical model is bound to one location close to a dairy farm waste lagoon, but the application of the suggested conceptual model could be possibly extended to all semi-arid regions with vertisols. Simulations were conducted using several modeling approaches with an ultimate goal of fitting the simulation results to the controlling variables measured in the field: temporal variation in water content across thick layer of unsaturated clay sediment (>10 m), sediment salinity and salinity the water draining down the vadose zone to the water table. The development of the model was engineered in several steps; all computed as forward solutions by try-and-error approach. The model suggests very deep instant infiltration of fresh water up to 12 m, which is also supported by the field data. The paper suggests prescribing a special atmospheric boundary to the wall of the crack (so that the solute can accumulate due to evaporation on the crack block wall, and infiltrating fresh water can push the solute further down) - in order to do so, HYDRUS 2D/3D code had to be modified by its developers. Unconventionally, the main fitting parameters were: parameter a and n in the soil water retention curve and saturated hydraulic conductivity. The amount of infiltrated water (within a reasonable range), the infiltration function in the crack and the actual evaporation from the crack were also used as secondary fitting parameters. The model supports the previous findings that significant amount (~90%) of water from rain events must infiltrate through the crack. It was also noted that infiltration from the crack has to be increasing with depth and that the highest infiltration rate should be somewhere between 1-3m. This paper suggests a new way how to model vertisols in semi-arid regions. It also supports the previous findings about vertisols: especially, the utmost importance of soil cracks as preferential pathways for water and contaminants and soil cracks as deep evaporators.

  19. Alkaloid diversity in the leaves of Australian Flindersia (Rutaceae) species driven by adaptation to aridity.

    PubMed

    Robertson, Luke P; Hall, Casey R; Forster, Paul I; Carroll, Anthony R

    2018-05-04

    The genus Flindersia (Rutaceae) comprises 17 species of mostly Australian endemic trees. Although most species are restricted to rainforests, four have evolved to grow in semi-arid and arid environments. In this study, the leaf alkaloid diversity of rainforest and semi-arid/arid zone adapted Australian Flindersia were compared by LC/MS-MS and NMR spectroscopy. Contrary to expectations, Flindersia alkaloid diversity was strongly correlated with environmental aridity, where species predominating in drier regions produced more alkaloids than their wet rainforest congenerics. Rainforest species were also more chemically similar to each other than were the four semi-arid/arid zone species. There was a significant relationship between the presence of alkaloid structural classes and phylogenetic distance, suggesting that alkaloid profiles are influenced by both genetic and environmental factors. The results suggest that the radiation of Flindersia species out of the rainforest and into drier environments has promoted the evolution of unique alkaloid diversity. Plants growing in arid and semi-arid regions of Australia may represent an untapped source of undescribed specialised metabolites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Enhanced aridity and atmospheric high-pressure stability over the western Mediterranean during the North Atlantic cold events of the past 50 k.y.

    NASA Astrophysics Data System (ADS)

    Combourieu Nebout, N.; Turon, J. L.; Zahn, R.; Capotondi, L.; Londeix, L.; Pahnke, K.

    2002-10-01

    Multiproxy paleoenvironmental records (pollen and planktonic isotope) from Ocean Drilling Program Site 976 (Alboran Sea) document rapid ocean and climate variations during the last glacial that follow the Dansgaard-Oeschger climate oscillations seen in the Greenland ice core records, thus suggesting a close link of the Mediterranean climate swings with North Atlantic climates. Continental conditions rapidly oscillated through cold-arid and warm-wet conditions in the course of stadial-interstadial climate jumps. At the time of Heinrich events, i.e., maximum meltwater flux to the North Atlantic, western Mediterranean marine microflora and microfauna show rapid cooling correlated with increasing continental dryness. Enhanced aridity conceivably points to prolonged wintertime stability of atmospheric high-pressure systems over the southwestern Mediterranean in conjunction with cooling of the North Atlantic.

  1. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems

    NASA Astrophysics Data System (ADS)

    Brandt, L. A.; Bohnet, C.; King, J. Y.

    2009-06-01

    We investigated the potential for abiotic mineralization to carbon dioxide (CO2) via photodegradation to account for carbon (C) loss from plant litter under conditions typical of arid ecosystems. We exposed five species of grass and oak litter collected from arid and mesic sites to a factorial design of ultraviolet (UV) radiation (UV pass, UV block), and sterilization under dry conditions in the laboratory. UV pass treatments produced 10 times the amount of CO2 produced in UV block treatments. CO2 production rates were unaffected by litter chemistry or sterilization. We also exposed litter to natural solar radiation outdoors on clear, sunny days close to the summer solstice at midlatitudes and found that UV radiation (280-400 nm) accounted for 55% of photochemically induced CO2 production, while shortwave visible radiation (400-500 nm) accounted for 45% of CO2 production. Rates of photochemically induced CO2 production on a per-unit-mass basis decreased with litter density, indicating that rates depend on litter surface area. We found no evidence for leaching, methane production, or facilitation of microbial decomposition as alternative mechanisms for significant photochemically induced C loss from litter. We conclude that abiotic mineralization to CO2 is the primary mechanism by which C is lost from litter during photodegradation. We estimate that CO2 production via photodegradation could be between 1 and 4 g C m-2 a-1 in arid ecosystems in the southwestern United States. Taken together with low levels of litter production in arid systems, photochemical mineralization to CO2 could account for a significant proportion of annual carbon loss from litter in arid ecosystems.

  2. Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments

    NASA Astrophysics Data System (ADS)

    Jackson, W. Andrew; Böhlke, J. K.; Andraski, Brian J.; Fahlquist, Lynne; Bexfield, Laura; Eckardt, Frank D.; Gates, John B.; Davila, Alfonso F.; McKay, Christopher P.; Rao, Balaji; Sevanthi, Ritesh; Rajagopalan, Srinath; Estrada, Nubia; Sturchio, Neil; Hatzinger, Paul B.; Anderson, Todd A.; Orris, Greta; Betancourt, Julio; Stonestrom, David; Latorre, Claudio; Li, Yanhe; Harvey, Gregory J.

    2015-09-01

    Natural perchlorate (ClO4-) is of increasing interest due to its wide-spread occurrence on Earth and Mars, yet little information exists on the relative abundance of ClO4- compared to other major anions, its stability, or long-term variations in production that may impact the observed distributions. Our objectives were to evaluate the occurrence and fate of ClO4- in groundwater and soils/caliche in arid and semi-arid environments (southwestern United States, southern Africa, United Arab Emirates, China, Antarctica, and Chile) and the relationship of ClO4- to the more well-studied atmospherically deposited anions NO3- and Cl- as a means to understand the prevalent processes that affect the accumulation of these species over various time scales. ClO4- is globally distributed in soil and groundwater in arid and semi-arid regions on Earth at concentrations ranging from 10-1 to 106 μg/kg. Generally, the ClO4- concentration in these regions increases with aridity index, but also depends on the duration of arid conditions. In many arid and semi-arid areas, NO3- and ClO4- co-occur at molar ratios (NO3-/ClO4-) that vary between ∼104 and 105. We hypothesize that atmospheric deposition ratios are largely preserved in hyper-arid areas that support little or no biological activity (e.g. plants or bacteria), but can be altered in areas with more active biological processes including N2 fixation, N mineralization, nitrification, denitrification, and microbial ClO4- reduction, as indicated in part by NO3- isotope data. In contrast, much larger ranges of Cl-/ClO4- and Cl-/NO3- ratios indicate Cl- varies independently from both ClO4- and NO3-. The general lack of correlation between Cl- and ClO4- or NO3- implies that Cl- is not a good indicator of co-deposition and should be used with care when interpreting oxyanion cycling in arid systems. The Atacama Desert appears to be unique compared to all other terrestrial locations having a NO3-/ClO4- molar ratio ∼103. The relative enrichment in ClO4- compared to Cl- or NO3- and unique isotopic composition of Atacama ClO4- may reflect either additional in-situ production mechanism(s) or higher relative atmospheric production rates in that specific region or in the geological past. Elevated concentrations of ClO4- reported on the surface of Mars, and its enrichment with respect to Cl- and NO3-, could reveal important clues regarding the climatic, hydrologic, and potentially biologic evolution of that planet. Given the highly conserved ratio of NO3-/ClO4- in non-biologically active areas on Earth, it may be possible to use alterations of this ratio as a biomarker on Mars and for interpreting major anion cycles and processes on both Mars and Earth, particularly with respect to the less-conserved NO3- pool terrestrially.

  3. Structure and DNA-Binding Sites of the SWI1 AT-rich Interaction Domain (ARID) Suggest Determinants for Sequence-Specific DNA Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Suhkmann; Zhang, Ziming; Upchurch, Sean

    2004-04-16

    2 ARID is a homologous family of DNA-binding domains that occur in DNA binding proteins from a wide variety of species, ranging from yeast to nematodes, insects, mammals and plants. SWI1, a member of the SWI/SNF protein complex that is involved in chromatin remodeling during transcription, contains the ARID motif. The ARID domain of human SWI1 (also known as p270) does not select for a specific DNA sequence from a random sequence pool. The lack of sequence specificity shown by the SWI1 ARID domain stands in contrast to the other characterized ARID domains, which recognize specific AT-rich sequences. We havemore » solved the three-dimensional structure of human SWI1 ARID using solution NMR methods. In addition, we have characterized non-specific DNA-binding by the SWI1 ARID domain. Results from this study indicate that a flexible long internal loop in ARID motif is likely to be important for sequence specific DNA-recognition. The structure of human SWI1 ARID domain also represents a distinct structural subfamily. Studies of ARID indicate that boundary of the DNA binding structural and functional domains can extend beyond the sequence homologous region in a homologous family of proteins. Structural studies of homologous domains such as ARID family of DNA-binding domains should provide information to better predict the boundary of structural and functional domains in structural genomic studies. Key Words: ARID, SWI1, NMR, structural genomics, protein-DNA interaction.« less

  4. Factors influencing local ecological knowledge of forage resources: Ethnobotanical evidence from West Africa's savannas.

    PubMed

    Naah, John-Baptist S N; Guuroh, Reginald T

    2017-03-01

    Recording local ecological knowledge (LEK) is a useful approach to understanding interactions of the complex social-ecological systems. In spite of the recent growing interest in LEK studies on the effects of climate and land use changes, livestock mobility decisions and other aspects of agro-pastoral systems, LEK on forage plants has still been vastly under-documented in the West African savannas. Using a study area ranging from northern Ghana to central Burkina Faso, we thus aimed at exploring how aridity and socio-demographic factors drive the distributional patterns of forage-related LEK among its holders. With stratified random sampling, we elicited LEK among 450 informants in 15 villages (seven in Ghana and eight in Burkina Faso) via free list tasks coupled with ethnobotanical walks and direct field observations. We performed generalized linear mixed-effects models (aridity- and ethnicity-based models) and robust model selection procedures. Our findings revealed that LEK for woody and herbaceous forage plants was strongly influenced by the ethnicity-based model, while aridity-based model performed better for LEK on overall forage resources and crop-related forage plants. We also found that climatic aridity had negative effect on the forage-related LEK across gender and age groups, while agro- and floristic diversity had positive effect on the body of LEK. About 135 species belonging to 95 genera and 52 families were cited. Our findings shed more light on how ethnicity and environmental harshness can markedly shape the body of LEK in the face of global climate change. Better understanding of such a place-based knowledge system is relevant for sustainable forage plants utilization and livestock production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Coupled basin-scale water resource models for arid and semiarid regions

    NASA Astrophysics Data System (ADS)

    Winter, C.; Springer, E.; Costigan, K.; Fasel, P.; Mniewski, S.; Zyvoloski, G.

    2003-04-01

    Managers of semi-arid and arid water resources must allocate increasingly variable surface sources and limited groundwater resources to growing demands. This challenge is leading to a new generation of detailed computational models that link multiple interacting sources and demands. We will discuss a new computational model of arid region hydrology that we are parameterizing for the upper Rio Grande Basin of the United States. The model consists of linked components for the atmosphere (the Regional Atmospheric Modeling System, RAMS), surface hydrology (the Los Alamos Distributed Hydrologic System, LADHS), and groundwater (the Finite Element Heat and Mass code, FEHM), and the couplings between them. The model runs under the Parallel Application WorkSpace software developed at Los Alamos for applications running on large distributed memory computers. RAMS simulates regional meteorology coupled to global climate data on the one hand and land surface hydrology on the other. LADHS generates runoff by infiltration or saturation excess mechanisms, as well as interception, evapotranspiration, and snow accumulation and melt. FEHM simulates variably saturated flow and heat transport in three dimensions. A key issue is to increase the components’ spatial and temporal resolution to account for changes in topography and other rapidly changing variables that affect results such as soil moisture distribution or groundwater recharge. Thus, RAMS’ smallest grid is 5 km on a side, LADHS uses 100 m spacing, while FEHM concentrates processing on key volumes by means of an unstructured grid. Couplings within our model are based on new scaling methods that link groundwater-groundwater systems and streams to aquifers and we are developing evapotranspiration methods based on detailed calculations of latent heat and vegetative cover. Simulations of precipitation and soil moisture for the 1992-93 El Nino year will be used to demonstrate the approach and suggest further needs.

  6. A Framework Predicting Water Availability in a Rapidly Growing, Semi-Arid Region under Future Climate Change

    NASA Astrophysics Data System (ADS)

    Han, B.; Benner, S. G.; Glenn, N. F.; Lindquist, E.; Dahal, K. R.; Bolte, J.; Vache, K. B.; Flores, A. N.

    2014-12-01

    Climate change can lead to dramatic variations in hydrologic regime, affecting both surface water and groundwater supply. This effect is most significant in populated semi-arid regions where water availability are highly sensitive to climate-induced outcomes. However, predicting water availability at regional scales, while resolving some of the key internal variability and structure in semi-arid regions is difficult due to the highly non-linearity relationship between rainfall and runoff. In this study, we describe the development of a modeling framework to evaluate future water availability that captures elements of the coupled response of the biophysical system to climate change and human systems. The framework is built under the Envision multi-agent simulation tool, characterizing the spatial patterns of water demand in the semi-arid Treasure Valley area of Southwest Idaho - a rapidly developing socio-ecological system where urban growth is displacing agricultural production. The semi-conceptual HBV model, a population growth and allocation model (Target), a vegetation state and transition model (SSTM), and a statistically based fire disturbance model (SpatialAllocator) are integrated to simulate hydrology, population and land use. Six alternative scenarios are composed by combining two climate change scenarios (RCP4.5 and RCP8.5) with three population growth and allocation scenarios (Status Quo, Managed Growth, and Unconstrained Growth). Five-year calibration and validation performances are assessed with Nash-Sutcliffe efficiency. Irrigation activities are simulated using local water rights. Results show that in all scenarios, annual mean stream flow decreases as the projected rainfall increases because the projected warmer climate also enhances water losses to evapotranspiration. Seasonal maximum stream flow tends to occur earlier than in current conditions due to the earlier peak of snow melting. The aridity index and water deficit generally increase in the irrigated area. The most sensitive area is along the Boise Foothill which is the transitioning zone from water deficit to water abundant. However, these trends vary significantly between scenarios in space and time. The outcome of the study will serve as a reference for local stakeholders to make decisions on future land use.

  7. Multifrequency passive microwave observations of soil moisture in an arid rangeland environment

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Schmugge, T. J.; Parry, R.; Kustas, W. P.; Ritchie, J. C.; Shutko, A. M.; Khaldin, A.; Reutov, E.; Novichikhin, E.; Liberman, B.

    1992-01-01

    A cooperative experiment was conducted by teams from the U.S. and U.S.S.R. to evaluate passive microwave instruments and algorithms used to estimate surface soil moisture. Experiments were conducted as part of an interdisciplinary experiment in an arid rangeland watershed located in the southwest United States. Soviet microwave radiometers operating at wavelengths of 2.25, 21 and 27 cm were flown on a U.S. aircraft. Radio frequency interference limited usable data to the 2.25 and 21 cm systems. Data have been calibrated and compared to ground observations of soil moisture. These analyses showed that the 21 cm system could produce reliable and useful soil moisture information and that the 2.25 cm system was of no value for soil moisture estimation in this experiment.

  8. Simulated responses of terrestrial aridity to black carbon and sulfate aerosols: LIN: SIMULATED RESPONSES ARIDITY

    DOE PAGES

    Lin, L.; Gettelman, A.; Xu, Y.; ...

    2016-01-27

    Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. Here we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate of 0.9%/°C of globalmore » mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO4-induced PET changes.« less

  9. Synthetic Lethal Therapeutic Approaches for ARID1A-Mutated Ovarian Cancer

    DTIC Science & Technology

    2017-10-01

    formation by the indicated cells (c). (d-f) ARID1A protein expression in parental and ARID1A CRISPR OVCA429 cells (d). Colony formation assay using...ovarian tumor cultures with (VOA4841) and without (XVOA295) ARID1A expression. n=3 independent experiments. (f) Control and ARID1A CRISPR OVCA429 cells

  10. Limited hydrologic response to Pleistocene climate change in deep vadose zones - Yucca Mountain, Nevada

    USGS Publications Warehouse

    Paces, J.B.; Neymark, L.A.; Whelan, J.F.; Wooden, J.L.; Lund, S.P.; Marshall, B.D.

    2010-01-01

    Understanding the movement of water through thick vadose zones, especially on time scales encompassing long-term climate change, is increasingly important as societies utilize semi-arid environments for both water resources and sites viewed as favorable for long-term disposal or storage of hazardous waste. Hydrologic responses to Pleistocene climate change within a deep vadose zone in the eastern Mojave Desert at Yucca Mountain, Nevada, were evaluated by uranium-series dating of finely layered hyalitic opal using secondary ion mass spectrometry. Opal is present within cm-thick secondary hydrogenic mineral crusts coating floors of lithophysal cavities in fractured volcanic rocks at depths of 200 to 300 m below land surface. Uranium concentrations in opal fluctuate systematically between 5 and 550 μg/g. Age-calibrated profiles of uranium concentration correlate with regional climate records over the last 300,000 years and produce time-series spectral peaks that have distinct periodicities of 100- and 41-ka, consistent with planetary orbital parameters. These results indicate that the chemical compositions of percolating solutions varied in response to near-surface, climate-driven processes. However, slow (micrometers per thousand years), relatively uniform growth rates of secondary opal and calcite deposition spanning several glacial–interglacial climate cycles imply that water fluxes in the deep vadose zone remained low and generally buffered from the large fluctuations in available surface moisture during different climates.

  11. Investigating the water balance of on-farm techniques for improved crop productivity in rainfed systems: A case study of Makanya catchment, Tanzania

    NASA Astrophysics Data System (ADS)

    Makurira, H.; Savenije, H. H. G.; Uhlenbrook, S.; Rockström, J.; Senzanje, A.

    Water scarcity is a perennial problem in sub-Saharan agricultural systems where extreme rainfall events dominate agricultural seasons. Dry spell occurrences between and during seasons negatively impact on crop yields especially if such dry spells exceed 14 days. The impact of dry spells is felt more at smallholder farming scales where subsistence farming is the only source of livelihood for many households. This paper presents results from on-going research to improve rainfed water productivity in arid and semi-arid regions. The study site is the Makanya catchment in northern Tanzania where rainfall rarely exceeds 400 mm/season. Rainwater alone is not sufficient to support maize which is the preferred crop. The research introduced new soil and water conservation measures to promote water availability into the root zone. The introduced techniques include deep tillage, runoff diversion, fanya juus (infiltration trenches with bunds) and infiltration pits. The research aims at understanding the effectiveness of these interventions in increasing moisture availability within the root zone. Time domain reflectometry (TDR) was used to measure soil moisture twice weekly at 10 cm depth intervals up to depths of 2 m. Soil moisture fluctuated in the range 5-25% of volume with the beginning of the season recording the driest moisture levels and periods after good rainfall/runoff events recording the highest moisture levels. From the field observations made, a spreadsheet model was developed to simulate soil moisture variations during different maize growth stages. The results obtained show that the zones of greatest soil moisture concentrations are those around the trenches and bunds. Soil moisture is least at the centre of the plots. The study confirms the effectiveness of the introduced techniques to help concentrate the little available rainfall into green water flow paths. Indirect benefits from these improved techniques are the creation of fertile and moist zones around the bunds where supplementary food crops (e.g. bananas and cassava) can be grown even in dry seasons.

  12. Testing a full‐range soil‐water retention function in modeling water potential and temperature

    USGS Publications Warehouse

    Andraski, Brian J.; Jacobson, Elizabeth A.

    2000-01-01

    Recent work has emphasized development of full‐range water‐retention functions that are applicable under both wet and dry soil conditions, but evaluation of such functions in numerical modeling has been limited. Here we show that simulations using the Rossi‐Nimmo (RN) full‐range function compared favorably with those using the common Brooks‐Corey function and that the RN function can improve prediction of water potentials in near‐surface soil, particularly under dry conditions. Simulations using the RN function also improved prediction of temperatures throughout the soil profile. Such improvements could be important for calculations of liquid and vapor flow in near‐surface soils and in deep unsaturated zones of arid and semiarid regions.

  13. Arid and semiarid land stewardship: A 10-year review of accomplishments and contributions of the lnternational Arid Lands Consortium

    Treesearch

    Peter F. Ffolliott; Jeffrey O. Dawson; James T. Fisher; Itshack Moshe; Darrell W. DeBoers; Timothy. E. Fulbright; John Tracy; Abdullah Al Musa; Carter Johnson; Jim P. M. Chamie

    2001-01-01

    The International Arid Lands Consortium (IALC) was established in 1990 to promote research, education, and training activities related to the development, management, and restoration or reclamation of arid and semiarid lands worldwide. The IALC, a leading international organization, supports ecological sustainability and development of arid and semiarid lands. Building...

  14. Repurposing Pan-HDAC Inhibitors for ARID1A-Mutated Ovarian Cancer.

    PubMed

    Fukumoto, Takeshi; Park, Pyoung Hwa; Wu, Shuai; Fatkhutdinov, Nail; Karakashev, Sergey; Nacarelli, Timothy; Kossenkov, Andrew V; Speicher, David W; Jean, Stephanie; Zhang, Lin; Wang, Tian-Li; Shih, Ie-Ming; Conejo-Garcia, Jose R; Bitler, Benjamin G; Zhang, Rugang

    2018-03-27

    ARID1A, a subunit of the SWI/SNF complex, is among the most frequently mutated genes across cancer types. ARID1A is mutated in more than 50% of ovarian clear cell carcinomas (OCCCs), diseases that have no effective therapy. Here, we show that ARID1A mutation confers sensitivity to pan-HDAC inhibitors such as SAHA in ovarian cancers. This correlated with enhanced growth suppression induced by the inhibition of HDAC2 activity in ARID1A-mutated cells. HDAC2 interacts with EZH2 in an ARID1A status-dependent manner. HDAC2 functions as a co-repressor of EZH2 to suppress the expression of EZH2/ARID1A target tumor suppressor genes such as PIK3IP1 to inhibit proliferation and promote apoptosis. SAHA reduced the growth and ascites of the ARID1A-inactivated OCCCs in both orthotopic and genetic mouse models. This correlated with a significant improvement of survival of mice bearing ARID1A-mutated OCCCs. These findings provided preclinical rationales for repurposing FDA-approved pan-HDAC inhibitors for treating ARID1A-mutated cancers. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Fluvial system response to Late Devensian (Weichselian) aridity, Baston, Lincolnshire, England

    NASA Astrophysics Data System (ADS)

    Briant, Rebecca M.; Coope, G. Russell; Preece, Richard C.; Keen, David H.; Boreham, Steve; Griffiths, Huw I.; Seddon, Mary B.; Gibbard, Philip L.

    2004-07-01

    Little is known about the impact of Late Devensian (Weichselian) aridity on lowland British landscapes, largely because they lack the widespread coversand deposits of the adjacent continent. The concentration of large interformational ice-wedge casts in the upper part of many Devensian fluvial sequences suggests that fluvial activity may have decreased considerably during this time. The development of optically stimulated luminescence (OSL) dating enables this period of ice-wedge cast formation to be constrained for the first time in eastern England, where a marked horizon of ice-wedge casts is found between two distinctive dateable facies associations. Contrasts between this horizon and adjacent sediments show clear changes in environment and fluvial system behaviour in response to changing water supply, in line with palaeontological evidence. In addition to providing chronological control on the period of ice-wedge formation, the study shows good agreement of the radiocarbon and OSL dating techniques during the Middle and Late Devensian, with direct comparison of these techniques beyond 15 000 yr for the first time in Britain. It is suggested that aridity during the Late Devensian forced a significant decrease in fluvial activity compared with preceding and following periods, initiating a system with low peak flows and widespread permafrost development. Copyright

  16. Droughts and Excessive Moisture Events in Southern Siberia in the Late XXth - Early XXIst Centuries

    NASA Astrophysics Data System (ADS)

    Ryazanova, A. A.; Voropay, N. N.

    2017-11-01

    In recent years much research has been devoted to global and regional climate changes. Special attention was paid to climate extremes, such as droughts and excessive moisture events. In this study the moisture and aridity of Southern Siberia are estimated using web-GIS called “CLIMATE”. The system “CLIMATE” is part of a hardware and software cloud storage complex for data analysis of various climatic data sets, with algorithms for searching, extracting, processing, and visualizing the data. The ECMWF ERA-Interim reanalysis data for Southern Siberia (50-65°N, 60-120°E) from 1979 to 2010 with a grid cell of 0.75×0.75° is used. Some hydrothermal conditions are estimated using the so-called Ped index (Si), which is a normalized indicator of the ratio of air temperature to precipitation. The mountain regions of Eastern Siberia are becoming more and more arid each month during the last 30 years. In Western Siberia, aridity increases in May and decreases in June, in the other months positive and negative trends are found. The greatest differences between the trends of the aridity index (Si), air temperature, and precipitation are observed in July.

  17. Impact of climate change on acid mine drainage generation and contaminant transport in water ecosystems of semi-arid and arid mining areas

    NASA Astrophysics Data System (ADS)

    Anawar, Hossain Md.

    Disposal of untreated and treated mining wastes and tailings exerts a significant threat and hazard for environmental contamination including groundwater, surface water, wetlands, land, food chain and animals. In order to facilitate remediation techniques, it is important to understand the oxidation of sulfidic minerals, and the hydrolysis of the oxidation products that result in production of acid mine drainage (AMD), toxic metals, low pH, SO42- and Fe. This review has summarized the impacts of climate change on geochemical reactions, AMD generation, and water quality in semi-arid/arid mining environments. Besides this, the study included the effects of hydrological, seasonal and climate change on composition of AMD, contaminant transport in watersheds and restoration of mining sites. Different models have different types of limitations and benefits that control their adaptability and suitability of application in various mining environments. This review has made a comparative discussion of a few most potential and widely used reactive transport models that can be applied to simulate the effect of climate change on sulfide oxidation and AMD production from mining waste, and contaminant transport in surface and groundwater systems.

  18. Aridity increases below-ground niche breadth in grass communities

    USGS Publications Warehouse

    Butterfield, Bradley J.; Bradford, John B.; Munson, Seth M.; Gremer, Jennifer R.

    2017-01-01

    Aridity is an important environmental filter in the assembly of plant communities worldwide. The extent to which root traits mediate responses to aridity, and how they are coordinated with leaf traits, remains unclear. Here, we measured variation in root tissue density (RTD), specific root length (SRL), specific leaf area (SLA), and seed size within and among thirty perennial grass communities distributed along an aridity gradient spanning 190–540 mm of climatic water deficit (potential minus actual evapotranspiration). We tested the hypotheses that traits exhibited coordinated variation (1) among species, as well as (2) among communities varying in aridity, and (3) functional diversity within communities declines with increasing aridity, consistent with the “stress-dominance” hypothesis. Across communities, SLA and RTD exhibited a coordinated response to aridity, shifting toward more conservative (lower SLA, higher RTD) functional strategies with increasing aridity. The response of SRL to aridity was more idiosyncratic and was independent of variation in SLA and RTD. Contrary to the stress-dominance hypothesis, the diversity of SRL values within communities increased with aridity, while none of the other traits exhibited significant diversity responses. These results are consistent with other studies that have found SRL to be independent of an SLA–RTD axis of functional variation and suggest that the dynamic nature of soil moisture in arid environments may facilitate a wider array of resource capture strategies associated with variation in SRL.

  19. Arid Zone Hydrology

    USDA-ARS?s Scientific Manuscript database

    Arid zone hydrology encompasses a wide range of topics and hydro-meteorological and ecological characteristics. Although arid and semi-arid watersheds perform the same functions as those in humid environments, their hydrology and sediment transport characteristics cannot be readily predicted by inf...

  20. Contributions of long-term tillage systems on crop production and soil properties in the semi-arid Loess Plateau of China.

    PubMed

    Niu, Yining; Zhang, Renzhi; Luo, Zhuzhu; Li, Lingling; Cai, Liqun; Li, Guang; Xie, Junhong

    2016-06-01

    This study determined the long-term effect of tillage systems on soil properties and crop yields in a semi-arid environment. Field pea (Pisum sativum L.) and spring wheat (Triticum aestivum L.) were alternately grown in six tillage systems at Dingxi (35° 28' N, 104° 44' E), north-west China starting in 2001. After the first 6 years of experiments, conventional tillage with stubble incorporating (TS) and no-till with stubble cover (NTS) increased soil organic matter by 9.9% and 13.0%, respectively, compared to the conventional tillage with stubble removed (T); both TS and NTS also increased soil microbial counts, available K and P, and total N. No-till with stubble removed (NT), NTS and NTP (no-till with plastic mulching) had 20.7%, 62.6% and 43.7% greater alkaline phosphatase activity compared to the T treatment. Soil catalase, urease and invertase activities were all greater in the no-till treatments than in the T treatment. Averaged across 6 years, both wheat and pea achieved highest grain yields under NTS treatment. No-till with stubble retention is the most promising system for improving soil physical, biological and chemical properties, and increasing crop yields, and thus, this system can be adopted in areas with conditions similar to the semi-arid north-west China. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  1. [The design and implementation of the web typical surface object spectral information system in arid areas based on .NET and SuperMap].

    PubMed

    Xia, Jun; Tashpolat, Tiyip; Zhang, Fei; Ji, Hong-jiang

    2011-07-01

    The characteristic of object spectrum is not only the base of the quantification analysis of remote sensing, but also the main content of the basic research of remote sensing. The typical surface object spectral database in arid areas oasis is of great significance for applied research on remote sensing in soil salinization. In the present paper, the authors took the Ugan-Kuqa River Delta Oasis as an example, unified .NET and the SuperMap platform with SQL Server database stored data, used the B/S pattern and the C# language to design and develop the typical surface object spectral information system, and established the typical surface object spectral database according to the characteristics of arid areas oasis. The system implemented the classified storage and the management of typical surface object spectral information and the related attribute data of the study areas; this system also implemented visualized two-way query between the maps and attribute data, the drawings of the surface object spectral response curves and the processing of the derivative spectral data and its drawings. In addition, the system initially possessed a simple spectral data mining and analysis capabilities, and this advantage provided an efficient, reliable and convenient data management and application platform for the Ugan-Kuqa River Delta Oasis's follow-up study in soil salinization. Finally, It's easy to maintain, convinient for secondary development and practically operating in good condition.

  2. Using NASA`s Airborne Topographic Mapper IV to Quantify Geomorphic Change in Arid Southwestern Stream Systems

    NASA Astrophysics Data System (ADS)

    Finnegan, D. C.; Krabill, W.; Lichvar, R. W.; Ericsson, M. P.; Frederick, E.; Manizade, S.; Yungel, J.; Sonntag, J.; Swift, R.

    2005-12-01

    Understanding how arid stream systems respond to individual climatic events is often difficult given the dynamic and `flashy' nature of most watersheds and the unpredictable nature of individual storm events. Until recently conventional methods for quantifying change dictated the use of stream gauge measurements coupled with periodic cross-section measurements to quantify changes in large-scale channel geometry. Using this approach to quantify change across large areas often proves to be impractical and unattainable given the laborious nature of most surveying techniques including modern GPS systems. Alternately, airborne laser technologies such as NASA's Airborne Topographic Mapper (ATM) are capable of quantifying small-scale changes (~5-10cm) across large-scale terrain rapidly and accurately. The ATM was developed at the NASA-GSFC Wallops Flight Facility. Its current version, ATM-4, measures topography 5,000 times per second across a 45-degree swath below the aircraft by transmitting a 532nm (green) laser pulse and receiving the backscattered signal in a high-speed waveform digitizer. The laser range measurements are combined with aircraft location from GPS and attitude from an inertial navigation system (INS) to provide a precise XYZ coordinate for each (~1-meter diameter) laser footprint on the ground. Our work focuses on the use of airborne laser altimetry to quantify the nature of individual surfaces and the geomorphic change that occurs within small arid stream systems during significant storm events. In September of 2003 and 2005 acquisition surveys using NASA's ATM-IV were flown over Mission Creek, a small arid stream system in Southern California's Mojave Desert with a relatively long gauging history (>40yrs), allowing us to quantify the geomorphic change occurring within the channel as a result of the record storm events during the winter of 2004-2005. Preliminary results associated with our work are encouraging and lead us to believe that when compared to conventional GPS surveys that the accuracy of airborne data is well within the boundaries of data collection necessary for accurate scientific measurements.

  3. Impact of climate change on water balance components in Mediterranean rainfed olive orchards under tillage or cover crop soil management

    NASA Astrophysics Data System (ADS)

    Rodríguez-Carretero, María Teresa; Lorite, Ignacio J.; Ruiz-Ramos, Margarita; Dosio, Alessandro; Gómez, José A.

    2013-04-01

    The rainfed olive orchards in Southern Spain constitute the main socioeconomic system of the Mediterranean Spanish agriculture. These systems have an elevated level of complexity and require the accurate characterization of crop, climate and soil components for a correct management. It is common the inclusion of cover crops (usually winter cereals or natural cover) intercalated between the olive rows in order to reduce water erosion. Saving limited available water requires specific management, mowing or killing these cover crops in early spring. Thus, under the semi-arid conditions in Southern Spain the management of the cover crops in rainfed olive orchards is essential to avoid a severe impact to the olive orchards yield through depletion of soil water. In order to characterize this agricultural system, a complete water balance model has been developed, calibrated and validated for the semi-arid conditions of Southern Spain, called WABOL (Abazi et al., 2013). In this complex and fragile system, the climate change constitutes a huge threat for its sustainability, currently limited by the availability of water resources, and its forecasted reduction for Mediterranean environments in Southern Spain. The objective of this study was to simulate the impact of climate change on the different components of the water balance in these representative double cropping systems: transpiration of the olive orchard and cover crop, runoff, deep percolation and soil water content. Four climatic scenarios from the FP6 European Project ENSEMBLES were first bias corrected for temperatures and precipitation (Dosio and Paruolo, 2011; Dosio et al., 2012) and, subsequently, used as inputs for the WABOL model for five olive orchard fields located in Southern Spain under different conditions of crop, climate, soils and management, in order to consider as much as possible of the variability detected in the Spanish olive orchards. The first results indicate the significant effect of the cover crop on the transpiration of the olive orchard, indicating that a correct water and soil management is crucial for these systems especially under climate change conditions. Thus, a significant reduction of transpiration was detected when the cover crops were implanted. When the climatic conditions were more limited (reductions of around 21% for the annual precipitation and increases around 13% for reference evapotranspiration), the impact on olive orchards were critical, affecting seriously the profitability of the olive orchards. In this context, cover crops can be considered as part of adaptation strategies. Further studies will be required for the determination of optimal species and varieties to be used as cover crops to reduce the impact of climate change on olive orchards under semi-arid conditions. References Abazi U, Lorite IJ, Cárceles B, Martínez-Raya A, Durán VH, Francia JR, Gómez JA (2013) WABOL: A conceptual water balance model for analyzing rainfall water use in olive orchards under different soil and cover crop Management strategies. Computers and Electronics in Agriculture 91:35-48 Dosio A, Paruolo P (2011) Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, V 116, D16106, doi:10.1029/2011JD015934 Dosio A, Paruolo P, Rojas R (2012) Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research, V 117, D17, doi: 10.1029/2012JD017968

  4. Connections between meteorological and hydrological droughts in a semi-arid basin of the middle Yellow River

    NASA Astrophysics Data System (ADS)

    Li, Binquan; Zhu, Changchang; Liang, Zhongmin; Wang, Guoqing; Zhang, Yu

    2018-06-01

    Differences between meteorological and hydrological droughts could reflect the regional water consumption by both natural elements and human water-use. The connections between these two drought types were analyzed using the Standardized Precipitation Evapotranspiration Index (SPEI) and Standardized Streamflow Index (SSI), respectively. In a typical semi-arid basin of the middle Yellow River (Qingjianhe River basin), annual precipitation and air temperature showed significantly downward and upward trends, respectively, with the rates of -2.37 mm yr-1 and 0.03 °C yr-1 (1961-2007). Under their synthetic effects, water balance variable (represented by SPEI) showed obviously downward (drying) trend at both upstream and whole basin areas. For the spatial variability of precipitation, air temperature and the calculated SPEI, both upstream and downstream areas experienced very similar change characteristics. Results also suggested that the Qingjianhe River basin experienced near normal condition during the study period. As a whole, this semi-arid basin mainly had the meteorological drought episodes in the mid-1960s, late-1990s and the 2000s depicted by 12-month SPEI. The drying trend could also be depicted by the hydrological drought index (12-month SSI) at both upstream and downstream stations (Zichang and Yanchuan), but the decreasing trends were not significant. A correlation analysis showed that hydrological system responds rapidly to the change of meteorological conditions in this semi-arid region. This finding could be an useful implication to drought research for those semi-arid basins with intensive human activities.

  5. Land Use and Environmental Variability Impacts on the Phenology of Arid Agro-Ecosystems.

    PubMed

    Romo-Leon, Jose Raul; van Leeuwen, Willem J D; Castellanos-Villegas, Alejandro

    2016-02-01

    The overexploitation of water resources in arid environments often results in abandonment of large extensions of agricultural lands, which may (1) modify phenological trends, and (2) alter the sensitivity of specific phenophases to environmental triggers. In Mexico, current governmental policies subsidize restoration efforts, to address ecological degradation caused by abandonments; however, there is a need for new approaches to assess their effectiveness. Addressing this, we explore a method to monitor and assess (1) land surface phenology trends in arid agro-ecosystems, and (2) the effect of climatic factors and restoration treatments on the phenology of abandoned agricultural fields. We used 16-day normalized difference vegetation index composites from the moderate resolution imaging spectroradiometer from 2000 to 2009 to derive seasonal phenometrics. We then derived phenoclimatic variables and land cover thematic maps, to serve as a set of independent factors that influence vegetation phenology. We conducted a multivariate analysis of variance to analyze phenological trends among land cover types, and developed multiple linear regression models to assess influential climatic factors driving phenology per land cover analyzed. Our results suggest that the start and length of the growing season had different responses to environmental factors depending on land cover type. Our analysis also suggests possible establishment of arid adapted species (from surrounding ecosystems) in abandoned fields with longer times since abandonment. Using this approach, we were able increase our understanding on how climatic factors influence phenology on degraded arid agro-ecosystems, and how this systems evolve after disturbance.

  6. Dynamics of water condensation over arrays of hydrophilic patches

    NASA Astrophysics Data System (ADS)

    Seco-Gudiña, R.; Guadarrama-Cetina, J.; González-Viñas, W.

    2017-04-01

    We report experimental results of drop-wise condensation on a wettability patterned substrate. It consists of a 2-d array of hydrophilic patches/spots on a macroscopically hydrophobic surface. We show that in this kind of system, there is not a relevant humidity sink, but the scale and the closeness of the different patches/spots affect the mechanisms which are important during the experiment. These results may provide clues to obtain higher dew yields in arid or semi-arid regions as a way to obtain potable water.

  7. Identification and functional characterization of a novel bipartite nuclear localization sequence in ARID1A.

    PubMed

    Bateman, Nicholas W; Shoji, Yutaka; Conrads, Kelly A; Stroop, Kevin D; Hamilton, Chad A; Darcy, Kathleen M; Maxwell, George L; Risinger, John I; Conrads, Thomas P

    2016-01-01

    AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Downwind effects on an arid dunefield from an evolving urbanised area

    NASA Astrophysics Data System (ADS)

    Hernández-Calvento, L.; Jackson, D. W. T.; Medina, R.; Hernández-Cordero, A. I.; Cruz, N.; Requejo, S.

    2014-12-01

    The impacts of urbanised zones on aeolian dynamics are little understood, particularly within arid areas. This study examines the large-scale influence of a growing tourist resort in Gran Canaria Island, Spain, on the sedimentary dynamics of an arid dunefield. Direct downwind effects from the urban area on the dune field surface are modelled for pre-growth and post-growth phases of the urban development. The geomorphological changes observed in the area stretching from the shoreline to the inland transgressive dune field were documented through aerial photographic and LiDAR evidence. Impacts of the urban growth on airflow, as well as those induced by tourists in the upper beach zone (de-vegetation), are examined through analysis of topographic changes. These impacts on the system are shown to have been synergistic in driving the development of a composite dune ridge, formed by the coalescence of smaller dunes into a distinctive aeolian accumulation ridge.

  9. Extreme climatic events change the dynamics and invasibility of semi-arid annual plant communities.

    PubMed

    Jiménez, Milagros A; Jaksic, Fabian M; Armesto, Juan J; Gaxiola, Aurora; Meserve, Peter L; Kelt, Douglas A; Gutiérrez, Julio R

    2011-12-01

    Extreme climatic events represent disturbances that change the availability of resources. We studied their effects on annual plant assemblages in a semi-arid ecosystem in north-central Chile. We analysed 130 years of precipitation data using generalised extreme-value distribution to determine extreme events, and multivariate techniques to analyse 20 years of plant cover data of 34 native and 11 exotic species. Extreme drought resets the dynamics of the system and renders it susceptible to invasion. On the other hand, by favouring native annuals, moderately wet events change species composition and allow the community to be resilient to extreme drought. The probability of extreme drought has doubled over the last 50 years. Therefore, investigations on the interaction of climate change and biological invasions are relevant to determine the potential for future effects on the dynamics of semi-arid annual plant communities. 2011 Blackwell Publishing Ltd/CNRS.

  10. Rain-fed agriculture thrived despite climate degradation in the pre-Hispanic arid Andes

    PubMed Central

    Cruz, Pablo; Winkel, Thierry; Ledru, Marie-Pierre; Bernard, Cyril; Egan, Nancy; Swingedouw, Didier; Joffre, Richard

    2017-01-01

    Archaeological research suggests significant human occupation in the arid Andean highlands during the 13th to 15th centuries, whereas paleoclimatic studies reveal prolonged drier and colder conditions during that period. Which subsistence strategy supported local societies in this harsh environment? Our field and aerial surveys of archaeological dwelling sites, granaries, and croplands provide the first evidence of extended pre-Hispanic agriculture supporting dense human populations in the arid Andes of Bolivia. This unique agricultural system associated with quinoa cultivation was unirrigated, consisting of simple yet extensive landscape modifications. It relied on highly specific environmental knowledge and a set of water-saving practices, including microterracing and biennial fallowing. This intense agricultural activity developed during a period of unfavorable climatic change on a regional and global scale, illustrative of efficient adaptive strategies to cope with this climatic change. PMID:29279865

  11. Abacus to determine soils salinity in presence of saline groundwater in arid zones case of the region of Ouargla

    NASA Astrophysics Data System (ADS)

    Fergougui, Myriam Marie El; Benyamina, Hind; Boutoutaou, Djamel

    2018-05-01

    In order to remedy the limit of salt intake to the soil surface, it is necessary to study the causes of the soil salinity and find the origin of these salts. The arid areas in the region of Ouargla lie on excessively mineralized groundwater whose level is near the soil surface (0 - 1.5 m). The topography and absence of a reliable drainage system led to the rise of the groundwater beside the arid climatic conditions contributed to the salinization and hydromorphy of the soils. The progress and stabilization of cultures yields in these areas can only occur if the groundwater is maintained (drained) to a depth of 1.6 m. The results of works done to the determination of soil salinity depend mainly on the groundwater's salinity, its depth and the climate.

  12. Intra-seasonal NDVI change projections in semi-arid Africa

    USGS Publications Warehouse

    Funk, Christopher C.; Brown, Molly E.

    2006-01-01

    Early warning systems (EWS) tend to focus on the identification of slow onset disasters such famine and epidemic disease. Since hazardous environmental conditions often precede disastrous outcomes by many months, effective monitoring via satellite and in situ observations can successfully guide mitigation activities. Accurate short term forecasts of NDVI could increase lead times, making early warning earlier. This paper presents a simple empirical model for making 1 to 4 month NDVI projections. These statistical projections are based on parameterized satellite rainfall estimates (RFE) and relative humidity demand (RHD). A quasi-global, 1 month ahead, 1° study demonstrates reasonable accuracies in many semi-arid regions. In Africa, a 0.1° cross-validated skill assessment quantifies the technique's applicability at 1 to 4 month forecast intervals. These results suggest that useful projections can be made over many semi-arid, food insecure regions of Africa, with plausible extensions to drought prone areas of Asia, Australia and South America.

  13. Antagonistic effects of drought and sand burial enable the survival of the biocrust moss Bryum argenteum in an arid sandy desert

    NASA Astrophysics Data System (ADS)

    Jia, Rongliang; Zhao, Yun; Gao, Yanhong; Hui, Rong; Yang, Haotian; Wang, Zenru; Li, Yixuan

    2018-02-01

    Biocrust moss is an essential soil surface bio-cover. It can represent the latest succession stage among the diverse range of surface-dwelling cryptogams (e.g., cyanobacteria, green algae, and lichen, which are also referred to as biocrusts), and it can make a major contribution to soil stability and fertility in many arid sandy desert ecosystems. The soil surface represents a very large ecological niche that is poikilohydric in nature. Biocrust moss is therefore highly susceptible to drought and sand burial, which are two ubiquitous stressors in arid sandy deserts. However, little information is available regarding the mechanism by which biocrust moss can survive and flourish in these habitats when stressed simultaneously by the two stressors. The combined effects of drought and sand burial were evaluated in a field experiment using the predominant biocrust moss, Bryum argenteum Hedw., in the Tengger Desert, China. Drought was simulated by applying distilled water in three artificial rainfall regimes at 8-day intervals in spring and autumn: 4 and 6 mm (average rainfall, control), 2 and 3 mm (double drought), and 1 and 1.5 mm (4-fold drought), respectively. The effect of sand burial was determined by applying six treatments, i.e., sand depths of 0 (control), 0.5, 1, 2, 4, and 10 mm. The four parameters of chlorophyll a content, PSII photochemical efficiency, regeneration potential, and shoot upgrowth were evaluated in the moss. It was found that the combined effects of drought and sand burial did not exacerbate the single negative effects of the four parameters tested. Drought significantly ameliorated the negative effects of deep-sand burial on the retention of chlorophyll a content, PSII photochemical efficiency, and the regeneration potential of B. argenteum. Sand burial diminished and even reversed the negative effects of drought on the maintenance of chlorophyll a content, PSII photochemical efficiency, and regeneration potential. Although drought and sand burial imposed an additive negative effect on shoot upgrowth, which suggested a trade-off between growth ability and stress tolerance, their mutually antagonistic effect on the physiological vigor of B. argenteum provided an opportunity for the biocrust moss to overcome the two co-occurring stressors. In addition to providing a strong stress tolerance, drought and sand burial may provide an important mechanism for the biodiversity maintenance of biocrust mosses in arid sandy ecosystems.

  14. Spatiotemporal variability of rainfall extremes in monsoonal climates - examples from the South American Monsoon and the Indian Monsoon Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Bookhagen, B.; Boers, N.; Marwan, N.; Malik, N.; Kurths, J.

    2013-12-01

    Monsoonal rainfall is the crucial component for more than half of the world's population. Runoff associated with monsoon systems provide water resources for agriculture, hydropower, drinking-water generation, recreation, and social well-being and are thus a fundamental part of human society. However, monsoon systems are highly stochastic and show large variability on various timescales. Here, we use various rainfall datasets to characterize spatiotemporal rainfall patterns using traditional as well as new approaches emphasizing nonlinear spatial correlations from a complex networks perspective. Our analyses focus on the South American (SAMS) and Indian (ISM) Monsoon Systems on the basis of Tropical Rainfall Measurement Mission (TRMM) using precipitation radar and passive-microwave products with horizontal spatial resolutions of ~5x5 km^2 (products 2A25, 2B31) and 25x25 km^2 (3B42) and interpolated rainfall-gauge data for the ISM (APHRODITE, 25x25 km^2). The eastern slopes of the Andes of South America and the southern front of the Himalaya are characterized by significant orographic barriers that intersect with the moisture-bearing, monsoonal wind systems. We demonstrate that topography exerts a first-order control on peak rainfall amounts on annual timescales in both mountain belts. Flooding in the downstream regions is dominantly caused by heavy rainfall storms that propagate deep into the mountain range and reach regions that are arid and without vegetation cover promoting rapid runoff. These storms exert a significantly different spatial distribution than average-rainfall conditions and assessing their recurrence intervals and prediction is key in understanding flooding for these regions. An analysis of extreme-value distributions of our high-spatial resolution data reveal that semi-arid areas are characterized by low-frequency/high-magnitude events (i.e., are characterized by a ';heavy tail' distribution), whereas regions with high mean annual rainfall have a less skewed distribution. In a second step, an analysis of the spatial characteristics of extreme rainfall synchronicity by means of complex networks reveals patterns of the propagation of extreme rainfall events. These patterns differ substantially from those obtained from the mean annual rainfall distribution. In addition, we have developed a scheme to predict rainfall extreme events in the eastern Central Andes based on event synchronization and spatial patterns of complex networks. The presented methods and result will allow to critically evaluate data and models in space and time.

  15. Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments

    USGS Publications Warehouse

    Jackson, W Andrew; Böhlke, John Karl; Andraski, Brian J.; Fahlquist, Lynne S.; Bexfield, Laura M.; Eckardt, Frank D.; Gates, John B.; Davila, Alfonso F.; McKay, Christopher P.; Rao, Balaji; Sevanthi, Ritesh; Rajagopalan, Srinath; Estrada, Nubia; Sturchio, Neil C.; Hatzinger, Paul B.; Anderson, Todd A.; Orris, Greta J.; Betancourt, Julio L.; Stonestrom, David A.; Latorre, Claudio; Li, Yanhe; Harvey, Gregory J.

    2015-01-01

    Natural perchlorate (ClO4−) is of increasing interest due to its wide-spread occurrence on Earth and Mars, yet little information exists on the relative abundance of ClO4− compared to other major anions, its stability, or long-term variations in production that may impact the observed distributions. Our objectives were to evaluate the occurrence and fate of ClO4− in groundwater and soils/caliche in arid and semi-arid environments (southwestern United States, southern Africa, United Arab Emirates, China, Antarctica, and Chile) and the relationship of ClO4− to the more well-studied atmospherically deposited anions NO3−and Cl− as a means to understand the prevalent processes that affect the accumulation of these species over various time scales. ClO4− is globally distributed in soil and groundwater in arid and semi-arid regions on Earth at concentrations ranging from 10−1to 106 μg/kg. Generally, the ClO4− concentration in these regions increases with aridity index, but also depends on the duration of arid conditions. In many arid and semi-arid areas, NO3− and ClO4− co-occur at molar ratios (NO3−/ClO4−) that vary between ∼104and 105. We hypothesize that atmospheric deposition ratios are largely preserved in hyper-arid areas that support little or no biological activity (e.g. plants or bacteria), but can be altered in areas with more active biological processes including N2 fixation, N mineralization, nitrification, denitrification, and microbial ClO4− reduction, as indicated in part by NO3− isotope data. In contrast, much larger ranges of Cl−/ClO4− and Cl−/NO3−ratios indicate Cl− varies independently from both ClO4− and NO3−. The general lack of correlation between Cl− and ClO4− or NO3− implies that Cl− is not a good indicator of co-deposition and should be used with care when interpreting oxyanion cycling in arid systems. The Atacama Desert appears to be unique compared to all other terrestrial locations having a NO3−/ClO4− molar ratio ∼103. The relative enrichment in ClO4−compared to Cl− or NO3− and unique isotopic composition of Atacama ClO4− may reflect either additional in-situ production mechanism(s) or higher relative atmospheric production rates in that specific region or in the geological past. Elevated concentrations of ClO4− reported on the surface of Mars, and its enrichment with respect to Cl− and NO3−, could reveal important clues regarding the climatic, hydrologic, and potentially biologic evolution of that planet. Given the highly conserved ratio of NO3−/ClO4− in non-biologically active areas on Earth, it may be possible to use alterations of this ratio as a biomarker on Mars and for interpreting major anion cycles and processes on both Mars and Earth, particularly with respect to the less-conserved NO3− pool terrestrially.

  16. Multiphase, multicomponent parameter estimation for liquid and vapor fluxes in deep arid systems using hydrologic data and natural environmental tracers

    USGS Publications Warehouse

    Kwicklis, Edward M.; Wolfsberg, Andrew V.; Stauffer, Philip H.; Walvoord, Michelle Ann; Sully, Michael J.

    2006-01-01

    Multiphase, multicomponent numerical models of long-term unsaturated-zone liquid and vapor movement were created for a thick alluvial basin at the Nevada Test Site to predict present-day liquid and vapor fluxes. The numerical models are based on recently developed conceptual models of unsaturated-zone moisture movement in thick alluvium that explain present-day water potential and tracer profiles in terms of major climate and vegetation transitions that have occurred during the past 10 000 yr or more. The numerical models were calibrated using borehole hydrologic and environmental tracer data available from a low-level radioactive waste management site located in a former nuclear weapons testing area. The environmental tracer data used in the model calibration includes tracers that migrate in both the liquid and vapor phases (??D, ??18O) and tracers that migrate solely as dissolved solutes (Cl), thus enabling the estimation of some gas-phase as well as liquid-phase transport parameters. Parameter uncertainties and correlations identified during model calibration were used to generate parameter combinations for a set of Monte Carlo simulations to more fully characterize the uncertainty in liquid and vapor fluxes. The calculated background liquid and vapor fluxes decrease as the estimated time since the transition to the present-day arid climate increases. However, on the whole, the estimated fluxes display relatively little variability because correlations among parameters tend to create parameter sets for which changes in some parameters offset the effects of others in the set. Independent estimates on the timing since the climate transition established from packrat midden data were essential for constraining the model calibration results. The study demonstrates the utility of environmental tracer data in developing numerical models of liquid- and gas-phase moisture movement and the importance of considering parameter correlations when using Monte Carlo analysis to characterize the uncertainty in moisture fluxes. ?? Soil Science Society of America.

  17. Evaluation of meteorites as habitats for terrestrial microorganisms: Results from the Nullarbor Plain, Australia, a Mars analogue site

    NASA Astrophysics Data System (ADS)

    Tait, Alastair W.; Wilson, Siobhan A.; Tomkins, Andrew G.; Gagen, Emma J.; Fallon, Stewart J.; Southam, Gordon

    2017-10-01

    Unambiguous identification of biosignatures on Mars requires access to well-characterized, long-lasting geochemical standards at the planet's surface that can be modified by theoretical martian life. Ordinary chondrites, which are ancient meteorites that commonly fall to the surface of Mars and Earth, have well-characterized, narrow ranges in trace element and isotope geochemistry compared to martian rocks. Given that their mineralogy is more attractive to known chemolithotrophic life than the basaltic rocks that dominate the martian surface, exogenic rocks (e.g., chondritic meteorites) may be good places to look for signs of prior life endemic to Mars. In this study, we show that ordinary chondrites, collected from the arid Australian Nullarbor Plain, are commonly colonized and inhabited by terrestrial microorganisms that are endemic to this Mars analogue site. These terrestrial endolithic and chasmolithic microbial contaminants are commonly found in close association with hygroscopic veins of gypsum and Mg-calcite, which have formed within cracks penetrating deep into the meteorites. Terrestrial bacteria are observed within corrosion cavities, where troilite (FeS) oxidation has produced jarosite [KFe3(SO4)2(OH)6]. Where terrestrial microorganisms have colonized primary silicate minerals and secondary calcite, these mineral surfaces are heavily etched. Our results show that inhabitation of meteorites by terrestrial microorganisms in arid environments relies upon humidity and pH regulation by minerals. Furthermore, microbial colonization affects the weathering of meteorites and production of sulfate, carbonate, Fe-oxide and smectite minerals that can preserve chemical and isotopic biosignatures for thousands to millions of years on Earth. Meteorites are thus habitable by terrestrial microorganisms, even under highly desiccating environmental conditions of relevance to Mars. They may therefore be useful as chemical and isotopic ;standards; that preserve evidence of life, thereby providing the possibility of universal context for recognition of microbial biosignatures on Earth, Mars and throughout the solar system.

  18. The role of upland wetlands in modulating snowmelt runoff in the semi-arid Andes

    NASA Astrophysics Data System (ADS)

    Hevia, Andres; Sproles, Eric; Soulsby, Chris; Tetzlaff, Doerthe

    2016-04-01

    The wetlands, or bofedales, of semi-arid northern central Chile (29°-32°S) provide a critical store of water that modulate spring snowmelt runoff. Water released from bofedales helps sustain flows throughout the dry portions of the year, providing fresh water to downstream residents and a robust tourist, agricultural, and mining economy. In the Río Claro watershed (30°S, 1515 km2, 800m to 5500 m a.s.l.) a series fourteen bofedales have formed at natural choke points in the valley bottoms of the headwater reaches. The highly erosive dynamic of this watershed provides ample sediment, and some of these bofedales are up to 30 m deep. Annual precipitation in the region is limited to 4-6 events annually that fall primarily as snow at elevations above 3500 m. The subsurface storage of the headwaters is limited by the steep terrain of the headwater catchments that are devoid of soils and primarily underlain by granite bedrock. Downstream, irrigated area has increased by 200% between 1985 and 2005, driven by the cultivation of table grapes for export. For over 70 years local water managers have flooded the bodfedales during spring runoff to augment late season flow when irrigation demand peaks. While this low-tech strategy has worked in the past, a recent 8-year drought has raised concerns over long-term water security. We apply geophysical and geographic measurements, water quality, and stable isotopic tracers to calculate the volume of water storage and residence times in the bofedales of Río Claro. This information will be used to evaluate the reliability of the bofedale system as compared to a proposed reservoir in the headwaters of the Río Claro. Additionally, estimating the storage and residence times of the will help reduce uncertainty for modeling efforts currently underway in Río Claro.

  19. Distribution of ticks infesting ruminants and risk factors associated with high tick prevalence in livestock farms in the semi-arid and arid agro-ecological zones of Pakistan.

    PubMed

    Rehman, Abdul; Nijhof, Ard M; Sauter-Louis, Carola; Schauer, Birgit; Staubach, Christoph; Conraths, Franz J

    2017-04-19

    Tick infestation is the major problem for animal health that causes substantial economic losses, particularly in tropical and subtropical countries. To better understand the spatial distribution of tick species and risk factors associated with tick prevalence in livestock in Pakistan, ticks were counted and collected from 471 animals, including 179 cattle, 194 buffaloes, 80 goats and 18 sheep, on 108 livestock farms in nine districts, covering both semi-arid and arid agro-ecological zones. In total, 3,807 ticks representing four species were collected: Hyalomma anatolicum (n = 3,021), Rhipicephalus microplus (n = 715), Hyalomma dromedarii (n = 41) and Rhipicephalus turanicus (n = 30). The latter species is reported for the first time from the study area. Rhipicephalus microplus was the predominant species in the semi-arid zone, whereas H. anatolicum was the most abundant species in the arid zone. The overall proportion of tick-infested ruminants was 78.3% (369/471). It was highest in cattle (89.9%), followed by buffaloes (81.4%), goats (60.0%) and sheep (11.1%). The median tick burden significantly differed among animal species and was highest in cattle (median 58), followed by buffaloes (median 38), goats (median 19) and sheep (median 4.5). Female animals had significantly higher tick burdens than males and, in large ruminants, older animals carried more ticks than younger animals. The intensity of infestation was significantly lower in indigenous animals compared to exotic and crossbred cows. Analysis of questionnaire data revealed that the absence of rural poultry, not using any acaricides, traditional rural housing systems and grazing were potential risk factors associated with a higher tick prevalence in livestock farms. Absence of rural poultry, not performing acaricide treatments, traditional rural housing systems and grazing were important risk factors associated with higher tick prevalence in livestock farms. Age, gender, breed and animal species significantly affected the intensity of tick infestation. This report also describes the presence of R. turanicus in the Punjab Province of Pakistan for the first time. The outcomes of this study will be useful in the planning of integrated control strategies for ticks and tick-borne diseases in Pakistan.

  20. An example of aerosol pattern variability over bright surface using high resolution MODIS MAIAC: The eastern and western areas of the Dead Sea and environs.

    PubMed

    Lee, Sever; Pinhas, Alpert; Alexei, Lyapustin; Yujie, Wang; Alexandra, Chudnovsky A

    2017-09-01

    The extreme rate of evaporation of the Dead Sea (DS) has serious implicatios for the surrounding area, including atmospheric conditions. This study analyzes the aerosol properties over the western and eastern parts of the DS during the year 2013, using MAIAC (Multi-Angle Implementation of Atmospheric Correction) for MODIS, which retrieves aerosol optical depth (AOD) data at a resolution of 1km. The main goal of the study is to evaluate MAIAC over the study area and determine, for the first time, the prevailing aerosol spatial patterns. First, the MAIAC-derived AOD data was compared with data from three nearby AERONET sites (Nes Ziona - an urban site, and Sede Boker and Masada - two arid sites), and with the conventional Dark Target (DT) and Deep Blue (DB) retrievals for the same days and locations, on a monthly basis throughout 2013. For the urban site, the correlation coefficient (r) for DT/DB products showed better performance than MAIAC (r=0.80, 0.75, and 0.64 respectively) year-round. However, in the arid zones, MAIAC showed better correspondence to AERONET sites than the conventional retrievals (r=0.58-0.60 and 0.48-0.50 respectively). We investigated the difference in AOD levels, and its variability, between the Dead Sea coasts on a seasonal basis and calculated monthly/seasonal AOD averages for presenting AOD patterns over arid zones. Thus, we demonstrated that aerosol concentrations show a strong preference for the western coast, particularly during the summer season. This preference, is most likely a result of local anthropogenic emissions combined with the typical seasonal synoptic conditions, the Mediterranean Sea breeze, and the region complex topography. Our results also indicate that a large industrial zone showed higher AOD levels compared to an adjacent reference-site, i.e., 13% during the winter season.

  1. Interaction between seed dormancy-release mechanism, environment and seed bank strategy for a widely distributed perennial legume, Parkinsonia aculeata (Caesalpinaceae).

    PubMed

    Van Klinken, Rieks D; Lukitsch, Bert; Cook, Carly

    2008-08-01

    Parkinsonia aculeata (Caesalpinaceae) is a perennial legume with seeds that have hard-seeded (physical) dormancy and are potentially very long-lived. Seed dormancy is a characteristic that can both help maximize the probability of seedling establishment and spread the risk of recruitment failure across years (bet-hedging). In this study, dormancy-release patterns are described across the diverse environments in which this species occurs in order to test whether wet heat (incubation under wet, warm-to-hot, conditions) alone can explain those patterns, and in order to determine the likely ecological role of physical dormancy across this species distribution. A seed burial trial was conducted across the full environmental distribution of P. aculeata in Australia (arid to wet-dry tropics, uplands to wetlands, soil surface to 10 cm deep). Wet heat explained the pattern of dormancy release across all environments. Most seeds stored in the laboratory remained dormant throughout the trial (at least 84 %). Dormancy release was quickest for seeds buried during the wet season at relatively high rainfall, upland sites (only 3 % of seeds remained dormant after 35 d). The longest-lived seeds were in wetlands (9 % remained dormant after almost 4 years) and on the soil surface (57 % after 2 years). There was no consistent correlation between increased aridity and rate of dormancy release. The results suggest that physical dormancy in P. aculeata is a mechanism for maximizing seedling establishment rather than a bet-hedging strategy. However, seed persistence can occur in environmental refuges where dormancy-release cues are weak and conditions for germination and establishment are poor (e.g. under dense vegetation or in more arid micro-environments) or unsuitable (e.g. when seeds are inundated or on the soil surface). Risks of recruitment failure in suboptimal environments could therefore be reduced by inter-year fluctuations in microclimate or seed movement.

  2. Elevated CO2 does not offset greater water stress predicted under climate change for native and exotic riparian plants

    USGS Publications Warehouse

    Perry, Laura G.; Shafroth, Patrick B.; Blumenthal, Dana M.; Morgan, Jack A.; LeCain, Daniel R.

    2013-01-01

    In semiarid western North American riparian ecosystems, increased drought and lower streamflows under climate change may reduce plant growth and recruitment, and favor drought-tolerant exotic species over mesic native species. We tested whether elevated atmospheric CO2 might ameliorate these effects by improving plant water-use efficiency. We examined the effects of CO2 and water availability on seedlings of two native (Populus deltoids spp. monilifera, Salix exigua) and three exotic (Elaeagnus angustifolia, Tamarix spp., Ulmus pumila) western North American riparian species in a CO2-controlled glasshouse, using 1-m-deep pots with different water-table decline rates. Low water availability reduced seedling biomass by 70–97%, and hindered the native species more than the exotics. Elevated CO2 increased biomass by 15%, with similar effects on natives and exotics. Elevated CO2 increased intrinsic water-use efficiency (Δ13Cleaf), but did not increase biomass more in drier treatments than wetter treatments. The moderate positive effects of elevated CO2 on riparian seedlings are unlikely to counteract the large negative effects of increased aridity projected under climate change. Our results suggest that increased aridity will reduce riparian seedling growth despite elevated CO2, and will reduce growth more for native Salix and Populus than for drought-tolerant exotic species.

  3. Elevated CO2 does not offset greater water stress predicted under climate change for native and exotic riparian plants

    USGS Publications Warehouse

    Perry, Laura G.; Shafroth, Patrick B.; Blumenthal, Dana M.; Morgan, Jack A.; LeCain, Daniel R.

    2013-01-01

    * In semiarid western North American riparian ecosystems, increased drought and lower streamflows under climate change may reduce plant growth and recruitment, and favor drought-tolerant exotic species over mesic native species. We tested whether elevated atmospheric CO2 might ameliorate these effects by improving plant water-use efficiency. * We examined the effects of CO2 and water availability on seedlings of two native (Populus deltoides spp. monilifera, Salix exigua) and three exotic (Elaeagnus angustifolia, Tamarix spp., Ulmus pumila) western North American riparian species in a CO2-controlled glasshouse, using 1-m-deep pots with different water-table decline rates. * Low water availability reduced seedling biomass by 70–97%, and hindered the native species more than the exotics. Elevated CO2 increased biomass by 15%, with similar effects on natives and exotics. Elevated CO2 increased intrinsic water-use efficiency (Δ13Cleaf), but did not increase biomass more in drier treatments than wetter treatments. * The moderate positive effects of elevated CO2 on riparian seedlings are unlikely to counteract the large negative effects of increased aridity projected under climate change. Our results suggest that increased aridity will reduce riparian seedling growth despite elevated CO2, and will reduce growth more for native Salix and Populus than for drought-tolerant exotic species.

  4. Elevated CO₂ does not offset greater water stress predicted under climate change for native and exotic riparian plants.

    PubMed

    Perry, Laura G; Shafroth, Patrick B; Blumenthal, Dana M; Morgan, Jack A; LeCain, Daniel R

    2013-01-01

    In semiarid western North American riparian ecosystems, increased drought and lower streamflows under climate change may reduce plant growth and recruitment, and favor drought-tolerant exotic species over mesic native species. We tested whether elevated atmospheric CO₂ might ameliorate these effects by improving plant water-use efficiency. We examined the effects of CO₂ and water availability on seedlings of two native (Populus deltoides spp. monilifera, Salix exigua) and three exotic (Elaeagnus angustifolia, Tamarix spp., Ulmus pumila) western North American riparian species in a CO₂-controlled glasshouse, using 1-m-deep pots with different water-table decline rates. Low water availability reduced seedling biomass by 70-97%, and hindered the native species more than the exotics. Elevated CO₂ increased biomass by 15%, with similar effects on natives and exotics. Elevated CO₂ increased intrinsic water-use efficiency (Δ¹³C(leaf) ), but did not increase biomass more in drier treatments than wetter treatments. The moderate positive effects of elevated CO₂ on riparian seedlings are unlikely to counteract the large negative effects of increased aridity projected under climate change. Our results suggest that increased aridity will reduce riparian seedling growth despite elevated CO₂, and will reduce growth more for native Salix and Populus than for drought-tolerant exotic species. No claim to original US government works. New Phytologist © 2012 New Phytologist Trust.

  5. Application of phytoscreening to three hazardous waste sites in Arizona.

    PubMed

    Duncan, Candice M; Mainhagu, Jon; Virgone, Kayla; Ramírez, Denise Moreno; Brusseau, Mark L

    2017-12-31

    The great majority of prior phytoscreening applications have been conducted in humid and temperate environments wherein groundwater is relatively shallow (~1-6m deep). The objective of this research is to evaluate its use in semi-arid environments for sites with deeper groundwater (>10m). To that end, phytoscreening is applied to three chlorinated-solvent hazardous-waste sites in Arizona. Contaminant concentrations were quantifiable in tree-tissue samples collected from two of the sites (Nogales, Park-Euclid). Contaminant concentrations were detectable, but not quantifiable, for the third site. Tree-tissue concentrations of tetrachloroethene (PCE) ranged from approximately 400-5000ug/kg wet weight for burrobrush, cottonwood, palo verde, and velvet mesquite at the Nogales site. In addition to standard trunk-core samples, leaf samples were collected to test the effectiveness of a less invasive sampling method. Leaf-sample concentrations were quantifiable, but several times lower than the corresponding core-sample concentrations. Comparison of results obtained for the test sites to those reported in the literature suggest that tree species is a major factor mediating observed results. One constraint faced for the Arizona sites was the relative scarcity of mature trees available for sampling, particularly in areas adjacent to industrial zones. The results of this study illustrate that phytoscreening can be used effectively to characterize the presence of groundwater contamination for semi-arid sites with deeper groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Strontium source and depth of uptake shifts with substrate age in semiarid ecosystems

    NASA Astrophysics Data System (ADS)

    Coble, Ashley A.; Hart, Stephen C.; Ketterer, Michael E.; Newman, Gregory S.; Kowler, Andrew L.

    2015-06-01

    Without exogenous rock-derived nutrient sources, terrestrial ecosystems may eventually regress or reach a terminal steady state, but the degree to which exogenous nutrient sources buffer or slow to a theoretical terminal steady state remains unclear. We used strontium isotope ratios (87Sr/86Sr) as a tracer and measured 87Sr/86Sr values in aeolian dust, soils, and vegetation across a well-constrained 3 Myr semiarid substrate age gradient to determine (1) whether the contribution of atmospheric sources of rock-derived nutrients to soil and vegetation pools varied with substrate age and (2) to determine if the depth of uptake varied with substrate age. We found that aeolian-derived nutrients became increasingly important, contributing as much as 71% to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of ecosystem development in a semiarid climate. The depth of nutrient uptake increased on older substrates, demonstrating that trees in arid regions can acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results demonstrate that global and regional aeolian transport of nutrients to local ecosystems is a vital process for ecosystem development in arid regions. Furthermore, these aeolian nutrient inputs contribute to deep soil nutrient pools, which become increasingly important for maintaining plant productivity over long time scales.

  7. Effects of legume species introduction on vegetation and soil nutrient development on abandoned croplands in a semi-arid environment on the Loess Plateau, China.

    PubMed

    Yuan, Zi-Qiang; Yu, Kai-Liang; Epstein, Howard; Fang, Chao; Li, Jun-Ting; Liu, Qian-Qian; Liu, Xue-Wei; Gao, Wen-Juan; Li, Feng-Min

    2016-01-15

    Revegetation facilitated by legume species introduction has been used for soil erosion control on the Loess Plateau, China. However, it is still unclear how vegetation and soil resources develop during this restoration process, especially over the longer term. In this study, we investigated the changes of plant aboveground biomass, vegetation cover, species richness and density of all individuals, and soil total nitrogen, mineral nitrogen, total phosphorus and available phosphorus over 11 years from 2003 to 2013 in three treatments (natural revegetation, Medicago sativa L. introduction and Melilotus suaveolens L. introduction) on the semi-arid Loess Plateau. Medicago significantly increased aboveground biomass and vegetation cover, and soil total nitrogen and mineral nitrogen contents. The Medicago treatment had lower species richness and density of all individuals, lower soil moisture in the deep soil (i.e., 1.4-5m), and lower soil available phosphorus. Melilotus introduction significantly increased aboveground biomass in only the first two years, and it was not an effective approach to improve vegetation biomass and cover, and soil nutrients, especially in later stages of revegetation. Overall, our study suggests that M. sativa can be the preferred plant species for revegetation of degraded ecosystems on the Loess Plateau, although phosphorus fertilizer should be applied for the sustainability of the revegetation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Relevance of ammonium oxidation within biological soil crust communities

    USGS Publications Warehouse

    Johnson, S.L.; Budinoff, C.R.; Belnap, J.; Garcia-Pichel, F.

    2005-01-01

    Thin, vertically structured topsoil communities that become ecologically important in arid regions (biological soil crusts or BSCs) are responsible for much of the nitrogen inputs into pristine arid lands. We studied N2 fixation and ammonium oxidation (AO) at subcentimetre resolution within BSCs from the Colorado Plateau. Pools of dissolved porewater nitrate/ nitrite, ammonium and organic nitrogen in wetted BSCs were high in comparison with those typical of aridosoils. They remained stable during incubations, indicating that input and output processes were of similar magnitude. Areal N2 fixation rates (6.5-48 ??mol C2H2 m-2 h -1) were high, the vertical distribution of N2 fixation peaking close to the surface if populations of heterocystous cyanobacteria were present, but in the subsurface if they were absent. Areal AO rates (19-46 ??mol N m-2 h-1) were commensurate with N2 fixation inputs. When considering oxygen availability, AO activity invariably peaked 2-3 mm deep and was limited by oxygen (not ammonium) supply. Most probable number (MPN)-enumerated ammonia-oxidizing bacteria (6.7-7.9 ?? 103 cells g-1 on average) clearly peaked at 2-3 mm depth. Thus, AO (hence nitrification) is a spatially restricted but important process in the nitrogen cycling of BSC, turning much of the biologically fixed nitrogen into oxidized forms, the fate of which remains to be determined.

  9. Application of Phytoscreening to Three Hazardous Waste Sites in Arizona

    NASA Astrophysics Data System (ADS)

    Duncan, C.

    2017-12-01

    The great majority of prior phytoscreening applications have been conducted in humid and temperate environments wherein groundwater is relatively shallow ( 1-6m deep). The objective of this research is to evaluate its use in semi-arid environments for sites with deeper groundwater (>10 m). To that end, phytoscreening is applied to three chlorinated-solvent hazardous-waste sites in Arizona. Contaminant concentrations were quantifiable in tree-tissue samples collected from two of the sites (Nogales, Park-Euclid). Contaminant concentrations were detectable, but not quantifiable, for the third site. Tree-tissue concentrations of tetrachloroethene (PCE) ranged from approximately 400-5000 ug/kg wet weight for burrobrush, cottonwood, palo verde, and velvet mesquite at the Nogales site. In addition to standard trunk-core samples, leaf samples were collected to test the effectiveness of a less invasive sampling method. Leaf-sample concentrations were quantifiable, but several times lower than the corresponding core-sample concentrations. Comparison of results obtained for the test sites to those reported in the literature suggest that tree species is amajor factormediating observed results. One constraint faced for the Arizona siteswas the relative scarcity of mature trees available for sampling, particularly in areas adjacent to industrial zones. The results of this study illustrate that phytoscreening can be used effectively to characterize the presence of groundwater contamination for semi-arid sites with deeper groundwater.

  10. Prognostic role and implications of mutation status of tumor suppressor gene ARID1A in cancer: a systematic review and meta-analysis

    PubMed Central

    Luchini, Claudio; Veronese, Nicola; Solmi, Marco; Cho, Hanbyoul; Kim, Jae-Hoon; Chou, Angela; Gill, Anthony J.; Faraj, Sheila F.; Chaux, Alcides; Netto, George J.; Nakayama, Kentaro; Kyo, Satoru; Lee, Soo Young; Kim, Duck-Woo; Yousef, George M.; Scorilas, Andreas; Nelson, Gregg S.; Köbel, Martin; Kalloger, Steve E.; Schaeffer, David F.; Yan, Hai-Bo; Liu, Feng; Yokoyama, Yoshihito; Zhang, Xianyu; Pang, Da; Lichner, Zsuzsanna; Sergi, Giuseppe; Manzato, Enzo; Capelli, Paola; Wood, Laura D.; Scarpa, Aldo; Correll, Christoph U.

    2015-01-01

    Loss of the tumor suppressor gene AT-rich interactive domain-containing protein 1A (ARID1A) has been demonstrated in several cancers, but its prognostic role is unknown. We aimed to investigate the risk associated with loss of ARID1A (ARID1A−) for all-cause mortality, cancer-specific mortality and recurrence of disease in subjects with cancer. PubMed and SCOPUS search from database inception until 01/31/2015 without language restriction was conducted, contacting authors for unpublished data. Eligible were prospective studies reporting data on prognostic parameters in subjects with cancer, comparing participants with presence of ARID1A (ARID1A+) vs. ARID1A−, assessed either via immunohistochemistry (loss of expression) or with genetic testing (presence of mutation). Data were summarized using risk ratios (RR) for number of deaths/recurrences and hazard ratios (HR) for time-dependent risk related to ARID1A− adjusted for potential confounders. Of 136 hits, 25 studies with 5,651 participants (28 cohorts; ARID1A−: n = 1,701; ARID1A+: n = 3,950), with a mean follow-up period of 4.7 ± 1.8 years, were meta-analyzed. Compared to ARID1A+, ARID1A− significantly increased cancer-specific mortality (studies = 3; RR = 1.55, 95% confidence interval (CI) = 1.19–2.00, I2 = 31%). Using HRs adjusted for potential confounders, ARID1A− was associated with a greater risk of cancer-specific mortality (studies = 2; HR = 2.55, 95%CI = 1.19–5.45, I2 = 19%) and cancer recurrence (studies = 10; HR = 1.93, 95%CI = 1.22–3.05, I2 = 76%). On the basis of these results, we have demonstrated that loss of ARID1A shortened time to cancer-specific mortality, and to recurrence of cancer when adjusting for potential confounders. For its role, this gene should be considered as an important potential target for personalized medicine in cancer treatment. PMID:26384299

  11. Decomposition of standing litter in arid grasslands: Interactions between sunlight, non-rainfall moisture, microbes, and plant traits

    NASA Astrophysics Data System (ADS)

    Logan, J. R. V.; Jacobson, P. J.; Jacobson, K. M.; Evans, S.

    2017-12-01

    Although arid lands make up 40% of the Earth's land surface, we still lack a strong understanding of carbon cycling and plant decomposition in these systems. One reason for this is that field studies typically only focus on decomposition at or below the ground surface even though standing dead litter (material that has not yet fallen to the ground) accounts for more than 50% of total necromass in many of these systems. While recent work has begun to recognize the important and unique aspects of standing litter decomposition, few studies have investigated specific mechanisms controlling rates of mass loss. We hypothesized that initial photodegradation of the outer plant cuticle of standing litter is an important determinant of litter decomposition because this process increases moisture absorption and subsequent opportunities for biological decomposition. Our preliminary results offer support for this hypothesis. We found that standing grass stems with their cuticles artificially removed had greater water absorbance and more than 400% greater mass loss over a 6-month period relative to controls with intact cuticles. Additionally, spectroscopic measurements of cuticle integrity showed damage to the litter surface after a period of extended photodegradation, allowing increased moisture uptake during simulated fog/dew events. These findings are especially important in the context of recent work by us and others showing that non-rainfall moisture (fog, dew, and water vapor) plays a much larger role in arid land decomposition than previously thought. Improving our understanding of the mechanisms driving decomposition of standing litter will enable us to develop a more predictive understanding of carbon storage in arid lands.

  12. Vadose Zone Hydrology and Eco-hydrology in China

    NASA Astrophysics Data System (ADS)

    Wang, Wenke

    2016-04-01

    Vadose zone hydrology has long been a concern regarding groundwater recharge, evaporation, pollution, and the ecological effects induced by groundwater and water & salt contents in the unsaturated zone. The greater difference between day and night temperatures in arid and semi-arid areas influences water movement and heat transport in the vadose zone, and further influences the water and heat fluxes between the water table and the atmosphere as well as ecological environment. Unfortunately, these studies are lack in a systematic viewpoint in China. One of the main reasons is that the movement of water, vapor and heat from the surface to the water table is very complex in the arid and semi-arid areas. Another reason is lack of long term field observations for water content, vapor, heat, and soil matrix potential in the vadose zone. Three field observation sites, designed by the author, were set up to measure the changes in climate, water content , temperature and soil matrix potential of the unsaturated zone and groundwater level under the different conditions of climate and soil types over the period of 1-5 years. They are located at the Zhunngger Basin of Xinjing Uygur Autonomous Region in northwestern China, the Guanzhong Basin of Shaanxi Province in central China, and the Ordos Basin of the Inner Monggol Autonomous Region in north China, respectively. These three field observation sites have different climate and soil types in the vadose zone and the water table depth are also varied. Based on the observation data of climate, groundwater level, water content, temperature and soil matrix potential in the vadose zone from the three sites in associated with the field survey and numerical simulation method, the water movement and heat transport in the vadose zone, and the evaporation of phreatic water for different groundwater depths and soil types have been well explored. The differences in water movement of unsaturated zone between the bare surface soil and vegetation conditions were also compared. The concept of the ecological value of groundwater and unsaturated zone is presented in arid and semi-arid regions. This ecological value can be reflected in four aspects:(1) the maintenance of base flow in streams and areas of lakes and wetland;(2) the supply of physiological water demented by vegetation;(3) the regulation of soil moisture and salt content; and (4) the stability of the eco-environment. In addition, the threshold system between the ecological environment and multi-dimensional indices as variations in water and salt contents in the vadose zone, groundwater depth and quality as well as groundwater exploitation, are proposed in the arid and semi-arid areas. It is expected that this research could provide a scientific basis and technological support for better understanding on the movement of water, vapor and heat in the vadose zone in arid and semi-arid areas. It will also help to maintain sustainable development of the ecological environment and utilization of water resources.

  13. Diverse Responses of Belowground Internal Nitrogen Cycling to Increasing Aridity

    NASA Astrophysics Data System (ADS)

    Kou, D.; Peng, Y.; Wang, G.; Ding, J.; Chen, Y.; Yang, G.; Fang, K.; Liu, L.; Zhang, B.; Müller, C.; Zhang, J.; Yang, Y.

    2017-12-01

    Belowground microbial nitrogen (N) dynamics play key roles in regulating structure and function of terrestrial ecosystems, however, our understanding on their responses to global change remains limited. This gap is particularly true for drylands, which constitute the largest biome in terrestrial ecosystems and are sensitive to predicted increase in aridity. Here, responding patterns and controls of six gross N transformation rates were explored along an aridity gradient in Tibetan drylands. Our results showed that gross N rates responded diversely to the changing aridity. Both mineralization (MN) and ammonium immobilization (INH4) declined as aridity increased. Aridity affected MN through its association with plant cover, clay content, soil organic matter (SOM), dissolved organic nitrogen (DON) and total microbial biomass, while regulated INH4 mainly through its effects on SOM and NH4+. Autotrophic nitrification (ONH4) exhibited a bell-shaped pattern along the gradient with a tipping point at aridity index = 0.47. Such a pattern was induced by aridity effects on the abundance of ammonia oxidizing archaea (AOA) and ammonia supplying capacity. Different from above N transformations, rates of nitrate immobilization (INO3) and dissimilatory nitrate reduction to ammonium (DNRA) had no responses to changing aridity, largely regulated by soil DON availability and clay content, respectively. Overall, these results suggest that predicted increase in aridity will exert different effects on various soil internal N cycling processes. The diverse patterns point to different responses of ecosystem N cycle with respect to aridity, and thus potentially have profound impact on structure and function of dryland ecosystems.

  14. Assessment of Dry Wells for Stormwater Capture and Aquifer Recharge in the Arid and Semi-Arid Southwest

    EPA Science Inventory

    GOAL: to evaluate the utility of innovative, distributed, low impact development (LID) infrastructure and best management practices (BMPs) for wet weather capture and drinking water aquifer recharge in the arid and semi-arid southwestern USA OBJECTIVES: Design, build, monitor t...

  15. Considerations of Socio-Economic and Global Change Effects on Eurasian Steppes Ecosystem and Land-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; Chuluun, T.; Temirbekov, S. S.; Mahowald, N.; Hicke, J.

    2004-12-01

    Dramatic changes occurred in pastoral systems of Eurasia ranging from Mongolia, China and Central Asia for the past decades. Recently, evaluation of the pastoral systems has been conducted in the region. Pastoral systems, where humans depend on livestock, exist largely in arid or semi-arid ecosystems where climate is highly variable. Interaction between ecosystems and nomadic land use systems co-shaped them in mutual adaptive ways for hundreds of years, thus making both the Mongolian rangeland ecosystem and nomadic pastoral system resilient and sustainable. Current changes in environmental conditions are affecting land-atmosphere interactions. Regional dust events, changes in hydrological cycle, and land use changes contribute to changing interactions between ecosystem and landscape processes which affect regional climate. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. This set of drivers is orthogonal to the above described climate drivers. Thus we expect climate-land use-land cover relationships to be crucially modified by the socio-economic forces.

  16. Is there a climatological signature to deep root functioning?

    NASA Astrophysics Data System (ADS)

    Bamzai, A.; de Beurs, K.

    2014-12-01

    Vegetation has the ability to influence local water, carbon and energy fluxes in complex ways. In many climate models, dynamic vegetation is closely linked to soil moisture since 95% of all roots are located in the upper 2m of soil. However, in some ecosystems this bottom 5% of roots contributes an important percentage of net transpiration through the processes of hydraulic lift and redistribution. Hydraulic lift and redistribution is the movement of water by vegetation through the use of a passive water potential gradient. During periods where water is readily available, vegetation is able to store excess water in deeper soils. When conditions become more arid, the vegetation is able to bring this water back up to the near surface in order to re-hydrate the soil. This water is then used in transpiration and also aids in soil decomposition and nutrient breakdown in the upper soil layers. While hydraulic lift and redistribution has been identified in individual plant species, there has been limited work to understand the contribution of deep root functioning on broader spatial scales. Here we propose to use satellite data products in conjunction with ground-based observations in order to better determine the atmospheric link to deep moisture across land cover types within the state of Oklahoma. For this preliminary assessment, we will utilize the 8-day MOD 16 evapotranspiration product along with soil moisture observations from the Oklahoma Mesonet to compare and contrast a paired dry and wet case study period. We hypothesize that the presence of deep root functioning in certain land cover types increases resiliency to drought and will be observable between the case studies as reduced suppression of evapotranspiration and enhanced latent cooling of the surface.

  17. Temperature-profile methods for estimating percolation rates in arid environments

    USGS Publications Warehouse

    Constantz, Jim; Tyler, Scott W.; Kwicklis, Edward

    2003-01-01

    Percolation rates are estimated using vertical temperature profiles from sequentially deeper vadose environments, progressing from sediments beneath stream channels, to expansive basin-fill materials, and finally to deep fractured bedrock underlying mountainous terrain. Beneath stream channels, vertical temperature profiles vary over time in response to downward heat transport, which is generally controlled by conductive heat transport during dry periods, or by advective transport during channel infiltration. During periods of stream-channel infiltration, two relatively simple approaches are possible: a heat-pulse technique, or a heat and liquid-water transport simulation code. Focused percolation rates beneath stream channels are examined for perennial, seasonal, and ephemeral channels in central New Mexico, with estimated percolation rates ranging from 100 to 2100 mm d−1 Deep within basin-fill and underlying mountainous terrain, vertical temperature gradients are dominated by the local geothermal gradient, which creates a profile with decreasing temperatures toward the surface. If simplifying assumptions are employed regarding stratigraphy and vapor fluxes, an analytical solution to the heat transport problem can be used to generate temperature profiles at specified percolation rates for comparison to the observed geothermal gradient. Comparisons to an observed temperature profile in the basin-fill sediments beneath Frenchman Flat, Nevada, yielded water fluxes near zero, with absolute values <10 mm yr−1 For the deep vadose environment beneath Yucca Mountain, Nevada, the complexities of stratigraphy and vapor movement are incorporated into a more elaborate heat and water transport model to compare simulated and observed temperature profiles for a pair of deep boreholes. Best matches resulted in a percolation rate near zero for one borehole and 11 mm yr−1 for the second borehole.

  18. Hierarchical distance-based fuzzy approach to evaluate urban water supply systems in a semi-arid region.

    PubMed

    Yekta, Tahereh Sadeghi; Khazaei, Mohammad; Nabizadeh, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Yari, Ahmad Reza

    2015-01-01

    Hierarchical distance-based fuzzy multi-criteria group decision making was served as a tool to evaluate the drinking water supply systems of Qom, a semi-arid city located in central part of Iran. A list of aspects consisting of 6 criteria and 35 sub-criteria were evaluated based on a linguistic term set by five decision-makers. Four water supply alternatives including "Public desalinated distribution system", "PET Bottled Drinking Water", "Private desalinated water suppliers" and "Household desalinated water units" were assessed based on criteria and sub-criteria. Data were aggregated and normalized to apply Performance Ratings of Alternatives. Also, the Performance Ratings of Alternatives were aggregated again to achieve the Aggregate Performance Ratings. The weighted distances from ideal solution and anti-ideal solution were calculated after secondary normalization. The proximity of each alternative to the ideal solution was determined as the final step. The alternatives were ranked based on the magnitude of ideal solutions. Results showed that "Public desalinated distribution system" was the most appropriate alternative to supply the drinking needs of Qom population. Also, "PET Bottled Drinking Water" was the second acceptable option. A novel classification of alternatives to satisfy the drinking water requirements was proposed which is applicable for the other cities located in semi-arid regions of Iran. The health issues were considered as independent criterion, distinct from the environmental issues. The constraints of high-tech alternatives were also considered regarding to the level of dependency on overseas.

  19. The history of South American tropical precipitation for the past 25,000 years.

    PubMed

    Baker, P A; Seltzer, G O; Fritz, S C; Dunbar, R B; Grove, M J; Tapia, P M; Cross, S L; Rowe, H D; Broda, J P

    2001-01-26

    Long sediment cores recovered from the deep portions of Lake Titicaca are used to reconstruct the precipitation history of tropical South America for the past 25,000 years. Lake Titicaca was a deep, fresh, and continuously overflowing lake during the last glacial stage, from before 25,000 to 15,000 calibrated years before the present (cal yr B.P.), signifying that during the last glacial maximum (LGM), the Altiplano of Bolivia and Peru and much of the Amazon basin were wetter than today. The LGM in this part of the Andes is dated at 21,000 cal yr B.P., approximately coincident with the global LGM. Maximum aridity and lowest lake level occurred in the early and middle Holocene (8000 to 5500 cal yr B.P.) during a time of low summer insolation. Today, rising levels of Lake Titicaca and wet conditions in Amazonia are correlated with anomalously cold sea-surface temperatures in the northern equatorial Atlantic. Likewise, during the deglacial and Holocene periods, there were several millennial-scale wet phases on the Altiplano and in Amazonia that coincided with anomalously cold periods in the equatorial and high-latitude North Atlantic, such as the Younger Dryas.

  20. Carbon cycle responses of semi-arid ecosystems to positive asymmetry in rainfall.

    PubMed

    Haverd, Vanessa; Ahlström, Anders; Smith, Benjamin; Canadell, Josep G

    2017-02-01

    Recent evidence shows that warm semi-arid ecosystems are playing a disproportionate role in the interannual variability and greening trend of the global carbon cycle given their mean lower productivity when compared with other biomes (Ahlström et al. 2015 Science, 348, 895). Using multiple observations (land-atmosphere fluxes, biomass, streamflow and remotely sensed vegetation cover) and two state-of-the-art biospheric models, we show that climate variability and extremes lead to positive or negative responses in the biosphere, depending on vegetation type. We find Australia to be a global hot spot for variability, with semi-arid ecosystems in that country exhibiting increased carbon uptake due to both asymmetry in the interannual distribution of rainfall (extrinsic forcing), and asymmetry in the response of gross primary production (GPP) to rainfall change (intrinsic response). The latter is attributable to the pulse-response behaviour of the drought-adapted biota of these systems, a response that is estimated to be as much as half of that from the CO 2 fertilization effect during 1990-2013. Mesic ecosystems, lacking drought-adapted species, did not show an intrinsic asymmetric response. Our findings suggest that a future more variable climate will induce large but contrasting ecosystem responses, differing among biomes globally, independent of changes in mean precipitation alone. The most significant changes are occurring in the extensive arid and semi-arid regions, and we suggest that the reported increased carbon uptake in response to asymmetric responses might be contributing to the observed greening trends there. © 2016 John Wiley & Sons Ltd.

  1. Simulated Optimum Sowing Date for Forage Pearl Millet Cultivars in Multilocation Trials in Brazilian Semi-Arid Region.

    PubMed

    Santos, Rafael D; Boote, Kenneth J; Sollenberger, Lynn E; Neves, Andre L A; Pereira, Luiz G R; Scherer, Carolina B; Gonçalves, Lucio C

    2017-01-01

    Forage production is primarily limited by weather conditions under dryland production systems in Brazilian semi-arid regions, therefore sowing at the appropriate time is critical. The objectives of this study were to evaluate the CSM-CERES-Pearl Millet model from the DSSAT software suite for its ability to simulate growth, development, and forage accumulation of pearl millet [ Pennisetum glaucum (L.) R.] at three Brazilian semi-arid locations, and to use the model to study the impact of different sowing dates on pearl millet performance for forage. Four pearl millet cultivars were grown during the 2011 rainy season in field experiments conducted at three Brazilian semi-arid locations, under rainfed conditions. The genetic coefficients of the four pearl millet cultivars were calibrated for the model, and the model performance was evaluated with experimental data. The model was run for 14 sowing dates using long-term historical weather data from three locations, to determine the optimum sowing window. Results showed that performance of the model was satisfactory as indicated by accurate simulation of crop phenology and forage accumulation against measured data. The optimum sowing window varied among locations depending on rainfall patterns, although showing the same trend for cultivars within the site. The best sowing windows were from 15 April to 15 May for the Bom Conselho location; 12 April to 02 May for Nossa Senhora da Gloria; and 17 April to 25 May for Sao Bento do Una. The model can be used as a tool to evaluate the effect of sowing date on forage pearl millet performance in Brazilian semi-arid conditions.

  2. Optimizing Irrigation Water Allocation under Multiple Sources of Uncertainty in an Arid River Basin

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Tang, D.; Gao, H.; Ding, Y.

    2015-12-01

    Population growth and climate change add additional pressures affecting water resources management strategies for meeting demands from different economic sectors. It is especially challenging in arid regions where fresh water is limited. For instance, in the Tailanhe River Basin (Xinjiang, China), a compromise must be made between water suppliers and users during drought years. This study presents a multi-objective irrigation water allocation model to cope with water scarcity in arid river basins. To deal with the uncertainties from multiple sources in the water allocation system (e.g., variations of available water amount, crop yield, crop prices, and water price), the model employs a interval linear programming approach. The multi-objective optimization model developed from this study is characterized by integrating eco-system service theory into water-saving measures. For evaluation purposes, the model is used to construct an optimal allocation system for irrigation areas fed by the Tailan River (Xinjiang Province, China). The objective functions to be optimized are formulated based on these irrigation areas' economic, social, and ecological benefits. The optimal irrigation water allocation plans are made under different hydroclimate conditions (wet year, normal year, and dry year), with multiple sources of uncertainty represented. The modeling tool and results are valuable for advising decision making by the local water authority—and the agricultural community—especially on measures for coping with water scarcity (by incorporating uncertain factors associated with crop production planning).

  3. Modeling aquifer behaviour under climate change and high consumption: Case study of the Sfax region, southeast Tunisia

    NASA Astrophysics Data System (ADS)

    Boughariou, Emna; Allouche, Nabila; Jmal, Ikram; Mokadem, Naziha; Ayed, Bachaer; Hajji, Soumaya; Khanfir, Hafedh; Bouri, Salem

    2018-05-01

    The water resources are exhausted by the increasing demand related to the population growth. They are also affected by climate circumstances, especially in arid and semi-arid regions. These areas are already undergoing noticeable shortages and low annual precipitation rate. This paper presents a numerical model of the Sfax shallow aquifer system that was developed by coupling the geographical information system tool ArcGIS 9.3 and ground water modeling system GMS6.5's interface, ground water flow modeling MODFLOW 2000. Being in coastal city and having an arid climate with high consumption rates, this aquifer is undergoing a hydraulic stress situation. Therefore, the groundwater piezometric variations were calibrated for the period 2003-2013 and simulated based on two scenarios; first the constant and growing consumption and second the rainfall forecast as a result of climate change scenario released by the Tunisian Ministry of Agriculture and Water Resources and the German International Cooperation Agency "GIZ" using HadCM3 as a general circulation model. The piezometric simulations globally forecast a decrease that is about 0.5 m in 2020 and 1 m in 2050 locally the decrease is more pronounced in "Chaffar" and "Djbeniana" regions and that is more evident for the increasing consumption scenario. The two scenarios announce a quantitative degradation of the groundwater by the year 2050 with an alarming marine intrusion in "Djbeniana" region.

  4. Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India): Regolith matric storage buffers the groundwater recharge process

    NASA Astrophysics Data System (ADS)

    Ruiz, Laurent; Varma, Murari R. R.; Kumar, M. S. Mohan; Sekhar, M.; Maréchal, Jean-Christophe; Descloitres, Marc; Riotte, Jean; Kumar, Sat; Kumar, C.; Braun, Jean-Jacques

    2010-01-01

    SummaryAccurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments. In this paper, we propose to assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using a lumped conceptual model (COMFORT). The model is calibrated using a 5 year hydrological monitoring of an experimental watershed under dry deciduous forest in South India (Mule Hole watershed). The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with alternance of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm year -1 and the evapotranspiration was about 900 mm year -1 out of which 100 mm year -1 was uptake from the deep saprolite horizons. The stream flow was 100 mm year -1 while the groundwater underflow was 80 mm year -1. The simulation results suggest that (i) deciduous trees can uptake a significant amount of water from the deep regolith, (ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers and (iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems.

  5. Changes in Soil Organic Matter Abundance, Molecular Composition, and Diversity in an Arid Ecosystem in Response to Long-term Elevated CO2 Manipulation.

    NASA Astrophysics Data System (ADS)

    Hess, N. J.; Tfaily, M.; Evans, R. D.; Koyama, A.

    2017-12-01

    Little is known about how soils in arid ecosystems will respond to rising atmospheric CO2 concentration yet arid and semi-arid ecosystems cover more than 40% of Earth's land surface. Previous work in the Mojave Desert (Evans et al., 2014 Nature Climate Change) reported higher soil organic carbon (SOC) and total nitrogen (N) concentrations following 10 years exposure to elevated atmospheric CO2 at the Nevada Desert Free-Air-Carbon dioxide-Enrichment (FACE) Facility (NDFF). In this study, we investigated potential mechanisms that resulted in increased SOC and total N accumulation and stabilization using high resolution mass spectrometry at the NDFF site. Samples were collected from soil profiles to 1 m in depth with a 0.2 m a increment under the dominant evergreen shrub Larrea tridentata. The differences in the molecular composition and diversity of soil organic matter (SOM) were more evident in surface soils and declined with depth, and were consistent with higher SOC and total N concentrations under elevated than ambient CO2. Our molecular analysis also suggested increased root exudation and/or microbial necromass from stabilization of labile C and N contributed to SOM and N stocks. Increased microbial activity and metabolism under elevated CO2 compared to ambient plots suggested that elevated CO2 altered microbial carbon (C) use patterns, reflecting changes in the quality and quantity of SOC inputs. We found that plant-derived compounds were primary substrates for microbial activity under elevated CO2 and microbial products were the main constituents of stabilized SOM. Our results suggest that arid ecosystems are a potential large C sink under elevated CO2, give the extensive coverage of the land surface, and that labile compounds are transformed to stable SOM via microbial processes. Arid systems are limited by water, and thus may have a different C storage potential under changing climates than other ecosystems that are limited by nitrogen or phosphorus.

  6. Indonesian Throughflow drove Australian climate from humid Pliocene to arid Pleistocene

    NASA Astrophysics Data System (ADS)

    Christensen, B. A.; Renema, W.; Henderiks, J.; De Vleeschouwer, D.; Groeneveld, J.; Castañeda, I. S.; Reuning, L.; Bogus, K.; Auer, G.; Ishiwa, T.; McHugh, C.; Gallagher, S. J.; Fulthorpe, C.; Expedition 356 Scientists, I.

    2016-12-01

    Our understanding of the onset of aridity in Australia and associated mechanisms is limited by the availability of long, continuous climate archives, particularly for the NW shelf in the Pliocene. Five sites were cored and logged on IODP Expedition 356, western Australian margin. Analysis of the natural gamma ray (NGR) suite of downhole logs, provide insights to the timing and rate of climate change. NGR data provide an outstanding tool to assess continental humidity (K%) and aridity (Th/K, Uppm); interpretations are supported with clay mineral data. We show progressive constriction of the Indonesian Throughflow (ITF) and the emerging Maritime Continent drove Australian climate to become drier and more variable. We identify 3 intervals of latest Miocene through early Pleistocene change: sudden onset of humidity at 5.5 Ma (Humid Interval), followed by decreased humidity (Transition Interval) and establishment of the NW dust pathway (Arid Interval) at 2.3 Ma. The Humid Interval is associated with the Western Pacific Warm Pool (WPWP) expansion west to the South China Sea and higher Indian Ocean SSTs. Our study of the NW region confirms wetter climates ringed the arid center during the early Pliocene. Reduced moisture availability began at 3.3 Ma, coincident with cooling in the WPWP and elsewhere, global atmospheric circulation constriction and Indian Ocean subsurface freshening and cooling, a direct response to ITF constriction. Greatest aridity and the onset of the modern dust pathway, documented in Th/K and Uppm logs beginning 2.3 Ma, is coincident with orbitally- controlled climatic change, and reorganization of Indian Ocean circulation. Our data indicate Australian climate is driven by tectonic and oceanographic changes in the ITF. Such changes altered regional atmospheric moisture transport and Indian Ocean circulation patterns and led to a shift from Pacific to Indian Ocean influence on theNW Australian climate, well after the intensification of northern hemisphere glaciation. We conclude that the Maritime Continent is the switchboard modulating teleconnections between monsoonal and glacial climate systems.

  7. Soil water movement in the unsaturated zone of an inland arid region: Mulched drip irrigation experiment

    NASA Astrophysics Data System (ADS)

    Han, Dongmei; Zhou, Tiantian

    2018-04-01

    Agricultural irrigation with trans-basin water diversion can effectively relieve the water paucity in arid and semi-arid regions, however, this may be accompanied by eco-environmental problems (e.g., saline soils, rising groundwater levels, water quality problems). The mechanism of soil water movement under irrigation in the unsaturated zone of arid regions is a key scientific problem that should be solved in order to evaluate agricultural water management and further improve current irrigation practices. This study investigated the impact of drip irrigation on soil water movement in the unsaturated zone of a cotton field in an inland arid region (the Karamay Agricultural Development Area), northwest China. Combining in situ observational physical data with temporal variation in stable isotopic compositions of soil water, we described the soil water flow system and mechanism in severe (Plot 1) and mild (Plot 2) saline-alkali cotton fields. The infiltration depths are 0-150 cm for both plots. Drip irrigation scheduling makes no significant contribution to local groundwater recharge, however, groundwater can move into the unsaturated zone through capillary rise during cotton flowering and boll periods. Plot 2 is less prone to having secondary soil salinization than Plot 1 due to the existence of a middle layer (approximately 100 cm thick), which elongated the distance between the root zone and aquifer. Rise in the water table (approximately 60 cm for Plot 1 and 50 cm for Plot 2) could be caused by lateral groundwater flow instead of vertical infiltration. We estimated the soil water storage changes in the unsaturated zone and proposed a conceptual model for deciphering the movement process of soil water. This study provides a scientific basis for determining the rise of groundwater levels and potential development of saline soils and improving agricultural water management in arid regions.

  8. Predicting the Affects of Climate Change on Evapotranspiration and Agricultural Productivity of Semi-arid Basins

    NASA Astrophysics Data System (ADS)

    Peri, L.; Tyler, S. W.; Zheng, C.; Pohll, G. M.; Yao, Y.

    2013-12-01

    Many arid and semi-arid regions around the world are experiencing water shortages that have become increasingly problematic. Since the late 1800s, upstream diversions in Nevada's Walker River have delivered irrigation supply to the surrounding agricultural fields resulting in a dramatic water level decline of the terminal Walker Lake. Salinity has also increased because the only outflow from the lake is evaporation from the lake surface. The Heihe River basin of northwestern China, a similar semi-arid catchment, is also facing losses from evaporation of terminal locations, agricultural diversions and evapotranspiration (ET) of crops. Irrigated agriculture is now experiencing increased competition for use of diminishing water resources while a demand for ecological conservation continues to grow. It is important to understand how the existing agriculture in these regions will respond as climate changes. Predicting the affects of climate change on groundwater flow, surface water flow, ET and agricultural productivity of the Walker and Heihe River basins is essential for future conservation of water resources. ET estimates from remote sensing techniques can provide estimates of crop water consumption. By determining similarities of both hydrologic cycles, critical components missing in both systems can be determined and predictions of impacts of climate change and human management strategies can be assessed.

  9. Biosynthetic Potential of Bioactive Streptomycetes Isolated From Arid Region of the Thar Desert, Rajasthan (India)

    PubMed Central

    Masand, Meeta; Sivakala, Kunjukrishnan Kamalakshi; Menghani, Ekta; Thinesh, Thangathurai; Anandham, Rangasamy; Sharma, Gaurav; Sivakumar, Natesan; Jebakumar, Solomon R. D.; Jose, Polpass Arul

    2018-01-01

    Acquisition of Actinobacteria, especially Streptomyces from previously underexplored habitats and the exploration of their biosynthetic potential have gained much attention in the rejuvenated antibiotics search programs. Herein, we isolated some Streptomyces strains, from an arid region of the Great Indian Thar Desert, which possess an ability to produce novel bioactive compounds. Twenty-one morphologically distinctive strains differing in their aerial and substrate mycelium were isolated by employing a stamping method. Among them, 12 strains were identified by a two-level antimicrobial screening method, exerting antimicrobial effects against a panel of indicator strains including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus species. Based on their potent antimicrobial activity, four isolates were further explored by 16S rRNA gene-based identification, genetic screening, and metabolomic analysis; and it was found that these strains belong to the genus Streptomyces. The selected strains were found to have polyketide synthase and non-ribosomal peptide synthetase systems. In addition, extracellular metabolomic screening revealed that the isolates produced analogs of doxorubicinol, pyrromycin, erythromycin, and 6-13 other putative novel metabolites. These results demonstrate the significance of Streptomyces inhabiting the arid region of Thar Desert, suggesting that similar arid environments can be considered as the reservoirs of novel Streptomyces strains that could have biotechnological significance. PMID:29720968

  10. Keeping Sediment and Nutrients out of Streams in Arid/Semi-Arid United States: Application of Low Impact Development/Green Infrastructure Practices

    EPA Science Inventory

    Climatic and hydrological characteristics in the arid/semi-arid areas create unique challenges to soil, water and biodiversity conservation. These areas are environmentally sensitive, but very valuable for the ecosystems services they provide to society. Some of these areas are...

  11. Arid1b haploinsufficiency disrupts cortical interneuron development and mouse behavior.

    PubMed

    Jung, Eui-Man; Moffat, Jeffrey Jay; Liu, Jinxu; Dravid, Shashank Manohar; Gurumurthy, Channabasavaiah Basavaraju; Kim, Woo-Yang

    2017-12-01

    Haploinsufficiency of the AT-rich interactive domain 1B (ARID1B) gene causes autism spectrum disorder and intellectual disability; however, the neurobiological basis for this is unknown. Here we generated Arid1b-knockout mice and examined heterozygotes to model human patients. Arid1b-heterozygous mice showed a decreased number of cortical GABAergic interneurons and reduced proliferation of interneuron progenitors in the ganglionic eminence. Arid1b haploinsufficiency also led to an imbalance between excitatory and inhibitory synapses in the cerebral cortex. Furthermore, we found that Arid1b haploinsufficiency suppressed histone H3 lysine 9 acetylation (H3K9ac) overall and particularly reduced H3K9ac of the Pvalb promoter, resulting in decreased transcription. Arid1b-heterozygous mice exhibited abnormal cognitive and social behaviors, which were rescued by treatment with a positive allosteric GABA A receptor modulator. Our results demonstrate a critical role for Arid1b in interneuron development and behavior and provide insight into the pathogenesis of autism spectrum disorder and intellectual disability.

  12. Characteristics of Precipitation Features and Annual Rainfall during the TRMM Era in the Central Andes

    NASA Technical Reports Server (NTRS)

    Mohr, Karen I.; Slayback, Daniel; Yager, Karina

    2014-01-01

    The central Andes extends from 7 deg to 21 deg S, with its eastern boundary defined by elevation (1000m and greater) and its western boundary by the coastline. The authors used a combination of surface observations, reanalysis, and the University of Utah Tropical Rainfall Measuring Mission (TRMM) precipitation features (PF) database to understand the characteristics of convective systems and associated rainfall in the central Andes during the TRMM era, 1998-2012. Compared to other dry (West Africa), mountainous (Himalayas), and dynamically linked (Amazon) regions in the tropics, the central Andes PF population was distinct from these other regions, with small and weak PFs dominating its cumulative distribution functions and annual rainfall totals. No more than 10% of PFs in the central Andes met any of the thresholds used to identify and define deep convection (minimum IR cloud-top temperatures, minimum 85-GHz brightness temperature, maximum height of the 40-dBZ echo). For most of the PFs, available moisture was limited (less than 35mm) and instability low (less than 500 J kg(exp -1)). The central Andes represents a largely stable, dry to arid environment, limiting system development and organization. Hence, primarily short-duration events (less than 60 min) characterized by shallow convection and light to light-moderate rainfall rates (0.5-4.0 mm h(exp -1)) were found.

  13. A joint TEM-HLEM geophysical approach to borehole sitting in deeply weathered granitic terrains.

    PubMed

    Meju, M A; Fontes, S L; Ulugergerli, E U; La Terra, E F; Germano, C R; Carvalho, R M

    2001-01-01

    The accurate location of aquiferous fracture zones in granite beneath a > 50 m thick weathered mantle in semi-arid regions is a major hydrogeological problem. It is expected that the zone of intensive fracturing will be more susceptible to weathering and thus be characterized by the thickest development of saprolite, a good electrically conductive target for deep-probing electromagnetic systems. The single-loop transient electromagnetic (TEM) technique is well known to have the capability for detecting concealed steep mineralized targets in mining environments and can be adapted to this hydrogeological problem. We propose that combining the conventional frequency-domain horizontal-loop electromagnetic (HLEM) and single-loop TEM is an effective practical approach to locating concealed aquiferous fracture zones. In the supporting case studies presented here, we deployed multifrequency HLEM profiling (with 50 m transmitter-receiver separation) and TEM soundings with contiguous 10 or 20 m sided loops along the survey lines in a granitic terrain affected by deep (> 50 m) weathering in northeast Brazil. A somewhat layered structure consisting of resistive hardpan/leached zone, conductive saprolite, and resistive basement is identifiable in the typical TEM depth sounding data. We obtained coincident HLEM and TEM anomalies at all the sites, enabling a relatively straightforward selection of potential drilling positions. Simple resistivity-depth transformation of the TEM data was done for each site, yielding an approximate section from which drilling depths were estimated. All of the boreholes located were successful. Although our results appear to indicate that the single-loop TEM method could be used independently for borehole sitting in deeply weathered granitic terrains and that the weathering profile over granite can be mapped using TEM depth soundings of appropriate observational bandwidth, we recommend a joint electromagnetic approach for optimal well sitting.

  14. Western USA groundwater drilling

    NASA Astrophysics Data System (ADS)

    Jasechko, S.; Perrone, D.

    2016-12-01

    Groundwater in the western US supplies 40% of the water used for irrigated agriculture, and provides drinking water to individuals living in rural regions distal to perennial rivers. Unfortunately, current groundwater use is not sustainable in a number of key food producing regions. While substantial attention has been devoted to mapping groundwater depletion rates across the western US, the response of groundwater users via well drilling to changing land uses, water demands, pump and drilling technologies, pollution vulnerabilities, and economic conditions remains unknown. Here we analyze millions of recorded groundwater drilling events in the western US that span years 1850 to 2015. We show that groundwater wells are being drilled deeper in some, but not all, regions where groundwater levels are declining. Groundwater wells are generally deeper in arid and mountainous regions characterized by deep water tables (e.g., unconfined alluvial and fractured bedrock aquifers), and in regions that have productive aquifers with high water quality deep under the ground (e.g., confined sedimentary aquifers). Further, we relate water quality and groundwater drilling depths in 40 major aquifer systems across the western US. We show that there is substantial room for improvement to the existing 2-D continental-scale assessments of domestic well water vulnerability to pollution if one considers the depth that the domestic well is screened in addition to pollutant loading, surficial geology, and vertical groundwater flow rates. These new continental-scale maps can be used to (i) better assess economic, water quality, and water balance limitations to groundwater usage, (ii) steer domestic well drilling into productive strata bearing clean and protected groundwater resources, and (iii) assess groundwater management schemes across the western US.

  15. Cancer-Associated Mutations in Endometriosis without Cancer

    PubMed Central

    Anglesio, M.S.; Papadopoulos, N.; Ayhan, A.; Nazeran, T.M.; Noë, M.; Horlings, H.M.; Lum, A.; Jones, S.; Senz, J.; Seckin, T.; Ho, J.; Wu, R.-C.; Lac, V.; Ogawa, H.; Tessier-Cloutier, B.; Alhassan, R.; Wang, A.; Wang, Y.; Cohen, J.D.; Wong, F.; Hasanovic, A.; Orr, N.; Zhang, M.; Popoli, M.; McMahon, W.; Wood, L.D.; Mattox, A.; Allaire, C.; Segars, J.; Williams, C.; Tomasetti, C.; Boyd, N.; Kinzler, K.W.; Gilks, C.B.; Diaz, L.; Wang, T.-L.; Vogelstein, B.; Yong, P.J.; Huntsman, D.G.; Shih, I.-M.

    2017-01-01

    BACKGROUND Endometriosis, defined as the presence of ectopic endometrial stroma and epithelium, affects approximately 10% of reproductive-age women and can cause pelvic pain and infertility. Endometriotic lesions are considered to be benign inflammatory lesions but have cancerlike features such as local invasion and resistance to apoptosis. METHODS We analyzed deeply infiltrating endometriotic lesions from 27 patients by means of exomewide sequencing (24 patients) or cancer-driver targeted sequencing (3 patients). Mutations were validated with the use of digital genomic methods in micro-dissected epithelium and stroma. Epithelial and stromal components of lesions from an additional 12 patients were analyzed by means of a droplet digital polymerase-chain-reaction (PCR) assay for recurrent activating KRAS mutations. RESULTS Exome sequencing revealed somatic mutations in 19 of 24 patients (79%). Five patients harbored known cancer driver mutations in ARID1A, PIK3CA, KRAS, or PPP2R1A, which were validated by Safe-Sequencing System or immunohistochemical analysis. The likelihood of driver genes being affected at this rate in the absence of selection was estimated at P = 0.001 (binomial test). Targeted sequencing and a droplet digital PCR assay identified KRAS mutations in 2 of 3 patients and 3 of 12 patients, respectively, with mutations in the epithelium but not the stroma. One patient harbored two different KRAS mutations, c.35G→T and c.35G→C, and another carried identical KRAS c.35G→A mutations in three distinct lesions. CONCLUSIONS We found that lesions in deep infiltrating endometriosis, which are associated with virtually no risk of malignant transformation, harbor somatic cancer driver mutations. Ten of 39 deep infiltrating lesions (26%) carried driver mutations; all the tested somatic mutations appeared to be confined to the epithelial compartment of endometriotic lesions. PMID:28489996

  16. Chromatin-Remodeling-Factor ARID1B Represses Wnt/β-Catenin Signaling.

    PubMed

    Vasileiou, Georgia; Ekici, Arif B; Uebe, Steffen; Zweier, Christiane; Hoyer, Juliane; Engels, Hartmut; Behrens, Jürgen; Reis, André; Hadjihannas, Michel V

    2015-09-03

    The link of chromatin remodeling to both neurodevelopment and cancer has recently been highlighted by the identification of mutations affecting BAF chromatin-remodeling components, such as ARID1B, in individuals with intellectual disability and cancer. However, the underlying molecular mechanism(s) remains unknown. Here, we show that ARID1B is a repressor of Wnt/β-catenin signaling. Through whole-transcriptome analysis, we find that in individuals with intellectual disability and ARID1B loss-of-function mutations, Wnt/β-catenin target genes are upregulated. Using cellular models of low and high Wnt/β-catenin activity, we demonstrate that knockdown of ARID1B activates Wnt/β-catenin target genes and Wnt/β-catenin-dependent transcriptional reporters in a β-catenin-dependent manner. Reciprocally, forced expression of ARID1B inhibits Wnt/β-catenin signaling downstream of the β-catenin destruction complex. Both endogenous and exogenous ARID1B associate with β-catenin and repress Wnt/β-catenin-mediated transcription through the BAF core subunit BRG1. Accordingly, mutations in ARID1B leading to partial or complete deletion of its BRG1-binding domain, as is often observed in intellectual disability and cancers, compromise association with β-catenin, and the resultant ARID1B mutant proteins fail to suppress Wnt/β-catenin signaling. Finally, knockdown of ARID1B in mouse neuroblastoma cells leads to neurite outgrowth through β-catenin. The data suggest that aberrations in chromatin-remodeling factors, such as ARID1B, might contribute to neurodevelopmental abnormalities and cancer through deregulation of developmental and oncogenic pathways, such as the Wnt/β-catenin signaling pathway. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Chromatin-Remodeling-Factor ARID1B Represses Wnt/β-Catenin Signaling

    PubMed Central

    Vasileiou, Georgia; Ekici, Arif B.; Uebe, Steffen; Zweier, Christiane; Hoyer, Juliane; Engels, Hartmut; Behrens, Jürgen; Reis, André; Hadjihannas, Michel V.

    2015-01-01

    The link of chromatin remodeling to both neurodevelopment and cancer has recently been highlighted by the identification of mutations affecting BAF chromatin-remodeling components, such as ARID1B, in individuals with intellectual disability and cancer. However, the underlying molecular mechanism(s) remains unknown. Here, we show that ARID1B is a repressor of Wnt/β-catenin signaling. Through whole-transcriptome analysis, we find that in individuals with intellectual disability and ARID1B loss-of-function mutations, Wnt/β-catenin target genes are upregulated. Using cellular models of low and high Wnt/β-catenin activity, we demonstrate that knockdown of ARID1B activates Wnt/β-catenin target genes and Wnt/β-catenin-dependent transcriptional reporters in a β-catenin-dependent manner. Reciprocally, forced expression of ARID1B inhibits Wnt/β-catenin signaling downstream of the β-catenin destruction complex. Both endogenous and exogenous ARID1B associate with β-catenin and repress Wnt/β-catenin-mediated transcription through the BAF core subunit BRG1. Accordingly, mutations in ARID1B leading to partial or complete deletion of its BRG1-binding domain, as is often observed in intellectual disability and cancers, compromise association with β-catenin, and the resultant ARID1B mutant proteins fail to suppress Wnt/β-catenin signaling. Finally, knockdown of ARID1B in mouse neuroblastoma cells leads to neurite outgrowth through β-catenin. The data suggest that aberrations in chromatin-remodeling factors, such as ARID1B, might contribute to neurodevelopmental abnormalities and cancer through deregulation of developmental and oncogenic pathways, such as the Wnt/β-catenin signaling pathway. PMID:26340334

  18. Effects of agricultural, industrial, and municipal pollutants on wetlands and wildlife and wildlife health

    USGS Publications Warehouse

    Converse, Kathryn A.

    1995-01-01

    Wetlands accumulate pollutants from adjacent areas through intentional discharge of sewage or industrial wastes, runoff of agricultural fertilizers and pesticides, and discharge from municipal storm drains.  Coastal wetlands receive more pollutants indirectly as the endpoint for upland drainage systems and directly through petroleum spills and insect abatement.  Wetlands that serve as evaporation basins during seasonally high water, especially in more arid climates, concentrate natural compounds and as well as pollutants.  The ability of wetlands to be effective filtration systems for wastewater nutrients through microbial transformations, uptake by plants, and deposition of particulate matter, and the shortage of water in arid climates has resulted in revision of wetland regulations.  Wetlands can now be developed for wastewater treatment and natural wetlands can be restored or converted to wastewater treatment systems.  The effect of these accumulation pollutants on wetland ecology and wildlife health needs to be recognized.

  19. Optimized estimation and its uncertainties of gross primary production over oasis-desert ecosystems in an arid region of China

    NASA Astrophysics Data System (ADS)

    Wang, H.; Li, X.; Xiao, J.; Ma, M.

    2017-12-01

    Arid and semi-arid ecosystems cover more than one-third of the Earth's land surface, it is of great important to the global carbon cycle. However, the magnitude of carbon sequestration and its contribution to global atmospheric carbon cycle is poorly understood due to the worldwide paucity of measurements of carbon exchange in the arid ecosystems. Accurate and continuous monitoring the production of arid ecosystem is of great importance for regional carbon cycle estimation. The MOD17A2 product provides high frequency observations of terrestrial Gross Primary Productivity (GPP) over the world. Although there have been plenty of studies to validate the MODIS GPP products with ground based measurements over a range of biome types, few have comprehensively validated the performance of MODIS estimates in arid and semi-arid ecosystems. Thus, this study examined the performance of the MODIS-derived GPP comparing with the EC observed GPP at different timescales for the main arid ecosystems in the arid and semi-arid ecosystems in China, and optimized the performance of the MODIS GPP calculations by using the in-situ metrological forcing data, and optimization of biome-specific parameters with the Bayesian approach. Our result revealed that the MOD17 algorithm could capture the broad trends of GPP at 8-day time scales for all investigated sites on the whole. However, the GPP product was underestimated in most ecosystems in the arid region, especially the irrigated cropland and forest ecosystems, while the desert ecosystem was overestimated in the arid region. On the annual time scale, the best performance was observed in grassland and cropland, followed by forest and desert ecosystems. On the 8-day timescale, the RMSE between MOD17 products and in-situ flux observations of all sites was 2.22 gC/m2/d, and R2 was 0.69. By using the in-situ metrological data driven, optimizing the biome-based parameters of the algorithm, we improved the performances of the MODIS GPP calculation over the main ecosystems in arid region of China.

  20. Systems approach critical to agroecosystems management

    USDA-ARS?s Scientific Manuscript database

    Sustainable dryland agriculture in the semi-arid Great Plains of the U.S. depends on achieving economic yields while maintaining soil resources. The traditional system of conventional tillage wheat-fallow was vulnerable to excessive soil erosion which resulted in excessive organic matter loss. No-...

  1. Upland Reticulate Mottling Reveals Soil Biophysical Processes across Scales: Development of Structured Heterogeneity in a Marine Terrace Chronosequence

    NASA Astrophysics Data System (ADS)

    Stonestrom, D. A.; Schulz, M. S.; Lawrence, C. R.; Bullen, T. D.; Fitzpatrick, J.; Kyker-Snowman, E.; Manning, J. E.; Mnich, M.

    2015-12-01

    Soils of the Santa Cruz (California, USA) marine terrace chronosequence display an evolving sequence of reticulate mottling from the youngest soil (65 ka) without mottles to the oldest soil (225 ka) with well-developed mottles. Mottles develop in soils forming from relatively uniform shoreline sediments, below the depth of bioturbation. Mottles consist of an interconnected network of low-chroma clay-and-carbon enriched central regions (gray; 2.5Y 6/1) bordered by bleached parent material (white; 2.5Y 8/1) within a diminishing matrix of high-chroma oxidized parent material (orange; 7.5YR 5/8). To explore the nature of mottle development, physical and chemical characteristics of mottle separates (orange, gray, and white) were compared through the deep time represented by the chronosequence. Mineralogical, isotopic, and surface-area differences among mottle separates indicate that centimeter-scale mass-transfer acting across millennia is an integral part of pedogenesis, weathering-front propagation, and carbon and nutrient transfer. Elemental analysis, electron microscopy, and iron-isotope systematics indicate that mottle development is driven by deep roots together with their fungal and microbial symbionts. The current work extends the known realm of upland mottling and shows that such features may be more common than previously recognized in semi-humid to arid regions. Deep soil horizons on old stable landforms develop reticulate mottling as the long-term imprint of rhizospheric processes that control pedogenesis, plant-community sustenance, and sequestration of carbon at depth in unsaturated zones.

  2. Dynamic modeling of vegetation change in arid lands

    NASA Technical Reports Server (NTRS)

    Robinson, V. B.; Coiner, J. C.; Barringer, T. H.

    1982-01-01

    A general framework for a digital desertification monitoring system (DDMS) for assessing the worldwide desertification growth rate is presented. The system relies on the development of Landsat derived indicators to identify local processes signalling the growth of arid regions. A study area consisting of the eastern edge of the Niger River delta in Mali was used to characterize three indicators in terms of the covariance of the multispectral scanner (MSS) bands 2 and 4, the correlation of the two bands, and the percent variance expressed by the first eigenvalue. The scenes are imaged multitemporallly in a 400 x 400 pixel array to detect vegetation cover changes. Criteria were defined which characterized the decrease or increase of vegetation. It was determined that the correlation coefficients are the best indicators, and are easily computed.

  3. Individual based, long term monitoring of acacia trees in hyper arid zone: Integration of a field survey and a remote sensing approach

    NASA Astrophysics Data System (ADS)

    Isaacson, Sivan; Blumberg, Dan G.; Ginat, Hanan; Shalmon, Benny

    2013-04-01

    Vegetation in hyper arid zones is very sparse as is. Monitoring vegetation changes in hyper arid zones is important because any reduction in the vegetation cover in these areas can lead to a considerable reduction in the carrying capacity of the ecological system. This study focuses on the impact of climate fluctuations on the acacia population in the southern Arava valley, Israel. The period of this survey includes a sequence of dry years with no flashfloods in most of the plots that ended in two years with vast floods. Arid zone acacia trees play a significant role in the desert ecosystem by moderating the extreme environmental conditions including radiation, temperature, humidity and precipitation. The trees also provide nutrients for the desert dwellers. Therefore, acacia trees in arid zones are considered to be `keystone species', because they have major influence over both plants and animal species, i.e., biodiversity. Long term monitoring of the acacia tree population in this area can provide insights into long term impacts of climate fluctuations on ecosystems in arid zones. Since 2000, a continuous yearly based survey on the three species of acacia population in seven different plots is conducted in the southern Arava (established by Shalmon, ecologist of the Israel nature and parks authority). The seven plots representing different ecosystems and hydrological regimes. A yearly based population monitoring enabled us to determine the mortality and recruitment rate of the acacia populations as well as growing rates of individual trees. This survey provides a unique database of the acacia population dynamics during a sequence of dry years that ended in a vast flood event during the winter of 2010. A lack of quantitative, nondestructive methods to estimate and monitor stress status of the acacia trees, led us to integrate remote sensing tools (ground and air-based) along with conventional field measurements in order to develop a long term monitoring of acacia trees in hyper arid zones. This study includes further work on the development of ground based remote sensing as a new tool to monitor stress indicators as part of long term ecological research. Since acacia trees are long lived, we were able to identify individual trees in satellite images from 1968 (corona) and expand our monitoring "into the past". Remote sensing expands the spatial and temporal database and is thus a powerful tool for long term monitoring in arid zones, where access is limited and long-term ground data are rare.

  4. Green Infrastructure Management Techniques in Arid and Semi-arid Regions: Software Implementation and Demonstration using the AGWA/KINEROS2 Watershed Model

    EPA Science Inventory

    Increasing urban development in the arid and semi-arid regions of the southwestern United States has led to greater demand for water in a region with limited water resources and has fundamentally altered the hydrologic response of developed watersheds. Green Infrastructure (GI) p...

  5. International Arid Lands Consortium: Better land stewardship in water and watershed management

    Treesearch

    Peter F. Ffolliott; James T. Fisher; Menachem Sachs; Darrell W. DeBoer; Jeffrey O. Dawson; Timothy E. Fulbright; John Tracy

    2000-01-01

    The International Arid Lands Consortium (IALC) was established in 1990 to promote research, education, and training for the development, management, and restoration of arid and semi-arid lands throughout the world. One activity of IALC members and cooperators is to support research and development and demonstration projects that enhance management of these fragile...

  6. Representing Green Infrastructure Management Techniques in Arid and Semi-arid Regions: Software Implementation and Demonstration using the AGWA/KINEROS2 Watershed Model

    EPA Science Inventory

    Increasing urban development in the arid and semi-arid regions of the southwestern United States has led to greater demand for water from a region of limited water resources which has fundamentally altered the hydrologic response of developed watersheds. Green Infrastructure (GI)...

  7. Messinian Salinity Crisis' Primary Evaporites: the shallow gypsum vs. deep dolomite formation paradox solved

    NASA Astrophysics Data System (ADS)

    De Lange, G. J.; Krijgsman, W.

    2015-12-01

    The Messinian Salinity Crisis (MSC) is a dramatic event that took place ~ 5.9 Ma ago, resulting in deposition of 1-3 km thick evaporites at the Mediterranean seafloor. A considerable, long-lasting controversy existed on the modes of their formation, including the observed shallow gypsum versus deep dolostone deposits for the early phase of MSC. The onset of MSC is marked by deposition of gypsum/sapropel-like alternations, thought to relate to arid/humid climate conditions at a precessional rhythm. Gypsum precipitation only occurred at marginal- and dolomite formation at deeper settings. A range of potential explanations was given, most of which cannot satisfactorily explain all observations. Biogeochemical processes during MSC are commonly neglected but may explain that different deposits formed in shallow vs deep environments without exceptional physical boundary conditions for each. A unifying mechanism is presented in which gypsum formation occurs at all shallow water depths but its preservation is limited to shallow sedimentary settings. In contrast, ongoing deep-basin anoxic organic matter (OM) degradation processes result in dolomite formation. Gypsum precipitation in evaporating seawater takes place at 3-7 times concentrated seawater; seawater is always oversaturated relative to dolomite but its formation is inhibited by the presence of dissolved sulphate. Thus conditions for formation of gypsum exclude those for formation of dolomite and vice versa. Another process linking the saturation states of gypsum and dolomite is that of OM degradation by sulphate reduction. In stagnant deep water, ongoing OM-degradation may result in reducing the sulphate and enhancing the dissolved carbonate content. Such low-sulphate / high carbonate conditions in MSC deepwater are. unfavorable for gypsum preservation and favorable for dolomite formation, and always coincide with anoxic, i.e. oxygen-free conditions. Including dynamic biogeochemical processes in the thusfar static interpretations of evaporite formation mechanisms can thus account for the paradoxal, isochronous formation of shallow gypsum and deep-dolomite during the early MSC (1). (1) De Lange G.J. and Krijgsman W. (2010) Mar. Geol. 275, 273-277

  8. Hydraulic integration and shrub growth form linked across continental aridity gradients

    Treesearch

    H. Jochen Schenk; Christine M. Goedhart; Marisa Nordenstahl; Hugo I. Martinez Cabrera; Cynthia S. Jones

    2008-01-01

    Both engineered hydraulic systems and plant hydraulic systems are protected against failure by resistance, reparability, and redundancy. A basic rule of reliability engineering is that the level of independent redundancy should increase with increasing risk of fatal system failure. Here we show that hydraulic systems of plants function as predicted by this engineering...

  9. Fungi and bacteria involved in desert varnish formation

    NASA Technical Reports Server (NTRS)

    Taylor-George, S.; Palmer, F.; Staley, J. T.; Curtiss, B.; Adams, J. B.; Borns, D. J.

    1983-01-01

    Desert varnish is a coating of ferromanganese oxides and clays that develops on rock surfaces in arid to semi-arid regions. Active respiration but not photosynthesis was detected on varnished rock surfaces from the Sonoran Desert. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations, and cultivation experiments indicate that both fungi, primarily dematiaceous hyphomycetes, and bacteria are found on and within desert varnish coatings from the arid regions studied. Some fungi grow as microcolonial fungi (MCF) on rocks, and microscopic observations suggest MCF become incorporated in the varnish coating. SEM-EDAX (energy dispersive X-ray systems) analyses indicate the MCF contain 3 of the characteristic elements of varnish: iron, aluminum, and silicon. In some locations, MCF are also enriched in manganese relative to the rock substratum. Furthermore, some of the dematiaceous hyphomycetes that have been cultivated are able to oxidize manganese under laboratory conditions. It is possible that manganese-oxidizing bacteria, which are found in varnish, also play an important role in varnish formation.

  10. Developing User-Driven Climate Information Services to Build Resilience Amongst Groups at Risk of Drought and Flood in Arid and Semi-Arid Land Counties in Kenya

    NASA Astrophysics Data System (ADS)

    Githungo, W. N.; Shaka, A.; Kniveton, D.; Muithya, L.; Powell, R.; Visman, E. L.

    2014-12-01

    The Arid and Semi-Arid Land (ASAL) counties of Kitui and Makueni in Kenya are experiencing increasing climate variability in seasonal rainfall, including changes in the onset, cessation and distribution of the two principal rains upon which the majority of the population's small-holder farmers and livestock keepers depend. Food insecurity is prevalent with significant numbers also affected by flooding during periods of intense rainfall. As part of a multi-partner Adaptation Consortium, Kenya Meteorological Services (KMS) are developing Climate Information Services (CIS) which can better support decision making amongst the counties' principal livelihoods groups and across County Government ministries. Building on earlier pilots and stakeholder discussion, the system combines the production of climate information tailored for transmission via regional and local radio stations with the establishment of a new SMS service. SMS are provided through a network of CIS intermediaries drawn from across key government ministries, religious networks, non-governmental and community groups, aiming to achieve one SMS recipient per 3-500 people. It also introduces a demand-led, premium-rate SMS weather information service which is designed to be self-financing in the long term. Supporting the ongoing process of devolution, KMS is downscaling national forecasts for each county, and providing seasonal, monthly, weekly and daily forecasts, as well as warnings of weather-related hazards. Through collaboration with relevant ministries, government bodies and research institutions, including livestock, agriculture, drought management and health, technical advisories are developed to provide guidance on application of the climate information. The system seeks to provide timely, relevant information which can enable people to use weather and climate information to support decisions which protect life and property and build resilience to ongoing climate variability and future change.

  11. Woody-grass ratios in a grassy arid system are limited by multi-causal interactions of abiotic constraint, competition and fire.

    PubMed

    Nano, Catherine E M; Clarke, Peter J

    2010-03-01

    Predicting changes in vegetation structure in fire-prone arid/semi-arid systems is fraught with uncertainty because the limiting factors to coexistence between grasses and woody plants are unknown. We investigated abiotic and biotic factors influencing boundaries and habitat membership in grassland (Triodia or 'spinifex' grassland)-shrubland (Acacia aneura or 'mulga' shrubland) mosaics in semi-arid central Australia. We used a field experiment to test for the effects of: (1) topographic relief (dune/swale habitat), (2) adult neighbour removal, and (3) soil type (sand/clay) on seedling survival in three shrub and two grass species in reciprocal field plantings. Our results showed that invasion of the shrubland (swale) by neighbouring grassland species is negated by abiotic limitations but competition limits shrubland invasion of the grassland (dune). All species from both habitats had significantly reduced survival in the grassland (dune) in the presence of the dominant grass (Triodia) regardless of soil type or shade. Further, the removal of the dominant grass allowed the shrubland dominant (A. aneura) to establish outside its usual range. Seedling growth and sexual maturation of the shrubland dominant (A. aneura) was slow, implying that repeated fire creates an immaturity risk for this non-sprouter in flammable grassland. By contrast, rapid growth and seed set in the grassland shrubs (facultative sprouters) provides a solution to fire exposure prior to reproductive onset. In terms of landscape dynamics, we argue that grass competition and fire effects are important constraints on shrubland patch expansion, but that their relative importance will vary spatially throughout the landscape because of spatial and temporal rainfall variability.

  12. Land cover controls on summer discharge and runoff solution chemistry of semi-arid urban catchments

    NASA Astrophysics Data System (ADS)

    Gallo, Erika L.; Brooks, Paul D.; Lohse, Kathleen A.; McLain, Jean E. T.

    2013-04-01

    SummaryRecharge of urban runoff to groundwater as a stormwater management practice has gained importance in semi-arid regions where water resources are scarce and urban centers are growing. Despite this trend, the importance of land cover in controlling semi-arid catchment runoff quantity and quality remains unclear. Here we address the question: How do land cover characteristics control the amount and quality of storm runoff in semi-arid urban catchments? We monitored summertime runoff quantity and quality from five catchments dominated by distinct urban land uses: low, medium, and high density residential, mixed use, and commercial. Increasing urban land cover increased runoff duration and the likelihood that a rainfall event would result in runoff, but did not increase the time to peak discharge of episodic runoff. The effect of urban land cover on hydrologic responses was tightly coupled to the magnitude of rainfall. At distinct rainfall thresholds, roads, percent impervious cover and the stormwater drainage network controlled runoff frequency, runoff depth and runoff ratios. Contrary to initial expectations, runoff quality did not vary in repose to impervious cover or land use. We identified four major mechanisms controlling runoff quality: (1) variable solute sourcing due to land use heterogeneity and above ground catchment connectivity; (2) the spatial extent of pervious and biogeochemically active areas; (3) the efficiency of overland flow and runoff mobilization; and (4) solute flushing and dilution. Our study highlights the importance of the stormwater drainage systems characteristics in controlling urban runoff quantity and quality; and suggests that enhanced wetting and in-stream processes may control solute sourcing and retention. Finally, we suggest that the characteristics of the stormwater drainage system should be integrated into stormwater management approaches.

  13. Integrated Water Resources Planning and Management in Arid/Semi-arid Regions: Data, Modeling, and Assessment

    NASA Astrophysics Data System (ADS)

    Gupta, H.; Liu, Y.; Wagener, T.; Durcik, M.; Duffy, C.; Springer, E.

    2005-12-01

    Water resources in arid and semi-arid regions are highly sensitive to climate variability and change. As the demand for water continues to increase due to economic and population growth, planning and management of available water resources under climate uncertainties becomes increasingly critical in order to achieve basin-scale water sustainability (i.e., to ensure a long-term balance between supply and demand of water).The tremendous complexity of the interactions between the natural hydrologic system and the human environment means that modeling is the only available mechanism for properly integrating new knowledge into the decision-making process. Basin-scale integrated models have the potential to allow us to study the feedback processes between the physical and human systems (including institutional, engineering, and behavioral components); and an integrated assessment of the potential second- and higher-order effects of political and management decisions can aid in the selection of a rational water-resources policy. Data and information, especially hydrological and water-use data, are critical to the integrated modeling and assessment for water resources management of any region. To this end we are in the process of developing a multi-resolution integrated modeling and assessment framework for the south-western USA, which can be used to generate simulations of the probable effects of human actions while taking into account the uncertainties brought about by future climatic variability and change. Data are being collected (including the development of a hydro-geospatial database) and used in support of the modeling and assessment activities. This paper will present a blueprint of the modeling framework, describe achievements so far and discuss the science questions which still require answers with a particular emphasis on issues related to dry regions.

  14. ENSO elicits opposing responses of semi-arid vegetation between Hemispheres

    NASA Astrophysics Data System (ADS)

    Zhang, Anzhi; Jia, Gensuo; Epstein, Howard E.; Xia, Jiangjiang

    2017-02-01

    Semi-arid ecosystems are key contributors to the global carbon cycle and may even dominate the inter-annual variability (IAV) and trends of the land carbon sink, driven largely by the El Niño-Southern Oscillation (ENSO). The linkages between dynamics of semi-arid ecosystems and climate at the hemispheric scale however are not well known. Here, we use satellite data and climate observations from 2000 to 2014 to explore the impacts of ENSO on variability of semi-arid ecosystems, using the Ensemble Empirical Mode Decomposition method. We show that the responses of semi-arid vegetation to ENSO occur in opposite directions, resulting from opposing controls of ENSO on precipitation between the Northern Hemisphere (positively correlated to ENSO) and the Southern Hemisphere (negatively correlated to ENSO). Also, the Southern Hemisphere, with a robust negative coupling of temperature and precipitation anomalies, exhibits stronger and faster responses of semi-arid ecosystems to ENSO than the Northern Hemisphere. Our findings suggest that natural coherent variability in semi-arid ecosystem productivity responded to ENSO in opposite ways between two hemispheres, which may imply potential prediction of global semi-arid ecosystem variability, particularly based on variability in tropical Pacific Sea Surface Temperatures.

  15. Arid5b facilitates chondrogenesis by recruiting the histone demethylase Phf2 to Sox9-regulated genes

    NASA Astrophysics Data System (ADS)

    Hata, Kenji; Takashima, Rikako; Amano, Katsuhiko; Ono, Koichiro; Nakanishi, Masako; Yoshida, Michiko; Wakabayashi, Makoto; Matsuda, Akio; Maeda, Yoshinobu; Suzuki, Yutaka; Sugano, Sumio; Whitson, Robert H.; Nishimura, Riko; Yoneda, Toshiyuki

    2013-11-01

    Histone modification, a critical step for epigenetic regulation, is an important modulator of biological events. Sox9 is a transcription factor critical for endochondral ossification; however, proof of its epigenetic regulation remains elusive. Here we identify AT-rich interactive domain 5b (Arid5b) as a transcriptional co-regulator of Sox9. Arid5b physically associates with Sox9 and synergistically induces chondrogenesis. Growth of Arid5b-/- mice is retarded with delayed endochondral ossification. Sox9-dependent chondrogenesis is attenuated in Arid5b-deficient cells. Arid5b recruits Phf2, a histone lysine demethylase, to the promoter region of Sox9 target genes and stimulates H3K9me2 demethylation of these genes. In the promoters of chondrogenic marker genes, H3K9me2 levels are increased in Arid5b-/- chondrocytes. Finally, we show that Phf2 knockdown inhibits Sox9-induced chondrocyte differentiation. Our findings establish an epigenomic mechanism of skeletal development, whereby Arid5b promotes chondrogenesis by facilitating Phf2-mediated histone demethylation of Sox9-regulated chondrogenic gene promoters.

  16. Changes in precipitation recycling over arid regions in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Li, Ruolin; Wang, Chenghai; Wu, Di

    2018-01-01

    Changes of precipitation recycling (PR) in Northern Hemisphere from 1981 to 2010 are investigated using a water recycling model. The temporal and spatial characteristics of recycling in arid regions are analyzed. The results show that the regional precipitation recycling ratio (PRR) in arid regions is larger than in wet regions. PRR in arid regions has obvious seasonal variation, ranging from more than 25 % to less than 1 %. Furthermore, in arid regions, PRR is significantly negatively correlated with precipitation (correlation coefficient r = -0.5, exceeding the 99 % significance level). Moreover, the trend of PRR is related to changes in precipitation in two ways. PRR decreases with increasing precipitation in North Africa, which implies that less locally evaporated vapor converts into actual precipitation. However, in Asian arid regions, the PRR increases as precipitation reduces, which implies that more locally evaporated vapor converts into rainfall. Further, as PRR mainly depends on evapotranspiration, the PRR trend in Asian arid regions develops as temperature increases and more evaporated vapor enters the atmosphere to offset the reduced rainfall.

  17. Evidence of Urban-Induced Precipitation Variability in Arid Climate Regimes

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall

    2005-01-01

    Water is essential to life in the Earth system. The water cycle components that sustain life are becoming more scarce and polluted. The most recent (1999-2004) drought experienced in the southwestern United States is the seventh worst in the approximately 500-year proxy tree-ring record. As a result, many regions contemplated drought emergencies in which severe water restrictions are implemented. Though larger weather and climate processes likely control drought processes, there is increasing evidence that anthropogenic or human-related activities can significantly alter precipitation processes. Urbanization is an example of anthropogenic forcing. Recent studies continue to provide evidence that urban environments can modify or induce precipitation under a specific set of conditions. Arid and semi-arid regions of the southwestern United States and other parts of the world are rapidly developing and placing greater demands on the environmental system. In the past fifty years, Phoenix has expanded from a predominantly agricultural center to an urbanized region with extent 700 percent larger than its size in the middle of the twentieth century. Riyadh's population grew from about a half million people in 1972 to almost two million by 2000. Saudi Arabia experienced urbanization later than many other countries; in the early 1970s its urban-rural ratio was still about 1:3. By 1990 the ratio had reversed to about 3:l. In the mid-1970s Riyadh's population was increasing by about 10 percent a year. Irrigation also significantly increased between 1972 and 1990 southeast of Riyadh. The study employs a 108-year precipitation historical data record, global climate observing network observations and satellite data to identify possible anomalies in rainfall in and around two major arid urban areas, Phoenix, Arizona and Riyadh, Saudi Arabia. It provides statistically sound evidence that rainfall distribution and magnitude is statistically different in post-urban than in pre-urban (1900-1950) Phoenix. The study hypothesis that a complex interaction between the city landscape, irrigated lands, and nearby mountains have created preferred regions for rainfall development. The study also provides early evidence that rapidly urbanizing parts of the arid Middle East may also be experiencing different precipitation regimes in response to urbanization and irrigation.

  18. Forecasting the Depletion of Transboundary Groundwater Resources in Hyper-Arid Environments

    NASA Astrophysics Data System (ADS)

    Mazzoni, A.; Heggy, E.

    2014-12-01

    The increase in awareness about the overexploitation of transboundary groundwater resources in hyper-arid environments that occurred in the last decades has highlighted the need to better map, monitor and manage these resources. Climate change, economic and population growth are driving forces that put more pressure on these fragile but fundamental resources. The aim of our approach is to address the question of whether or not groundwater resources, especially non-renewable, could serve as "backstop" water resource during water shortage periods that would probably affect the drylands in the upcoming 100 years. The high dependence of arid regions on these resources requires prudent management to be able to preserve their fossil aquifers and exploit them in a more sustainable way. We use the NetLogo environment with the FAO Aquastat Database to evaluate if the actual trends of extraction, consumption and use of non-renewable groundwater resources would remain feasible with the future climate change impacts and the population growth scenarios. The case studies selected are three: the Nubian Sandstone Aquifer System, shared between Egypt, Libya, Sudan and Chad; the North Western Sahara Aquifer System, with Algeria, Tunisia and Libya and the Umm Radhuma Dammam Aquifer, in its central part, shared between Saudi Arabia, Qatar and Bahrain. The reason these three fossil aquifers were selected are manifold. First, they represent properly transboundary non-renewable groundwater resources, with all the implications that derive from this, i.e. the necessity of scientific and socio-political cooperation among riparians, the importance of monitoring the status of shared resources and the need to elaborate a shared management policy. Furthermore, each country is characterized by hyper-arid climatic conditions, which will be exacerbated in the next century by climate change and lead to probable severe water shortage periods. Together with climate change, the rate of population growth will be at unprecedented levels for these areas causing the water demand of these nations to grow largely. Our preliminary simulation results suggest that fossil aquifers cannot be used as a long-term solution for water shortage in hyper-arid environments. Aquifers in the Arabian Peninsula are forecasted to be depleted within decades.

  19. Quantifying the influence of deep soil moisture on ecosystem albedo: the role of vegetation Zulia M. Sánchez-Mejía 1 and Shirley A. Papuga1 1School of Natural Resources and the Environment, University of Arizona, Tucson, AZ

    NASA Astrophysics Data System (ADS)

    Sanchez-Mejia, Z. M.; Papuga, S. A.

    2012-12-01

    Water limited ecosystems in arid and semiarid regions are characterized by sparse vegetation and a relatively large fraction of bare soil. Importantly, the land surface in these dryland regions is highly sensitive to pulses of moisture that affect the vegetation canopy in density and color, as well as the soil color. Changes in surface conditions due to these pulses have been shown to affect the surface energy fluxes and atmospheric processes in these regions. For instance, previous studies have shown that shallow soil moisture ( < 20 cm below the surface) significantly changes surface albedo (a= SWup/ SWin). Recent studies have highlighted the importance of deep soil moisture ( > 20 cm below the surface) for vegetation dynamics in these regions. We hypothesize that deep soil moisture will change vegetation canopy density and color enough that changes in albedo will be observable at the surface, therefore linking deep soil moisture and albedo. We adopt a conceptual framework to address this hypothesis, where at any point in time the soil profile falls into one of four cases: (1) dry shallow soil and dry deep soil; (2) wet shallow soil and dry deep soil; (3) wet shallow soil and wet deep soil; and (4) dry shallow soil and wet deep soil. At a creosotebush dominated ecosystem of the Santa Rita Experimental Range, southern Arizona during summers of 2011 and 2012, we took albedo measurements during these cases at multiple bare and vegetated patches within the footprint of an eddy covariance tower. We found that when the soil is completely dry (Case 1) albedo is highest in both bare and vegetated patches. Likewise, when the soil is wet in both the shallow and deep regions (Case 3), albedo is lowest in both bare and vegetated patches. Interestingly, we also found that albedo is significantly lower for vegetated patches when the deep soil is wet and shallow soil is dry (Case 4). These results imply that deep soil moisture can be important in altering ecosystem level albedo. We note that ecosystems with higher percent vegetative cover are likely to be more sensitive to deep soil moisture driven changes in albedo. To quantify the influence of percent cover on ecosystem albedo, we populate a 100 x 100 cell grid randomly with bare and vegetated cells. For each case, we assign an albedo value to each cell based on probability distribution functions (PDFs) of soil moisture and albedo created from our field campaign data. Using this technique we can identify for each soil moisture case at which point the percent vegetative cover will significantly influence ecosystem albedo. Quantitative analyses of these ecosystem interactions help identify the unique role of deep soil moisture in land surface - atmosphere interactions.

  20. Signals of impending change

    USGS Publications Warehouse

    Grace, James B.

    2017-01-01

    Society has an increasing awareness that there are finite limits to what we can expect the planet to absorb and still provide goods and services at current rates1. Both historical reconstructions and contemporary events continue to remind us that ecological regime changes are often abrupt rather than gradual. This reality motivates researchers who seek to discover leading indicators for impending ecosystem change. Berdugo et al.2 report an important advance in our ability to anticipate the conversion of arid lands from self-organized, self-maintaining and productive ecosystems, to a state characterized by disorganization and low functionality. Such conversions have important implications for our understanding of ‘desertification’ — which is a shift from arid to desert-like conditions.Theoretical studies have suggested that patterns in the patchiness of vegetation might indicate how close a system is to making an abrupt change to desert-like conditions3,4,5. Empirical studies, however, have tended to show instead that simply the total cover of vegetation, rather than its arrangement, often foretells the state of the system4,5,6,7,8,9. Berdugo et al.2 combine these competing ideas into one integrated perspective. They show how major environmental drivers, such as aridity, influence both vegetation cover and patchiness, as well as where self-organizing, stabilizing forces in the vegetation are likely to be found.

  1. Assessment of the performance of water harvesting systems in semi-arid regions

    NASA Astrophysics Data System (ADS)

    Lasage, Ralph

    2016-04-01

    Water harvesting is widely practiced and has the potential to improve water availability for domestic and agricultural use in semi-arid regions. New funds are becoming available to stimulate the implementation of water harvesting projects, for meeting the Sustainable Development Goals and to help communities to adapt to climate change. For this, it is important to understand which factors determine the success of water harvesting techniques under different conditions. For this, we review the literature, including information on the crop yield impacts of water harvesting projects in semi-arid Africa and Asia. Results show that large water harvesting structures (> 500 m3) are less expensive than small structures, when taking into account investment costs, storage capacity and lifetimes. We also find that water harvesting improves crop yields significantly, and that the relative impact of water harvesting on crop yields is largest in low rainfall years. We also see that the governance, technical knowledge and initial investment are more demanding for the larger structures than for smaller structures, which may affect their spontaneous adoption and long term sustainability when managed by local communities. To support the selection of appropriate techniques, we present a decision framework based on case specific characteristics. This framework can also be used when reporting and evaluating the performance of water harvesting techniques, which is up to now quite limited in peer reviewed literature. Based on Bouma, J., Hegde, S.E., Lasage, R., (2016). Assessing the returns to water harvesting: A meta-analysis. Agricultural Water Management 163, 100-109. Lasage, R., Verburg P.H., (2015). Evaluation of small scale water harvesting techniques for semi-arid environments. Journal of Arid Environments 118, 48-57.

  2. Simulated Optimum Sowing Date for Forage Pearl Millet Cultivars in Multilocation Trials in Brazilian Semi-Arid Region

    PubMed Central

    Santos, Rafael D.; Boote, Kenneth J.; Sollenberger, Lynn E.; Neves, Andre L. A.; Pereira, Luiz G. R.; Scherer, Carolina B.; Gonçalves, Lucio C.

    2017-01-01

    Forage production is primarily limited by weather conditions under dryland production systems in Brazilian semi-arid regions, therefore sowing at the appropriate time is critical. The objectives of this study were to evaluate the CSM-CERES-Pearl Millet model from the DSSAT software suite for its ability to simulate growth, development, and forage accumulation of pearl millet [Pennisetum glaucum (L.) R.] at three Brazilian semi-arid locations, and to use the model to study the impact of different sowing dates on pearl millet performance for forage. Four pearl millet cultivars were grown during the 2011 rainy season in field experiments conducted at three Brazilian semi-arid locations, under rainfed conditions. The genetic coefficients of the four pearl millet cultivars were calibrated for the model, and the model performance was evaluated with experimental data. The model was run for 14 sowing dates using long-term historical weather data from three locations, to determine the optimum sowing window. Results showed that performance of the model was satisfactory as indicated by accurate simulation of crop phenology and forage accumulation against measured data. The optimum sowing window varied among locations depending on rainfall patterns, although showing the same trend for cultivars within the site. The best sowing windows were from 15 April to 15 May for the Bom Conselho location; 12 April to 02 May for Nossa Senhora da Gloria; and 17 April to 25 May for Sao Bento do Una. The model can be used as a tool to evaluate the effect of sowing date on forage pearl millet performance in Brazilian semi-arid conditions. PMID:29276521

  3. Don’t bust the biological soil crust: Preserving and restoring an important desert resource

    Treesearch

    Sue Miller; Steve Warren; Larry St. Clair

    2017-01-01

    Biological soil crusts are a complex of microscopic organisms growing on the soil surface in many arid and semi-arid ecosystems. These crusts perform the important role of stabilizing soil and reducing or eliminating water and wind erosion. One of the largest threats to biological soil crusts in the arid and semi-arid areas of the western United States is mechanical...

  4. Competing Influences of Anthropogenic Warming, ENSO, and Plant Physiology on Future Terrestrial Aridity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonfils, Céline; Anderson, Gemma; Santer, Benjamin D.

    The 2011–16 California drought illustrates that drought-prone areas do not always experience relief once a favorable phase of El Niño–Southern Oscillation (ENSO) returns. In the twenty-first century, such an expectation is unrealistic in regions where global warming induces an increase in terrestrial aridity larger than the changes in aridity driven by ENSO variability. This premise is also flawed in areas where precipitation supply cannot offset the global warming–induced increase in evaporative demand. Here, atmosphere-only experiments are analyzed to identify land regions where aridity is currently sensitive to ENSO and where projected future changes in mean aridity exceed the range causedmore » by ENSO variability. Insights into the drivers of these changes in aridity are obtained using simulations with the incremental addition of three different factors to the current climate: ocean warming, vegetation response to elevated CO 2 levels, and intensified CO 2 radiative forcing. The effect of ocean warming overwhelms the range of ENSO-driven temperature variability worldwide, increasing potential evapotranspiration (PET) in most ENSO-sensitive regions. Additionally, about 39% of the regions currently sensitive to ENSO will likely receive less precipitation in the future, independent of the ENSO phase. Consequently aridity increases in 67%–72% of the ENSO-sensitive area. When both radiative and physiological effects are considered, the area affected by arid conditions rises to 75%–79% when using PET-derived measures of aridity, but declines to 41% when an aridity indicator for total soil moisture is employed. This reduction mainly occurs because plant stomatal resistance increases under enhanced CO 2 concentrations, resulting in improved plant water-use efficiency, and hence reduced evapotranspiration and soil desiccation. Imposing CO 2-invariant stomatal resistance may overestimate future drying in PET-derived indices.« less

  5. Competing Influences of Anthropogenic Warming, ENSO, and Plant Physiology on Future Terrestrial Aridity

    DOE PAGES

    Bonfils, Céline; Anderson, Gemma; Santer, Benjamin D.; ...

    2017-07-27

    The 2011–16 California drought illustrates that drought-prone areas do not always experience relief once a favorable phase of El Niño–Southern Oscillation (ENSO) returns. In the twenty-first century, such an expectation is unrealistic in regions where global warming induces an increase in terrestrial aridity larger than the changes in aridity driven by ENSO variability. This premise is also flawed in areas where precipitation supply cannot offset the global warming–induced increase in evaporative demand. Here, atmosphere-only experiments are analyzed to identify land regions where aridity is currently sensitive to ENSO and where projected future changes in mean aridity exceed the range causedmore » by ENSO variability. Insights into the drivers of these changes in aridity are obtained using simulations with the incremental addition of three different factors to the current climate: ocean warming, vegetation response to elevated CO 2 levels, and intensified CO 2 radiative forcing. The effect of ocean warming overwhelms the range of ENSO-driven temperature variability worldwide, increasing potential evapotranspiration (PET) in most ENSO-sensitive regions. Additionally, about 39% of the regions currently sensitive to ENSO will likely receive less precipitation in the future, independent of the ENSO phase. Consequently aridity increases in 67%–72% of the ENSO-sensitive area. When both radiative and physiological effects are considered, the area affected by arid conditions rises to 75%–79% when using PET-derived measures of aridity, but declines to 41% when an aridity indicator for total soil moisture is employed. This reduction mainly occurs because plant stomatal resistance increases under enhanced CO 2 concentrations, resulting in improved plant water-use efficiency, and hence reduced evapotranspiration and soil desiccation. Imposing CO 2-invariant stomatal resistance may overestimate future drying in PET-derived indices.« less

  6. Recent advances in research on the aeolian geomorphology of China's Kumtagh Sand Sea

    NASA Astrophysics Data System (ADS)

    Dong, Z.; Lv, P.

    2014-02-01

    The Kumtagh Sand Sea in the hyper-arid region of northwestern China remained largely unexplored until the last decade. It deserves study due to its significance in understanding the evolution of the arid environments in northwestern China, and even central Asia. Aeolian geomorphology in the sand sea has received unprecedented study in the last decade. Encouraging advances have been made in types of aeolian landforms, geological outlines, wind systems, the formation of aeolian landforms, several unique aeolian landforms, aeolian geomorphic regionalization, aeolian geomorphological heritages and tourism development, and aeolian sand hazards and their control. These advances expand our knowledge of aeolian geomorphology.

  7. Microbial ecology of extreme environments: Antarctic yeasts and growth in substrate-limited habitats

    NASA Technical Reports Server (NTRS)

    Vishniac, H. S.

    1985-01-01

    The high, dry valleys of the Ross Desert of Antarctic, characterized by extremely low temperatures, aridity and a depauperate biota, are used as an analog of the postulated extreme climates of other planetary bodies of the Solar System to test the hypothesis that if life could be supported by Ross, it might be possible where similar conditions prevail. The previously considered sterility of the Ross Desert soil ecosystem has yielded up an indigenous yeast, Cryptoccus vishniacci, which is able to resist the extremes of cold, wet and dry freezing, and long arid periods, while making minimal nutritional demands on the soil.

  8. Green Infrastructure for Arid Communities

    EPA Pesticide Factsheets

    how green infrastructure practices and the many associated benefits can be effective not only in wetter climates, but also for those communities in arid and semi-arid regions around the nation that have different precipitation patterns

  9. Changes in Spatial Patterns of Caragana stenophylla along a Climatic Drought Gradient on the Inner Mongolian Plateau

    PubMed Central

    Xie, Li-Na; Guo, Hong-Yu; Gabler, Christopher A.; Li, Qing-Fang; Ma, Cheng-Cang

    2015-01-01

    Few studies have investigated the influence of water availability on plant population spatial patterns. We studied changes in the spatial patterns of Caragana stenophylla along a climatic drought gradient within the Inner Mongolian Plateau, China. We examined spatial patterns, seed density, “nurse effects” of shrubs on seedlings, transpiration rates and water use efficiency (WUE) of C. stenophylla across semi-arid, arid, and intensively arid zones. Our results showed that patches of C. stenophylla populations shifted from a random to a clumped spatial pattern towards drier environments. Seed density and seedling survival rate of C. stenophylla decreased from the semi-arid zone to the intensively arid zone. Across the three zones, there were more C. stenophylla seeds and seedlings underneath shrub canopies than outside shrub canopies; and in the intensively arid zone, there were almost no seeds or seedlings outside shrub canopies. Transpiration rates of outer-canopy leaves and WUE of both outer-canopy and inner-canopy leaves increased from the semi-arid zone to the intensively arid zone. In the intensively arid zone, transpiration rates and WUE of inner-canopy leaves were significantly lower and higher, respectively, than those of outer-canopy leaves. We conclude that, as drought stress increased, seed density decreased, seed proportions inside shrubs increased, and “nurse effects” of shrubs on seedlings became more important. These factors, combined with water-saving characteristics associated with clumped spatial patterns, are likely driving the changes in C. stenophylla spatial patterns. PMID:25785848

  10. Green-blue water system innovations for upgrading of smallholder farming systems--a policy framework for development.

    PubMed

    Hatibu, N; Rockström, J

    2005-01-01

    Rainfed agriculture and other depletion of water by green flows have as yet an untapped potential for improving livelihoods in semi-arid areas through income and food security. A vivid evidence of this is seen in the fact that, although working full time on food production, majority of smallholder farmers are frequently affected by shortage of food or famines. At the same time enough examples exist to show that productivity of labor, water and land under rainfed farming can be doubled or even trebled through proper land management and improved agronomic inputs supported by modest investments to reduce impacts of dry spells. However, these shining examples remain small 'islands of success' across the entire semi-arid areas. Farmers have not adopted these systems due to poor ratio of benefit to costs brought about by inadequate development or complete lack of food trade among the rural areas. This paper argues that there is a need for policy, strategic and programmatic frameworks which facilitate integrated management of land, water and markets. For this kind of strategy to work, a local market for food should be ensured to absorb at competitive prices the surplus produced by farmers in years of good rains. This will promote wealth creation and asset building among the poor in semi-arid areas. A food-exchange "futures" mechanism based on the principle of virtual water trade is proposed as a basis for achieving this objective.

  11. [A research review on "fertile islands" of soils under shrub canopy in arid and semi-arid regions].

    PubMed

    Chen, Guangsheng; Zeng, Dehui; Chen, Fusheng; Fan, Zhiping; Geng, Haiping

    2003-12-01

    Due to the inclemency of climate and soil conditions and the intense disturbance of human beings, the soil resources heterogeneity in arid and semi-arid grassland ecosystems worldwide was gradually increased during the last century. The interaction between soil heterogeneity and shrubs induced the autogenic development of "fertile islands" and the increasing spread of shrubs in the grassland ecosystems. The development of "fertile islands" around individual shrubs could change the vegetation composition and structure, as well as the distribution patterns of soil resources, and thus, reinforced the changes of the ecosystem function and structure from a relative stable grassland ecosystem to a quasi-stable shrubland ecosystem. The study of "fertile islands" phenomenon would help us to understand the causes, consequences and processes of desertification in arid and semi-arid areas. In this paper, the causes of "fertile islands", its study methods and significance and its relationship with shrub spreading as well as the responses of vegetation to it were summarized. The problems which might occur in the study of this phenomenon were also pointed out. Our aim was to offer some references to the study of land desertification processes and vegetation restoration in the arid and semi-arid regions.

  12. Enlargement of the semi-arid region in China from 1961 to 2010

    NASA Astrophysics Data System (ADS)

    Yin, Yunhe; Ma, Danyang; Wu, Shaohong

    2018-02-01

    Due to spatial and temporal heterogeneity in moisture conditions, the responses of arid/humid climate regions (AHCR) to climate change are complex. In this study, we delineated the AHCR of China using information about the balance of the atmospheric water supply and demand collected from 581 meteorological stations over the past 50 years. We also analyzed inter-decadal shifts and linear trends in the AHCR and examined the influence of precipitation and reference evapotranspiration. The results indicate that the semi-arid region expanded significantly over the last five decades, mainly in northwest China, northern China, and the Tibetan Plateau and, by the 2000s, had increased by 33.53% relative to its extent in the 1960s; in contrast, the arid region shrank by 20.75%. The semi-arid region grew mainly because of transfers from the arid region in western China and the sub-humid region in eastern China. The decreased reference evapotranspiration and significantly increased precipitation together contributed to the expansion of the semi-arid region in northwest China and the Tibetan Plateau over the last 50 years. In contrast, the expansion of the semi-arid region in Inner Mongolia and northern China reflects the counteractive influence of decreased reference evapotranspiration and decreased precipitation.

  13. Realization of daily evapotranspiration in arid ecosystems based on remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Elhag, Mohamed; Bahrawi, Jarbou A.

    2017-03-01

    Daily evapotranspiration is a major component of water resources management plans. In arid ecosystems, the quest for an efficient water budget is always hard to achieve due to insufficient irrigational water and high evapotranspiration rates. Therefore, monitoring of daily evapotranspiration is a key practice for sustainable water resources management, especially in arid environments. Remote sensing techniques offered a great help to estimate the daily evapotranspiration on a regional scale. Existing open-source algorithms proved to estimate daily evapotranspiration comprehensively in arid environments. The only deficiency of these algorithms is the course scale of the used remote sensing data. Consequently, the adequate downscaling algorithm is a compulsory step to rationalize an effective water resources management plan. Daily evapotranspiration was estimated fairly well using an Advance Along-Track Scanner Radiometer (AATSR) in conjunction with (MEdium Resolution Imaging Spectrometer) MERIS data acquired in July 2013 with 1 km spatial resolution and 3 days of temporal resolution under a surface energy balance system (SEBS) model. Results were validated against reference evapotranspiration ground truth values using standardized Penman-Monteith method with R2 of 0.879. The findings of the current research successfully monitor turbulent heat fluxes values estimated from AATSR and MERIS data with a temporal resolution of 3 days only in conjunction with reliable meteorological data. Research verdicts are necessary inputs for a well-informed decision-making processes regarding sustainable water resource management.

  14. Halophytes, Algae, and Bacteria Food and Fuel Feedstocks

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    The constant, increasing demand for energy, freshwater, and food stresses our ability to meet these demands within reasonable cost and impact on climate while sustaining quality of life. This environmental Triangle of Conflicts between energy, food, and water--while provoked by anthropogenic monetary and power struggles--can be resolved through an anthropogenic paradigm shift in how we produce and use energy, water, and food. With world population (6.6 billion) projected to increase 40 percent in 40 to 60 yr, proper development of saline agriculture and aquaculture is required, as 43 percent of the Earth's landmass is arid or semi-arid and 97 percent of the Earth's water is seawater. In light of this, we seek fuel alternatives in plants that thrive in brackish and saltwater with the ability to survive in arid lands. The development and application of these plants (halophytes) become the primary focus. Herein we introduce some not-so-familiar halophytes and present a few of their benefits, cite a few research projects (including some on the alternatives algae and bacteria), and then set theoretical limits on biomass production followed by projections in terms of world energy demands. Based on diverse arid lands with a total size equivalent to the Sahara Desert (8.6(exp 8) ha, or 2.1(exp 9) acres), these projections show that halophyte agriculture and algae systems can provide for the projected world energy demand.

  15. Effects of elevated CO2 on fine root biomass are reduced by aridity but enhanced by soil nitrogen: A global assessment.

    PubMed

    Piñeiro, Juan; Ochoa-Hueso, Raúl; Delgado-Baquerizo, Manuel; Dobrick, Silvan; Reich, Peter B; Pendall, Elise; Power, Sally A

    2017-11-10

    Plant roots play a crucial role in regulating key ecosystem processes such as carbon (C) sequestration and nutrient solubilisation. Elevated (e)CO 2 is expected to alter the biomass of fine, coarse and total roots to meet increased demand for other resources such as water and nitrogen (N), however, the magnitude and direction of observed changes vary considerably between ecosystems. Here, we assessed how climate and soil properties mediate root responses to eCO 2 by comparing 24 field-based CO 2 experiments across the globe including a wide range of ecosystem types. We calculated response ratios (i.e. effect size) and used structural equation modelling (SEM) to achieve a system-level understanding of how aridity, mean annual temperature and total soil nitrogen simultaneously drive the response of total, coarse and fine root biomass to eCO 2 . Models indicated that increasing aridity limits the positive response of fine and total root biomass to eCO 2 , and that fine (but not coarse or total) root responses to eCO 2 are positively related to soil total N. Our results provide evidence that consideration of factors such as aridity and soil N status is crucial for predicting plant and ecosystem-scale responses to future changes in atmospheric CO 2 concentrations, and thus feedbacks to climate change.

  16. GRACE, GLDAS and measured groundwater data products show water storage loss in Western Jilin, China.

    PubMed

    Moiwo, Juana Paul; Lu, Wenxi; Tao, Fulu

    2012-01-01

    Water storage depletion is a worsening hydrological problem that limits agricultural production in especially arid/semi-arid regions across the globe. Quantifying water storage dynamics is critical for developing water resources management strategies that are sustainable and protective of the environment. This study uses GRACE (Gravity Recovery and Climate Experiment), GLDAS (Global Land Data Assimilation System) and measured groundwater data products to quantify water storage in Western Jilin (a proxy for semi-arid wetland ecosystems) for the period from January 2002 to December 2009. Uncertainty/bias analysis shows that the data products have an average error <10% (p < 0.05). Comparisons of the storage variables show favorable agreements at various temporal cycles, with R(2) = 0.92 and RMSE = 7.43 mm at the average seasonal cycle. There is a narrowing soil moisture storage change, a widening groundwater storage loss, and an overall storage depletion of 0.85 mm/month in the region. There is possible soil-pore collapse, and land subsidence due to storage depletion in the study area. Invariably, storage depletion in this semi-arid region could have negative implications for agriculture, valuable/fragile wetland ecosystems and people's livelihoods. For sustainable restoration and preservation of wetland ecosystems in the region, it is critical to develop water resources management strategies that limit groundwater extraction rate to that of recharge rate.

  17. Hydraulic lift through transpiration suppression in shrubs from two arid ecosystems: patterns and control mechanisms.

    PubMed

    Prieto, Iván; Martínez-Tillería, Karina; Martínez-Manchego, Luis; Montecinos, Sonia; Pugnaire, Francisco I; Squeo, Francisco A

    2010-08-01

    Hydraulic lift (HL) is the passive movement of water through the roots from deep wet to dry shallow soil layers when stomata are closed. HL has been shown in different ecosystems and species, and it depends on plant physiology and soil properties. In this study we explored HL patterns in several arid land shrubs, and developed a simple model to simulate the temporal evolution and magnitude of HL during a soil drying cycle under relatively stable climatic conditions. This model was then used to evaluate the influence of soil texture on the quantity of water lifted by shrubs in different soil types. We conducted transpiration suppression experiments during spring 2005 in Chile and spring 2008 in Spain on five shrub species that performed HL, Flourensia thurifera, Senna cumingii and Pleocarphus revolutus (Chile), Retama sphaerocarpa and Artemisia barrelieri (Spain). Shrubs were covered with a black, opaque plastic fabric for a period of 48-72 h, and soil water potential was recorded at different depths under the shrubs. While the shrubs remained covered, water potential continuously increased in shallow soil layers until the cover was removed. The model output indicated that the amount of water lifted by shrubs is heavily dependent on soil texture, as shrubs growing in loamy soils redistributed up to 3.6 times more water than shrubs growing on sandy soils. This could be an important consideration for species growing in soils with different textures, as their ability to perform HL would be context dependent.

  18. Phylogeography of the tree lizard, Urosaurus ornatus: responses of populations to past climate change.

    PubMed

    Haenel, G J

    2007-10-01

    Isolation due to both geological barriers and range contractions during the Pleistocene glacial maxima has been an important cause of diversification of arid-adapted species in the North American deserts. Tree lizards, Urosaurus ornatus, are distributed across much of the southwestern arid regions and can tolerate a wide range of environments. Thus, they may have avoided large-scale shifts in distribution caused by Pleistocene climate change and any subsequent evolutionary impacts. Cytochrome b sequences were sampled from U. ornatus across the northern part of their range to test if current structure of these populations resulted from post-Pleistocene range expansion and habitat fragmentation, or prior geological isolation. Phylogenetic analyses found geographical structuring of populations consistent with a model of long-term geographical isolation corresponding to each of the desert regions. The two post-Pleistocene hypotheses were not well supported as estimated times of divergence predated the retreat of the last continental ice sheet. Populations in different regions were impacted by different processes. Southern populations of U. ornatus appear to have remained largely independent of more derived northern and eastern populations during Pleistocene climate change, while populations in regions containing more derived populations showed evidence of more recent range expansion (Colorado Plateau). As populations of U. ornatus attest to, the complex and dynamic history of the southwestern USA has left a deep-rooted and multifaceted imprint on genetic and phylogeographical structure of the species living there.

  19. Climatic Forecasting of Net Infiltration at Yucca Mountain, Using Analogue Meteorological Data

    NASA Astrophysics Data System (ADS)

    Faybishenko, B.

    2005-12-01

    Net infiltration is a key hydrologic parameter that, throughout the unsaturated zone, controls the rate of deep percolation, the groundwater recharge, radionuclide transport, and seepage into underground tunnels. Because net infiltration is largely affected by climatic conditions, future changes in climatic conditions will potentially alter net infiltration. The objectives of this presentation are to: (1) Present a conceptual model and a semi-empirical approach for regional climatic forecasting of net infiltration, based on precipitation and temperature data from analogue meteorological stations; and (2) Demonstrate the results of forecasting net infiltration for future climates - interglacial, monsoon and glacial - over the Yucca Mountain region for a period of 500,000 years. Calculations of net infiltration were performed using a modified Budyko's water-balance model, and potential evapotranspiration was evaluated from the temperature-based Thornthwaite formula. (Both Budyko's and Thornthwaite's formulae have been used broadly in hydrological studies.) The results of these calculations were used for ranking net infiltration, along with aridity and precipitation-effectiveness (P-E) indices, for future climatic scenarios. Using this approach, we determined a general trend of increasing net infiltration from the present-day (interglacial) climate to the monsoon, intermediate (glacial transition) climate, a trend that continued into the glacial climate time frame. The ranking of aridity and P-E indices is practically the same as that for net infiltration. Validation of the computed net infiltration rates yielded a good match with other field and modeling study results related to groundwater recharge and net infiltration evaluation.

  20. Integrated reclamation: Approaching ecological function?

    Treesearch

    Ann L. Hild; Nancy L. Shaw; Ginger B. Paige

    2009-01-01

    Attempts to reclaim arid and semiarid lands have traditionally targeted plant species composition. Much research attention has been directed to seeding rates, species mixes and timing of seeding. However, in order to attain functioning systems, attention to structure and process must compliment existing efforts. We ask how to use a systems approach to enhance...

  1. Agronomic & entomological results from 7 years of dryland cropping systems research at Briggsdale, Colorado

    USDA-ARS?s Scientific Manuscript database

    Dryland crop production in the semi-arid Great Plains is limited by both the quantity and timing of precipitation. Sustainable dryland cropping systems maximize precipitation use efficiency by managing precipitation capture, storage, and use. Pest management approaches are also critical for efficie...

  2. Valuing preservation and restoration alternatives for ecosystem services in the southwestern U.S.

    USDA-ARS?s Scientific Manuscript database

    Conservation of freshwater systems in the semi-arid southwestern U.S. is a critical issue as these systems support habitat for wildlife and provide for consumptive use for humankind. Economists have utilized stated preference techniques to value non-marketed goods and services such as freshwater sy...

  3. Simulating landscape catena effects in no-till dryland agroecosystems using GPFARM

    USDA-ARS?s Scientific Manuscript database

    Alternative agricultural management systems in the semi-arid Great Plains are receiving increasing attention. GPFARM is a farm/ranch decision support system (DSS) designed to assist in strategic management planning for land units from the field to the whole-farm level. This study evaluated the site...

  4. Organic amendments as restoration techniques in degraded arid and semiarid systems: A review

    NASA Astrophysics Data System (ADS)

    Hueso-González, Paloma; Muñoz-Rojas, Miriam

    2017-04-01

    There is an increasing concern at the global scale about interrelated environmental problems such as soil degradation, desertification, erosion, and climate change impacts (Hueso-Gonzalez et al., 2014). Indiscriminate use of agro-chemicals, excessive and deep tillage, excessive irrigation, among many others factors, have largely contributed to soil degradation, particularly in arid and semi-arid areas (Lal, 2008). Soil is an essential non-renewable resource with extremely slow formation and regeneration potential (Muñoz-Rojas et al., 2016a and c, Martínez-Murillo et al., 2016). The decline in organic matter content of many soils is becoming a major cause of soil degradation, particularly in dryland regions (Muñoz-Rojas et al., 2016b) where low soil fertility cannot maintain sustainable production in many cases (Hueso-González et al., 2015). The use of soil organic amendments is a common practice in agricultural management and land restoration that can help to improve physical and chemical soil properties, soil structure, temperature and humidity conditions, as well as nutrient contents which are essential for plant growth (Guerrero et al., 2001). Under degraded conditions, several studies have shown their benefits for improving soil physical, chemical and biological properties (Jordan et al., 2010 and 2011). However, there are many research gaps in the knowledge of the effects of climatic conditions on their application, as well as the adequate types of amendment and doses and decomposition rates, (Hueso-Gonzalez,2016). All these factors are crucial for the success in their application. Here, we review long-term experiments worldwide studying the benefits associated with the application of organic materials, particularly, in restoration of arid and semiarid ecosystems together with the possible threats and risks that can result from their use. We will specifically adress: (1) type of amended and benefits arising from their use, (2) application methods and more common doses and, (3) risk derivates for their application. References: Guerrero, C., Gómez, I., Moral, R., Mataix-Solera, J., Mataix-Beneyto, J., Hernández, T.: Reclamation of a burned forest soil with municipal waste compost: macronutrient dynamic and improved vegetation cover recovery, Bioresource Technology, 76, 221-227, 2001. Hueso-González, P., Martínez-Murillo, J.F., and Ruiz Sinoga., J.D.: The impact of organic amendments on forest soil properties under Mediterranean climatic conditions, Land Degradation and Development, 25, 604-612, 2014. Hueso-González, P., Martínez-Murillo, J.F., and Ruiz Sinoga., J.D.: Effects of topsoil treatments on afforestation in a dry-Mediterranean climate (Southern Spain), Solid Earth, 7, 1479-1489, 2016. Hueso-González, P., Ruíz Sinoga, J.D., Martínez-Murillo, J.F., and Lavee, H.: Overland flow generation mechanisms affected by topsoil treatment: Application to soil conservation, Geomorphology, 228, 796-804, 2015. Jordán, A., Zavala, L.M., Gil, J.: Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain, Catena 81, 77-85, 2010. Jordán, A., Zavala, L.M., Muñoz-Rojas, M. 2011. Mulching, effects on soil physical properties. In: Glinski, J., Horabik, J., Lipiec, J. (Eds.), Encyclopedia of Agrophysics. Springer, Berlin, pp. 492-496. Lal R.: Soils and sustainable agriculture. A review, Agron. Sustain. Dev. 28, 57-64, 2008. Muñoz-Rojas, M., Erickson, T.E., Dixon, K.W., Merritt, D.J.: Soil quality indicators to assess functionality of restored soils in degraded semiarid ecosystems, Restor. Ecol., 2016a. Muñoz-Rojas, M., Erickson, T.E., Martini, D., Dixon, K.W., Merritt, D.J.: Soil physicochemical and microbiological indicators of short, medium and long term post-fire recovery in semi-arid ecosystems, Ecol. Indic., 63,14-22, 2016b. Muñoz-Rojas, M., Erickson, T.E., Martini, D., Dixon, K.W., Merritt, D.J.: Climate and soil factors influencing seedling recruitment of plant species used for drylands restoration, SOIL, 2, 287-298, 2016c. Martínez-Murillo, J.F., Hueso-González, P., Ruiz-Sinoga, J.D., Lavee, H.: Short-Experimental fire effects in soil and water losses in southern of Spain. Land Degradation and Development, 27, 1513-1522, 2016.

  5. Blasting methods for heterogeneous rocks in hillside open-pit mines with high and steep slopes

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; Chang, Z. G.; Chao, X. H.; Zhao, J. F.

    2017-06-01

    In the arid desert areas in Xinjiang, most limestone quarries are hillside open-pit mines (OPMs) where the limestone is hard, heterogeneous, and fractured, and can be easily broken into large blocks by blasting. This study tried to find effective technical methods for blasting heterogeneous rocks in such quarries based on an investigation into existing problems encountered in actual mining at Hongshun Limestone Quarry in Xinjiang. This study provided blasting schemes for hillside OPMs with different heights and slopes. These schemes involve the use of vertical deep holes, oblique shallow holes, and downslope hole-by-hole sublevel or simultaneous detonation techniques. In each bench, the detonations of holes in a detonation unit occur at intervals of 25-50 milliseconds. The research findings can offer technical guidance on how to blast heterogeneous rocks in hillside limestone quarries.

  6. a Proposed New Vegetation Index, the Total Ratio Vegetation Index (trvi), for Arid and Semi-Arid Regions

    NASA Astrophysics Data System (ADS)

    Fadaei, H.; Suzuki, R.; Sakai, T.; Torii, K.

    2012-07-01

    Vegetation indices that provide important key to predict amount vegetation in forest such as percentage vegetation cover, aboveground biomass, and leaf-area index. Arid and semi-arid areas are not exempt of this rule. Arid and semi-arid areas of northeast Iran cover about 3.4 million ha and are populated by two main tree species, the broadleaf Pistacia vera (pistachio) and the conifer Juniperus excelsa ssp. polycarpos (Persian juniper). Natural stands of pistachio in Iran are not only environmentally important but also genetically essential as seed sources for pistachio production in orchards. We investigated the relationships between tree density and vegetation indices in the arid and semi-arid regions in the northeast of Iran by analysing Advanced Land Observing Satellite (ALOS) data PRISM is a panchromatic radiometer with a 2.5 m spatial resolution at nadir, and has one band with a wavelength of 0.52-0.77 μm (JAXA EORC). AVNIR-2 is a visible and near infrared radiometer for observing land and coastal zones with a 10 m spatial resolution at nadir, and has four multispectral bands: blue (0.42-0.50 μm), green (0.52-0.60 μm), red (0.61-0.69 μm), and near infrared (0.76-0.89 μm) (JAXA EORC). In this study, we estimated various vegetation indices using maximum filtering algorithm (5×5) and examined. This study carried out of juniper forests and natural pistachio stand using Advanced Land Observing Satellite (ALOS) and field inventories. Have been compared linear regression model of vegetation indices and proposed new vegetation index for arid and semi-arid regions. Also, we estimated the densities of juniper forests and natural pistachio stands using remote sensing to help in the sustainable management and production of pistachio in Iran. We present a new vegetation index for arid and semi-arid regions with sparse forest cover, the Total Ratio Vegetation Index (TRVI), and we investigate the relationship of the new index to tree density by analysing data from the Advanced Land Observing Satellite (ALOS) using 5×5 maximum filtering algorithms. The results for pistachio forest showed the coefficient regression of NDVI, SAVI, MSAVI, OSAVI, and TRVI were (R2= 0.68, 0.67, 0.68, 0.68, and 0.71) respectively. The results for juniper forest showed the coefficient regression of NDVI, SAVI, MSAVI, OSAVI, and TRVI were (R2= 0.51, 0.52, 0.51, 0.52, and 0.56) respectively. I hope this research can provide decision of managers to helping sustainable management for arid and semi-arid regions in Iran.

  7. Significant Impacts of Increasing Aridity on the Arid Soil Microbiome.

    PubMed

    Neilson, Julia W; Califf, Katy; Cardona, Cesar; Copeland, Audrey; van Treuren, Will; Josephson, Karen L; Knight, Rob; Gilbert, Jack A; Quade, Jay; Caporaso, J Gregory; Maier, Raina M

    2017-01-01

    Global deserts occupy one-third of the Earth's surface and contribute significantly to organic carbon storage, a process at risk in dryland ecosystems that are highly vulnerable to climate-driven ecosystem degradation. The forces controlling desert ecosystem degradation rates are poorly understood, particularly with respect to the relevance of the arid-soil microbiome. Here we document correlations between increasing aridity and soil bacterial and archaeal microbiome composition along arid to hyperarid transects traversing the Atacama Desert, Chile. A meta-analysis reveals that Atacama soil microbiomes exhibit a gradient in composition, are distinct from a broad cross-section of nondesert soils, and yet are similar to three deserts from different continents. Community richness and diversity were significantly positively correlated with soil relative humidity (SoilRH). Phylogenetic composition was strongly correlated with SoilRH, temperature, and electrical conductivity. The strongest and most significant correlations between SoilRH and phylum relative abundance were observed for Acidobacteria , Proteobacteria , Planctomycetes , Verrucomicrobia , and Euryarchaeota (Spearman's rank correlation [ r s ] = >0.81; false-discovery rate [ q ] = ≤0.005), characterized by 10- to 300-fold decreases in the relative abundance of each taxon. In addition, network analysis revealed a deterioration in the density of significant associations between taxa along the arid to hyperarid gradient, a pattern that may compromise the resilience of hyperarid communities because they lack properties associated with communities that are more integrated. In summary, results suggest that arid-soil microbiome stability is sensitive to aridity as demonstrated by decreased community connectivity associated with the transition from the arid class to the hyperarid class and the significant correlations observed between soilRH and both diversity and the relative abundances of key microbial phyla typically dominant in global soils. IMPORTANCE We identify key environmental and geochemical factors that shape the arid soil microbiome along aridity and vegetation gradients spanning over 300 km of the Atacama Desert, Chile. Decreasing average soil relative humidity and increasing temperature explain significant reductions in the diversity and connectivity of these desert soil microbial communities and lead to significant reductions in the abundance of key taxa typically associated with fertile soils. This finding is important because it suggests that predicted climate change-driven increases in aridity may compromise the capacity of the arid-soil microbiome to sustain necessary nutrient cycling and carbon sequestration functions as well as vegetative cover in desert ecosystems, which comprise one-third of the terrestrial biomes on Earth.

  8. Coffin-Siris syndrome and the BAF complex: genotype-phenotype study in 63 patients.

    PubMed

    Santen, Gijs W E; Aten, Emmelien; Vulto-van Silfhout, Anneke T; Pottinger, Caroline; van Bon, Bregje W M; van Minderhout, Ivonne J H M; Snowdowne, Ronelle; van der Lans, Christian A C; Boogaard, Merel; Linssen, Margot M L; Vijfhuizen, Linda; van der Wielen, Michiel J R; Vollebregt, M J Ellen; Breuning, Martijn H; Kriek, Marjolein; van Haeringen, Arie; den Dunnen, Johan T; Hoischen, Alexander; Clayton-Smith, Jill; de Vries, Bert B A; Hennekam, Raoul C M; van Belzen, Martine J

    2013-11-01

    De novo germline variants in several components of the SWI/SNF-like BAF complex can cause Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NCBRS), and nonsyndromic intellectual disability. We screened 63 patients with a clinical diagnosis of CSS for these genes (ARID1A, ARID1B, SMARCA2, SMARCA4, SMARCB1, and SMARCE1) and identified pathogenic variants in 45 (71%) patients. We found a high proportion of variants in ARID1B (68%). All four pathogenic variants in ARID1A appeared to be mosaic. By using all variants from the Exome Variant Server as test data, we were able to classify variants in ARID1A, ARID1B, and SMARCB1 reliably as being pathogenic or nonpathogenic. For SMARCA2, SMARCA4, and SMARCE1 several variants in the EVS remained unclassified, underlining the importance of parental testing. We have entered all variant and clinical information in LOVD-powered databases to facilitate further genotype-phenotype correlations, as these will become increasingly important because of the uptake of targeted and untargeted next generation sequencing in diagnostics. The emerging phenotype-genotype correlation is that SMARCB1 patients have the most marked physical phenotype and severe cognitive and growth delay. The variability in phenotype seems most marked in ARID1A and ARID1B patients. Distal limbs anomalies are most marked in ARID1A patients and least in SMARCB1 patients. Numbers are small however, and larger series are needed to confirm this correlation. © 2013 WILEY PERIODICALS, INC.

  9. The disparity between extreme rainfall events and rare floods - with emphasis on the semi-arid American West

    NASA Astrophysics Data System (ADS)

    Osterkamp, W. R.; Friedman, J. M.

    2000-10-01

    Research beginning 40 years ago suggested that semi-arid lands of the USA have higher unit discharges for a given recurrence interval than occur in other areas. Convincing documentation and arguments for this suspicion, however, were not presented. Thus, records of measured rainfall intensities for specified durations and recurrence intervals, and theoretical depths of probable maximum precipitation for specified recurrence intervals and areal scales are considered here for comparing extreme rainfalls of semi-arid areas with those of other climatic areas. Runoff from semi-arid lands, as peaks of rare floods, is compared with that of other areas using various published records. Relative to humid areas, semi-arid parts of the conterminous USA have lower 100-year, 6-h rainfall intensities and smaller depths of 100-year probable maximum precipitation for 26-km2 areas. Nonetheless, maximum flood peaks, flash-flood potentials, and runoff potentials are generally larger in semi-arid areas than in more humid parts of the nation. Causes of this disparity between rainfall and runoff appear to be results of soil and vegetation that in humid areas absorb and intercept rainfall and attenuate runoff, but in semi-arid areas limit infiltration and enhance runoff from bare, crusted surfaces. These differences in soil and vegetation conditions are indicated by the relatively high curve numbers and drainage densities that are typical of semi-arid areas. Owing to soil and vegetation conditions, rare floods in semi-arid areas are more likely to cause landform change than are floods of similar magnitude elsewhere.

  10. The disparity between extreme rainfall events and rare floods - with emphasis on the semi-arid American West

    USGS Publications Warehouse

    Osterkamp, W.R.; Friedman, J.M.

    2000-01-01

    Research beginning 40 years ago suggested that semi-arid lands of the USA have higher unit discharges for a given recurrence interval than occur in other areas. Convincing documentation and arguments for this suspicion, however, were not presented. Thus, records of measured rainfall intensities for specified durations and recurrence intervals, and theoretical depths of probable maximum precipitation for specified recurrence intervals and areal scales are considered here for comparing extreme rainfalls of semi-arid areas with those of other climatic areas. Runoff from semi-arid lands, as peaks of rare floods, is compared with that of other areas using various published records. Relative to humid areas, semi-arid parts of the conterminous USA have lower 100-year, 6-h rainfall intensities and smaller depths of 100-year probable maximum precipitation for 26-km2 areas. Nonetheless, maximum flood peaks, flash-flood potentials, and runoff potentials are generally larger in semi-arid areas than in more humid parts of the nation. Causes of this disparity between rainfall and runoff appear to be results of soil and vegetation that in humid areas absorb and intercept rainfall and attenuate runoff, but in semi-arid areas limit infiltration and enhance runoff from bare, crusted surfaces. These differences in soil and vegetation conditions are indicated by the relatively high curve numbers and drainage densities that are typical of semi-arid areas. Owing to soil and vegetation conditions, rare floods in semi-arid areas are more likely to cause landform change than are floods of similar magnitude elsewhere.

  11. Simulation of Dynamic Soil Crusting Processes and Vegetative Feedbacks in Semi-Arid Regions

    NASA Astrophysics Data System (ADS)

    Sivandran, G.; Bras, R. L.

    2009-12-01

    Many soils, especially those in arid and semi-arid regions, develop compacted surface layers with hydrologic properties different to those of the underlying layers. These layers, referred to as soil crusts when dry and soil seals when wet, may be only a few millimeters thick but can have a significant impact by altering the partitioning of rainfall, increasing surface runoff and reducing infiltration. This reduces the quantity of water entering the root zone, limiting the amount of water available for primary productivity, while increasing erosion and negatively impacting seedling establishment and growth. Vegetation significantly alters soil hydraulic properties in the immediate vicinity of a vegetation patch. Root action has been shown to create macropores, increasing infiltration capacity around the base of vegetation. Shading protects the soil from evaporation and the formation of soil seals/crusts. Experiments have confirmed large variations in infiltration rates in below canopy and bare soil patches. It is believed that a positive feedback may occur between seals/crusts and vegetation patches resulting in systems that exhibit ‘islands of fertility’. The bare soil patches act to increase the micro-catchment area of the vegetation patch, thereby collecting moisture from a far greater area than the immediate footprint of its rooting system. Vegetation then alters the soil conditions directly beneath it, allowing for increased infiltration of this extra moisture. A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was used to explore the role of dynamic soil properties on hydrologic and energy fluxes. Rather than assigning the hydraulic properties of the surface soils a priori, soil seals/crusts were allowed to develop in the model depending on vegetation cover, soil type and rainfall intensity. The effects of plant shading and root action on infiltration in the immediate vicinity of vegetation patches were also included. These changes introduced both spatial and temporal heterogeneity into soil hydraulic properties and allowed for simulation of plant-soil feedbacks. The semi-arid Lucky Hills basin in the Walnut Gulch Experimental Watershed in Arizona was used as a case study to investigate the role of dynamic soil properties, which occur at patch scales, on the larger basin scale hydrologic and energy fluxes (sensible and latent heats, net radiation and rainfall partitioning). The model was used to test the contribution of dynamic soil properties to the establishment of a positive feedback between vegetation and soils that leads to the ‘islands of fertility’ that have been observed in many semi-arid systems. The model was also used to investigate the role that plant-soil interactions play in providing both stability to the larger system during periods of consistent climate forcing and some resilience to disturbance during climate perturbations.

  12. Aerosol and gas-phase characteristics in relation to meteorology: Case studies in populated arid settings

    NASA Astrophysics Data System (ADS)

    Crosbie, Ewan Colin

    Atmospheric aerosols and trace gases are a highly relevant component of the climate system affecting atmospheric radiative transfer and the hydrologic cycle. In arid and semi-arid regions, where cloud cover is often low and precipitation is generally scarce and sporadic, the driving processes accounting for the production, loss and transport of atmospheric constituents are often distinctly different from other climates. In arid regions, the same circulation dynamics that suppress cloud formation can be responsible for creating strong subsidence inversions, which cap atmospheric mixing and trap pollutants close to the surface, often placing populated arid regions high on global rankings of air pollution concerns. In addition, low soil moisture can encourage wind-blown dust emissions, which can be a significant fraction of the total aerosol loading in both coarse and fine modes on a mass basis. Three distinct focus regions are investigated over varying time scales, using a diverse set of techniques, and with wide-ranging primary goals. 1) the Tehran metropolitan area in Iran over a ten-year period from 2000-2009, 2) Tucson, Arizona over 2012-2014 with three intensive monitoring periods during summer 2014 and winter 2015 and 3) the San Joaquin Valley in California during the NASA DISCOVER-AQ campaign during Jan-Feb 2013. However, in all cases, local and regional scale meteorology play a significant role in controlling the spatiotemporal variability in trace gas and aerosol concentrations. Particular emphasis is placed on understanding transport pathways due to the local wind patterns and the importance of key meteorological parameters such as temperature, humidity and solar radiation on controlling production and loss mechanisms. While low in magnitude, the precipitation pattern is still an important sink mechanism that modulates gas phase and particle abundances in all three regions, either through scavenging or by promoting vertical mixing. The reported measurements and data analysis serve to improve the characterization of trace gases and aerosols in populated arid regions and offer process level understanding of dominant mechanisms for model validations and improvements.

  13. The response of arid soil communities to climate change: Chapter 8

    USGS Publications Warehouse

    Steven, Blaire; McHugh, Theresa Ann; Reed, Sasha C.

    2017-01-01

    Arid and semiarid ecosystems cover approximately 40% of Earth’s terrestrial surface and are present on each of the planet’s continents [1]. Drylands are characterized by their aridity, but there is substantial geographic, edaphic, and climatic variability among these vast ecosystems, and these differences underscore substantial variation in dryland soil microbial communities, as well as in the future climates predicted among arid and semiarid systems globally. Furthermore, arid ecosystems are commonly patchy at a variety of spatial scales [2,3]. Vascular plants are widely interspersed in drylands and bare soil, or soil that is covered with biological soil crusts, fill these spaces. The variability acts to further enhance spatial heterogeneity, as these different zones within dryland ecosystems differ in characteristics such as water retention, albedo, and nutrient cycling [4–6]. Importantly, the various soil patches of an arid landscape may be differentially sensitive to climate change. Soil communities are only active when enough moisture is available, and drylands show large spatial variability in soil moisture, with potentially long dry periods followed by pulses of moisture. The pulse dynamics associated with this wetting and drying affect the composition, structure, and function of dryland soil communities, and integrate biotic and abiotic processes via pulse-driven exchanges, interactions, transitions, and transfers. Climate change will likely alter the size, frequency, and intensity of future precipitation pulses, as well as influence non-rainfall sources of soil moisture, and aridland ecosystems are known to be highly sensitive to such climate variability. Despite great heterogeneity, arid ecosystems are united by a key parameter: a limitation in water availability. This characteristic may help to uncover unifying aspects of dryland soil responses to global change. The dryness of an ecosystem can be described by its aridity index (AI). Several AIs have been proposed, but the most widely used metrics determine the difference between average precipitation and potential evapotranspiration, where evapotranspiration is the sum of evaporation and plant transpiration, both of which move water from the ecosystem to the atmosphere [7–9]. Because evapotranspiration can be affected by various environmental factors such as temperature and incident radiation (Fig. 10.1), regions that receive the same average precipitation may have significantly different AI values [10,11]. Multiple studies have documented that mean annual precipitation, and thus AI, is highly correlated with biological diversity and net primary productivity [12–15]. Accordingly, AI is considered to be a central regulator of the diversity, structure, and productivity of an ecosystem, playing an especially influential role in arid ecosystems. Thus, the climate parameters that drive alterations in the AI of a region are likely to play an disproportionate role in shaping the response of arid soil communities to a changing climate. In this chapter we consider climate parameters that have been shown to be altered through climate change, with a focus on how these parameters are likely to affect dryland soil communities, including microorganisms and invertebrates. In particular, our goal is to highlight dryland soil community structure and function in the context of climate change, and we will focus on community relationships with increased atmospheric CO2 concentrations (a primary driver of climate change), temperature, and sources of soil moisture.

  14. Investigations on the Aridity Paradox

    NASA Astrophysics Data System (ADS)

    Donohue, R. J.; Roderick, M. L.

    2014-12-01

    How global aridity might change in the immediate future is an important question. Several recent analyses have concluded that aridity will, in general, increase over land primarily because of increasing vapour pressure deficit. Taken at face value that result is difficult to understand because a warmer world is also anticipated to be a moister world. For example, at the global scale, climate model projections are for increasing rainfall and runoff. In this presentation we investigate this seeming paradox. We find that the previous analyses have not accounted for the biological impacts of elevated CO2 and when that is incorporated, the climate model projections are for a modest reduction in meteorological and hydrologic aridity and for larger reductions in biological aridity.

  15. Review of progress in soil inorganic carbon research

    NASA Astrophysics Data System (ADS)

    Bai, S. G.; Jiao, Y.; Yang, W. Z.; Gu, P.; Yang, J.; Liu, L. J.

    2017-12-01

    Soil inorganic carbon is one of the main carbon banks in the near-surface environment, and is the main form of soil carbon library in arid and semi-arid regions, which plays an important role in the global carbon cycle. This paper mainly focuses on the inorganic dynamic process of soil inorganic carbon in soil environment in arid and semi-arid regions, and summarized the composition and source of soil inorganic carbon, influence factors and soil carbon sequestration.

  16. Remediation of metalliferous mines, revegetation challenges and emerging prospects in semi-arid and arid conditions.

    PubMed

    Nirola, Ramkrishna; Megharaj, Mallavarapu; Beecham, Simon; Aryal, Rupak; Thavamani, Palanisami; Vankateswarlu, Kadiyala; Saint, Christopher

    2016-10-01

    Understanding plant behaviour in polluted soils is critical for the sustainable remediation of metal-polluted sites including abandoned mines. Post-operational and abandoned metal mines particularly in semi-arid and arid zones are one of the major sources of pollution by soil erosion or plant hyperaccumulation bringing ecological impacts. We have selected from the literature 157 species belonging to 50 families to present a global overview of 'plants under action' against heavy metal pollution. Generally, all species of plants that are drought, salt and metal tolerant are candidates of interest to deal with harsh environmental conditions, particularly at semi-arid and arid mine sites. Pioneer metallophytes namely Atriplex nummularia, Atriplex semibaccata, Salsola kali, Phragmites australis and Medicago sativa, representing the taxonomic orders Caryophyllales, Poales and Fabales are evaluated in terms of phytoremediation in this review. Phytoremediation processes, microbial and algal bioremediation, the use and implication of tissue culture and biotechnology are critically examined. Overall, an integration of available remediation plant-based technologies, referred to here as 'integrated remediation technology,' is proposed to be one of the possible ways ahead to effectively address problems of toxic heavy metal pollution. Graphical abstract Integrated remediation technology (IRT) in metal-contaminated semi-arid and arid conditions. The hexagonal red line represents an IRT concept based on remediation decisions by combination of plants and microbial processes.

  17. Biocrust-forming mosses mitigate the impact of aridity on soil microbial communities in drylands: observational evidence from three continents.

    PubMed

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Eldridge, David J; Bowker, Matthew A; Jeffries, Thomas C; Singh, Brajesh K

    2018-04-02

    Recent research indicates that increased aridity linked to climate change will reduce the diversity of soil microbial communities and shift their community composition in drylands, Earth's largest biome. However, we lack both a theoretical framework and solid empirical evidence of how important biotic components from drylands, such as biocrust-forming mosses, will regulate the responses of microbial communities to expected increases in aridity with climate change. Here we report results from a cross-continental (North America, Europe and Australia) survey of 39 locations from arid to humid ecosystems, where we evaluated how biocrust-forming mosses regulate the relationship between aridity and the community composition and diversity of soil bacteria and fungi in dryland ecosystems. Increasing aridity was negatively related to the richness of fungi, and either positively or negatively related to the relative abundance of selected microbial phyla, when biocrust-forming mosses were absent. Conversely, we found an overall lack of relationship between aridity and the relative abundance and richness of microbial communities under biocrust-forming mosses. Our results suggest that biocrust-forming mosses mitigate the impact of aridity on the community composition of globally distributed microbial taxa, and the diversity of fungi. They emphasize the importance of maintaining biocrusts as a sanctuary for soil microbes in drylands. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  18. Consistency between Sweat Rate and Wet Bulb Globe Temperature for the Assessment of Heat Stress of People Working Outdoor in Arid and Semi-arid Regions.

    PubMed

    Heidari, Hamidreza; Golbabaei, Farideh; Shamsipour, Aliakbar; Rahimi Forushani, Abbas; Gaeini, Abbasali

    2018-01-01

    Heat stress is common among workers in arid and semi-arid areas. In order to take every preventive measure to protect exposed workers against heat-related disorders, it is crucial to choose an appropriate index that accurately relates environmental parameters to physiological responses. To investigate the consistency between 2 heat stress and strain indices, ie , sweat rate and wet bulb globe temperature (WBGT), for the assessment of heat stress of people working outdoor in arid and semi-arid regions in Iran. During spring and summer, 136 randomly selected outdoor workers were enrolled in this study. Using a defined protocol, the sweat rate of these workers was measured 3 times a day. Simultaneously, the environmental parameters including WBGT index were recorded for each working station. The level of agreement between sweat rate and WBGT was poor ( κ <0.2). Based on sweat rate, no case exceeding the reference value was observed during the study. WBGT overestimated the heat stress in outdoor workers compared to sweat rate. It seems that the sweat rate standards may need some modifications related to real condition of work in arid and semi-arid regions in Iran. Moreover, it seems that judging workers solely based on monitoring their sweat rate in such regions, can probably result in underestimation of heat stress.

  19. Integrated test plan for directional boring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volk, B.W.

    This integrated test plan describes the field testing of the DITCH WITCH Directional Boring System. DITCH WITCH is a registered trademark of The Charles Machine Works, Inc., Perry, Oklahoma. The test is being conducted as a coordinated effort between Charles Machine Works (CMW), Sandia National Laboratories (SNL), and the Westinghouse Hanford Company (WHC). Funding for the WHC portion of the project is through the Volatile Organic Compound-Arid Integrated Demonstration (VOC-Arid ID). The purpose of the test is to evaluate the performance of the directional boring system for possible future use on environmental restoration projects at Hanford and other Department ofmore » Energy (DOE) sites. The test will be conducted near the 200 Areas Fire Station located between the 200 East and 200 West Area of the Hanford Site. The directional boring system will be used to drill and complete (with fiberglass casing) two horizontal boreholes. A third borehole will be drilled to test sampling equipment but will not be completed with casing.« less

  20. Colonization and community structure of root-associated microorganisms of Sabina vulgaris with soil depth in a semiarid desert ecosystem with shallow groundwater.

    PubMed

    Taniguchi, Takeshi; Usuki, Hiroyuki; Kikuchi, Junichi; Hirobe, Muneto; Miki, Naoko; Fukuda, Kenji; Zhang, Guosheng; Wang, Linhe; Yoshikawa, Ken; Yamanaka, Norikazu

    2012-08-01

    Arbuscular mycorrhizal fungi (AMF) have been observed in deep soil layers in arid lands. However, change in AMF community structure with soil depth and vertical distributions of the other root-associated microorganisms are unclear. Here, we examined colonization by AMF and dark septate fungi (DSF), as well as the community structure of AMF and endophytic fungi (EF) and endophytic bacteria (EB) in association with soil depth in a semiarid desert with shallow groundwater. Roots of Sabina vulgaris and soils were collected from surface to groundwater level at 20-cm intervals. Soil chemistry (water content, total N, and available P) and colonization of AMF and DSF were measured. Community structures of AMF, EF, and EB were examined by terminal restriction fragment length polymorphism analysis. AMF colonization decreased with soil depth, although it was mostly higher than 50%. Number of AMF phylotypes decreased with soil depth, but more than five phylotypes were observed at depths up to 100 cm. Number of AMF phylotypes had a significant and positive relationship with soil moisture level within 0-15% of soil water content. DSF colonization was high but limited to soil surface. Number of phylotypes of EF and EB were diverse even in deep soil layers, and the community composition was associated with the colonization and community composition of AMF. This study indicates that AMF species richness in roots decreases but is maintained in deep soil layers in semiarid regions, and change in AMF colonization and community structure associates with community structure of the other root-associated microorganisms.

  1. Field-scale sulfur hexafluoride tracer experiment to understand long distance gas transport in the deep unsaturated zone

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Andraski, Brian J.; Green, Christopher T.; Stonestrom, David A.; Striegl, Robert G.

    2014-01-01

    A natural gradient SF6 tracer experiment provided an unprecedented evaluation of long distance gas transport in the deep unsaturated zone (UZ) under controlled (known) conditions. The field-scale gas tracer test in the 110-m-thick UZ was conducted at the U.S. Geological Survey’s Amargosa Desert Research Site (ADRS) in southwestern Nevada. A history of anomalous (theoretically unexpected) contaminant gas transport observed at the ADRS, next to the first commercial low-level radioactive waste disposal facility in the United States, provided motivation for the SF6 tracer study. Tracer was injected into a deep UZ borehole at depths of 15 and 48 m, and plume migration was observed in a monitoring borehole 9 m away at various depths (0.5–109 m) over the course of 1 yr. Tracer results yielded useful information about gas transport as applicable to the spatial scales of interest for off-site contaminant transport in arid unsaturated zones. Modeling gas diffusion with standard empirical expressions reasonably explained SF6 plume migration, but tended to underpredict peak concentrations for the field-scale experiment given previously determined porosity information. Despite some discrepancies between observations and model results, rapid SF6 gas transport commensurate with previous contaminant migration was not observed. The results provide ancillary support for the concept that apparent anomalies in historic transport behavior at the ADRS are the result of factors other than nonreactive gas transport properties or processes currently in effect in the undisturbed UZ.

  2. Water-vapor movement through unsaturated alluvium in Amargosa Desert near Beatty, Nevada - Current understanding and continuing studies: A section in Joint US Geological Survey, US Nuclear Regulatory Commission workshop on research related to low-level radioactive waste disposal, May 4-6, 1993, National Center, Reston, Virginia; Proceedings (WRI 95-4015)

    USGS Publications Warehouse

    Prudic, David E.; Stevens, Peter R.; Nicholson, Thomas J.

    1996-01-01

    Disposal of low-level radioactive wastes has been a concern since the 1950's. These wastes commonly are buried in shallow trenches (Fischer, 1986, p. 2). Water infiltrating into the trenches is considered the principal process by which contaminants are transported away from the buried wastes, although gaseous transport in some areas may be important. Arid regions in the western United States have been suggested as places that could provide safe containment of the wastes, because little or no water would infiltrate into the trenches (Richardson, 1962), and because thick unsaturated zones would slow contaminant movement. Although burial in arid regions may greatly reduce the amount of water coming in contact with the waste and consequently may provide longterm containment, insufficient data are available on the effectiveness of burial in such regions. Of particular interest is the potential for contaminant movement, either as liquid or vapor, through unsaturated sediments to land surface or to underlying ground water.Since 1962, low-level radioactive wastes have been buried at a disposal facility in the Amargosa Desert, about 17 km south of Beatty, Nevada (fig. 50). This facility is in one of the most arid regions of the United States. Annual precipitation at the disposal facility averaged 82 mm for 1985-92; the minimum was 14 mm, recorded for 1989 (Wood and Andraski, 1992, p. 12).Investigations to determine the hydrogeology, water movement, and potential for contaminant movement at the facility began in 1976. Results from an initial study indicated that a potential exists for deep percolation of infiltrated water at the burial site (Nichols, 1987), assuming that the only water loss is by evaporation because the trenches are kept clear of vegetation. Results from a subsequent study of water movement beneath an undisturbed, vegetated site indicate that percolation of infiltrated water may be limited to the uppermost 9 m of sediments, on the basis of water potentials, subsurface temperatures, water content, and sodium chloride content of the sediments (Fischer, 1992, p. 1). One objective of a third study that began in 1987 is to determine how the typical procedure of burying wastes alters water movement and affects the potential for deep percolation of infiltrated water (Andraski, these proceedings). In addition to these studies, a fourth began in 1992 to determine the importance of vapor movement through the unsaturated zone.The purpose of this paper is to summarize the current understanding of water movement (as liquid and vapor) through the upper 13 m of unsaturated sediments beneath the undisturbed, vegetated site and to present plans for determining the importance of watervapor movement from land surface to the water table.

  3. EFFECTS OF ELEVATED CO2 ON ROOT FUNCTION AND SOIL RESPIRATION IN A MOJAVE DESERT ECOSYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, Robert S.

    2007-12-19

    Increases in atmospheric CO{sub 2} concentration during the last 250 years are unequivocal, and CO{sub 2} will continue to increase at least for the next several decades (Houghton et al. 2001, Keeling & Whorf 2002). Arid ecosystems are some of the most important biomes globally on a land surface area basis, are increasing in area at an alarming pace (Dregne 1991), and have a strong coupling with regional climate (Asner & Heidebrecht 2005). These water-limited ecosystems also are predicted to be the most sensitive to elevated CO{sub 2}, in part because they are stressful environments where plant responses to elevatedmore » CO{sub 2} may be amplified (Strain & Bazzaz 1983). Indeed, all C{sub 3} species examined at the Nevada Desert FACE Facility (NDFF) have shown increased A{sub net} under elevated CO{sub 2} (Ellsworth et al. 2004, Naumburg et al. 2003, Nowak et al. 2004). Furthermore, increased shoot growth for individual species under elevated CO{sub 2} was spectacular in a very wet year (Smith et al. 2000), although the response in low to average precipitation years has been smaller (Housman et al. 2006). Increases in perennial cover and biomass at the NDFF are consistent with long term trends in the Mojave Desert and elsewhere in the Southwest, indicating C sequestration in woody biomass (Potter et al. 2006). Elevated CO{sub 2} also increases belowground net primary production (BNPP), with average increases of 70%, 21%, and 11% for forests, bogs, and grasslands, respectively (Nowak et al. 2004). Although detailed studies of elevated CO{sub 2} responses for desert root systems were virtually non-existent prior to our research, we anticipated that C sequestration may occur by desert root systems for several reasons. First, desert ecosystems exhibit increases in net photosynthesis and primary production at elevated CO{sub 2}. If large quantities of root litter enter the ecosystem at a time when most decomposers are inactive, significant quantities of carbon may be stored belowground in relatively recalcitrant forms. Indeed, a model-based analysis predicted that the arid/semiarid southwestern bioclimatic region had one of the highest rates of net carbon storage in the United States over the past century (Schimel et al. 2000). Second, root systems of desert plants are often extensive (Foxx et al. 1984, Hartle et al. 2006) with relatively large proportions of roots deep in the soil (Schenk & Jackson 2002). Thus, an understanding of belowground processes in desert ecosystems provides information on the potential for terrestrial carbon sequestration in desert ecosystems.« less

  4. Design of runoff water harvesting systems and its role in minimizing water losses

    NASA Astrophysics Data System (ADS)

    Berliner, P.; Carmi, G.; Leake, S.; Agam, N.

    2016-12-01

    Precipitation is one of the major water sources for agricultural production in arid and semi-arid areas. Rainfalls are limited, erratic and not always coincide with the crop growing season. Only a part of the rain is absorbed by the soil. Soil evaporation is most severe in these regions and the large part of the absorbed water is lost to evaporation. The technique of collecting and conveying the runoff is known as runoff harvesting. Microcatchments are one of the primary techniques used for collecting, storing and conserving local surface runoff for growing trees/shrubs. In this system, runoff water is collected close-by the area in which it was generated, and trees/shrubs may utilize the water. The main objective of the present research was to estimate the effect of the design of the micro-catchment collection area (shallow basin and deep trench) has on the efficiency of the water conservation in the soil profile. The study was carried out during two years using regular micro-catchments (three replicates) with a surface area of 9 m2 (3 x 3 m) and a depth of 0.1 m and trenches (three replicates) with a surface area of 12 m2 (12 x 1 m) and 1 m depth. One and three olive trees were planted inside the trenches and micro-catchments, respectively. Access tubes for neutron probe were installed in micro-catchments and trenches (four and seven, respectively) to depths of 3m. Soil water content in the soil profile was monitored. Sap flow in trees was measured by PS-TDP8 Granier sap flow system every 0.5 hour and fluxes computed for the time intervals that correspond to the soil water measurements. The first year study included flooding trenches and regular micro-catchments once with the same amount of water (1.5 m3) and the second year study included flooding four times with 0.25 m3 each time. Flooding was followed by monitoring the water balance components and estimation of evaporation losses and water use efficiency by olive trees. Evaporation from trenches and regular micro-catchments was estimated as the difference between evapotranspiration obtained by soil water content monitoring and transpiration estimated by sap flow measurements. The results clearly show that the evaporation from the regular micro-catchments was significantly larger than that of trenches during the entire duration of the both experiments.

  5. Assessment of adaptability of zebu cattle ( Bos indicus) breeds in two different climatic conditions: using cytogenetic techniques on genome integrity

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Waiz, Syma Ashraf; Sridhar Goud, T.; Tonk, R. K.; Grewal, Anita; Singh, S. V.; Yadav, B. R.; Upadhyay, R. C.

    2016-06-01

    The aim of this study was to evaluate the genome integrity so as to assess the adaptability of three breeds of indigenous cattle reared under arid and semi-arid regions of Rajasthan (Bikaner) and Haryana (Karnal) India. The cattle were of homogenous group (same age and sex) of indigenous breeds viz. Sahiwal, Tharparkar and Kankrej. A total of 100 animals were selected for this study from both climatic conditions. The sister chromatid exchanges (SCE's), chromosomal gaps and chromatid breaks were observed in metaphase plates of chromosome preparations obtained from in vitro culture of peripheral blood lymphocytes. The mean number of breaks and gaps in Sahiwal and Tharparkar of semi-arid zone were 8.56 ± 3.16, 6.4 ± 3.39 and 8.72 ± 2.04, 3.52 ± 6.29, respectively. Similarly, the mean number of breaks and gaps in Tharparkar and Kankrej cattle of arid zone were 5.26 ± 1.76, 2.74 ± 1.76 and 5.24 ± 1.84, 2.5 ± 1.26, respectively. The frequency of SCEs in chromosomes was found significantly higher ( P < 0.05) in Tharparkar of semi-arid region (4.72 ± 1.55) compared to arid region (2.83 ± 1.01). Similarly, the frequency of SCEs was found to be 4.0 ± 1.41 in the Sahiwal of semi-arid region and 2.69 ± 1.12 in Kankrej of arid zone. Statistical analysis revealed significant differences ( P < 0.05) amongst the different zones, i.e. arid and semi-arid, whereas no significant difference ( P > 0.05) was observed in the same zone. The analysis of frequency of CAs and SCEs revealed significant effects of environmental conditions on the genome integrity of animals, thereby indicating an association with their adaptability.

  6. Tropical Warm Semi-Arid Regions Expanding Over Temperate Latitudes In The Projected 21st Century

    NASA Astrophysics Data System (ADS)

    Rajaud, A.; de Noblet, N. I.

    2015-12-01

    Two billion people today live in drylands, where extreme climatic conditions prevail, and natural resources are limited. Drylands are expected to expand under several scenarios of climatic change. However, relevant adaptation strategies need to account for the aridity level: it conditions the equilibrium tree-cover density, ranging from deserts (hyper-arid) to dense savannas (sub-humid). Here we focus on the evolution of climatically defined warm semi-arid areas, where low-tree density covers can be maintained. We study the global repartition of these regions in the future and the bioclimatic shifts involved. We adopted a bioclimatological approach based on the Köppen climate classification. The warm semi-arid class is characterized by mean annual temperatures over 18°C and a rainfall-limitation criterion. A multi-model ensemble of CMIP5 projections for three representative concentration pathways was selected to analyze future conditions. The classification was first applied to the start, middle and end of the 20th and 21st centuries, in order to localize past and future warm semi-arid regions. Then, time-series for the classification were built to characterize trends and variability in the evolution of those regions. According to the CRU datasets, global expansion of the warm semi-arid area has already started (~+13%), following the global warming trend since the 1900s. This will continue according to all projections, most significantly so outside the tropical belt. Under the "business as usual" scenario, the global warm semi-arid area will increase by 30% and expand 12° poleward in the Northern Hemisphere, according to the multi-model mean. Drying drives the conversion from equatorial sub-humid conditions. Beyond 30° of latitude, cold semi-arid conditions become warm semi-arid through warming, and temperate conditions through combined warming and drying processes. Those various transitions may have drastic but also very distinct ecological and sociological impacts.

  7. Assessment of adaptability of zebu cattle (Bos indicus) breeds in two different climatic conditions: using cytogenetic techniques on genome integrity.

    PubMed

    Kumar, Anil; Waiz, Syma Ashraf; Sridhar Goud, T; Tonk, R K; Grewal, Anita; Singh, S V; Yadav, B R; Upadhyay, R C

    2016-06-01

    The aim of this study was to evaluate the genome integrity so as to assess the adaptability of three breeds of indigenous cattle reared under arid and semi-arid regions of Rajasthan (Bikaner) and Haryana (Karnal) India. The cattle were of homogenous group (same age and sex) of indigenous breeds viz. Sahiwal, Tharparkar and Kankrej. A total of 100 animals were selected for this study from both climatic conditions. The sister chromatid exchanges (SCE's), chromosomal gaps and chromatid breaks were observed in metaphase plates of chromosome preparations obtained from in vitro culture of peripheral blood lymphocytes. The mean number of breaks and gaps in Sahiwal and Tharparkar of semi-arid zone were 8.56 ± 3.16, 6.4 ± 3.39 and 8.72 ± 2.04, 3.52 ± 6.29, respectively. Similarly, the mean number of breaks and gaps in Tharparkar and Kankrej cattle of arid zone were 5.26 ± 1.76, 2.74 ± 1.76 and 5.24 ± 1.84, 2.5 ± 1.26, respectively. The frequency of SCEs in chromosomes was found significantly higher (P < 0.05) in Tharparkar of semi-arid region (4.72 ± 1.55) compared to arid region (2.83 ± 1.01). Similarly, the frequency of SCEs was found to be 4.0 ± 1.41 in the Sahiwal of semi-arid region and 2.69 ± 1.12 in Kankrej of arid zone. Statistical analysis revealed significant differences (P < 0.05) amongst the different zones, i.e. arid and semi-arid, whereas no significant difference (P > 0.05) was observed in the same zone. The analysis of frequency of CAs and SCEs revealed significant effects of environmental conditions on the genome integrity of animals, thereby indicating an association with their adaptability.

  8. Adaptation of metabolism and evaporative water loss along an aridity gradient.

    PubMed

    Tieleman, B Irene; Williams, Joseph B; Bloomer, Paulette

    2003-01-22

    Broad-scale comparisons of birds indicate the possibility of adaptive modification of basal metabolic rate (BMR) and total evaporative water loss (TEWL) in species from desert environments, but these might be confounded by phylogeny or phenotypic plasticity. This study relates variation in avian BMR and TEWL to a continuously varying measure of environment, aridity. We test the hypotheses that BMR and TEWL are reduced along an aridity gradient within the lark family (Alaudidae), and investigate the role of phylogenetic inertia. For 12 species of lark, BMR and TEWL decreased along a gradient of increasing aridity, a finding consistent with our proposals. We constructed a phylogeny for 22 species of lark based on sequences of two mitochondrial genes, and investigated whether phylogenetic affinity played a part in the correlation of phenotype and environment. A test for serial independence of the data for mass-corrected TEWL and aridity showed no influence of phylogeny on our findings. However, we did discover a significant phylogenetic effect in mass-corrected data for BMR, a result attributable to common phylogenetic history or to common ecological factors. A test of the relationship between BMR and aridity using phylogenetic independent constrasts was consistent with our previous analysis: BMR decreased with increasing aridity.

  9. ARID1B alterations identify aggressive tumors in neuroblastoma.

    PubMed

    Lee, Soo Hyun; Kim, Jung-Sun; Zheng, Siyuan; Huse, Jason T; Bae, Joon Seol; Lee, Ji Won; Yoo, Keon Hee; Koo, Hong Hoe; Kyung, Sungkyu; Park, Woong-Yang; Sung, Ki W

    2017-07-11

    Targeted panel sequencing was performed to determine molecular targets and biomarkers in 72 children with neuroblastoma. Frequent genetic alterations were detected in ALK (16.7%), BRCA1 (13.9%), ATM (12.5%), and PTCH1 (11.1%) in an 83-gene panel. Molecular targets for targeted therapy were identified in 16 of 72 patients (22.2%). Two-thirds of ALK mutations were known to increase sensitivity to ALK inhibitors. Sequence alterations in ARID1B were identified in 5 of 72 patients (6.9%). Four of five ARID1B alterations were detected in tumors of high-risk patients. Two of five patients with ARID1B alterations died of disease progression. Relapse-free survival was lower in patients with ARID1B alterations than in those without (p = 0.01). In analysis confined to high-risk patients, 3-year overall survival was lower in patients with an ARID1B alteration (33.3 ± 27.2%) or MYCN amplification (30.0 ± 23.9%) than in those with neither ARID1B alteration nor MYCN amplification (90.5 ± 6.4%, p = 0.05). These results provide possibilities for targeted therapy and a new biomarker identifying a subgroup of neuroblastoma patients with poor prognosis.

  10. Event-based hydrological modeling for detecting dominant hydrological process and suitable model strategy for semi-arid catchments

    NASA Astrophysics Data System (ADS)

    Huang, Pengnian; Li, Zhijia; Chen, Ji; Li, Qiaoling; Yao, Cheng

    2016-11-01

    To simulate the hydrological processes in semi-arid areas properly is still challenging. This study assesses the impact of different modeling strategies on simulating flood processes in semi-arid catchments. Four classic hydrological models, TOPMODEL, XINANJIANG (XAJ), SAC-SMA and TANK, were selected and applied to three semi-arid catchments in North China. Based on analysis and comparison of the simulation results of these classic models, four new flexible models were constructed and used to further investigate the suitability of various modeling strategies for semi-arid environments. Numerical experiments were also designed to examine the performances of the models. The results show that in semi-arid catchments a suitable model needs to include at least one nonlinear component to simulate the main process of surface runoff generation. If there are more than two nonlinear components in the hydrological model, they should be arranged in parallel, rather than in series. In addition, the results show that the parallel nonlinear components should be combined by multiplication rather than addition. Moreover, this study reveals that the key hydrological process over semi-arid catchments is the infiltration excess surface runoff, a non-linear component.

  11. The analysis of aridity in Central Serbia from 1949 to 2015

    NASA Astrophysics Data System (ADS)

    Radaković, Milica G.; Tošić, Ivana; Bačević, Nikola; Mladjan, Dragan; Gavrilov, Milivoj B.; Marković, Slobodan B.

    2017-07-01

    In this study, we apply De Martonne and Pinna combinative indices to analyze the aridity in Central Serbia. Our dataset consists of mean monthly surface air temperature (MMT) and mean monthly precipitation (MMP) for 26 meteorological stations during the period 1949-2015. MMT and MMP are used for calculating monthly, seasonal, and annual aridity indices for period of 66 years. According to the De Martonne climate classification, we determine five, three, and four types of climate on the monthly, seasonal, and annual basis, respectively. During the observed period, winter was extremely humid, spring and autumn were humid, and summer was semi-humid. Humid and semi-humid climate with Mediterranean vegetation are identified by the annual Pinna combinative index. We find that there is no change in aridity trend in Central Serbia for the period 1949-2015. Aridity indices are additionally compared with the North Atlantic Oscillation and El-Niño South Oscillation in order to establish a possible connection with the large-scale processes. Results are further compared with several earlier studies of aridity in Serbia. With this study, the analysis of aridity in whole Serbia has become complete.

  12. Microorganisms in desert rocks: the edge of life on Earth.

    PubMed

    Wierzchos, Jacek; de los Ríos, Asunción; Ascaso, Carmen

    2012-12-01

    This article reviews current knowledge on microbial communities inhabiting endolithic habitats in the arid and hyper-arid regions of our planet. In these extremely dry environments, the most common survival strategy is to colonize the interiors of rocks. This habitat provides thermal buffering, physical stability, and protection against incident UV radiation, excessive photosynthetically active radiation, and freeze-thaw events. Above all, through water retention in the rocks' network of pores and fissures, moisture is made available. Some authors have argued that dry environments pose the most extreme set of conditions faced by microorganisms. Microbial cells need to withstand the biochemical stresses created by the lack of water, along with temperature fluctuations and/or high salinity. In this review, we also address the variety of ways in which microorganisms deal with the lack of moisture in hyper-arid environments and point out the diversity of microorganisms that are able to cope with only the scarcest presence of water. Finally, we discuss the important clues to the history of life on Earth, and perhaps other places in our solar system, that have emerged from the study of extreme microbial ecosystems.

  13. Autocorrelation structure of convective rainfall in semiarid-arid climate derived from high-resolution X-Band radar estimates

    NASA Astrophysics Data System (ADS)

    Marra, Francesco; Morin, Efrat

    2018-02-01

    Small scale rainfall variability is a key factor driving runoff response in fast responding systems, such as mountainous, urban and arid catchments. In this paper, the spatial-temporal autocorrelation structure of convective rainfall is derived with extremely high resolutions (60 m, 1 min) using estimates from an X-Band weather radar recently installed in a semiarid-arid area. The 2-dimensional spatial autocorrelation of convective rainfall fields and the temporal autocorrelation of point-wise and distributed rainfall fields are examined. The autocorrelation structures are characterized by spatial anisotropy, correlation distances 1.5-2.8 km and rarely exceeding 5 km, and time-correlation distances 1.8-6.4 min and rarely exceeding 10 min. The observed spatial variability is expected to negatively affect estimates from rain gauges and microwave links rather than satellite and C-/S-Band radars; conversely, the temporal variability is expected to negatively affect remote sensing estimates rather than rain gauges. The presented results provide quantitative information for stochastic weather generators, cloud-resolving models, dryland hydrologic and agricultural models, and multi-sensor merging techniques.

  14. Crop production and economic loss due to wind erosion in hot arid ecosystem of India

    NASA Astrophysics Data System (ADS)

    Santra, Priyabrata; Moharana, P. C.; Kumar, Mahesh; Soni, M. L.; Pandey, C. B.; Chaudhari, S. K.; Sikka, A. K.

    2017-10-01

    Wind erosion is a severe land degradation process in hot arid western India and affects the agricultural production system. It affects crop yield directly by damaging the crops through abrasion, burial, dust deposition etc. and indirectly by reducing soil fertility. In this study, an attempt was made to quantify the indirect impact of wind erosion process on crop production loss and associated economic loss in hot arid ecosystem of India. It has been observed that soil loss due to wind erosion varies from minimum 1.3 t ha-1 to maximum 83.3 t ha-1 as per the severity. Yield loss due to wind erosion was found maximum for groundnut (Arachis hypogea) (5-331 kg ha-1 yr-1), whereas minimum for moth bean (Vigna aconitifolia) (1-93 kg ha-1 yr-1). For pearl millet (Pennisetum glaucum), which covers a major portion of arable lands in western Rajasthan, the yield loss was found 3-195 kg ha-1 yr-1. Economic loss was found higher for groundnut and clusterbean (Cyamopsis tetragonoloba) than rest crops, which are about

  15. Aridification of the Indian Subcontinent during the Holocene: Implications for Landscape Evolution, Sedimentation, Carbon Cycle, and Human Civilizations

    DTIC Science & Technology

    2012-06-01

    of flora for both sites. For the Godavari River basin the  13 Cwax record shows a gradual increase in aridity- adapted vegetation from ~4,000 until...1,700 years ago followed by the persistence of aridity- adapted plants to the present. The oxygen isotopic composition of planktonic foraminifera...for a gradual increase in the proportion of aridity- adapted vegetation from ~4,000 until 1,700 years ago followed by the persistence of aridity

  16. Feasibility study of a swept frequency electromagnetic probe (SWEEP) using inductive coupling for the determination of subsurface conductivity of the earth and water prospecting in arid regions

    NASA Technical Reports Server (NTRS)

    Latorraca, G. A.; Bannister, L. H.

    1974-01-01

    Techniques developed for electromagnetic probing of the lunar interior, and techniques developed for the generation of high power audio frequencies were combined to make practical a magnetic inductive coupling system for the rapid measurement of ground conductivity profiles which are helpful when prospecting for the presence and quality of subsurface water. A system which involves the measurement of the direction, intensity, and time phase of the magnetic field observed near the surface of the earth at a distance from a horizontal coil energized so as to create a field that penetrates the earth was designed and studied to deduce the conductivity and stratification of the subsurface. Theoretical studies and a rudimentary experiment in an arid region showed that the approach is conceptually valid and that this geophysical prospecting technique can be developed for the economical exploration of subterranean water resources.

  17. Earth-atmosphere system and surface reflectivities in arid regions from LANDSAT multispectral scanner measurements

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Fraser, R. S.

    1976-01-01

    Programs for computing atmospheric transmission and scattering solar radiation were used to compute the ratios of the Earth-atmosphere system (space) directional reflectivities in the vertical direction to the surface reflectivity, for the four bands of the LANDSAT multispectral scanner (MSS). These ratios are presented as graphs for two water vapor levels, as a function of the surface reflectivity, for various sun elevation angles. Space directional reflectivities in the vertical direction are reported for selected arid regions in Asia, Africa and Central America from the spectral radiance levels measured by the LANDSAT MSS. From these space reflectivities, surface vertical reflectivities were computed applying the pertinent graphs. These surface reflectivities were used to estimate the surface albedo for the entire solar spectrum. The estimated albedos are in the range 0.34-0.52, higher than the values reported by most previous researchers from space measurements, but are consistent with laboratory measurements.

  18. Scenario planning for water resource management in semi arid zone

    NASA Astrophysics Data System (ADS)

    Gupta, Rajiv; Kumar, Gaurav

    2018-06-01

    Scenario planning for water resource management in semi arid zone is performed using systems Input-Output approach of time domain analysis. This approach derived the future weights of input variables of the hydrological system from their precedent weights. Input variables considered here are precipitation, evaporation, population and crop irrigation. Ingles & De Souza's method and Thornthwaite model have been used to estimate runoff and evaporation respectively. Difference between precipitation inflow and the sum of runoff and evaporation has been approximated as groundwater recharge. Population and crop irrigation derived the total water demand. Compensation of total water demand by groundwater recharge has been analyzed. Further compensation has been evaluated by proposing efficient methods of water conservation. The best measure to be adopted for water conservation is suggested based on the cost benefit analysis. A case study for nine villages in Chirawa region of district Jhunjhunu, Rajasthan (India) validates the model.

  19. Recharge estimation in semi-arid karst catchments: Central West Bank, Palestine

    NASA Astrophysics Data System (ADS)

    Jebreen, Hassan; Wohnlich, Stefan; Wisotzky, Frank; Banning, Andre; Niedermayr, Andrea; Ghanem, Marwan

    2018-03-01

    Knowledge of groundwater recharge constitutes a valuable tool for sustainable management in karst systems. In this respect, a quantitative evaluation of groundwater recharge can be considered a pre-requisite for the optimal operation of groundwater resources systems, particular for semi-arid areas. This paper demonstrates the processes affecting recharge in Palestine aquifers. The Central Western Catchment is one of the main water supply sources in the West Bank. Quantification of potential recharge rates are estimated using chloride mass balance (CMB) and empirical recharge equations over the catchment. The results showing the spatialized recharge rate, which ranges from 111-216 mm/year, representing 19-37% of the long-term mean annual rainfall. Using Water Balance models and climatological data (e. g. solar radiation, monthly temperature, average monthly relative humidity and precipitation), actual evapotranspiration (AET) is estimated. The mean annual actual evapotranspiration was about 66-70% of precipitation.

  20. Studying groundwater and surface water interactions using airborne remote sensing in Heihe River basin, northwest China

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, J.; Hu, Y.; Zheng, C.

    2015-05-01

    Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.

  1. Prioritizing conservation potential of arid-land montane natural springs and associated riparian areas

    USGS Publications Warehouse

    Thompson, B.C.; Matusik-Rowan, P. L.; Boykin, K.G.

    2002-01-01

    Using inventory data and input from natural resource professionals, we developed a classification system that categorizes conservation potential for montane natural springs. This system contains 18 classes based on the presence of a riparian patch, wetland species, surface water, and evidence of human activity. We measured physical and biological components of 276 montane springs in the Oscura Mountains above 1450 m and the San Andres Mountains above 1300 m in southern New Mexico. Two of the 18 classes were not represented during the inventory, indicating the system applies to conditions beyond the montane springs in our study area. The class type observed most often (73 springs) had a riparian patch, perennial surface water, and human evidence. We assessed our system in relation to 13 other wetland and riparian classification systems regarding approach, area of applicability, intended users, validation, ease of use, and examination of system response. Our classification can be used to rapidly assess priority of conservation potential for isolated riparian sites, especially springs, in arid landscapes. We recommend (1) including this classification in conservation planning, (2) removing deleterious structures from high-priority sites, and (3) assessing efficiency and use of this classification scheme elsewhere. ?? 2002 Elsevier Science Ltd.

  2. A Model of Submarine Emergency Decisionmaking and Decision Aiding

    DTIC Science & Technology

    1986-10-01

    Rationality," Ajiiigm 0 Vl1, No.6, pp. 703-709. [9] Levis, A.H. arid K.L. Boettcher (1983j). "Decisionmaking Organizacions with Acyclical Informafion...and Decision Systems, MIT, Cambridge, MA.4 [18] Labak, SJ. (1985-86). Private Communication. [19] Anonymous, SSN 688 Class Ship Systems Manual , Vol. 7

  3. The Plant Genetic Engineering Laboratory For Desert Adaptation

    NASA Astrophysics Data System (ADS)

    Kemp, John D.; Phillips, Gregory C.

    1985-11-01

    The Plant Genetic Engineering Laboratory for Desert Adaptation (PGEL) is one of five Centers of Technical Excellence established as a part of the state of New Mexico's Rio Grande Research Corridor (RGRC). The scientific mission of PGEL is to bring innovative advances in plant biotechnology to bear on agricultural productivity in arid and semi-arid regions. Research activities focus on molecular and cellular genetics technology development in model systems, but also include stress physiology investigations and development of desert plant resources. PGEL interacts with the Los Alamos National Laboratory (LANL), a national laboratory participating in the RGRC. PGEL also has an economic development mission, which is being pursued through technology transfer activities to private companies and public agencies.

  4. Evaluation of MODIS columnar aerosol retrievals using AERONET in semi-arid Nevada and California, U.S.A., during the summer of 2012

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Holmes, Heather A.; Patrick Arnott, W.; Barnard, James C.; Moosmüller, Hans

    2016-11-01

    Satellite characterization of local aerosol pollution is desirable because of the potential for broad spatial coverage, enabling transport studies of pollution from major sources, such as biomass burning events. However, retrieval of quantitative measures of air pollution such as Aerosol Optical Depth (AOD) from satellite measurements is challenging over land because the underlying surface albedo may be heterogeneous in space and time. Ground-based sunphotometer measurements of AOD are unaffected by surface albedo and are crucial in enabling evaluation, testing, and further development of satellite instruments and retrieval algorithms. Columnar aerosol optical properties from ground-based sunphotometers (Cimel CE-318) as part of AERONET and MODIS aerosol retrievals from Aqua and Terra satellites were compared over semi-arid California and Nevada during the summer season of 2012. Sunphotometer measurements were used as a 'ground truth' to evaluate the current state of satellite retrievals in this spatiotemporal domain. Satellite retrieved (MODIS Collection 6) AOD showed the presence of wildfires in northern California during August. During the study period, the dark-target (DT) retrieval algorithm appears to overestimate AERONET AOD by an average factor of 3.85 in the entire study domain. AOD from the deep-blue (DB) algorithm overestimates AERONET AOD by an average factor of 1.64. Low AOD correlation was also found between AERONET, DT, and DB retrievals. Smoke from fires strengthened the aerosol signal, but MODIS versus AERONET AOD correlation hardly increased during fire events (r2∼0.1-0.2 during non-fire periods and r2∼0-0.31 during fire periods). Furthermore, aerosol from fires increased the normalized mean bias (NMB) of MODIS retrievals of AOD (NMB∼23%-154% for non-fire periods and NMB∼77%-196% for fire periods). Ångström Extinction Exponent (AEE) from DB for both Terra and Aqua did not correlate with AERONET observations. High surface reflectance and incorrect aerosol physical parametrizations may still be affecting the DT and DB MODIS AOD retrievals in the semi-arid western U.S.

  5. Simulated responses of terrestrial aridity to black carbon and sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Lin, L.; Gettelman, A.; Xu, Y.; Fu, Q.

    2016-01-01

    Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. Here we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate of 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO4-induced PET changes.

  6. Stream Discharge and Evapotranspiration Responses to Climate Change and Their Associated Uncertainties in a Large Semi-Arid Basin

    NASA Astrophysics Data System (ADS)

    Bassam, S.; Ren, J.

    2017-12-01

    Predicting future water availability in watersheds is very important for proper water resources management, especially in semi-arid regions with scarce water resources. Hydrological models have been considered as powerful tools in predicting future hydrological conditions in watershed systems in the past two decades. Streamflow and evapotranspiration are the two important components in watershed water balance estimation as the former is the most commonly-used indicator of the overall water budget estimation, and the latter is the second biggest component of water budget (biggest outflow from the system). One of the main concerns in watershed scale hydrological modeling is the uncertainties associated with model prediction, which could arise from errors in model parameters and input meteorological data, or errors in model representation of the physics of hydrological processes. Understanding and quantifying these uncertainties are vital to water resources managers for proper decision making based on model predictions. In this study, we evaluated the impacts of different climate change scenarios on the future stream discharge and evapotranspiration, and their associated uncertainties, throughout a large semi-arid basin using a stochastically-calibrated, physically-based, semi-distributed hydrological model. The results of this study could provide valuable insights in applying hydrological models in large scale watersheds, understanding the associated sensitivity and uncertainties in model parameters, and estimating the corresponding impacts on interested hydrological process variables under different climate change scenarios.

  7. Characterization of a new ARID family transcription factor (Brightlike/ARID3C) that co-activates Bright/ARID3A-mediated immunoglobulin gene transcription

    PubMed Central

    Tidwell, Josephine A.; Schmidt, Christian; Heaton, Phillip; Wilson, Van; Tucker, Philip W.

    2011-01-01

    Two members, Bright/ARID3A and Bdp/ARID3B, of the ARID (AT-Rich Interaction Domain) transcription family are distinguished by their ability to specifically bind to DNA and to self-associate via a second domain, REKLES. Bright and Bdp positively regulate immunoglobulin heavy chain gene (IgH) transcription by binding to AT-rich motifs within Matrix Associating Regions (MARs) residing within a subset of VH promoters and the Eµ intronic enhancer. In addition, REKLES provides Bright nuclear export function, and a small pool of Bright is directed to plasma membrane sub-domains/lipid rafts where it associates with and modulates signaling of the B cell antigen receptor (BCR). Here, we characterize a third, highly conserved, physically condensed ARID3 locus, Brightlike/ARID3C. Brightlike encodes two alternatively spliced, SUMO-I-modified isoforms that include or exclude (Δ6) the REKLES-encoding exon 6. Brightlike transcripts and proteins are expressed preferentially within B lineage lymphocytes and coordinate with highest Bright expression--in activated follicular B cells. Brightlike, but not BrightlikeΔ6, undergoes nuclear-cytoplasmic shuttling with a fraction localizing within lipid rafts following BCR stimulation. Brightlike, but not BrightlikeΔ6, associates with Bright in solution, at common DNA binding sites in vitro, and is enriched at Bright binding sites in chromatin. Although possessing little transactivation capacity of its own, Brightlike significantly co-activates Bright-dependent IgH transcription with maximal activity mediated by the unsumoylated form. In sum, this report introduces Brightlike as an additional functional member of the family of ARID proteins, which should be considered in regulatory circuits, previously ascribed to be mediated by Bright. PMID:21955986

  8. Aridity influences the recovery of vegetation and shrubland birds after wildfire

    PubMed Central

    Puig-Gironès, Roger; Brotons, Lluís

    2017-01-01

    Wildfires play a determining role in the composition and structure of many plant and animal communities. On the other hand, climate change is considered to be a major driver of current and future fire regime changes. Despite increases in drought in many areas of the world, the effects of aridity on post-fire colonization by animals have been rarely addressed. This study aims to analyse how a regional aridity gradient affects post-fire recovery of vegetation, bird species richness and the numbers of four early to middle-successional warbler species associated with the shrub cover. The database contains bird relative abundance and environmental variables from 3072 censuses in 695 transects located in 70 recently burnt areas (1 to 11 years after wildfire) in Catalonia (Spain), which were sampled between 2006 and 2013. Generalized linear mixed models (GLMMs) showed that plant cover was affected by time since fire, aridity and forest management. However, only the highest vegetation height layer (>100 cm) recovered slower in arid areas after fire. Time since fire positively influenced bird species richness and the relative abundance of the four focal species. The post-fire recovery of Melodious (Hippolais polyglotta) and Subalpine warblers (Sylvia cantillans) was hampered by aridity. Although this was not demonstrated for Dartford (S. undata) and Sardinian warblers (S. melanocephala), their occurrence was low in the driest areas during the first three years after fire. Overall, this study suggests that future increases in aridity can affect plant regeneration after fire and slow down the recovery of animal populations that depend on understorey and shrublands. Given the recently highlighted increases in aridity and fire frequency in Mediterranean-climate regions, improved knowledge on how aridity affects ecological succession is especially necessary. PMID:28355225

  9. Aridity influences the recovery of vegetation and shrubland birds after wildfire.

    PubMed

    Puig-Gironès, Roger; Brotons, Lluís; Pons, Pere

    2017-01-01

    Wildfires play a determining role in the composition and structure of many plant and animal communities. On the other hand, climate change is considered to be a major driver of current and future fire regime changes. Despite increases in drought in many areas of the world, the effects of aridity on post-fire colonization by animals have been rarely addressed. This study aims to analyse how a regional aridity gradient affects post-fire recovery of vegetation, bird species richness and the numbers of four early to middle-successional warbler species associated with the shrub cover. The database contains bird relative abundance and environmental variables from 3072 censuses in 695 transects located in 70 recently burnt areas (1 to 11 years after wildfire) in Catalonia (Spain), which were sampled between 2006 and 2013. Generalized linear mixed models (GLMMs) showed that plant cover was affected by time since fire, aridity and forest management. However, only the highest vegetation height layer (>100 cm) recovered slower in arid areas after fire. Time since fire positively influenced bird species richness and the relative abundance of the four focal species. The post-fire recovery of Melodious (Hippolais polyglotta) and Subalpine warblers (Sylvia cantillans) was hampered by aridity. Although this was not demonstrated for Dartford (S. undata) and Sardinian warblers (S. melanocephala), their occurrence was low in the driest areas during the first three years after fire. Overall, this study suggests that future increases in aridity can affect plant regeneration after fire and slow down the recovery of animal populations that depend on understorey and shrublands. Given the recently highlighted increases in aridity and fire frequency in Mediterranean-climate regions, improved knowledge on how aridity affects ecological succession is especially necessary.

  10. Aerosol optical depth over central north Asia based on MODIS-Aqua data

    NASA Astrophysics Data System (ADS)

    Avgousta Foutsi, Athina; Korras Carraca, Marios Bruno; Matsoukas, Christos; Biskos, George

    2016-04-01

    Atmospheric aerosols, both natural and anthropogenic, can affect the regional and global climate through their direct, indirect, and semi-direct effects on the radiative energy budget of the Earth-atmosphere system. To quantify these effects it is important to determine the aerosol load, and an effective way to do that is by measuring the aerosol optical depth (AOD). The central Asia region (mainly the Caspian and Aral sea basins), the arid and semi-arid regions of Western China as well as Siberia are of great interest due to the significant natural sources of mineral aerosols originating from local deserts and biomass burning from wildfires in boreal forests. What is of particular interest in the region is the phenomenal shrinking and desertification of the Aral Sea that drives an intense salt and dust transport from the exposed sea-bed to the surrounding regions with important implications in regional air quality. Anthropogenic particles are also observed due to fossil-fuel combustion occurring mainly at oil refineries in the Caspian Sea basin. Here we investigate the spatial and temporal variability of the AOD at 550 nm over central Asia, Siberia and western China, in the region located between 35° N - 65° N and 45° E - 110° E. For our analysis we use Level-3 daily MODIS - Aqua Dark Target - Deep Blue combined product, from the latest collection (006), available in a 1°×1° resolution (ca. 100 km × 100 km) over the period 2002-2014. Our results indicate a significant spatial variability of the aerosol load over the study region. The highest AODs are observed over the Aral Sea year-round, with extreme values reaching 2.1 during July. In the rest of our study region a clear seasonal cycle with highest AOD values (up to 1.2 over the Taklamakan Desert) during spring and summer is observed. The arid parts of central north Asia are characterized by larger aerosol loads during spring, lower but still high AOD in summer and much lower values in autumn and spring. In the northern and northeastern parts of our study region (Siberia), the relatively high AOD observed during summer (reaching or exceeding 0.5) is most likely associated with biomass burning (wildfires). Most parts of our study region exhibit an overall increasing AOD trend during the study period. The changes are more pronounced over and around the Aral Sea (relative change exceeding 50%), and are stronger during the warm period of the year (April to September). First comparisons with the trends of other possible aerosol sources in the region suggest that the observed overall trend is primarily associated with the increased dust transport from the exposed Aral Sea sea-bed under strong northerly and north-easterly winds.

  11. Vulnerabilities and adaptive capacities of southwest rangeland livestock production to climate change

    USDA-ARS?s Scientific Manuscript database

    The rangeland livestock industry across the southwestern US (California, Nevada, Arizona, Utah and New Mexico) consists of highly diverse production operations in these arid and semi-arid environments with low primary productivity. The vulnerabilities of this industry with projected increasing arid...

  12. Herbivore-plant interactions and desertification in arid lands

    USDA-ARS?s Scientific Manuscript database

    Arid lands around the world have experienced or are currently experiencing degradation that is known as desertification. Animal-plant interactions that have an effect on desertification are among the most important function of animals in arid ecosystems. Desertification has been defined as land de...

  13. Microenvironmental change as a mechanism to study global change.

    NASA Astrophysics Data System (ADS)

    Lortie, C. J.

    2016-12-01

    Global change is a set of significant processes that influence all aspects of ecosystem functioning and often-natural services within Santa Barbara County. The sensitivity of coastal and urban systems is certainly very high. However, profound changes are also predicted for arid and semi-arid systems globally, and California is no exception. These dryland systems are less buffered by oceanic processes and typically express high inter-annual variation in precipitation and temperatures in addition to perturbations associated with long-term droughts. However, climate estimates and downscaled values can present challenges in providing evidence at the scale relevant to individual species or individuals, and the importance of biotic interactions must be coupled to these estimates in space and time. Coupled indicators of key micro-environmental measures to both positive and negative interactions between foundation species and other organisms provide a metric of buffering capacity and resilience to global change at fine spatial scales. Consequently, the primary objective of this research project is to provide both the a well-articulated, ecologically relevant micro-environmental big data measure of global change within Santa Barbara County and a coupled estimate of concurrent changes in interactions in key species within the region. Shrubs directly and indirectly buffered local changes in the microenvironment thereby functioning as refuges for other species within arid and semi-arid regions subject to dramatic global change drivers. The following major patterns were identified: (i) shrub micro-environments reduce the level of stress and amplitude of variation associated with temperature and moisture, (ii) many plant and animal species including threatened lizards are relatively more common with shrubs within the region, and (iii) the variation in the interaction patterns between species relates to the extent of amelioration provided by shrub-biodiversity complexes within the region. The ecological theory of positive plant interactions scaling to other species as a restoration and management tool is a dominant and rapidly evolving field of research. Micro-environmental sensor arrays are a scientifically valid approach to identify meaningful localized change with biotic interactions.

  14. Feasibility of two low-cost organic substrates for inducing denitrification in artificial recharge ponds: Batch and flow-through experiments

    NASA Astrophysics Data System (ADS)

    Grau-Martínez, Alba; Torrentó, Clara; Carrey, Raúl; Rodríguez-Escales, Paula; Domènech, Cristina; Ghiglieri, Giorgio; Soler, Albert; Otero, Neus

    2017-03-01

    Anaerobic batch and flow-through experiments were performed to assess the capacity of two organic substrates to promote denitrification of nitrate-contaminated groundwater within managed artificial recharge systems (MAR) in arid or semi-arid regions. Denitrification in MAR systems can be achieved through artificial recharge ponds coupled with a permeable reactive barrier in the form of a reactive organic layer. In arid or semi-arid regions, short-term efficient organic substrates are required due to the short recharge periods. We examined the effectiveness of two low-cost, easily available and easily handled organic substrates, commercial plant-based compost and crushed palm tree leaves, to determine the feasibility of using them in these systems. Chemical and multi-isotopic monitoring (δ15NNO3, δ18ONO3, δ34SSO4, δ18OSO4) of the laboratory experiments confirmed that both organic substrates induced denitrification. Complete nitrate removal was achieved in all the experiments with a slight transient nitrite accumulation. In the flow-through experiments, ammonium release was observed at the beginning of both experiments and lasted longer for the experiment with palm tree leaves. Isotopic characterisation of the released ammonium suggested ammonium leaching from both organic substrates at the beginning of the experiments and pointed to ammonium production by DNRA for the palm tree leaves experiment, which would only account for a maximum of 15% of the nitrate attenuation. Sulphate reduction was achieved in both column experiments. The amount of organic carbon consumed during denitrification and sulphate reduction was 0.8‰ of the total organic carbon present in commercial compost and 4.4% for the palm tree leaves. The N and O isotopic fractionation values obtained (εN and εO) were - 10.4‰ and - 9.0‰ for the commercial compost (combining data from both batch and column experiments), and - 9.9‰ and - 8.6‰ for the palm tree column, respectively. Both materials showed a satisfactory capacity for denitrification, but the palm tree leaves gave a higher denitrification rate and yield (amount of nitrate consumed per amount of available C) than commercial compost

  15. Comparison of geology of Jurassic Norphlet Mary Ann field, Mobile Bay, Alabama, to onshore regional Norphlet trends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzono, M.; Pense, G.; Andronaco, P.

    The geology of the Mary Ann field is better understood in light of regional studies, which help to establish a depositional model in terms of both facies and thickness variations. These studies also illustrate major differences between onshore and offshore Norphlet deposits concerning topics such as diagenesis, hydrocarbon trapping, and migration. The Jurassic Norphlet sandstone was deposited in an arid basin extending from east Texas to Florida by a fluvial-eolian depositional system, prior to the transgression of the Smackover Formation. Until discovery of the Mary Ann field in 1979, Norphlet production was restricted to onshore areas, mostly along the Pickens-Pollardmore » fault system in Mississippi, Alabama, and Florida. The Mary Ann field is a Norphlet dry-gas accumulation, and was the first offshore field in the Gulf of Mexico to establish economic reserves in the Jurassic. The field is located in Mobile Bay, approximately 25 mi (40 km) south of Mobile, Alabama. Formed by a deep-seated (more than 20,000 ft or 6096 m) faulted salt pillow, Mary Ann field produces from a series of stacked eolian dune sands situated near the Norphlet paleocoastline. Five lithofacies have been recognized in cores from the Mobil 76 No. 2 well. Each lithofacies has a distinct reservoir quality. Optimum reservoir faces are the dune and sheet sands. Nonreservoir facies are interdune (wet and dry), marine reworked, and evaporitic sands. Following deposition, these sediments have undergone varying amounts of diagenesis. Early cementation of well-sorted sands supported the pore system during compaction. However, late cementation by chlorite, silica, and alteration of liquid hydrocarbons to an asphaltic residue have completely occluded the pore system in parts of the reservoir.« less

  16. Predicting genotypes environmental range from genome-environment associations.

    PubMed

    Manel, Stéphanie; Andrello, Marco; Henry, Karine; Verdelet, Daphné; Darracq, Aude; Guerin, Pierre-Edouard; Desprez, Bruno; Devaux, Pierre

    2018-05-17

    Genome-environment association methods aim to detect genetic markers associated with environmental variables. The detected associations are usually analysed separately to identify the genomic regions involved in local adaptation. However, a recent study suggests that single-locus associations can be combined and used in a predictive way to estimate environmental variables for new individuals on the basis of their genotypes. Here, we introduce an original approach to predict the environmental range (values and upper and lower limits) of species genotypes from the genetic markers significantly associated with those environmental variables in an independent set of individuals. We illustrate this approach to predict aridity in a database constituted of 950 individuals of wild beets and 299 individuals of cultivated beets genotyped at 14,409 random Single Nucleotide Polymorphisms (SNPs). We detected 66 alleles associated with aridity and used them to calculate the fraction (I) of aridity-associated alleles in each individual. The fraction I correctly predicted the values of aridity in an independent validation set of wild individuals and was then used to predict aridity in the 299 cultivated individuals. Wild individuals had higher median values and a wider range of values of aridity than the cultivated individuals, suggesting that wild individuals have higher ability to resist to stress-aridity conditions and could be used to improve the resistance of cultivated varieties to aridity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Increased anthropogenic disturbance and aridity reduce phylogenetic and functional diversity of ant communities in Caatinga dry forest.

    PubMed

    Arnan, Xavier; Arcoverde, Gabriela B; Pie, Marcio R; Ribeiro-Neto, José D; Leal, Inara R

    2018-08-01

    Anthropogenic disturbance and climate change are major threats to biodiversity. The Brazilian Caatinga is the world's largest and most diverse type of seasonally dry tropical forest. It is also one of the most threatened, but remains poorly studied. Here, we analyzed the individual and combined effects of anthropogenic disturbance (three types: livestock grazing, wood extraction, and miscellaneous use of forest resources) and increasing aridity on taxonomic, phylogenetic and functional ant diversity in the Caatinga. We found no aridity and disturbance effects on taxonomic diversity. In spite of this, functional diversity, and to a lesser extent phylogenetic diversity, decreased with increased levels of disturbance and aridity. These effects depended on disturbance type: livestock grazing and miscellaneous resource use, but not wood extraction, deterministically filtered both components of diversity. Interestingly, disturbance and aridity interacted to shape biodiversity responses. While aridity sometimes intensified the negative effects of disturbance, the greatest declines in biodiversity were in the wettest areas. Our results imply that anthropogenic disturbance and aridity interact in complex ways to endanger biodiversity in seasonally dry tropical forests. Given global climate change, neotropical semi-arid areas are habitats of concern, and our findings suggest Caatinga conservation policies must prioritize protection of the wettest areas, where biodiversity loss stands to be the greatest. Given the major ecological relevance of ants, declines in both ant phylogenetic and functional diversity might have downstream effects on ecosystem processes, insect populations, and plant populations. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Development of a Testate Amoebae Calibration Dataset from a freshwater wetland in a semi-arid environment: Loboi Swamp, Kenya, East Africa.

    NASA Astrophysics Data System (ADS)

    Goman, M. F.; Ashley, G. M.; Hover, V. C.; Muasya, A. M.

    2005-12-01

    The East African Rift Valley is characterized as an arid to semi-arid region, with several large, well studied, alkaline lakes; within the region, freshwater wetlands persist. These wetland systems, locally are important sources of freshwater. They also provide overlooked important paleoclimate archives, as the fragile ecology of these wetlands can be affected by even minor changes in hydrology and climate. Loboi Swamp is a 1.5 km2 freshwater wetland located near the equator in the Kenyan Rift Valley. The region receives approximately 700 mm of precipitation per year, while potential evaporation exceeds 2500 mm annually. Analysis of 25-years of precipitation data from local weather stations indicate that significant positive precipitation anomalies occur during El Niño years. Radiocarbon, pollen, and diatom data from Loboi Swamp indicates that the current wetland developed approximately 700 years ago. Sediment surface samples were collected for pollen, seeds and testate amoebae, along with water chemistry and vegetation data from throughout the Loboi Marsh. In this paper we present preliminary data and results in the development of a calibration dataset to test the feasibility of using testate amoebae as a proxy for hydrological and geochemical changes in a semi-arid setting. Initial results indicate significant qualitative differences in testate amoebae taxon distribution within geographic regions of the marsh, which likely correlate with a variety of hydrologic parameters (e.g., alkalinity, PH, DO, and temperature).

  19. Topography alters tree growth–climate relationships in a semi-arid forested catchment

    DOE PAGES

    Adams, Hallie R.; Barnard, Holly R.; Loomis, Alexander K.

    2014-11-26

    Topography and climate play an integral role in the spatial variability and annual dynamics of aboveground carbon sequestration. Despite knowledge of vegetation–climate–topography relationships on the landscape and hillslope scales, little is known about the influence of complex terrain coupled with hydrologic and topoclimatic variation on tree growth and physiology at the catchment scale. Climate change predictions for the semi-arid, western United States include increased temperatures, more frequent and extreme drought events, and decreases in snowpack, all of which put forests at risk of drought induced mortality and enhanced susceptibility to disturbance events. In this study, we determine how species-specific treemore » growth patterns and water use efficiency respond to interannual climate variability and how this response varies with topographic position. We found that Pinus contorta and Pinus ponderosa both show significant decreases in growth with water-limiting climate conditions, but complex terrain mediates this response by controlling moisture conditions in variable topoclimates. Foliar carbon isotope analyses show increased water use efficiency during drought for Pinus contorta, but indicate no significant difference in water use efficiency of Pinus ponderosa between a drought year and a non-drought year. The responses of the two pine species to climate indicate that semi-arid forests are especially susceptible to changes and risks posed by climate change and that topographic variability will likely play a significant role in determining the future vegetation patterns of semi-arid systems.« less

  20. Contrasting fire responses to climate and management: insights from two Australian ecosystems.

    PubMed

    King, Karen J; Cary, Geoffrey J; Bradstock, Ross A; Marsden-Smedley, Jonathan B

    2013-04-01

    This study explores effects of climate change and fuel management on unplanned fire activity in ecosystems representing contrasting extremes of the moisture availability spectrum (mesic and arid). Simulation modelling examined unplanned fire activity (fire incidence and area burned, and the area burned by large fires) for alternate climate scenarios and prescribed burning levels in: (i) a cool, moist temperate forest and wet moorland ecosystem in south-west Tasmania (mesic); and (ii) a spinifex and mulga ecosystem in central Australia (arid). Contemporary fire activity in these case study systems is limited, respectively, by fuel availability and fuel amount. For future climates, unplanned fire incidence and area burned increased in the mesic landscape, but decreased in the arid landscape in accordance with predictions based on these limiting factors. Area burned by large fires (greater than the 95th percentile of historical, unplanned fire size) increased with future climates in the mesic landscape. Simulated prescribed burning was more effective in reducing unplanned fire activity in the mesic landscape. However, the inhibitory effects of prescribed burning are predicted to be outweighed by climate change in the mesic landscape, whereas in the arid landscape prescribed burning reinforced a predicted decline in fire under climate change. The potentially contrasting direction of future changes to fire will have fundamentally different consequences for biodiversity in these contrasting ecosystems, and these will need to be accommodated through contrasting, innovative management solutions. © 2012 Blackwell Publishing Ltd.

  1. Sedimentology of the Essaouira Basin (Meskala Field) in context of regional sediment distribution patterns during upper Triassic pluvial events

    NASA Astrophysics Data System (ADS)

    Mader, Nadine K.; Redfern, Jonathan; El Ouataoui, Majid

    2017-06-01

    Upper Triassic continental clastics (TAGI: Trias Argilo-Greseux Inferieur) in the Essaouira Basin are largely restricted to the subsurface, which has limited analysis of the depositional environments and led to speculation on potential provenance of the fluvial systems. Facies analysis of core from the Meskala Field onshore Essaouira Basin is compared with tentatively time-equivalent deposits exposed in extensive outcrops in the Argana Valley, to propose a process orientated model for local versus regional sediment distribution patterns in the continuously evolving Moroccan Atlantic rift during Carnian to Norian times. The study aims to unravel the climatic overprint and improve the understanding of paleo-climatic variations along the Moroccan Atlantic margin to previously recognised Upper Triassic pluvial events. In the Essaouira Basin, four facies associations representing a progressive evolution from proximal to distal facies belts in a continental rift were established. Early ephemeral braided river systems are succeeded by a wet aeolian sandflat environment with a strong arid climatic overprint (FA1). This is followed by the onset of perennial fluvial deposits with extensive floodplain fines (FA2), accompanied by a distinct shift in fluvial style, suggesting increase in discharge and related humidity, either locally or in the catchment area. The fluvial facies transitions to a shallow lacustrine or playa lake delta environment (FA3), which exhibits cyclical abandonment. The delta is progressively overlain by a terminal playa with extensive, mottled mudstones (FA4), interpreted to present a return from cyclical humid-arid conditions to prevailing aridity in the basin. In terms of regional distribution and sediment source provenance, paleocurrent data from Carnian to Norian deposits (T5 to T8 member) in the Argana Valley suggest paleoflow focused towards the S and SW, not directed towards the Meskala area in the NW as previously suggested. A major depo-centre for fluvial sediments is instead located in the southern Argana Valley, possibly the Souss Basin. To effectively source the reservoir sandstones found in the Meskala Field, a more local provenance area has hence to be envisaged. Despite this, the direct comparison of the genetic evolution of sedimentary sequences in the Argana Valley and Essaouira Basin shows a similar progression from dominantly arid ephemeral depositional environments to humid perennial sedimentation, returning to prominent arid conditions. This suggests climatic control in both regions, where an enhanced humid signal drives perennial fluvial flow in otherwise arid dominated sequences. On a regional scale, this is suggested to record the impact of strong Triassic pluvial events previously recognised in other basins along the Central Atlantic margin during the Carnian to Norian periods.

  2. A Conceptual Model For Effluent-Dependent Riverine Environments

    NASA Astrophysics Data System (ADS)

    Murphy, M. T.; Meyerhoff, R. D.; Osterkamp, W. R.; Smith, E. L.; Hawkins, R. H.

    2001-12-01

    The Arid West Water Quality Research Project (WQRP) is a multi-year, EPA-funded scientific endeavor directed by the Pima County, Wastewater Management Department in southern Arizona and focussed upon several interconnected ecological questions. These questions are crucial to water quality management in the arid and semi arid western US. A key component has been the ecological, hydrological and geomorphological investigation of habitat created by the discharge of treated effluent into ephemeral streams. Such environments are fundamentally different from the dry streams or rivers they displace; however, they are clearly not the perennial streams they superficially resemble. Under Arizona State regulations, such streams can bear the use designation of "Effluent Dependent Waters," or EDWs. Before this investigation, a hydrological/ecological conceptual model for these unique ecosystems had not been published. We have constructed one for general review that is designed to direct future work in the WQRP. The project investigated ten representative, yet contrasting EDW sites distributed throughout arid areas of the western US, to gather both historical and reconnaissance level field data, including in-stream and riparian, habitat and morphometric fluvial data. In most cases, the cross sectional area of the prior channel is oversized relative to the discharge of the introduced effluent. Where bed control is absent, the channels are incised downstream of the discharge point, further suggesting a disequilibrium between the channel and the regulated effluent flow. Several of the studied stream systems primarily convey storm water and are aggradational, exhibiting braided or anastomizing channels, high energy bedforms, and spatially dynamic interfluves. Active channels are formed in response to individual storm events and can be highly dynamic in both location and cross-sectional morphology. This poses a geomorphological challenge in the selection of a discharge point. We structured the conceptual model around accepted riverine ecological models but with important departures signaling the unique characteristics of EDW communities. In many cases, in-stream habitat values were naturally limited by substrate, flow regimes, or other pre-discharge conditions. Our model is designed to give terrestrial habitat equal footing with in-stream resources in ecological assessment techniques. In the arid West, where in-stream water resources are becoming increasingly limited, EDWs offer important refugia and corridors for neotropical migratory birds and other habitat-limited wildlife species. These beneficial uses require different hydrological tools than in-stream systems for assessing habitat health.

  3. Water-Use Efficiency of Two Arid-Zone Biomes of Central Australia

    NASA Astrophysics Data System (ADS)

    Tarin, T.

    2015-12-01

    Australia is an extensive country, of which 70% is covered by arid or semi-arid ecosystems. These ecosystems are influenced by the Australian monsoon, which occurs in summer (December-February). The Indian Ocean Dipole and El Niño/Southern Oscillation (ENSO) are two weather systems that most influence weather patterns in this region, and both systems have been shown to be affected by climate change. Two biomes dominate in this region: (1) Mulga, a low woodland dominated by species of the genus Acacia; and (2) open Corymbia-savanna where the dominant cover is Spinifex (C4 grass) with widely spaced tall evergreen Corymbia trees. Within each biome an eddy covariance tower has been in operation for the past 3-5 years. The aim of this study is to understand water-use efficiency (WUE) of those ecosystems, by using the indicator: WUE= Gross Primary Production (GPP) / Evapotranspiration (ET). We analysed continuous measurements of ecosystem WUE during dry (May-November) and wet (December-February) seasons from September 2012 to May 2015. At the Mulga site, 765mm of rain was received, with more than 80% (633mm) occurring during the wet season. Similarly 80% (706mm) of total rainfall (844mm) was received by the Corymbia-savanna in the wet season. ET accounted for 82% of rainfall for the Mulga site and for the Corymbia-savanna site ET was 87% of total rainfall for the study period. Total GPP for the last three wet seasons at the Mulga site was 1590 gC·m-2, while in the dry seasons was a total of 65.5 gC m-2. By contrast total GPP at the Corymbia-savanna site was 424 gC m-2 and 22.4 gC·m-2 for wet and dry seasons respectively. WUE during the wet seasons was 3.1 and 0.7 and, 1.3 and 0.4 (gC m-2 mm-1 H2O) in dry seasons for Mulga and Corymbia-savanna sites respectively. We found the Mulga site is the most water efficient ecosystem, these quantifications of the WUE in central Australia where similar to other studies in arid regions, where WUE decreased with increasing aridity.

  4. Post-Eocene climate change across continental Australia and the diversification of Australasian spiny trapdoor spiders (Idiopidae: Arbanitinae).

    PubMed

    Rix, Michael G; Cooper, Steven J B; Meusemann, Karen; Klopfstein, Seraina; Harrison, Sophie E; Harvey, Mark S; Austin, Andrew D

    2017-04-01

    The formation and spread of the Australian arid zone during the Neogene was a profoundly transformative event in the biogeographic history of Australia, resulting in extinction or range contraction in lineages adapted to mesic habitats, as well as diversification and range expansion in arid-adapted taxa (most of which evolved from mesic ancestors). However, the geographic origins of the arid zone biota are still relatively poorly understood, especially among highly diverse invertebrate lineages, many of which are themselves poorly documented at the species level. Spiny trapdoor spiders (Idiopidae: Arbanitinae) are one such lineage, having mesic 'on-the-continent' Gondwanan origins, while also having experienced major arid zone radiations in select clades. In this study, we present new orthologous nuclear markers for the phylogenetic inference of mygalomorph spiders, and use them to infer the phylogeny of Australasian Idiopidae with a 12-gene parallel tagged amplicon next-generation sequencing approach. We use these data to test the mode and timing of diversification of arid-adapted idiopid lineages across mainland Australia, and employ a continent-wide sampling of the fauna's phylogenetic and geographic diversity to facilitate ancestral area inference. We further explore the evolution of phenotypic and behavioural characters associated with both arid and mesic environments, and test an 'out of south-western Australia' hypothesis for the origin of arid zone clades. Three lineages of Idiopidae are shown to have diversified in the arid zone during the Miocene, one (genus Euoplos) exclusively in Western Australia. Arid zone Blakistonia likely had their origins in South Australia, whereas in the most widespread genus Aganippe, a more complex scenario is evident, with likely range expansion from southern Western Australia to southern South Australia, from where the bulk of the arid zone fauna then originated. In Aganippe, remarkable adaptations to phragmotic burrow-plugging in transitional arid zone taxa have evolved twice independently in Western Australia, while in Misgolas and Cataxia, burrow door-building behaviours have likely been independently lost at least three times in the eastern Australian mesic zone. We also show that the presence of idiopids in New Zealand (Cantuaria) is likely to be the result of recent dispersal from Australia, rather than ancient continental vicariance. By providing the first comprehensive, continental synopsis of arid zone biogeography in an Australian arachnid lineage, we show that the diversification of arbanitine Idiopidae was intimately associated with climate shifts during the Neogene, resulting in multiple Mio-Pliocene radiations. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Groundwater flowpaths and residence times inferred by 14C, 36Cl and 4He isotopes in the Continental Intercalaire aquifer (North-Western Africa)

    NASA Astrophysics Data System (ADS)

    Petersen, J. O.; Deschamps, P.; Hamelin, B.; Fourré, E.; Gonçalvès, J.; Zouari, K.; Guendouz, A.; Michelot, J.-L.; Massault, M.; Dapoigny, A.; ASTER Team

    2018-05-01

    In a semi-arid to arid climate context, dependency on groundwater resources may lead to overexploitation and deterioration of water quality. The Continental Intercalaire (CI) aquifer is one such continental-scale aquifer (more than a million of km2), which is mainly confined, poorly recharged but intensely abstracted. To date, the management of this resource relies on hydrogeological modelling and key parameters such as recharge/discharge rate and groundwater dynamics. We use a combination of residence time indicators (14C, 36Cl, 4He) and stable isotopes of water (2H and 18O) to give greater constraint on the groundwater residence time in the CI. In previous studies, 14C measurements and steady state modelling indicate a residence time of less than 100 ka whereas in others, 36Cl measurements and transient scenarios modelling suggest a longer residence time (>500 ka). In this study, most of the 14C measurements are below the limit of detection, establishing residence times greater than 40 ka and confirming the necessity of strict sampling protocols to exclude all air and AMS measurements when low 14C concentrations are expected. In the Tunisian recharge area, detectable 14C indicate sporadic recharge episodes (3-7 ka and 29-43 ka), whereas 4He and 36Cl concentrations in central areas suggest very old (<2 Ma) groundwaters. In these central areas, chlorine concentration can reach more than 2 g/l. Since 36Cl concentrations are up to 4 time less than the initial input, we are confident there is no excessive deep 36Cl production. We characterise five distinct flowpaths reaching the Tunisian discharge area using their isotopic signatures. According to our mixing model, the average contribution from the main recharge area, the Algerian Atlas Mountains, is around 88%. This value is close to hydrogeological models. Conversely, the contribution from the Dahar Mountains is lower than in the hydrogeological modelling (2% against 10%) whereas the Tinhert shows a greater contribution (10% against 1%). Increase of abstraction from the CI can potentially activate the circulation of old brackish groundwaters and dramatically decrease the water quality in the whole system.

  6. The geohydrologic setting of Yucca Mountain, Nevada

    USGS Publications Warehouse

    Stuckless, J.S.; Dudley, W.W.

    2002-01-01

    This paper provides a geologic and hydrologic framework of the Yucca Mountain region for the geochemical papers in this volume. The regional geologic units, which range in age from late Precambrian through Holocene, are briefly described. Yucca Mountain is composed of dominantly pyroclastic units that range in age from 11.4 to 15.2 Ma. The principal focus of study has been on the Paintbrush Group, which includes two major zoned and welded ash-flow tuffs separated by an important hydrogeologic unit referred to as the Paintbrush non-welded (PTn). The regional structural setting is currently one of extension, and the major local tectonic domains are presented together with a tectonic model that is consistent with the known structures at Yucca Mountain. Streamflow in this arid to semi-arid region occurs principally in intermittent or ephemeral channels. Near Yucca Mountain, the channels of Fortymile Wash and Amargosa River collect infrequent runoff from tributary basins, ultimately draining to Death Valley. Beneath the surface, large-scale interbasin flow of groundwater from one valley to another occurs commonly in the region. Regional groundwater flow beneath Yucca Mountain originates in the high mesas to the north and returns to the surface either in southern Amargosa Desert or in Death Valley, where it is consumed by evapotranspiration. The water table is very deep beneath the upland areas such as Yucca Mountain, where it is 500-750 m below the land surface, providing a large thickness of unsaturated rocks that are potentially suitable to host a nuclear-waste repository. The nature of unsaturated flow processes, which are important for assessing radionuclide migration, are inferred mainly from hydrochemical or isotopic evidence, from pneumatic tests of the fracture systems, and from the results of in situ experiments. Water seeping down through the unsaturated zone flows rapidly through fractures and more slowly through the pores of the rock matrix. Although capillary forces are expected to divert much of the flow around repository openings, some may drip onto waste packages, ultimately causing release of radionuclides, followed by transport down to the water table. ?? 2002 Elsevier Science Ltd. All rights reserved.

  7. Perchlorate in Drinking Water Frequent Questions

    EPA Pesticide Factsheets

    Perchlorate occurs naturally in arid states in the Southwest United States, in nitrate fertilizer deposits in Chile, and in potash ore in the United States and Canada. It has also been found in some public drinking water systems and in food.

  8. Extreme Dead Sea drying event during the last interglacial from the ICDP Dead Sea Deep Drill Core

    NASA Astrophysics Data System (ADS)

    Goldstein, S.; Stein, M.; Ben-Avraham, Z.; Agnon, A.; Ariztegui, D.; Brauer, A.; Haug, G.; Ito, E.; Kitagawa, H.; Torfstein, A.; Yasuda, Y.

    2012-04-01

    The ICDP funded Dead Sea Deep Drilling Project (DSDDP) recovered the longest and most complete paleo-environmental record in the Middle East, drilling holes in a deep and a shallow site extending to ~450 meters. The Dead Sea expands during the glacials and contracts during interglacials, and the sediments are an archive of the evolving climatic conditions. During glacials the sediments comprise intervals of marl (aragonite, gypsum and detritus) and during interglacials they are salts and marls. We estimate that the deep site core spans ~200 kyr (to early MIS 7). A dramatic discovery is a ~40 cm interval of rounded pebbles at ~235 m below the lake floor, the only clean pebbly unit in the entire core. It appears to be a beach layer, near the deepest part of the Dead Sea, lying above ~35 meters of mainly salt. If it is a beach layer, it implies an almost complete dry-down of the paleo-Dead Sea. The pebble layer lies within the last interglacial interval. Our initial attempt to estimate the age of the possible dry down shows an intriguing correlation between the salt-mud stratigraphy of the Dead Sea core and the oxygen isotope record of Soreq Cave, whereby excursions to light oxygen in the speleothems correspond to periods of salt deposition. Through this comparison, we estimate that the dry down occurred during MIS 5e. The occurrence of ~35 meters of mainly salt along with the pebble layer demonstrates a severe dry interval during MIS 5. This observation has implications for the Middle East today, where the Dead Sea level is dropping as all the countries in the area use the runoff. GCM models indicate a more arid future in the region. The core shows that the runoff nearly stopped during a past warm period without human intervention.

  9. Groundwater origin and recharge in the hyperarid Cordillera de la Costa, Atacama Desert, northern Chile.

    PubMed

    Herrera, Christian; Gamboa, Carolina; Custodio, Emilio; Jordan, Teresa; Godfrey, Linda; Jódar, Jorge; Luque, José A; Vargas, Jimmy; Sáez, Alberto

    2018-05-15

    The Cordillera de la Costa is located along the coastline of northern Chile, in the hyperarid Atacama Desert area. Chemical and isotopic analyses of several small coastal springs and groundwater reservoirs between 22.5 °S and 25.5 °S allow understanding groundwater origin, renewal time and the probable timing of recharge. The aquifers are mostly in old volcanic rocks and alluvial deposits. All spring waters are brackish, of the sodium chloride type due to intensive concentration of precipitation due aridity and for deep groundwater to additional water-rock interaction in slowly renewed groundwater and mixing with deep seated brines. The heavy δ 18 O and δ 2 H values in spring water are explained by recharge by the arrival of moist air masses from the Pacific Ocean and the originally lighter values in the deep wells can be associated to past recharge by air masses coming from the Atlantic Ocean. Current recharge is assumed almost nil but it was significant in past wetter-than-present periods, increasing groundwater reserves, which are not yet exhausted. To explain the observed chloride content and radiocarbon ( 14 C) activity, a well-mixed (exponential) flow model has been considered for aquifer recharge. The average residence time of groundwater feeding the springs has been estimated between 1 and 2kyr, up to 5kyr and between 7 and 13kyr for deep well water, assuming that current recharge is much less than during the previous wetter period. The recharge period feeding the coastal springs could have been produced 1 to 5kyr BP, when the area was already inhabited, and recharge in the Michilla mine was produced during the 10 to 14.5kyr BP CAPE (Central Andean Pluvial Event) pluvial events of the central Andes. The approximate coincidence of turnover time with the past wet periods, as revealed by paleoclimate data, points to significant recharge during them. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Bulk and export production fluxes from sediment traps in the Gulf of Aqaba, north Red Sea

    NASA Astrophysics Data System (ADS)

    Torfstein, A.; Kienast, S.; Shaked, Y.

    2016-12-01

    Real time observations of the dynamics between dust input, primary production, and export production in deep oligotrophic waters are extremely rare. This is especially true in the context of the direct response and lag time between nutrient supply (e.g., dust), the oceanic biogeochemical response and the signal transfer from the water to sedimentary record. Here, we present the first direct measurments of bulk and export production fluxes in the deep oligotrophic Gulf of Aqaba (GOA), northern Red Sea, located between the hyper-arid Sahara and Arabia Deserts. This study is based on a coupled sediment trap array that provides daily- and monthly- resolution since January 2014. This coupled configuration allows for a unique collection of marine particulates, whereby the annual and seasonal patterns can be evaluated in the context of discrete (daily-timescale) events such as abrupt dust storms, floods and biological blooms. The marine organic C and N fluxes range annually between 0.02-0.25 and 0.001-0.1 g d-1 m-2, respectively. Both show a sharp decay with depth, corresponding to the "Martin curve" (Martin et al., 1987, Deep-Sea Research, 34, 267-285). Importantly, the daily-resolution sampling provides insights to the seasonal increase in export production during the winter and early spring. Rather than a smooth seasonal cycle, this increase is driven by only very few short events, lasting no more than a few days, during which export production increases by an order of magnitude above the baseline. Yet, the nature of these export production "spikes" is non-unique because they reflect different "trigger" events such as dust storms or water column mixing. Accordingly, we present a quantitative evaluation of the observations in the context of coeval dust flux records and the physical and chemical configuration of the GOA over the time of sampling period, and present and quantitative mass balance of particle fluxes in this deep yet land-locked marine setting.

  11. Responses to the 2800 years BP climatic oscillation in shallow- and deep-basin sediments from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Neugebauer, Ina; Brauer, Achim; Schwab, Markus; Dulski, Peter; Frank, Ute; Hadzhiivanova, Elitsa; Kitagawa, Hiroyuki; Litt, Thomas; Schiebel, Vera; Taha, Nimer; Waldmann, Nicolas

    2015-04-01

    Laminated lake sediments from the Dead Sea basin provide high-resolution records of climatic variability in the eastern Mediterranean region, which is considered being especially sensitive to changing climatic conditions. In the study presented here, we aim to reconstruct palaeoclimatic changes and their relation to the frequency of flood/erosion and dust deposition events as archived in the Dead Sea basin for the time interval from ca 3700 to 1700 years BP. A ca 4 m thick, mostly annually laminated (varved) sediment section from the western margin of the Dead Sea (shallow-water DSEn - Ein Gedi profile) was analysed and correlated to the new ICDP Dead Sea Deep Drilling Project core 5017-1 from the deep basin. To detect even single event layers, we applied a multi-proxy approach of high-resolution microscopic thin section analyses, µXRF element scanning and magnetic susceptibility measurements, supported by grain size and palynological analyses. Based on radiocarbon and varve dating two pronounced dry periods were detected at ~3500-3300 yrs BP and ~2900-2400 yrs BP that are characterized by a sand deposit during the older dry period and enhanced frequency of coarse detrital layers during the younger dry period in the shallow-water DSEn core, both interpreted as increased erosion processes. In the 5017-1 deep-basin core these dry periods are depicted by halite deposits. The timing of the younger dry period broadly coincides with the Homeric Minimum of solar activity at ca 2800 yrs BP. Our results suggest that during this period the Dead Sea region experienced a change in synoptic weather patterns leading to an increased occurrence of flash-flood events, overprinting the overall dry climatic conditions. Following this dry spell, a 250-yrs period of increased dust deposition is observed, coinciding with more regular aragonite precipitation during less arid climatic conditions.

  12. Problems and Prospects of SWAT Model Application on an Arid/Semi-arid Watershed in Arizona

    EPA Science Inventory

    Hydrological characteristics in the semi-arid southwest create unique challenges to watershed modelers. Streamflow in these regions is largely dependent on seasonal, short term, and high intensity rainfall events. The objectives of this study are: 1) to analyze the unique hydrolo...

  13. International Arid Lands Consortium: A synopsis of accomplishments

    Treesearch

    Peter F. Ffolliott; Jeffrey O. Dawson; James T. Fisher; Itshack Moshe; Timothy E. Fulbright; W. Carter Johnson; Paul Verburg; Muhammad Shatanawi; Jim P. M. Chamie

    2003-01-01

    The International Arid Lands Consortium (IALC) was established in 1990 to promote research, education, and training activities related to the development, management, and reclamation of arid and semiarid lands in the Southwestern United States, the Middle East, and elsewhere in the world. The Consortium supports the ecological sustainability and environmentally sound...

  14. Problems and Prospects of Swat Model Application on an Arid/Semi-Arid Watershed in Arizona

    EPA Science Inventory

    Hydrological characteristics in the semi-arid southwest create unique challenges to watershed modellers. Streamflow in these regions is largely dependent on seasonal, short term, and high intensity rainfall events. The objectives of this study are: 1) to analyze the unique hydrol...

  15. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia.

    PubMed

    Liu, Hongyan; Park Williams, A; Allen, Craig D; Guo, Dali; Wu, Xiuchen; Anenkhonov, Oleg A; Liang, Eryuan; Sandanov, Denis V; Yin, Yi; Qi, Zhaohuan; Badmaeva, Natalya K

    2013-08-01

    Forests around the world are subject to risk of high rates of tree growth decline and increased tree mortality from combinations of climate warming and drought, notably in semi-arid settings. Here, we assess how climate warming has affected tree growth in one of the world's most extensive zones of semi-arid forests, in Inner Asia, a region where lack of data limits our understanding of how climate change may impact forests. We show that pervasive tree growth declines since 1994 in Inner Asia have been confined to semi-arid forests, where growing season water stress has been rising due to warming-induced increases in atmospheric moisture demand. A causal link between increasing drought and declining growth at semi-arid sites is corroborated by correlation analyses comparing annual climate data to records of tree-ring widths. These ring-width records tend to be substantially more sensitive to drought variability at semi-arid sites than at semi-humid sites. Fire occurrence and insect/pathogen attacks have increased in tandem with the most recent (2007-2009) documented episode of tree mortality. If warming in Inner Asia continues, further increases in forest stress and tree mortality could be expected, potentially driving the eventual regional loss of current semi-arid forests. © 2013 John Wiley & Sons Ltd.

  16. Adaptation of metabolism and evaporative water loss along an aridity gradient.

    PubMed Central

    Tieleman, B Irene; Williams, Joseph B; Bloomer, Paulette

    2003-01-01

    Broad-scale comparisons of birds indicate the possibility of adaptive modification of basal metabolic rate (BMR) and total evaporative water loss (TEWL) in species from desert environments, but these might be confounded by phylogeny or phenotypic plasticity. This study relates variation in avian BMR and TEWL to a continuously varying measure of environment, aridity. We test the hypotheses that BMR and TEWL are reduced along an aridity gradient within the lark family (Alaudidae), and investigate the role of phylogenetic inertia. For 12 species of lark, BMR and TEWL decreased along a gradient of increasing aridity, a finding consistent with our proposals. We constructed a phylogeny for 22 species of lark based on sequences of two mitochondrial genes, and investigated whether phylogenetic affinity played a part in the correlation of phenotype and environment. A test for serial independence of the data for mass-corrected TEWL and aridity showed no influence of phylogeny on our findings. However, we did discover a significant phylogenetic effect in mass-corrected data for BMR, a result attributable to common phylogenetic history or to common ecological factors. A test of the relationship between BMR and aridity using phylogenetic independent constrasts was consistent with our previous analysis: BMR decreased with increasing aridity. PMID:12590762

  17. Hydrological Response of Semi-arid Degraded Catchments in Tigray, Northern Ethiopia

    NASA Astrophysics Data System (ADS)

    Teka, Daniel; Van Wesemael, Bas; Vanacker, Veerle; Hallet, Vincent

    2013-04-01

    To address water scarcity in the arid and semi-arid part of developing countries, accurate estimation of surface runoff is an essential task. In semi-arid catchments runoff data are scarce and therefore runoff estimation using hydrological models becomes an alternative. This research was initiated in order to characterize runoff response of semi-arid catchments in Tigray, North Ethiopia to evaluate SCS-CN for various catchments. Ten sub-catchments were selected in different river basins and rainfall and runoff were measured with automatic hydro-monitoring equipments for 2-3 years. The Curve Number was estimated for each Hydrological Response Unit (HRU) in the sub-catchments and runoff was modeled using the SCS-CN method at λ = 0.05 and λ = 0.20. The result showed a significant difference between the two abstraction ratios (P =0.05, df = 1, n= 132) and reasonable good result was obtained for predicted runoff at λ = 0.05 (NSE = -0.69; PBIAS = 18.1%). When using the CN values from literature runoff was overestimated compared to the measured value (e= -11.53). This research showed the importance of using measured runoff data to characterize semi-arid catchments and accurately estimate the scarce water resource. Key words: Hydrological response, rainfall-runoff, degraded environments, semi-arid, Ethiopia, Tigray

  18. Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment

    PubMed Central

    Celen, Cemre; Chuang, Jen-Chieh; Luo, Xin; Nijem, Nadine; Walker, Angela K; Chen, Fei; Zhang, Shuyuan; Chung, Andrew S; Nguyen, Liem H; Nassour, Ibrahim; Budhipramono, Albert; Sun, Xuxu; Bok, Levinus A; McEntagart, Meriel; Gevers, Evelien F; Birnbaum, Shari G; Eisch, Amelia J; Powell, Craig M; Ge, Woo-Ping; Santen, Gijs WE; Chahrour, Maria; Zhu, Hao

    2017-01-01

    Sequencing studies have implicated haploinsufficiency of ARID1B, a SWI/SNF chromatin-remodeling subunit, in short stature (Yu et al., 2015), autism spectrum disorder (O'Roak et al., 2012), intellectual disability (Deciphering Developmental Disorders Study, 2015), and corpus callosum agenesis (Halgren et al., 2012). In addition, ARID1B is the most common cause of Coffin-Siris syndrome, a developmental delay syndrome characterized by some of the above abnormalities (Santen et al., 2012; Tsurusaki et al., 2012; Wieczorek et al., 2013). We generated Arid1b heterozygous mice, which showed social behavior impairment, altered vocalization, anxiety-like behavior, neuroanatomical abnormalities, and growth impairment. In the brain, Arid1b haploinsufficiency resulted in changes in the expression of SWI/SNF-regulated genes implicated in neuropsychiatric disorders. A focus on reversible mechanisms identified Insulin-like growth factor (IGF1) deficiency with inadequate compensation by Growth hormone-releasing hormone (GHRH) and Growth hormone (GH), underappreciated findings in ARID1B patients. Therapeutically, GH supplementation was able to correct growth retardation and muscle weakness. This model functionally validates the involvement of ARID1B in human disorders, and allows mechanistic dissection of neurodevelopmental diseases linked to chromatin-remodeling. DOI: http://dx.doi.org/10.7554/eLife.25730.001 PMID:28695822

  19. Evaluating the impact of water conservation on fate of outdoor water use: a study in an arid region.

    PubMed

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria

    2011-08-01

    In this research, the impact of several water conservation policies and return flow credits on the fate of water used outdoors in an arid region is evaluated using system dynamics modeling approach. Return flow credits is a strategy where flow credits are obtained for treated wastewater returned to a water body, allowing for the withdrawal of additional water equal to the amount returned as treated wastewater. In the return credit strategy, treated wastewater becomes a resource. This strategy creates a conundrum in which conservation may lead to an apparent decrease in water supply because less wastewater is generated and returned to water body. The water system of the arid Las Vegas Valley in Nevada, USA is used as basis for the dynamic model. The model explores various conservation scenarios to attain the daily per capita demand target of 752 l by 2035: (i) status quo situation where conservation is not implemented, (ii) conserving water only on the outdoor side, (iii) conserving water 67% outdoor and 33% indoor, (iv) conserving equal water both in the indoor and outdoor use (v) conserving water only on the indoor side. The model is validated on data from 1993 to 2008 and future simulations are carried out up to 2035. The results show that a substantial portion of the water used outdoor either evapo-transpires (ET) or infiltrates to shallow groundwater (SGW). Sensitivity analysis indicated that seepage to groundwater is more susceptible to ET compared to any other variable. The all outdoor conservation scenario resulted in the highest return flow credits and the least ET and SGW. A major contribution of this paper is in addressing the water management issues that arise when wastewater is considered as a resource and developing appropriate conservation policies in this backdrop. The results obtained can be a guide in developing outdoor water conservation policies in arid regions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Late Pleistocene glacial fluctuations in Cordillera Oriental, subtropical Andes

    NASA Astrophysics Data System (ADS)

    Martini, Mateo A.; Kaplan, Michael R.; Strelin, Jorge A.; Astini, Ricardo A.; Schaefer, Joerg M.; Caffee, Marc W.; Schwartz, Roseanne

    2017-09-01

    The behavior of subtropical glaciers during Middle to Late Pleistocene global glacial maxima and abrupt climate change events, specifically in Earth's most arid low-latitude regions, remains an outstanding problem in paleoclimatology. The present-day climate of Cordillera Oriental, in arid northwestern Argentina, is influenced by shifts in subtropical climate systems, including the South American Summer Monsoon. To understand better past glacier-subtropical climates during the global Last Glacial Maximum (LGM, 26.5-19 ka) and other time periods, we combined geomorphic features with forty-two precise 10Be ages on moraine boulders and reconstructed paleo-equilibrium line altitudes (ELA) at Nevado de Chañi (24°S) in the arid subtropical Andes. We found a major glacial expansion at ∼23 ± 1.6 ka, that is, during the global LGM. Additional glacial expansions are observed before the global LGM (at ∼52-39 ka), and after, at 15 ± 0.5 and 12 ± 0.6 ka. The ∼15 ka glacial event was found on both sides of Chañi and the ∼12 ka event is only recorded on the east side. Reconstructed ELAs of the former glaciers exhibit a rise from east to west that resembles the present subtropical climate trajectory from the Atlantic side of the continent; hence, we infer that this climate pattern must have been present in the past. Based on comparison with other low-latitude paleoclimate records, such as those from lakes and caves, we infer that both temperature and precipitation influenced past glacial occurrence in this sector of the arid Andes. Our findings also imply that abrupt deglacial climate events associated with the North Atlantic, specifically curtailed meridional overturning circulation and regional cooling, may have had attendant impacts on low subtropical Southern Hemisphere latitudes, including the climate systems that affect glacial activity around Nevado de Chañi.

  1. Stomatal movements in laurophyllous plants

    NASA Astrophysics Data System (ADS)

    Pautov, A. A.; Bauer, S. M.; Ivanova, O. V.; Sapach, Y. O.; Krylova, E. G.

    2018-05-01

    Stomata are the structural elements of plant epidermis which control transpiration and gas exchange. Each stoma consists of two guard cells divided by the stomatal aperture. These cells are capable of reversible deformations determining the width of aperture. It is known that these deformations depend on the value of turgor pressure in the guard cells and on the structure of their walls. In this work, the influence of the outer tangential wall geometry of the guard cells on stomatal movements is estimated by means of the finite element method in the ANSYS software. The application of modelling has shown that cuticular outgrowths on the tangential walls influence the degree and pattern of guard cell deformations. The outgrowths prevent wide opening of the stomatal aperture and cause its sinking deep into leaf epidermis. The functional significance of such stomatal movements is discussed. It is deduced that the discovered phenomenon had great importance to the survival of laurophyllous plants in conditions of aridization.

  2. Rainfall simulations as a tool for quantification of soil erosion processes caused by the trampling of sheep and goats in semi-arid and arid landscapes

    NASA Astrophysics Data System (ADS)

    Ruthenberg, Jonas; Tumbrink, Jonas; Wilms, Tobias; Peter, Klaus Daniel; Wirtz, Stefan; Ries, Johannes B.

    2015-04-01

    As there is a massive increase of livestock husbandry in semi-arid and arid landscapes, the investigation of trampling-induced soil erosion has become indispensable for a better understanding of erosive processes such as loosening and translocation of sediment, as well as the genesis of rill erosion and gully systems. Our work will support other studies focusing on desertification and land-use changes in the investigated landscapes. Up to this date, research on livestock-induced soil erosion, even in relation to other erosion processes such as aeolian and fluvial/pluvial sediment translocation, is very scarcely found in literature. The presented study on trampling-induced soil erosion by sheep and goats in arid and semi-arid landscapes aims to create a general understanding, an estimation and quantification of the influencing factors of these erosive processes. Within this study, we present the first results of several field rainfall experiments on rock fragment translocation as well as loosening and transportation of coarse and fine sediment depending on the motion sequence and the individual weight, size, and hoof beat of the animals. Furthermore, we conducted additional experiments to investigate the trampling-induced erosion processes for various other sediments, especially those in the range of clay, silt, and sand. To do so, we used a specially designed test plot, equipped with sediment traps on each side. For a clear and reliable analysis of the measured parameters, univariate as well as multivariate statistical methods have been used. For all field methods, we developed relevant statements concerning flock size. The rock fragment translocation experiments done so fare have shown that a flock of 45 sheep or goats moved 87 % of 320 spread out rock fragments with a mean translocation distance of 0.123 m when trampling across a test plot of 3.2 m^2. Besides that we found out that the soil surface was worked up in a way that the loosened fine sediment proved to be easily detachable by secondary erosive processes such as rainfall. The conducted rainfall simulations confirmed this assumption. They have shown that sediment yields were significantly higher on trail areas than on intershrub or shrub areas. The preliminary work done up until now suggests that the grazing and trampling of sheep and goats can be regarded as an important factor for soil degradation in semi-arid and arid landscapes. However, the understanding of the erosive processes in detail remains to be defined, i.e. the exact movement of the sheep and goats, the energy they can impart with their hooves, and how that energy affects different sediments or surfaces they tread upon, as well as the general quantification of trampling-induced erosion rates and transport processes of clastic sediments.

  3. Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change

    PubMed Central

    Davis, Jenny; Pavlova, Alexandra; Thompson, Ross; Sunnucks, Paul

    2013-01-01

    Refugia have been suggested as priority sites for conservation under climate change because of their ability to facilitate survival of biota under adverse conditions. Here, we review the likely role of refugial habitats in conserving freshwater biota in arid Australian aquatic systems where the major long-term climatic influence has been aridification. We introduce a conceptual model that characterizes evolutionary refugia and ecological refuges based on our review of the attributes of aquatic habitats and freshwater taxa (fishes and aquatic invertebrates) in arid Australia. We also identify methods of recognizing likely future refugia and approaches to assessing the vulnerability of arid-adapted freshwater biota to a warming and drying climate. Evolutionary refugia in arid areas are characterized as permanent, groundwater-dependent habitats (subterranean aquifers and springs) supporting vicariant relicts and short-range endemics. Ecological refuges can vary across space and time, depending on the dispersal abilities of aquatic taxa and the geographical proximity and hydrological connectivity of aquatic habitats. The most important are the perennial waterbodies (both groundwater and surface water fed) that support obligate aquatic organisms. These species will persist where suitable habitats are available and dispersal pathways are maintained. For very mobile species (invertebrates with an aerial dispersal phase) evolutionary refugia may also act as ecological refuges. Evolutionary refugia are likely future refugia because their water source (groundwater) is decoupled from local precipitation. However, their biota is extremely vulnerable to changes in local conditions because population extinction risks cannot be abated by the dispersal of individuals from other sites. Conservation planning must incorporate a high level of protection for aquifers that support refugial sites. Ecological refuges are vulnerable to changes in regional climate because they have little thermal or hydrological buffering. Accordingly, conservation planning must focus on maintaining meta-population processes, especially through dynamic connectivity between aquatic habitats at a landscape scale. PMID:23526791

  4. Estimates of Ground-Water Recharge in Wadis of Arid, Mountainous Areas Using the Chloride Mass-Balance Approach

    NASA Astrophysics Data System (ADS)

    Wood, W. W.; Wood, W. W.

    2001-05-01

    Evaluation of ground-water supply in arid areas requires estimation of annual recharge. Traditional physical-based hydrologic estimates of ground-water recharge result in large uncertainties when applied in arid, mountainous environments because of infrequent, intense rainfall events, destruction of water-measuring structures associated with those events, and consequent short periods of hydrologic records. To avoid these problems and reduce the uncertainty of recharge estimates, a chloride mass-balance (CMB) approach was used to provide a time-integrated estimate. Seven basins exhibiting dry-stream beds (wadis) in the Asir and Hijaz Mountains, western Saudi Arabia, were selected to evaluate the method. Precipitation among the basins ranged from less than 70 mm/y to nearly 320 mm/y. Rain collected from 35 locations in these basins averaged 2.0 mg/L chloride. Ground water from 140 locations in the wadi alluvium averaged 200 mg/L chloride. This chloride concentration ratio of precipitation to ground water suggests that on average, approximately 1 percent of the rainfall is recharged, while the remainder is lost to evaporation. Ground-water recharge from precipitation in individual basins ranged from less than 1 to nearly 4 percent and was directly proportional to total precipitation. Independent calculations of recharge using Darcy's Law were consistent with these findings and are within the range typically found in other arid areas of the world. Development of ground water has lowered the water level beneath the wadis and provided more storage thus minimizing chloride loss from the basin by river discharge. Any loss of chloride from the basin results in an overestimate of the recharge flux by the chloride-mass balance approach. In well-constrained systems recharge in arid, mountainous areas where the mass of chloride entering and leaving the basin is known or can be reasonably estimated, the CMB approach provides a rapid, inexpensive method for estimating time-integrated ground-water recharge.

  5. Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change.

    PubMed

    Davis, Jenny; Pavlova, Alexandra; Thompson, Ross; Sunnucks, Paul

    2013-07-01

    Refugia have been suggested as priority sites for conservation under climate change because of their ability to facilitate survival of biota under adverse conditions. Here, we review the likely role of refugial habitats in conserving freshwater biota in arid Australian aquatic systems where the major long-term climatic influence has been aridification. We introduce a conceptual model that characterizes evolutionary refugia and ecological refugees based on our review of the attributes of aquatic habitats and freshwater taxa (fishes and aquatic invertebrates) in arid Australia. We also identify methods of recognizing likely future refugia and approaches to assessing the vulnerability of arid-adapted freshwater biota to a warming and drying climate. Evolutionary refugia in arid areas are characterized as permanent, groundwater-dependent habitats (subterranean aquifers and springs) supporting vicariant relicts and short-range endemics. Ecological refugees can vary across space and time, depending on the dispersal abilities of aquatic taxa and the geographical proximity and hydrological connectivity of aquatic habitats. The most important are the perennial waterbodies (both groundwater and surface water fed) that support obligate aquatic organisms. These species will persist where suitable habitats are available and dispersal pathways are maintained. For very mobile species (invertebrates with an aerial dispersal phase) evolutionary refugia may also act as ecological refugees. Evolutionary refugia are likely future refugia because their water source (groundwater) is decoupled from local precipitation. However, their biota is extremely vulnerable to changes in local conditions because population extinction risks cannot be abated by the dispersal of individuals from other sites. Conservation planning must incorporate a high level of protection for aquifers that support refugial sites. Ecological refuges are vulnerable to changes in regional climate because they have little thermal or hydrological buffering. Accordingly, conservation planning must focus on maintaining meta-population processes, especially through dynamic connectivity between aquatic habitats at a landscape scale. © 2013 Blackwell Publishing Ltd.

  6. Apparent over-investment in leaf venation relaxes leaf morphological constraints on photosynthesis in arid habitats

    NASA Astrophysics Data System (ADS)

    de Boer, Hugo; Drake, Paul; Veneklaas, Erik

    2017-04-01

    The close relationship between leaf water status and stomatal conductance implies that the hydraulic architecture of leaves poses an important constraint on transpiration, specifically in arid environments with high evaporative demands. However, it remains uncertain how morphological, hydraulic and photosynthetic traits are coordinated to achieve optimal leaf functioning in arid environments. Critical is that leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy≈1. Although this theory is supported by observations on many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis we assembled leaf hydraulic, morphological and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent over-investment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf lifespan, high hydraulic and thermal capacitances, and high potential rates of leaf water transport confer a competitive advantage. Our results highlight the need to consider the specific leaf hydraulic architecture of aridity-adapted plants when studying ecohydrological processes in arid ecosystems.

  7. Nitrogen management impacts nitrous oxide emissions under varying cotton irrigation systems in the American Desert Southwest

    USDA-ARS?s Scientific Manuscript database

    Irrigation of food and fiber crops worldwide continues to increase. Nitrogen (N) from fertilizers is a major source of the potent greenhouse gas nitrous oxide (N2O) in irrigated cropping systems. Nitrous oxide emissions data are scarce for crops in the arid Western US. The objective of these studies...

  8. Spatial differences of aeolian desertification responses to climate in arid Asia

    NASA Astrophysics Data System (ADS)

    Wang, Xunming; Hua, Ting; Lang, Lili; Ma, Wenyong

    2017-01-01

    Most areas of arid Asia are covered by aeolian dunes, sand sheets, gravels, and desert steppes, and may jeopardize nearly 350 million people if climate change increases aeolian desertification. Although the aeolian desertification is mainly triggered by climate changes are extensively acknowledged, the responses of aeolian desertification to various climate scenarios are poorly understood. Based on the tight combinations of dune activity index (DAI) trends and of aeolian desertification, here the spatial differences of aeolian desertification responses on various climate scenarios were reported. The analyzed results show that the variations in temperature, precipitation and wind regime have no significant contributions on aeolian desertification in the extremely arid Asia. From the early to blooming periods of vegetation growth, although temperature rise may benefit vegetation growths in some high latitudes and altitudes, the temperature rise may increase aeolian desertification in most arid Asia regions such as Mongolia, West and Central Asia. In arid Asia, although precipitation increases may benefit the rehabilitation, decreases in precipitation is not the key role on aeolian desertification occurrences in extremely arid regions. From the early to blooming periods of vegetation growths, spatial trends of the sensitivity of aeolian desertification to wind regime varied. Generally, at the regional scales there are relative high sensitivities for aeolian desertification to climate changes in the eastern and western regions of arid Asia, and the climate changes may not play important roles on aeolian desertification occurrence in the central regions. The spatial differences of aeolian desertification responses to climate changes indicate various strategies for aeolian desertification combating are needed in different regions of arid Asia.

  9. Whither the 100th Meridian: The once and future physical geography of America's arid-humid divide

    NASA Astrophysics Data System (ADS)

    Ting, M.; Lis, N.; Seager, R.; Feldman, J. R.

    2016-12-01

    The idea that the 100th Meridian is a dividing line between the arid west and humid east was first advanced by John Wesley Powell in 1890, and the 100th Meridian has remained as an informal division in aridity to the present day. Whether there is a scientifically sound, climatological and hydrological origin of this division is analyzed, and if so, whether climate change will cause the "Hundredth Meridian" to shift in the future. The potential evapotranspiration (PET) is first computed using a suite of three NLDAS-2 land surface models and the Penman-Monteith Equation, and the aridity index (AI), defined as precipitation divided by PET, is used as the aridity metric. There is a sharp gradient in aridity along and just east of the 100th Meridian, verifying Powell's observations. We further determined that this arid-humid boundary is primarily caused by strong spatial gradients in precipitation and humidity, which in turn are caused by the seasonal cycle in wind direction and moisture transport. Using CMIP5 climate model data, the future was projected in 20-year increments from the present through 2100. Models project that the arid-humid boundary will shift eastward by approximately 2 to 3 degrees by the end of the 21st Century, the gradient will weaken, and that the entire continental US will experience at least some degree of aridification. The relative contributions of precipitation, temperature, specific humidity and circulation change to the eastward shift of the "100th meridian" will be discussed.

  10. Native fishes of arid lands: A dwindling resource of the desert southwest

    Treesearch

    John N. Rinne; W. L. Minckley

    1991-01-01

    Includes color photos of 44 species of fishes, many published for the first time. Text describes aquatic systems in the mountains and deserts of the Southwest, the unique fishes they support, and habitats the fishes need.

  11. Grassland-shrubland state transitions in arid lands: Competition matters

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods: State transition from grassland to shrubland is synonymous with desertification in many dryland systems. The classic desertification model emphasizes abiotic feedbacks that modify the physical environment in ways that promote shrub proliferation and impede grass survival...

  12. Deep Space Network equipment performance, reliability, and operations management information system

    NASA Technical Reports Server (NTRS)

    Cooper, T.; Lin, J.; Chatillon, M.

    2002-01-01

    The Deep Space Mission System (DSMS) Operations Program Office and the DeepSpace Network (DSN) facilities utilize the Discrepancy Reporting Management System (DRMS) to collect, process, communicate and manage data discrepancies, equipment resets, physical equipment status, and to maintain an internal Station Log. A collaborative effort development between JPL and the Canberra Deep Space Communication Complex delivered a system to support DSN Operations.

  13. Observations of the atmospheric boundary layer height over Abu Dhabi, United Arab Emirates: Investigating boundary layer climatology in arid regions

    NASA Astrophysics Data System (ADS)

    Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa

    2014-05-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.

  14. Adaptation of herders to droughts and privatization of rangeland-use rights in the arid Alxa Left Banner of Inner Mongolia.

    PubMed

    Zhang, Chengcheng; Li, Wenjun; Fan, Mingming

    2013-09-15

    Residents of arid areas have developed their own adaptive strategies and adaptive capability to cope with an unstable environment that experiences frequent droughts. These strategies and this capability are based on traditional practices that developed from a profound understanding of their environment, but both the strategies and the capability have been affected by institutional change. Specifically, rangeland-use rights in the Alxa Left Banner were privatized in 1996, and the implementation of this policy decreased the ability of local herders to use traditional solutions. In this paper, we describe the change in their adaptive capability after implementation of this policy. Traditionally, local knowledge of the heterogeneity of resources and of key resources based on a deep understanding of the local environment, combined with tight social relationships, let herders use three traditional grazing strategies (seasonal migration, long-distance migration, and raising a diversity of livestock species) to mitigate the impacts of drought. But privatization has nearly eliminated their ability to rely on these traditional strategies and has weakened the forms of social and other capital that supported these strategies and provided a high adaptive capability. We argue that this institutional change has adversely affected traditional practices and undermined the adaptive capability of herders. Consequently, managers of the Alxa Left Banner must find ways to restore the various forms of capital to restore the herders' adaptive capability, particularly given the growing need to account for future climate change. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Planning and Analysis of Fractured Rock Injection Tests in the Cerro Brillador Underground Laboratory, Northern Chile

    NASA Astrophysics Data System (ADS)

    Fairley, J. P., Jr.; Oyarzún L, R.; Villegas, G.

    2015-12-01

    Early theories of fluid migration in unsaturated fractured rock hypothesized that matrix suction would dominate flow up to the point of matrix saturation. However, experiments in underground laboratories such as the ESF (Yucca Mountain, NV) have demonstrated that liquid water can migrate significant distances through fractures in an unsaturated porous medium, suggesting limited interaction between fractures and unsaturated matrix blocks and potentially rapid transmission of recharge to the sat- urated zone. Determining the conditions under which this rapid recharge may take place is an important factor in understanding deep percolation processes in arid areas with thick unsaturated zones. As part of an on-going, Fondecyt-funded project (award 11150587) to study mountain block hydrological processes in arid regions, we are plan- ning a series of in-situ fracture flow injection tests in the Cerro Brillador/Mina Escuela, an underground laboratory and teaching facility belonging to the Universidad la Serena, Chile. Planning for the tests is based on an analytical model and curve-matching method, originally developed to evaluate data from injection tests at Yucca Mountain (Fairley, J.P., 2010, WRR 46:W08542), that uses a known rate of liquid injection to a fracture (for example, from a packed-off section of borehole) and the observed rate of seepage discharging from the fracture to estimate effective fracture aperture, matrix sorptivity, fracture/matrix flow partitioning, and the wetted fracture/matrix interac- tion area between the injection and recovery points. We briefly review the analytical approach and its application to test planning and analysis, and describe the proposed tests and their goals.

  16. Desertification triggered by hydrological and geomorphological processes and palaeoclimatic changes in the Hunshandake Sandy Lands, Inner Mongolia, northern China

    NASA Astrophysics Data System (ADS)

    Yang, X.; Scuderi, L. A.; Wang, X.; Zhang, D.; Li, H.; Forman, S. L.

    2015-12-01

    Although Pleistocene and earlier aeolian sediments in the adjacent regions of deserts were used as indicators for the occurrence of the deserts in northern China, our multidisciplinary investigation in the Hunshandake Sandy Lands, Inner Mongolia, a typical landscape in the eastern portion of the Asian mid-latitude desert belt, demonstrates that this sandy desert is just ca. 4000 years old. Before the formation of the current sand dunes, Hunshandke was characterized with large and deep lakes and grasssland vegetation, as many sedimentary sections indicate. Optically Stimulated Luminescence (OSL) chronology shows that the three large former lakes where we have done detailed investigation, experienced high stands from early Holocene to ca. 5 ka. During the early and middle Holocene this desert was a temperate steppe environment, dominated by grasslands and trees near lakes and streams, as various palaeoenvironmental proxies suggest. While North Hemisphere's monsoonal regions experienced catastrophic precipitation decreases at ca. 4.2 ka, many parts of the presently arid and semi-arid zone in northern China were shifted from Green to Desert state. In the eastern portion of the Hunshandake, the desertification was, however, directly associated with groundwater capture by the Xilamulun River, as the palaeo-drainage remains show. The process of groundwater sapping initiated a sudden and irreversible region-wide hydrologic event that lowered the groundwater table and exacerbated the desertification of the Hunshandake, and further resulting in post-Humid period mass migration of northern China's Hongshan culture from that we think the modern Chinese civilization has been rooted.

  17. The yearly amount and characteristics of deep-buried phreatic evaporation in hyper-arid areas

    NASA Astrophysics Data System (ADS)

    Li, H.; Wang, W.; Zhan, H.; Qiu, F.; Wu, F.; Zhang, G.

    2015-12-01

    Water scarcity is the primary cause of land deterioration, so finding new available water resources is crucial to ecological restoration. We investigated a hyper-arid Gobi location in the Dunhuang Mogao Grottoes in this work wherein the burial depth of phreatic water is over 200 m. An air-conditioner was used in a closed greenhouse to condense and measure the yearly amount of phreatic evaporation (PE) from 2010 to 2015. The results show that the annual quantity of PE is 4.52 mm, and that the PE has sinusoidal characteristics. The average PE is 0.0183 mm d-1 from March to November. Accordingly, by monitoring the annual changes in soil-air temperature and humidity to a depth of 5.0 m, we analyzed the water migration mechanism in the heterothermozone (subsurface zone of variable temperature). The results show that, from March to November, the temperature and absolute humidity (AH) increase. This is due to the flow of solar heat entering the soil - the soil subsequently releases moisture and the soil is in a state of increasing AH so that evaporation occurs. From November to March, the temperature decreases. Now, the soil absorbs water vapor and AH is in a state of decline. Thus, it is temperature alternation in the heterothermozone - due to solar heat transfer - that provides the main driving power for PE. When it drives water vapor to move downwards in the heterothermozone, a small part is reversed upwards and evaporates. Solar radiation intensity dominates the annual sinusoidal PE characteristics.

  18. Global and continental changes of arid areas using the FAO Aridity Index over the periods 1951-1980 and 1981-2010

    NASA Astrophysics Data System (ADS)

    Spinoni, Jonathan; Micale, Fabio; Carrao, Hugo; Naumann, Gustavo; Barbosa, Paulo; Vogt, Jürgen

    2013-04-01

    An increase in arid areas and progressing land degradation are two of the main consequences of global climate change. In the 2nd edition of the World Atlas of Desertification (WAD), published by the United Nation Environment Program (UNEP) in 1997, a global aridity map was presented. This map was based on the Food and Agriculture Organization (FAO) Aridity Index (AI) that takes into account the annual ratio between precipitation (RR) and Potential Evapo-Transpiration (PET). According to the long-term mean value of this ratio, climate is therefore classified in hyper-arid (<0.05), arid (0.05-0.2), semi-arid (0.2-0.5), dry sub-humid (0.5-0.65), and humid (>0.65); a special case are cold climates, which occur if the mean annual PET is below 400 mm. In the framework of the 3rd edition of the WAD, we computed new global aridity maps to improve and update the old version that was based on a single dataset (CRU dataset, Climate Research Unit of University of East Anglia) related to the 1951-80 period only. We computed the AI on two different time intervals (1951-80 and 1981-2010) in order to account for shifts in classes between the two periods and we used two different datasets: PET from CRU (version 3.2), and precipitation from the global 0.5˚x0.5˚ gridded monthly precipitation of the Global Precipitation Climatology Center (GPCC) of the Deutscher Wetterdienst (DWD). We used the GPCC Full Data Reanalysis Version 6.0, which showed a high reliability during many quality checks and is based on more stations than the CRU's precipitation counterpart. The results show that the "arid areas" (i.e. AI <0.5) globally increased from 28.4% to 29.6% and in Northern Hemisphere the cold climate areas decreased from 26.6% to 25.4%. Comparing the aridity maps of the two periods, the areas which most remarkably moved to lower AI values ("more arid" conditions) are: Canada, Brazil, the Mediterranean Region, Eastern Europe, almost all of Africa, the Middle East, Eastern China, Borneo, and Australia. At regional or country level, a shift of one class towards a "more arid" class can be found in Alaska (U.S.), Alberta (Canada), Patagonia (Argentina), Pernambuco (Brazil), Western Peru, Spain, the Southern Sahara and North-Eastern Kalahari deserts, Rajasthan and Madhya Pradesh (India), Mongolia, the Yang-Tze Basin (China), and the North-Eastern and South-Western Australian coasts. On the other hand, Central U.S., Paraguay and Northern Argentina, Scandinavia, Northern Australia, and Western China moved to a wetter climate in the last period. Due to the low data availability, we assumed that no changes took place in Antarctica, which is meant to be under a permanent ice cap, excluding the northernmost Graham Land.

  19. International Arid Lands Consortium's contributions to Madrean Archipelago stewardship

    Treesearch

    Peter F. Ffolliott; Jeffery O. Dawson; Itshack Moshe; Timothy E. Fulbright; E. Carter Johnson; Paul Verburg; Muhannad Shatanawi; Donald F. Caccamise; Jim P. M. Chamie

    2005-01-01

    The International Arid Lands Consortium (IALC) was established in 1990 to promote research, education, and training activities related to the development, management, and reclamation of arid and semiarid lands worldwide. Building on a decade of experience, the IALC continues to increase the knowledge base for managers by funding research, development, and demonstration...

  20. Patch scale turbulence over dryland and irrigated surfaces in a semi-arid landscape during BEAREX08

    USDA-ARS?s Scientific Manuscript database

    Quantifying turbulent fluxes of heat and water vapor over heterogeneous surfaces presents unique challenges. For example, in many arid and semi-arid regions, parcels of irrigated cropland are juxtaposed with hot, dry surfaces. Contrasting surface conditions can result in the advection of warm dry ai...

  1. Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment

    USDA-ARS?s Scientific Manuscript database

    Since root endophytes may ameliorate drought stress, understanding which plants associate with endophytes is important, especially in arid ecosystems. Here we characterized the root endophytes of 42 plants from an arid region of Argentina. We related colonization by arbuscular mycorrhizal fungi (AMF...

  2. MULTI-SCALE CONTROLS ON AND CONSEQUENCES OF AEOLIAN PROCESSES IN LANDSCAPE CHANGE IN ARID AND SEMI-ARID ENVIRONMENTS

    EPA Science Inventory

    This paper reviews the controls on aeolian processes and their consequences at plant-interspace, patch-landscape, and regional-global scales. Based on this review, we define the requirements for a cross-scale model of wind erosion in structurally complex arid and semiarid ecosyst...

  3. Modeling Water Redistribution in a Near-Surface Arid Soil

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Ghezzehei, T. A.; Berli, M.; Dijkema, J.; Koonce, J.

    2017-12-01

    Desert soils cover about one third of the Earth's land surface and play an important role in the ecology and hydrology of arid environments. Despite their large extend, relatively little is known about their near-surface (top centimeters to meter) water dynamics. Recent studies by Koonce (2016) and Dijkema et al. (2017) shed light on the water dynamics of near-surface arid soil but also revealed some of the challenges to simulate the water redistribution in arid soils. The goal of this study was to improve water redistribution simulations in near-surface arid soils by employing more advanced hydraulic conductivity functions. Expanding on the work by Dijkema et al. (2017), we used a HYDRUS-1D model with different hydraulic conductivity functions to simulate water redistribution within the soil as a function of precipitation, evaporation and drainage. Model calculations were compared with measured data from the SEPHAS weighing lysimeters in Boulder City, NV. Preliminary results indicate that water redistribution simulations of near-surface arid soils can be improved by using hydraulic conductivity functions that can capture capillary, film and vapor flow, like for example the Peter-Durner-Iden (PDI) model.

  4. Evaluating the generalizability of GEP models for estimating reference evapotranspiration in distant humid and arid locations

    NASA Astrophysics Data System (ADS)

    Kiafar, Hamed; Babazadeh, Hosssien; Marti, Pau; Kisi, Ozgur; Landeras, Gorka; Karimi, Sepideh; Shiri, Jalal

    2017-10-01

    Evapotranspiration estimation is of crucial importance in arid and hyper-arid regions, which suffer from water shortage, increasing dryness and heat. A modeling study is reported here to cross-station assessment between hyper-arid and humid conditions. The derived equations estimate ET0 values based on temperature-, radiation-, and mass transfer-based configurations. Using data from two meteorological stations in a hyper-arid region of Iran and two meteorological stations in a humid region of Spain, different local and cross-station approaches are applied for developing and validating the derived equations. The comparison of the gene expression programming (GEP)-based-derived equations with corresponding empirical-semi empirical ET0 estimation equations reveals the superiority of new formulas in comparison with the corresponding empirical equations. Therefore, the derived models can be successfully applied in these hyper-arid and humid regions as well as similar climatic contexts especially in data-lack situations. The results also show that when relying on proper input configurations, cross-station might be a promising alternative for locally trained models for the stations with data scarcity.

  5. A hydrologic and archeologic study of climate change in Al Ain, United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Jorgensen, Donald G.; Yasin al-Tikiriti, Walid

    2003-01-01

    Aridity trends established for Al Ain, United Arab Emirates, for the past 4500 years correlate with the trends of increased well depths and declining groundwater levels. Depth of wells found at archeologic sites at Hili near Al Ain were correlated to groundwater levels. Trends of declining groundwater levels were related to trends of increasing aridity (climate change). The increasing aridity had a pronounced affect on man's development in Al Ain area as well. For example, nonirrigation farming could not be successfully sustained at the end of the Bronze Age. This thwarted the economic development until the falaj (a water conveyance structure) was introduced in the Iron Age. The aridity trends in Al Ain correspond to contemporaneous aridity trends noted in Mesopotamia and the Dead Sea area, as well as the Middle East, Mediterranean, and northern Africa, in general. Other global climatic changes that are contemporaneous with climate change at Al Ain have been noted. The increased aridity (desertification) trends at Al Ain are contemporaneous with increased atmospheric CO 2 trends as reported by Indermuhle et al. [Nature (398) 121].

  6. The deep space network, volume 18. [Deep Space Instrumentation Facility, Ground Communication Facility, and Network Control System

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Network Control System are described.

  7. Aridity changes in the Tibetan Plateau in a warming climate

    DOE PAGES

    Gao, Yanhong; Li, Xia; Leung, Lai-Yung R.; ...

    2015-03-10

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of P/PET (precipitation to potential evapotranspiration) as an aridity index to indicate changes in dryness and wetness in a given area, P/PET was calculated using observed records at 83 stations in the TP, with PET calculated using the Penman–Monteith (PM) algorithm. Spatial and temporal changes of P/PET in 1979-2011 are analyzed.more » Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter and stations in the semi-humid southeastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with precipitation, sunshine duration and diurnal temperature range changes at confidence level of 99.9% from two-tail t-test. Temporal correlations also confirm the significant correlation between aridity changes with the three variables, with precipitation being the most dominant driver of P/PET changes at interannual time scale. PET changes are insignificant but negatively correlated with P/PET in the cold season. In the warm season, however, correlation between PET changes and P/PET changes are significant at confidence level of 99.9% when the cryosphere melts near the surface. Significant correlation between wind speed changes and aridity changes occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring.« less

  8. Relationship between seed bank expression, adult longevity and aridity in species of Chaetanthera (Asteraceae) in central Chile.

    PubMed

    Arroyo, M T K; Chacon, P; Cavieres, L A

    2006-09-01

    Broad surveys have detected inverse relationships between seed and adult longevity and between seed size and adult longevity. However, low and unpredictable precipitation is also associated with seed bank (SB) expression in semi-arid and arid areas. The relationship between adult longevity, SB formation, seed mass and aridity is examined in annual and perennial herbs of Chaetanthera (Asteraceae) from the Chilean Mediterranean-type climate and winter-rainfall desert areas over a precipitation range of one order of magnitude. Seeds of 18 species and subtaxa (32 populations) were buried in field locations, and exhumed after two successive germination periods. Seeds not germinating in the field were tested in a growth chamber, and remnant intact seed tested for viability. Seed banks were classed as transient or persistent. The effect of life form, species, population and burial time on persistent SB size was assessed with factorial ANOVA. Persistent seed bank size was compared with the Martonne aridity index (shown to be a surrogate for inter-annual variation in precipitation) and seed size using linear regression. ANCOVA assessed the effect of life-form on SB size with aridity as covariate. Three species had a transient SB and 15 a persistent SB. ANOVA revealed a significant effect of life-form on SB size with annuals having larger SB size and greater capacity to form a persistent SB than perennials. Significant inter-population variation in SB size was found in 64% of cases. Seed mass was negatively correlated with persistent SB size. Persistent seed bank size was significantly correlated with the Martonne aridity index in the perennial and annual species, with species from more arid areas having larger persistent SBs. However, when aridity was considered as a covariate, ANCOVA revealed no significant differences between the annual and perennial herbs. Persistent seed bank size in Chaetanthera appears to reflect environmental selection rather than any trade-off with adult longevity.

  9. The COHORT System - Is It Meeting the Army’s Needs

    DTIC Science & Technology

    1988-06-06

    soldier replacement system. Analysis compar- ing the COHORT system to the older, and still widely used, Individual Replace- ment System (IRS) is provided...Trinn (OMMe) soldie I •, I IIsstem. Analysis c~mering the a- system to the older, arid still3 widely used, Individural Syasit em (M) is rovided. 7he...allegiances frequently...efficiencies in individual replacements take no account of unit cohesion in the tank company , cannon battery or the Infantry

  10. Spatiotemporal trends in mean temperatures and aridity index over Rwanda

    NASA Astrophysics Data System (ADS)

    Muhire, I.; Ahmed, F.

    2016-01-01

    This study aims at quantifying the trends in mean temperatures and aridity index over Rwanda for the period of 1961-1992, based on analysis of climatic data (temperatures, precipitations, and potential evapotranspiration). The analysis of magnitude and significance of trends in temperatures and aridity index show the degree of climate change and mark the level of vulnerability to extreme events (e.g., droughts) in different areas of the country. The study reveals that mean temperatures increased in most parts of the country, with a significant increase observed in the eastern lowlands and in the southwestern parts. The highlands located in the northwest and the Congo-Nile crest showed a nonsignificant increase in mean temperatures. Aridity index increased only in March, April, October, and November, corresponding with the rainy seasons. The remaining months of the year showed a decreasing trend. At an annual resolution, the highlands and the western region showed a rise in aridity index with a decreasing pattern over the eastern lowlands and the central plateau. Generally, the highlands presented a nonsignificant increase in mean temperatures and aridity index especially during the rainy seasons. The eastern lowlands showed a significant increase in mean temperatures and decreasing trends in aridity index. Therefore, these areas are bound to experience more droughts, leading to reduced water and consequent decline in agricultural production. On the other hand, the north highlands and southwest region will continue to be more productive.

  11. Estimation of groundwater recharge via deuterium labelling in the semi-arid Cuvelai-Etosha Basin, Namibia.

    PubMed

    Beyer, Matthias; Gaj, Marcel; Hamutoko, Josefina Tulimeveva; Koeniger, Paul; Wanke, Heike; Himmelsbach, Thomas

    2015-01-01

    The stable water isotope deuterium ((2)H) was applied as an artificial tracer ((2)H2O) in order to estimate groundwater recharge through the unsaturated zone and describe soil water movement in a semi-arid region of northern central Namibia. A particular focus of this study was to assess the spatiotemporal persistence of the tracer when applied in the field on a small scale under extreme climatic conditions and to propose a method to obtain estimates of recharge in data-scarce regions. At two natural sites that differ in vegetation cover, soil and geology, 500 ml of a 70% (2)H2O solution was irrigated onto water saturated plots. The displacement of the (2)H peak was analyzed 1 and 10 days after an artificial rain event of 20 mm as well as after the rainy season. Results show that it is possible to apply the peak displacement method for the estimation of groundwater recharge rates in semi-arid environments via deuterium labelling. Potential recharge for the rainy season 2013/2014 was calculated as 45 mm a(-1) at 5.6 m depth and 40 mm a(-1) at 0.9 m depth at the two studied sites, respectively. Under saturated conditions, the artificial rain events moved 2.1 and 0.5 m downwards, respectively. The tracer at the deep sand site (site 1) was found after the rainy season at 5.6 m depth, corresponding to a displacement of 3.2 m. This equals in an average travel velocity of 2.8 cm d(-1) during the rainy season at the first site. At the second location, the tracer peak was discovered at 0.9 m depth; displacement was found to be only 0.4 m equalling an average movement of 0.2 cm d(-1) through the unsaturated zone due to an underlying calcrete formation. Tracer recovery after one rainy season was found to be as low as 3.6% at site 1 and 1.9% at site 2. With an in situ measuring technique, a three-dimensional distribution of (2)H after the rainy season could be measured and visualized. This study comprises the first application of the peak displacement method using a deuterium labelling technique for the estimation of groundwater recharge in semi-arid regions. Deuterium proved to be a suitable tracer for studies within the soil-vegetation-atmosphere interface. The results of this study are relevant for the design of labelling experiments in the unsaturated zone of dry areas using (2)H2O as a tracer and obtaining estimations of groundwater recharge on a local scale. The presented methodology is particularly beneficial in data-scarce environments, where recharge pathways and mechanisms are poorly understood.

  12. A nonintrusive temperature measuring system for estimating deep body temperature in bed.

    PubMed

    Sim, S Y; Lee, W K; Baek, H J; Park, K S

    2012-01-01

    Deep body temperature is an important indicator that reflects human being's overall physiological states. Existing deep body temperature monitoring systems are too invasive to apply to awake patients for a long time. Therefore, we proposed a nonintrusive deep body temperature measuring system. To estimate deep body temperature nonintrusively, a dual-heat-flux probe and double-sensor probes were embedded in a neck pillow. When a patient uses the neck pillow to rest, the deep body temperature can be assessed using one of the thermometer probes embedded in the neck pillow. We could estimate deep body temperature in 3 different sleep positions. Also, to reduce the initial response time of dual-heat-flux thermometer which measures body temperature in supine position, we employed the curve-fitting method to one subject. And thereby, we could obtain the deep body temperature in a minute. This result shows the possibility that the system can be used as practical temperature monitoring system with appropriate curve-fitting model. In the next study, we would try to establish a general fitting model that can be applied to all of the subjects. In addition, we are planning to extract meaningful health information such as sleep structure analysis from deep body temperature data which are acquired from this system.

  13. Ecohydrology of dry regions of the United States: Precipitation pulses and intraseasonal drought

    Treesearch

    William K. Lauenroth; John B. Bradford

    2009-01-01

    Distribution of precipitation event sizes and interval lengths between events are important characteristics of arid and semi-arid climates. Understanding their importance will contribute to our ability to understand ecosystem dynamics in these regions. Our objective for this paper was to present a comprehensive analysis of the daily precipitation regimes of arid and...

  14. Timely precipitation drives cover crop outcomes

    USDA-ARS?s Scientific Manuscript database

    Cover crops can expand ecosystem services, though sound management recommendations for their use within semi-arid cropping systems is currently constrained by a lack of information. This study was conducted to determine agroecosystem responses to late-summer seeded cover crops under no-till managem...

  15. The hydrology of prehistoric farming systems in a central Arizona ecotone

    NASA Technical Reports Server (NTRS)

    Gumerman, G. J.; Hanson, J. A.; Brew, D.; Tomoff, K.; Weed, C. S.

    1975-01-01

    The prehistoric land use and water management in the semi-arid Southwest was examined. Remote sensing data, geology, hydrology and biology are discussed along with an evaluation of remote sensing contributions, recommendations for applications, and proposed future remote sensing studies.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLellan, G.W.

    This test plan describes the field demonstration of the sonic drilling system being conducted as a coordinated effort between the VOC-Arid ID (Integrated Demonstration) and the 200 West Area Carbon Tetrachloride ERA (Expedited Response Action) programs at Hanford. The purpose of this test is to evaluate the Water Development Corporation`s drilling system, modify components as necessary and determine compatible drilling applications for the sonic drilling method for use at facilities in the DOE complex. The sonic demonstration is being conducted as the first field test under the Cooperative Research and Development Agreement (CRADA) which involves the US Department of Energy,more » Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The sonic drilling system will be used to drill a 45 degree vadose zone well, two vertical wells at the VOC-Arid ID site, and several test holes at the Drilling Technology Test Site north of the 200 Area fire station. Testing at other locations will depend on the performance of the drilling method. Performance of this technology will be compared to the baseline drilling method (cable-tool).« less

  17. Hydrology and Geomorphology of Tallgrass Prairie Intermittent Headwater Streams

    NASA Astrophysics Data System (ADS)

    Daniels, M. D.; Grudzinski, B.

    2011-12-01

    The arid to semi-arid Great Plains region of the United States covers more than 1 million km2, yet virtually nothing is known about the geomorphology of its intermittent headwater streams. These streams and the perennial rivers they feed support a unique and increasingly endangered assemblage of endemic fish species. While human impacts in the region are not at first glace significant, the reality is that the Great Plains are an intensively managed landscape, with pervasive cattle grazing, channelization, and groundwater over-pumping affecting these systems. These stresses will only increase with potential climate and related land use changes. Few natural remnants of native grassland remain today, limiting opportunities to study the natural dynamics of these systems in contrast to the anthropogenically modified systems. This paper presents a review of the existing geomorphological and hydrological knowledge of Great Plains headwater streams and presents the initial analysis of an 18 year intermittent headwater stream record from the tallgrass Konza Prairie LTER, Kansas. Results suggest that fire frequency and grazing and the resultant riparian vegetation composition strongly influence stream flow dynamics as well as stream geomorphology.

  18. Interhemispheric teleconnections: Late Pliocene change in Mediterranean outflow water linked to changes in Indonesian Through-Flow and Atlantic Meridional Overturning Circulation, a review and update

    NASA Astrophysics Data System (ADS)

    Sarnthein, Michael; Grunert, Patrick; Khélifi, Nabil; Frank, Martin; Nürnberg, Dirk

    2018-03-01

    The ultimate, possibly geodynamic control and potential impact of changes in circulation activity and salt discharge of Mediterranean outflow waters (MOW) on Atlantic meridional overturning circulation have formed long-standing objectives in paleoceanography. Late Pliocene changes in the distal advection of MOW were reconstructed on orbital timescales for northeast Atlantic DSDP/ODP sites 548 and 982 off Brittany and on Rockall Plateau, supplemented by a proximal record from Site U1389 west off Gibraltar, and compared to Western Mediterranean surface and deep-water records of Alboran Sea Site 978. From 3.43 to 3.3 Ma, MOW temperatures and salinities form a prominent rise by 2-4 °C and 3 psu, induced by a preceding and coeval rise in sea surface and deep-water salinity and increased summer aridity in the Mediterranean Sea. We speculate that these changes triggered an increased MOW flow and were ultimately induced by a persistent 2.5 °C cooling of Indonesian Through-Flow waters. The temperature drop resulted from the northward drift of Australia that crossed a threshold value near 3.6-3.3 Ma and led to a large-scale cooling of the eastern subtropical Indian Ocean and in turn, to a reduction of African monsoon rains. Vice versa, we show that the distinct rise in Mediterranean salt export after 3.4 Ma induced a unique long-term rise in the formation of Upper North Atlantic Deep Water, that followed with a phase lag of 100 ky. In summary, we present evidence for an interhemispheric teleconnection of processes in the Indonesian Gateways, the Mediterranean and Labrador Seas, jointly affecting Pliocene climate.

  19. Earth Observation

    NASA Image and Video Library

    2013-06-23

    ISS036-E-010628 (24 June 2013) --- Strait of Tiran, Red Sea and Gulf of Aqaba are featured in this image photographed by an Expedition 36 crew member on the International Space Station. The approximately six-kilometer wide Strait of Tiran (also known as the Straits of Tiran) between the Egyptian mainland and Tiran Island separates the Gulf of Aqaba from the Red Sea, and provides two channels (290 meters and 73 meters deep, respectively) navigable by large ships bound for ports in Jordan and Israel. A smaller passage also exists between the east side of Tiran Island and Saudi Arabia, but this a single channel that is 16 meters deep. Due to its strategic position, control of the Strait has been an important factor in historical conflicts of the region, such as the Suez Crisis in 1956 and the Six-Day War in 1967. This photograph illustrates the morphology of the Strait. The relatively clear, deep-water passages of the western Strait of Tiran are visible at right, while the more sinuous shallow-water passage on the Saudi Arabia side can be seen at bottom center. Light blue to turquoise areas around Tiran Island indicate shallow water, while the island itself is arid and largely free of vegetation. Coral reefs are also found in the Straits of Tiran and are a popular diving destination. The silvery sheen on the water surface within the Strait and the south of Tiran Island is sunglint – light reflecting off the water surface back towards the observer on the space station. Disturbance to the water surface, as well as presence of substances such as oils and surfactants, can change the reflective properties of the water surface and highlight both surface waves and subsurface currents. For example, a large wave set is highlighted by sunglint at upper left.

  20. Simulated responses of terrestrial aridity to black carbon and sulfate aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, L.; Gettelman, A.; Xu, Y.

    Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. In this work, we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO 4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate ofmore » 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO 4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO 4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO 4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO 4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO 4-induced PET changes.« less

  1. Simulated responses of terrestrial aridity to black carbon and sulfate aerosols

    DOE PAGES

    Lin, L.; Gettelman, A.; Xu, Y.; ...

    2016-01-27

    Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. In this work, we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO 4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate ofmore » 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO 4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO 4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO 4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO 4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO 4-induced PET changes.« less

  2. Characterization by electrical and electromagnetic geophysical methods of the shallow hydrogeological system at Hebron (West Bank, Palestine) in a semi-arid zone

    NASA Astrophysics Data System (ADS)

    Sirhan, Asal; Hamidi, Mohammad O.

    2012-09-01

    Multi-electrode geo-electrical and transient electromagnetic surveys were carried out to characterize the nature of the subsurface infiltration zones (5 to 20 m) related to a series of groundwater outlets, and to reveal the geometry of the different aquifers at Bani-Naim, in the south-eastern foothills of the Hebron area, West Bank, Palestine. The purpose of the surveys was to understand the link between water storage/transfer and the characteristics of the geological formations. The strata in this semi-arid region are composed of alternate layers of chalky limestone, hard limestone, marl and chalk. A total of 30 ERT and 15 TDEM were conducted at Bani Naim-Jahir and Bani Naim-Birein. A correlation between the results indicates various infiltration pathways: fractures, feature heterogeneities, and porous chalk. The local heterogeneity on the eastern side were the major pathways for the water infiltration, whereas the thick marl layer underneath acts as a natural impermeable barrier preventing water from infiltrating deeper. A combination of the different geophysical results identified conductive features that correspond to the infiltration zones supplying the dug wells with water. Furthermore, it was established that the fractured chalk and porous chalky limestone act as an aquifer. A three-dimensional visualization of the resistivity allowed a useful reconstruction of the shallow hydrogeological system. Consequently, these studies contribute to regional sustainable development projects in this semi-arid region.

  3. Methods to prefetch comparison images in image management and communication system

    NASA Astrophysics Data System (ADS)

    Levin, Kenneth; Fielding, Robert

    1990-08-01

    A high-level description of a system to pre-fetch comparison radiographs in an Image Management and Communication System (IMAC) is presented. This rule based system estimates the relevance of previous examinations for comparison to the current examination arid uses this determination to pre-fetch comparison studies. A machine learning module should allow the system to improve its skill in pre-fetching examinations for each individual radiologist. This system could be tailored to fit the desires of individual radiologists.

  4. Bromus tectorum invasion alters nitrogen dynamics in an undisturbed arid grassland ecosystem

    USGS Publications Warehouse

    Sperry, L.J.; Belnap, J.; Evans, R.D.

    2006-01-01

    The nonnative annual grass Bromus tectorum has successfully replaced native vegetation in many arid and semiarid ecosystems. Initial introductions accompanied grazing and agriculture, making it difficult to separate the effects of invasion from physical disturbance. This study examined N dynamics in two recently invaded, undisturbed vegetation associations (C3 and C4). The response of these communities was compared to an invaded/disturbed grassland. The invaded/disturbed communities had higher surface NH4+ input in spring, whereas there were no differences for surface input of NO3-. Soil inorganic N was dominated by NH4+, but invaded sites had greater subsurface soil NO3-. Invaded sites had greater total soil N at the surface four years post-invasion in undisturbed communities, but total N was lower in the invaded/disturbed communities. Soil ??15N increased with depth in the noninvaded and recently invaded communities, whereas the invaded/disturbed communities exhibited the opposite pattern. Enriched foliar ??15N values suggest that Bromus assimilated subsurface NO3-, whereas the native grasses were restricted to surface N. A Rayleigh distillation model accurately described decomposition patterns in the noninvaded communities where soil N loss is accompanied by increasing soil ??15N; however, the invaded/disturbed communities exhibited the opposite pattern, suggesting redistribution of N within the soil profile. This study suggests that invasion has altered the mechanisms driving nitrogen dynamics. Bromus litter decomposition and soil NO3- concentrations were greater in the invaded communities during periods of ample precipitation, and NO3- leached from the surface litter, where it was assimilated by Bromus. The primary source of N input in these communities is a biological soil crust that is removed with disturbance, and the lack of N input by the biological soil crust did not balance N loss, resulting in reduced total N in the invaded/disturbed communities. Bromus produced a positive feedback loop by leaching NO3- from decomposing Bromus litter to subsurface soil layers, accessing that deep-soil N pool with deep roots and returning that N to the surface as biomass and subsequent litter. Lack of new inputs combined with continued loss will result in lower total soil N, evidenced by the lower total soil N in the invaded/disturbed communities. ?? 2006 by the Ecological Society of America.

  5. Why are there so many coexisting species of lizards in Australian deserts?

    PubMed

    James, C D; Shine, R

    2000-10-01

    Because Australian skinks of the genus Ctenotus display very high local species richness in arid-zone spinifex grasslands but not in mesic habitats, these lizards have been used as "model organisms" to ask why ecologically similar taxa coexist under some circumstances but not others. Previous work has involved detailed studies within small areas, and has looked for differences in ecological processes between arid versus mesic habitats. We suggest a radically different explanation for the high species-richness of arid-zone Ctenotus, by shifting attention to a larger spatial scale: the regional species pool. Analyses of the geographic distributions of Ctenotus species confirm that more species coexist at sites in the arid-zone (mean =9.3 species per site) than in other climatic zones (means 2.4-7.6). However, the total number of species occurring within the arid-zone is actually lower, per km 2 of habitat, than is the case in some other climatic zones. That is, arid-zone Ctenotus show a higher local (alpha) species diversity, but a lower regional (gamma) diversity, than their mesic-habitat congeners. This apparent paradox occurs because most arid-zone species occur over vast areas (mean =1,035,000 km 2 ), whereas congeners from other climatic zones have smaller geographic ranges (200-373,000 km 2 ). The broad distributions of arid-zone taxa reflect the great spatial homogeneity in climatic conditions in this zone. That is, the "climate spaces" occupied are similar for Ctenotus species from all bioclimatic regions. Thus, a given amount of climatic space translates into a larger geographic distribution (and hence, more sympatry) in the arid-zone than in other areas. In summary, the high number of coexisting Ctenotus species in arid-zone habitats may simply reflect the facts that the arid zone is large (so that many species have evolved therein) and climatically homogeneous (so that any species evolving in that habitat type can disperse very widely, and thus overlap with many other species). Our approach explains much of the variance in local-assemblage species richness from regional to site scales; but explanations invoking biological attributes of the species concerned, the nature of their interactions with other species or with particular resources (such as prey or shelter) may still be significant at microhabitat scales. For lizard communities in Australia, species richness at a site may be determined more by continental biogeography rather than by ecological interactions.

  6. Global optimum vegetation rain water use is determined by aridity

    NASA Astrophysics Data System (ADS)

    Good, S. P.; Wang, L.; Caylor, K. K.

    2015-12-01

    The amount of rainwater that vegetation is able to transpire directly determines the total productivity of ecosystems, yet broad-scale trends in this sub-component of total evapotranspiration remain unclear. Since development in the 1970's, the Budyko framework has provided a simple, first-order, approach to partitioning total rainfall into runoff and evapotranspiration across climates. However, this classic paradigm provides little insight into the strength of biological mediation (i.e. transpiration flux) of the hydrologic cycle. Through a minimalist stochastic hydrology model we analytically extend the classical Budyko framework to predict the magnitude of transpiration relative to total rainfall as a function of ecosystem aridity. Consistent with a synthesis of experimental partitioning studies across climates, this model suggests a peak in the biological contribution to the hydrologic cycle at intermediate moisture values, with both arid and wet climates seeing decreased transpiration:precipitation ratios. To best match observed transpiration:precipitation ratios requires incorporation of elevated evaporation at lower canopy covers due to greater energy availability at the soil surface and elevated evaporation at higher canopy covers due to greater interception amounts. This new approach provides a connection between current and future climate regimes, hydrologic flux partitioning, and macro-system ecology.

  7. Characteristics of precipitation recycling ratio with two evapotranspiration methods in Afro-Asian arid regions

    NASA Astrophysics Data System (ADS)

    Li, R.; Wang, C.

    2016-12-01

    The increasing precipitation in different arid regions has been observed in recent decades. While, the vapor sources, which can be classified into advective vapor and local vapor from evapotranspiration, are still uncertain in arid regions. To investigate the characteristics of local vapor in arid regions, precipitation recycling ratio (PRR) with two different evapotranspiration (ET) estimations, Penman-Monteith ET and a new approach which combined Penman-Monteith ET and surface soil moisture was calculated in arid regions of Afro-Asian continent, North Africa, West Asia and China-Mongolia, during 1980-2010. The results suggested that Penman-Monteith ET, which can be treated as regional potential ET, increased and showed an enhanced ET ability in arid regions. However, the ET calculated from the new approach, which can be treated as a reliable actual ET estimation, decreased, which means the local vapor has supplied less to total rainfall in target regions. Using the new approach ET data, PRR is calculated and analyzed. PRR in target regions ranges from 0.5% to 1.0%, which is less than the PRR calculated with Penman-Monteith ET, ranging from 3.7% to 5.6%. Meanwhile PRR decreased in China-Mongolia and North Africa while in West Asia increased in recent 30 years. Considering that a wetting trend existed in China-Mongolia and North Africa, and a drying trend occurred in West Asia, it can be concluded that PRR is a negative monitoring for Afro-Asian arid regions, where the decreasing PRR means that the more advective vapor enhanced the total precipitation, while the increasing PRR trend corresponds with less advective vapor and more local evapotranspiration contributes to increasing of total rainfall. Keywords: Afro-Asian Arid region, precipitation recycling, evapotranspiration, soil moisture.

  8. Provisioning of bioavailable carbon between the wet and dry phases in a semi-arid floodplain.

    PubMed

    Baldwin, Darren S; Rees, Gavin N; Wilson, Jessica S; Colloff, Matthew J; Whitworth, Kerry L; Pitman, Tara L; Wallace, Todd A

    2013-06-01

    Ecosystem functioning on arid and semi-arid floodplains may be described by two alternate traditional paradigms. The pulse-reserve model suggests that rainfall is the main driver of plant growth and subsequent carbon and energy reserve formation in the soil of arid and semi-arid regions. The flood pulse concept suggests that periodic flooding facilitates the two-way transfer of materials between a river and its adjacent floodplain, but focuses mainly on the period when the floodplain is inundated. We compared the effects of both rainfall and flooding on soil moisture and carbon in a semi-arid floodplain to determine the relative importance of each for soil moisture recharge and the generation of a bioavailable organic carbon reserve that can potentially be utilised during the dry phase. Flooding, not rainfall, made a substantial contribution to moisture in the soil profile. Furthermore, the growth of aquatic macrophytes during the wet phase produced at least an order of magnitude more organic material than rainfall-induced pulse-reserve responses during the dry phase, and remained as recognizable soil carbon for years following flood recession. These observations have led us to extend existing paradigms to encompass the reciprocal provisioning of carbon between the wet and dry phases on the floodplain, whereby, in addition to carbon fixed during the dry phase being important for driving biogeochemical transformations upon return of the next wet phase, aquatic macrophyte carbon fixed during the wet phase is recognized as an important source of energy for the dry phase. Reciprocal provisioning presents a conceptual framework on which to formulate questions about the resistance and ecosystem resilience of arid and semi-arid floodplains in the face of threats like climate change and alterations to flood regimes.

  9. Stable Isotopes as Indicators of Groundwater Recharge Mechanisms in Arid and Semi-arid Australia

    NASA Astrophysics Data System (ADS)

    Harrington, G. A.; Herczeg, A. L.

    2001-05-01

    The isotopic compositions of soil water and groundwaters in arid and semi-arid zones are always different from the mean composition of rainfall. Although evaporative processes always remove the lighter isotopes (1H and 16O) to the vapour phase, arid zone groundwaters are invariably depleted in the heavy isotopes (2H and 18O) relative to mean present day rainfall. We compare two sites, one in semi-arid South Australia and the other in arid Central Australia that have a similar mean annual rainfall (250 to 300 mm/a), very high potential evapotranspiration (2500 and 3500 mm/a respectively) but very different rainfall patterns (winter dominated versus summer monsoonal). We aim to evaluate whether inferences from groundwater \\delta2H and \\delta18O reveal information about palaeorecharge, or recharge mechanisms or a combination of both. Recharge to the unconfined limestone aquifer in the Mallee area of South Australia occurs annually via widespread (diffuse) infiltration of winter dominant rainfall. This process is reflected in soil and groundwater isotopic compositions that plot relatively close to both the Local Meteoric Water Line and the volume-weighted mean composition of winter rainfall, and have a deuterium excess (\\delta2H-8.\\delta18O) of between +2 and +8 for the freshest samples. Groundwater recharge to the arid Ti-Tree Basin occurs predominantly by inputs of partially-evaporated surface water from ephemeral rivers and flood-plains following rare, high-intensity storms that are derived from monsoonal activity to the north of Australia. These extreme events result in groundwater and soil water stable isotope compositions being significantly depleted in the heavy isotopes relative to the mean composition of rainfall and a deuterium excess of between minus 8 and +3 in the freshest groundwaters.

  10. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China.

    PubMed

    Chen, Yaning; Li, Zhi; Fan, Yuting; Wang, Huaijun; Deng, Haijun

    2015-05-01

    The arid region of Northwest China, located in the central Asia, responds sensitively to global climate change. Based on the newest research results, this paper analyzes the impacts of climate change on hydrology and the water cycle in the arid region of Northwest China. The analysis results show that: (1) In the northwest arid region, temperature and precipitation experienced "sharply" increasing in the past 50 years. The precipitation trend changed in 1987, and since then has been in a state of high volatility, during the 21st century, the increasing rate of precipitation was diminished. Temperature experienced a "sharply" increase in 1997; however, this sharp increasing trend has turned to an apparent hiatus since the 21st century. The dramatic rise in winter temperatures in the northwest arid region is an important reason for the rise in the average annual temperature, and substantial increases in extreme winter minimum temperature play an important role in the rising average winter temperature; (2) There was a significant turning point in the change of pan evaporation in the northwest arid area in 1993, i.e., in which a significant decline reversed to a significant upward trend. In the 21st century, the negative effects of global warming and increasing levels of evaporation on the ecology of the northwest arid region have been highlighted; (3) Glacier change has a significant impact on hydrology in the northwest arid area, and glacier inflection points have appeared in some rivers. The melting water supply of the Tarim River Basin possesses a large portion of water supplies (about 50%). In the future, the amount of surface water will probably remain at a high state of fluctuation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A novel microduplication of ARID1B: Clinical, genetic, and proteomic findings.

    PubMed

    Seabra, Catarina M; Szoko, Nicholas; Erdin, Serkan; Ragavendran, Ashok; Stortchevoi, Alexei; Maciel, Patrícia; Lundberg, Kathleen; Schlatzer, Daniela; Smith, Janice; Talkowski, Michael E; Gusella, James F; Natowicz, Marvin R

    2017-09-01

    Genetic alterations of ARID1B have been recently recognized as one of the most common mendelian causes of intellectual disability and are associated with both syndromic and non-syndromic phenotypes. The ARID1B protein, a subunit of the chromatin remodeling complex SWI/SNF-A, is involved in the regulation of transcription and multiple downstream cellular processes. We report here the clinical, genetic, and proteomic phenotypes of an individual with a unique apparent de novo mutation of ARID1B due to an intragenic duplication. His neurodevelopmental phenotype includes a severe speech/language disorder with full scale IQ scores 78-98 and scattered academic skill levels, expanding the phenotypic spectrum of ARID1B mutations. Haploinsufficiency of ARID1B was determined both by RNA sequencing and quantitative RT-PCR. Fluorescence in situ hybridization analysis supported an intragenic localization of the ARID1B copy number gain. Principal component analysis revealed marked differentiation of the subject's lymphoblast proteome from that of controls. Of 3426 proteins quantified, 1014 were significantly up- or down-regulated compared to controls (q < 0.01). Pathway analysis revealed highly significant enrichment for canonical pathways of EIF2 and EIF4 signaling, protein ubiquitination, tRNA charging and chromosomal replication, among others. Network analyses revealed down-regulation of: (1) intracellular components involved in organization of membranes, organelles, and vesicles; (2) aspects of cell cycle control, signal transduction, and nuclear protein export; (3) ubiquitination and proteosomal function; and (4) aspects of mRNA synthesis/splicing. Further studies are needed to determine the detailed molecular and cellular mechanisms by which constitutional haploinsufficiency of ARID1B causes syndromic and non-syndromic developmental disabilities. © 2017 Wiley Periodicals, Inc.

  12. DSN test and training system

    NASA Technical Reports Server (NTRS)

    Thorman, H. C.

    1975-01-01

    Key characteristics of the Deep Space Network Test and Training System were presented. Completion of the Mark III-75 system implementation is reported. Plans are summarized for upgrading the system to a Mark III-77 configuration to support Deep Space Network preparations for the Mariner Jupiter/Saturn 1977 and Pioneer Venus 1978 missions. A general description of the Deep Space Station, Ground Communications Facility, and Network Operations Control Center functions that comprise the Deep Space Network Test and Training System is also presented.

  13. Temperature trends in desert cities: how vegetation and urbanization affect the urban heat island dynamics in hyper-arid climates

    NASA Astrophysics Data System (ADS)

    Marpu, P. R.; Lazzarini, M.; Molini, A.; Ghedira, H.

    2013-12-01

    Urban areas represent a unique micro-climatic system, mainly characterized by scarcity of vegetation and ground moisture, an albedo strictly dependent on building materials and urban forms, high heat capacity, elevated pollutants emissions, anthropogenic heat production, and a characteristic boundary layer dynamics. For obvious historical reasons, the first to be addressed in the literature were the effects of urbanization on the local microclimate of temperate regions, where most of the urban development took place in the last centuries. Here micro-climatic characteristics all contribute to the warming of urban areas, also known as 'urban heat island' effect, and are expected to crucially impact future energy and water consumption, air quality, and human health. However, rapidly increasing urbanization rates in arid and hyper-arid developing countries could soon require more attention towards studying the effects of urban development on arid climates, which remained mainly unexplored till now. In this talk we investigate the climatology of urban heat islands in seven highly urbanized desert cities based on day and night temporal trends of land surface temperature (LST) and normalized difference vegetation index (NDVI) acquired using MODIS satellite during 2000-2012. Urban and rural areas are distinguished by analyzing the high-resolution temporal variability and averaged monthly values of LST, NDVI and Surface Urban Heat Island (SUHI) for all the seven cities and adjacent sub-urban areas. Different thermal behaviors were observed at the selected sites, also including temperature mitigation and inverse urban heat island, and are here discussed together with detailed analysis of the corresponding trends.

  14. Impact of climate and analysis of desertification processes in semi arid land in Algeria: using data of Alsat-1 and Landsat

    NASA Astrophysics Data System (ADS)

    Ahmed, Z.; Habib, M.; Sid Ali, H.; Sofiane, K.

    2015-04-01

    The degradation of natural resources in arid and semi-arid areas was highlighted dramatically during this century due to population growth and transformation of land use systems. The Algerian steppe has undergone a regression over the past decade due to drought cycle, the extension of areas cultivated in marginal lands, population growth and overgrazing. These phenomena have led to different degradation processes, such as the destruction of vegetation, soil erosion, and deterioration of the physical environment. In this study, the work is mainly based on the criteria for classification and identification of physical parameters for spatial analysis, and multi-sources factors to determine the vulnerability of steppe formations and their impact on desertification. To do this, we used satellite data Alsat-1 (2009) IRS (2009) and LANDSAT TM (2001). These cross-sectional data with exogenous information could monitor the impact of the semi arid ecological diversity of steppe formations. A hierarchical process including the supervised image classification was used to characterize the main steppe formations. An analysis of the vulnerability of plant was conducted to assign weights and identify areas most susceptible to desertification. Vegetation indices combined with classification are used to characterize the forest and steppe formations to determine changes in land use. The results of this present study provide maps of different components of the steppe, formation that could assist in highlighting the magnitude of the degradation pathways, which affects the steppe environment, allowing an analysis of the process of desertification in the region.

  15. Impacts of intensive agricultural irrigation and livestock farming on a semi-arid Mediterranean catchment.

    PubMed

    Martín-Queller, Emi; Moreno-Mateos, David; Pedrocchi, César; Cervantes, Juan; Martínez, Gonzalo

    2010-08-01

    Irrigation return flows (IRF) are a major contributor of non-point source pollution to surface and groundwater. We evaluated the effects of irrigation on stream hydrochemistry in a Mediterranean semi-arid catchment (Flumen River, NE Spain). The Flumen River was separated into two zones based on the intensity of irrigation activities in the watershed. General linear models were used to compare the two zones. Relevant covariables (urban sewage, pig farming, and gypsum deposits in the basin) were quantified with the help of geographic information system techniques, accompanied by ground-truthing. High variability of the water quality parameters and temporal dynamics caused by irrigation were used to distinguish the two river reaches. Urban activity and livestock farming had a significant effect on water chemistry. An increase in the concentration of salts (240-541 microS.cm(-1) more in winter) and nitrate (average concentrations increased from 8.5 to 20.8 mg.l(-1) during irrigation months) was associated with a higher level of IRF. Those river reaches more strongly influenced by urban areas tended to have higher phosphorus (0.19-0.42 mg.l(-1) more in winter) concentrations. These results support earlier research about the significant consequences to water quality of both urban expansion and intensive agricultural production in arid and semi-arid regions. Data also indicate that salinization of soils, subsoils, surface water, and groundwater can be an unwelcome result of the application of pig manure for fertilization (increase in sodium concentration in 77.9 to 138.6 mg.l(-1)).

  16. Adaptive policy responses to water shortage mitigation in the arid regions--a systematic approach based on eDPSIR, DEMATEL, and MCDA.

    PubMed

    Azarnivand, Ali; Chitsaz, Nastaran

    2015-02-01

    Most of the arid and semi-arid regions are located in the developing countries, while the availability of water in adequate quantity and quality is an essential condition to approach sustainable development. In this research, "enhanced Driving force-Pressure-State-Impact-Response (eDPSIR)" sustainability framework was applied to deal with water shortage in Yazd, an arid province of Iran. Then, the Decision Making Trial and Evaluation Laboratory (DEMATEL) technique was integrated into the driven components of eDPSIR, to quantify the inter-linkages among fundamental anthropogenic indicators (i.e. causes and effects). The paper's structure included: (1) identifying the indicators of DPSIR along with structuring eDPSIR causal networks, (2) using the DEMATEL technique to evaluate the inter-relationships among the causes and effects along with determining the key indicators, (3) decomposing the problem into a system of hierarchies, (4) employing the analytic hierarchy process (AHP) technique to evaluate the weight of each criterion, and (5) applying complex proportional assessment with Grey interval numbers (COPRAS-G) method to obtain the most conclusive adaptive policy response. The systematic quantitative analysis of causes and effects revealed that the root sources of water shortage in the study area were the weak enforcement of law and regulations, decline of available freshwater resources for development, and desertification consequences. According to the results, mitigating the water shortage in Yazd could be feasible by implementation of such key adaptive policy-responses as providing effective law enforcement, updating the standards and regulations, providing social learning, and boosting stakeholders' collaboration.

  17. Increasingly Important Role of Atmospheric Aridity on Tibetan Alpine Grasslands

    NASA Astrophysics Data System (ADS)

    Ding, Jinzhi; Yang, Tao; Zhao, Yutong; Liu, Dan; Wang, Xiaoyi; Yao, Yitong; Peng, Shushi; Wang, Tao; Piao, Shilong

    2018-03-01

    Pronounced warming occurring on the Tibetan Plateau is expected to stimulate alpine grassland growth but could also increase atmospheric aridity that limits photosynthesis. But there lacks a systematic assessment of the impact of atmospheric aridity on alpine grassland productivity. Here we combine satellite observations, flux-tower-based productivity, and model simulations to quantify the effect of atmospheric aridity on grassland productivity and its temporal change between 1982 and 2011. We found a negative impact of atmospheric vapor pressure deficit on grassland productivity. This negative effect becomes increasingly intensified in terms of the impact severity and extent, suggesting an increasingly important role of atmospheric aridity on productivity. We further demonstrated that this negative effect is mitigated but cannot be overcompensated by the positive effect of rising CO2. Given that vapor pressure deficit is projected to further increase by 10-38% in the future, Tibetan alpine grasslands will face an increasing stress of atmospheric drought.

  18. Understanding hydrologic budgets, dynamics in an arid basin and explore spatial scaling properties using Process-based Adaptive Watershed Simulator (PAWS)

    NASA Astrophysics Data System (ADS)

    Fang, K.; Shen, C.; Salve, R.

    2013-12-01

    The Southern California hot desert hosts a fragile ecosystem as well as a range of human economic activities, primarily mining, energy production and recreation. This inland arid landscape is characterized by occasional intensive precipitation events and year-round strong potential evapotranspiration. In this landscape, water and especially groundwater is vital for ecosystem functions and human use. However, the impact of recent development on the sustainability of groundwater resources in the area has not been thoroughly investigated. We apply an integrated, physically-based hydrologic-land surface model, the Process-based Adaptive Watershed Simulator + Community Land Model (PAWS+CLM) to evaluate the sustainability of the groundwater resources in the area. We elucidate the spatio-temporal patterns of hydrologic fluxes and budgets. The modeling results indicate that mountain front recharge is the essential recharging mechanism for the alluvial aquifer. Although pumping activities do not exceed annual-average recharge values, they are still expected to contribute significantly to groundwater drawdown in business-as-usual scenario. The impact of groundwater withdrawals is significant on the desert ecosystem. The relative importance of groundwater flow on NPP rises significantly as compared to other ecosystems. We further evaluate the fractal scaling properties of soil moisture in this very arid system and found the relationship to be much more static in time than that found in a humid continental climate system. The scaling exponents can be predicted using simple functions of the mean. Therefore, multi-scale model based on coarse-resolution surrogate model is expected to perform well in this system. The modeling result is also important for assessing the groundwater sustainability and impact of human activities in the desert environment.

  19. Geological factors controlling occurrence and distribution of arsenic in groundwaters from the southern margin of the Duero Basin, Spain.

    PubMed

    Giménez-Forcada, Elena; Smedley, Pauline L

    2014-12-01

    Groundwater from springs and boreholes on the southern edge of the Cenozoic Duero Basin (DB) of Spain has concentrations of arsenic (As) which are commonly above the EC drinking-water limit of 10 μg/L and reach observed values up to 241 μg/L. Groundwater compositions within the sedimentary aquifer vary from Ca-HCO3 type, variably affected by evaporation and agricultural pollution at shallow levels, to Na-HCO3 compositions in deeper boreholes of the basin. Groundwater conditions are mainly oxidising, but reducing groundwaters exist in sub-basins within the aquifer, localised flow paths likely being influenced by basement structure. Arsenic concentrations are spatially variable, reaching up to 38 μg/L in springs of the Spanish Central System (SCS) basement aquifer and up to 62 μg/L in springs from the DB. Highest As concentrations are associated with the Na-HCO3 compositions in deep boreholes (200-450 m depth) within the DB. These have high pH values (up to 9.6) which can give rise to associated elevated concentrations of V and U (up to 64 and 30 μg/L, respectively). In the deep borehole waters of the DB, oxidising flows derived from the mineralised igneous-metamorphic basement and discharging via major faults, and are considered the origin of the higher concentrations. Compositions are consistent with desorption of As and other anionic species from metal oxyhydroxides in an oxic environment. Under locally reducing conditions prevalent in some low-flow parts of the DB, an absence of detectable dissolved As is coincident with low or undetectable SO4 concentrations, and consistent with loss via formation of authigenic sulphide minerals. Mitigation measures are needed urgently in this semi-arid region where provision of alternative sources of safe drinking water is logistically difficult and expensive.

  20. The AgroEcoSystem (AgES) response-function model simulates layered soil water dynamics in semi-arid Colorado: sensitivity and calibration

    USDA-ARS?s Scientific Manuscript database

    Simulation of vertical soil hydrology is a critical component of simulating even more complex soil water dynamics in space and time, including land-atmosphere and subsurface interactions. The AgroEcoSystem (AgES) model is defined here as a single land unit implementation of the full AgES-W (Watershe...

  1. An Addendum to "A New Tool for Climatic Analysis Using Köppen Climate Classification"

    ERIC Educational Resources Information Center

    Larson, Paul R.; Lohrengel, C. Frederick, II

    2014-01-01

    The Köppen climatic classification system in a modified format is the most widely applied system in use today. Mapping and analysis of hundreds of arid and semiarid climate stations has made the use of the additional fourth letter in BW/BS climates essential. The addition of "s," "w," or "f" to the standard…

  2. Sustainability of land reclamation measures in erosional badlands: A comparative perspective on semi-arid landscapes of South Morocco and Central India

    NASA Astrophysics Data System (ADS)

    Marzolff, Irene; Pani, Padmini; Mohapatra, Surya; Ghafrani, Hassan; Aït Hssaine, Ali

    2015-04-01

    Semi-arid regions around the world, where gully erosion is a major land-degradation process, are particularly vulnerable to the effects of population growth and land-use change. In regions with high pressure on land as a resource - either due to population pressure or to agricultural intensification or both - erosion-affected areas are increasingly being reclaimed as agricultural land in an endeavour to turn marginal or unused land into fields, plantations, greenhouses or even building ground. Depending on the severity and depth of the erosion processes, this may be done by ploughing (for ephemeral gullying), land-levelling with bulldozers (for permanent gullies and badlands) or infilling with ex situ material (for large and deep gullies and badlands). The success of such measures, which also depends on subsequent soil-erosion protection, varies strongly and is not yet well researched. The little developed part of Lower Chambal Valley (Madhya Pradesh) is one of the four regions most badly affected by gully and badland erosion in India. Around 80% of the rural population are dependent on agriculture, an estimated 5000 km² are affected by gullies and badlands as deep as 80 m. Various land reclamation measures have been conducted on widely different spatial scales both by governmental and non-governmental agencies and individual farmers. However, the reclamation strategies of rich and poor farmers also exhibit significant differences, and agricultural use that often is based on short-term economic needs of households leads to inefficient land-use practices particularly in land-levelled and reclaimed areas. Although set in rural surroundings as well, the Souss Valley (South Morocco) is characterized by highly dynamic land-use changes with transformations from traditional agriculture to vast agro-industrial plantations of citrus fruits, bananas and vegetables. These plantations, as well as other arable land, are threatened by gullies and other forms of soil erosion. The ubiquitous transformation of land into the high-intensity agro-industrial production system has now reached marginal land formerly unsuitable for agriculture: Badland areas and wasteland dissected by gully erosion are being levelled with heavy machinery. However, these measures are often contra-productive. Levelled sites show a clear amplification of soil erosion processes, and temporarily infilled gullies tend to be re-activated very fast, eroding this freshly provided soil material. As a first step in a comparative investigation of the sustainability of land reclamation measures in erosive landscapes with contrasting situations, data derived from remote sensing (satellite and unmanned aerial vehicle images) as well as socio-economic surveys were used for establishing an inventory on the two regions in South Morocco and Central India. The long-term aim is the development of a framework for further research into the positive and negative influences of land-levelling as a gully-erosion control measure.

  3. Genome of the Cyanobacterium Microcoleus vaginatusFGP-2, a Photosynthetic Ecosystem Engineer of Arid Land Soil Biocrusts Worldwide▿

    PubMed Central

    Starkenburg, Shawn R.; Reitenga, Krista G.; Freitas, Tracey; Johnson, Shannon; Chain, Patrick S. G.; Garcia-Pichel, Ferran; Kuske, Cheryl R.

    2011-01-01

    The filamentous cyanobacterium Microcoleus vaginatusis found in arid land soils worldwide. The genome of M. vaginatusstrain FGP-2 allows exploration of genes involved in photosynthesis, desiccation tolerance, alkane production, and other features contributing to this organism's ability to function as a major component of biological soil crusts in arid lands. PMID:21705610

  4. Functionally relevant climate variables for arid lands: Aclimatic water deficit approach for modelling desert shrub distributions

    Treesearch

    Thomas E. Dilts; Peter J. Weisberg; Camie M. Dencker; Jeanne C. Chambers

    2015-01-01

    We have three goals. (1) To develop a suite of functionally relevant climate variables for modelling vegetation distribution on arid and semi-arid landscapes of the Great Basin, USA. (2) To compare the predictive power of vegetation distribution models based on mechanistically proximate factors (water deficit variables) and factors that are more mechanistically removed...

  5. ARID relative calibration experimental data and analysis

    NASA Technical Reports Server (NTRS)

    Doty, Keith L

    1992-01-01

    Several experiments measure the orientation error of the ARID end-frame as well as linear displacements in the Orbiter's y- and z-axes. In each experiment the position of the ARID on the trolley is fixed and the manipulator extends and retracts along the Orbiter's y-axis. A sensor platform consisting of four sonars arranged in a '+' pattern measures the platform pitch about the Orbiter's y-axis (angle b) and yaw about the Orbiter's x-axis (angle alpha). Corroborating measurements of the yaw error were performed using a carpenter's level to keep the platform perpendicular to the gravity vector at each ARID pose being measured.

  6. On observed aridity changes over the semiarid regions of India in a warming climate

    NASA Astrophysics Data System (ADS)

    Ramarao, M. V. S.; Sanjay, J.; Krishnan, R.; Mujumdar, M.; Bazaz, Amir; Revi, Aromar

    2018-05-01

    In this study, a quantitative assessment of observed aridity variations over the semiarid regions of India is performed for the period 1951-2005 using a dimensionless ratio of annual precipitation (P) and potential evapotranspiration (PET), estimated from five different observed gridded precipitation data sets. The climatological values and changes of this aridity index are found to be sensitive to the choice of the precipitation observations. An assessment of P/PET estimated using the ensemble mean precipitation shows an increase in aridity over several semiarid regions of India, despite the sensitivity of P/PET variations across individual precipitation data sets. Our results indicate that precipitation variations over the semiarid regions of India are outpacing the changes in potential evapotranspiration and, thereby, influencing aridity changes in a significant manner. Our results further reveal a 10% expansion in the area of the semiarid regions during recent decades relative to previous decades, thus highlighting the need for better adaptation strategies and mitigation planning for the semiarid regions in India. The sensitivity of aridity index to multiple PET data sets can be an additional source of uncertainty and will be addressed in a future study.

  7. Land–atmosphere feedbacks amplify aridity increase over land under global warming

    USGS Publications Warehouse

    Berg, Alexis; Findell, Kirsten; Lintner, Benjamin; Giannini, Alessandra; Seneviratne, Sonia I.; van den Hurk, Bart; Lorenz, Ruth; Pitman, Andy; Hagemann, Stefan; Meier, Arndt; Cheruy, Frédérique; Ducharne, Agnès; Malyshev, Sergey; Milly, Paul C. D.

    2016-01-01

    The response of the terrestrial water cycle to global warming is central to issues including water resources, agriculture and ecosystem health. Recent studies indicate that aridity, defined in terms of atmospheric supply (precipitation, P) and demand (potential evapotranspiration, Ep) of water at the land surface, will increase globally in a warmer world. Recently proposed mechanisms for this response emphasize the driving role of oceanic warming and associated atmospheric processes. Here we show that the aridity response is substantially amplified by land–atmosphere feedbacks associated with the land surface’s response to climate and CO2 change. Using simulations from the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we show that global aridity is enhanced by the feedbacks of projected soil moisture decrease on land surface temperature, relative humidity and precipitation. The physiological impact of increasing atmospheric CO2 on vegetation exerts a qualitatively similar control on aridity. We reconcile these findings with previously proposed mechanisms by showing that the moist enthalpy change over land is unaffected by the land hydrological response. Thus, although oceanic warming constrains the combined moisture and temperature changes over land, land hydrology modulates the partitioning of this enthalpy increase towards increased aridity.

  8. Latent heat loss of dairy cows in an equatorial semi-arid environment

    NASA Astrophysics Data System (ADS)

    da Silva, Roberto Gomes; Maia, Alex Sandro Campos; de Macedo Costa, Leonardo Lelis; de Queiroz, João Paulo A. Fernandes

    2012-09-01

    The present study aimed to evaluate evaporative heat transfer of dairy cows bred in a hot semi-arid environment. Cutaneous ( E S) and respiratory ( E R) evaporation were measured (810 observations) in 177 purebred and crossbred Holstein cows from five herds located in the equatorial semi-arid region, and one herd in the subtropical region of Brazil. Rectal temperature ( T R), hair coat surface temperature ( T S) and respiratory rate ( F R) were also measured. Observations were made in the subtropical region from August to December, and in the semi-arid region from April to July. Measurements were done from 1100 to 1600 hours, after cows remained in a pen exposed to the sun. Environmental variables measured in the same locations as the animals were black globe temperature ( T G), air temperature ( T A), wind speed ( U), and partial air vapour pressure ( P V). Data were analysed by mixed models, using the least squares method. Results showed that average E S and E R were higher in the semi-arid region (117.2 W m-2 and 44.0 W m-2, respectively) than in the subtropical region (85.2 W m-2 and 30.2 W m-2, respectively). Herds and individual cows were significant effects ( P < 0.01) for all traits in the semi-arid region. Body parts did not affect T S and E S in the subtropical region, but was a significant effect ( P < 0.01) in the semi-arid region. The average flank T S (42.8°C) was higher than that of the neck and hindquarters (39.8°C and 41.6°C, respectively). Average E S was higher in the neck (133.3 W m-2) than in the flank (116.2 W m-2) and hindquarters (98.6 W m-2). Coat colour affected significantly both T S and E S ( P < 0.01). Black coats had higher T S and E S in the semi-arid region (41.7°C and 117.2 W m-2, respectively) than white coats (37.2°C and 106.7 W m-2, respectively). Rectal temperatures were almost the same in both subtropical and semi-arid regions. The results highlight the need for improved management methods specific for semi-arid regions.

  9. An OSSE Study for Deep Argo Array using the GFDL Ensemble Coupled Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Chang, You-Soon; Zhang, Shaoqing; Rosati, Anthony; Vecchi, Gabriel A.; Yang, Xiaosong

    2018-03-01

    An observing system simulation experiment (OSSE) using an ensemble coupled data assimilation system was designed to investigate the impact of deep ocean Argo profile assimilation in a biased numerical climate system. Based on the modern Argo observational array and an artificial extension to full depth, "observations" drawn from one coupled general circulation model (CM2.0) were assimilated into another model (CM2.1). Our results showed that coupled data assimilation with simultaneous atmospheric and oceanic constraints plays a significant role in preventing deep ocean drift. However, the extension of the Argo array to full depth did not significantly improve the quality of the oceanic climate estimation within the bias magnitude in the twin experiment. Even in the "identical" twin experiment for the deep Argo array from the same model (CM2.1) with the assimilation model, no significant changes were shown in the deep ocean, such as in the Atlantic meridional overturning circulation and the Antarctic bottom water cell. The small ensemble spread and corresponding weak constraints by the deep Argo profiles with medium spatial and temporal resolution may explain why the deep Argo profiles did not improve the deep ocean features in the assimilation system. Additional studies using different assimilation methods with improved spatial and temporal resolution of the deep Argo array are necessary in order to more thoroughly understand the impact of the deep Argo array on the assimilation system.

  10. Evaluation of Green Roof Plants and Materials for Semi-Arid Climates

    EPA Science Inventory

    Abstract While green roof systems have proven to be highly effective in the evaporative cooling of buildings, reduction of roof top temperatures, protection of roof membranes from solar radiation degradation, reducing stormwater runoff, as well as beautification of the urban roo...

  11. Toxicity Bioassays for Ecological Risk Assessment in Arid and Semiarid Ecosystems. Reviews Environmental Contamination and Toxicology 168:43-98.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markwiese, J.T.; Ryti, R.T.; Hooten, M.M.

    2001-02-01

    This paper discusses current limitations for performing ecological risk assessments in dry environments (i.e., ecosystems that are characteristic of many DOE Facilities) and presents novel approaches to addressing ecological risk in such systems.

  12. Intercropping for Management of Insect Pests of Castor, Ricinus communis, in the Semi—Arid Tropics of India

    PubMed Central

    Srinivasa Rao, M.; Venkateswarlu, B.

    2012-01-01

    Intercropping is one of the important cultural practices in pest management and is based on the principle of reducing insect pests by increasing the diversity of an ecosystem. On—farm experiments were conducted in villages of semi—arid tropical (SAT) India to identify the appropriate combination of castor (Ricinus communis L.) (Malpighiales: Euphorbiaceae) and intercropping in relation to pest incidence. The diversity created by introducing cluster bean, cowpea, black gram, or groundnut as intercrops in castor (1:2 ratio proportions) resulted in reduction of incidence of insect pests, namely semilooper (Achaea janata L.), leaf hopper (Empoasca flavescens Fabricius), and shoot and capsule borer (Conogethes punctiferalis Guenee). A buildup of natural enemies (Microplitis, coccinellids, and spiders) of the major pests of castor was also observed in these intercropping systems and resulted in the reduction of insect pests. Further, these systems were more efficient agronomically and economically, and were thus more profitable than a castor monocrop. PMID:22934569

  13. Earth-atmosphere system and surface reflectivities in arid regions from Landsat MSS data

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Fraser, R. S.

    1976-01-01

    Previously developed programs for computing atmospheric transmission and scattering of the solar radiation are used to compute the ratios of the earth-atmosphere system (space) directional reflectivities in the nadir direction to the surface Lambertian reflectivity, for the four bands of the Landsat multispectral scanner (MSS). These ratios are presented as graphs for two water vapor levels, as a function of the surface reflectivity, for various sun elevation angles. Space directional reflectivities in the vertical direction are reported for selected arid regions in Asia, Africa, and Central America from the spectral radiance levels measured by the Landsat MSS. From these space reflectivities, surface reflectivities are computed applying the pertinent graphs. These surface reflectivities are used to estimate the surface albedo for the entire solar spectrum. The estimated albedos are in the range 0.34-0.52, higher than the values reported by most previous researchers from space measurements, but are consistent with laboratory and in situ measurements.

  14. The development of deep karst in the anticlinal aquifer structure based on the coupling of multistage flow systems

    NASA Astrophysics Data System (ADS)

    Xu, M.; Zhong, L.; Yang, Y.

    2017-12-01

    Under the background of neotectonics, the multistage underground flow system has been form due the different responses of main stream and tributaries to crust uplift. The coupling of multistage underground flow systems influences the development of karst thoroughly. At first, the research area is divided into vadose area, shunted area and exorheic area based on the development characteristics of transverse valley. Combining the controlling-drain action with topographic index and analyzing the coupling features of multistage underground flow system. And then, based on the coupling of multistage underground flow systems, the characteristics of deep karst development were verified by the lossing degree of surface water, water bursting and karst development characteristics of tunnels. The vadose area is regional water system based, whose deep karst developed well. It resulted the large water inflow of tunnels and the surface water drying up. The shunted area, except the region near the transverse valleys, is characterized by regional water system. The developed deep karst make the surface water connect with deep ground water well, Which caused the relatively large water flow of tunnels and the serious leakage of surface water. The deep karst relatively developed poor in the regions near transverse valleys which is characterized by local water system. The exorheic area is local water system based, whose the deep karst developed poor, as well as the connection among surface water and deep ground water. It has result in the poor lossing of the surface water under the tunnel construction. This study broadens the application field of groundwater flow systems theory, providing a new perspective for the study of Karst development theory. Meanwhile it provides theoretical guidance for hazard assessment and environmental negative effect in deep-buried Karst tunnel construction.

  15. Conductivity gradients as inferred by electromagnetic-induction meter (EM38) readings within a salt-affected wetland in Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Mirck, Jaconette; Schroeder, William

    2018-01-01

    The change from deep-rooted grass and shrub vegetation to annual-cropping dryland farming has contributed to serious soil salinization challenges on the semi-arid North American Great Plains. In some cases, cultivation of the Great Plains has increased the availability of water, causing dominant sulfate salts to travel from the uphill areas to depressions where it will surface when water evaporates at the soil surface. A potential solution could include the replanting of the native deep-rooted vegetation, which requires knowledge of the spatial distribution of soil salinity. This study tested the soil factors influencing electromagnetic-induction meter (EM38) readings of soil salinity distribution around wetlands. The objectives were to: (1) predict growth and survival of Salix dasyclados Wimm. (cv. `India') along a salinity gradient in a small wetland, and (2) investigate whether newly established willows affected water-table fluctuations, which would indicate their phreatophytic nature or their ability to obtain their water supply from the zone of saturation. Results indicated significantly lower salinity values for sampling points with EM38 readings above 175 and 250 mS m-1 for height and survival, respectively. In addition, diurnal fluxes of the water table in areas of good willow growth and lower salinity indicated that cultivar `India' was phreatophytic in these areas and therefore has great potential for being used to combat saline seeps.

  16. Deep learning algorithms for detecting explosive hazards in ground penetrating radar data

    NASA Astrophysics Data System (ADS)

    Besaw, Lance E.; Stimac, Philip J.

    2014-05-01

    Buried explosive hazards (BEHs) have been, and continue to be, one of the most deadly threats in modern conflicts. Current handheld sensors rely on a highly trained operator for them to be effective in detecting BEHs. New algorithms are needed to reduce the burden on the operator and improve the performance of handheld BEH detectors. Traditional anomaly detection and discrimination algorithms use "hand-engineered" feature extraction techniques to characterize and classify threats. In this work we use a Deep Belief Network (DBN) to transcend the traditional approaches of BEH detection (e.g., principal component analysis and real-time novelty detection techniques). DBNs are pretrained using an unsupervised learning algorithm to generate compressed representations of unlabeled input data and form feature detectors. They are then fine-tuned using a supervised learning algorithm to form a predictive model. Using ground penetrating radar (GPR) data collected by a robotic cart swinging a handheld detector, our research demonstrates that relatively small DBNs can learn to model GPR background signals and detect BEHs with an acceptable false alarm rate (FAR). In this work, our DBNs achieved 91% probability of detection (Pd) with 1.4 false alarms per square meter when evaluated on anti-tank and anti-personnel targets at temperate and arid test sites. This research demonstrates that DBNs are a viable approach to detect and classify BEHs.

  17. Conductivity gradients as inferred by electromagnetic-induction meter (EM38) readings within a salt-affected wetland in Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Mirck, Jaconette; Schroeder, William

    2018-06-01

    The change from deep-rooted grass and shrub vegetation to annual-cropping dryland farming has contributed to serious soil salinization challenges on the semi-arid North American Great Plains. In some cases, cultivation of the Great Plains has increased the availability of water, causing dominant sulfate salts to travel from the uphill areas to depressions where it will surface when water evaporates at the soil surface. A potential solution could include the replanting of the native deep-rooted vegetation, which requires knowledge of the spatial distribution of soil salinity. This study tested the soil factors influencing electromagnetic-induction meter (EM38) readings of soil salinity distribution around wetlands. The objectives were to: (1) predict growth and survival of Salix dasyclados Wimm. (cv. `India') along a salinity gradient in a small wetland, and (2) investigate whether newly established willows affected water-table fluctuations, which would indicate their phreatophytic nature or their ability to obtain their water supply from the zone of saturation. Results indicated significantly lower salinity values for sampling points with EM38 readings above 175 and 250 mS m-1 for height and survival, respectively. In addition, diurnal fluxes of the water table in areas of good willow growth and lower salinity indicated that cultivar `India' was phreatophytic in these areas and therefore has great potential for being used to combat saline seeps.

  18. Deep targeted sequencing in pediatric acute lymphoblastic leukemia unveils distinct mutational patterns between genetic subtypes and novel relapse-associated genes.

    PubMed

    Lindqvist, C Mårten; Lundmark, Anders; Nordlund, Jessica; Freyhult, Eva; Ekman, Diana; Carlsson Almlöf, Jonas; Raine, Amanda; Övernäs, Elin; Abrahamsson, Jonas; Frost, Britt-Marie; Grandér, Dan; Heyman, Mats; Palle, Josefine; Forestier, Erik; Lönnerholm, Gudmar; Berglund, Eva C; Syvänen, Ann-Christine

    2016-09-27

    To characterize the mutational patterns of acute lymphoblastic leukemia (ALL) we performed deep next generation sequencing of 872 cancer genes in 172 diagnostic and 24 relapse samples from 172 pediatric ALL patients. We found an overall greater mutational burden and more driver mutations in T-cell ALL (T-ALL) patients compared to B-cell precursor ALL (BCP-ALL) patients. In addition, the majority of the mutations in T-ALL had occurred in the original leukemic clone, while most of the mutations in BCP-ALL were subclonal. BCP-ALL patients carrying any of the recurrent translocations ETV6-RUNX1, BCR-ABL or TCF3-PBX1 harbored few mutations in driver genes compared to other BCP-ALL patients. Specifically in BCP-ALL, we identified ATRX as a novel putative driver gene and uncovered an association between somatic mutations in the Notch signaling pathway at ALL diagnosis and increased risk of relapse. Furthermore, we identified EP300, ARID1A and SH2B3 as relapse-associated genes. The genes highlighted in our study were frequently involved in epigenetic regulation, associated with germline susceptibility to ALL, and present in minor subclones at diagnosis that became dominant at relapse. We observed a high degree of clonal heterogeneity and evolution between diagnosis and relapse in both BCP-ALL and T-ALL, which could have implications for the treatment efficiency.

  19. Seed germination, seedling traits, and seed bank of the tree Moringa peregrina (Moringaceae) in a hyper-arid environment.

    PubMed

    Gomaa, Nasr H; Picó, F Xavier

    2011-06-01

    Water-limited hot environments are good examples of hyper-aridity. Trees are scarce in these environments but some manage to survive, such as the tree Moringa peregrina. Understanding how trees maintain viable populations in extremely arid environments may provide insight into the adaptive mechanisms by which trees cope with extremely arid weather conditions. This understanding is relevant to the current increasing aridity in several regions of the world. Seed germination experiments were conducted to assess variation in seed mass, seed germination, and seedling traits of Moringa peregrina plants and the correlations among these traits. A seed burial experiment was also designed to study the fate of M. peregrina seeds buried at two depths in the soil for two time periods. On average, seeds germinated in three days and seedling shoots grew 0.7 cm per day over three weeks. Larger seeds decreased germination time and increased seedling growth rates relative to smaller seeds. Seeds remained quiescent in the soil and germination was very high at both depths and burial times. The after-ripening time of Moringa peregrina seeds is short and seeds germinate quickly after imbibition. Plants of M. peregrina may increase in hyper-arid environments from seeds with larger mass, shorter germination times, and faster seedling growth rates. The results also illustrate the adjustment in allocation to seed biomass and correlations among seed and seedling traits that allows M. peregrina to be successful in coping with aridity in its environment.

  20. Assessment of the spatial distribution of soil microbial communities in patchy arid and semi-arid landscapes of the Negev Desert using combined PLFA and DGGE analyses.

    PubMed

    Ben-David, Eric A; Zaady, Eli; Sher, Yoni; Nejidat, Ali

    2011-06-01

    Arid and semi-arid ecosystems are often characterized by vegetation patchiness and variable availability of resources. Phospholipid fatty acid (PLFA) and 16S rRNA gene fragment analyses were used to compare the bulk soil microbial community structure at patchy arid and semi-arid landscapes. Multivariate analyses of the PLFA data and the 16S rRNA gene fragments were in agreement with each other, suggesting that the differences between bulk soil microbial communities were primarily related to shrub vs intershrub patches, irrespective of climatic or site differences. This suggests that the mere presence of a living shrub is the dominant driving factor for the differential adaptation of the microbial communities. Lipid markers suggested as indicators of Gram-positive bacteria were higher in soils under the shrub canopies, while markers suggested as indicators of cyanobacteria and anaerobic bacteria were elevated in the intershrub soils. Secondary differences between soil microbial communities were associated with intershrub characteristics and to a lesser extent with the shrub species. This study provides an insight into the multifaceted nature of the factors that shape the microbial community structure in patchy desert landscapes. It further suggests that these drivers not only act in concert but also in a way that is dependent on the aridity level. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

Top