Sample records for deep barcode sequencing

  1. Quantitative phenotyping via deep barcode sequencing.

    PubMed

    Smith, Andrew M; Heisler, Lawrence E; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J; Chee, Mark; Roth, Frederick P; Giaever, Guri; Nislow, Corey

    2009-10-01

    Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or "Bar-seq," outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that approximately 20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene-environment interactions on a genome-wide scale.

  2. Quantitative phenotyping via deep barcode sequencing

    PubMed Central

    Smith, Andrew M.; Heisler, Lawrence E.; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J.; Chee, Mark; Roth, Frederick P.; Giaever, Guri; Nislow, Corey

    2009-01-01

    Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or “Bar-seq,” outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that ∼20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene–environment interactions on a genome-wide scale. PMID:19622793

  3. Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes

    PubMed Central

    Shiroguchi, Katsuyuki; Jia, Tony Z.; Sims, Peter A.; Xie, X. Sunney

    2012-01-01

    RNA sequencing (RNA-Seq) is a powerful tool for transcriptome profiling, but is hampered by sequence-dependent bias and inaccuracy at low copy numbers intrinsic to exponential PCR amplification. We developed a simple strategy for mitigating these complications, allowing truly digital RNA-Seq. Following reverse transcription, a large set of barcode sequences is added in excess, and nearly every cDNA molecule is uniquely labeled by random attachment of barcode sequences to both ends. After PCR, we applied paired-end deep sequencing to read the two barcodes and cDNA sequences. Rather than counting the number of reads, RNA abundance is measured based on the number of unique barcode sequences observed for a given cDNA sequence. We optimized the barcodes to be unambiguously identifiable, even in the presence of multiple sequencing errors. This method allows counting with single-copy resolution despite sequence-dependent bias and PCR-amplification noise, and is analogous to digital PCR but amendable to quantifying a whole transcriptome. We demonstrated transcriptome profiling of Escherichia coli with more accurate and reproducible quantification than conventional RNA-Seq. PMID:22232676

  4. Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller.

    PubMed

    Xu, Chang; Nezami Ranjbar, Mohammad R; Wu, Zhong; DiCarlo, John; Wang, Yexun

    2017-01-03

    Detection of DNA mutations at very low allele fractions with high accuracy will significantly improve the effectiveness of precision medicine for cancer patients. To achieve this goal through next generation sequencing, researchers need a detection method that 1) captures rare mutation-containing DNA fragments efficiently in the mix of abundant wild-type DNA; 2) sequences the DNA library extensively to deep coverage; and 3) distinguishes low level true variants from amplification and sequencing errors with high accuracy. Targeted enrichment using PCR primers provides researchers with a convenient way to achieve deep sequencing for a small, yet most relevant region using benchtop sequencers. Molecular barcoding (or indexing) provides a unique solution for reducing sequencing artifacts analytically. Although different molecular barcoding schemes have been reported in recent literature, most variant calling has been done on limited targets, using simple custom scripts. The analytical performance of barcode-aware variant calling can be significantly improved by incorporating advanced statistical models. We present here a highly efficient, simple and scalable enrichment protocol that integrates molecular barcodes in multiplex PCR amplification. In addition, we developed smCounter, an open source, generic, barcode-aware variant caller based on a Bayesian probabilistic model. smCounter was optimized and benchmarked on two independent read sets with SNVs and indels at 5 and 1% allele fractions. Variants were called with very good sensitivity and specificity within coding regions. We demonstrated that we can accurately detect somatic mutations with allele fractions as low as 1% in coding regions using our enrichment protocol and variant caller.

  5. DNA Barcoding the Geometrid Fauna of Bavaria (Lepidoptera): Successes, Surprises, and Questions

    PubMed Central

    Hausmann, Axel; Haszprunar, Gerhard; Hebert, Paul D. N.

    2011-01-01

    Background The State of Bavaria is involved in a research program that will lead to the construction of a DNA barcode library for all animal species within its territorial boundaries. The present study provides a comprehensive DNA barcode library for the Geometridae, one of the most diverse of insect families. Methodology/Principal Findings This study reports DNA barcodes for 400 Bavarian geometrid species, 98 per cent of the known fauna, and approximately one per cent of all Bavarian animal species. Although 98.5% of these species possess diagnostic barcode sequences in Bavaria, records from neighbouring countries suggest that species-level resolution may be compromised in up to 3.5% of cases. All taxa which apparently share barcodes are discussed in detail. One case of modest divergence (1.4%) revealed a species overlooked by the current taxonomic system: Eupithecia goossensiata Mabille, 1869 stat.n. is raised from synonymy with Eupithecia absinthiata (Clerck, 1759) to species rank. Deep intraspecific sequence divergences (>2%) were detected in 20 traditionally recognized species. Conclusions/Significance The study emphasizes the effectiveness of DNA barcoding as a tool for monitoring biodiversity. Open access is provided to a data set that includes records for 1,395 geometrid specimens (331 species) from Bavaria, with 69 additional species from neighbouring regions. Taxa with deep intraspecific sequence divergences are undergoing more detailed analysis to ascertain if they represent cases of cryptic diversity. PMID:21423340

  6. DNA Barcode Analysis of Thrips (Thysanoptera) Diversity in Pakistan Reveals Cryptic Species Complexes.

    PubMed

    Iftikhar, Romana; Ashfaq, Muhammad; Rasool, Akhtar; Hebert, Paul D N

    2016-01-01

    Although thrips are globally important crop pests and vectors of viral disease, species identifications are difficult because of their small size and inconspicuous morphological differences. Sequence variation in the mitochondrial COI-5' (DNA barcode) region has proven effective for the identification of species in many groups of insect pests. We analyzed barcode sequence variation among 471 thrips from various plant hosts in north-central Pakistan. The Barcode Index Number (BIN) system assigned these sequences to 55 BINs, while the Automatic Barcode Gap Discovery detected 56 partitions, a count that coincided with the number of monophyletic lineages recognized by Neighbor-Joining analysis and Bayesian inference. Congeneric species showed an average of 19% sequence divergence (range = 5.6% - 27%) at COI, while intraspecific distances averaged 0.6% (range = 0.0% - 7.6%). BIN analysis suggested that all intraspecific divergence >3.0% actually involved a species complex. In fact, sequences for three major pest species (Haplothrips reuteri, Thrips palmi, Thrips tabaci), and one predatory thrips (Aeolothrips intermedius) showed deep intraspecific divergences, providing evidence that each is a cryptic species complex. The study compiles the first barcode reference library for the thrips of Pakistan, and examines global haplotype diversity in four important pest thrips.

  7. Enhancing the detection of barcoded reads in high throughput DNA sequencing data by controlling the false discovery rate.

    PubMed

    Buschmann, Tilo; Zhang, Rong; Brash, Douglas E; Bystrykh, Leonid V

    2014-08-07

    DNA barcodes are short unique sequences used to label DNA or RNA-derived samples in multiplexed deep sequencing experiments. During the demultiplexing step, barcodes must be detected and their position identified. In some cases (e.g., with PacBio SMRT), the position of the barcode and DNA context is not well defined. Many reads start inside the genomic insert so that adjacent primers might be missed. The matter is further complicated by coincidental similarities between barcode sequences and reference DNA. Therefore, a robust strategy is required in order to detect barcoded reads and avoid a large number of false positives or negatives.For mass inference problems such as this one, false discovery rate (FDR) methods are powerful and balanced solutions. Since existing FDR methods cannot be applied to this particular problem, we present an adapted FDR method that is suitable for the detection of barcoded reads as well as suggest possible improvements. In our analysis, barcode sequences showed high rates of coincidental similarities with the Mus musculus reference DNA. This problem became more acute when the length of the barcode sequence decreased and the number of barcodes in the set increased. The method presented in this paper controls the tail area-based false discovery rate to distinguish between barcoded and unbarcoded reads. This method helps to establish the highest acceptable minimal distance between reads and barcode sequences. In a proof of concept experiment we correctly detected barcodes in 83% of the reads with a precision of 89%. Sensitivity improved to 99% at 99% precision when the adjacent primer sequence was incorporated in the analysis. The analysis was further improved using a paired end strategy. Following an analysis of the data for sequence variants induced in the Atp1a1 gene of C57BL/6 murine melanocytes by ultraviolet light and conferring resistance to ouabain, we found no evidence of cross-contamination of DNA material between samples. Our method offers a proper quantitative treatment of the problem of detecting barcoded reads in a noisy sequencing environment. It is based on the false discovery rate statistics that allows a proper trade-off between sensitivity and precision to be chosen.

  8. Reproducibility of Illumina platform deep sequencing errors allows accurate determination of DNA barcodes in cells.

    PubMed

    Beltman, Joost B; Urbanus, Jos; Velds, Arno; van Rooij, Nienke; Rohr, Jan C; Naik, Shalin H; Schumacher, Ton N

    2016-04-02

    Next generation sequencing (NGS) of amplified DNA is a powerful tool to describe genetic heterogeneity within cell populations that can both be used to investigate the clonal structure of cell populations and to perform genetic lineage tracing. For applications in which both abundant and rare sequences are biologically relevant, the relatively high error rate of NGS techniques complicates data analysis, as it is difficult to distinguish rare true sequences from spurious sequences that are generated by PCR or sequencing errors. This issue, for instance, applies to cellular barcoding strategies that aim to follow the amount and type of offspring of single cells, by supplying these with unique heritable DNA tags. Here, we use genetic barcoding data from the Illumina HiSeq platform to show that straightforward read threshold-based filtering of data is typically insufficient to filter out spurious barcodes. Importantly, we demonstrate that specific sequencing errors occur at an approximately constant rate across different samples that are sequenced in parallel. We exploit this observation by developing a novel approach to filter out spurious sequences. Application of our new method demonstrates its value in the identification of true sequences amongst spurious sequences in biological data sets.

  9. Rapidly evolving homing CRISPR barcodes

    PubMed Central

    Kalhor, Reza; Mali, Prashant; Church, George M.

    2017-01-01

    We present here an approach for engineering evolving DNA barcodes in living cells. The methodology entails using a homing guide RNA (hgRNA) scaffold that directs the Cas9-hgRNA complex to target the DNA locus of the hgRNA itself. We show that this homing CRISPR-Cas9 system acts as an expressed genetic barcode that diversifies its sequence and that the rate of diversification can be controlled in cultured cells. We further evaluate these barcodes in cell populations and show the barcode RNAs can be assayed as single molecules in situ . This integrated approach will have wide ranging applications, such as in deep lineage tracing, cellular barcoding, molecular recording, dissecting cancer biology, and connectome mapping. PMID:27918539

  10. Assessing DNA Barcodes for Species Identification in North American Reptiles and Amphibians in Natural History Collections.

    PubMed

    Chambers, E Anne; Hebert, Paul D N

    2016-01-01

    High rates of species discovery and loss have led to the urgent need for more rapid assessment of species diversity in the herpetofauna. DNA barcoding allows for the preliminary identification of species based on sequence divergence. Prior DNA barcoding work on reptiles and amphibians has revealed higher biodiversity counts than previously estimated due to cases of cryptic and undiscovered species. Past studies have provided DNA barcodes for just 14% of the North American herpetofauna, revealing the need for expanded coverage. This study extends the DNA barcode reference library for North American herpetofauna, assesses the utility of this approach in aiding species delimitation, and examines the correspondence between current species boundaries and sequence clusters designated by the BIN system. Sequences were obtained from 730 specimens, representing 274 species (43%) from the North American herpetofauna. Mean intraspecific divergences were 1% and 3%, while average congeneric sequence divergences were 16% and 14% in amphibians and reptiles, respectively. BIN assignments corresponded with current species boundaries in 79% of amphibians, 100% of turtles, and 60% of squamates. Deep divergences (>2%) were noted in 35% of squamate and 16% of amphibian species, and low divergences (<2%) occurred in 12% of reptiles and 23% of amphibians, patterns reflected in BIN assignments. Sequence recovery declined with specimen age, and variation in recovery success was noted among collections. Within collections, barcodes effectively flagged seven mislabeled tissues, and barcode fragments were recovered from five formalin-fixed specimens. This study demonstrates that DNA barcodes can effectively flag errors in museum collections, while BIN splits and merges reveal taxa belonging to deeply diverged or hybridizing lineages. This study is the first effort to compile a reference library of DNA barcodes for herpetofauna on a continental scale.

  11. Assessing DNA Barcodes for Species Identification in North American Reptiles and Amphibians in Natural History Collections

    PubMed Central

    Chambers, E. Anne; Hebert, Paul D. N.

    2016-01-01

    Background High rates of species discovery and loss have led to the urgent need for more rapid assessment of species diversity in the herpetofauna. DNA barcoding allows for the preliminary identification of species based on sequence divergence. Prior DNA barcoding work on reptiles and amphibians has revealed higher biodiversity counts than previously estimated due to cases of cryptic and undiscovered species. Past studies have provided DNA barcodes for just 14% of the North American herpetofauna, revealing the need for expanded coverage. Methodology/Principal Findings This study extends the DNA barcode reference library for North American herpetofauna, assesses the utility of this approach in aiding species delimitation, and examines the correspondence between current species boundaries and sequence clusters designated by the BIN system. Sequences were obtained from 730 specimens, representing 274 species (43%) from the North American herpetofauna. Mean intraspecific divergences were 1% and 3%, while average congeneric sequence divergences were 16% and 14% in amphibians and reptiles, respectively. BIN assignments corresponded with current species boundaries in 79% of amphibians, 100% of turtles, and 60% of squamates. Deep divergences (>2%) were noted in 35% of squamate and 16% of amphibian species, and low divergences (<2%) occurred in 12% of reptiles and 23% of amphibians, patterns reflected in BIN assignments. Sequence recovery declined with specimen age, and variation in recovery success was noted among collections. Within collections, barcodes effectively flagged seven mislabeled tissues, and barcode fragments were recovered from five formalin-fixed specimens. Conclusions/Significance This study demonstrates that DNA barcodes can effectively flag errors in museum collections, while BIN splits and merges reveal taxa belonging to deeply diverged or hybridizing lineages. This study is the first effort to compile a reference library of DNA barcodes for herpetofauna on a continental scale. PMID:27116180

  12. A DNA barcode library for ground beetles (Insecta, Coleoptera, Carabidae) of Germany: The genus Bembidion Latreille, 1802 and allied taxa

    PubMed Central

    Raupach, Michael J.; Hannig, Karsten; Morinière, Jérome; Hendrich, Lars

    2016-01-01

    Abstract As molecular identification method, DNA barcoding based on partial cytochrome c oxidase subunit 1 (COI) sequences has been proven to be a useful tool for species determination in many insect taxa including ground beetles. In this study we tested the effectiveness of DNA barcodes to discriminate species of the ground beetle genus Bembidion and some closely related taxa of Germany. DNA barcodes were obtained from 819 individuals and 78 species, including sequences from previous studies as well as more than 300 new generated DNA barcodes. We found a 1:1 correspondence between BIN and traditionally recognized species for 69 species (89%). Low interspecific distances with maximum pairwise K2P values below 2.2% were found for three species pairs, including two species pairs with haplotype sharing (Bembidion atrocaeruleum/Bembidion varicolor and Bembidion guttula/Bembidion mannerheimii). In contrast to this, deep intraspecific sequence divergences with distinct lineages were revealed for two species (Bembidion geniculatum/Ocys harpaloides). Our study emphasizes the use of DNA barcodes for the identification of the analyzed ground beetles species and represents an important step in building-up a comprehensive barcode library for the Carabidae in Germany and Central Europe as well. PMID:27408547

  13. Patterns of DNA barcode variation in Canadian marine molluscs.

    PubMed

    Layton, Kara K S; Martel, André L; Hebert, Paul D N

    2014-01-01

    Molluscs are the most diverse marine phylum and this high diversity has resulted in considerable taxonomic problems. Because the number of species in Canadian oceans remains uncertain, there is a need to incorporate molecular methods into species identifications. A 648 base pair segment of the cytochrome c oxidase subunit I gene has proven useful for the identification and discovery of species in many animal lineages. While the utility of DNA barcoding in molluscs has been demonstrated in other studies, this is the first effort to construct a DNA barcode registry for marine molluscs across such a large geographic area. This study examines patterns of DNA barcode variation in 227 species of Canadian marine molluscs. Intraspecific sequence divergences ranged from 0-26.4% and a barcode gap existed for most taxa. Eleven cases of relatively deep (>2%) intraspecific divergence were detected, suggesting the possible presence of overlooked species. Structural variation was detected in COI with indels found in 37 species, mostly bivalves. Some indels were present in divergent lineages, primarily in the region of the first external loop, suggesting certain areas are hotspots for change. Lastly, mean GC content varied substantially among orders (24.5%-46.5%), and showed a significant positive correlation with nearest neighbour distances. DNA barcoding is an effective tool for the identification of Canadian marine molluscs and for revealing possible cases of overlooked species. Some species with deep intraspecific divergence showed a biogeographic partition between lineages on the Atlantic, Arctic and Pacific coasts, suggesting the role of Pleistocene glaciations in the subdivision of their populations. Indels were prevalent in the barcode region of the COI gene in bivalves and gastropods. This study highlights the efficacy of DNA barcoding for providing insights into sequence variation across a broad taxonomic group on a large geographic scale.

  14. A DNA Barcode Library for North American Pyraustinae (Lepidoptera: Pyraloidea: Crambidae).

    PubMed

    Yang, Zhaofu; Landry, Jean-François; Hebert, Paul D N

    2016-01-01

    Although members of the crambid subfamily Pyraustinae are frequently important crop pests, their identification is often difficult because many species lack conspicuous diagnostic morphological characters. DNA barcoding employs sequence diversity in a short standardized gene region to facilitate specimen identifications and species discovery. This study provides a DNA barcode reference library for North American pyraustines based upon the analysis of 1589 sequences recovered from 137 nominal species, 87% of the fauna. Data from 125 species were barcode compliant (>500bp, <1% n), and 99 of these taxa formed a distinct cluster that was assigned to a single BIN. The other 26 species were assigned to 56 BINs, reflecting frequent cases of deep intraspecific sequence divergence and a few instances of barcode sharing, creating a total of 155 BINs. Two systems for OTU designation, ABGD and BIN, were examined to check the correspondence between current taxonomy and sequence clusters. The BIN system performed better than ABGD in delimiting closely related species, while OTU counts with ABGD were influenced by the value employed for relative gap width. Different species with low or no interspecific divergence may represent cases of unrecognized synonymy, whereas those with high intraspecific divergence require further taxonomic scrutiny as they may involve cryptic diversity. The barcode library developed in this study will also help to advance understanding of relationships among species of Pyraustinae.

  15. Taxonomy, distribution and ecology of the order Phyllodocida (Annelida, Polychaeta) in deep-sea habitats around the Iberian margin

    NASA Astrophysics Data System (ADS)

    Ravara, Ascensão; Ramos, Diana; Teixeira, Marcos A. L.; Costa, Filipe O.; Cunha, Marina R.

    2017-03-01

    The polychaetes of the order Phyllodocida (excluding Nereidiformia and Phyllodociformia incertae sedis) collected from deep-sea habitats of the Iberian margin (Bay of Biscay, Horseshoe continental rise, Gulf of Cadiz and Alboran Sea), and Atlantic seamounts (Gorringe Bank, Atlantis and Nameless) are reported herein. Thirty-six species belonging to seven families - Acoetidae, Pholoidae, Polynoidae, Sigalionidae, Glyceridae, Goniadidae and Phyllodocidae, were identified. Amended descriptions and/or new illustrations are given for the species Allmaniella setubalensis, Anotochaetonoe michelbhaudi, Lepidasthenia brunnea and Polynoe sp. Relevant taxonomical notes are provided for other seventeen species. Allmaniella setubalensis, Anotochaetonoe michelbhaudi, Harmothoe evei, Eumida longicirrata and Glycera noelae, previously known only from their type localities were found in different deep-water places of the studied areas and constitute new records for the Iberian margin. The geographic distributions and the bathymetric range of thirteen and fifteen species, respectively, are extended. The morphology-based biodiversity inventory was complemented with DNA sequences of the mitochondrial barcode region (COI barcodes) providing a molecular tag for future reference. Twenty new sequences were obtained for nine species in the families Acoetidae, Glyceridae and Polynoidae and for three lineages within the Phylodoce madeirensis complex (Phyllodocidae). A brief analysis of the newly obtained sequences and publicly available COI barcode data for the genera herein reported, highlighted several cases of unclear taxonomic assignments, which need further study.

  16. DNA barcodes for 1/1000 of the animal kingdom.

    PubMed

    Hebert, Paul D N; Dewaard, Jeremy R; Landry, Jean-François

    2010-06-23

    This study reports DNA barcodes for more than 1300 Lepidoptera species from the eastern half of North America, establishing that 99.3 per cent of these species possess diagnostic barcode sequences. Intraspecific divergences averaged just 0.43 per cent among this assemblage, but most values were lower. The mean was elevated by deep barcode divergences (greater than 2%) in 5.1 per cent of the species, often involving the sympatric occurrence of two barcode clusters. A few of these cases have been analysed in detail, revealing species overlooked by the current taxonomic system. This study also provided a large-scale test of the extent of regional divergence in barcode sequences, indicating that geographical differentiation in the Lepidoptera of eastern North America is small, even when comparisons involve populations as much as 2800 km apart. The present results affirm that a highly effective system for the identification of Lepidoptera in this region can be built with few records per species because of the limited intra-specific variation. As most terrestrial and marine taxa are likely to possess a similar pattern of population structure, an effective DNA-based identification system can be developed with modest effort.

  17. A novel process of viral vector barcoding and library preparation enables high-diversity library generation and recombination-free paired-end sequencing

    PubMed Central

    Davidsson, Marcus; Diaz-Fernandez, Paula; Schwich, Oliver D.; Torroba, Marcos; Wang, Gang; Björklund, Tomas

    2016-01-01

    Detailed characterization and mapping of oligonucleotide function in vivo is generally a very time consuming effort that only allows for hypothesis driven subsampling of the full sequence to be analysed. Recent advances in deep sequencing together with highly efficient parallel oligonucleotide synthesis and cloning techniques have, however, opened up for entirely new ways to map genetic function in vivo. Here we present a novel, optimized protocol for the generation of universally applicable, barcode labelled, plasmid libraries. The libraries are designed to enable the production of viral vector preparations assessing coding or non-coding RNA function in vivo. When generating high diversity libraries, it is a challenge to achieve efficient cloning, unambiguous barcoding and detailed characterization using low-cost sequencing technologies. With the presented protocol, diversity of above 3 million uniquely barcoded adeno-associated viral (AAV) plasmids can be achieved in a single reaction through a process achievable in any molecular biology laboratory. This approach opens up for a multitude of in vivo assessments from the evaluation of enhancer and promoter regions to the optimization of genome editing. The generated plasmid libraries are also useful for validation of sequencing clustering algorithms and we here validate the newly presented message passing clustering process named Starcode. PMID:27874090

  18. Using barcoded Zika virus to assess virus population structure in vitro and in Aedes aegypti mosquitoes.

    PubMed

    Weger-Lucarelli, James; Garcia, Selene M; Rückert, Claudia; Byas, Alex; O'Connor, Shelby L; Aliota, Matthew T; Friedrich, Thomas C; O'Connor, David H; Ebel, Gregory D

    2018-06-20

    Arboviruses such as Zika virus (ZIKV, Flaviviridae; Flavivirus) must replicate in both mammalian and insect hosts possessing strong immune defenses. Accordingly, transmission between and replication within hosts involves genetic bottlenecks, during which viral population size and genetic diversity may be significantly reduced. To help quantify these bottlenecks and their effects, we constructed 4 "barcoded" ZIKV populations that theoretically contain thousands of barcodes each. After identifying the most diverse barcoded virus, we passaged this virus 3 times in 2 mammalian and mosquito cell lines and characterized the population using deep sequencing of the barcoded region of the genome. C6/36 maintain higher barcode diversity, even after 3 passages, than Vero. Additionally, field-caught mosquitoes exposed to the virus to assess bottlenecks in a natural host. A progressive reduction in barcode diversity occurred throughout systemic infection of these mosquitoes. Differences in bottlenecks during systemic spread were observed between different populations of Aedes aegypti. Copyright © 2018. Published by Elsevier Inc.

  19. DNA barcoding for species identification in deep-sea clams (Mollusca: Bivalvia: Vesicomyidae).

    PubMed

    Liu, Jun; Zhang, Haibin

    2018-01-15

    Deep-sea clams (Bivalvia: Vesicomyidae) have been found in reduced environments over the world oceans, but taxonomy of this group remains confusing at species and supraspecific levels due to their high-morphological similarity and plasticity. In the present study, we collected mitochondrial COI sequences to evaluate the utility of DNA barcoding on identifying vesicomyid species. COI dataset identified 56 well-supported putative species/operational taxonomic units (OTUs), approximately covering half of the extant vesicomyid species. One species (OTU2) was first detected, and may represent a new species. Average distances between species ranged from 1.65 to 29.64%, generally higher than average intraspecific distances (0-1.41%) when excluding Pliocardia sp.10 cf. venusta (average intraspecific distance 1.91%). Local barcoding gap existed in 33 of the 35 species when comparing distances of maximum interspecific and minimum interspecific distances with two exceptions (Abyssogena southwardae and Calyptogena rectimargo-starobogatovi). The barcode index number (BIN) system determined 41 of the 56 species/OTUs, each with a unique BIN, indicating their validity. Three species were found to have two BINs, together with their high level of intraspecific variation, implying cryptic diversity within them. Although fewer 16 S sequences were collected, similar results were obtained. Nineteen putative species were determined and no overlap observed between intra- and inter-specific variation. Implications of DNA barcoding for the Vesicomyidae taxonomy were then discussed. Findings of this study will provide important evidence for taxonomic revision in this problematic clam group, and accelerate the discovery of new vesicomyid species in the future.

  20. Contrasting morphological and DNA barcode-suggested species boundaries among shallow-water amphipod fauna from the southern European Atlantic coast.

    PubMed

    Lobo, Jorge; Ferreira, Maria S; Antunes, Ilisa C; Teixeira, Marcos A L; Borges, Luisa M S; Sousa, Ronaldo; Gomes, Pedro A; Costa, Maria Helena; Cunha, Marina R; Costa, Filipe O

    2017-02-01

    In this study we compared DNA barcode-suggested species boundaries with morphology-based species identifications in the amphipod fauna of the southern European Atlantic coast. DNA sequences of the cytochrome c oxidase subunit I barcode region (COI-5P) were generated for 43 morphospecies (178 specimens) collected along the Portuguese coast which, together with publicly available COI-5P sequences, produced a final dataset comprising 68 morphospecies and 295 sequences. Seventy-five BINs (Barcode Index Numbers) were assigned to these morphospecies, of which 48 were concordant (i.e., 1 BIN = 1 species), 8 were taxonomically discordant, and 19 were singletons. Twelve species had matching sequences (<2% distance) with conspecifics from distant locations (e.g., North Sea). Seven morphospecies were assigned to multiple, and highly divergent, BINs, including specimens of Corophium multisetosum (18% divergence) and Dexamine spiniventris (16% divergence), which originated from sampling locations on the west coast of Portugal (only about 36 and 250 km apart, respectively). We also found deep divergence (4%-22%) among specimens of seven species from Portugal compared to those from the North Sea and Italy. The detection of evolutionarily meaningful divergence among populations of several amphipod species from southern Europe reinforces the need for a comprehensive re-assessment of the diversity of this faunal group.

  1. The LAM-PCR Method to Sequence LV Integration Sites.

    PubMed

    Wang, Wei; Bartholomae, Cynthia C; Gabriel, Richard; Deichmann, Annette; Schmidt, Manfred

    2016-01-01

    Integrating viral gene transfer vectors are commonly used gene delivery tools in clinical gene therapy trials providing stable integration and continuous gene expression of the transgene in the treated host cell. However, integration of the reverse-transcribed vector DNA into the host genome is a potentially mutagenic event that may directly contribute to unwanted side effects. A comprehensive and accurate analysis of the integration site (IS) repertoire is indispensable to study clonality in transduced cells obtained from patients undergoing gene therapy and to identify potential in vivo selection of affected cell clones. To date, next-generation sequencing (NGS) of vector-genome junctions allows sophisticated studies on the integration repertoire in vitro and in vivo. We have explored the use of the Illumina MiSeq Personal Sequencer platform to sequence vector ISs amplified by non-restrictive linear amplification-mediated PCR (nrLAM-PCR) and LAM-PCR. MiSeq-based high-quality IS sequence retrieval is accomplished by the introduction of a double-barcode strategy that substantially minimizes the frequency of IS sequence collisions compared to the conventionally used single-barcode protocol. Here, we present an updated protocol of (nr)LAM-PCR for the analysis of lentiviral IS using a double-barcode system and followed by deep sequencing using the MiSeq device.

  2. Deciphering amphibian diversity through DNA barcoding: chances and challenges.

    PubMed

    Vences, Miguel; Thomas, Meike; Bonett, Ronald M; Vieites, David R

    2005-10-29

    Amphibians globally are in decline, yet there is still a tremendous amount of unrecognized diversity, calling for an acceleration of taxonomic exploration. This process will be greatly facilitated by a DNA barcoding system; however, the mitochondrial population structure of many amphibian species presents numerous challenges to such a standardized, single locus, approach. Here we analyse intra- and interspecific patterns of mitochondrial variation in two distantly related groups of amphibians, mantellid frogs and salamanders, to determine the promise of DNA barcoding with cytochrome oxidase subunit I (cox1) sequences in this taxon. High intraspecific cox1 divergences of 7-14% were observed (18% in one case) within the whole set of amphibian sequences analysed. These high values are not caused by particularly high substitution rates of this gene but by generally deep mitochondrial divergences within and among amphibian species. Despite these high divergences, cox1 sequences were able to correctly identify species including disparate geographic variants. The main problems with cox1 barcoding of amphibians are (i) the high variability of priming sites that hinder the application of universal primers to all species and (ii) the observed distinct overlap of intraspecific and interspecific divergence values, which implies difficulties in the definition of threshold values to identify candidate species. Common discordances between geographical signatures of mitochondrial and nuclear markers in amphibians indicate that a single-locus approach can be problematic when high accuracy of DNA barcoding is required. We suggest that a number of mitochondrial and nuclear genes may be used as DNA barcoding markers to complement cox1.

  3. Identifying Canadian Freshwater Fishes through DNA Barcodes

    PubMed Central

    Hubert, Nicolas; Hanner, Robert; Holm, Erling; Mandrak, Nicholas E.; Taylor, Eric; Burridge, Mary; Watkinson, Douglas; Dumont, Pierre; Curry, Allen; Bentzen, Paul; Zhang, Junbin; April, Julien; Bernatchez, Louis

    2008-01-01

    Background DNA barcoding aims to provide an efficient method for species-level identifications using an array of species specific molecular tags derived from the 5′ region of the mitochondrial cytochrome c oxidase I (COI) gene. The efficiency of the method hinges on the degree of sequence divergence among species and species-level identifications are relatively straightforward when the average genetic distance among individuals within a species does not exceed the average genetic distance between sister species. Fishes constitute a highly diverse group of vertebrates that exhibit deep phenotypic changes during development. In this context, the identification of fish species is challenging and DNA barcoding provide new perspectives in ecology and systematics of fishes. Here we examined the degree to which DNA barcoding discriminate freshwater fish species from the well-known Canadian fauna, which currently encompasses nearly 200 species, some which are of high economic value like salmons and sturgeons. Methodology/Principal Findings We bi-directionally sequenced the standard 652 bp “barcode” region of COI for 1360 individuals belonging to 190 of the 203 Canadian freshwater fish species (95%). Most species were represented by multiple individuals (7.6 on average), the majority of which were retained as voucher specimens. The average genetic distance was 27 fold higher between species than within species, as K2P distance estimates averaged 8.3% among congeners and only 0.3% among concpecifics. However, shared polymorphism between sister-species was detected in 15 species (8% of the cases). The distribution of K2P distance between individuals and species overlapped and identifications were only possible to species group using DNA barcodes in these cases. Conversely, deep hidden genetic divergence was revealed within two species, suggesting the presence of cryptic species. Conclusions/Significance The present study evidenced that freshwater fish species can be efficiently identified through the use of DNA barcoding, especially the species complex of small-sized species, and that the present COI library can be used for subsequent applications in ecology and systematics. PMID:22423312

  4. Ecological niche modelling and nDNA sequencing support a new, morphologically cryptic beetle species unveiled by DNA barcoding.

    PubMed

    Hawlitschek, Oliver; Porch, Nick; Hendrich, Lars; Balke, Michael

    2011-02-09

    DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data. The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n. In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species.

  5. Ecological Niche Modelling and nDNA Sequencing Support a New, Morphologically Cryptic Beetle Species Unveiled by DNA Barcoding

    PubMed Central

    Hawlitschek, Oliver; Porch, Nick; Hendrich, Lars; Balke, Michael

    2011-01-01

    Background DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data. Methodology/Principal Findings The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n. Conclusion/Significance In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species. PMID:21347370

  6. Deep-sea sampling on CMarZ cruises in the Atlantic Ocean - an Introduction

    NASA Astrophysics Data System (ADS)

    Wiebe, Peter H.; Bucklin, Ann; Madin, Laurence; Angel, Martin V.; Sutton, Tracey; Pagés, Francesc; Hopcroft, Russell R.; Lindsay, Dhugal

    2010-12-01

    The deep-sea zooplankton assemblage is hypothesized to have high species diversity, with low abundances of each species. However, even rare species may have huge population sizes and play a critical role in the dynamics of deep-sea environments. The Census of Marine Zooplankton (CMarZ) study sought to accurately assess zooplankton diversity in the mesopelagic and bathypelagic zones of the subtropical/tropical of the northwest and eastern sections of the Atlantic Ocean using integrated morphological and molecular analysis of large-volume samples to depths of 5,000 m. The field surveys in April 2006 and November 2007 included scientists and students associated with the CMarZ. The cruise field work entailed at-sea analysis of samples and identification of specimens by expert taxonomists, with at-sea DNA sequencing to determine a barcode (i.e., a short DNA sequence for species recognition) for selected species. Environmental data and zooplankton samples were collected with 1-m 2 and 10-m 2 opening/closing MOCNESS (0-1000 m and 1000-5000 m, respectively), and with either a 0.25-m 2 MOCNESS or a 0.5-m 2 Multi-net above 1000 m. More than 500 species were identified and more than 1000 specimens placed in a queue for barcoding on each cruise; several hundred species were barcoded at sea. For several taxonomic groups, a significant fraction of the region's known species were collected and identified. For example, in the northwest Atlantic 93 of 140 known ostracod species for the Atlantic Ocean were collected, 6 undescribed species were found, and the first DNA barcode for a planktonic ostracod was obtained. The deployment of trawls with fine-mesh nets to sample large volumes at great depths for small zooplankton confirmed that there is considerable species diversity at depth, with more species yet to be discovered.

  7. A Transcontinental Challenge — A Test of DNA Barcode Performance for 1,541 Species of Canadian Noctuoidea (Lepidoptera)

    PubMed Central

    Zahiri, Reza; Lafontaine, J. Donald; Schmidt, B. Christian; deWaard, Jeremy R.; Zakharov, Evgeny V.; Hebert, Paul D. N.

    2014-01-01

    This study provides a first, comprehensive, diagnostic use of DNA barcodes for the Canadian fauna of noctuoids or “owlet” moths (Lepidoptera: Noctuoidea) based on vouchered records for 1,541 species (99.1% species coverage), and more than 30,000 sequences. When viewed from a Canada-wide perspective, DNA barcodes unambiguously discriminate 90% of the noctuoid species recognized through prior taxonomic study, and resolution reaches 95.6% when considered at a provincial scale. Barcode sharing is concentrated in certain lineages with 54% of the cases involving 1.8% of the genera. Deep intraspecific divergence exists in 7.7% of the species, but further studies are required to clarify whether these cases reflect an overlooked species complex or phylogeographic variation in a single species. Non-native species possess higher Nearest-Neighbour (NN) distances than native taxa, whereas generalist feeders have lower NN distances than those with more specialized feeding habits. We found high concordance between taxonomic names and sequence clusters delineated by the Barcode Index Number (BIN) system with 1,082 species (70%) assigned to a unique BIN. The cases of discordance involve both BIN mergers and BIN splits with 38 species falling into both categories, most likely reflecting bidirectional introgression. One fifth of the species are involved in a BIN merger reflecting the presence of 158 species sharing their barcode sequence with at least one other taxon, and 189 species with low, but diagnostic COI divergence. A very few cases (13) involved species whose members fell into both categories. Most of the remaining 140 species show a split into two or three BINs per species, while Virbia ferruginosa was divided into 16. The overall results confirm that DNA barcodes are effective for the identification of Canadian noctuoids. This study also affirms that BINs are a strong proxy for species, providing a pathway for a rapid, accurate estimation of animal diversity. PMID:24667847

  8. Deep COI sequencing of standardized benthic samples unveils overlooked diversity of Jordanian coral reefs in the northern Red Sea.

    PubMed

    Al-Rshaidat, Mamoon M D; Snider, Allison; Rosebraugh, Sydney; Devine, Amanda M; Devine, Thomas D; Plaisance, Laetitia; Knowlton, Nancy; Leray, Matthieu

    2016-09-01

    High-throughput sequencing (HTS) of DNA barcodes (metabarcoding), particularly when combined with standardized sampling protocols, is one of the most promising approaches for censusing overlooked cryptic invertebrate communities. We present biodiversity estimates based on sequencing of the cytochrome c oxidase subunit 1 (COI) gene for coral reefs of the Gulf of Aqaba, a semi-enclosed system in the northern Red Sea. Samples were obtained from standardized sampling devices (Autonomous Reef Monitoring Structures (ARMS)) deployed for 18 months. DNA barcoding of non-sessile specimens >2 mm revealed 83 OTUs in six phyla, of which only 25% matched a reference sequence in public databases. Metabarcoding of the 2 mm - 500 μm and sessile bulk fractions revealed 1197 OTUs in 15 animal phyla, of which only 4.9% matched reference barcodes. These results highlight the scarcity of COI data for cryptobenthic organisms of the Red Sea. Compared with data obtained using similar methods, our results suggest that Gulf of Aqaba reefs are less diverse than two Pacific coral reefs but much more diverse than an Atlantic oyster reef at a similar latitude. The standardized approaches used here show promise for establishing baseline data on biodiversity, monitoring the impacts of environmental change, and quantifying patterns of diversity at regional and global scales.

  9. Filling reference gaps via assembling DNA barcodes using high-throughput sequencing-moving toward barcoding the world.

    PubMed

    Liu, Shanlin; Yang, Chentao; Zhou, Chengran; Zhou, Xin

    2017-12-01

    Over the past decade, biodiversity researchers have dedicated tremendous efforts to constructing DNA reference barcodes for rapid species registration and identification. Although analytical cost for standard DNA barcoding has been significantly reduced since early 2000, further dramatic reduction in barcoding costs is unlikely because Sanger sequencing is approaching its limits in throughput and chemistry cost. Constraints in barcoding cost not only led to unbalanced barcoding efforts around the globe, but also prevented high-throughput sequencing (HTS)-based taxonomic identification from applying binomial species names, which provide crucial linkages to biological knowledge. We developed an Illumina-based pipeline, HIFI-Barcode, to produce full-length Cytochrome c oxidase subunit I (COI) barcodes from pooled polymerase chain reaction amplicons generated by individual specimens. The new pipeline generated accurate barcode sequences that were comparable to Sanger standards, even for different haplotypes of the same species that were only a few nucleotides different from each other. Additionally, the new pipeline was much more sensitive in recovering amplicons at low quantity. The HIFI-Barcode pipeline successfully recovered barcodes from more than 78% of the polymerase chain reactions that didn't show clear bands on the electrophoresis gel. Moreover, sequencing results based on the single molecular sequencing platform Pacbio confirmed the accuracy of the HIFI-Barcode results. Altogether, the new pipeline can provide an improved solution to produce full-length reference barcodes at about one-tenth of the current cost, enabling construction of comprehensive barcode libraries for local fauna, leading to a feasible direction for DNA barcoding global biomes. © The Authors 2017. Published by Oxford University Press.

  10. Constructing DNA Barcode Sets Based on Particle Swarm Optimization.

    PubMed

    Wang, Bin; Zheng, Xuedong; Zhou, Shihua; Zhou, Changjun; Wei, Xiaopeng; Zhang, Qiang; Wei, Ziqi

    2018-01-01

    Following the completion of the human genome project, a large amount of high-throughput bio-data was generated. To analyze these data, massively parallel sequencing, namely next-generation sequencing, was rapidly developed. DNA barcodes are used to identify the ownership between sequences and samples when they are attached at the beginning or end of sequencing reads. Constructing DNA barcode sets provides the candidate DNA barcodes for this application. To increase the accuracy of DNA barcode sets, a particle swarm optimization (PSO) algorithm has been modified and used to construct the DNA barcode sets in this paper. Compared with the extant results, some lower bounds of DNA barcode sets are improved. The results show that the proposed algorithm is effective in constructing DNA barcode sets.

  11. Long-range barcode labeling-sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Feng; Zhang, Tao; Singh, Kanwar K.

    Methods for sequencing single large DNA molecules by clonal multiple displacement amplification using barcoded primers. Sequences are binned based on barcode sequences and sequenced using a microdroplet-based method for sequencing large polynucleotide templates to enable assembly of haplotype-resolved complex genomes and metagenomes.

  12. Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification

    PubMed Central

    2013-01-01

    Background Next-generation-sequencing (NGS) technologies combined with a classic DNA barcoding approach have enabled fast and credible measurement for biodiversity of mixed environmental samples. However, the PCR amplification involved in nearly all existing NGS protocols inevitably introduces taxonomic biases. In the present study, we developed new Illumina pipelines without PCR amplifications to analyze terrestrial arthropod communities. Results Mitochondrial enrichment directly followed by Illumina shotgun sequencing, at an ultra-high sequence volume, enabled the recovery of Cytochrome c Oxidase subunit 1 (COI) barcode sequences, which allowed for the estimation of species composition at high fidelity for a terrestrial insect community. With 15.5 Gbp Illumina data, approximately 97% and 92% were detected out of the 37 input Operational Taxonomic Units (OTUs), whether the reference barcode library was used or not, respectively, while only 1 novel OTU was found for the latter. Additionally, relatively strong correlation between the sequencing volume and the total biomass was observed for species from the bulk sample, suggesting a potential solution to reveal relative abundance. Conclusions The ability of the new Illumina PCR-free pipeline for DNA metabarcoding to detect small arthropod specimens and its tendency to avoid most, if not all, false positives suggests its great potential in biodiversity-related surveillance, such as in biomonitoring programs. However, further improvement for mitochondrial enrichment is likely needed for the application of the new pipeline in analyzing arthropod communities at higher diversity. PMID:23587339

  13. Evaluation of DNA barcoding and identification of new haplomorphs in Canadian deerflies and horseflies.

    PubMed

    Cywinska, A; Hannan, M A; Kevan, P G; Roughley, R E; Iranpour, M; Hunter, F F

    2010-12-01

    This paper reports the first tests of the suitability of the standardized mitochondrial cytochrome c oxidase subunit I (COI) barcoding system for the identification of Canadian deerflies and horseflies. Two additional mitochondrial molecular markers were used to determine whether unambiguous species recognition in tabanids can be achieved. Our 332 Canadian tabanid samples yielded 650 sequences from five genera and 42 species. Standard COI barcodes demonstrated a strong A + T bias (mean 68.1%), especially at third codon positions (mean 93.0%). Our preliminary test of this system showed that the standard COI barcode worked well for Canadian Tabanidae: the target DNA can be easily recovered from small amounts of insect tissue and aligned for all tabanid taxa. Each tabanid species possessed distinctive sets of COI haplotypes which discriminated well among species. Average conspecific Kimura two-parameter (K2P) divergence (0.49%) was 12 times lower than the average divergence within species. Both the neighbour-joining and the Bayesian methods produced trees with identical monophyletic species groups. Two species, Chrysops dawsoni Philip and Chrysops montanus Osten Sacken (Diptera: Tabanidae), showed relatively deep intraspecific sequence divergences (∼ 10 times the average) for all three mitochondrial gene regions analysed. We suggest provisional differentiation of Ch. montanus into two haplotypes, namely, Ch. montanus haplomorph 1 and Ch. montanus haplomorph 2, both defined by their molecular sequences and by newly discovered differences in structural features near their ocelli. © 2010 Brock University. Medical and Veterinary Entomology © 2010 The Royal Entomological Society.

  14. Filling reference gaps via assembling DNA barcodes using high-throughput sequencing—moving toward barcoding the world

    PubMed Central

    Zhou, Chengran

    2017-01-01

    Abstract Over the past decade, biodiversity researchers have dedicated tremendous efforts to constructing DNA reference barcodes for rapid species registration and identification. Although analytical cost for standard DNA barcoding has been significantly reduced since early 2000, further dramatic reduction in barcoding costs is unlikely because Sanger sequencing is approaching its limits in throughput and chemistry cost. Constraints in barcoding cost not only led to unbalanced barcoding efforts around the globe, but also prevented high-throughput sequencing (HTS)–based taxonomic identification from applying binomial species names, which provide crucial linkages to biological knowledge. We developed an Illumina-based pipeline, HIFI-Barcode, to produce full-length Cytochrome c oxidase subunit I (COI) barcodes from pooled polymerase chain reaction amplicons generated by individual specimens. The new pipeline generated accurate barcode sequences that were comparable to Sanger standards, even for different haplotypes of the same species that were only a few nucleotides different from each other. Additionally, the new pipeline was much more sensitive in recovering amplicons at low quantity. The HIFI-Barcode pipeline successfully recovered barcodes from more than 78% of the polymerase chain reactions that didn’t show clear bands on the electrophoresis gel. Moreover, sequencing results based on the single molecular sequencing platform Pacbio confirmed the accuracy of the HIFI-Barcode results. Altogether, the new pipeline can provide an improved solution to produce full-length reference barcodes at about one-tenth of the current cost, enabling construction of comprehensive barcode libraries for local fauna, leading to a feasible direction for DNA barcoding global biomes. PMID:29077841

  15. BioMaS: a modular pipeline for Bioinformatic analysis of Metagenomic AmpliconS.

    PubMed

    Fosso, Bruno; Santamaria, Monica; Marzano, Marinella; Alonso-Alemany, Daniel; Valiente, Gabriel; Donvito, Giacinto; Monaco, Alfonso; Notarangelo, Pasquale; Pesole, Graziano

    2015-07-01

    Substantial advances in microbiology, molecular evolution and biodiversity have been carried out in recent years thanks to Metagenomics, which allows to unveil the composition and functions of mixed microbial communities in any environmental niche. If the investigation is aimed only at the microbiome taxonomic structure, a target-based metagenomic approach, here also referred as Meta-barcoding, is generally applied. This approach commonly involves the selective amplification of a species-specific genetic marker (DNA meta-barcode) in the whole taxonomic range of interest and the exploration of its taxon-related variants through High-Throughput Sequencing (HTS) technologies. The accessibility to proper computational systems for the large-scale bioinformatic analysis of HTS data represents, currently, one of the major challenges in advanced Meta-barcoding projects. BioMaS (Bioinformatic analysis of Metagenomic AmpliconS) is a new bioinformatic pipeline designed to support biomolecular researchers involved in taxonomic studies of environmental microbial communities by a completely automated workflow, comprehensive of all the fundamental steps, from raw sequence data upload and cleaning to final taxonomic identification, that are absolutely required in an appropriately designed Meta-barcoding HTS-based experiment. In its current version, BioMaS allows the analysis of both bacterial and fungal environments starting directly from the raw sequencing data from either Roche 454 or Illumina HTS platforms, following two alternative paths, respectively. BioMaS is implemented into a public web service available at https://recasgateway.ba.infn.it/ and is also available in Galaxy at http://galaxy.cloud.ba.infn.it:8080 (only for Illumina data). BioMaS is a friendly pipeline for Meta-barcoding HTS data analysis specifically designed for users without particular computing skills. A comparative benchmark, carried out by using a simulated dataset suitably designed to broadly represent the currently known bacterial and fungal world, showed that BioMaS outperforms QIIME and MOTHUR in terms of extent and accuracy of deep taxonomic sequence assignments.

  16. DNA barcode goes two-dimensions: DNA QR code web server.

    PubMed

    Liu, Chang; Shi, Linchun; Xu, Xiaolan; Li, Huan; Xing, Hang; Liang, Dong; Jiang, Kun; Pang, Xiaohui; Song, Jingyuan; Chen, Shilin

    2012-01-01

    The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, "DNA barcode" actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR) code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications.

  17. Pair-barcode high-throughput sequencing for large-scale multiplexed sample analysis

    PubMed Central

    2012-01-01

    Background The multiplexing becomes the major limitation of the next-generation sequencing (NGS) in application to low complexity samples. Physical space segregation allows limited multiplexing, while the existing barcode approach only permits simultaneously analysis of up to several dozen samples. Results Here we introduce pair-barcode sequencing (PBS), an economic and flexible barcoding technique that permits parallel analysis of large-scale multiplexed samples. In two pilot runs using SOLiD sequencer (Applied Biosystems Inc.), 32 independent pair-barcoded miRNA libraries were simultaneously discovered by the combination of 4 unique forward barcodes and 8 unique reverse barcodes. Over 174,000,000 reads were generated and about 64% of them are assigned to both of the barcodes. After mapping all reads to pre-miRNAs in miRBase, different miRNA expression patterns are captured from the two clinical groups. The strong correlation using different barcode pairs and the high consistency of miRNA expression in two independent runs demonstrates that PBS approach is valid. Conclusions By employing PBS approach in NGS, large-scale multiplexed pooled samples could be practically analyzed in parallel so that high-throughput sequencing economically meets the requirements of samples which are low sequencing throughput demand. PMID:22276739

  18. Pair-barcode high-throughput sequencing for large-scale multiplexed sample analysis.

    PubMed

    Tu, Jing; Ge, Qinyu; Wang, Shengqin; Wang, Lei; Sun, Beili; Yang, Qi; Bai, Yunfei; Lu, Zuhong

    2012-01-25

    The multiplexing becomes the major limitation of the next-generation sequencing (NGS) in application to low complexity samples. Physical space segregation allows limited multiplexing, while the existing barcode approach only permits simultaneously analysis of up to several dozen samples. Here we introduce pair-barcode sequencing (PBS), an economic and flexible barcoding technique that permits parallel analysis of large-scale multiplexed samples. In two pilot runs using SOLiD sequencer (Applied Biosystems Inc.), 32 independent pair-barcoded miRNA libraries were simultaneously discovered by the combination of 4 unique forward barcodes and 8 unique reverse barcodes. Over 174,000,000 reads were generated and about 64% of them are assigned to both of the barcodes. After mapping all reads to pre-miRNAs in miRBase, different miRNA expression patterns are captured from the two clinical groups. The strong correlation using different barcode pairs and the high consistency of miRNA expression in two independent runs demonstrates that PBS approach is valid. By employing PBS approach in NGS, large-scale multiplexed pooled samples could be practically analyzed in parallel so that high-throughput sequencing economically meets the requirements of samples which are low sequencing throughput demand.

  19. Cross-shore and Vertical Distributions of Invertebrate Larvae Using Autonomous Sampling Coupled with Genetic Analysis

    NASA Astrophysics Data System (ADS)

    Govindarajan, A.; Pineda, J.; Purcell, M.; Tradd, K.; Packard, G.; Girard, A.; Dennett, M.; Breier, J. A., Jr.

    2016-02-01

    We present a new method to estimate the distribution of invertebrate larvae relative to environmental variables such as temperature, salinity, and circulation. A large volume in situ filtering system developed for discrete biogeochemical sampling in the deep-sea (the Suspended Particulate Rosette "SUPR" multisampler) was mounted to the autonomous underwater vehicle REMUS 600 for coastal larval and environmental sampling. We describe the results of SUPR-REMUS deployments conducted in Buzzards Bay, Massachusetts (2014) and west of Martha's Vineyard, Massachusetts (2015). We collected discrete samples cross-shore and from surface, middle, and bottom layers of the water column. Samples were preserved for DNA analysis. Our Buzzards Bay deployment targeted barnacle larvae, which are abundant in late winter and early spring. For these samples, we used morphological analysis and DNA barcodes generated by Sanger sequencing to obtain stage and species-specific cross-shore and vertical distributions. We targeted bivalve larvae in our 2015 deployments, and genetic analysis of larvae from these samples is underway. For these samples, we are comparing species barcode data derived from traditional Sanger sequencing of individuals to those obtained from next generation sequencing (NGS) of bulk plankton samples. Our results demonstrate the utility of autonomous sampling combined with DNA barcoding for studying larval distributions and transport dynamics.

  20. The campaign to DNA barcode all fishes, FISH-BOL.

    PubMed

    Ward, R D; Hanner, R; Hebert, P D N

    2009-02-01

    FISH-BOL, the Fish Barcode of Life campaign, is an international research collaboration that is assembling a standardized reference DNA sequence library for all fishes. Analysis is targeting a 648 base pair region of the mitochondrial cytochrome c oxidase I (COI) gene. More than 5000 species have already been DNA barcoded, with an average of five specimens per species, typically vouchers with authoritative identifications. The barcode sequence from any fish, fillet, fin, egg or larva can be matched against these reference sequences using BOLD; the Barcode of Life Data System (http://www.barcodinglife.org). The benefits of barcoding fishes include facilitating species identification, highlighting cases of range expansion for known species, flagging previously overlooked species and enabling identifications where traditional methods cannot be applied. Results thus far indicate that barcodes separate c. 98 and 93% of already described marine and freshwater fish species, respectively. Several specimens with divergent barcode sequences have been confirmed by integrative taxonomic analysis as new species. Past concerns in relation to the use of fish barcoding for species discrimination are discussed. These include hybridization, recent radiations, regional differentiation in barcode sequences and nuclear copies of the barcode region. However, current results indicate these issues are of little concern for the great majority of specimens.

  1. Designing robust watermark barcodes for multiplex long-read sequencing.

    PubMed

    Ezpeleta, Joaquín; Krsticevic, Flavia J; Bulacio, Pilar; Tapia, Elizabeth

    2017-03-15

    To attain acceptable sample misassignment rates, current approaches to multiplex single-molecule real-time sequencing require upstream quality improvement, which is obtained from multiple passes over the sequenced insert and significantly reduces the effective read length. In order to fully exploit the raw read length on multiplex applications, robust barcodes capable of dealing with the full single-pass error rates are needed. We present a method for designing sequencing barcodes that can withstand a large number of insertion, deletion and substitution errors and are suitable for use in multiplex single-molecule real-time sequencing. The manuscript focuses on the design of barcodes for full-length single-pass reads, impaired by challenging error rates in the order of 11%. The proposed barcodes can multiplex hundreds or thousands of samples while achieving sample misassignment probabilities as low as 10-7 under the above conditions, and are designed to be compatible with chemical constraints imposed by the sequencing process. Software tools for constructing watermark barcode sets and demultiplexing barcoded reads, together with example sets of barcodes and synthetic barcoded reads, are freely available at www.cifasis-conicet.gov.ar/ezpeleta/NS-watermark . ezpeleta@cifasis-conicet.gov.ar. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  2. Decision Tree Algorithm-Generated Single-Nucleotide Polymorphism Barcodes of rbcL Genes for 38 Brassicaceae Species Tagging.

    PubMed

    Yang, Cheng-Hong; Wu, Kuo-Chuan; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2018-01-01

    DNA barcode sequences are accumulating in large data sets. A barcode is generally a sequence larger than 1000 base pairs and generates a computational burden. Although the DNA barcode was originally envisioned as straightforward species tags, the identification usage of barcode sequences is rarely emphasized currently. Single-nucleotide polymorphism (SNP) association studies provide us an idea that the SNPs may be the ideal target of feature selection to discriminate between different species. We hypothesize that SNP-based barcodes may be more effective than the full length of DNA barcode sequences for species discrimination. To address this issue, we tested a r ibulose diphosphate carboxylase ( rbcL ) S NP b arcoding (RSB) strategy using a decision tree algorithm. After alignment and trimming, 31 SNPs were discovered in the rbcL sequences from 38 Brassicaceae plant species. In the decision tree construction, these SNPs were computed to set up the decision rule to assign the sequences into 2 groups level by level. After algorithm processing, 37 nodes and 31 loci were required for discriminating 38 species. Finally, the sequence tags consisting of 31 rbcL SNP barcodes were identified for discriminating 38 Brassicaceae species based on the decision tree-selected SNP pattern using RSB method. Taken together, this study provides the rational that the SNP aspect of DNA barcode for rbcL gene is a useful and effective sequence for tagging 38 Brassicaceae species.

  3. Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing

    PubMed Central

    Balmaseda, Angel; Harris, Eva; DeRisi, Joseph L.

    2012-01-01

    Dengue virus is an emerging infectious agent that infects an estimated 50–100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness. PMID:22347512

  4. Barcoding the butterflies of southern South America: Species delimitation efficacy, cryptic diversity and geographic patterns of divergence.

    PubMed

    Lavinia, Pablo D; Núñez Bustos, Ezequiel O; Kopuchian, Cecilia; Lijtmaer, Darío A; García, Natalia C; Hebert, Paul D N; Tubaro, Pablo L

    2017-01-01

    Because the tropical regions of America harbor the highest concentration of butterfly species, its fauna has attracted considerable attention. Much less is known about the butterflies of southern South America, particularly Argentina, where over 1,200 species occur. To advance understanding of this fauna, we assembled a DNA barcode reference library for 417 butterfly species of Argentina, focusing on the Atlantic Forest, a biodiversity hotspot. We tested the efficacy of this library for specimen identification, used it to assess the frequency of cryptic species, and examined geographic patterns of genetic variation, making this study the first large-scale genetic assessment of the butterflies of southern South America. The average sequence divergence to the nearest neighbor (i.e. minimum interspecific distance) was 6.91%, ten times larger than the mean distance to the furthest conspecific (0.69%), with a clear barcode gap present in all but four of the species represented by two or more specimens. As a consequence, the DNA barcode library was extremely effective in the discrimination of these species, allowing a correct identification in more than 95% of the cases. Singletons (i.e. species represented by a single sequence) were also distinguishable in the gene trees since they all had unique DNA barcodes, divergent from those of the closest non-conspecific. The clustering algorithms implemented recognized from 416 to 444 barcode clusters, suggesting that the actual diversity of butterflies in Argentina is 3%-9% higher than currently recognized. Furthermore, our survey added three new records of butterflies for the country (Eurema agave, Mithras hannelore, Melanis hillapana). In summary, this study not only supported the utility of DNA barcoding for the identification of the butterfly species of Argentina, but also highlighted several cases of both deep intraspecific and shallow interspecific divergence that should be studied in more detail.

  5. Barcoding the butterflies of southern South America: Species delimitation efficacy, cryptic diversity and geographic patterns of divergence

    PubMed Central

    Núñez Bustos, Ezequiel O.; Kopuchian, Cecilia; Lijtmaer, Darío A.; García, Natalia C.; Hebert, Paul D. N.; Tubaro, Pablo L.

    2017-01-01

    Because the tropical regions of America harbor the highest concentration of butterfly species, its fauna has attracted considerable attention. Much less is known about the butterflies of southern South America, particularly Argentina, where over 1,200 species occur. To advance understanding of this fauna, we assembled a DNA barcode reference library for 417 butterfly species of Argentina, focusing on the Atlantic Forest, a biodiversity hotspot. We tested the efficacy of this library for specimen identification, used it to assess the frequency of cryptic species, and examined geographic patterns of genetic variation, making this study the first large-scale genetic assessment of the butterflies of southern South America. The average sequence divergence to the nearest neighbor (i.e. minimum interspecific distance) was 6.91%, ten times larger than the mean distance to the furthest conspecific (0.69%), with a clear barcode gap present in all but four of the species represented by two or more specimens. As a consequence, the DNA barcode library was extremely effective in the discrimination of these species, allowing a correct identification in more than 95% of the cases. Singletons (i.e. species represented by a single sequence) were also distinguishable in the gene trees since they all had unique DNA barcodes, divergent from those of the closest non-conspecific. The clustering algorithms implemented recognized from 416 to 444 barcode clusters, suggesting that the actual diversity of butterflies in Argentina is 3%–9% higher than currently recognized. Furthermore, our survey added three new records of butterflies for the country (Eurema agave, Mithras hannelore, Melanis hillapana). In summary, this study not only supported the utility of DNA barcoding for the identification of the butterfly species of Argentina, but also highlighted several cases of both deep intraspecific and shallow interspecific divergence that should be studied in more detail. PMID:29049373

  6. A DNA mini-barcode for land plants.

    PubMed

    Little, Damon P

    2014-05-01

    Small portions of the barcode region - mini-barcodes - may be used in place of full-length barcodes to overcome DNA degradation for samples with poor DNA preservation. 591,491,286 rbcL mini-barcode primer combinations were electronically evaluated for PCR universality, and two novel highly universal sets of priming sites were identified. Novel and published rbcL mini-barcode primers were evaluated for PCR amplification [determined with a validated electronic simulation (n = 2765) and empirically (n = 188)], Sanger sequence quality [determined empirically (n = 188)], and taxonomic discrimination [determined empirically (n = 30,472)]. PCR amplification for all mini-barcodes, as estimated by validated electronic simulation, was successful for 90.2-99.8% of species. Overall Sanger sequence quality for mini-barcodes was very low - the best mini-barcode tested produced sequences of adequate quality (B20 ≥ 0.5) for 74.5% of samples. The majority of mini-barcodes provide correct identifications of families in excess of 70.1% of the time. Discriminatory power noticeably decreased at lower taxonomic levels. At the species level, the discriminatory power of the best mini-barcode was less than 38.2%. For samples believed to contain DNA from only one species, an investigator should attempt to sequence, in decreasing order of utility and probability of success, mini-barcodes F (rbcL1/rbcLB), D (F52/R193) and K (F517/R604). For samples believed to contain DNA from more than one species, an investigator should amplify and sequence mini-barcode D (F52/R193). © 2013 John Wiley & Sons Ltd.

  7. Efficient alignment-free DNA barcode analytics.

    PubMed

    Kuksa, Pavel; Pavlovic, Vladimir

    2009-11-10

    In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient species classification, but also opens possibility for accurate clustering analysis of putative species barcodes and identification of critical within-barcode loci distinguishing barcodes of different sample groups. New alignment-free methods provide highly accurate and fast DNA barcode-based identification and classification of species with substantial improvements in accuracy and speed over state-of-the-art barcode analysis methods. We evaluate our methods on problems of species classification and identification using barcodes, important and relevant analytical tasks in many practical applications (adverse species movement monitoring, sampling surveys for unknown or pathogenic species identification, biodiversity assessment, etc.) On several benchmark barcode datasets, including ACG, Astraptes, Hesperiidae, Fish larvae, and Birds of North America, proposed alignment-free methods considerably improve prediction accuracy compared to prior results. We also observe significant running time improvements over the state-of-the-art methods. Our results show that newly developed alignment-free methods for DNA barcoding can efficiently and with high accuracy identify specimens by examining only few barcode features, resulting in increased scalability and interpretability of current computational approaches to barcoding.

  8. The practical evaluation of DNA barcode efficacy.

    PubMed

    Spouge, John L; Mariño-Ramírez, Leonardo

    2012-01-01

    This chapter describes a workflow for measuring the efficacy of a barcode in identifying species. First, assemble individual sequence databases corresponding to each barcode marker. A controlled collection of taxonomic data is preferable to GenBank data, because GenBank data can be problematic, particularly when comparing barcodes based on more than one marker. To ensure proper controls when evaluating species identification, specimens not having a sequence in every marker database should be discarded. Second, select a computer algorithm for assigning species to barcode sequences. No algorithm has yet improved notably on assigning a specimen to the species of its nearest neighbor within a barcode database. Because global sequence alignments (e.g., with the Needleman-Wunsch algorithm, or some related algorithm) examine entire barcode sequences, they generally produce better species assignments than local sequence alignments (e.g., with BLAST). No neighboring method (e.g., global sequence similarity, global sequence distance, or evolutionary distance based on a global alignment) has yet shown a notable superiority in identifying species. Finally, "the probability of correct identification" (PCI) provides an appropriate measurement of barcode efficacy. The overall PCI for a data set is the average of the species PCIs, taken over all species in the data set. This chapter states explicitly how to calculate PCI, how to estimate its statistical sampling error, and how to use data on PCR failure to set limits on how much improvements in PCR technology can improve species identification.

  9. DNA Barcode Goes Two-Dimensions: DNA QR Code Web Server

    PubMed Central

    Li, Huan; Xing, Hang; Liang, Dong; Jiang, Kun; Pang, Xiaohui; Song, Jingyuan; Chen, Shilin

    2012-01-01

    The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, “DNA barcode” actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR) code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications. PMID:22574113

  10. The Role of DNA Barcodes in Understanding and Conservation of Mammal Diversity in Southeast Asia

    PubMed Central

    Francis, Charles M.; Borisenko, Alex V.; Ivanova, Natalia V.; Eger, Judith L.; Lim, Burton K.; Guillén-Servent, Antonio; Kruskop, Sergei V.; Mackie, Iain; Hebert, Paul D. N.

    2010-01-01

    Background Southeast Asia is recognized as a region of very high biodiversity, much of which is currently at risk due to habitat loss and other threats. However, many aspects of this diversity, even for relatively well-known groups such as mammals, are poorly known, limiting ability to develop conservation plans. This study examines the value of DNA barcodes, sequences of the mitochondrial COI gene, to enhance understanding of mammalian diversity in the region and hence to aid conservation planning. Methodology and Principal Findings DNA barcodes were obtained from nearly 1900 specimens representing 165 recognized species of bats. All morphologically or acoustically distinct species, based on classical taxonomy, could be discriminated with DNA barcodes except four closely allied species pairs. Many currently recognized species contained multiple barcode lineages, often with deep divergence suggesting unrecognized species. In addition, most widespread species showed substantial genetic differentiation across their distributions. Our results suggest that mammal species richness within the region may be underestimated by at least 50%, and there are higher levels of endemism and greater intra-specific population structure than previously recognized. Conclusions DNA barcodes can aid conservation and research by assisting field workers in identifying species, by helping taxonomists determine species groups needing more detailed analysis, and by facilitating the recognition of the appropriate units and scales for conservation planning. PMID:20838635

  11. Data Release: DNA barcodes of plant species collected for the Global Genome Initiative for Gardens Program, National Museum of Natural History, Smithsonian Institution

    PubMed Central

    Zúñiga, Jose D.; Gostel, Morgan R.; Mulcahy, Daniel G.; Barker, Katharine; Asia Hill; Sedaghatpour, Maryam; Vo, Samantha Q.; Funk, Vicki A.; Coddington, Jonathan A.

    2017-01-01

    Abstract The Global Genome Initiative has sequenced and released 1961 DNA barcodes for genetic samples obtained as part of the Global Genome Initiative for Gardens Program. The dataset includes barcodes for 29 plant families and 309 genera that did not have sequences flagged as barcodes in GenBank and sequences from officially recognized barcoding genetic markers meet the data standard of the Consortium for the Barcode of Life. The genetic samples were deposited in the Smithsonian Institution’s National Museum of Natural History Biorepository and their records were made public through the Global Genome Biodiversity Network’s portal. The DNA barcodes are now available on GenBank. PMID:29118648

  12. Efficient alignment-free DNA barcode analytics

    PubMed Central

    Kuksa, Pavel; Pavlovic, Vladimir

    2009-01-01

    Background In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient species classification, but also opens possibility for accurate clustering analysis of putative species barcodes and identification of critical within-barcode loci distinguishing barcodes of different sample groups. Results New alignment-free methods provide highly accurate and fast DNA barcode-based identification and classification of species with substantial improvements in accuracy and speed over state-of-the-art barcode analysis methods. We evaluate our methods on problems of species classification and identification using barcodes, important and relevant analytical tasks in many practical applications (adverse species movement monitoring, sampling surveys for unknown or pathogenic species identification, biodiversity assessment, etc.) On several benchmark barcode datasets, including ACG, Astraptes, Hesperiidae, Fish larvae, and Birds of North America, proposed alignment-free methods considerably improve prediction accuracy compared to prior results. We also observe significant running time improvements over the state-of-the-art methods. Conclusion Our results show that newly developed alignment-free methods for DNA barcoding can efficiently and with high accuracy identify specimens by examining only few barcode features, resulting in increased scalability and interpretability of current computational approaches to barcoding. PMID:19900305

  13. Enhanced sensitivity for detection of low-level germline mosaic RB1 mutations in sporadic retinoblastoma cases using deep semiconductor sequencing.

    PubMed

    Chen, Zhao; Moran, Kimberly; Richards-Yutz, Jennifer; Toorens, Erik; Gerhart, Daniel; Ganguly, Tapan; Shields, Carol L; Ganguly, Arupa

    2014-03-01

    Sporadic retinoblastoma (RB) is caused by de novo mutations in the RB1 gene. Often, these mutations are present as mosaic mutations that cannot be detected by Sanger sequencing. Next-generation deep sequencing allows unambiguous detection of the mosaic mutations in lymphocyte DNA. Deep sequencing of the RB1 gene on lymphocyte DNA from 20 bilateral and 70 unilateral RB cases was performed, where Sanger sequencing excluded the presence of mutations. The individual exons of the RB1 gene from each sample were amplified, pooled, ligated to barcoded adapters, and sequenced using semiconductor sequencing on an Ion Torrent Personal Genome Machine. Six low-level mosaic mutations were identified in bilateral RB and four in unilateral RB cases. The incidence of low-level mosaic mutation was estimated to be 30% and 6%, respectively, in sporadic bilateral and unilateral RB cases, previously classified as mutation negative. The frequency of point mutations detectable in lymphocyte DNA increased from 96% to 97% for bilateral RB and from 13% to 18% for unilateral RB. The use of deep sequencing technology increased the sensitivity of the detection of low-level germline mosaic mutations in the RB1 gene. This finding has significant implications for improved clinical diagnosis, genetic counseling, surveillance, and management of RB. © 2013 WILEY PERIODICALS, INC.

  14. BioBarcode: a general DNA barcoding database and server platform for Asian biodiversity resources.

    PubMed

    Lim, Jeongheui; Kim, Sang-Yoon; Kim, Sungmin; Eo, Hae-Seok; Kim, Chang-Bae; Paek, Woon Kee; Kim, Won; Bhak, Jong

    2009-12-03

    DNA barcoding provides a rapid, accurate, and standardized method for species-level identification using short DNA sequences. Such a standardized identification method is useful for mapping all the species on Earth, particularly when DNA sequencing technology is cheaply available. There are many nations in Asia with many biodiversity resources that need to be mapped and registered in databases. We have built a general DNA barcode data processing system, BioBarcode, with open source software - which is a general purpose database and server. It uses mySQL RDBMS 5.0, BLAST2, and Apache httpd server. An exemplary database of BioBarcode has around 11,300 specimen entries (including GenBank data) and registers the biological species to map their genetic relationships. The BioBarcode database contains a chromatogram viewer which improves the performance in DNA sequence analyses. Asia has a very high degree of biodiversity and the BioBarcode database server system aims to provide an efficient bioinformatics protocol that can be freely used by Asian researchers and research organizations interested in DNA barcoding. The BioBarcode promotes the rapid acquisition of biological species DNA sequence data that meet global standards by providing specialized services, and provides useful tools that will make barcoding cheaper and faster in the biodiversity community such as standardization, depository, management, and analysis of DNA barcode data. The system can be downloaded upon request, and an exemplary server has been constructed with which to build an Asian biodiversity system http://www.asianbarcode.org.

  15. DNA barcoding Indian freshwater fishes.

    PubMed

    Lakra, Wazir Singh; Singh, M; Goswami, Mukunda; Gopalakrishnan, A; Lal, K K; Mohindra, V; Sarkar, U K; Punia, P P; Singh, K V; Bhatt, J P; Ayyappan, S

    2016-11-01

    DNA barcoding is a promising technique for species identification using a short mitochondrial DNA sequence of cytochrome c oxidase I (COI) gene. In the present study, DNA barcodes were generated from 72 species of freshwater fish covering the Orders Cypriniformes, Siluriformes, Perciformes, Synbranchiformes, and Osteoglossiformes representing 50 genera and 19 families. All the samples were collected from diverse sites except the species endemic to a particular location. Species were represented by multiple specimens in the great majority of the barcoded species. A total of 284 COI sequences were generated. After amplification and sequencing of 700 base pair fragment of COI, primers were trimmed which invariably generated a 655 base pair barcode sequence. The average Kimura two-parameter (K2P) distances within-species, genera, families, and orders were 0.40%, 9.60%, 13.10%, and 17.16%, respectively. DNA barcode discriminated congeneric species without any confusion. The study strongly validated the efficiency of COI as an ideal marker for DNA barcoding of Indian freshwater fishes.

  16. Exploring Genetic Divergence in a Species-Rich Insect Genus Using 2790 DNA Barcodes

    PubMed Central

    Lin, Xiaolong; Stur, Elisabeth; Ekrem, Torbjørn

    2015-01-01

    DNA barcoding using a fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (COI) has proven to be successful for species-level identification in many animal groups. However, most studies have been focused on relatively small datasets or on large datasets of taxonomically high-ranked groups. We explore the quality of DNA barcodes to delimit species in the diverse chironomid genus Tanytarsus (Diptera: Chironomidae) by using different analytical tools. The genus Tanytarsus is the most species-rich taxon of tribe Tanytarsini (Diptera: Chironomidae) with more than 400 species worldwide, some of which can be notoriously difficult to identify to species-level using morphology. Our dataset, based on sequences generated from own material and publicly available data in BOLD, consist of 2790 DNA barcodes with a fragment length of at least 500 base pairs. A neighbor joining tree of this dataset comprises 131 well separated clusters representing 121 morphological species of Tanytarsus: 77 named, 16 unnamed and 28 unidentified theoretical species. For our geographically widespread dataset, DNA barcodes unambiguously discriminate 94.6% of the Tanytarsus species recognized through prior morphological study. Deep intraspecific divergences exist in some species complexes, and need further taxonomic studies using appropriate nuclear markers as well as morphological and ecological data to be resolved. The DNA barcodes cluster into 120–242 molecular operational taxonomic units (OTUs) depending on whether Objective Clustering, Automatic Barcode Gap Discovery (ABGD), Generalized Mixed Yule Coalescent model (GMYC), Poisson Tree Process (PTP), subjective evaluation of the neighbor joining tree or Barcode Index Numbers (BINs) are used. We suggest that a 4–5% threshold is appropriate to delineate species of Tanytarsus non-biting midges. PMID:26406595

  17. [Hydrophidae identification through analysis on Cyt b gene barcode].

    PubMed

    Liao, Li-xi; Zeng, Ke-wu; Tu, Peng-fei

    2015-08-01

    Hydrophidae, one of the precious traditional Chinese medicines, is generally drily preserved to prevent corruption, but it is hard to identify the species of Hydrophidae through the appearance because of the change due to the drying process. The identification through analysis on gene barcode, a new technique in species identification, can avoid the problem. The gene barcodes of the 6 species of Hydrophidae like Lapemis hardwickii were aquired through DNA extraction and gene sequencing. These barcodes were then in sequence alignment and test the identification efficency by BLAST. Our results revealed that the barcode sequences performed high identification efficiency, and had obvious difference between intra- and inter-species. These all indicated that Cyt b DNA barcoding can confirm the Hydrophidae identification.

  18. BioBarcode: a general DNA barcoding database and server platform for Asian biodiversity resources

    PubMed Central

    2009-01-01

    Background DNA barcoding provides a rapid, accurate, and standardized method for species-level identification using short DNA sequences. Such a standardized identification method is useful for mapping all the species on Earth, particularly when DNA sequencing technology is cheaply available. There are many nations in Asia with many biodiversity resources that need to be mapped and registered in databases. Results We have built a general DNA barcode data processing system, BioBarcode, with open source software - which is a general purpose database and server. It uses mySQL RDBMS 5.0, BLAST2, and Apache httpd server. An exemplary database of BioBarcode has around 11,300 specimen entries (including GenBank data) and registers the biological species to map their genetic relationships. The BioBarcode database contains a chromatogram viewer which improves the performance in DNA sequence analyses. Conclusion Asia has a very high degree of biodiversity and the BioBarcode database server system aims to provide an efficient bioinformatics protocol that can be freely used by Asian researchers and research organizations interested in DNA barcoding. The BioBarcode promotes the rapid acquisition of biological species DNA sequence data that meet global standards by providing specialized services, and provides useful tools that will make barcoding cheaper and faster in the biodiversity community such as standardization, depository, management, and analysis of DNA barcode data. The system can be downloaded upon request, and an exemplary server has been constructed with which to build an Asian biodiversity system http://www.asianbarcode.org. PMID:19958506

  19. [Integrated DNA barcoding database for identifying Chinese animal medicine].

    PubMed

    Shi, Lin-Chun; Yao, Hui; Xie, Li-Fang; Zhu, Ying-Jie; Song, Jing-Yuan; Zhang, Hui; Chen, Shi-Lin

    2014-06-01

    In order to construct an integrated DNA barcoding database for identifying Chinese animal medicine, the authors and their cooperators have completed a lot of researches for identifying Chinese animal medicines using DNA barcoding technology. Sequences from GenBank have been analyzed simultaneously. Three different methods, BLAST, barcoding gap and Tree building, have been used to confirm the reliabilities of barcode records in the database. The integrated DNA barcoding database for identifying Chinese animal medicine has been constructed using three different parts: specimen, sequence and literature information. This database contained about 800 animal medicines and the adulterants and closely related species. Unknown specimens can be identified by pasting their sequence record into the window on the ID page of species identification system for traditional Chinese medicine (www. tcmbarcode. cn). The integrated DNA barcoding database for identifying Chinese animal medicine is significantly important for animal species identification, rare and endangered species conservation and sustainable utilization of animal resources.

  20. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers.

    PubMed

    Girardot, Charles; Scholtalbers, Jelle; Sauer, Sajoscha; Su, Shu-Yi; Furlong, Eileen E M

    2016-10-08

    The yield obtained from next generation sequencers has increased almost exponentially in recent years, making sample multiplexing common practice. While barcodes (known sequences of fixed length) primarily encode the sample identity of sequenced DNA fragments, barcodes made of random sequences (Unique Molecular Identifier or UMIs) are often used to distinguish between PCR duplicates and transcript abundance in, for example, single-cell RNA sequencing (scRNA-seq). In paired-end sequencing, different barcodes can be inserted at each fragment end to either increase the number of multiplexed samples in the library or to use one of the barcodes as UMI. Alternatively, UMIs can be combined with the sample barcodes into composite barcodes, or with standard Illumina® indexing. Subsequent analysis must take read duplicates and sample identity into account, by identifying UMIs. Existing tools do not support these complex barcoding configurations and custom code development is frequently required. Here, we present Je, a suite of tools that accommodates complex barcoding strategies, extracts UMIs and filters read duplicates taking UMIs into account. Using Je on publicly available scRNA-seq and iCLIP data containing UMIs, the number of unique reads increased by up to 36 %, compared to when UMIs are ignored. Je is implemented in JAVA and uses the Picard API. Code, executables and documentation are freely available at http://gbcs.embl.de/Je . Je can also be easily installed in Galaxy through the Galaxy toolshed.

  1. A DNA Mini-Barcoding System for Authentication of Processed Fish Products.

    PubMed

    Shokralla, Shadi; Hellberg, Rosalee S; Handy, Sara M; King, Ian; Hajibabaei, Mehrdad

    2015-10-30

    Species substitution is a form of seafood fraud for the purpose of economic gain. DNA barcoding utilizes species-specific DNA sequence information for specimen identification. Previous work has established the usability of short DNA sequences-mini-barcodes-for identification of specimens harboring degraded DNA. This study aims at establishing a DNA mini-barcoding system for all fish species commonly used in processed fish products in North America. Six mini-barcode primer pairs targeting short (127-314 bp) fragments of the cytochrome c oxidase I (CO1) DNA barcode region were developed by examining over 8,000 DNA barcodes from species in the U.S. Food and Drug Administration (FDA) Seafood List. The mini-barcode primer pairs were then tested against 44 processed fish products representing a range of species and product types. Of the 44 products, 41 (93.2%) could be identified at the species or genus level. The greatest mini-barcoding success rate found with an individual primer pair was 88.6% compared to 20.5% success rate achieved by the full-length DNA barcode primers. Overall, this study presents a mini-barcoding system that can be used to identify a wide range of fish species in commercial products and may be utilized in high throughput DNA sequencing for authentication of heavily processed fish products.

  2. DNA Barcode Sequence Identification Incorporating Taxonomic Hierarchy and within Taxon Variability

    PubMed Central

    Little, Damon P.

    2011-01-01

    For DNA barcoding to succeed as a scientific endeavor an accurate and expeditious query sequence identification method is needed. Although a global multiple–sequence alignment can be generated for some barcoding markers (e.g. COI, rbcL), not all barcoding markers are as structurally conserved (e.g. matK). Thus, algorithms that depend on global multiple–sequence alignments are not universally applicable. Some sequence identification methods that use local pairwise alignments (e.g. BLAST) are unable to accurately differentiate between highly similar sequences and are not designed to cope with hierarchic phylogenetic relationships or within taxon variability. Here, I present a novel alignment–free sequence identification algorithm–BRONX–that accounts for observed within taxon variability and hierarchic relationships among taxa. BRONX identifies short variable segments and corresponding invariant flanking regions in reference sequences. These flanking regions are used to score variable regions in the query sequence without the production of a global multiple–sequence alignment. By incorporating observed within taxon variability into the scoring procedure, misidentifications arising from shared alleles/haplotypes are minimized. An explicit treatment of more inclusive terminals allows for separate identifications to be made for each taxonomic level and/or for user–defined terminals. BRONX performs better than all other methods when there is imperfect overlap between query and reference sequences (e.g. mini–barcode queries against a full–length barcode database). BRONX consistently produced better identifications at the genus–level for all query types. PMID:21857897

  3. The chaperonin-60 universal target is a barcode for bacteria that enables de novo assembly of metagenomic sequence data.

    PubMed

    Links, Matthew G; Dumonceaux, Tim J; Hemmingsen, Sean M; Hill, Janet E

    2012-01-01

    Barcoding with molecular sequences is widely used to catalogue eukaryotic biodiversity. Studies investigating the community dynamics of microbes have relied heavily on gene-centric metagenomic profiling using two genes (16S rRNA and cpn60) to identify and track Bacteria. While there have been criteria formalized for barcoding of eukaryotes, these criteria have not been used to evaluate gene targets for other domains of life. Using the framework of the International Barcode of Life we evaluated DNA barcodes for Bacteria. Candidates from the 16S rRNA gene and the protein coding cpn60 gene were evaluated. Within complete bacterial genomes in the public domain representing 983 species from 21 phyla, the largest difference between median pairwise inter- and intra-specific distances ("barcode gap") was found from cpn60. Distribution of sequence diversity along the ∼555 bp cpn60 target region was remarkably uniform. The barcode gap of the cpn60 universal target facilitated the faithful de novo assembly of full-length operational taxonomic units from pyrosequencing data from a synthetic microbial community. Analysis supported the recognition of both 16S rRNA and cpn60 as DNA barcodes for Bacteria. The cpn60 universal target was found to have a much larger barcode gap than 16S rRNA suggesting cpn60 as a preferred barcode for Bacteria. A large barcode gap for cpn60 provided a robust target for species-level characterization of data. The assembly of consensus sequences for barcodes was shown to be a reliable method for the identification and tracking of novel microbes in metagenomic studies.

  4. DNA barcoding of the vegetable leafminer Liriomyza sativae Blanchard (Diptera: Agromyzidae) in Bangladesh

    USDA-ARS?s Scientific Manuscript database

    DNA barcoding revealed the presence of the polyphagous leafminer pest Liriomyza sativae Blanchard in Bangladesh. DNA barcode sequences for mitochondrial COI were generated for Agromyzidae larvae, pupae and adults collected from field populations across Bangladesh. BLAST sequence similarity searches ...

  5. Machine Learned Replacement of N-Labels for Basecalled Sequences in DNA Barcoding.

    PubMed

    Ma, Eddie Y T; Ratnasingham, Sujeevan; Kremer, Stefan C

    2018-01-01

    This study presents a machine learning method that increases the number of identified bases in Sanger Sequencing. The system post-processes a KB basecalled chromatogram. It selects a recoverable subset of N-labels in the KB-called chromatogram to replace with basecalls (A,C,G,T). An N-label correction is defined given an additional read of the same sequence, and a human finished sequence. Corrections are added to the dataset when an alignment determines the additional read and human agree on the identity of the N-label. KB must also rate the replacement with quality value of in the additional read. Corrections are only available during system training. Developing the system, nearly 850,000 N-labels are obtained from Barcode of Life Datasystems, the premier database of genetic markers called DNA Barcodes. Increasing the number of correct bases improves reference sequence reliability, increases sequence identification accuracy, and assures analysis correctness. Keeping with barcoding standards, our system maintains an error rate of percent. Our system only applies corrections when it estimates low rate of error. Tested on this data, our automation selects and recovers: 79 percent of N-labels from COI (animal barcode); 80 percent from matK and rbcL (plant barcodes); and 58 percent from non-protein-coding sequences (across eukaryotes).

  6. A DNA barcode for land plants.

    PubMed

    2009-08-04

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF-atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK-psbI spacer, and trnH-psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants.

  7. A DNA barcode for land plants

    PubMed Central

    Hollingsworth, Peter M.; Forrest, Laura L.; Spouge, John L.; Hajibabaei, Mehrdad; Ratnasingham, Sujeevan; van der Bank, Michelle; Chase, Mark W.; Cowan, Robyn S.; Erickson, David L.; Fazekas, Aron J.; Graham, Sean W.; James, Karen E.; Kim, Ki-Joong; Kress, W. John; Schneider, Harald; van AlphenStahl, Jonathan; Barrett, Spencer C.H.; van den Berg, Cassio; Bogarin, Diego; Burgess, Kevin S.; Cameron, Kenneth M.; Carine, Mark; Chacón, Juliana; Clark, Alexandra; Clarkson, James J.; Conrad, Ferozah; Devey, Dion S.; Ford, Caroline S.; Hedderson, Terry A.J.; Hollingsworth, Michelle L.; Husband, Brian C.; Kelly, Laura J.; Kesanakurti, Prasad R.; Kim, Jung Sung; Kim, Young-Dong; Lahaye, Renaud; Lee, Hae-Lim; Long, David G.; Madriñán, Santiago; Maurin, Olivier; Meusnier, Isabelle; Newmaster, Steven G.; Park, Chong-Wook; Percy, Diana M.; Petersen, Gitte; Richardson, James E.; Salazar, Gerardo A.; Savolainen, Vincent; Seberg, Ole; Wilkinson, Michael J.; Yi, Dong-Keun; Little, Damon P.

    2009-01-01

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF–atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK–psbI spacer, and trnH–psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants. PMID:19666622

  8. Barcodes for genomes and applications

    PubMed Central

    Zhou, Fengfeng; Olman, Victor; Xu, Ying

    2008-01-01

    Background Each genome has a stable distribution of the combined frequency for each k-mer and its reverse complement measured in sequence fragments as short as 1000 bps across the whole genome, for 1

  9. Building-up of a DNA barcode library for true bugs (insecta: hemiptera: heteroptera) of Germany reveals taxonomic uncertainties and surprises.

    PubMed

    Raupach, Michael J; Hendrich, Lars; Küchler, Stefan M; Deister, Fabian; Morinière, Jérome; Gossner, Martin M

    2014-01-01

    During the last few years, DNA barcoding has become an efficient method for the identification of species. In the case of insects, most published DNA barcoding studies focus on species of the Ephemeroptera, Trichoptera, Hymenoptera and especially Lepidoptera. In this study we test the efficiency of DNA barcoding for true bugs (Hemiptera: Heteroptera), an ecological and economical highly important as well as morphologically diverse insect taxon. As part of our study we analyzed DNA barcodes for 1742 specimens of 457 species, comprising 39 families of the Heteroptera. We found low nucleotide distances with a minimum pairwise K2P distance <2.2% within 21 species pairs (39 species). For ten of these species pairs (18 species), minimum pairwise distances were zero. In contrast to this, deep intraspecific sequence divergences with maximum pairwise distances >2.2% were detected for 16 traditionally recognized and valid species. With a successful identification rate of 91.5% (418 species) our study emphasizes the use of DNA barcodes for the identification of true bugs and represents an important step in building-up a comprehensive barcode library for true bugs in Germany and Central Europe as well. Our study also highlights the urgent necessity of taxonomic revisions for various taxa of the Heteroptera, with a special focus on various species of the Miridae. In this context we found evidence for on-going hybridization events within various taxonomically challenging genera (e.g. Nabis Latreille, 1802 (Nabidae), Lygus Hahn, 1833 (Miridae), Phytocoris Fallén, 1814 (Miridae)) as well as the putative existence of cryptic species (e.g. Aneurus avenius (Duffour, 1833) (Aradidae) or Orius niger (Wolff, 1811) (Anthocoridae)).

  10. Building-Up of a DNA Barcode Library for True Bugs (Insecta: Hemiptera: Heteroptera) of Germany Reveals Taxonomic Uncertainties and Surprises

    PubMed Central

    Raupach, Michael J.; Hendrich, Lars; Küchler, Stefan M.; Deister, Fabian; Morinière, Jérome; Gossner, Martin M.

    2014-01-01

    During the last few years, DNA barcoding has become an efficient method for the identification of species. In the case of insects, most published DNA barcoding studies focus on species of the Ephemeroptera, Trichoptera, Hymenoptera and especially Lepidoptera. In this study we test the efficiency of DNA barcoding for true bugs (Hemiptera: Heteroptera), an ecological and economical highly important as well as morphologically diverse insect taxon. As part of our study we analyzed DNA barcodes for 1742 specimens of 457 species, comprising 39 families of the Heteroptera. We found low nucleotide distances with a minimum pairwise K2P distance <2.2% within 21 species pairs (39 species). For ten of these species pairs (18 species), minimum pairwise distances were zero. In contrast to this, deep intraspecific sequence divergences with maximum pairwise distances >2.2% were detected for 16 traditionally recognized and valid species. With a successful identification rate of 91.5% (418 species) our study emphasizes the use of DNA barcodes for the identification of true bugs and represents an important step in building-up a comprehensive barcode library for true bugs in Germany and Central Europe as well. Our study also highlights the urgent necessity of taxonomic revisions for various taxa of the Heteroptera, with a special focus on various species of the Miridae. In this context we found evidence for on-going hybridization events within various taxonomically challenging genera (e.g. Nabis Latreille, 1802 (Nabidae), Lygus Hahn, 1833 (Miridae), Phytocoris Fallén, 1814 (Miridae)) as well as the putative existence of cryptic species (e.g. Aneurus avenius (Duffour, 1833) (Aradidae) or Orius niger (Wolff, 1811) (Anthocoridae)). PMID:25203616

  11. Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants.

    PubMed

    Tanabe, Akifumi S; Toju, Hirokazu

    2013-01-01

    Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding) is becoming increasingly common in biodiversity science. Although several methods have been proposed, many of them are not universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and three plant chloroplast (rbcL, matK, and trnH-psbA) barcode loci that can be used to compare the performance of existing and new methods. The benchmark was performed under two alternative situations: query sequences were available in the corresponding reference sequence databases in one, but were not available in the other. In the former situation, the commonly used "1-nearest-neighbor" (1-NN) method, which assigns the taxonomic information of the most similar sequences in a reference database (i.e., BLAST-top-hit reference sequence) to a query, displays the highest rate and highest precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-nearest-neighbor (QCauto) method, consistently produced low rates of misidentification for all the loci examined in both situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results. The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or species level identification in all the barcode loci examined. Therefore, we need to accelerate the registration of reference barcode sequences to apply high-throughput DNA barcoding to genus or species level identification in biodiversity research.

  12. Two New Computational Methods for Universal DNA Barcoding: A Benchmark Using Barcode Sequences of Bacteria, Archaea, Animals, Fungi, and Land Plants

    PubMed Central

    Tanabe, Akifumi S.; Toju, Hirokazu

    2013-01-01

    Taxonomic identification of biological specimens based on DNA sequence information (a.k.a. DNA barcoding) is becoming increasingly common in biodiversity science. Although several methods have been proposed, many of them are not universally applicable due to the need for prerequisite phylogenetic/machine-learning analyses, the need for huge computational resources, or the lack of a firm theoretical background. Here, we propose two new computational methods of DNA barcoding and show a benchmark for bacterial/archeal 16S, animal COX1, fungal internal transcribed spacer, and three plant chloroplast (rbcL, matK, and trnH-psbA) barcode loci that can be used to compare the performance of existing and new methods. The benchmark was performed under two alternative situations: query sequences were available in the corresponding reference sequence databases in one, but were not available in the other. In the former situation, the commonly used “1-nearest-neighbor” (1-NN) method, which assigns the taxonomic information of the most similar sequences in a reference database (i.e., BLAST-top-hit reference sequence) to a query, displays the highest rate and highest precision of successful taxonomic identification. However, in the latter situation, the 1-NN method produced extremely high rates of misidentification for all the barcode loci examined. In contrast, one of our new methods, the query-centric auto-k-nearest-neighbor (QCauto) method, consistently produced low rates of misidentification for all the loci examined in both situations. These results indicate that the 1-NN method is most suitable if the reference sequences of all potentially observable species are available in databases; otherwise, the QCauto method returns the most reliable identification results. The benchmark results also indicated that the taxon coverage of reference sequences is far from complete for genus or species level identification in all the barcode loci examined. Therefore, we need to accelerate the registration of reference barcode sequences to apply high-throughput DNA barcoding to genus or species level identification in biodiversity research. PMID:24204702

  13. DNA Barcodes for Forensically Important Fly Species in Brazil.

    PubMed

    Koroiva, Ricardo; de Souza, Mirian S; Roque, Fabio de Oliveira; Pepinelli, Mateus

    2018-04-07

    Here, we analyze 248 DNA barcode sequences of 35 fly species of forensic importance in Brazil. DNA barcoding can be effectively used for specimen identification of these species, allowing the unambiguous identification of 31 species, an overall success rate of 88%. Our results show a high rate of success for molecular identification using DNA barcoding sequences and open new perspectives for immature species identification, a subject on which limited forensic investigations exist in Tropical regions. We also address the implications of building a robust forensic DNA barcode database. A geographic bias is recognized for the COI dataset available for forensically important fly species in Brazil, with concentration of sequences from specimens collected mainly in sites located in the Cerrado, Mata Atlântica, and Pampa biomes.

  14. DNA barcoding reveals high diversity of deep-sea octocorals on Hawaiian seamounts

    NASA Astrophysics Data System (ADS)

    Baco-Taylor, A.; Morgan, N.; LaBelle, B.; Figueroa, D.; Ormos, A.; Cairns, S.; Driskell, A.

    2016-02-01

    Globally, studies of deep-sea octocoral distribution and diversity have been hampered by a lack of keys and a plethora of unidentified specimens. Even in areas where intensive morphological work has been done, as many as half of the specimens remain unidentified to species or even genus. Recently, a suite of genetic markers have been identified as barcoding proxies for octocorals. Here, we make one of the first attempts at broad-scale application of 3 of these markers, to recent and museum collections of octocorals of approximately 1000 specimens from the Hawaiian Archipelago, to gain a better understanding of the diversity and distribution of deep-sea octocorals there. Sequence results for all 3 markers show a greater number of haplotypes than morphological species. Each of these markers as taken alone has been shown to underestimate species richness. Extrapolating from this we show that morphological work to date on these specimens underestimates species richness by 30-40%, suggesting the diversity of octocorals in the Hawaiian Archipelago is substantially greater than previously thought. The large percentage of haplotypes represented by single individuals suggests that the full diversity of deep-sea octocorals in Hawaii remains drastically undersampled. This work also shows that species ranges based on current species designations are overestimated, with multiple smaller-range haplotypes for given morphological operational taxonomic units. We evaluate these results to assess the usefulness of application of these markers to understanding deep-sea coral distributions in the broader Pacific and beyond.

  15. TaxI: a software tool for DNA barcoding using distance methods

    PubMed Central

    Steinke, Dirk; Vences, Miguel; Salzburger, Walter; Meyer, Axel

    2005-01-01

    DNA barcoding is a promising approach to the diagnosis of biological diversity in which DNA sequences serve as the primary key for information retrieval. Most existing software for evolutionary analysis of DNA sequences was designed for phylogenetic analyses and, hence, those algorithms do not offer appropriate solutions for the rapid, but precise analyses needed for DNA barcoding, and are also unable to process the often large comparative datasets. We developed a flexible software tool for DNA taxonomy, named TaxI. This program calculates sequence divergences between a query sequence (taxon to be barcoded) and each sequence of a dataset of reference sequences defined by the user. Because the analysis is based on separate pairwise alignments this software is also able to work with sequences characterized by multiple insertions and deletions that are difficult to align in large sequence sets (i.e. thousands of sequences) by multiple alignment algorithms because of computational restrictions. Here, we demonstrate the utility of this approach with two datasets of fish larvae and juveniles from Lake Constance and juvenile land snails under different models of sequence evolution. Sets of ribosomal 16S rRNA sequences, characterized by multiple indels, performed as good as or better than cox1 sequence sets in assigning sequences to species, demonstrating the suitability of rRNA genes for DNA barcoding. PMID:16214755

  16. A report on identification of sequence polymorphism in barcode region of six commercially important Cymbopogon species.

    PubMed

    Bishoyi, Ashok Kumar; Kavane, Aarti; Sharma, Anjali; Geetha, K A

    2017-02-01

    CYMBOPOGON: is an important member of grass family Poaceae, cultivated for essential oils which have greater medicinal and industrial value. Taxonomic identification of Cymbopogon species is determined mainly by morphological markers, odour of essential oils and concentration of bioactive compounds present in the oil matrices which are highly influenced by environment. Authenticated molecular marker based taxonomical identification is also lacking in the genus; hence effort was made to evaluate potential DNA barcode loci in six commercially important Cymbopogon species for their individual discrimination and authentication at the species level. Four widely used DNA barcoding regions viz., ITS 1 & ITS 2 spacers, matK, psbA-trnH and rbcL were taken for the study. Gene sequences of the same or related genera of the concerned loci were mined from NCBI domain and primers were designed and validated for barcode loci amplification. Out of the four loci studied, sequences from matK and ITS spacer loci revealed 0.46% and 5.64% nucleotide sequence diversity, respectively whereas the other two loci i.e., psbA-trnH and rbcL showed 100% sequence homology. The newly developed primers can be used for barcode loci amplification in the genus Cymbopogon. The identified Single Nucleotide Polymorphisms from the studied sequences may be used as barcodes for the six Cymbopogon species. The information generated can also be utilized for barcode development of the genus by including more number of Cymbopgon species in future.

  17. Selection of a DNA barcode for Nectriaceae from fungal whole-genomes.

    PubMed

    Zeng, Zhaoqing; Zhao, Peng; Luo, Jing; Zhuang, Wenying; Yu, Zhihe

    2012-01-01

    A DNA barcode is a short segment of sequence that is able to distinguish species. A barcode must ideally contain enough variation to distinguish every individual species and be easily obtained. Fungi of Nectriaceae are economically important and show high species diversity. To establish a standard DNA barcode for this group of fungi, the genomes of Neurospora crassa and 30 other filamentous fungi were compared. The expect value was treated as a criterion to recognize homologous sequences. Four candidate markers, Hsp90, AAC, CDC48, and EF3, were tested for their feasibility as barcodes in the identification of 34 well-established species belonging to 13 genera of Nectriaceae. Two hundred and fifteen sequences were analyzed. Intra- and inter-specific variations and the success rate of PCR amplification and sequencing were considered as important criteria for estimation of the candidate markers. Ultimately, the partial EF3 gene met the requirements for a good DNA barcode: No overlap was found between the intra- and inter-specific pairwise distances. The smallest inter-specific distance of EF3 gene was 3.19%, while the largest intra-specific distance was 1.79%. In addition, there was a high success rate in PCR and sequencing for this gene (96.3%). CDC48 showed sufficiently high sequence variation among species, but the PCR and sequencing success rate was 84% using a single pair of primers. Although the Hsp90 and AAC genes had higher PCR and sequencing success rates (96.3% and 97.5%, respectively), overlapping occurred between the intra- and inter-specific variations, which could lead to misidentification. Therefore, we propose the EF3 gene as a possible DNA barcode for the nectriaceous fungi.

  18. A DNA 'barcode blitz': rapid digitization and sequencing of a natural history collection.

    PubMed

    Hebert, Paul D N; Dewaard, Jeremy R; Zakharov, Evgeny V; Prosser, Sean W J; Sones, Jayme E; McKeown, Jaclyn T A; Mantle, Beth; La Salle, John

    2013-01-01

    DNA barcoding protocols require the linkage of each sequence record to a voucher specimen that has, whenever possible, been authoritatively identified. Natural history collections would seem an ideal resource for barcode library construction, but they have never seen large-scale analysis because of concerns linked to DNA degradation. The present study examines the strength of this barrier, carrying out a comprehensive analysis of moth and butterfly (Lepidoptera) species in the Australian National Insect Collection. Protocols were developed that enabled tissue samples, specimen data, and images to be assembled rapidly. Using these methods, a five-person team processed 41,650 specimens representing 12,699 species in 14 weeks. Subsequent molecular analysis took about six months, reflecting the need for multiple rounds of PCR as sequence recovery was impacted by age, body size, and collection protocols. Despite these variables and the fact that specimens averaged 30.4 years old, barcode records were obtained from 86% of the species. In fact, one or more barcode compliant sequences (>487 bp) were recovered from virtually all species represented by five or more individuals, even when the youngest was 50 years old. By assembling specimen images, distributional data, and DNA barcode sequences on a web-accessible informatics platform, this study has greatly advanced accessibility to information on thousands of species. Moreover, much of the specimen data became publically accessible within days of its acquisition, while most sequence results saw release within three months. As such, this study reveals the speed with which DNA barcode workflows can mobilize biodiversity data, often providing the first web-accessible information for a species. These results further suggest that existing collections can enable the rapid development of a comprehensive DNA barcode library for the most diverse compartment of terrestrial biodiversity - insects.

  19. Direct screening for chromatin status on DNA barcodes in yeast delineates the regulome of H3K79 methylation by Dot1.

    PubMed

    Vlaming, Hanneke; Molenaar, Thom M; van Welsem, Tibor; Poramba-Liyanage, Deepani W; Smith, Desiree E; Velds, Arno; Hoekman, Liesbeth; Korthout, Tessy; Hendriks, Sjoerd; Altelaar, A F Maarten; van Leeuwen, Fred

    2016-12-06

    Given the frequent misregulation of chromatin in cancer, it is important to understand the cellular mechanisms that regulate chromatin structure. However, systematic screening for epigenetic regulators is challenging and often relies on laborious assays or indirect reporter read-outs. Here we describe a strategy, Epi-ID, to directly assess chromatin status in thousands of mutants. In Epi-ID, chromatin status on DNA barcodes is interrogated by chromatin immunoprecipitation followed by deep sequencing, allowing for quantitative comparison of many mutants in parallel. Screening of a barcoded yeast knock-out collection for regulators of histone H3K79 methylation by Dot1 identified all known regulators as well as novel players and processes. These include histone deposition, homologous recombination, and adenosine kinase, which influences the methionine cycle. Gcn5, the acetyltransferase within the SAGA complex, was found to regulate histone methylation and H2B ubiquitination. The concept of Epi-ID is widely applicable and can be readily applied to other chromatin features.

  20. Direct screening for chromatin status on DNA barcodes in yeast delineates the regulome of H3K79 methylation by Dot1

    PubMed Central

    Vlaming, Hanneke; Molenaar, Thom M; van Welsem, Tibor; Poramba-Liyanage, Deepani W; Smith, Desiree E; Velds, Arno; Hoekman, Liesbeth; Korthout, Tessy; Hendriks, Sjoerd; Maarten Altelaar, AF; van Leeuwen, Fred

    2016-01-01

    Given the frequent misregulation of chromatin in cancer, it is important to understand the cellular mechanisms that regulate chromatin structure. However, systematic screening for epigenetic regulators is challenging and often relies on laborious assays or indirect reporter read-outs. Here we describe a strategy, Epi-ID, to directly assess chromatin status in thousands of mutants. In Epi-ID, chromatin status on DNA barcodes is interrogated by chromatin immunoprecipitation followed by deep sequencing, allowing for quantitative comparison of many mutants in parallel. Screening of a barcoded yeast knock-out collection for regulators of histone H3K79 methylation by Dot1 identified all known regulators as well as novel players and processes. These include histone deposition, homologous recombination, and adenosine kinase, which influences the methionine cycle. Gcn5, the acetyltransferase within the SAGA complex, was found to regulate histone methylation and H2B ubiquitination. The concept of Epi-ID is widely applicable and can be readily applied to other chromatin features. DOI: http://dx.doi.org/10.7554/eLife.18919.001 PMID:27922451

  1. A DNA Barcode Library for North American Ephemeroptera: Progress and Prospects

    PubMed Central

    Webb, Jeffrey M.; Jacobus, Luke M.; Funk, David H.; Zhou, Xin; Kondratieff, Boris; Geraci, Christy J.; DeWalt, R. Edward; Baird, Donald J.; Richard, Barton; Phillips, Iain; Hebert, Paul D. N.

    2012-01-01

    DNA barcoding of aquatic macroinvertebrates holds much promise as a tool for taxonomic research and for providing the reliable identifications needed for water quality assessment programs. A prerequisite for identification using barcodes is a reliable reference library. We gathered 4165 sequences from the barcode region of the mitochondrial cytochrome c oxidase subunit I gene representing 264 nominal and 90 provisional species of mayflies (Insecta: Ephemeroptera) from Canada, Mexico, and the United States. No species shared barcode sequences and all can be identified with barcodes with the possible exception of some Caenis. Minimum interspecific distances ranged from 0.3–24.7% (mean: 12.5%), while the average intraspecific divergence was 1.97%. The latter value was inflated by the presence of very high divergences in some taxa. In fact, nearly 20% of the species included two or three haplotype clusters showing greater than 5.0% sequence divergence and some values are as high as 26.7%. Many of the species with high divergences are polyphyletic and likely represent species complexes. Indeed, many of these polyphyletic species have numerous synonyms and individuals in some barcode clusters show morphological attributes characteristic of the synonymized species. In light of our findings, it is imperative that type or topotype specimens be sequenced to correctly associate barcode clusters with morphological species concepts and to determine the status of currently synonymized species. PMID:22666447

  2. Single molecule counting and assessment of random molecular tagging errors with transposable giga-scale error-correcting barcodes.

    PubMed

    Lau, Billy T; Ji, Hanlee P

    2017-09-21

    RNA-Seq measures gene expression by counting sequence reads belonging to unique cDNA fragments. Molecular barcodes commonly in the form of random nucleotides were recently introduced to improve gene expression measures by detecting amplification duplicates, but are susceptible to errors generated during PCR and sequencing. This results in false positive counts, leading to inaccurate transcriptome quantification especially at low input and single-cell RNA amounts where the total number of molecules present is minuscule. To address this issue, we demonstrated the systematic identification of molecular species using transposable error-correcting barcodes that are exponentially expanded to tens of billions of unique labels. We experimentally showed random-mer molecular barcodes suffer from substantial and persistent errors that are difficult to resolve. To assess our method's performance, we applied it to the analysis of known reference RNA standards. By including an inline random-mer molecular barcode, we systematically characterized the presence of sequence errors in random-mer molecular barcodes. We observed that such errors are extensive and become more dominant at low input amounts. We described the first study to use transposable molecular barcodes and its use for studying random-mer molecular barcode errors. Extensive errors found in random-mer molecular barcodes may warrant the use of error correcting barcodes for transcriptome analysis as input amounts decrease.

  3. High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA.

    PubMed

    Kebschull, Justus M; Garcia da Silva, Pedro; Reid, Ashlan P; Peikon, Ian D; Albeanu, Dinu F; Zador, Anthony M

    2016-09-07

    Neurons transmit information to distant brain regions via long-range axonal projections. In the mouse, area-to-area connections have only been systematically mapped using bulk labeling techniques, which obscure the diverse projections of intermingled single neurons. Here we describe MAPseq (Multiplexed Analysis of Projections by Sequencing), a technique that can map the projections of thousands or even millions of single neurons by labeling large sets of neurons with random RNA sequences ("barcodes"). Axons are filled with barcode mRNA, each putative projection area is dissected, and the barcode mRNA is extracted and sequenced. Applying MAPseq to the locus coeruleus (LC), we find that individual LC neurons have preferred cortical targets. By recasting neuroanatomy, which is traditionally viewed as a problem of microscopy, as a problem of sequencing, MAPseq harnesses advances in sequencing technology to permit high-throughput interrogation of brain circuits. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. [Identification of common medicinal snakes in medicated liquor of Guangdong by COI barcode sequence].

    PubMed

    Liao, Jing; Chao, Zhi; Zhang, Liang

    2013-11-01

    To identify the common snakes in medicated liquor of Guangdong using COI barcode sequence,and to test the feasibility. The COI barcode sequences of collected medicinal snakes were amplified and sequenced. The sequences combined with the data from GenBank were analyzed for divergence and building a neighbor-joining(NJ) tree with MEGA 5.0. The genetic distance and NJ tree demonstrated that there were 241 variable sites in these species, and the average (A + T) content of 56.2% was higher than the average (G + C) content of 43.7%. The maximum interspecific genetic distance was 0.2568, and the minimum was 0. 1519. In the NJ tree,each species formed a monophyletic clade with bootstrap supports of 100%. DNA barcoding identification method based on the COI sequence is accurate and can be applied to identify the common medicinal snakes.

  5. DNA barcoding Neotropical fishes: recent advances from the Pampa Plain, Argentina.

    PubMed

    Rosso, J J; Mabragaña, E; Castro, M González; de Astarloa, J M Díaz

    2012-11-01

    The fish fauna of the Pampa Plain, the southernmost distribution range of many Neotropical species, was barcoded in this study. COI sequences were analysed by means of distance (K2P/NJ) and character-based (ML) models, as well as the Barcode Index Number (BIN). K2P/NJ analysis was able to discriminate among all previously identified species while also revealing the likely occurrence of two cryptic species that were further supported by BIN and ML analyses. On the other hand, both BIN and ML were not able to discriminate between two species of Rineloricaria. Despite the small genetic divergence between A. cf. pampa and A. eigenmanniorum, a tight array of haplotypes was observed for each species in both the distance and character-based methods. Deep intraspecific divergences were detected in Cnesterodon decemmaculatus (5%) and Salminus brasiliensis (6%). For Salminus brasiliensis, these findings were further supported by character-based (ML) evidence and meristic and morphological data. Our results also showed that Pampa Plain representatives of Salminus brasiliensis, Rhamdia quelen, Hoplias malabaricus, Synbranchus marmoratus, Australoheros facetus, Oligosarcus jenynsii and Corydoras paleatus differed by more than 3% from their conspecifics from other parts of South America. Overall, this study was able to highlight the likely occurrence of a cryptic species in Salminus brasiliensis and also illustrate the strong geographical structure in the COI sequence composition of seven fish species from South America. © 2012 Blackwell Publishing Ltd.

  6. DNA barcoding of fishes of Laguna de Bay, Philippines.

    PubMed

    Aquino, Luis Miguel G; Tango, Jazzlyn M; Canoy, Reynand Jay C; Fontanilla, Ian Kendrich C; Basiao, Zubaida U; Ong, Perry S; Quilang, Jonas P

    2011-08-01

    Laguna de Bay, the largest lake in the Philippines, is an important part of the country's fisheries industry. It is also home to a number of endemic fishes including Gobiopterus lacustris (Herre 1927) of family Gobiidae, Leiopotherapon plumbeus (Kner 1864) of family Terapontidae, Zenarchopterus philippinus (Peters 1868) of family Hemiramphidae and Arius manillensis Valenciennes 1840 of family Ariidae. Over the years, a steady decline has been observed in the abundance and diversity of native fishes in the lake due to anthropogenic disturbances. In this study, a total of 71 specimens of 18 different species belonging to 18 genera, 16 families, and seven orders were DNA barcoded using the mitochondrial cytochrome c oxidase subunit I (COI) gene. All of the fish species were discriminated by their COI sequences and one endemic species G. lacustris, showing deep genetic divergence, was highlighted for further taxonomic investigation. Average Kimura 2-parameter genetic distances within species, family, and order were 1.33%, 18.91%, and 24.22%, respectively. These values show that COI divergence increases as taxa become less exclusive. All of the COI sequences obtained were grouped together according to their species designation in the Neighbor-joining tree that was constructed. This study demonstrated that DNA barcoding has great potential as a tool for fast and accurate species identification and also for highlighting species that warrant further taxonomic investigation.

  7. DNA barcode identification of Podocarpaceae--the second largest conifer family.

    PubMed

    Little, Damon P; Knopf, Patrick; Schulz, Christian

    2013-01-01

    We have generated matK, rbcL, and nrITS2 DNA barcodes for 320 specimens representing all 18 extant genera of the conifer family Podocarpaceae. The sample includes 145 of the 198 recognized species. Comparative analyses of sequence quality and species discrimination were conducted on the 159 individuals from which all three markers were recovered (representing 15 genera and 97 species). The vast majority of sequences were of high quality (B 30 = 0.596-0.989). Even the lowest quality sequences exceeded the minimum requirements of the BARCODE data standard. In the few instances that low quality sequences were generated, the responsible mechanism could not be discerned. There were no statistically significant differences in the discriminatory power of markers or marker combinations (p = 0.05). The discriminatory power of the barcode markers individually and in combination is low (56.7% of species at maximum). In some instances, species discrimination failed in spite of ostensibly useful variation being present (genotypes were shared among species), but in many cases there was simply an absence of sequence variation. Barcode gaps (maximum intraspecific p-distance > minimum interspecific p-distance) were observed in 50.5% of species when all three markers were considered simultaneously. The presence of a barcode gap was not predictive of discrimination success (p = 0.02) and there was no statistically significant difference in the frequency of barcode gaps among markers (p = 0.05). In addition, there was no correlation between number of individuals sampled per species and the presence of a barcode gap (p = 0.27).

  8. Competitive Genomic Screens of Barcoded Yeast Libraries

    PubMed Central

    Urbanus, Malene; Proctor, Michael; Heisler, Lawrence E.; Giaever, Guri; Nislow, Corey

    2011-01-01

    By virtue of advances in next generation sequencing technologies, we have access to new genome sequences almost daily. The tempo of these advances is accelerating, promising greater depth and breadth. In light of these extraordinary advances, the need for fast, parallel methods to define gene function becomes ever more important. Collections of genome-wide deletion mutants in yeasts and E. coli have served as workhorses for functional characterization of gene function, but this approach is not scalable, current gene-deletion approaches require each of the thousands of genes that comprise a genome to be deleted and verified. Only after this work is complete can we pursue high-throughput phenotyping. Over the past decade, our laboratory has refined a portfolio of competitive, miniaturized, high-throughput genome-wide assays that can be performed in parallel. This parallelization is possible because of the inclusion of DNA 'tags', or 'barcodes,' into each mutant, with the barcode serving as a proxy for the mutation and one can measure the barcode abundance to assess mutant fitness. In this study, we seek to fill the gap between DNA sequence and barcoded mutant collections. To accomplish this we introduce a combined transposon disruption-barcoding approach that opens up parallel barcode assays to newly sequenced, but poorly characterized microbes. To illustrate this approach we present a new Candida albicans barcoded disruption collection and describe how both microarray-based and next generation sequencing-based platforms can be used to collect 10,000 - 1,000,000 gene-gene and drug-gene interactions in a single experiment. PMID:21860376

  9. DNA Barcode Identification of Podocarpaceae—The Second Largest Conifer Family

    PubMed Central

    Little, Damon P.; Knopf, Patrick; Schulz, Christian

    2013-01-01

    We have generated matK, rbcL, and nrITS2 DNA barcodes for 320 specimens representing all 18 extant genera of the conifer family Podocarpaceae. The sample includes 145 of the 198 recognized species. Comparative analyses of sequence quality and species discrimination were conducted on the 159 individuals from which all three markers were recovered (representing 15 genera and 97 species). The vast majority of sequences were of high quality (B 30 = 0.596–0.989). Even the lowest quality sequences exceeded the minimum requirements of the BARCODE data standard. In the few instances that low quality sequences were generated, the responsible mechanism could not be discerned. There were no statistically significant differences in the discriminatory power of markers or marker combinations (p = 0.05). The discriminatory power of the barcode markers individually and in combination is low (56.7% of species at maximum). In some instances, species discrimination failed in spite of ostensibly useful variation being present (genotypes were shared among species), but in many cases there was simply an absence of sequence variation. Barcode gaps (maximum intraspecific p–distance > minimum interspecific p–distance) were observed in 50.5% of species when all three markers were considered simultaneously. The presence of a barcode gap was not predictive of discrimination success (p = 0.02) and there was no statistically significant difference in the frequency of barcode gaps among markers (p = 0.05). In addition, there was no correlation between number of individuals sampled per species and the presence of a barcode gap (p = 0.27). PMID:24312258

  10. Fungi in Thailand: a case study of the efficacy of an ITS barcode for automatically identifying species within the Annulohypoxylon and Hypoxylon genera.

    PubMed

    Suwannasai, Nuttika; Martín, María P; Phosri, Cherdchai; Sihanonth, Prakitsin; Whalley, Anthony J S; Spouge, John L

    2013-01-01

    Thailand, a part of the Indo-Burma biodiversity hotspot, has many endemic animals and plants. Some of its fungal species are difficult to recognize and separate, complicating assessments of biodiversity. We assessed species diversity within the fungal genera Annulohypoxylon and Hypoxylon, which produce biologically active and potentially therapeutic compounds, by applying classical taxonomic methods to 552 teleomorphs collected from across Thailand. Using probability of correct identification (PCI), we also assessed the efficacy of automated species identification with a fungal barcode marker, ITS, in the model system of Annulohypoxylon and Hypoxylon. The 552 teleomorphs yielded 137 ITS sequences; in addition, we examined 128 GenBank ITS sequences, to assess biases in evaluating a DNA barcode with GenBank data. The use of multiple sequence alignment in a barcode database like BOLD raises some concerns about non-protein barcode markers like ITS, so we also compared species identification using different alignment methods. Our results suggest the following. (1) Multiple sequence alignment of ITS sequences is competitive with pairwise alignment when identifying species, so BOLD should be able to preserve its present bioinformatics workflow for species identification for ITS, and possibly therefore with at least some other non-protein barcode markers. (2) Automated species identification is insensitive to a specific choice of evolutionary distance, contributing to resolution of a current debate in DNA barcoding. (3) Statistical methods are available to address, at least partially, the possibility of expert misidentification of species. Phylogenetic trees discovered a cryptic species and strongly supported monophyletic clades for many Annulohypoxylon and Hypoxylon species, suggesting that ITS can contribute usefully to a barcode for these fungi. The PCIs here, derived solely from ITS, suggest that a fungal barcode will require secondary markers in Annulohypoxylon and Hypoxylon, however. The URL http://tinyurl.com/spouge-barcode contains computer programs and other supplementary material relevant to this article.

  11. Integrative taxonomy supports new candidate fish species in a poorly studied neotropical region: the Jequitinhonha River Basin.

    PubMed

    Pugedo, Marina Lages; de Andrade Neto, Francisco Ricardo; Pessali, Tiago Casarim; Birindelli, José Luís Olivan; Carvalho, Daniel Cardoso

    2016-06-01

    Molecular identification through DNA barcoding has been proposed as a way to standardize a global biodiversity identification system using a partial sequence of the mitochondrial COI gene. We applied an integrative approach using DNA barcoding and traditional morphology-based bioassessment to identify fish from a neotropical region possessing low taxonomic knowledge: the Jequitinhonha River Basin (Southeastern Brazil). The Jequitinhonha River Basin (JRB) has a high rate of endemism and is considered an area of high priority for fish conservation, with estimates indicating the presence of around 110 native and non-indigenous species. DNA barcodes were obtained from 260 individuals belonging to 52 species distributed among 35 genera, 21 families and 6 orders, including threatened and rare species such as Rhamdia jequitinhonha and Steindachneridion amblyurum. The mean Kimura two-parameter genetic distances within species, genera and families were: 0.44, 12.16 and 20.58 %, respectively. Mean intraspecific genetic variation ranged from 0 to 11.43 %, and high values (>2 %) were recovered for five species. Species with a deep intraspecific distance, possibly flagging overlooked taxa, were detected within the genus Pimelodella. Fifteen species, only identified to the genus level, had unique BINs, with a nearest neighbor distance over 2 % and therefore, potential new candidate species supported by DNA barcoding. The integrative taxonomy approach using DNA barcoding and traditional taxonomy may be a remedy to taxonomy impediment, accelerating species identification by flagging potential new candidate species and to adequately conserve the megadiverse neotropical ichthyofauna.

  12. DNA barcodes for Nearctic Auchenorrhyncha (Insecta: Hemiptera).

    PubMed

    Foottit, Robert G; Maw, Eric; Hebert, P D N

    2014-01-01

    Many studies have shown the suitability of sequence variation in the 5' region of the mitochondrial cytochrome c oxidase I (COI) gene as a DNA barcode for the identification of species in a wide range of animal groups. We examined 471 species in 147 genera of Hemiptera: Auchenorrhyncha drawn from specimens in the Canadian National Collection of Insects to assess the effectiveness of DNA barcoding in this group. Analysis of the COI gene revealed less than 2% intra-specific divergence in 93% of the taxa examined, while minimum interspecific distances exceeded 2% in 70% of congeneric species pairs. Although most species are characterized by a distinct sequence cluster, sequences for members of many groups of closely related species either shared sequences or showed close similarity, with 25% of species separated from their nearest neighbor by less than 1%. This study, although preliminary, provides DNA barcodes for about 8% of the species of this hemipteran suborder found in North America north of Mexico. Barcodes can enable the identification of many species of Auchenorrhyncha, but members of some species groups cannot be discriminated. Future use of DNA barcodes in regulatory, pest management, and environmental applications will be possible as the barcode library for Auchenorrhyncha expands to include more species and broader geographic coverage.

  13. With a little help from DNA barcoding: investigating the diversity of Gastropoda from the Portuguese coast

    PubMed Central

    Borges, Luísa M. S.; Hollatz, Claudia; Lobo, Jorge; Cunha, Ana M.; Vilela, Ana P.; Calado, Gonçalo; Coelho, Rita; Costa, Ana C.; Ferreira, Maria S. G.; Costa, Maria H.; Costa, Filipe O.

    2016-01-01

    The Gastropoda is one of the best studied classes of marine invertebrates. Yet, most species have been delimited based on morphology only. The application of DNA barcodes has shown to be greatly useful to help delimiting species. Therefore, sequences of the cytochrome c oxidase I gene from 108 specimens of 34 morpho-species were used to investigate the molecular diversity within the gastropods from the Portuguese coast. To the above dataset, we added available COI-5P sequences of taxonomically close species, in a total of 58 morpho-species examined. There was a good match between ours and sequences from independent studies, in public repositories. We found 32 concordant (91.4%) out of the 35 Barcode Index Numbers (BINs) generated from our sequences. The application of a ranking system to the barcodes yield over 70% with top taxonomic congruence, while 14.2% of the species barcodes had insufficient data. In the majority of the cases, there was a good concordance between morphological identification and DNA barcodes. Nonetheless, the discordance between morphological and molecular data is a reminder that even the comparatively well-known European marine gastropods can benefit from being probed using the DNA barcode approach. Discordant cases should be reviewed with more integrative studies. PMID:26876495

  14. With a little help from DNA barcoding: investigating the diversity of Gastropoda from the Portuguese coast.

    PubMed

    Borges, Luísa M S; Hollatz, Claudia; Lobo, Jorge; Cunha, Ana M; Vilela, Ana P; Calado, Gonçalo; Coelho, Rita; Costa, Ana C; Ferreira, Maria S G; Costa, Maria H; Costa, Filipe O

    2016-02-15

    The Gastropoda is one of the best studied classes of marine invertebrates. Yet, most species have been delimited based on morphology only. The application of DNA barcodes has shown to be greatly useful to help delimiting species. Therefore, sequences of the cytochrome c oxidase I gene from 108 specimens of 34 morpho-species were used to investigate the molecular diversity within the gastropods from the Portuguese coast. To the above dataset, we added available COI-5P sequences of taxonomically close species, in a total of 58 morpho-species examined. There was a good match between ours and sequences from independent studies, in public repositories. We found 32 concordant (91.4%) out of the 35 Barcode Index Numbers (BINs) generated from our sequences. The application of a ranking system to the barcodes yield over 70% with top taxonomic congruence, while 14.2% of the species barcodes had insufficient data. In the majority of the cases, there was a good concordance between morphological identification and DNA barcodes. Nonetheless, the discordance between morphological and molecular data is a reminder that even the comparatively well-known European marine gastropods can benefit from being probed using the DNA barcode approach. Discordant cases should be reviewed with more integrative studies.

  15. DNA Barcodes for Nearctic Auchenorrhyncha (Insecta: Hemiptera)

    PubMed Central

    Foottit, Robert G.; Maw, Eric; Hebert, P. D. N.

    2014-01-01

    Background Many studies have shown the suitability of sequence variation in the 5′ region of the mitochondrial cytochrome c oxidase I (COI) gene as a DNA barcode for the identification of species in a wide range of animal groups. We examined 471 species in 147 genera of Hemiptera: Auchenorrhyncha drawn from specimens in the Canadian National Collection of Insects to assess the effectiveness of DNA barcoding in this group. Methodology/Principal Findings Analysis of the COI gene revealed less than 2% intra-specific divergence in 93% of the taxa examined, while minimum interspecific distances exceeded 2% in 70% of congeneric species pairs. Although most species are characterized by a distinct sequence cluster, sequences for members of many groups of closely related species either shared sequences or showed close similarity, with 25% of species separated from their nearest neighbor by less than 1%. Conclusions/Significance This study, although preliminary, provides DNA barcodes for about 8% of the species of this hemipteran suborder found in North America north of Mexico. Barcodes can enable the identification of many species of Auchenorrhyncha, but members of some species groups cannot be discriminated. Future use of DNA barcodes in regulatory, pest management, and environmental applications will be possible as the barcode library for Auchenorrhyncha expands to include more species and broader geographic coverage. PMID:25004106

  16. DNA Barcoding for Species Identification of Insect Skins: A Test on Chironomidae (Diptera) Pupal Exuviae

    PubMed Central

    Ekrem, Torbjørn; Stur, Elisabeth

    2017-01-01

    Abstract Chironomidae (Diptera) pupal exuviae samples are commonly used for biological monitoring of aquatic habitats. DNA barcoding has proved useful for species identification of chironomid life stages containing cellular tissue, but the barcoding success of chironomid pupal exuviae is unknown. We assessed whether standard DNA barcoding could be efficiently used for species identification of chironomid pupal exuviae when compared with morphological techniques and if there were differences in performance between temperate and tropical ecosystems, subfamilies, and tribes. PCR, sequence, and identification success differed significantly between geographic regions and taxonomic groups. For Norway, 27 out of 190 (14.2%) of pupal exuviae resulted in high-quality chironomid sequences that match species. For Costa Rica, 69 out of 190 (36.3%) Costa Rican pupal exuviae resulted in high-quality sequences, but none matched known species. Standard DNA barcoding of chironomid pupal exuviae had limited success in species identification of unknown specimens due to contaminations and lack of matching references in available barcode libraries, especially from Costa Rica. Therefore, we recommend future biodiversity studies that focus their efforts on understudied regions, to simultaneously use morphological and molecular identification techniques to identify all life stages of chironomids and populate the barcode reference library with identified sequences.

  17. Towards writing the encyclopaedia of life: an introduction to DNA barcoding

    PubMed Central

    Savolainen, Vincent; Cowan, Robyn S; Vogler, Alfried P; Roderick, George K; Lane, Richard

    2005-01-01

    An international consortium of major natural history museums, herbaria and other organizations has launched an ambitious project, the ‘Barcode of Life Initiative’, to promote a process enabling the rapid and inexpensive identification of the estimated 10 million species on Earth. DNA barcoding is a diagnostic technique in which short DNA sequence(s) can be used for species identification. The first international scientific conference on Barcoding of Life was held at the Natural History Museum in London in February 2005, and here we review the scientific challenges discussed during this conference and in previous publications. Although still controversial, the scientific benefits of DNA barcoding include: (i) enabling species identification, including any life stage or fragment, (ii) facilitating species discoveries based on cluster analyses of gene sequences (e.g. cox1=CO1, in animals), (iii) promoting development of handheld DNA sequencing technology that can be applied in the field for biodiversity inventories and (iv) providing insight into the diversity of life. PMID:16214739

  18. Large-scale DNA Barcode Library Generation for Biomolecule Identification in High-throughput Screens.

    PubMed

    Lyons, Eli; Sheridan, Paul; Tremmel, Georg; Miyano, Satoru; Sugano, Sumio

    2017-10-24

    High-throughput screens allow for the identification of specific biomolecules with characteristics of interest. In barcoded screens, DNA barcodes are linked to target biomolecules in a manner allowing for the target molecules making up a library to be identified by sequencing the DNA barcodes using Next Generation Sequencing. To be useful in experimental settings, the DNA barcodes in a library must satisfy certain constraints related to GC content, homopolymer length, Hamming distance, and blacklisted subsequences. Here we report a novel framework to quickly generate large-scale libraries of DNA barcodes for use in high-throughput screens. We show that our framework dramatically reduces the computation time required to generate large-scale DNA barcode libraries, compared with a naїve approach to DNA barcode library generation. As a proof of concept, we demonstrate that our framework is able to generate a library consisting of one million DNA barcodes for use in a fragment antibody phage display screening experiment. We also report generating a general purpose one billion DNA barcode library, the largest such library yet reported in literature. Our results demonstrate the value of our novel large-scale DNA barcode library generation framework for use in high-throughput screening applications.

  19. A laboratory information management system for DNA barcoding workflows.

    PubMed

    Vu, Thuy Duong; Eberhardt, Ursula; Szöke, Szániszló; Groenewald, Marizeth; Robert, Vincent

    2012-07-01

    This paper presents a laboratory information management system for DNA sequences (LIMS) created and based on the needs of a DNA barcoding project at the CBS-KNAW Fungal Biodiversity Centre (Utrecht, the Netherlands). DNA barcoding is a global initiative for species identification through simple DNA sequence markers. We aim at generating barcode data for all strains (or specimens) included in the collection (currently ca. 80 k). The LIMS has been developed to better manage large amounts of sequence data and to keep track of the whole experimental procedure. The system has allowed us to classify strains more efficiently as the quality of sequence data has improved, and as a result, up-to-date taxonomic names have been given to strains and more accurate correlation analyses have been carried out.

  20. DNA barcode analysis of butterfly species from Pakistan points towards regional endemism

    PubMed Central

    Ashfaq, Muhammad; Akhtar, Saleem; Khan, Arif M; Adamowicz, Sarah J; Hebert, Paul D N

    2013-01-01

    DNA barcodes were obtained for 81 butterfly species belonging to 52 genera from sites in north-central Pakistan to test the utility of barcoding for their identification and to gain a better understanding of regional barcode variation. These species represent 25% of the butterfly fauna of Pakistan and belong to five families, although the Nymphalidae were dominant, comprising 38% of the total specimens. Barcode analysis showed that maximum conspecific divergence was 1.6%, while there was 1.7–14.3% divergence from the nearest neighbour species. Barcode records for 55 species showed <2% sequence divergence to records in the Barcode of Life Data Systems (BOLD), but only 26 of these cases involved specimens from neighbouring India and Central Asia. Analysis revealed that most species showed little incremental sequence variation when specimens from other regions were considered, but a threefold increase was noted in a few cases. There was a clear gap between maximum intraspecific and minimum nearest neighbour distance for all 81 species. Neighbour-joining cluster analysis showed that members of each species formed a monophyletic cluster with strong bootstrap support. The barcode results revealed two provisional species that could not be clearly linked to known taxa, while 24 other species gained their first coverage. Future work should extend the barcode reference library to include all butterfly species from Pakistan as well as neighbouring countries to gain a better understanding of regional variation in barcode sequences in this topographically and climatically complex region. PMID:23789612

  1. The HTS barcode checker pipeline, a tool for automated detection of illegally traded species from high-throughput sequencing data.

    PubMed

    Lammers, Youri; Peelen, Tamara; Vos, Rutger A; Gravendeel, Barbara

    2014-02-06

    Mixtures of internationally traded organic substances can contain parts of species protected by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). These mixtures often raise the suspicion of border control and customs offices, which can lead to confiscation, for example in the case of Traditional Chinese medicines (TCMs). High-throughput sequencing of DNA barcoding markers obtained from such samples provides insight into species constituents of mixtures, but manual cross-referencing of results against the CITES appendices is labor intensive. Matching DNA barcodes against NCBI GenBank using BLAST may yield misleading results both as false positives, due to incorrectly annotated sequences, and false negatives, due to spurious taxonomic re-assignment. Incongruence between the taxonomies of CITES and NCBI GenBank can result in erroneous estimates of illegal trade. The HTS barcode checker pipeline is an application for automated processing of sets of 'next generation' barcode sequences to determine whether these contain DNA barcodes obtained from species listed on the CITES appendices. This analytical pipeline builds upon and extends existing open-source applications for BLAST matching against the NCBI GenBank reference database and for taxonomic name reconciliation. In a single operation, reads are converted into taxonomic identifications matched with names on the CITES appendices. By inclusion of a blacklist and additional names databases, the HTS barcode checker pipeline prevents false positives and resolves taxonomic heterogeneity. The HTS barcode checker pipeline can detect and correctly identify DNA barcodes of CITES-protected species from reads obtained from TCM samples in just a few minutes. The pipeline facilitates and improves molecular monitoring of trade in endangered species, and can aid in safeguarding these species from extinction in the wild. The HTS barcode checker pipeline is available at https://github.com/naturalis/HTS-barcode-checker.

  2. The HTS barcode checker pipeline, a tool for automated detection of illegally traded species from high-throughput sequencing data

    PubMed Central

    2014-01-01

    Background Mixtures of internationally traded organic substances can contain parts of species protected by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). These mixtures often raise the suspicion of border control and customs offices, which can lead to confiscation, for example in the case of Traditional Chinese medicines (TCMs). High-throughput sequencing of DNA barcoding markers obtained from such samples provides insight into species constituents of mixtures, but manual cross-referencing of results against the CITES appendices is labor intensive. Matching DNA barcodes against NCBI GenBank using BLAST may yield misleading results both as false positives, due to incorrectly annotated sequences, and false negatives, due to spurious taxonomic re-assignment. Incongruence between the taxonomies of CITES and NCBI GenBank can result in erroneous estimates of illegal trade. Results The HTS barcode checker pipeline is an application for automated processing of sets of 'next generation’ barcode sequences to determine whether these contain DNA barcodes obtained from species listed on the CITES appendices. This analytical pipeline builds upon and extends existing open-source applications for BLAST matching against the NCBI GenBank reference database and for taxonomic name reconciliation. In a single operation, reads are converted into taxonomic identifications matched with names on the CITES appendices. By inclusion of a blacklist and additional names databases, the HTS barcode checker pipeline prevents false positives and resolves taxonomic heterogeneity. Conclusions The HTS barcode checker pipeline can detect and correctly identify DNA barcodes of CITES-protected species from reads obtained from TCM samples in just a few minutes. The pipeline facilitates and improves molecular monitoring of trade in endangered species, and can aid in safeguarding these species from extinction in the wild. The HTS barcode checker pipeline is available at https://github.com/naturalis/HTS-barcode-checker. PMID:24502833

  3. Generation and analysis of a barcode-tagged insertion mutant library in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Chen, Bo-Ruei; Hale, Devin C; Ciolek, Peter J; Runge, Kurt W

    2012-05-03

    Barcodes are unique DNA sequence tags that can be used to specifically label individual mutants. The barcode-tagged open reading frame (ORF) haploid deletion mutant collections in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe allow for high-throughput mutant phenotyping because the relative growth of mutants in a population can be determined by monitoring the proportions of their associated barcodes. While these mutant collections have greatly facilitated genome-wide studies, mutations in essential genes are not present, and the roles of these genes are not as easily studied. To further support genome-scale research in S. pombe, we generated a barcode-tagged fission yeast insertion mutant library that has the potential of generating viable mutations in both essential and non-essential genes and can be easily analyzed using standard molecular biological techniques. An insertion vector containing a selectable ura4+ marker and a random barcode was used to generate a collection of 10,000 fission yeast insertion mutants stored individually in 384-well plates and as six pools of mixed mutants. Individual barcodes are flanked by Sfi I recognition sites and can be oligomerized in a unique orientation to facilitate barcode sequencing. Independent genetic screens on a subset of mutants suggest that this library contains a diverse collection of single insertion mutations. We present several approaches to determine insertion sites. This collection of S. pombe barcode-tagged insertion mutants is well-suited for genome-wide studies. Because insertion mutations may eliminate, reduce or alter the function of essential and non-essential genes, this library will contain strains with a wide range of phenotypes that can be assayed by their associated barcodes. The design of the barcodes in this library allows for barcode sequencing using next generation or standard benchtop cloning approaches.

  4. Accelerated construction of a regional DNA-barcode reference library: Caddisflies (Trichoptera) in the Great Smoky Mountains National Park

    USGS Publications Warehouse

    Zhou, X.; Robinson, J.L.; Geraci, C.J.; Parker, C.R.; Flint, O.S.; Etnier, D.A.; Ruiter, D.; DeWalt, R.E.; Jacobus, L.M.; Hebert, P.D.N.

    2011-01-01

    Deoxyribonucleic acid (DNA) barcoding is an effective tool for species identification and lifestage association in a wide range of animal taxa. We developed a strategy for rapid construction of a regional DNA-barcode reference library and used the caddisflies (Trichoptera) of the Great Smoky Mountains National Park (GSMNP) as a model. Nearly 1000 cytochrome c oxidase subunit I (COI) sequences, representing 209 caddisfly species previously recorded from GSMNP, were obtained from the global Trichoptera Barcode of Life campaign. Most of these sequences were collected from outside the GSMNP area. Another 645 COI sequences, representing 80 species, were obtained from specimens collected in a 3-d bioblitz (short-term, intense sampling program) in GSMNP. The joint collections provided barcode coverage for 212 species, 91% of the GSMNP fauna. Inclusion of samples from other localities greatly expedited construction of the regional DNA-barcode reference library. This strategy increased intraspecific divergence and decreased average distances to nearest neighboring species, but the DNA-barcode library was able to differentiate 93% of the GSMNP Trichoptera species examined. Global barcoding projects will aid construction of regional DNA-barcode libraries, but local surveys make crucial contributions to progress by contributing rare or endemic species and full-length barcodes generated from high-quality DNA. DNA taxonomy is not a goal of our present work, but the investigation of COI divergence patterns in caddisflies is providing new insights into broader biodiversity patterns in this group and has directed attention to various issues, ranging from the need to re-evaluate species taxonomy with integrated morphological and molecular evidence to the necessity of an appropriate interpretation of barcode analyses and its implications in understanding species diversity (in contrast to a simple claim for barcoding failure).

  5. Comparing COI and ITS as DNA barcode markers for mushrooms and allies (Agaricomycotina).

    PubMed

    Dentinger, Bryn T M; Didukh, Maryna Y; Moncalvo, Jean-Marc

    2011-01-01

    DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (~450 bp) representing ~100 morphospecies from ~650 collections of Agaricomycotina using several sets of new primers. Large introns (~1500 bp) at variable locations were detected in ~5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (~30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms.

  6. Integrating a DNA barcoding project with an ecological survey: a case study on temperate intertidal polychaete communities in Qingdao, China

    NASA Astrophysics Data System (ADS)

    Zhou, Hong; Zhang, Zhinan; Chen, Haiyan; Sun, Renhua; Wang, Hui; Guo, Lei; Pan, Haijian

    2010-07-01

    In this study, we integrated a DNA barcoding project with an ecological survey on intertidal polychaete communities and investigated the utility of CO1 gene sequence as a DNA barcode for the classification of the intertidal polychaetes. Using 16S rDNA as a complementary marker and combining morphological and ecological characterization, some of dominant and common polychaete species from Chinese coasts were assessed for their taxonomic status. We obtained 22 haplotype gene sequences of 13 taxa, including 10 CO1 sequences and 12 16S rDNA sequences. Based on intra- and inter-specific distances, we built phylogenetic trees using the neighbor-joining method. Our study suggested that the mitochondrial CO1 gene was a valid DNA barcoding marker for species identification in polychaetes, but other genes, such as 16S rDNA, could be used as a complementary genetic marker. For more accurate species identification and effective testing of species hypothesis, DNA barcoding should be incorporated with morphological, ecological, biogeographical, and phylogenetic information. The application of DNA barcoding and molecular identification in the ecological survey on the intertidal polychaete communities demonstrated the feasibility of integrating DNA taxonomy and ecology.

  7. Comparing COI and ITS as DNA Barcode Markers for Mushrooms and Allies (Agaricomycotina)

    PubMed Central

    Dentinger, Bryn T. M.; Didukh, Maryna Y.; Moncalvo, Jean-Marc

    2011-01-01

    DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (∼450 bp) representing ∼100 morphospecies from ∼650 collections of Agaricomycotina using several sets of new primers. Large introns (∼1500 bp) at variable locations were detected in ∼5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (∼30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms. PMID:21966418

  8. Environmental Barcoding: A Next-Generation Sequencing Approach for Biomonitoring Applications Using River Benthos

    PubMed Central

    Hajibabaei, Mehrdad; Shokralla, Shadi; Zhou, Xin; Singer, Gregory A. C.; Baird, Donald J.

    2011-01-01

    Timely and accurate biodiversity analysis poses an ongoing challenge for the success of biomonitoring programs. Morphology-based identification of bioindicator taxa is time consuming, and rarely supports species-level resolution especially for immature life stages. Much work has been done in the past decade to develop alternative approaches for biodiversity analysis using DNA sequence-based approaches such as molecular phylogenetics and DNA barcoding. On-going assembly of DNA barcode reference libraries will provide the basis for a DNA-based identification system. The use of recently introduced next-generation sequencing (NGS) approaches in biodiversity science has the potential to further extend the application of DNA information for routine biomonitoring applications to an unprecedented scale. Here we demonstrate the feasibility of using 454 massively parallel pyrosequencing for species-level analysis of freshwater benthic macroinvertebrate taxa commonly used for biomonitoring. We designed our experiments in order to directly compare morphology-based, Sanger sequencing DNA barcoding, and next-generation environmental barcoding approaches. Our results show the ability of 454 pyrosequencing of mini-barcodes to accurately identify all species with more than 1% abundance in the pooled mixture. Although the approach failed to identify 6 rare species in the mixture, the presence of sequences from 9 species that were not represented by individuals in the mixture provides evidence that DNA based analysis may yet provide a valuable approach in finding rare species in bulk environmental samples. We further demonstrate the application of the environmental barcoding approach by comparing benthic macroinvertebrates from an urban region to those obtained from a conservation area. Although considerable effort will be required to robustly optimize NGS tools to identify species from bulk environmental samples, our results indicate the potential of an environmental barcoding approach for biomonitoring programs. PMID:21533287

  9. Beyond the Colours: Discovering Hidden Diversity in the Nymphalidae of the Yucatan Peninsula in Mexico through DNA Barcoding

    PubMed Central

    Prado, Blanca R.; Pozo, Carmen; Valdez-Moreno, Martha; Hebert, Paul D. N.

    2011-01-01

    Background Recent studies have demonstrated the utility of DNA barcoding in the discovery of overlooked species and in the connection of immature and adult stages. In this study, we use DNA barcoding to examine diversity patterns in 121 species of Nymphalidae from the Yucatan Peninsula in Mexico. Our results suggest the presence of cryptic species in 8 of these 121 taxa. As well, the reference database derived from the analysis of adult specimens allowed the identification of nymphalid caterpillars providing new details on host plant use. Methodology/Principal Findings We gathered DNA barcode sequences from 857 adult Nymphalidae representing 121 different species. This total includes four species (Adelpha iphiclus, Adelpha malea, Hamadryas iphtime and Taygetis laches) that were initially overlooked because of their close morphological similarity to other species. The barcode results showed that each of the 121 species possessed a diagnostic array of barcode sequences. In addition, there was evidence of cryptic taxa; seven species included two barcode clusters showing more than 2% sequence divergence while one species included three clusters. All 71 nymphalid caterpillars were identified to a species level by their sequence congruence to adult sequences. These caterpillars represented 16 species, and included Hamadryas julitta, an endemic species from the Yucatan Peninsula whose larval stages and host plant (Dalechampia schottii, also endemic to the Yucatan Peninsula) were previously unknown. Conclusions/Significance This investigation has revealed overlooked species in a well-studied museum collection of nymphalid butterflies and suggests that there is a substantial incidence of cryptic species that await full characterization. The utility of barcoding in the rapid identification of caterpillars also promises to accelerate the assembly of information on life histories, a particularly important advance for hyperdiverse tropical insect assemblages. PMID:22132140

  10. Identification of Dendrobium species by a candidate DNA barcode sequence: the chloroplast psbA-trnH intergenic region.

    PubMed

    Yao, Hui; Song, Jing-Yuan; Ma, Xin-Ye; Liu, Chang; Li, Ying; Xu, Hong-Xi; Han, Jian-Ping; Duan, Li-Sheng; Chen, Shi-Lin

    2009-05-01

    DNA barcoding is a novel technology that uses a standard DNA sequence to facilitate species identification. Although a consensus has not been reached regarding which DNA sequences can be used as the best plant barcodes, the psbA-trnH spacer region has been tested extensively in recent years. In this study, we hypothesize that the psbA-trnH spacer regions are also effective barcodes for Dendrobium species. We have sequenced the chloroplast psbA-trnH intergenic spacers of 17 Dendrobium species to test this hypothesis. The sequences were found to be significantly different from those of other species, with percentages of variation ranging from 0.3 % to 2.3 % and an average of 1.2 %. In contrast, the intraspecific variation among the Dendrobium species studied ranged from 0 % to 0.1 %. The sequence difference between the psbA-trnH sequences of 17 Dendrobium species and one Bulbophyllum odoratissimum ranged from 2.0 % to 3.1 %, with an average of 2.5 %. Our results support the notion that the psbA-trnH intergenic spacer region could be used as a barcode to distinguish various Dendrobium species and to differentiate Dendrobium species from other adulterating species. Copyright Georg Thieme Verlag KG Stuttgart. New York.

  11. Potential for DNA-based identification of Great Lakes fauna: match and mismatch between taxa inventories and DNA barcode libraries.

    PubMed

    Trebitz, Anett S; Hoffman, Joel C; Grant, George W; Billehus, Tyler M; Pilgrim, Erik M

    2015-07-22

    DNA-based identification of mixed-organism samples offers the potential to greatly reduce the need for resource-intensive morphological identification, which would be of value both to bioassessment and non-native species monitoring. The ability to assign species identities to DNA sequences found depends on the availability of comprehensive DNA reference libraries. Here, we compile inventories for aquatic metazoans extant in or threatening to invade the Laurentian Great Lakes and examine the availability of reference mitochondrial COI DNA sequences (barcodes) in the Barcode of Life Data System for them. We found barcode libraries largely complete for extant and threatening-to-invade vertebrates (100% of reptile, 99% of fish, and 92% of amphibian species had barcodes). In contrast, barcode libraries remain poorly developed for precisely those organisms where morphological identification is most challenging; 46% of extant invertebrates lacked reference barcodes with rates especially high among rotifers, oligochaetes, and mites. Lack of species-level identification for many aquatic invertebrates also is a barrier to matching DNA sequences with physical specimens. Attaining the potential for DNA-based identification of mixed-organism samples covering the breadth of aquatic fauna requires a concerted effort to build supporting barcode libraries and voucher collections.

  12. Potential for DNA-based identification of Great Lakes fauna: match and mismatch between taxa inventories and DNA barcode libraries

    NASA Astrophysics Data System (ADS)

    Trebitz, Anett S.; Hoffman, Joel C.; Grant, George W.; Billehus, Tyler M.; Pilgrim, Erik M.

    2015-07-01

    DNA-based identification of mixed-organism samples offers the potential to greatly reduce the need for resource-intensive morphological identification, which would be of value both to bioassessment and non-native species monitoring. The ability to assign species identities to DNA sequences found depends on the availability of comprehensive DNA reference libraries. Here, we compile inventories for aquatic metazoans extant in or threatening to invade the Laurentian Great Lakes and examine the availability of reference mitochondrial COI DNA sequences (barcodes) in the Barcode of Life Data System for them. We found barcode libraries largely complete for extant and threatening-to-invade vertebrates (100% of reptile, 99% of fish, and 92% of amphibian species had barcodes). In contrast, barcode libraries remain poorly developed for precisely those organisms where morphological identification is most challenging; 46% of extant invertebrates lacked reference barcodes with rates especially high among rotifers, oligochaetes, and mites. Lack of species-level identification for many aquatic invertebrates also is a barrier to matching DNA sequences with physical specimens. Attaining the potential for DNA-based identification of mixed-organism samples covering the breadth of aquatic fauna requires a concerted effort to build supporting barcode libraries and voucher collections.

  13. Molecular Authentication of the Traditional Medicinal Plant "Lakshman Booti" (Smithia conferta Sm.) and Its Adulterants through DNA Barcoding.

    PubMed

    Umdale, Suraj D; Kshirsagar, Parthraj R; Lekhak, Manoj M; Gaikwad, Nikhil B

    2017-07-01

    Smithia conferta Sm. is an annual herb widely used in Indian traditional medical practice and commonly known as "Lakshman booti" in Sanskrit. Morphological resemblance among the species of genus Smithia Aiton . leads to inaccurate identification and adulteration. This causes inconsistent therapeutic effects and also affects the quality of herbal medicine. This study aimed to generate potential barcode for authentication of S. conferta and its adulterants through DNA barcoding technique. Genomic DNA extracted from S. conferta and its adulterants was used as templates for polymerase chain reaction amplification of the barcoding regions. The amplicons were directed for sequencing, and species identification was conducted using BLASTn and unweighted pair-group method with arithmetic mean trees. In addition, the secondary structures of internal transcribed spacer (ITS) 2 region were predicted. The nucleotide sequence of ITS provides species-specific single nucleotide polymorphisms and sequence divergence (22%) than psb A- trn H (10.9%) and rbc L (3.1%) sequences. The ITS barcode indicates that S. conferta and Smithia sensitiva are closely related compared to other species. ITS is the most applicable barcode for molecular authentication of S. conferta , and further chloroplast barcodes should be tested for phylogenetic analysis of genus Smithia. The present investigation is the first effort of utilization of DNA barcode for molecular authentication of S. conferta and its adulterants. Also, this study expanded the application of the ITS2 sequence data in the authentication. The ITS has been proved as a potential and reliable candidate barcode for the authentication of S. conferta . Abbreviations used: BLASTn: Basic Local Alignment Search Tool for Nucleotide; MEGA: Molecular Evolutionary Genetic Analysis; EMBL: European Molecular Biology Laboratory; psb A- trn H: Photosystem II protein D1- stuctural RNA: His tRNA gene; rbcL: Ribulose 1,5 bi-phosphate carboxylase/oxygenase large subunit gene.

  14. rbcL and matK earn two thumbs up as the core DNA barcode for ferns.

    PubMed

    Li, Fay-Wei; Kuo, Li-Yaung; Rothfels, Carl J; Ebihara, Atsushi; Chiou, Wen-Liang; Windham, Michael D; Pryer, Kathleen M

    2011-01-01

    DNA barcoding will revolutionize our understanding of fern ecology, most especially because the accurate identification of the independent but cryptic gametophyte phase of the fern's life history--an endeavor previously impossible--will finally be feasible. In this study, we assess the discriminatory power of the core plant DNA barcode (rbcL and matK), as well as alternatively proposed fern barcodes (trnH-psbA and trnL-F), across all major fern lineages. We also present plastid barcode data for two genera in the hyperdiverse polypod clade--Deparia (Woodsiaceae) and the Cheilanthes marginata group (currently being segregated as a new genus of Pteridaceae)--to further evaluate the resolving power of these loci. Our results clearly demonstrate the value of matK data, previously unavailable in ferns because of difficulties in amplification due to a major rearrangement of the plastid genome. With its high sequence variation, matK complements rbcL to provide a two-locus barcode with strong resolving power. With sequence variation comparable to matK, trnL-F appears to be a suitable alternative barcode region in ferns, and perhaps should be added to the core barcode region if universal primer development for matK fails. In contrast, trnH-psbA shows dramatically reduced sequence variation for the majority of ferns. This is likely due to the translocation of this segment of the plastid genome into the inverted repeat regions, which are known to have a highly constrained substitution rate. Our study provides the first endorsement of the two-locus barcode (rbcL+matK) in ferns, and favors trnL-F over trnH-psbA as a potential back-up locus. Future work should focus on gathering more fern matK sequence data to facilitate universal primer development.

  15. DNA barcodes for dragonflies and damselflies (Odonata) of Mindanao, Philippines.

    PubMed

    Casas, Princess Angelie S; Sing, Kong-Wah; Lee, Ping-Shin; Nuñeza, Olga M; Villanueva, Reagan Joseph T; Wilson, John-James

    2018-03-01

    Reliable species identification provides a sounder basis for use of species in the order Odonata as biological indicators and for their conservation, an urgent concern as many species are threatened with imminent extinction. We generated 134 COI barcodes from 36 morphologically identified species of Odonata collected from Mindanao Island, representing 10 families and 19 genera. Intraspecific sequence divergences ranged from 0 to 6.7% with four species showing more than 2%, while interspecific sequence divergences ranged from 0.5 to 23.3% with seven species showing less than 2%. Consequently, no distinct gap was observed between intraspecific and interspecific DNA barcode divergences. The numerous islands of the Philippine archipelago may have facilitated rapid speciation in the Odonata and resulted in low interspecific sequence divergences among closely related groups of species. This study contributes DNA barcodes for 36 morphologically identified species of Odonata reported from Mindanao including 31 species with no previous DNA barcode records.

  16. Supervised DNA Barcodes species classification: analysis, comparisons and results

    PubMed Central

    2014-01-01

    Background Specific fragments, coming from short portions of DNA (e.g., mitochondrial, nuclear, and plastid sequences), have been defined as DNA Barcode and can be used as markers for organisms of the main life kingdoms. Species classification with DNA Barcode sequences has been proven effective on different organisms. Indeed, specific gene regions have been identified as Barcode: COI in animals, rbcL and matK in plants, and ITS in fungi. The classification problem assigns an unknown specimen to a known species by analyzing its Barcode. This task has to be supported with reliable methods and algorithms. Methods In this work the efficacy of supervised machine learning methods to classify species with DNA Barcode sequences is shown. The Weka software suite, which includes a collection of supervised classification methods, is adopted to address the task of DNA Barcode analysis. Classifier families are tested on synthetic and empirical datasets belonging to the animal, fungus, and plant kingdoms. In particular, the function-based method Support Vector Machines (SVM), the rule-based RIPPER, the decision tree C4.5, and the Naïve Bayes method are considered. Additionally, the classification results are compared with respect to ad-hoc and well-established DNA Barcode classification methods. Results A software that converts the DNA Barcode FASTA sequences to the Weka format is released, to adapt different input formats and to allow the execution of the classification procedure. The analysis of results on synthetic and real datasets shows that SVM and Naïve Bayes outperform on average the other considered classifiers, although they do not provide a human interpretable classification model. Rule-based methods have slightly inferior classification performances, but deliver the species specific positions and nucleotide assignments. On synthetic data the supervised machine learning methods obtain superior classification performances with respect to the traditional DNA Barcode classification methods. On empirical data their classification performances are at a comparable level to the other methods. Conclusions The classification analysis shows that supervised machine learning methods are promising candidates for handling with success the DNA Barcoding species classification problem, obtaining excellent performances. To conclude, a powerful tool to perform species identification is now available to the DNA Barcoding community. PMID:24721333

  17. VIP Barcoding: composition vector-based software for rapid species identification based on DNA barcoding.

    PubMed

    Fan, Long; Hui, Jerome H L; Yu, Zu Guo; Chu, Ka Hou

    2014-07-01

    Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/. © 2014 John Wiley & Sons Ltd.

  18. DNA Barcoding in the Cycadales: Testing the Potential of Proposed Barcoding Markers for Species Identification of Cycads

    PubMed Central

    Sass, Chodon; Little, Damon P.; Stevenson, Dennis Wm.; Specht, Chelsea D.

    2007-01-01

    Barcodes are short segments of DNA that can be used to uniquely identify an unknown specimen to species, particularly when diagnostic morphological features are absent. These sequences could offer a new forensic tool in plant and animal conservation—especially for endangered species such as members of the Cycadales. Ideally, barcodes could be used to positively identify illegally obtained material even in cases where diagnostic features have been purposefully removed or to release confiscated organisms into the proper breeding population. In order to be useful, a DNA barcode sequence must not only easily PCR amplify with universal or near-universal reaction conditions and primers, but also contain enough variation to generate unique identifiers at either the species or population levels. Chloroplast regions suggested by the Plant Working Group of the Consortium for the Barcode of Life (CBoL), and two alternatives, the chloroplast psbA-trnH intergenic spacer and the nuclear ribosomal internal transcribed spacer (nrITS), were tested for their utility in generating unique identifiers for members of the Cycadales. Ease of amplification and sequence generation with universal primers and reaction conditions was determined for each of the seven proposed markers. While none of the proposed markers provided unique identifiers for all species tested, nrITS showed the most promise in terms of variability, although sequencing difficulties remain a drawback. We suggest a workflow for DNA barcoding, including database generation and management, which will ultimately be necessary if we are to succeed in establishing a universal DNA barcode for plants. PMID:17987130

  19. DNA barcode analysis of butterfly species from Pakistan points towards regional endemism.

    PubMed

    Ashfaq, Muhammad; Akhtar, Saleem; Khan, Arif M; Adamowicz, Sarah J; Hebert, Paul D N

    2013-09-01

    DNA barcodes were obtained for 81 butterfly species belonging to 52 genera from sites in north-central Pakistan to test the utility of barcoding for their identification and to gain a better understanding of regional barcode variation. These species represent 25% of the butterfly fauna of Pakistan and belong to five families, although the Nymphalidae were dominant, comprising 38% of the total specimens. Barcode analysis showed that maximum conspecific divergence was 1.6%, while there was 1.7-14.3% divergence from the nearest neighbour species. Barcode records for 55 species showed <2% sequence divergence to records in the Barcode of Life Data Systems (BOLD), but only 26 of these cases involved specimens from neighbouring India and Central Asia. Analysis revealed that most species showed little incremental sequence variation when specimens from other regions were considered, but a threefold increase was noted in a few cases. There was a clear gap between maximum intraspecific and minimum nearest neighbour distance for all 81 species. Neighbour-joining cluster analysis showed that members of each species formed a monophyletic cluster with strong bootstrap support. The barcode results revealed two provisional species that could not be clearly linked to known taxa, while 24 other species gained their first coverage. Future work should extend the barcode reference library to include all butterfly species from Pakistan as well as neighbouring countries to gain a better understanding of regional variation in barcode sequences in this topographically and climatically complex region. © 2013 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.

  20. A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes

    PubMed Central

    Herbold, Craig W.; Pelikan, Claus; Kuzyk, Orest; Hausmann, Bela; Angel, Roey; Berry, David; Loy, Alexander

    2015-01-01

    High throughput sequencing of phylogenetic and functional gene amplicons provides tremendous insight into the structure and functional potential of complex microbial communities. Here, we introduce a highly adaptable and economical PCR approach to barcoding and pooling libraries of numerous target genes. In this approach, we replace gene- and sequencing platform-specific fusion primers with general, interchangeable barcoding primers, enabling nearly limitless customized barcode-primer combinations. Compared to barcoding with long fusion primers, our multiple-target gene approach is more economical because it overall requires lower number of primers and is based on short primers with generally lower synthesis and purification costs. To highlight our approach, we pooled over 900 different small-subunit rRNA and functional gene amplicon libraries obtained from various environmental or host-associated microbial community samples into a single, paired-end Illumina MiSeq run. Although the amplicon regions ranged in size from approximately 290 to 720 bp, we found no significant systematic sequencing bias related to amplicon length or gene target. Our results indicate that this flexible multiplexing approach produces large, diverse, and high quality sets of amplicon sequence data for modern studies in microbial ecology. PMID:26236305

  1. Sphaeridiotrema globulus and Sphaeridiotrema pseudoglobulus (Digenea): Species Differentiation Based On mtDNA (Barcode) and Partial LSU–rDNA Sequences

    USGS Publications Warehouse

    Bergmame, Laura; Huffman, Jane; Cole, Rebecca; Dayanandan, Selvadurai; Tkach, Vasyl; McLaughlin, J. Daniel

    2011-01-01

    Flukes belonging to Sphaeridiotrema are important parasites of waterfowl, and 2 morphologically similar species Sphaeridiotrema globulus and Sphaeridiotrema pseudoglobulus, have been implicated in waterfowl mortality in North America. Cytochrome oxidase I (barcode region) and partial LSU-rDNA sequences from specimens of S. globulus and S. pseudoglobulus, obtained from naturally and experimentally infected hosts from New Jersey and Quebec, respectively, confirmed that these species were distinct. Barcode sequences of the 2 species differed at 92 of 590 nucleotide positions (15.6%) and the translated sequences differed by 13 amino acid residues. Partial LSU-rDNA sequences differed at 29 of 1,208 nucleotide positions (2.4%). Additional barcode sequences from specimens collected from waterfowl in Wisconsin and Minnesota and morphometric data obtained from specimens acquired along the north shore of Lake Superior revealed the presence of S. pseudoglobulus in these areas. Although morphometric data suggested the presence of S. globulus in the Lake Superior sample, it was not found among the specimens sequenced from Wisconsin or Minnesota.

  2. Sphaeridiotrema globulus and Sphaeridiotrema pseudoglobulus (Digenea): Species Differentiation Based on mtDNA (Barcode) and Partial LSUrDNA Sequences

    USGS Publications Warehouse

    Bergmame, L.; Huffman, J.; Cole, R.; Dayanandan, S.; Tkach, V.; McLaughlin, J.D.

    2011-01-01

    Flukes belonging to Sphaeridiotrema are important parasites of waterfowl, and 2 morphologically similar species Sphaeridiotrema globulus and Sphaeridiotrema pseudoglobulus, have been implicated in waterfowl mortality in North America. Cytochrome oxidase I (barcode region) and partial LSU-rDNA sequences from specimens of S. globulus and S. pseudoglobulus, obtained from naturally and experimentally infected hosts from New Jersey and Quebec, respectively, confirmed that these species were distinct. Barcode sequences of the 2 species differed at 92 of 590 nucleotide positions (15.6%) and the translated sequences differed by 13 amino acid residues. Partial LSU-rDNA sequences differed at 29 of 1,208 nucleotide positions (2.4%). Additional barcode sequences from specimens collected from waterfowl in Wisconsin and Minnesota and morphometric data obtained from specimens acquired along the north shore of Lake Superior revealed the presence of S. pseudoglobulus in these areas. Although morphometric data suggested the presence of S. globulus in the Lake Superior sample, it was not found among the specimens sequenced from Wisconsin or Minnesota. ?? 2011 American Society of Parasitologists.

  3. DNA Barcoding Identifies Argentine Fishes from Marine and Brackish Waters

    PubMed Central

    Mabragaña, Ezequiel; Díaz de Astarloa, Juan Martín; Hanner, Robert; Zhang, Junbin; González Castro, Mariano

    2011-01-01

    Background DNA barcoding has been advanced as a promising tool to aid species identification and discovery through the use of short, standardized gene targets. Despite extensive taxonomic studies, for a variety of reasons the identification of fishes can be problematic, even for experts. DNA barcoding is proving to be a useful tool in this context. However, its broad application is impeded by the need to construct a comprehensive reference sequence library for all fish species. Here, we make a regional contribution to this grand challenge by calibrating the species discrimination efficiency of barcoding among 125 Argentine fish species, representing nearly one third of the known fauna, and examine the utility of these data to address several key taxonomic uncertainties pertaining to species in this region. Methodology/Principal Findings Specimens were collected and morphologically identified during crusies conducted between 2005 and 2008. The standard BARCODE fragment of COI was amplified and bi-directionally sequenced from 577 specimens (mean of 5 specimens/species), and all specimens and sequence data were archived and interrogated using analytical tools available on the Barcode of Life Data System (BOLD; www.barcodinglife.org). Nearly all species exhibited discrete clusters of closely related haplogroups which permitted the discrimination of 95% of the species (i.e. 119/125) examined while cases of shared haplotypes were detected among just three species-pairs. Notably, barcoding aided the identification of a new species of skate, Dipturus argentinensis, permitted the recognition of Genypterus brasiliensis as a valid species and questions the generic assignment of Paralichthys isosceles. Conclusions/Significance This study constitutes a significant contribution to the global barcode reference sequence library for fishes and demonstrates the utility of barcoding for regional species identification. As an independent assessment of alpha taxonomy, barcodes provide robust support for most morphologically based taxon concepts and also highlight key areas of taxonomic uncertainty worthy of reappraisal. PMID:22174860

  4. The effectiveness of three regions in mitochondrial genome for aphid DNA barcoding: a case in Lachininae.

    PubMed

    Chen, Rui; Jiang, Li-Yun; Qiao, Ge-Xia

    2012-01-01

    The mitochondrial gene COI has been widely used by taxonomists as a standard DNA barcode sequence for the identification of many animal species. However, the COI region is of limited use for identifying certain species and is not efficiently amplified by PCR in all animal taxa. To evaluate the utility of COI as a DNA barcode and to identify other barcode genes, we chose the aphid subfamily Lachninae (Hemiptera: Aphididae) as the focus of our study. We compared the results obtained using COI with two other mitochondrial genes, COII and Cytb. In addition, we propose a new method to improve the efficiency of species identification using DNA barcoding. Three mitochondrial genes (COI, COII and Cytb) were sequenced and were used in the identification of over 80 species of Lachninae. The COI and COII genes demonstrated a greater PCR amplification efficiency than Cytb. Species identification using COII sequences had a higher frequency of success (96.9% in "best match" and 90.8% in "best close match") and yielded lower intra- and higher interspecific genetic divergence values than the other two markers. The use of "tag barcodes" is a new approach that involves attaching a species-specific tag to the standard DNA barcode. With this method, the "barcoding overlap" can be nearly eliminated. As a result, we were able to increase the identification success rate from 83.9% to 95.2% by using COI and the "best close match" technique. A COII-based identification system should be more effective in identifying lachnine species than COI or Cytb. However, the Cytb gene is an effective marker for the study of aphid population genetics due to its high sequence diversity. Furthermore, the use of "tag barcodes" can improve the accuracy of DNA barcoding identification by reducing or removing the overlap between intra- and inter-specific genetic divergence values.

  5. DNA barcoding using skin exuviates can improve identification and biodiversity studies of snakes.

    PubMed

    Khedkar, Trupti; Sharma, Rashmi; Tiknaik, Anita; Khedkar, Gulab; Naikwade, Bhagwat S; Ron, Tetsuzan Benny; Haymer, David

    2016-01-01

    Snakes represent a taxonomically underdeveloped group of animals in India with a lack of experts and incomplete taxonomic descriptions being the main deterrents to advances in this area. Molecular taxonomic approaches using DNA barcoding could aid in snake identification as well as studies of biodiversity. Here a non-invasive sampling method using DNA barcoding is tested using skin exuviates. Taxonomically authenticated samples were collected and tested for validation and comparisons to unknown snake exuviate samples. This approach was also used to construct the first comprehensive study targeting the snake species from Maharashtra state in India. A total of 92 skin exuviate samples were collected and tested for this study. Of these, 81 samples were successfully DNA barcoded and compared with unknown samples for assignment of taxonomic identity. Good quality DNA was obtained irrespective of age and quality of the exuviate material, and all unknown samples were successfully identified. A total of 23 species of snakes were identified, six of which were in the list of Endangered species (Red Data Book). Intra- and inter-specific distance values were also calculated, and these were sufficient to allow discrimination among species and between species without ambiguity in most cases. Two samples were suspected to represent cryptic species based on deep K2P divergence values (>3%), and one sample could be identified to the genus level only. Eleven samples failed to amplify COI sequences, suggesting the need for alternative PCR primer pairs. This study clearly documents how snake skin exuviates can be used for DNA barcoding, estimates of diversity and population genetic structuring in a noninvasive manner.

  6. Barcoding snakeheads (Teleostei, Channidae) revisited: Discovering greater species diversity and resolving perpetuated taxonomic confusions

    PubMed Central

    Conte-Grand, Cecilia; Britz, Ralf; Dahanukar, Neelesh; Raghavan, Rajeev; Pethiyagoda, Rohan; Tan, Heok Hui; Hadiaty, Renny K.; Yaakob, Norsham S.

    2017-01-01

    Snakehead fishes of the family Channidae are predatory freshwater teleosts from Africa and Asia comprising 38 valid species. Snakeheads are important food fishes (aquaculture, live food trade) and have been introduced widely with several species becoming highly invasive. A channid barcode library was recently assembled by Serrao and co-workers to better detect and identify potential and established invasive snakehead species outside their native range. Comparing our own recent phylogenetic results of this taxonomically confusing group with those previously reported revealed several inconsistencies that prompted us to expand and improve on previous studies. By generating 343 novel snakehead coxI sequences and combining them with an additional 434 coxI sequences from GenBank we highlight several problems with previous efforts towards the assembly of a snakehead reference barcode library. We found that 16.3% of the channid coxI sequences deposited in GenBank are based on misidentifications. With the inclusion of our own data we were, however, able to solve these cases of perpetuated taxonomic confusion. Different species delimitation approaches we employed (BIN, GMYC, and PTP) were congruent in suggesting a potentially much higher species diversity within snakeheads than currently recognized. In total, 90 BINs were recovered and within a total of 15 currently recognized species multiple BINs were identified. This higher species diversity is mostly due to either the incorporation of undescribed, narrow range, endemics from the Eastern Himalaya biodiversity hotspot or the incorporation of several widespread species characterized by deep genetic splits between geographically well-defined lineages. In the latter case, over-lumping in the past has deflated the actual species numbers. Further integrative approaches are clearly needed for providing a better taxonomic understanding of snakehead diversity, new species descriptions and taxonomic revisions of the group. PMID:28931084

  7. Moorea BIOCODE barcode library as a tool for understanding predator-prey interactions: insights into the diet of common predatory coral reef fishes

    NASA Astrophysics Data System (ADS)

    Leray, M.; Boehm, J. T.; Mills, S. C.; Meyer, C. P.

    2012-06-01

    Identifying species involved in consumer-resource interactions is one of the main limitations in the construction of food webs. DNA barcoding of prey items in predator guts provides a valuable tool for characterizing trophic interactions, but the method relies on the availability of reference sequences to which prey sequences can be matched. In this study, we demonstrate that the COI sequence library of the Moorea BIOCODE project, an ecosystem-level barcode initiative, enables the identification of a large proportion of semi-digested fish, crustacean and mollusks found in the guts of three Hawkfish and two Squirrelfish species. While most prey remains lacked diagnostic morphological characters, 94% of the prey found in 67 fishes had >98% sequence similarity with BIOCODE reference sequences. Using this species-level prey identification, we demonstrate how DNA barcoding can provide insights into resource partitioning, predator feeding behaviors and the consequences of predation on ecosystem function.

  8. DNA Barcoding of Marine Metazoa

    NASA Astrophysics Data System (ADS)

    Bucklin, Ann; Steinke, Dirk; Blanco-Bercial, Leocadio

    2011-01-01

    More than 230,000 known species representing 31 metazoan phyla populate the world's oceans. Perhaps another 1,000,000 or more species remain to be discovered. There is reason for concern that species extinctions may outpace discovery, especially in diverse and endangered marine habitats such as coral reefs. DNA barcodes (i.e., short DNA sequences for species recognition and discrimination) are useful tools to accelerate species-level analysis of marine biodiversity and to facilitate conservation efforts. This review focuses on the usual barcode region for metazoans: a ˜648 base-pair region of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Barcodes have also been used for population genetic and phylogeographic analysis, identification of prey in gut contents, detection of invasive species, forensics, and seafood safety. More controversially, barcodes have been used to delimit species boundaries, reveal cryptic species, and discover new species. Emerging frontiers are the use of barcodes for rapid and increasingly automated biodiversity assessment by high-throughput sequencing, including environmental barcoding and the use of barcodes to detect species for which formal identification or scientific naming may never be possible.

  9. The Barcode of Life Data Portal: Bridging the Biodiversity Informatics Divide for DNA Barcoding

    PubMed Central

    Sarkar, Indra Neil; Trizna, Michael

    2011-01-01

    With the volume of molecular sequence data that is systematically being generated globally, there is a need for centralized resources for data exploration and analytics. DNA Barcode initiatives are on track to generate a compendium of molecular sequence–based signatures for identifying animals and plants. To date, the range of available data exploration and analytic tools to explore these data have only been available in a boutique form—often representing a frustrating hurdle for many researchers that may not necessarily have resources to install or implement algorithms described by the analytic community. The Barcode of Life Data Portal (BDP) is a first step towards integrating the latest biodiversity informatics innovations with molecular sequence data from DNA barcoding. Through establishment of community driven standards, based on discussion with the Data Analysis Working Group (DAWG) of the Consortium for the Barcode of Life (CBOL), the BDP provides an infrastructure for incorporation of existing and next-generation DNA barcode analytic applications in an open forum. PMID:21818249

  10. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region.

    PubMed

    Kress, W John; Erickson, David L

    2007-06-06

    A useful DNA barcode requires sufficient sequence variation to distinguish between species and ease of application across a broad range of taxa. Discovery of a DNA barcode for land plants has been limited by intrinsically lower rates of sequence evolution in plant genomes than that observed in animals. This low rate has complicated the trade-off in finding a locus that is universal and readily sequenced and has sufficiently high sequence divergence at the species-level. Here, a global plant DNA barcode system is evaluated by comparing universal application and degree of sequence divergence for nine putative barcode loci, including coding and non-coding regions, singly and in pairs across a phylogenetically diverse set of 48 genera (two species per genus). No single locus could discriminate among species in a pair in more than 79% of genera, whereas discrimination increased to nearly 88% when the non-coding trnH-psbA spacer was paired with one of three coding loci, including rbcL. In silico trials were conducted in which DNA sequences from GenBank were used to further evaluate the discriminatory power of a subset of these loci. These trials supported the earlier observation that trnH-psbA coupled with rbcL can correctly identify and discriminate among related species. A combination of the non-coding trnH-psbA spacer region and a portion of the coding rbcL gene is recommended as a two-locus global land plant barcode that provides the necessary universality and species discrimination.

  11. Barcode ITS2: a useful tool for identifying Trachelospermum jasminoides and a good monitor for medicine market.

    PubMed

    Yu, Ning; Wei, Yu-Long; Zhang, Xin; Zhu, Ning; Wang, Yan-Li; Zhu, Yue; Zhang, Hai-Ping; Li, Fen-Mei; Yang, Lan; Sun, Jia-Qi; Sun, Ai-Dong

    2017-07-11

    Trachelospermum jasminoides is commonly used in traditional Chinese medicine. However, the use of the plant's local alternatives is frequent, causing potential clinical problems. The T. jasminoides sold in the medicine market is commonly dried and sliced, making traditional identification methods difficult. In this study, the ITS2 region was evaluated on 127 sequences representing T. jasminoides and its local alternatives according to PCR and sequencing rates, intra- and inter-specific divergences, secondary structure, and discrimination capacity. Results indicated the 100% success rates of PCR and sequencing and the obvious presence of a barcoding gap. Results of BLAST 1, nearest distance and neighbor-joining tree methods showed that barcode ITS2 could successfully identify all the texted samples. The secondary structures of the ITS2 region provided another dimensionality for species identification. Two-dimensional images were obtained for better and easier identification. Previous studies on DNA barcoding concentrated more on the same family, genus, or species. However, an ideal barcode should be variable enough to identify closely related species. Meanwhile, the barcodes should also be conservative in identifying distantly related species. This study highlights the application of barcode ITS2 in solving practical problems in the distantly related local alternatives of medical plants.

  12. Generation and analysis of a barcode-tagged insertion mutant library in the fission yeast Schizosaccharomyces pombe

    PubMed Central

    2012-01-01

    Background Barcodes are unique DNA sequence tags that can be used to specifically label individual mutants. The barcode-tagged open reading frame (ORF) haploid deletion mutant collections in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe allow for high-throughput mutant phenotyping because the relative growth of mutants in a population can be determined by monitoring the proportions of their associated barcodes. While these mutant collections have greatly facilitated genome-wide studies, mutations in essential genes are not present, and the roles of these genes are not as easily studied. To further support genome-scale research in S. pombe, we generated a barcode-tagged fission yeast insertion mutant library that has the potential of generating viable mutations in both essential and non-essential genes and can be easily analyzed using standard molecular biological techniques. Results An insertion vector containing a selectable ura4+ marker and a random barcode was used to generate a collection of 10,000 fission yeast insertion mutants stored individually in 384-well plates and as six pools of mixed mutants. Individual barcodes are flanked by Sfi I recognition sites and can be oligomerized in a unique orientation to facilitate barcode sequencing. Independent genetic screens on a subset of mutants suggest that this library contains a diverse collection of single insertion mutations. We present several approaches to determine insertion sites. Conclusions This collection of S. pombe barcode-tagged insertion mutants is well-suited for genome-wide studies. Because insertion mutations may eliminate, reduce or alter the function of essential and non-essential genes, this library will contain strains with a wide range of phenotypes that can be assayed by their associated barcodes. The design of the barcodes in this library allows for barcode sequencing using next generation or standard benchtop cloning approaches. PMID:22554201

  13. Molecular identification and phylogenetic analysis of important medicinal plant species in genus Paeonia based on rDNA-ITS, matK, and rbcL DNA barcode sequences.

    PubMed

    Kim, W J; Ji, Y; Choi, G; Kang, Y M; Yang, S; Moon, B C

    2016-08-05

    This study was performed to identify and analyze the phylogenetic relationship among four herbaceous species of the genus Paeonia, P. lactiflora, P. japonica, P. veitchii, and P. suffruticosa, using DNA barcodes. These four species, which are commonly used in traditional medicine as Paeoniae Radix and Moutan Radicis Cortex, are pharmaceutically defined in different ways in the national pharmacopoeias in Korea, Japan, and China. To authenticate the different species used in these medicines, we evaluated rDNA-internal transcribed spacers (ITS), matK and rbcL regions, which provide information capable of effectively distinguishing each species from one another. Seventeen samples were collected from different geographic regions in Korea and China, and DNA barcode regions were amplified using universal primers. Comparative analyses of these DNA barcode sequences revealed species-specific nucleotide sequences capable of discriminating the four Paeonia species. Among the entire sequences of three barcodes, marker nucleotides were identified at three positions in P. lactiflora, eleven in P. japonica, five in P. veitchii, and 25 in P. suffruticosa. Phylogenetic analyses also revealed four distinct clusters showing homogeneous clades with high resolution at the species level. The results demonstrate that the analysis of these three DNA barcode sequences is a reliable method for identifying the four Paeonia species and can be used to authenticate Paeoniae Radix and Moutan Radicis Cortex at the species level. Furthermore, based on the assessment of amplicon sizes, inter/intra-specific distances, marker nucleotides, and phylogenetic analysis, rDNA-ITS was the most suitable DNA barcode for identification of these species.

  14. DNA Barcoding of the Endangered Aquilaria (Thymelaeaceae) and Its Application in Species Authentication of Agarwood Products Traded in the Market

    PubMed Central

    Lee, Shiou Yih; Ng, Wei Lun; Mahat, Mohd Noor; Nazre, Mohd; Mohamed, Rozi

    2016-01-01

    The identification of Aquilaria species from their resinous non-wood product, the agarwood, is challenging as conventional techniques alone are unable to ascertain the species origin. Aquilaria is a highly protected species due to the excessive exploitation of its precious agarwood. Here, we applied the DNA barcoding technique to generate barcode sequences for Aquilaria species and later applied the barcodes to identify the source species of agarwood found in the market. We developed a reference DNA barcode library using eight candidate barcode loci (matK, rbcL, rpoB, rpoC1, psbA-trnH, trnL-trnF, ITS, and ITS2) amplified from 24 leaf accessions of seven Aquilaria species obtained from living trees. Our results indicated that all single barcodes can be easily amplified and sequenced with the selected primers. The combination of trnL-trnF+ITS and trnL-trnF+ITS2 yielded the greatest species resolution using the least number of loci combination, while matK+trnL-trnF+ITS showed potential in detecting the geographical origins of Aquilaria species. We propose trnL-trnF+ITS2 as the best candidate barcode for Aquilaria as ITS2 has a shorter sequence length compared to ITS, which eases PCR amplification especially when using degraded DNA samples such as those extracted from processed agarwood products. A blind test conducted on eight agarwood samples in different forms using the proposed barcode combination proved successful in their identification up to the species level. Such potential of DNA barcoding in identifying the source species of agarwood will contribute to the international timber trade control, by providing an effective method for species identification and product authentication. PMID:27128309

  15. Mini-DNA barcode in identification of the ornamental fish: A case study from Northeast India.

    PubMed

    Dhar, Bishal; Ghosh, Sankar Kumar

    2017-09-05

    The ornamental fishes were exported under the trade names or generic names, thus creating problems in species identification. In this regard, DNA barcoding could effectively elucidate the actual species status. However, the problem arises if the specimen is having taxonomic disputes, falsified by trade/generic names, etc., On the other hand, barcoding the archival museum specimens would be of greater benefit to address such issues as it would create firm, error-free reference database for rapid identification of any species. This can be achieved only by generating short sequences as DNA from chemically preserved are mostly degraded. Here we aimed to identify a short stretch of informative sites within the full-length barcode segment, capable of delineating diverse group of ornamental fish species, commonly traded from NE India. We analyzed 287 full-length barcode sequences from the major fish orders and compared the interspecific K2P distance with nucleotide substitutions patterns and found a strong correlation of interspecies distance with transversions (0.95, p<0.001). We, therefore, proposed a short stretch of 171bp (transversion rich) segment as mini-barcode. The proposed segment was compared with the full-length barcodes and found to delineate the species effectively. Successful PCR amplification and sequencing of the 171bp segment using designed primers for different orders validated it as mini-barcodes for ornamental fishes. Thus, our findings would be helpful in strengthening the global database with the sequence of archived fish species as well as an effective identification tool of the traded ornamental fish species, as a less time consuming, cost effective field-based application. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants.

    PubMed

    Sucher, Nikolaus J; Hennell, James R; Carles, Maria C

    2012-01-01

    DNA fingerprinting of plants has become an invaluable tool in forensic, scientific, and industrial laboratories all over the world. PCR has become part of virtually every variation of the plethora of approaches used for DNA fingerprinting today. DNA sequencing is increasingly used either in combination with or as a replacement for traditional DNA fingerprinting techniques. A prime example is the use of short, standardized regions of the genome as taxon barcodes for biological identification of plants. Rapid advances in "next generation sequencing" (NGS) technology are driving down the cost of sequencing and bringing large-scale sequencing projects into the reach of individual investigators. We present an overview of recent publications that demonstrate the use of "NGS" technology for DNA fingerprinting and DNA barcoding applications.

  17. A “Rosetta Stone” for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (Northwest Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Bucklin, Ann; Ortman, Brian D.; Jennings, Robert M.; Nigro, Lisa M.; Sweetman, Christopher J.; Copley, Nancy J.; Sutton, Tracey; Wiebe, Peter H.

    2010-12-01

    Species diversity of the metazoan holozooplankton assemblage of the Sargasso Sea, Northwest Atlantic Ocean, was examined through coordinated morphological taxonomic identification of species and DNA sequencing of a ˜650 base-pair region of mitochondrial cytochrome oxidase I (mtCOI) as a DNA barcode (i.e., short sequence for species recognition and discrimination). Zooplankton collections were made from the surface to 5,000 meters during April, 2006 on the R/V R.H. Brown. Samples were examined by a ship-board team of morphological taxonomists; DNA barcoding was carried out in both ship-board and land-based DNA sequencing laboratories. DNA barcodes were determined for a total of 297 individuals of 175 holozooplankton species in four phyla, including: Cnidaria (Hydromedusae, 4 species; Siphonophora, 47); Arthropoda (Amphipoda, 10; Copepoda, 34; Decapoda, 9; Euphausiacea, 10; Mysidacea, 1; Ostracoda, 27); and Mollusca (Cephalopoda, 8; Heteropoda, 6; Pteropoda, 15); and Chaetognatha (4). Thirty species of fish (Teleostei) were also barcoded. For all seven zooplankton groups for which sufficient data were available, Kimura-2-Parameter genetic distances were significantly lower between individuals of the same species (mean=0.0114; S.D. 0.0117) than between individuals of different species within the same group (mean=0.3166; S.D. 0.0378). This difference, known as the barcode gap, ensures that mtCOI sequences are reliable characters for species identification for the oceanic holozooplankton assemblage. In addition, DNA barcodes allow recognition of new or undescribed species, reveal cryptic species within known taxa, and inform phylogeographic and population genetic studies of geographic variation. The growing database of "gold standard" DNA barcodes serves as a Rosetta Stone for marine zooplankton, providing the key for decoding species diversity by linking species names, morphology, and DNA sequence variation. In light of the pivotal position of zooplankton in ocean food webs, their usefulness as rapid responders to environmental change, and the increasing scarcity of taxonomists, the use of DNA barcodes is an important and useful approach for rapid analysis of species diversity and distribution in the pelagic community.

  18. Barcode Identifiers as a Practical Tool for Reliable Species Assignment of Medically Important Black Yeast Species

    PubMed Central

    Heinrichs, Guido; de Hoog, G. Sybren

    2012-01-01

    Herpotrichiellaceous black yeasts and relatives comprise severe pathogens flanked by nonpathogenic environmental siblings. Reliable identification by conventional methods is notoriously difficult. Molecular identification is hampered by the sequence variability in the internal transcribed spacer (ITS) domain caused by difficult-to-sequence homopolymeric regions and by poor taxonomic attribution of sequences deposited in GenBank. Here, we present a potential solution using short barcode identifiers (27 to 50 bp) based on ITS2 ribosomal DNA (rDNA), which allows unambiguous definition of species-specific fragments. Starting from proven sequences of ex-type and authentic strains, we were able to describe 103 identifiers. Multiple BLAST searches of these proposed barcode identifiers in GenBank revealed uniqueness for 100 taxonomic entities, whereas the three remaining identifiers each matched with two entities, but the species of these identifiers could easily be discriminated by differences in the remaining ITS regions. Using the proposed barcode identifiers, a 4.1-fold increase of 100% matches in GenBank was achieved in comparison to the classical approach using the complete ITS sequences. The proposed barcode identifiers will be made accessible for the diagnostic laboratory in a permanently updated online database, thereby providing a highly practical, reliable, and cost-effective tool for identification of clinically important black yeasts and relatives. PMID:22785187

  19. rbcL and matK Earn Two Thumbs Up as the Core DNA Barcode for Ferns

    PubMed Central

    Li, Fay-Wei; Kuo, Li-Yaung; Rothfels, Carl J.; Ebihara, Atsushi; Chiou, Wen-Liang; Windham, Michael D.; Pryer, Kathleen M.

    2011-01-01

    Background DNA barcoding will revolutionize our understanding of fern ecology, most especially because the accurate identification of the independent but cryptic gametophyte phase of the fern's life history—an endeavor previously impossible—will finally be feasible. In this study, we assess the discriminatory power of the core plant DNA barcode (rbcL and matK), as well as alternatively proposed fern barcodes (trnH-psbA and trnL-F), across all major fern lineages. We also present plastid barcode data for two genera in the hyperdiverse polypod clade—Deparia (Woodsiaceae) and the Cheilanthes marginata group (currently being segregated as a new genus of Pteridaceae)—to further evaluate the resolving power of these loci. Principal Findings Our results clearly demonstrate the value of matK data, previously unavailable in ferns because of difficulties in amplification due to a major rearrangement of the plastid genome. With its high sequence variation, matK complements rbcL to provide a two-locus barcode with strong resolving power. With sequence variation comparable to matK, trnL-F appears to be a suitable alternative barcode region in ferns, and perhaps should be added to the core barcode region if universal primer development for matK fails. In contrast, trnH-psbA shows dramatically reduced sequence variation for the majority of ferns. This is likely due to the translocation of this segment of the plastid genome into the inverted repeat regions, which are known to have a highly constrained substitution rate. Conclusions Our study provides the first endorsement of the two-locus barcode (rbcL+matK) in ferns, and favors trnL-F over trnH-psbA as a potential back-up locus. Future work should focus on gathering more fern matK sequence data to facilitate universal primer development. PMID:22028918

  20. An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes

    PubMed Central

    Kofoed, Megan; Milbury, Karissa L.; Chiang, Jennifer H.; Sinha, Sunita; Ben-Aroya, Shay; Giaever, Guri; Nislow, Corey; Hieter, Philip; Stirling, Peter C.

    2015-01-01

    Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes. PMID:26175450

  1. An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes.

    PubMed

    Kofoed, Megan; Milbury, Karissa L; Chiang, Jennifer H; Sinha, Sunita; Ben-Aroya, Shay; Giaever, Guri; Nislow, Corey; Hieter, Philip; Stirling, Peter C

    2015-07-14

    Systematic analyses of essential gene function using mutant collections in Saccharomyces cerevisiae have been conducted using collections of heterozygous diploids, promoter shut-off alleles, through alleles with destabilized mRNA, destabilized protein, or bearing mutations that lead to a temperature-sensitive (ts) phenotype. We previously described a method for construction of barcoded ts alleles in a systematic fashion. Here we report the completion of this collection of alleles covering 600 essential yeast genes. This resource covers a larger gene repertoire than previous collections and provides a complementary set of strains suitable for single gene and genomic analyses. We use deep sequencing to characterize the amino acid changes leading to the ts phenotype in half of the alleles. We also use high-throughput approaches to describe the relative ts behavior of the alleles. Finally, we demonstrate the experimental usefulness of the collection in a high-content, functional genomic screen for ts alleles that increase spontaneous P-body formation. By increasing the number of alleles and improving the annotation, this ts collection will serve as a community resource for probing new aspects of biology for essential yeast genes. Copyright © 2015 Kofoed et al.

  2. A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region

    PubMed Central

    Kress, W. John; Erickson, David L.

    2007-01-01

    Background A useful DNA barcode requires sufficient sequence variation to distinguish between species and ease of application across a broad range of taxa. Discovery of a DNA barcode for land plants has been limited by intrinsically lower rates of sequence evolution in plant genomes than that observed in animals. This low rate has complicated the trade-off in finding a locus that is universal and readily sequenced and has sufficiently high sequence divergence at the species-level. Methodology/Principal Findings Here, a global plant DNA barcode system is evaluated by comparing universal application and degree of sequence divergence for nine putative barcode loci, including coding and non-coding regions, singly and in pairs across a phylogenetically diverse set of 48 genera (two species per genus). No single locus could discriminate among species in a pair in more than 79% of genera, whereas discrimination increased to nearly 88% when the non-coding trnH-psbA spacer was paired with one of three coding loci, including rbcL. In silico trials were conducted in which DNA sequences from GenBank were used to further evaluate the discriminatory power of a subset of these loci. These trials supported the earlier observation that trnH-psbA coupled with rbcL can correctly identify and discriminate among related species. Conclusions/Significance A combination of the non-coding trnH-psbA spacer region and a portion of the coding rbcL gene is recommended as a two-locus global land plant barcode that provides the necessary universality and species discrimination. PMID:17551588

  3. An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding

    PubMed Central

    De Ley, Paul; De Ley, Irma Tandingan; Morris, Krystalynne; Abebe, Eyualem; Mundo-Ocampo, Manuel; Yoder, Melissa; Heras, Joseph; Waumann, Dora; Rocha-Olivares, Axayácatl; Jay Burr, A.H; Baldwin, James G; Thomas, W. Kelley

    2005-01-01

    Molecular surveys of meiofaunal diversity face some interesting methodological challenges when it comes to interstitial nematodes from soils and sediments. Morphology-based surveys are greatly limited in processing speed, while barcoding approaches for nematodes are hampered by difficulties of matching sequence data with traditional taxonomy. Intermediate technology is needed to bridge the gap between both approaches. An example of such technology is video capture and editing microscopy, which consists of the recording of taxonomically informative multifocal series of microscopy images as digital video clips. The integration of multifocal imaging with sequence analysis of the D2D3 region of large subunit (LSU) rDNA is illustrated here in the context of a combined morphological and barcode sequencing survey of marine nematodes from Baja California and California. The resulting video clips and sequence data are made available online in the database NemATOL (http://nematol.unh.edu/). Analyses of 37 barcoded nematodes suggest that these represent at least 32 species, none of which matches available D2D3 sequences in public databases. The recorded multifocal vouchers allowed us to identify most specimens to genus, and will be used to match specimens with subsequent species identifications and descriptions of preserved specimens. Like molecular barcodes, multifocal voucher archives are part of a wider effort at structuring and changing the process of biodiversity discovery. We argue that data-rich surveys and phylogenetic tools for analysis of barcode sequences are an essential component of the exploration of phyla with a high fraction of undiscovered species. Our methods are also directly applicable to other meiofauna such as for example gastrotrichs and tardigrades. PMID:16214752

  4. A DNA Barcode Library for Korean Chironomidae (Insecta: Diptera) and Indexes for Defining Barcode Gap

    PubMed Central

    Kim, Sungmin; Song, Kyo-Hong; Ree, Han-Il; Kim, Won

    2012-01-01

    Non-biting midges (Diptera: Chironomidae) are a diverse population that commonly causes respiratory allergies in humans. Chironomid larvae can be used to indicate freshwater pollution, but accurate identification on the basis of morphological characteristics is difficult. In this study, we constructed a mitochondrial cytochrome c oxidase subunit I (COI)-based DNA barcode library for Korean chironomids. This library consists of 211 specimens from 49 species, including adults and unidentified larvae. The interspecies and intraspecies COI sequence variations were analyzed. Sophisticated indexes were developed in order to properly evaluate indistinct barcode gaps that are created by insufficient sampling on both the interspecies and intraspecies levels and by variable mutation rates across taxa. In a variety of insect datasets, these indexes were useful for re-evaluating large barcode datasets and for defining COI barcode gaps. The COI-based DNA barcode library will provide a rapid and reliable tool for the molecular identification of Korean chironomid species. Furthermore, this reverse-taxonomic approach will be improved by the continuous addition of other speceis’ sequences to the library. PMID:22138764

  5. Googling DNA sequences on the World Wide Web.

    PubMed

    Hajibabaei, Mehrdad; Singer, Gregory A C

    2009-11-10

    New web-based technologies provide an excellent opportunity for sharing and accessing information and using web as a platform for interaction and collaboration. Although several specialized tools are available for analyzing DNA sequence information, conventional web-based tools have not been utilized for bioinformatics applications. We have developed a novel algorithm and implemented it for searching species-specific genomic sequences, DNA barcodes, by using popular web-based methods such as Google. We developed an alignment independent character based algorithm based on dividing a sequence library (DNA barcodes) and query sequence to words. The actual search is conducted by conventional search tools such as freely available Google Desktop Search. We implemented our algorithm in two exemplar packages. We developed pre and post-processing software to provide customized input and output services, respectively. Our analysis of all publicly available DNA barcode sequences shows a high accuracy as well as rapid results. Our method makes use of conventional web-based technologies for specialized genetic data. It provides a robust and efficient solution for sequence search on the web. The integration of our search method for large-scale sequence libraries such as DNA barcodes provides an excellent web-based tool for accessing this information and linking it to other available categories of information on the web.

  6. Flexbar 3.0 - SIMD and multicore parallelization.

    PubMed

    Roehr, Johannes T; Dieterich, Christoph; Reinert, Knut

    2017-09-15

    High-throughput sequencing machines can process many samples in a single run. For Illumina systems, sequencing reads are barcoded with an additional DNA tag that is contained in the respective sequencing adapters. The recognition of barcode and adapter sequences is hence commonly needed for the analysis of next-generation sequencing data. Flexbar performs demultiplexing based on barcodes and adapter trimming for such data. The massive amounts of data generated on modern sequencing machines demand that this preprocessing is done as efficiently as possible. We present Flexbar 3.0, the successor of the popular program Flexbar. It employs now twofold parallelism: multi-threading and additionally SIMD vectorization. Both types of parallelism are used to speed-up the computation of pair-wise sequence alignments, which are used for the detection of barcodes and adapters. Furthermore, new features were included to cover a wide range of applications. We evaluated the performance of Flexbar based on a simulated sequencing dataset. Our program outcompetes other tools in terms of speed and is among the best tools in the presented quality benchmark. https://github.com/seqan/flexbar. johannes.roehr@fu-berlin.de or knut.reinert@fu-berlin.de. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  7. On site DNA barcoding by nanopore sequencing

    PubMed Central

    Menegon, Michele; Cantaloni, Chiara; Rodriguez-Prieto, Ana; Centomo, Cesare; Abdelfattah, Ahmed; Rossato, Marzia; Bernardi, Massimo; Xumerle, Luciano; Loader, Simon; Delledonne, Massimo

    2017-01-01

    Biodiversity research is becoming increasingly dependent on genomics, which allows the unprecedented digitization and understanding of the planet’s biological heritage. The use of genetic markers i.e. DNA barcoding, has proved to be a powerful tool in species identification. However, full exploitation of this approach is hampered by the high sequencing costs and the absence of equipped facilities in biodiversity-rich countries. In the present work, we developed a portable sequencing laboratory based on the portable DNA sequencer from Oxford Nanopore Technologies, the MinION. Complementary laboratory equipment and reagents were selected to be used in remote and tough environmental conditions. The performance of the MinION sequencer and the portable laboratory was tested for DNA barcoding in a mimicking tropical environment, as well as in a remote rainforest of Tanzania lacking electricity. Despite the relatively high sequencing error-rate of the MinION, the development of a suitable pipeline for data analysis allowed the accurate identification of different species of vertebrates including amphibians, reptiles and mammals. In situ sequencing of a wild frog allowed us to rapidly identify the species captured, thus confirming that effective DNA barcoding in the field is possible. These results open new perspectives for real-time-on-site DNA sequencing thus potentially increasing opportunities for the understanding of biodiversity in areas lacking conventional laboratory facilities. PMID:28977016

  8. Tagmentation on Microbeads: Restore Long-Range DNA Sequence Information Using Next Generation Sequencing with Library Prepared by Surface-Immobilized Transposomes.

    PubMed

    Chen, He; Yao, Jiacheng; Fu, Yusi; Pang, Yuhong; Wang, Jianbin; Huang, Yanyi

    2018-04-11

    The next generation sequencing (NGS) technologies have been rapidly evolved and applied to various research fields, but they often suffer from losing long-range information due to short library size and read length. Here, we develop a simple, cost-efficient, and versatile NGS library preparation method, called tagmentation on microbeads (TOM). This method is capable of recovering long-range information through tagmentation mediated by microbead-immobilized transposomes. Using transposomes with DNA barcodes to identically label adjacent sequences during tagmentation, we can restore inter-read connection of each fragment from original DNA molecule by fragment-barcode linkage after sequencing. In our proof-of-principle experiment, more than 4.5% of the reads are linked with their adjacent reads, and the longest linkage is over 1112 bp. We demonstrate TOM with eight barcodes, but the number of barcodes can be scaled up by an ultrahigh complexity construction. We also show this method has low amplification bias and effectively fits the applications to identify copy number variations.

  9. Cytochrome c oxidase subunit I barcoding of the green bee-eater (Merops orientalis).

    PubMed

    Arif, I A; Khan, H A; Shobrak, M; Williams, J

    2011-10-21

    DNA barcoding using mitochondrial cytochrome c oxidase subunit I (COI) is regarded as a standard method for species identification. Recent reports have also shown extended applications of COI gene analysis in phylogeny and molecular diversity studies. The bee-eaters are a group of near passerine birds in the family Meropidae. There are 26 species worldwide; five of them are found in Saudi Arabia. Until now, GenBank included a COI barcode for only one species of bee-eater, the European bee-eater (Merops apiaster). We sequenced the 694-bp segment of the COI gene of the green bee-eater M. orientalis and compared the sequences with those of M. apiaster. Pairwise sequence comparison showed 66 variable sites across all the eight sequences from both species, with an interspecific genetic distance of 0.0362. Two and one within-species variable sites were found, with genetic distances of 0.0005 and 0.0003 for M. apiaster and M. orientalis, respectively. This is the first study reporting barcodes for M. orientalis.

  10. Design of character-based DNA barcode motif for species identification: A computational approach and its validation in fishes.

    PubMed

    Chakraborty, Mohua; Dhar, Bishal; Ghosh, Sankar Kumar

    2017-11-01

    The DNA barcodes are generally interpreted using distance-based and character-based methods. The former uses clustering of comparable groups, based on the relative genetic distance, while the latter is based on the presence or absence of discrete nucleotide substitutions. The distance-based approach has a limitation in defining a universal species boundary across the taxa as the rate of mtDNA evolution is not constant throughout the taxa. However, character-based approach more accurately defines this using a unique set of nucleotide characters. The character-based analysis of full-length barcode has some inherent limitations, like sequencing of the full-length barcode, use of a sparse-data matrix and lack of a uniform diagnostic position for each group. A short continuous stretch of a fragment can be used to resolve the limitations. Here, we observe that a 154-bp fragment, from the transversion-rich domain of 1367 COI barcode sequences can successfully delimit species in the three most diverse orders of freshwater fishes. This fragment is used to design species-specific barcode motifs for 109 species by the character-based method, which successfully identifies the correct species using a pattern-matching program. The motifs also correctly identify geographically isolated population of the Cypriniformes species. Further, this region is validated as a species-specific mini-barcode for freshwater fishes by successful PCR amplification and sequencing of the motif (154 bp) using the designed primers. We anticipate that use of such motifs will enhance the diagnostic power of DNA barcode, and the mini-barcode approach will greatly benefit the field-based system of rapid species identification. © 2017 John Wiley & Sons Ltd.

  11. Pay Attention to the Overlooked Cryptic Diversity in Existing Barcoding Data: the Case of Mollusca with Character-Based DNA Barcoding.

    PubMed

    Zou, Shanmei; Li, Qi

    2016-06-01

    With the global biodiversity crisis, DNA barcoding aims for fast species identification and cryptic species diversity revelation. For more than 10 years, large amounts of DNA barcode data have been accumulating in publicly available databases, most of which were conducted by distance or tree-building methods that have often been argued, especially for cryptic species revelation. In this context, overlooked cryptic diversity may exist in the available barcoding data. The character-based DNA barcoding, however, has a good chance for detecting the overlooked cryptic diversity. In this study, marine mollusk was as the ideal case for detecting the overlooked potential cryptic species from existing cytochrome c oxidase I (COI) sequences with character-based DNA barcode. A total of 1081 COI sequences of mollusks, belonging to 176 species of 25 families of Gastropoda, Cephalopoda, and Lamellibranchia, were conducted by character analysis. As a whole, the character-based barcoding results were consistent with previous distance and tree-building analysis for species discrimination. More importantly, quite a number of species analyzed were divided into distinct clades with unique diagnostical characters. Based on the concept of cryptic species revelation of character-based barcoding, these species divided into separate taxonomic groups might be potential cryptic species. The detection of the overlooked potential cryptic diversity proves that the character-based barcoding mode possesses more advantages of revealing cryptic biodiversity. With the development of DNA barcoding, making the best use of barcoding data is worthy of our attention for species conservation.

  12. Instances of erroneous DNA barcoding of metazoan invertebrates: Are universal cox1 gene primers too "universal"?

    PubMed

    Mioduchowska, Monika; Czyż, Michał Jan; Gołdyn, Bartłomiej; Kur, Jarosław; Sell, Jerzy

    2018-01-01

    The cytochrome c oxidase subunit I (cox1) gene is the main mitochondrial molecular marker playing a pivotal role in phylogenetic research and is a crucial barcode sequence. Folmer's "universal" primers designed to amplify this gene in metazoan invertebrates allowed quick and easy barcode and phylogenetic analysis. On the other hand, the increase in the number of studies on barcoding leads to more frequent publishing of incorrect sequences, due to amplification of non-target taxa, and insufficient analysis of the obtained sequences. Consequently, some sequences deposited in genetic databases are incorrectly described as obtained from invertebrates, while being in fact bacterial sequences. In our study, in which we used Folmer's primers to amplify COI sequences of the crustacean fairy shrimp Branchipus schaefferi (Fischer 1834), we also obtained COI sequences of microbial contaminants from Aeromonas sp. However, when we searched the GenBank database for sequences closely matching these contaminations we found entries described as representatives of Gastrotricha and Mollusca. When these entries were compared with other sequences bearing the same names in the database, the genetic distance between the incorrect and correct sequences amplified from the same species was c.a. 65%. Although the responsibility for the correct molecular identification of species rests on researchers, the errors found in already published sequences data have not been re-evaluated so far. On the basis of the standard sampling technique we have estimated with 95% probability that the chances of finding incorrectly described metazoan sequences in the GenBank depend on the systematic group, and variety from less than 1% (Mollusca and Arthropoda) up to 6.9% (Gastrotricha). Consequently, the increasing popularity of DNA barcoding and metabarcoding analysis may lead to overestimation of species diversity. Finally, the study also discusses the sources of the problems with amplification of non-target sequences.

  13. Highlights of DNA Barcoding in identification of salient microorganisms like fungi.

    PubMed

    Dulla, E L; Kathera, C; Gurijala, H K; Mallakuntla, T R; Srinivasan, P; Prasad, V; Mopati, R D; Jasti, P K

    2016-12-01

    Fungi, the second largest kingdom of eukaryotic life, are diverse and widespread. Fungi play a distinctive role in the production of different products on industrial scale, like fungal enzymes, antibiotics, fermented foods, etc., to give storage stability and improved health to meet major global challenges. To utilize algae perfectly for human needs, and to pave the way for getting a healthy relationship with fungi, it is important to identify them in a quick and robust manner with molecular-based identification system. So, there is a technique that aims to provide a well-organized method for species level identifications and to contribute powerfully to taxonomic and biodiversity research is DNA Barcoding. DNA Barcoding is generally achieved by the retrieval of a short DNA sequence - the 'barcode' - from a standard part of the genome and that barcode is then compared with a library of reference barcode sequences derived from individuals of known identity for identification. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. DNA barcodes for ecology, evolution, and conservation.

    PubMed

    Kress, W John; García-Robledo, Carlos; Uriarte, Maria; Erickson, David L

    2015-01-01

    The use of DNA barcodes, which are short gene sequences taken from a standardized portion of the genome and used to identify species, is entering a new phase of application as more and more investigations employ these genetic markers to address questions relating to the ecology and evolution of natural systems. The suite of DNA barcode markers now applied to specific taxonomic groups of organisms are proving invaluable for understanding species boundaries, community ecology, functional trait evolution, trophic interactions, and the conservation of biodiversity. The application of next-generation sequencing (NGS) technology will greatly expand the versatility of DNA barcodes across the Tree of Life, habitats, and geographies as new methodologies are explored and developed. Published by Elsevier Ltd.

  15. Future collaborations between NEON and the U.S. EPA: linking molecular genomics for bioassessment with national ecological data sets

    EPA Science Inventory

    Molecular taxonomic techniques such as DNA barcoding offer interesting new capabilities for studying community biodiversity for applications like biological monitoring. Beyond DNA barcoding, new DNA sequencing technologies (i.e. Next-Generation Sequencing) present even greater po...

  16. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA.

    PubMed

    Kane, Nolan; Sveinsson, Saemundur; Dempewolf, Hannes; Yang, Ji Yong; Zhang, Dapeng; Engels, Johannes M M; Cronk, Quentin

    2012-02-01

    To reliably identify lineages below the species level such as subspecies or varieties, we propose an extension to DNA-barcoding using next-generation sequencing to produce whole organellar genomes and substantial nuclear ribosomal sequence. Because this method uses much longer versions of the traditional DNA-barcoding loci in the plastid and ribosomal DNA, we call our approach ultra-barcoding (UBC). We used high-throughput next-generation sequencing to scan the genome and generate reliable sequence of high copy number regions. Using this method, we examined whole plastid genomes as well as nearly 6000 bases of nuclear ribosomal DNA sequences for nine genotypes of Theobroma cacao and an individual of the related species T. grandiflorum, as well as an additional publicly available whole plastid genome of T. cacao. All individuals of T. cacao examined were uniquely distinguished, and evidence of reticulation and gene flow was observed. Sequence variation was observed in some of the canonical barcoding regions between species, but other regions of the chloroplast were more variable both within species and between species, as were ribosomal spacers. Furthermore, no single region provides the level of data available using the complete plastid genome and rDNA. Our data demonstrate that UBC is a viable, increasingly cost-effective approach for reliably distinguishing varieties and even individual genotypes of T. cacao. This approach shows great promise for applications where very closely related or interbreeding taxa must be distinguished.

  17. R-Syst::diatom: an open-access and curated barcode database for diatoms and freshwater monitoring.

    PubMed

    Rimet, Frédéric; Chaumeil, Philippe; Keck, François; Kermarrec, Lenaïg; Vasselon, Valentin; Kahlert, Maria; Franc, Alain; Bouchez, Agnès

    2016-01-01

    Diatoms are micro-algal indicators of freshwater pollution. Current standardized methodologies are based on microscopic determinations, which is time consuming and prone to identification uncertainties. The use of DNA-barcoding has been proposed as a way to avoid these flaws. Combining barcoding with next-generation sequencing enables collection of a large quantity of barcodes from natural samples. These barcodes are identified as certain diatom taxa by comparing the sequences to a reference barcoding library using algorithms. Proof of concept was recently demonstrated for synthetic and natural communities and underlined the importance of the quality of this reference library. We present an open-access and curated reference barcoding database for diatoms, called R-Syst::diatom, developed in the framework of R-Syst, the network of systematic supported by INRA (French National Institute for Agricultural Research), see http://www.rsyst.inra.fr/en. R-Syst::diatom links DNA-barcodes to their taxonomical identifications, and is dedicated to identify barcodes from natural samples. The data come from two sources, a culture collection of freshwater algae maintained in INRA in which new strains are regularly deposited and barcoded and from the NCBI (National Center for Biotechnology Information) nucleotide database. Two kinds of barcodes were chosen to support the database: 18S (18S ribosomal RNA) and rbcL (Ribulose-1,5-bisphosphate carboxylase/oxygenase), because of their efficiency. Data are curated using innovative (Declic) and classical bioinformatic tools (Blast, classical phylogenies) and up-to-date taxonomy (Catalogues and peer reviewed papers). Every 6 months R-Syst::diatom is updated. The database is available through the R-Syst microalgae website (http://www.rsyst.inra.fr/) and a platform dedicated to next-generation sequencing data analysis, virtual_BiodiversityL@b (https://galaxy-pgtp.pierroton.inra.fr/). We present here the content of the library regarding the number of barcodes and diatom taxa. In addition to these information, morphological features (e.g. biovolumes, chloroplasts…), life-forms (mobility, colony-type) or ecological features (taxa preferenda to pollution) are indicated in R-Syst::diatom. Database URL: http://www.rsyst.inra.fr/. © The Author(s) 2016. Published by Oxford University Press.

  18. R-Syst::diatom: an open-access and curated barcode database for diatoms and freshwater monitoring

    PubMed Central

    Rimet, Frédéric; Chaumeil, Philippe; Keck, François; Kermarrec, Lenaïg; Vasselon, Valentin; Kahlert, Maria; Franc, Alain; Bouchez, Agnès

    2016-01-01

    Diatoms are micro-algal indicators of freshwater pollution. Current standardized methodologies are based on microscopic determinations, which is time consuming and prone to identification uncertainties. The use of DNA-barcoding has been proposed as a way to avoid these flaws. Combining barcoding with next-generation sequencing enables collection of a large quantity of barcodes from natural samples. These barcodes are identified as certain diatom taxa by comparing the sequences to a reference barcoding library using algorithms. Proof of concept was recently demonstrated for synthetic and natural communities and underlined the importance of the quality of this reference library. We present an open-access and curated reference barcoding database for diatoms, called R-Syst::diatom, developed in the framework of R-Syst, the network of systematic supported by INRA (French National Institute for Agricultural Research), see http://www.rsyst.inra.fr/en. R-Syst::diatom links DNA-barcodes to their taxonomical identifications, and is dedicated to identify barcodes from natural samples. The data come from two sources, a culture collection of freshwater algae maintained in INRA in which new strains are regularly deposited and barcoded and from the NCBI (National Center for Biotechnology Information) nucleotide database. Two kinds of barcodes were chosen to support the database: 18S (18S ribosomal RNA) and rbcL (Ribulose-1,5-bisphosphate carboxylase/oxygenase), because of their efficiency. Data are curated using innovative (Declic) and classical bioinformatic tools (Blast, classical phylogenies) and up-to-date taxonomy (Catalogues and peer reviewed papers). Every 6 months R-Syst::diatom is updated. The database is available through the R-Syst microalgae website (http://www.rsyst.inra.fr/) and a platform dedicated to next-generation sequencing data analysis, virtual_BiodiversityL@b (https://galaxy-pgtp.pierroton.inra.fr/). We present here the content of the library regarding the number of barcodes and diatom taxa. In addition to these information, morphological features (e.g. biovolumes, chloroplasts…), life-forms (mobility, colony-type) or ecological features (taxa preferenda to pollution) are indicated in R-Syst::diatom. Database URL: http://www.rsyst.inra.fr/ PMID:26989149

  19. Indigenous species barcode database improves the identification of zooplankton

    PubMed Central

    Yang, Jianghua; Zhang, Wanwan; Sun, Jingying; Xie, Yuwei; Zhang, Yimin; Burton, G. Allen; Yu, Hongxia

    2017-01-01

    Incompleteness and inaccuracy of DNA barcode databases is considered an important hindrance to the use of metabarcoding in biodiversity analysis of zooplankton at the species-level. Species barcoding by Sanger sequencing is inefficient for organisms with small body sizes, such as zooplankton. Here mitochondrial cytochrome c oxidase I (COI) fragment barcodes from 910 freshwater zooplankton specimens (87 morphospecies) were recovered by a high-throughput sequencing platform, Ion Torrent PGM. Intraspecific divergence of most zooplanktons was < 5%, except Branchionus leydign (Rotifer, 14.3%), Trichocerca elongate (Rotifer, 11.5%), Lecane bulla (Rotifer, 15.9%), Synchaeta oblonga (Rotifer, 5.95%) and Schmackeria forbesi (Copepod, 6.5%). Metabarcoding data of 28 environmental samples from Lake Tai were annotated by both an indigenous database and NCBI Genbank database. The indigenous database improved the taxonomic assignment of metabarcoding of zooplankton. Most zooplankton (81%) with barcode sequences in the indigenous database were identified by metabarcoding monitoring. Furthermore, the frequency and distribution of zooplankton were also consistent between metabarcoding and morphology identification. Overall, the indigenous database improved the taxonomic assignment of zooplankton. PMID:28977035

  20. ITSoneDB: a comprehensive collection of eukaryotic ribosomal RNA Internal Transcribed Spacer 1 (ITS1) sequences

    PubMed Central

    Santamaria, Monica; Fosso, Bruno; Licciulli, Flavio; Balech, Bachir; Larini, Ilaria; Grillo, Giorgio; De Caro, Giorgio; Liuni, Sabino

    2018-01-01

    Abstract A holistic understanding of environmental communities is the new challenge of metagenomics. Accordingly, the amplicon-based or metabarcoding approach, largely applied to investigate bacterial microbiomes, is moving to the eukaryotic world too. Indeed, the analysis of metabarcoding data may provide a comprehensive assessment of both bacterial and eukaryotic composition in a variety of environments, including human body. In this respect, whereas hypervariable regions of the 16S rRNA are the de facto standard barcode for bacteria, the Internal Transcribed Spacer 1 (ITS1) of ribosomal RNA gene cluster has shown a high potential in discriminating eukaryotes at deep taxonomic levels. As metabarcoding data analysis rely on the availability of a well-curated barcode reference resource, a comprehensive collection of ITS1 sequences supplied with robust taxonomies, is highly needed. To address this issue, we created ITSoneDB (available at http://itsonedb.cloud.ba.infn.it/) which in its current version hosts 985 240 ITS1 sequences spanning over 134 000 eukaryotic species. Each ITS1 is mapped on the NCBI reference taxonomy with its start and end positions precisely annotated. ITSoneDB has been developed in agreement to the FAIR guidelines by enabling the users to query and download its content through a simple web-interface and access relevant metadata by cross-linking to European Nucleotide Archive. PMID:29036529

  1. Applying DNA Barcodes to Identify Closely Related Species of Ferns: A Case Study of the Chinese Adiantum (Pteridaceae)

    PubMed Central

    Wen, Jun; Ebihara, Atsushi; Li, De-Zhu

    2016-01-01

    DNA barcoding is a fast-developing technique to identify species by using short and standard DNA sequences. Universal selection of DNA barcodes in ferns remains unresolved. In this study, five plastid regions (rbcL, matK, trnH-psbA, trnL-F and rps4-trnS) and eight nuclear regions (ITS, pgiC, gapC, LEAFY, ITS2, IBR3_2, DET1, and SQD1_1) were screened and evaluated in the fern genus Adiantum from China and neighboring areas. Due to low primer universality (matK) and/or the existence of multiple copies (ITS), the commonly used barcodes matK and ITS were not appropriate for Adiantum. The PCR amplification rate was extremely low in all nuclear genes except for IBR3_2. rbcL had the highest PCR amplification rate (94.33%) and sequencing success rate (90.78%), while trnH-psbA had the highest species identification rate (75%). With the consideration of discriminatory power, cost-efficiency and effort, the two-barcode combination of rbcL+ trnH-psbA seems to be the best choice for barcoding Adiantum, and perhaps basal polypod ferns in general. The nuclear IBR3_2 showed 100% PCR amplification success rate in Adiantum, however, it seemed that only diploid species could acquire clean sequences without cloning. With cloning, IBR3_2 can successfully distinguish cryptic species and hybrid species from their related species. Because hybridization and allopolyploidy are common in ferns, we argue for including a selected group of nuclear loci as barcodes, especially via the next-generation sequencing, as it is much more efficient to obtain single-copy nuclear loci without the cloning procedure. PMID:27603700

  2. DNA barcoding reveal patterns of species diversity among northwestern Pacific molluscs

    PubMed Central

    Sun, Shao’e; Li, Qi; Kong, Lingfeng; Yu, Hong; Zheng, Xiaodong; Yu, Ruihai; Dai, Lina; Sun, Yan; Chen, Jun; Liu, Jun; Ni, Lehai; Feng, Yanwei; Yu, Zhenzhen; Zou, Shanmei; Lin, Jiping

    2016-01-01

    This study represents the first comprehensive molecular assessment of northwestern Pacific molluscs. In total, 2801 DNA barcodes belonging to 569 species from China, Japan and Korea were analyzed. An overlap between intra- and interspecific genetic distances was present in 71 species. We tested the efficacy of this library by simulating a sequence-based specimen identification scenario using Best Match (BM), Best Close Match (BCM) and All Species Barcode (ASB) criteria with three threshold values. BM approach returned 89.15% true identifications (95.27% when excluding singletons). The highest success rate of congruent identifications was obtained with BCM at 0.053 threshold. The analysis of our barcode library together with public data resulted in 582 Barcode Index Numbers (BINs), 72.2% of which was found to be concordantly with morphology-based identifications. The discrepancies were divided in two groups: sequences from different species clustered in a single BIN and conspecific sequences divided in one more BINs. In Neighbour-Joining phenogram, 2,320 (83.0%) queries fromed 355 (62.4%) species-specific barcode clusters allowing their successful identification. 33 species showed paraphyletic and haplotype sharing. 62 cases are represented by deeply diverged lineages. This study suggest an increased species diversity in this region, highlighting taxonomic revision and conservation strategy for the cryptic complexes. PMID:27640675

  3. A k-mer-based barcode DNA classification methodology based on spectral representation and a neural gas network.

    PubMed

    Fiannaca, Antonino; La Rosa, Massimo; Rizzo, Riccardo; Urso, Alfonso

    2015-07-01

    In this paper, an alignment-free method for DNA barcode classification that is based on both a spectral representation and a neural gas network for unsupervised clustering is proposed. In the proposed methodology, distinctive words are identified from a spectral representation of DNA sequences. A taxonomic classification of the DNA sequence is then performed using the sequence signature, i.e., the smallest set of k-mers that can assign a DNA sequence to its proper taxonomic category. Experiments were then performed to compare our method with other supervised machine learning classification algorithms, such as support vector machine, random forest, ripper, naïve Bayes, ridor, and classification tree, which also consider short DNA sequence fragments of 200 and 300 base pairs (bp). The experimental tests were conducted over 10 real barcode datasets belonging to different animal species, which were provided by the on-line resource "Barcode of Life Database". The experimental results showed that our k-mer-based approach is directly comparable, in terms of accuracy, recall and precision metrics, with the other classifiers when considering full-length sequences. In addition, we demonstrate the robustness of our method when a classification is performed task with a set of short DNA sequences that were randomly extracted from the original data. For example, the proposed method can reach the accuracy of 64.8% at the species level with 200-bp fragments. Under the same conditions, the best other classifier (random forest) reaches the accuracy of 20.9%. Our results indicate that we obtained a clear improvement over the other classifiers for the study of short DNA barcode sequence fragments. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Scaling up discovery of hidden diversity in fungi: impacts of barcoding approaches.

    PubMed

    Yahr, Rebecca; Schoch, Conrad L; Dentinger, Bryn T M

    2016-09-05

    The fungal kingdom is a hyperdiverse group of multicellular eukaryotes with profound impacts on human society and ecosystem function. The challenge of documenting and describing fungal diversity is exacerbated by their typically cryptic nature, their ability to produce seemingly unrelated morphologies from a single individual and their similarity in appearance to distantly related taxa. This multiplicity of hurdles resulted in the early adoption of DNA-based comparisons to study fungal diversity, including linking curated DNA sequence data to expertly identified voucher specimens. DNA-barcoding approaches in fungi were first applied in specimen-based studies for identification and discovery of taxonomic diversity, but are now widely deployed for community characterization based on sequencing of environmental samples. Collectively, fungal barcoding approaches have yielded important advances across biological scales and research applications, from taxonomic, ecological, industrial and health perspectives. A major outstanding issue is the growing problem of 'sequences without names' that are somewhat uncoupled from the traditional framework of fungal classification based on morphology and preserved specimens. This review summarizes some of the most significant impacts of fungal barcoding, its limitations, and progress towards the challenge of effective utilization of the exponentially growing volume of data gathered from high-throughput sequencing technologies.This article is part of the themed issue 'From DNA barcodes to biomes'. © 2016 The Authors.

  5. DNA barcoding of freshwater fishes and the development of a quantitative qPCR assay for the species-specific detection and quantification of fish larvae from plankton samples.

    PubMed

    Loh, W K W; Bond, P; Ashton, K J; Roberts, D T; Tibbetts, I R

    2014-08-01

    The barcoding of mitochondrial cytochrome c oxidase subunit 1 (coI) gene was amplified and sequenced from 16 species of freshwater fishes found in Lake Wivenhoe (south-eastern Queensland, Australia) to support monitoring of reservoir fish populations, ecosystem function and water health. In this study, 630-650 bp sequences of the coI barcoding gene from 100 specimens representing 15 genera, 13 families and two subclasses of fishes allowed 14 of the 16 species to be identified and differentiated. The mean ± s.e. Kimura 2 parameter divergence within and between species was 0.52 ± 0.10 and 23.8 ± 2.20% respectively, indicating that barcodes can be used to discriminate most of the fish species accurately. The two terapontids, Amniataba percoides and Leiopotherapon unicolor, however, shared coI DNA sequences and could not be differentiated using this gene. A barcoding database was established and a qPCR assay was developed using coI sequences to identify and quantify proportional abundances of fish species in ichthyoplankton samples from Lake Wivenhoe. These methods provide a viable alternative to the time-consuming process of manually enumerating and identifying ichthyoplankton samples. © 2014 The Fisheries Society of the British Isles.

  6. DNA barcoding of perennial fruit tree species of agronomic interest in the genus Annona (Annonaceae)

    PubMed Central

    Larranaga, Nerea; Hormaza, José I.

    2015-01-01

    The DNA barcode initiative aims to establish a universal protocol using short genetic sequences to discriminate among animal and plant species. Although many markers have been proposed to become the barcode of plants, the Consortium for the Barcode of Life (CBOL) Plant Working Group recommended using as a core the combination of two portions of plastid coding region, rbcL and matK. In this paper, specific markers based on matK sequences were developed for 7 closely related Annona species of agronomic interest (Annona cherimola, A. reticulata, A. squamosa, A. muricata, A. macroprophyllata, A. glabra, and A. purpurea) and the discrimination power of both rbcL and matK was tested using also sequences of the genus Annona available in the Barcode of Life Database (BOLD) data systems. The specific sequences developed allowed the discrimination among all those species tested. Moreover, the primers generated were validated in six additional species of the genus (A. liebmanniana, A. longiflora, A. montana, A. senegalensis, A. emarginata and A. neosalicifolia) and in an interspecific hybrid (A. cherimola x A. squamosa). The development of a fast, reliable and economic approach for species identification in these underutilized subtropical fruit crops in a very initial state of domestication is of great importance in order to optimize genetic resource management. PMID:26284104

  7. Molecular Approach to the Identification of Fish in the South China Sea

    PubMed Central

    Zhang, Junbin; Hanner, Robert

    2012-01-01

    Background DNA barcoding is one means of establishing a rapid, accurate, and cost-effective system for the identification of species. It involves the use of short, standard gene targets to create sequence profiles of known species against sequences of unknowns that can be matched and subsequently identified. The Fish Barcode of Life (FISH-BOL) campaign has the primary goal of gathering DNA barcode records for all the world's fish species. As a contribution to FISH-BOL, we examined the degree to which DNA barcoding can discriminate marine fishes from the South China Sea. Methodology/Principal Findings DNA barcodes of cytochrome oxidase subunit I (COI) were characterized using 1336 specimens that belong to 242 species fishes from the South China Sea. All specimen provenance data (including digital specimen images and geospatial coordinates of collection localities) and collateral sequence information were assembled using Barcode of Life Data System (BOLD; www.barcodinglife.org). Small intraspecific and large interspecific differences create distinct genetic boundaries among most species. In addition, the efficiency of two mitochondrial genes, 16S rRNA (16S) and cytochrome b (cytb), and one nuclear ribosomal gene, 18S rRNA (18S), was also evaluated for a few select groups of species. Conclusions/Significance The present study provides evidence for the effectiveness of DNA barcoding as a tool for monitoring marine biodiversity. Open access data of fishes from the South China Sea can benefit relative applications in ecology and taxonomy. PMID:22363454

  8. Does a global DNA barcoding gap exist in Annelida?

    PubMed

    Kvist, Sebastian

    2016-05-01

    Accurate identification of unknown specimens by means of DNA barcoding is contingent on the presence of a DNA barcoding gap, among other factors, as its absence may result in dubious specimen identifications - false negatives or positives. Whereas the utility of DNA barcoding would be greatly reduced in the absence of a distinct and sufficiently sized barcoding gap, the limits of intraspecific and interspecific distances are seldom thoroughly inspected across comprehensive sampling. The present study aims to illuminate this aspect of barcoding in a comprehensive manner for the animal phylum Annelida. All cytochrome c oxidase subunit I sequences (cox1 gene; the chosen region for zoological DNA barcoding) present in GenBank for Annelida, as well as for "Polychaeta", "Oligochaeta", and Hirudinea separately, were downloaded and curated for length, coverage and potential contaminations. The final datasets consisted of 9782 (Annelida), 5545 ("Polychaeta"), 3639 ("Oligochaeta"), and 598 (Hirudinea) cox1 sequences and these were either (i) used as is in an automated global barcoding gap detection analysis or (ii) further analyzed for genetic distances, separated into bins containing intraspecific and interspecific comparisons and plotted in a graph to visualize any potential global barcoding gap. Over 70 million pairwise genetic comparisons were made and results suggest that although there is a tendency towards separation, no distinct or sufficiently sized global barcoding gap exists in either of the datasets rendering future barcoding efforts at risk of erroneous specimen identifications (but local barcoding gaps may still exist allowing for the identification of specimens at lower taxonomic ranks). This seems to be especially true for earthworm taxa, which account for fully 35% of the total number of interspecific comparisons that show 0% divergence.

  9. Combining and Comparing Coalescent, Distance and Character-Based Approaches for Barcoding Microalgaes: A Test with Chlorella-Like Species (Chlorophyta).

    PubMed

    Zou, Shanmei; Fei, Cong; Song, Jiameng; Bao, Yachao; He, Meilin; Wang, Changhai

    2016-01-01

    Several different barcoding methods of distinguishing species have been advanced, but which method is the best is still controversial. Chlorella is becoming particularly promising in the development of second-generation biofuels. However, the taxonomy of Chlorella-like organisms is easily confused. Here we report a comprehensive barcoding analysis of Chlorella-like species from Chlorella, Chloroidium, Dictyosphaerium and Actinastrum based on rbcL, ITS, tufA and 16S sequences to test the efficiency of traditional barcoding, GMYC, ABGD, PTP, P ID and character-based barcoding methods. First of all, the barcoding results gave new insights into the taxonomic assessment of Chlorella-like organisms studied, including the clear species discrimination and resolution of potentially cryptic species complexes in C. sorokiniana, D. ehrenbergianum and C. Vulgaris. The tufA proved to be the most efficient barcoding locus, which thus could be as potential "specific barcode" for Chlorella-like species. The 16S failed in discriminating most closely related species. The resolution of GMYC, PTP, P ID, ABGD and character-based barcoding methods were variable among rbcL, ITS and tufA genes. The best resolution for species differentiation appeared in tufA analysis where GMYC, PTP, ABGD and character-based approaches produced consistent groups while the PTP method over-split the taxa. The character analysis of rbcL, ITS and tufA sequences could clearly distinguish all taxonomic groups respectively, including the potentially cryptic lineages, with many character attributes. Thus, the character-based barcoding provides an attractive complement to coalescent and distance-based barcoding. Our study represents the test that proves the efficiency of multiple DNA barcoding in species discrimination of microalgaes.

  10. ITS1: a DNA barcode better than ITS2 in eukaryotes?

    PubMed

    Wang, Xin-Cun; Liu, Chang; Huang, Liang; Bengtsson-Palme, Johan; Chen, Haimei; Zhang, Jian-Hui; Cai, Dayong; Li, Jian-Qin

    2015-05-01

    A DNA barcode is a short piece of DNA sequence used for species determination and discovery. The internal transcribed spacer (ITS/ITS2) region has been proposed as the standard DNA barcode for fungi and seed plants and has been widely used in DNA barcoding analyses for other biological groups, for example algae, protists and animals. The ITS region consists of both ITS1 and ITS2 regions. Here, a large-scale meta-analysis was carried out to compare ITS1 and ITS2 from three aspects: PCR amplification, DNA sequencing and species discrimination, in terms of the presence of DNA barcoding gaps, species discrimination efficiency, sequence length distribution, GC content distribution and primer universality. In total, 85 345 sequence pairs in 10 major groups of eukaryotes, including ascomycetes, basidiomycetes, liverworts, mosses, ferns, gymnosperms, monocotyledons, eudicotyledons, insects and fishes, covering 611 families, 3694 genera, and 19 060 species, were analysed. Using similarity-based methods, we calculated species discrimination efficiencies for ITS1 and ITS2 in all major groups, families and genera. Using Fisher's exact test, we found that ITS1 has significantly higher efficiencies than ITS2 in 17 of the 47 families and 20 of the 49 genera, which are sample-rich. By in silico PCR amplification evaluation, primer universality of the extensively applied ITS1 primers was found superior to that of ITS2 primers. Additionally, shorter length of amplification product and lower GC content was discovered to be two other advantages of ITS1 for sequencing. In summary, ITS1 represents a better DNA barcode than ITS2 for eukaryotic species. © 2014 John Wiley & Sons Ltd.

  11. A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3500 identified species to BOLD.

    PubMed

    Hendrich, Lars; Morinière, Jérôme; Haszprunar, Gerhard; Hebert, Paul D N; Hausmann, Axel; Köhler, Frank; Balke, Michael

    2015-07-01

    Beetles are the most diverse group of animals and are crucial for ecosystem functioning. In many countries, they are well established for environmental impact assessment, but even in the well-studied Central European fauna, species identification can be very difficult. A comprehensive and taxonomically well-curated DNA barcode library could remedy this deficit and could also link hundreds of years of traditional knowledge with next generation sequencing technology. However, such a beetle library is missing to date. This study provides the globally largest DNA barcode reference library for Coleoptera for 15 948 individuals belonging to 3514 well-identified species (53% of the German fauna) with representatives from 97 of 103 families (94%). This study is the first comprehensive regional test of the efficiency of DNA barcoding for beetles with a focus on Germany. Sequences ≥500 bp were recovered from 63% of the specimens analysed (15 948 of 25 294) with short sequences from another 997 specimens. Whereas most specimens (92.2%) could be unambiguously assigned to a single known species by sequence diversity at CO1, 1089 specimens (6.8%) were assigned to more than one Barcode Index Number (BIN), creating 395 BINs which need further study to ascertain if they represent cryptic species, mitochondrial introgression, or simply regional variation in widespread species. We found 409 specimens (2.6%) that shared a BIN assignment with another species, most involving a pair of closely allied species as 43 BINs were involved. Most of these taxa were separated by barcodes although sequence divergences were low. Only 155 specimens (0.97%) show identical or overlapping clusters. © 2014 John Wiley & Sons Ltd.

  12. DNA barcoding for the identification of sand fly species (Diptera, Psychodidae, Phlebotominae) in Colombia.

    PubMed

    Contreras Gutiérrez, María Angélica; Vivero, Rafael J; Vélez, Iván D; Porter, Charles H; Uribe, Sandra

    2014-01-01

    Sand flies include a group of insects that are of medical importance and that vary in geographic distribution, ecology, and pathogen transmission. Approximately 163 species of sand flies have been reported in Colombia. Surveillance of the presence of sand fly species and the actualization of species distribution are important for predicting risks for and monitoring the expansion of diseases which sand flies can transmit. Currently, the identification of phlebotomine sand flies is based on morphological characters. However, morphological identification requires considerable skills and taxonomic expertise. In addition, significant morphological similarity between some species, especially among females, may cause difficulties during the identification process. DNA-based approaches have become increasingly useful and promising tools for estimating sand fly diversity and for ensuring the rapid and accurate identification of species. A partial sequence of the mitochondrial cytochrome oxidase gene subunit I (COI) is currently being used to differentiate species in different animal taxa, including insects, and it is referred as a barcoding sequence. The present study explored the utility of the DNA barcode approach for the identification of phlebotomine sand flies in Colombia. We sequenced 700 bp of the COI gene from 36 species collected from different geographic localities. The COI barcode sequence divergence within a single species was <2% in most cases, whereas this divergence ranged from 9% to 26.6% among different species. These results indicated that the barcoding gene correctly discriminated among the previously morphologically identified species with an efficacy of nearly 100%. Analyses of the generated sequences indicated that the observed species groupings were consistent with the morphological identifications. In conclusion, the barcoding gene was useful for species discrimination in sand flies from Colombia.

  13. DNA Barcoding for the Identification of Sand Fly Species (Diptera, Psychodidae, Phlebotominae) in Colombia

    PubMed Central

    Contreras Gutiérrez, María Angélica; Vivero, Rafael J.; Vélez, Iván D.; Porter, Charles H.; Uribe, Sandra

    2014-01-01

    Sand flies include a group of insects that are of medical importance and that vary in geographic distribution, ecology, and pathogen transmission. Approximately 163 species of sand flies have been reported in Colombia. Surveillance of the presence of sand fly species and the actualization of species distribution are important for predicting risks for and monitoring the expansion of diseases which sand flies can transmit. Currently, the identification of phlebotomine sand flies is based on morphological characters. However, morphological identification requires considerable skills and taxonomic expertise. In addition, significant morphological similarity between some species, especially among females, may cause difficulties during the identification process. DNA-based approaches have become increasingly useful and promising tools for estimating sand fly diversity and for ensuring the rapid and accurate identification of species. A partial sequence of the mitochondrial cytochrome oxidase gene subunit I (COI) is currently being used to differentiate species in different animal taxa, including insects, and it is referred as a barcoding sequence. The present study explored the utility of the DNA barcode approach for the identification of phlebotomine sand flies in Colombia. We sequenced 700 bp of the COI gene from 36 species collected from different geographic localities. The COI barcode sequence divergence within a single species was <2% in most cases, whereas this divergence ranged from 9% to 26.6% among different species. These results indicated that the barcoding gene correctly discriminated among the previously morphologically identified species with an efficacy of nearly 100%. Analyses of the generated sequences indicated that the observed species groupings were consistent with the morphological identifications. In conclusion, the barcoding gene was useful for species discrimination in sand flies from Colombia. PMID:24454877

  14. Application of DNA Barcodes in Asian Tropical Trees--A Case Study from Xishuangbanna Nature Reserve, Southwest China.

    PubMed

    Huang, Xiao-cui; Ci, Xiu-qin; Conran, John G; Li, Jie

    2015-01-01

    Within a regional floristic context, DNA barcoding is more useful to manage plant diversity inventories on a large scale and develop valuable conservation strategies. However, there are no DNA barcode studies from tropical areas of China, which represents one of the biodiversity hotspots around the world. A DNA barcoding database of an Asian tropical trees with high diversity was established at Xishuangbanna Nature Reserve, Yunnan, southwest China using rbcL and matK as standard barcodes, as well as trnH-psbA and ITS as supplementary barcodes. The performance of tree species identification success was assessed using 2,052 accessions from four plots belonging to two vegetation types in the region by three methods: Neighbor-Joining, Maximum-Likelihood and BLAST. We corrected morphological field identification errors (9.6%) for the three plots using rbcL and matK based on Neighbor-Joining tree. The best barcode region for PCR and sequencing was rbcL (97.6%, 90.8%), followed by trnH-psbA (93.6%, 85.6%), while matK and ITS obtained relative low PCR and sequencing success rates. However, ITS performed best for both species (44.6-58.1%) and genus (72.8-76.2%) identification. With trnH-psbA slightly less effective for species identification. The two standard barcode rbcL and matK gave poor results for species identification (24.7-28.5% and 31.6-35.3%). Compared with other studies from comparable tropical forests (e.g. Cameroon, the Amazon and India), the overall performance of the four barcodes for species identification was lower for the Xishuangbanna Nature Reserve, possibly because of species/genus ratios and species composition between these tropical areas. Although the core barcodes rbcL and matK were not suitable for species identification of tropical trees from Xishuangbanna Nature Reserve, they could still help with identification at the family and genus level. Considering the relative sequence recovery and the species identification performance, we recommend the use of trnH-psbA and ITS in combination as the preferred barcodes for tropical tree species identification in China.

  15. The problems and promise of DNA barcodes for species diagnosis of primate biomaterials

    PubMed Central

    Lorenz, Joseph G; Jackson, Whitney E; Beck, Jeanne C; Hanner, Robert

    2005-01-01

    The Integrated Primate Biomaterials and Information Resource (www.IPBIR.org) provides essential research reagents to the scientific community by establishing, verifying, maintaining, and distributing DNA and RNA derived from primate cell cultures. The IPBIR uses mitochondrial cytochrome c oxidase subunit I sequences to verify the identity of samples for quality control purposes in the accession, cell culture, DNA extraction processes and prior to shipping to end users. As a result, IPBIR is accumulating a database of ‘DNA barcodes’ for many species of primates. However, this quality control process is complicated by taxon specific patterns of ‘universal primer’ failure, as well as the amplification or co-amplification of nuclear pseudogenes of mitochondrial origins. To overcome these difficulties, taxon specific primers have been developed, and reverse transcriptase PCR is utilized to exclude these extraneous sequences from amplification. DNA barcoding of primates has applications to conservation and law enforcement. Depositing barcode sequences in a public database, along with primer sequences, trace files and associated quality scores, makes this species identification technique widely accessible. Reference DNA barcode sequences should be derived from, and linked to, specimens of known provenance in web-accessible collections in order to validate this system of molecular diagnostics. PMID:16214744

  16. DNA barcoding for identification of consumer-relevant mushrooms: A partial solution for product certification?

    PubMed

    Raja, Huzefa A; Baker, Timothy R; Little, Jason G; Oberlies, Nicholas H

    2017-01-01

    One challenge in the dietary supplement industry is confirmation of species identity for processed raw materials, i.e. those modified by milling, drying, or extraction, which move through a multilevel supply chain before reaching the finished product. This is particularly difficult for samples containing fungal mycelia, where processing removes morphological characteristics, such that they do not present sufficient variation to differentiate species by traditional techniques. To address this issue, we have demonstrated the utility of DNA barcoding to verify the taxonomic identity of fungi found commonly in the food and dietary supplement industry; such data are critical for protecting consumer health, by assuring both safety and quality. By using DNA barcoding of nuclear ribosomal internal transcribed spacer (ITS) of the rRNA gene with fungal specific ITS primers, ITS barcodes were generated for 33 representative fungal samples, all of which could be used by consumers for food and/or dietary supplement purposes. In the majority of cases, we were able to sequence the ITS region from powdered mycelium samples, grocery store mushrooms, and capsules from commercial dietary supplements. After generating ITS barcodes utilizing standard procedures accepted by the Consortium for the Barcode of Life, we tested their utility by performing a BLAST search against authenticate published ITS sequences in GenBank. In some cases, we also downloaded published, homologous sequences of the ITS region of fungi inspected in this study and examined the phylogenetic relationships of barcoded fungal species in light of modern taxonomic and phylogenetic studies. We anticipate that these data will motivate discussions on DNA barcoding based species identification as applied to the verification/certification of mushroom-containing dietary supplements. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Assessment of snake DNA barcodes based on mitochondrial COI and Cytb genes revealed multiple putative cryptic species in Thailand.

    PubMed

    Laopichienpong, Nararat; Muangmai, Narongrit; Supikamolseni, Arrjaree; Twilprawat, Panupon; Chanhome, Lawan; Suntrarachun, Sunutcha; Peyachoknagul, Surin; Srikulnath, Kornsorn

    2016-12-15

    DNA barcodes of mitochondrial cytochrome c oxidase I (COI), cytochrome b (Cytb) genes, and their combined data sets were constructed from 35 snake species in Thailand. No barcoding gap was detected in either of the two genes from the observed intra- and interspecific sequence divergences. Intra- and interspecific sequence divergences of the COI gene differed 14 times, with barcode cut-off scores ranging over 2%-4% for threshold values differentiated among most of the different species; the Cytb gene differed 6 times with cut-off scores ranging over 2%-6%. Thirty-five specific nucleotide mutations were also found at interspecific level in the COI gene, identifying 18 snake species, but no specific nucleotide mutation was observed for Cytb in any single species. This suggests that COI barcoding was a better marker than Cytb. Phylogenetic clustering analysis indicated that most species were represented by monophyletic clusters, suggesting that these snake species could be clearly differentiated using COI barcodes. However, the two-marker combination of both COI and Cytb was more effective, differentiating snake species by over 2%-4%, and reducing species numbers in the overlap value between intra- and interspecific divergences. Three species delimitation algorithms (general mixed Yule-coalescent, automatic barcoding gap detection, and statistical parsimony network analysis) were extensively applied to a wide range of snakes based on both barcodes. This revealed cryptic diversity for eleven snake species in Thailand. In addition, eleven accessions from the database previously grouped under the same species were represented at different species level, suggesting either high genetic diversity, or the misidentification of these sequences in the database as a consequence of cryptic species. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Using high-throughput barcode sequencing to efficiently map connectomes.

    PubMed

    Peikon, Ian D; Kebschull, Justus M; Vagin, Vasily V; Ravens, Diana I; Sun, Yu-Chi; Brouzes, Eric; Corrêa, Ivan R; Bressan, Dario; Zador, Anthony M

    2017-07-07

    The function of a neural circuit is determined by the details of its synaptic connections. At present, the only available method for determining a neural wiring diagram with single synapse precision-a 'connectome'-is based on imaging methods that are slow, labor-intensive and expensive. Here, we present SYNseq, a method for converting the connectome into a form that can exploit the speed and low cost of modern high-throughput DNA sequencing. In SYNseq, each neuron is labeled with a unique random nucleotide sequence-an RNA 'barcode'-which is targeted to the synapse using engineered proteins. Barcodes in pre- and postsynaptic neurons are then associated through protein-protein crosslinking across the synapse, extracted from the tissue, and joined into a form suitable for sequencing. Although our failure to develop an efficient barcode joining scheme precludes the widespread application of this approach, we expect that with further development SYNseq will enable tracing of complex circuits at high speed and low cost. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Choosing and Using a Plant DNA Barcode

    PubMed Central

    Hollingsworth, Peter M.; Graham, Sean W.; Little, Damon P.

    2011-01-01

    The main aim of DNA barcoding is to establish a shared community resource of DNA sequences that can be used for organismal identification and taxonomic clarification. This approach was successfully pioneered in animals using a portion of the cytochrome oxidase 1 (CO1) mitochondrial gene. In plants, establishing a standardized DNA barcoding system has been more challenging. In this paper, we review the process of selecting and refining a plant barcode; evaluate the factors which influence the discriminatory power of the approach; describe some early applications of plant barcoding and summarise major emerging projects; and outline tool development that will be necessary for plant DNA barcoding to advance. PMID:21637336

  20. Application of DNA barcodes in wildlife conservation in Tropical East Asia.

    PubMed

    Wilson, John-James; Sing, Kong-Wah; Lee, Ping-Shin; Wee, Alison K S

    2016-10-01

    Over the past 50 years, Tropical East Asia has lost more biodiversity than any tropical region. Tropical East Asia is a megadiverse region with an acute taxonomic impediment. DNA barcodes are short standardized DNA sequences used for taxonomic purposes and have the potential to lessen the challenges of biodiversity inventory and assessments in regions where they are most needed. We reviewed DNA barcoding efforts in Tropical East Asia relative to other tropical regions. We suggest DNA barcodes (or metabarcodes from next-generation sequencers) may be especially useful for characterizing and connecting species-level biodiversity units in inventories encompassing taxa lacking formal description (particularly arthropods) and in large-scale, minimal-impact approaches to vertebrate monitoring and population assessments through secondary sources of DNA (invertebrate derived DNA and environmental DNA). We suggest interest and capacity for DNA barcoding are slowly growing in Tropical East Asia, particularly among the younger generation of researchers who can connect with the barcoding analogy and understand the need for new approaches to the conservation challenges being faced. © 2016 Society for Conservation Biology.

  1. New taxonomy and old collections: integrating DNA barcoding into the collection curation process.

    PubMed

    Puillandre, N; Bouchet, P; Boisselier-Dubayle, M-C; Brisset, J; Buge, B; Castelin, M; Chagnoux, S; Christophe, T; Corbari, L; Lambourdière, J; Lozouet, P; Marani, G; Rivasseau, A; Silva, N; Terryn, Y; Tillier, S; Utge, J; Samadi, S

    2012-05-01

    Because they house large biodiversity collections and are also research centres with sequencing facilities, natural history museums are well placed to develop DNA barcoding best practices. The main difficulty is generally the vouchering system: it must ensure that all data produced remain attached to the corresponding specimen, from the field to publication in articles and online databases. The Museum National d'Histoire Naturelle in Paris is one of the leading laboratories in the Marine Barcode of Life (MarBOL) project, which was used as a pilot programme to include barcode collections for marine molluscs and crustaceans. The system is based on two relational databases. The first one classically records the data (locality and identification) attached to the specimens. In the second one, tissue-clippings, DNA extractions (both preserved in 2D barcode tubes) and PCR data (including primers) are linked to the corresponding specimen. All the steps of the process [sampling event, specimen identification, molecular processing, data submission to Barcode Of Life Database (BOLD) and GenBank] are thus linked together. Furthermore, we have developed several web-based tools to automatically upload data into the system, control the quality of the sequences produced and facilitate the submission to online databases. This work is the result of a joint effort from several teams in the Museum National d'Histoire Naturelle (MNHN), but also from a collaborative network of taxonomists and molecular systematists outside the museum, resulting in the vouchering so far of ∼41,000 sequences and the production of ∼11,000 COI sequences. © 2012 Blackwell Publishing Ltd.

  2. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients.

    PubMed

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-08-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  3. Telling plant species apart with DNA: from barcodes to genomes

    PubMed Central

    Li, De-Zhu; van der Bank, Michelle

    2016-01-01

    Land plants underpin a multitude of ecosystem functions, support human livelihoods and represent a critically important component of terrestrial biodiversity—yet many tens of thousands of species await discovery, and plant identification remains a substantial challenge, especially where material is juvenile, fragmented or processed. In this opinion article, we tackle two main topics. Firstly, we provide a short summary of the strengths and limitations of plant DNA barcoding for addressing these issues. Secondly, we discuss options for enhancing current plant barcodes, focusing on increasing discriminatory power via either gene capture of nuclear markers or genome skimming. The former has the advantage of establishing a defined set of target loci maximizing efficiency of sequencing effort, data storage and analysis. The challenge is developing a probe set for large numbers of nuclear markers that works over sufficient phylogenetic breadth. Genome skimming has the advantage of using existing protocols and being backward compatible with existing barcodes; and the depth of sequence coverage can be increased as sequencing costs fall. Its non-targeted nature does, however, present a major informatics challenge for upscaling to large sample sets. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481790

  4. DNA barcoding as an aid for species identification in austral black flies (Insecta: Diptera: Simuliidae).

    PubMed

    Hernández-Triana, Luis M; Montes De Oca, Fernanda; Prosser, Sean W J; Hebert, Paul D N; Gregory, T Ryan; McMurtrie, Shelley

    2017-04-01

    In this paper, the utility of a partial sequence of the COI gene, the DNA barcoding region, for the identification of species of black flies in the austral region was assessed. Twenty-eight morphospecies were analyzed: eight of the genus Austrosimulium (four species in the subgenus Austrosimulium s. str., three species in the subgenus Novaustrosimulium, and one species unassigned to subgenus), two of the genus Cnesia, eight of Gigantodax, three of Paracnephia, one of Paraustrosimulium, and six of Simulium (subgenera Morops, Nevermannia, and Pternaspatha). The neighbour-joining tree derived from the DNA barcode sequences grouped most specimens according to species or species groups recognized by morphotaxonomic studies. Intraspecific sequence divergences within morphologically distinct species ranged from 0% to 1.8%, while higher divergences (2%-4.2%) in certain species suggested the presence of cryptic diversity. The existence of well-defined groups within S. simile revealed the likely inclusion of cryptic diversity. DNA barcodes also showed that specimens identified as C. dissimilis, C. nr. pussilla, and C. ornata might be conspecific, suggesting possible synonymy. DNA barcoding combined with a sound morphotaxonomic framework would provide an effective approach for the identification of black flies in the region.

  5. Using herbarium-derived DNAs to assemble a large-scale DNA barcode library for the vascular plants of Canada.

    PubMed

    Kuzmina, Maria L; Braukmann, Thomas W A; Fazekas, Aron J; Graham, Sean W; Dewaard, Stephanie L; Rodrigues, Anuar; Bennett, Bruce A; Dickinson, Timothy A; Saarela, Jeffery M; Catling, Paul M; Newmaster, Steven G; Percy, Diana M; Fenneman, Erin; Lauron-Moreau, Aurélien; Ford, Bruce; Gillespie, Lynn; Subramanyam, Ragupathy; Whitton, Jeannette; Jennings, Linda; Metsger, Deborah; Warne, Connor P; Brown, Allison; Sears, Elizabeth; Dewaard, Jeremy R; Zakharov, Evgeny V; Hebert, Paul D N

    2017-12-01

    Constructing complete, accurate plant DNA barcode reference libraries can be logistically challenging for large-scale floras. Here we demonstrate the promise and challenges of using herbarium collections for building a DNA barcode reference library for the vascular plant flora of Canada. Our study examined 20,816 specimens representing 5076 of 5190 vascular plant species in Canada (98%). For 98% of the specimens, at least one of the DNA barcode regions was recovered from the plastid loci rbcL and matK and from the nuclear ITS2 region. We used beta regression to quantify the effects of age, type of preservation, and taxonomic affiliation (family) on DNA sequence recovery. Specimen age and method of preservation had significant effects on sequence recovery for all markers, but influenced some families more (e.g., Boraginaceae) than others (e.g., Asteraceae). Our DNA barcode library represents an unparalleled resource for metagenomic and ecological genetic research working on temperate and arctic biomes. An observed decline in sequence recovery with specimen age may be associated with poor primer matches, intragenomic variation (for ITS2), or inhibitory secondary compounds in some taxa.

  6. Using herbarium-derived DNAs to assemble a large-scale DNA barcode library for the vascular plants of Canada1

    PubMed Central

    Kuzmina, Maria L.; Braukmann, Thomas W. A.; Fazekas, Aron J.; Graham, Sean W.; Dewaard, Stephanie L.; Rodrigues, Anuar; Bennett, Bruce A.; Dickinson, Timothy A.; Saarela, Jeffery M.; Catling, Paul M.; Newmaster, Steven G.; Percy, Diana M.; Fenneman, Erin; Lauron-Moreau, Aurélien; Ford, Bruce; Gillespie, Lynn; Subramanyam, Ragupathy; Whitton, Jeannette; Jennings, Linda; Metsger, Deborah; Warne, Connor P.; Brown, Allison; Sears, Elizabeth; Dewaard, Jeremy R.; Zakharov, Evgeny V.; Hebert, Paul D. N.

    2017-01-01

    Premise of the study: Constructing complete, accurate plant DNA barcode reference libraries can be logistically challenging for large-scale floras. Here we demonstrate the promise and challenges of using herbarium collections for building a DNA barcode reference library for the vascular plant flora of Canada. Methods: Our study examined 20,816 specimens representing 5076 of 5190 vascular plant species in Canada (98%). For 98% of the specimens, at least one of the DNA barcode regions was recovered from the plastid loci rbcL and matK and from the nuclear ITS2 region. We used beta regression to quantify the effects of age, type of preservation, and taxonomic affiliation (family) on DNA sequence recovery. Results: Specimen age and method of preservation had significant effects on sequence recovery for all markers, but influenced some families more (e.g., Boraginaceae) than others (e.g., Asteraceae). Discussion: Our DNA barcode library represents an unparalleled resource for metagenomic and ecological genetic research working on temperate and arctic biomes. An observed decline in sequence recovery with specimen age may be associated with poor primer matches, intragenomic variation (for ITS2), or inhibitory secondary compounds in some taxa. PMID:29299394

  7. Multiplex single-molecule interaction profiling of DNA-barcoded proteins.

    PubMed

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E; Vidal, Marc; Church, George M

    2014-11-27

    In contrast with advances in massively parallel DNA sequencing, high-throughput protein analyses are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule protein detection using optical methods is limited by the number of spectrally non-overlapping chromophores. Here we introduce a single-molecular-interaction sequencing (SMI-seq) technology for parallel protein interaction profiling leveraging single-molecule advantages. DNA barcodes are attached to proteins collectively via ribosome display or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide thin film to construct a random single-molecule array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies) and analysed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimetre. Furthermore, protein interactions can be measured on the basis of the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor and antibody-binding profiling, are demonstrated. SMI-seq enables 'library versus library' screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity.

  8. Multiplex single-molecule interaction profiling of DNA barcoded proteins

    PubMed Central

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E.; Vidal, Marc; Church, George M.

    2014-01-01

    In contrast with advances in massively parallel DNA sequencing1, high-throughput protein analyses2-4 are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule (SM) protein detection achieved using optical methods5 is limited by the number of spectrally nonoverlapping chromophores. Here, we introduce a single molecular interaction-sequencing (SMI-Seq) technology for parallel protein interaction profiling leveraging SM advantages. DNA barcodes are attached to proteins collectively via ribosome display6 or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide (PAA) thin film to construct a random SM array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies)7 and analyzed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimeter. Furthermore, protein interactions can be measured based on the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor (GPCR) and antibody binding profiling, were demonstrated. SMI-Seq enables “library vs. library” screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity. PMID:25252978

  9. Combining and Comparing Coalescent, Distance and Character-Based Approaches for Barcoding Microalgaes: A Test with Chlorella-Like Species (Chlorophyta)

    PubMed Central

    Zou, Shanmei; Fei, Cong; Song, Jiameng; Bao, Yachao; He, Meilin; Wang, Changhai

    2016-01-01

    Several different barcoding methods of distinguishing species have been advanced, but which method is the best is still controversial. Chlorella is becoming particularly promising in the development of second-generation biofuels. However, the taxonomy of Chlorella–like organisms is easily confused. Here we report a comprehensive barcoding analysis of Chlorella-like species from Chlorella, Chloroidium, Dictyosphaerium and Actinastrum based on rbcL, ITS, tufA and 16S sequences to test the efficiency of traditional barcoding, GMYC, ABGD, PTP, P ID and character-based barcoding methods. First of all, the barcoding results gave new insights into the taxonomic assessment of Chlorella-like organisms studied, including the clear species discrimination and resolution of potentially cryptic species complexes in C. sorokiniana, D. ehrenbergianum and C. Vulgaris. The tufA proved to be the most efficient barcoding locus, which thus could be as potential “specific barcode” for Chlorella-like species. The 16S failed in discriminating most closely related species. The resolution of GMYC, PTP, P ID, ABGD and character-based barcoding methods were variable among rbcL, ITS and tufA genes. The best resolution for species differentiation appeared in tufA analysis where GMYC, PTP, ABGD and character-based approaches produced consistent groups while the PTP method over-split the taxa. The character analysis of rbcL, ITS and tufA sequences could clearly distinguish all taxonomic groups respectively, including the potentially cryptic lineages, with many character attributes. Thus, the character-based barcoding provides an attractive complement to coalescent and distance-based barcoding. Our study represents the test that proves the efficiency of multiple DNA barcoding in species discrimination of microalgaes. PMID:27092945

  10. DNA barcoding commercially important fish species of Turkey.

    PubMed

    Keskın, Emre; Atar, Hasan H

    2013-09-01

    DNA barcoding was used in the identification of 89 commercially important freshwater and marine fish species found in Turkish ichthyofauna. A total of 1765 DNA barcodes using a 654-bp-long fragment of the mitochondrial cytochrome c oxidase subunit I gene were generated for 89 commercially important freshwater and marine fish species found in Turkish ichthyofauna. These species belong to 70 genera, 40 families and 19 orders from class Actinopterygii, and all were associated with a distinct DNA barcode. Nine and 12 of the COI barcode clusters represent the first species records submitted to the BOLD and GenBank databases, respectively. All COI barcodes (except sequences of first species records) were matched with reference sequences of expected species, according to morphological identification. Average nucleotide frequencies of the data set were calculated as T = 29.7%, C = 28.2%, A = 23.6% and G = 18.6%. Average pairwise genetic distance among individuals were estimated as 0.32%, 9.62%, 17,90% and 22.40% for conspecific, congeneric, confamilial and within order, respectively. Kimura 2-parameter genetic distance values were found to increase with taxonomic level. For most of the species analysed in our data set, there is a barcoding gap, and an overlap in the barcoding gap exists for only two genera. Neighbour-joining trees were drawn based on DNA barcodes and all the specimens clustered in agreement with their taxonomic classification at species level. Results of this study supported DNA barcoding as an efficient molecular tool for a better monitoring, conservation and management of fisheries. © 2013 John Wiley & Sons Ltd.

  11. Opening the treasure chest: A DNA-barcoding primer set for most higher taxa of Central European birds and mammals from museum collections

    PubMed Central

    Schäffer, Sylvia; Zachos, Frank E.

    2017-01-01

    DNA-barcoding is a rapidly developing method for efficiently identifying samples to species level by means of short standard DNA sequences. However, reliable species assignment requires the availability of a comprehensive DNA barcode reference library, and hence numerous initiatives aim at generating such barcode databases for particular taxa or geographic regions. Historical museum collections represent a potentially invaluable source for the DNA-barcoding of many taxa. This is particularly true for birds and mammals, for which collecting fresh (voucher) material is often very difficult to (nearly) impossible due to the special animal welfare and conservation regulations that apply to vertebrates in general, and birds and mammals in particular. Moreover, even great efforts might not guarantee sufficiently complete sampling of fresh material in a short period of time. DNA extracted from historical samples is usually degraded, such that only short fragments can be amplified, rendering the recovery of the barcoding region as a single fragment impossible. Here, we present a new set of primers that allows the efficient amplification and sequencing of the entire barcoding region in most higher taxa of Central European birds and mammals in six overlapping fragments, thus greatly increasing the value of historical museum collections for generating DNA barcode reference libraries. Applying our new primer set in recently established NGS protocols promises to further increase the efficiency of barcoding old bird and mammal specimens. PMID:28358863

  12. Opening the treasure chest: A DNA-barcoding primer set for most higher taxa of Central European birds and mammals from museum collections.

    PubMed

    Schäffer, Sylvia; Zachos, Frank E; Koblmüller, Stephan

    2017-01-01

    DNA-barcoding is a rapidly developing method for efficiently identifying samples to species level by means of short standard DNA sequences. However, reliable species assignment requires the availability of a comprehensive DNA barcode reference library, and hence numerous initiatives aim at generating such barcode databases for particular taxa or geographic regions. Historical museum collections represent a potentially invaluable source for the DNA-barcoding of many taxa. This is particularly true for birds and mammals, for which collecting fresh (voucher) material is often very difficult to (nearly) impossible due to the special animal welfare and conservation regulations that apply to vertebrates in general, and birds and mammals in particular. Moreover, even great efforts might not guarantee sufficiently complete sampling of fresh material in a short period of time. DNA extracted from historical samples is usually degraded, such that only short fragments can be amplified, rendering the recovery of the barcoding region as a single fragment impossible. Here, we present a new set of primers that allows the efficient amplification and sequencing of the entire barcoding region in most higher taxa of Central European birds and mammals in six overlapping fragments, thus greatly increasing the value of historical museum collections for generating DNA barcode reference libraries. Applying our new primer set in recently established NGS protocols promises to further increase the efficiency of barcoding old bird and mammal specimens.

  13. DNA barcodes of the native ray-finned fishes in Taiwan.

    PubMed

    Chang, Chia-Hao; Shao, Kwang-Tsao; Lin, Han-Yang; Chiu, Yung-Chieh; Lee, Mao-Ying; Liu, Shih-Hui; Lin, Pai-Lei

    2017-07-01

    Species identification based on the DNA sequence of a fragment of the cytochrome c oxidase subunit I gene in the mitochondrial genome, DNA barcoding, is widely applied to assist in sustainable exploitation of fish resources and the protection of fish biodiversity. The aim of this study was to establish a reliable barcoding reference database of the native ray-finned fishes in Taiwan. A total of 2993 individuals, belonging to 1245 species within 637 genera, 184 families and 29 orders of ray-finned fishes and representing approximately 40% of the recorded ray-finned fishes in Taiwan, were PCR amplified at the barcode region and bidirectionally sequenced. The mean length of the 2993 barcodes is 549 bp. Mean congeneric K2P distance (15.24%) is approximately 10-fold higher than the mean conspecific one (1.51%), but approximately 1.4-fold less than the mean genetic distance between families (20.80%). The Barcode Index Number (BIN) discordance report shows that 2993 specimens represent 1275 BINs and, among them, 86 BINs are singletons, 570 BINs are taxonomically concordant, and the other 619 BINs are taxonomically discordant. Barcode gap analysis also revealed that more than 90% of the collected fishes in this study can be discriminated by DNA barcoding. Overall, the barcoding reference database established by this study reveals the need for taxonomic revisions and voucher specimen rechecks, in addition to assisting in the management of Taiwan's fish resources and diversity. © 2016 John Wiley & Sons Ltd.

  14. Droplet Digital™ PCR Next-Generation Sequencing Library QC Assay.

    PubMed

    Heredia, Nicholas J

    2018-01-01

    Digital PCR is a valuable tool to quantify next-generation sequencing (NGS) libraries precisely and accurately. Accurately quantifying NGS libraries enable accurate loading of the libraries on to the sequencer and thus improve sequencing performance by reducing under and overloading error. Accurate quantification also benefits users by enabling uniform loading of indexed/barcoded libraries which in turn greatly improves sequencing uniformity of the indexed/barcoded samples. The advantages gained by employing the Droplet Digital PCR (ddPCR™) library QC assay includes the precise and accurate quantification in addition to size quality assessment, enabling users to QC their sequencing libraries with confidence.

  15. Use of DNA barcodes to identify flowering plants.

    PubMed

    Kress, W John; Wurdack, Kenneth J; Zimmer, Elizabeth A; Weigt, Lee A; Janzen, Daniel H

    2005-06-07

    Methods for identifying species by using short orthologous DNA sequences, known as "DNA barcodes," have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short ( approximately 450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes.

  16. Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing.

    PubMed

    Ståhlberg, Anders; Krzyzanowski, Paul M; Jackson, Jennifer B; Egyud, Matthew; Stein, Lincoln; Godfrey, Tony E

    2016-06-20

    Detection of cell-free DNA in liquid biopsies offers great potential for use in non-invasive prenatal testing and as a cancer biomarker. Fetal and tumor DNA fractions however can be extremely low in these samples and ultra-sensitive methods are required for their detection. Here, we report an extremely simple and fast method for introduction of barcodes into DNA libraries made from 5 ng of DNA. Barcoded adapter primers are designed with an oligonucleotide hairpin structure to protect the molecular barcodes during the first rounds of polymerase chain reaction (PCR) and prevent them from participating in mis-priming events. Our approach enables high-level multiplexing and next-generation sequencing library construction with flexible library content. We show that uniform libraries of 1-, 5-, 13- and 31-plex can be generated. Utilizing the barcodes to generate consensus reads for each original DNA molecule reduces background sequencing noise and allows detection of variant alleles below 0.1% frequency in clonal cell line DNA and in cell-free plasma DNA. Thus, our approach bridges the gap between the highly sensitive but specific capabilities of digital PCR, which only allows a limited number of variants to be analyzed, with the broad target capability of next-generation sequencing which traditionally lacks the sensitivity to detect rare variants. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Discriminatory power of rbcL barcode locus for authentication of some of United Arab Emirates (UAE) native plants.

    PubMed

    Maloukh, Lina; Kumarappan, Alagappan; Jarrar, Mohammad; Salehi, Jawad; El-Wakil, Houssam; Rajya Lakshmi, T V

    2017-06-01

    DNA barcoding of United Arab Emirates (UAE) native plants is of high practical and scientific value as the plants adapt to very harsh environmental conditions that challenge their identification. Fifty-one plant species belonged to 22 families, 2 monocots, and 20 eudicots; a maximum number of species being legumes and grasses were collected. To authenticate the morphological identification of the wild plant taxa, rbcL and matK regions were used in the study. The primer universality and discriminatory power of rbcL is 100%, while it is 35% for matK locus for these plant species. The sequences were submitted to GenBank; accession numbers were obtained for all the rbcL sequences and for 6 of matK sequences. We suggest rbcL as a promising barcode locus for the tested group of 51 plants. In the present study, an inexpensive, simple method of identification of rare desert plant taxa through rbcL barcode is being reported.

  18. Bridging two scholarly islands enriches both: COI DNA barcodes for species identification versus human mitochondrial variation for the study of migrations and pathologies.

    PubMed

    Thaler, David S; Stoeckle, Mark Y

    2016-10-01

    DNA barcodes for species identification and the analysis of human mitochondrial variation have developed as independent fields even though both are based on sequences from animal mitochondria. This study finds questions within each field that can be addressed by reference to the other. DNA barcodes are based on a 648-bp segment of the mitochondrially encoded cytochrome oxidase I. From most species, this segment is the only sequence available. It is impossible to know whether it fairly represents overall mitochondrial variation. For modern humans, the entire mitochondrial genome is available from thousands of healthy individuals. SNPs in the human mitochondrial genome are evenly distributed across all protein-encoding regions arguing that COI DNA barcode is representative. Barcode variation among related species is largely based on synonymous codons. Data on human mitochondrial variation support the interpretation that most - possibly all - synonymous substitutions in mitochondria are selectively neutral. DNA barcodes confirm reports of a low variance in modern humans compared to nonhuman primates. In addition, DNA barcodes allow the comparison of modern human variance to many other extant animal species. Birds are a well-curated group in which DNA barcodes are coupled with census and geographic data. Putting modern human variation in the context of intraspecies variation among birds shows humans to be a single breeding population of average variance.

  19. Integrating DNA barcode data and taxonomic practice: determination, discovery, and description.

    PubMed

    Goldstein, Paul Z; DeSalle, Rob

    2011-02-01

    DNA barcodes, like traditional sources of taxonomic information, are potentially powerful heuristics in the identification of described species but require mindful analytical interpretation. The role of DNA barcoding in generating hypotheses of new taxa in need of formal taxonomic treatment is discussed, and it is emphasized that the recursive process of character evaluation is both necessary and best served by understanding the empirical mechanics of the discovery process. These undertakings carry enormous ramifications not only for the translation of DNA sequence data into taxonomic information but also for our comprehension of the magnitude of species diversity and its disappearance. This paper examines the potential strengths and pitfalls of integrating DNA sequence data, specifically in the form of DNA barcodes as they are currently generated and analyzed, with taxonomic practice.

  20. Filling Gaps in Biodiversity Knowledge for Macrofungi: Contributions and Assessment of an Herbarium Collection DNA Barcode Sequencing Project

    PubMed Central

    Osmundson, Todd W.; Robert, Vincent A.; Schoch, Conrad L.; Baker, Lydia J.; Smith, Amy; Robich, Giovanni; Mizzan, Luca; Garbelotto, Matteo M.

    2013-01-01

    Despite recent advances spearheaded by molecular approaches and novel technologies, species description and DNA sequence information are significantly lagging for fungi compared to many other groups of organisms. Large scale sequencing of vouchered herbarium material can aid in closing this gap. Here, we describe an effort to obtain broad ITS sequence coverage of the approximately 6000 macrofungal-species-rich herbarium of the Museum of Natural History in Venice, Italy. Our goals were to investigate issues related to large sequencing projects, develop heuristic methods for assessing the overall performance of such a project, and evaluate the prospects of such efforts to reduce the current gap in fungal biodiversity knowledge. The effort generated 1107 sequences submitted to GenBank, including 416 previously unrepresented taxa and 398 sequences exhibiting a best BLAST match to an unidentified environmental sequence. Specimen age and taxon affected sequencing success, and subsequent work on failed specimens showed that an ITS1 mini-barcode greatly increased sequencing success without greatly reducing the discriminating power of the barcode. Similarity comparisons and nonmetric multidimensional scaling ordinations based on pairwise distance matrices proved to be useful heuristic tools for validating the overall accuracy of specimen identifications, flagging potential misidentifications, and identifying taxa in need of additional species-level revision. Comparison of within- and among-species nucleotide variation showed a strong increase in species discriminating power at 1–2% dissimilarity, and identified potential barcoding issues (same sequence for different species and vice-versa). All sequences are linked to a vouchered specimen, and results from this study have already prompted revisions of species-sequence assignments in several taxa. PMID:23638077

  1. Filling gaps in biodiversity knowledge for macrofungi: contributions and assessment of an herbarium collection DNA barcode sequencing project.

    PubMed

    Osmundson, Todd W; Robert, Vincent A; Schoch, Conrad L; Baker, Lydia J; Smith, Amy; Robich, Giovanni; Mizzan, Luca; Garbelotto, Matteo M

    2013-01-01

    Despite recent advances spearheaded by molecular approaches and novel technologies, species description and DNA sequence information are significantly lagging for fungi compared to many other groups of organisms. Large scale sequencing of vouchered herbarium material can aid in closing this gap. Here, we describe an effort to obtain broad ITS sequence coverage of the approximately 6000 macrofungal-species-rich herbarium of the Museum of Natural History in Venice, Italy. Our goals were to investigate issues related to large sequencing projects, develop heuristic methods for assessing the overall performance of such a project, and evaluate the prospects of such efforts to reduce the current gap in fungal biodiversity knowledge. The effort generated 1107 sequences submitted to GenBank, including 416 previously unrepresented taxa and 398 sequences exhibiting a best BLAST match to an unidentified environmental sequence. Specimen age and taxon affected sequencing success, and subsequent work on failed specimens showed that an ITS1 mini-barcode greatly increased sequencing success without greatly reducing the discriminating power of the barcode. Similarity comparisons and nonmetric multidimensional scaling ordinations based on pairwise distance matrices proved to be useful heuristic tools for validating the overall accuracy of specimen identifications, flagging potential misidentifications, and identifying taxa in need of additional species-level revision. Comparison of within- and among-species nucleotide variation showed a strong increase in species discriminating power at 1-2% dissimilarity, and identified potential barcoding issues (same sequence for different species and vice-versa). All sequences are linked to a vouchered specimen, and results from this study have already prompted revisions of species-sequence assignments in several taxa.

  2. DNA Barcoding through Quaternary LDPC Codes

    PubMed Central

    Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar

    2015-01-01

    For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10−2 per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10−9 at the expense of a rate of read losses just in the order of 10−6. PMID:26492348

  3. DNA Barcoding through Quaternary LDPC Codes.

    PubMed

    Tapia, Elizabeth; Spetale, Flavio; Krsticevic, Flavia; Angelone, Laura; Bulacio, Pilar

    2015-01-01

    For many parallel applications of Next-Generation Sequencing (NGS) technologies short barcodes able to accurately multiplex a large number of samples are demanded. To address these competitive requirements, the use of error-correcting codes is advised. Current barcoding systems are mostly built from short random error-correcting codes, a feature that strongly limits their multiplexing accuracy and experimental scalability. To overcome these problems on sequencing systems impaired by mismatch errors, the alternative use of binary BCH and pseudo-quaternary Hamming codes has been proposed. However, these codes either fail to provide a fine-scale with regard to size of barcodes (BCH) or have intrinsic poor error correcting abilities (Hamming). Here, the design of barcodes from shortened binary BCH codes and quaternary Low Density Parity Check (LDPC) codes is introduced. Simulation results show that although accurate barcoding systems of high multiplexing capacity can be obtained with any of these codes, using quaternary LDPC codes may be particularly advantageous due to the lower rates of read losses and undetected sample misidentification errors. Even at mismatch error rates of 10(-2) per base, 24-nt LDPC barcodes can be used to multiplex roughly 2000 samples with a sample misidentification error rate in the order of 10(-9) at the expense of a rate of read losses just in the order of 10(-6).

  4. Identification of species based on DNA barcode using k-mer feature vector and Random forest classifier.

    PubMed

    Meher, Prabina Kumar; Sahu, Tanmaya Kumar; Rao, A R

    2016-11-05

    DNA barcoding is a molecular diagnostic method that allows automated and accurate identification of species based on a short and standardized fragment of DNA. To this end, an attempt has been made in this study to develop a computational approach for identifying the species by comparing its barcode with the barcode sequence of known species present in the reference library. Each barcode sequence was first mapped onto a numeric feature vector based on k-mer frequencies and then Random forest methodology was employed on the transformed dataset for species identification. The proposed approach outperformed similarity-based, tree-based, diagnostic-based approaches and found comparable with existing supervised learning based approaches in terms of species identification success rate, while compared using real and simulated datasets. Based on the proposed approach, an online web interface SPIDBAR has also been developed and made freely available at http://cabgrid.res.in:8080/spidbar/ for species identification by the taxonomists. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. DNA barcoding of five common stored-product pest species of genus Cryptolestes (Coleoptera: Laemophloeidae).

    PubMed

    Wang, Y J; Li, Z H; Zhang, S F; Varadínová, Z; Jiang, F; Kučerová, Z; Stejskal, V; Opit, G; Cao, Y; Li, F J

    2014-10-01

    Several species of the genus Cryptolestes Ganglbauer, 1899 (Coleoptera: Laemophloeidae) are commonly found in stored products. In this study, five species of Cryptolestes, with almost worldwide distribution, were obtained from laboratories in China, Czech Republic and the USA: Cryptolestes ferrugineus (Stephens, 1831), Cryptolestes pusillus (Schönherr, 1817), Cryptolestes turcicus (Grouvelle, 1876), Cryptolestes pusilloides (Steel & Howe, 1952) and Cryptolestes capensis (Waltl, 1834). Molecular identification based on a 658 bp fragment from the mitochondrial DNA cytochrome c oxidase subunit I (COI) was adopted to overcome some problems of morphological identification of Cryptolestes species. The utility of COI sequences as DNA barcodes in discriminating the five Cryptolestes species was evaluated on adults and larvae by analysing Kimura 2-parameter distances, phylogenetic tree and haplotype networks. The results showed that molecular approaches based on DNA barcodes were able to accurately identify these species. This is the first study using DNA barcoding to identify Cryptolestes species and the gathered DNA sequences will complement the biological barcode database.

  6. Escaping introns in COI through cDNA barcoding of mushrooms: Pleurotus as a test case.

    PubMed

    Avin, Farhat A; Subha, Bhassu; Tan, Yee-Shin; Braukmann, Thomas W A; Vikineswary, Sabaratnam; Hebert, Paul D N

    2017-09-01

    DNA barcoding involves the use of one or more short, standardized DNA fragments for the rapid identification of species. A 648-bp segment near the 5' terminus of the mitochondrial cytochrome c oxidase subunit I (COI) gene has been adopted as the universal DNA barcode for members of the animal kingdom, but its utility in mushrooms is complicated by the frequent occurrence of large introns. As a consequence, ITS has been adopted as the standard DNA barcode marker for mushrooms despite several shortcomings. This study employed newly designed primers coupled with cDNA analysis to examine COI sequence diversity in six species of Pleurotus and compared these results with those for ITS. The ability of the COI gene to discriminate six species of Pleurotus , the commonly cultivated oyster mushroom, was examined by analysis of cDNA. The amplification success, sequence variation within and among species, and the ability to design effective primers was tested. We compared ITS sequences to their COI cDNA counterparts for all isolates. ITS discriminated between all six species, but some sequence results were uninterpretable, because of length variation among ITS copies. By comparison, a complete COI sequences were recovered from all but three individuals of Pleurotus giganteus where only the 5' region was obtained. The COI sequences permitted the resolution of all species when partial data was excluded for P. giganteus . Our results suggest that COI can be a useful barcode marker for mushrooms when cDNA analysis is adopted, permitting identifications in cases where ITS cannot be recovered or where it offers higher resolution when fresh tissue is. The suitability of this approach remains to be confirmed for other mushrooms.

  7. The internal transcribed spacer (ITS) region and trnH-psbA [corrected] are suitable candidate loci for DNA barcoding of tropical tree species of India.

    PubMed

    Tripathi, Abhinandan Mani; Tyagi, Antariksh; Kumar, Anoop; Singh, Akanksha; Singh, Shivani; Chaudhary, Lal Babu; Roy, Sribash

    2013-01-01

    DNA barcoding as a tool for species identification has been successful in animals and other organisms, including certain groups of plants. The exploration of this new tool for species identification, particularly in tree species, is very scanty from biodiversity-rich countries like India. rbcL and matK are standard barcode loci while ITS, and trnH-psbA are considered as supplementary loci for plants. Plant barcode loci, namely, rbcL, matK, ITS, trnH-psbA, and the recently proposed ITS2, were tested for their efficacy as barcode loci using 300 accessions of tropical tree species. We tested these loci for PCR, sequencing success, and species discrimination ability using three methods. rbcL was the best locus as far as PCR and sequencing success rate were concerned, but not for the species discrimination ability of tropical tree species. ITS and trnH-psbA were the second best loci in PCR and sequencing success, respectively. The species discrimination ability of ITS ranged from 24.4 percent to 74.3 percent and that of trnH-psbA was 25.6 percent to 67.7 percent, depending upon the data set and the method used. matK provided the least PCR success, followed by ITS2 (59. 0%). Species resolution by ITS2 and rbcL ranged from 9.0 percent to 48.7 percent and 13.2 percent to 43.6 percent, respectively. Further, we observed that the NCBI nucleotide database is poorly represented by the sequences of barcode loci studied here for tree species. Although a conservative approach of a success rate of 60-70 percent by both ITS and trnH-psbA may not be considered as highly successful but would certainly help in large-scale biodiversity inventorization, particularly for tropical tree species, considering the standard success rate of plant DNA barcode program reported so far. The recommended matK and rbcL primers combination may not work in tropical tree species as barcode markers.

  8. [Identification of antler powder components based on DNA barcoding technology].

    PubMed

    Jia, Jing; Shi, Lin-chun; Xu, Zhi-chao; Xin, Tian-yi; Song, Jing-yuan; Chen Shi, Lin

    2015-10-01

    In order to authenticate the components of antler powder in the market, DNA barcoding technology coupled with cloning method were used. Cytochrome c oxidase subunit I (COI) sequences were obtained according to the DNA barcoding standard operation procedure (SOP). For antler powder with possible mixed components, the cloning method was used to get each COI sequence. 65 COI sequences were successfully obtained from commercial antler powders via sequencing PCR products. The results indicates that only 38% of these samples were derived from Cervus nippon Temminck or Cervus elaphus Linnaeus which is recorded in the 2010 edition of "Chinese Pharmacopoeia", while 62% of them were derived from other species. Rangifer tarandus Linnaeus was the most frequent species among the adulterants. Further analysis showed that some samples collected from different regions, companies and prices, contained adulterants. Analysis of 36 COI sequences obtained by the cloning method showed that C. elaphus and C. nippon were main components. In addition, some samples were marked clearly as antler powder on the label, however, C. elaphus or R. tarandus were their main components. In summary, DNA barcoding can accurately and efficiently distinguish the exact content in the commercial antler powder, which provides a new technique to ensure clinical safety and improve quality control of Chinese traditional medicine

  9. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics.

    PubMed

    Timmermans, M J T N; Dodsworth, S; Culverwell, C L; Bocak, L; Ahrens, D; Littlewood, D T J; Pons, J; Vogler, A P

    2010-11-01

    Mitochondrial genome sequences are important markers for phylogenetics but taxon sampling remains sporadic because of the great effort and cost required to acquire full-length sequences. Here, we demonstrate a simple, cost-effective way to sequence the full complement of protein coding mitochondrial genes from pooled samples using the 454/Roche platform. Multiplexing was achieved without the need for expensive indexing tags ('barcodes'). The method was trialled with a set of long-range polymerase chain reaction (PCR) fragments from 30 species of Coleoptera (beetles) sequenced in a 1/16th sector of a sequencing plate. Long contigs were produced from the pooled sequences with sequencing depths ranging from ∼10 to 100× per contig. Species identity of individual contigs was established via three 'bait' sequences matching disparate parts of the mitochondrial genome obtained by conventional PCR and Sanger sequencing. This proved that assembly of contigs from the sequencing pool was correct. Our study produced sequences for 21 nearly complete and seven partial sets of protein coding mitochondrial genes. Combined with existing sequences for 25 taxa, an improved estimate of basal relationships in Coleoptera was obtained. The procedure could be employed routinely for mitochondrial genome sequencing at the species level, to provide improved species 'barcodes' that currently use the cox1 gene only.

  10. Barcoded NS31/AML2 primers for sequencing of arbuscular mycorrhizal communities in environmental samples1

    PubMed Central

    Morgan, Benjamin S. T.; Egerton-Warburton, Louise M.

    2017-01-01

    Premise of the study: Arbuscular mycorrhizal fungi (AMF) are globally important root symbioses that enhance plant growth and nutrition and influence ecosystem structure and function. To better characterize levels of AMF diversity relevant to ecosystem function, deeper sequencing depth in environmental samples is needed. In this study, Illumina barcoded primers and a bioinformatics pipeline were developed and applied to study AMF diversity and community structure in environmental samples. Methods: Libraries of small subunit ribosomal RNA fragment amplicons were amplified from environmental DNA using a single-step PCR reaction with barcoded NS31/AML2 primers. Amplicons were sequenced on an Illumina MiSeq sequencer using version 2, 2 × 250-bp paired-end chemistry, and analyzed using QIIME and RDP Classifier. Results: Sequencing captured 196 to 6416 operational taxonomic units (OTUs; depending on clustering parameters) representing nine AMF genera. Regardless of clustering parameters, ∼20 OTUs dominated AMF communities (78–87% reads) with the remaining reads distributed among other OTUs. Analyses also showed significant biogeographic differences in AMF communities and that community composition could be linked to specific edaphic factors. Discussion: Barcoded NS31/AML2 primers and Illumina MiSeq sequencing provide a powerful approach to address AMF diversity and variations in fungal assemblages across host plants, ecosystems, and responses to environmental drivers including global change. PMID:28924511

  11. Assessment, validation and deployment strategy of a two-barcode protocol for facile genotyping of duckweed species.

    PubMed

    Borisjuk, N; Chu, P; Gutierrez, R; Zhang, H; Acosta, K; Friesen, N; Sree, K S; Garcia, C; Appenroth, K J; Lam, E

    2015-01-01

    Lemnaceae, commonly called duckweeds, comprise a diverse group of floating aquatic plants that have previously been classified into 37 species based on morphological and physiological criteria. In addition to their unique evolutionary position among angiosperms and their applications in biomonitoring, the potential of duckweeds as a novel sustainable crop for fuel and feed has recently increased interest in the study of their biodiversity and systematics. However, due to their small size and abbreviated structure, accurate typing of duckweeds based on morphology can be challenging. In the past decade, attempts to employ molecular barcoding techniques for species assignment have produced promising results; however, they have yet to be codified into a simple and quantitative protocol. A study that compiles and compares the barcode sequences within all known species of this family would help to establish the fidelity and limits of this DNA-based approach. In this work, we compared the level of conservation between over 100 strains of duckweed for two intergenic barcode sequences derived from the plastid genome. By using over 300 sequences publicly available in the NCBI database, we determined the utility of each of these two barcodes for duckweed species identification. Through sequencing of these barcodes from additional accessions, 30 of the 37 known species of duckweed could be identified with varying levels of confidence using this approach. From our analyses using this reference dataset, we also confirmed two instances where mis-assignment of species has likely occurred. Potential strategies for further improving the scope of this technology are discussed. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. ITSoneDB: a comprehensive collection of eukaryotic ribosomal RNA Internal Transcribed Spacer 1 (ITS1) sequences.

    PubMed

    Santamaria, Monica; Fosso, Bruno; Licciulli, Flavio; Balech, Bachir; Larini, Ilaria; Grillo, Giorgio; De Caro, Giorgio; Liuni, Sabino; Pesole, Graziano

    2018-01-04

    A holistic understanding of environmental communities is the new challenge of metagenomics. Accordingly, the amplicon-based or metabarcoding approach, largely applied to investigate bacterial microbiomes, is moving to the eukaryotic world too. Indeed, the analysis of metabarcoding data may provide a comprehensive assessment of both bacterial and eukaryotic composition in a variety of environments, including human body. In this respect, whereas hypervariable regions of the 16S rRNA are the de facto standard barcode for bacteria, the Internal Transcribed Spacer 1 (ITS1) of ribosomal RNA gene cluster has shown a high potential in discriminating eukaryotes at deep taxonomic levels. As metabarcoding data analysis rely on the availability of a well-curated barcode reference resource, a comprehensive collection of ITS1 sequences supplied with robust taxonomies, is highly needed. To address this issue, we created ITSoneDB (available at http://itsonedb.cloud.ba.infn.it/) which in its current version hosts 985 240 ITS1 sequences spanning over 134 000 eukaryotic species. Each ITS1 is mapped on the NCBI reference taxonomy with its start and end positions precisely annotated. ITSoneDB has been developed in agreement to the FAIR guidelines by enabling the users to query and download its content through a simple web-interface and access relevant metadata by cross-linking to European Nucleotide Archive. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Application of DNA Barcodes in Asian Tropical Trees – A Case Study from Xishuangbanna Nature Reserve, Southwest China

    PubMed Central

    Conran, John G.; Li, Jie

    2015-01-01

    Background Within a regional floristic context, DNA barcoding is more useful to manage plant diversity inventories on a large scale and develop valuable conservation strategies. However, there are no DNA barcode studies from tropical areas of China, which represents one of the biodiversity hotspots around the world. Methodology and Principal Findings A DNA barcoding database of an Asian tropical trees with high diversity was established at Xishuangbanna Nature Reserve, Yunnan, southwest China using rbcL and matK as standard barcodes, as well as trnH–psbA and ITS as supplementary barcodes. The performance of tree species identification success was assessed using 2,052 accessions from four plots belonging to two vegetation types in the region by three methods: Neighbor-Joining, Maximum-Likelihood and BLAST. We corrected morphological field identification errors (9.6%) for the three plots using rbcL and matK based on Neighbor-Joining tree. The best barcode region for PCR and sequencing was rbcL (97.6%, 90.8%), followed by trnH–psbA (93.6%, 85.6%), while matK and ITS obtained relative low PCR and sequencing success rates. However, ITS performed best for both species (44.6–58.1%) and genus (72.8–76.2%) identification. With trnH–psbA slightly less effective for species identification. The two standard barcode rbcL and matK gave poor results for species identification (24.7–28.5% and 31.6–35.3%). Compared with other studies from comparable tropical forests (e.g. Cameroon, the Amazon and India), the overall performance of the four barcodes for species identification was lower for the Xishuangbanna Nature Reserve, possibly because of species/genus ratios and species composition between these tropical areas. Conclusions/Significance Although the core barcodes rbcL and matK were not suitable for species identification of tropical trees from Xishuangbanna Nature Reserve, they could still help with identification at the family and genus level. Considering the relative sequence recovery and the species identification performance, we recommend the use of trnH–psbA and ITS in combination as the preferred barcodes for tropical tree species identification in China. PMID:26121045

  14. Diversity in a Cold Hot-Spot: DNA-Barcoding Reveals Patterns of Evolution among Antarctic Demosponges (Class Demospongiae, Phylum Porifera).

    PubMed

    Vargas, Sergio; Kelly, Michelle; Schnabel, Kareen; Mills, Sadie; Bowden, David; Wörheide, Gert

    2015-01-01

    The approximately 350 demosponge species that have been described from Antarctica represent a faunistic component distinct from that of neighboring regions. Sponges provide structure to the Antarctic benthos and refuge to other invertebrates, and can be dominant in some communities. Despite the importance of sponges in the Antarctic subtidal environment, sponge DNA barcodes are scarce but can provide insight into the evolutionary relationships of this unique biogeographic province. We sequenced the standard barcoding COI region for a comprehensive selection of sponges collected during expeditions to the Ross Sea region in 2004 and 2008, and produced DNA-barcodes for 53 demosponge species covering about 60% of the species collected. The Antarctic sponge communities are phylogenetically diverse, matching the diversity of well-sampled sponge communities in the Lusitanic and Mediterranean marine provinces in the Temperate Northern Atlantic for which molecular data are readily available. Additionally, DNA-barcoding revealed levels of in situ molecular evolution comparable to those present among Caribbean sponges. DNA-barcoding using the Segregating Sites Algorithm correctly assigned approximately 54% of the barcoded species to the morphologically determined species. A barcode library for Antarctic sponges was assembled and used to advance the systematic and evolutionary research of Antarctic sponges. We provide insights on the evolutionary forces shaping Antarctica's diverse sponge communities, and a barcode library against which future sequence data from other regions or depth strata of Antarctica can be compared. The opportunity for rapid taxonomic identification of sponge collections for ecological research is now at the horizon.

  15. DNA barcoding insect–host plant associations

    PubMed Central

    Jurado-Rivera, José A.; Vogler, Alfried P.; Reid, Chris A.M.; Petitpierre, Eduard; Gómez-Zurita, Jesús

    2008-01-01

    Short-sequence fragments (‘DNA barcodes’) used widely for plant identification and inventorying remain to be applied to complex biological problems. Host–herbivore interactions are fundamental to coevolutionary relationships of a large proportion of species on the Earth, but their study is frequently hampered by limited or unreliable host records. Here we demonstrate that DNA barcodes can greatly improve this situation as they (i) provide a secure identification of host plant species and (ii) establish the authenticity of the trophic association. Host plants of leaf beetles (subfamily Chrysomelinae) from Australia were identified using the chloroplast trnL(UAA) intron as barcode amplified from beetle DNA extracts. Sequence similarity and phylogenetic analyses provided precise identifications of each host species at tribal, generic and specific levels, depending on the available database coverage in various plant lineages. The 76 species of Chrysomelinae included—more than 10 per cent of the known Australian fauna—feed on 13 plant families, with preference for Australian radiations of Myrtaceae (eucalypts) and Fabaceae (acacias). Phylogenetic analysis of beetles shows general conservation of host association but with rare host shifts between distant plant lineages, including a few cases where barcodes supported two phylogenetically distant host plants. The study demonstrates that plant barcoding is already feasible with the current publicly available data. By sequencing plant barcodes directly from DNA extractions made from herbivorous beetles, strong physical evidence for the host association is provided. Thus, molecular identification using short DNA fragments brings together the detection of species and the analysis of their interactions. PMID:19004756

  16. DNA barcoding discriminates freshwater fishes from southeastern Nigeria and provides river system-level phylogeographic resolution within some species.

    PubMed

    Nwani, Christopher D; Becker, Sven; Braid, Heather E; Ude, Emmanuel F; Okogwu, Okechukwu I; Hanner, Robert

    2011-10-01

    Fishes are the main animal protein source for human beings and play a vital role in aquatic ecosystems and food webs. Fish identification can be challenging, especially in the tropics (due to high diversity), and this is particularly true for larval forms or fragmentary remains. DNA barcoding, which uses the 5' region of the mitochondrial cytochrome c oxidase subunit I (COI) as a target gene, is an efficient method for standardized species-level identification for biodiversity assessment and conservation, pending the establishment of reference sequence libraries. In this study, fishes were collected from three rivers in southeastern Nigeria, identified morphologically, and imaged digitally. DNA was extracted, PCR-amplified, and the standard barcode region was bidirectionally sequenced for 363 individuals belonging to 70 species in 38 genera. All specimen provenance data and associated sequence information were recorded in the barcode of life data systems (BOLD; www.barcodinglife.org ). Analytical tools on BOLD were used to assess the performance of barcoding to identify species. Using neighbor-joining distance comparison, the average genetic distance was 60-fold higher between species than within species, as pairwise genetic distance estimates averaged 10.29% among congeners and only 0.17% among conspecifics. Despite low levels of divergence within species, we observed river system-specific haplotype partitioning within eight species (11.4% of all species). Our preliminary results suggest that DNA barcoding is very effective for species identification of Nigerian freshwater fishes.

  17. Identification of Neoceratitis asiatica (Becker) (Diptera: Tephritidae) based on morphological characteristics and DNA barcode.

    PubMed

    Guo, Shaokun; He, Jia; Zhao, Zihua; Liu, Lijun; Gao, Liyuan; Wei, Shuhua; Guo, Xiaoyu; Zhang, Rong; Li, Zhihong

    2017-12-12

    Neoceratitis asiatica (Becker), which especially infests wolfberry (Lycium barbarum L.), could cause serious economic losses every year in China, especially to organic wolfberry production. In some important wolfberry plantings, it is difficult and time-consuming to rear the larvae or pupae to adults for morphological identification. Molecular identification based on DNA barcode is a solution to the problem. In this study, 15 samples were collected from Ningxia, China. Among them, five adults were identified according to their morphological characteristics. The utility of mitochondrial DNA (mtDNA) cytochrome c oxidase I (COI) gene sequence as DNA barcode in distinguishing N. asiatica was evaluated by analysing Kimura 2-parameter distances and phylogenetic trees. There were significant differences between intra-specific and inter-specific genetic distances according to the barcoding gap analysis. The uncertain larval and pupal samples were within the same cluster as N. asiatica adults and formed sister cluster to N. cyanescens. A combination of morphological and molecular methods enabled accurate identification of N. asiatica. This is the first study using DNA barcode to identify N. asiatica and the obtained DNA sequences will be added to the DNA barcode database.

  18. FBIS: A regional DNA barcode archival & analysis system for Indian fishes.

    PubMed

    Nagpure, Naresh Sahebrao; Rashid, Iliyas; Pathak, Ajey Kumar; Singh, Mahender; Singh, Shri Prakash; Sarkar, Uttam Kumar

    2012-01-01

    DNA barcode is a new tool for taxon recognition and classification of biological organisms based on sequence of a fragment of mitochondrial gene, cytochrome c oxidase I (COI). In view of the growing importance of the fish DNA barcoding for species identification, molecular taxonomy and fish diversity conservation, we developed a Fish Barcode Information System (FBIS) for Indian fishes, which will serve as a regional DNA barcode archival and analysis system. The database presently contains 2334 sequence records of COI gene for 472 aquatic species belonging to 39 orders and 136 families, collected from available published data sources. Additionally, it contains information on phenotype, distribution and IUCN Red List status of fishes. The web version of FBIS was designed using MySQL, Perl and PHP under Linux operating platform to (a) store and manage the acquisition (b) analyze and explore DNA barcode records (c) identify species and estimate genetic divergence. FBIS has also been integrated with appropriate tools for retrieving and viewing information about the database statistics and taxonomy. It is expected that FBIS would be useful as a potent information system in fish molecular taxonomy, phylogeny and genomics. The database is available for free at http://mail.nbfgr.res.in/fbis/

  19. Towards a comprehensive barcode library for arctic life - Ephemeroptera, Plecoptera, and Trichoptera of Churchill, Manitoba, Canada

    PubMed Central

    2009-01-01

    Background This study reports progress in assembling a DNA barcode reference library for Ephemeroptera, Plecoptera, and Trichoptera ("EPTs") from a Canadian subarctic site, which is the focus of a comprehensive biodiversity inventory using DNA barcoding. These three groups of aquatic insects exhibit a moderate level of species diversity, making them ideal for testing the feasibility of DNA barcoding for routine biotic surveys. We explore the correlation between the morphological species delineations, DNA barcode-based haplotype clusters delimited by a sequence threshold (2%), and a threshold-free approach to biodiversity quantification--phylogenetic diversity. Results A DNA barcode reference library is built for 112 EPT species for the focal region, consisting of 2277 COI sequences. Close correspondence was found between EPT morphospecies and haplotype clusters as designated using a standard threshold value. Similarly, the shapes of taxon accumulation curves based upon haplotype clusters were very similar to those generated using phylogenetic diversity accumulation curves, but were much more computationally efficient. Conclusion The results of this study will facilitate other lines of research on northern EPTs and also bode well for rapidly conducting initial biodiversity assessments in unknown EPT faunas. PMID:20003245

  20. BAsE-Seq: a method for obtaining long viral haplotypes from short sequence reads.

    PubMed

    Hong, Lewis Z; Hong, Shuzhen; Wong, Han Teng; Aw, Pauline P K; Cheng, Yan; Wilm, Andreas; de Sessions, Paola F; Lim, Seng Gee; Nagarajan, Niranjan; Hibberd, Martin L; Quake, Stephen R; Burkholder, William F

    2014-01-01

    We present a method for obtaining long haplotypes, of over 3 kb in length, using a short-read sequencer, Barcode-directed Assembly for Extra-long Sequences (BAsE-Seq). BAsE-Seq relies on transposing a template-specific barcode onto random segments of the template molecule and assembling the barcoded short reads into complete haplotypes. We applied BAsE-Seq on mixed clones of hepatitis B virus and accurately identified haplotypes occurring at frequencies greater than or equal to 0.4%, with >99.9% specificity. Applying BAsE-Seq to a clinical sample, we obtained over 9,000 viral haplotypes, which provided an unprecedented view of hepatitis B virus population structure during chronic infection. BAsE-Seq is readily applicable for monitoring quasispecies evolution in viral diseases.

  1. Four years of DNA barcoding: current advances and prospects.

    PubMed

    Frézal, Lise; Leblois, Raphael

    2008-09-01

    Research using cytochrome c oxidase barcoding techniques on zoological specimens was initiated by Hebert et al. [Hebert, P.D.N., Ratnasingham, S., deWaard, J.R., 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B 270, S96-S99]. By March 2004, the Consortium for the Barcode of Life started to promote the use of a standardized DNA barcoding approach, consisting of identifying a specimen as belonging to a certain animal species based on a single universal marker: the DNA barcode sequence. Over the last 4 years, this approach has become increasingly popular and advances as well as limitations have clearly emerged as increasing amounts of organisms have been studied. Our purpose is to briefly expose DNA Barcode of Life principles, pros and cons, relevance and universality. The initially proposed Barcode of life framework has greatly evolved, giving rise to a flexible description of DNA barcoding and a larger range of applications.

  2. Exploring the utility of DNA barcoding in species delimitation of Polypedilum (Tripodura) non-biting midges (Diptera: Chironomidae).

    PubMed

    Song, Chao; Wang, Qian; Zhang, Ruilei; Sun, Bingjiao; Wang, Xinhua

    2016-02-16

    In this study, we tested the utility of the mitochondrial gene cytochrome c oxidase subunit 1 (CO1) as the barcode region to deal with taxonomical problems of Polypedilum (Tripodura) non-biting midges (Diptera: Chironomidae). The 114 DNA barcodes representing 27 morphospecies are divided into 33 well separated clusters based on both Neighbor Joining and Maximum Likelihood methods. DNA barcodes revealed an 82% success rate in matching with morphospecies. The selected DNA barcode data support 37-64 operational taxonomic units (OTUs) based on the methods of Automatic Barcode Gap Discovery (ABGD) and Poisson Tree Process (PTP). Furthermore, a priori species based on consistent phenotypic variations were attested by molecular analysis, and a taxonomical misidentification of barcode sequences from GenBank was found. We could not observe a distinct barcode gap but an overlap ranged from 9-12%. Our results supported DNA barcoding as an ideal method to detect cryptic species, delimit sibling species, and associate different life stages in non-biting midges.

  3. DNA barcoding amphibians and reptiles.

    PubMed

    Vences, Miguel; Nagy, Zoltán T; Sonet, Gontran; Verheyen, Erik

    2012-01-01

    Only a few major research programs are currently targeting COI barcoding of amphibians and reptiles (including chelonians and crocodiles), two major groups of tetrapods. Amphibian and reptile species are typically old, strongly divergent, and contain deep conspecific lineages which might lead to problems in species assignment with incomplete reference databases. As far as known, there is no single pair of COI primers that will guarantee a sufficient rate of success across all amphibian and reptile taxa, or within major subclades of amphibians and reptiles, which means that the PCR amplification strategy needs to be adjusted depending on the specific research question. In general, many more amphibian and reptile taxa have been sequenced for 16S rDNA, which for some purposes may be a suitable complementary marker, at least until a more comprehensive COI reference database becomes available. DNA barcoding has successfully been used to identify amphibian larval stages (tadpoles) in species-rich tropical assemblages. Tissue sampling, DNA extraction, and amplification of COI is straightforward in amphibians and reptiles. Single primer pairs are likely to have a failure rate between 5 and 50% if taxa of a wide taxonomic range are targeted; in such cases the use of primer cocktails or subsequent hierarchical usage of different primer pairs is necessary. If the target group is taxonomically limited, many studies have followed a strategy of designing specific primers which then allow an easy and reliable amplification of all samples.

  4. Barcoding Fauna Bavarica: Myriapoda – a contribution to DNA sequence-based identifications of centipedes and millipedes (Chilopoda, Diplopoda)

    PubMed Central

    Spelda, Jörg; Reip, Hans S.; Oliveira–Biener, Ulla; Melzer, Roland R.

    2011-01-01

    Abstract We give a first account of our ongoing barcoding activities on Bavarian myriapods in the framework of the Barcoding Fauna Bavarica project and IBOL, the International Barcode of Life. Having analyzed 126 taxa (including 122 species) belonging to all major German chilopod and diplopod lineages, often using four or more specimens each, at the moment our species stock includes 82% of the diplopods and 65% of the chilopods found in Bavaria, southern Germany. The partial COI sequences allow correct identification of more than 95% of the current set of Bavarian species. Moreover, most of the myriapod orders and families appear as distinct clades in neighbour-joining trees, although the phylogenetic relationships between them are not always depicted correctly. We give examples of (1) high interspecific sequence variability among closely related species; (2) low interspecific variability in some chordeumatidan genera, indicating that recent speciations cannot be resolved with certainty using COI DNA barcodes; (3) high intraspecific variation in some genera, suggesting the existence of cryptic lineages; and (4) the possible polyphyly of some taxa, i.e. the chordeumatidan genus Ochogona. This shows that, in addition to species identification, our data may be useful in various ways in the context of species delimitations, taxonomic revisions and analyses of ongoing speciation processes. PMID:22303099

  5. Ten years of barcoding at the African Centre for DNA Barcoding.

    PubMed

    Bezeng, B S; Davies, T J; Daru, B H; Kabongo, R M; Maurin, O; Yessoufou, K; van der Bank, H; van der Bank, M

    2017-07-01

    The African Centre for DNA Barcoding (ACDB) was established in 2005 as part of a global initiative to accurately and rapidly survey biodiversity using short DNA sequences. The mitochondrial cytochrome c oxidase 1 gene (CO1) was rapidly adopted as the de facto barcode for animals. Following the evaluation of several candidate loci for plants, the Plant Working Group of the Consortium for the Barcoding of Life in 2009 recommended that two plastid genes, rbcLa and matK, be adopted as core DNA barcodes for terrestrial plants. To date, numerous studies continue to test the discriminatory power of these markers across various plant lineages. Over the past decade, we at the ACDB have used these core DNA barcodes to generate a barcode library for southern Africa. To date, the ACDB has contributed more than 21 000 plant barcodes and over 3000 CO1 barcodes for animals to the Barcode of Life Database (BOLD). Building upon this effort, we at the ACDB have addressed questions related to community assembly, biogeography, phylogenetic diversification, and invasion biology. Collectively, our work demonstrates the diverse applications of DNA barcoding in ecology, systematics, evolutionary biology, and conservation.

  6. Use of DNA barcodes to identify flowering plants

    PubMed Central

    Kress, W. John; Wurdack, Kenneth J.; Zimmer, Elizabeth A.; Weigt, Lee A.; Janzen, Daniel H.

    2005-01-01

    Methods for identifying species by using short orthologous DNA sequences, known as “DNA barcodes,” have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short (≈450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes. PMID:15928076

  7. Novel microbial diversity retrieved by autonomous robotic exploration of the world's deepest vertical phreatic sinkhole.

    PubMed

    Sahl, Jason W; Fairfield, Nathaniel; Harris, J Kirk; Wettergreen, David; Stone, William C; Spear, John R

    2010-03-01

    The deep phreatic thermal explorer (DEPTHX) is an autonomous underwater vehicle designed to navigate an unexplored environment, generate high-resolution three-dimensional (3-D) maps, collect biological samples based on an autonomous sampling decision, and return to its origin. In the spring of 2007, DEPTHX was deployed in Zacatón, a deep (approximately 318 m), limestone, phreatic sinkhole (cenote) in northeastern Mexico. As DEPTHX descended, it generated a 3-D map based on the processing of range data from 54 onboard sonars. The vehicle collected water column samples and wall biomat samples throughout the depth profile of the cenote. Post-expedition sample analysis via comparative analysis of 16S rRNA gene sequences revealed a wealth of microbial diversity. Traditional Sanger gene sequencing combined with a barcoded-amplicon pyrosequencing approach revealed novel, phylum-level lineages from the domains Bacteria and Archaea; in addition, several novel subphylum lineages were also identified. Overall, DEPTHX successfully navigated and mapped Zacatón, and collected biological samples based on an autonomous decision, which revealed novel microbial diversity in a previously unexplored environment.

  8. [Identification of Tibetan medicine "Dida" of Gentianaceae using DNA barcoding].

    PubMed

    Liu, Chuan; Zhang, Yu-Xin; Liu, Yue; Chen, Yi-Long; Fan, Gang; Xiang, Li; Xu, Jiang; Zhang, Yi

    2016-02-01

    The ITS2 barcode was used toidentify Tibetan medicine "Dida", and tosecure its quality and safety in medication. A total of 13 species, 151 experimental samples for the study from the Tibetan Plateau, including Gentianaceae Swertia, Halenia, Gentianopsis, Comastoma, Lomatogonium ITS2 sequences were amplified, and purified PCR products were sequenced. Sequence assembly and consensus sequence generation were performed using the CodonCode Aligner V3.7.1. The Kimura 2-Parameter (K2P) distances were calculated using MEGA 6.0. The neighbor-joining (NJ) phylogenetic trees were constructed. There are 31 haplotypes among 231 bp after alignment of all ITS2 sequence haplotypes, and the average G±C content of 61.40%. The NJ tree strongly supported that every species clustered into their own clade and high identification success rate, except that Swertia bifolia and Swertia wolfangiana could not be distinguished from each other based on the sequence divergences. DNA barcoding could be used as a fast and accurate identification method to distinguish Tibetan medicine "Dida" to ensure its safe use. Copyright© by the Chinese Pharmaceutical Association.

  9. Applications of three DNA barcodes in assorting intertidal red macroalgal flora in Qingdao, China

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaobo; Pang, Shaojun; Shan, Tifeng; Liu, Feng

    2013-03-01

    This study is part of the endeavor to construct a comprehensive DNA barcoding database for common seaweeds in China. Identifications of red seaweeds, which have simple morphology and anatomy, are sometimes difficult solely depending on morphological characteristics. In recent years, DNA barcode technique has become a more and more effective tool to help solve some of the taxonomic difficulties. Some DNA markers such as COI (cytochrome oxidase subunit I) are proposed as standardized DNA barcodes for all seaweed species. In this study, COI, UPA (universal plastid amplicon, domain V of 23S rRNA), and ITS (nuclear internal transcribed spacer) were employed to analyze common species of intertidal red seaweeds in Qingdao (119.3°-121°E, 35.35°-37.09°N). The applicability of using one or a few combined barcodes to identify red seaweed species was tested. The results indicated that COI is a sensitive marker at species level. However, not all the tested species gave PCR amplification products due to lack of the universal primers. The second barcode UPA had effective universal primers but needed to be tested for the effectiveness of resolving closely related species. More than one ITS sequence types were found in some species in this investigation, which might lead to confusion in further analysis. Therefore ITS sequence is not recommended as a universal barcode for seaweeds identification.

  10. DNA Barcoding in Pencilfishes (Lebiasinidae: Nannostomus) Reveals Cryptic Diversity across the Brazilian Amazon

    PubMed Central

    Benzaquem, Denise Corrêa; Oliveira, Claudio; da Silva Batista, Jaqueline; Zuanon, Jansen; Porto, Jorge Ivan Rebelo

    2015-01-01

    Nannostomus is comprised of 20 species. Popularly known as pencilfishes the vast majority of these species lives in the flooded forests of the Amazon basin and are popular in the ornamental trade. Among the lebiasinids, it is the only genus to have undergone more than one taxonomic revision. Even so, it still possesses poorly defined species. Here, we report the results of an application of DNA barcoding to the identification of pencilfishes and highlight the deeply divergent clades within four nominal species. We surveyed the sequence variation in the mtDNA cytochrome c oxidase subunit I gene among 110 individuals representing 14 nominal species that were collected from several rivers along the Amazon basin. The mean Kimura-2-parameter distances within species and genus were 2% and 19,0%, respectively. The deep lineage divergences detected in N. digrammus, N. trifasciatus, N. unifasciatus and N. eques suggest the existence of hidden diversity in Nannostomus species. For N. digrammus and N. trifasciatus, in particular, the estimated divergences in some lineages were so high that doubt about their conspecific status is raised. PMID:25658694

  11. The D1-D2 region of the large subunit ribosomal DNA as barcode for ciliates.

    PubMed

    Stoeck, T; Przybos, E; Dunthorn, M

    2014-05-01

    Ciliates are a major evolutionary lineage within the alveolates, which are distributed in nearly all habitats on our planet and are an essential component for ecosystem function, processes and stability. Accurate identification of these unicellular eukaryotes through, for example, microscopy or mating type reactions is reserved to few specialists. To satisfy the demand for a DNA barcode for ciliates, which meets the standard criteria for DNA barcodes defined by the Consortium for the Barcode of Life (CBOL), we here evaluated the D1-D2 region of the ribosomal DNA large subunit (LSU-rDNA). Primer universality for the phylum Ciliophora was tested in silico with available database sequences as well as in the laboratory with 73 ciliate species, which represented nine of 12 ciliate classes. Primers tested in this study were successful for all tested classes. To test the ability of the D1-D2 region to resolve conspecific and congeneric sequence divergence, 63 Paramecium strains were sampled from 24 mating species. The average conspecific D1-D2 variation was 0.18%, whereas congeneric sequence divergence averaged 4.83%. In pairwise genetic distance analyses, we identified a D1-D2 sequence divergence of <0.6% as an ideal threshold to discriminate Paramecium species. Using this definition, only 3.8% of all conspecific and 3.9% of all congeneric sequence comparisons had the potential of false assignments. Neighbour-joining analyses inferred monophyly for all taxa but for two Paramecium octaurelia strains. Here, we present a protocol for easy DNA amplification of single cells and voucher deposition. In conclusion, the presented data pinpoint the D1-D2 region as an excellent candidate for an official CBOL barcode for ciliated protists. © 2013 John Wiley & Sons Ltd.

  12. AMPLISAS: a web server for multilocus genotyping using next-generation amplicon sequencing data.

    PubMed

    Sebastian, Alvaro; Herdegen, Magdalena; Migalska, Magdalena; Radwan, Jacek

    2016-03-01

    Next-generation sequencing (NGS) technologies are revolutionizing the fields of biology and medicine as powerful tools for amplicon sequencing (AS). Using combinations of primers and barcodes, it is possible to sequence targeted genomic regions with deep coverage for hundreds, even thousands, of individuals in a single experiment. This is extremely valuable for the genotyping of gene families in which locus-specific primers are often difficult to design, such as the major histocompatibility complex (MHC). The utility of AS is, however, limited by the high intrinsic sequencing error rates of NGS technologies and other sources of error such as polymerase amplification or chimera formation. Correcting these errors requires extensive bioinformatic post-processing of NGS data. Amplicon Sequence Assignment (AMPLISAS) is a tool that performs analysis of AS results in a simple and efficient way, while offering customization options for advanced users. AMPLISAS is designed as a three-step pipeline consisting of (i) read demultiplexing, (ii) unique sequence clustering and (iii) erroneous sequence filtering. Allele sequences and frequencies are retrieved in excel spreadsheet format, making them easy to interpret. AMPLISAS performance has been successfully benchmarked against previously published genotyped MHC data sets obtained with various NGS technologies. © 2015 John Wiley & Sons Ltd.

  13. Authentication of Botanical Origin in Herbal Teas by Plastid Noncoding DNA Length Polymorphisms.

    PubMed

    Uncu, Ali Tevfik; Uncu, Ayse Ozgur; Frary, Anne; Doganlar, Sami

    2015-07-01

    The aim of this study was to develop a DNA barcode assay to authenticate the botanical origin of herbal teas. To reach this aim, we tested the efficiency of a PCR-capillary electrophoresis (PCR-CE) approach on commercial herbal tea samples using two noncoding plastid barcodes, the trnL intron and the intergenic spacer between trnL and trnF. Barcode DNA length polymorphisms proved successful in authenticating the species origin of herbal teas. We verified the validity of our approach by sequencing species-specific barcode amplicons from herbal tea samples. Moreover, we displayed the utility of PCR-CE assays coupled with sequencing to identify the origin of undeclared plant material in herbal tea samples. The PCR-CE assays proposed in this work can be applied as routine tests for the verification of botanical origin in herbal teas and can be extended to authenticate all types of herbal foodstuffs.

  14. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building.

    PubMed

    Pomerantz, Aaron; Peñafiel, Nicolás; Arteaga, Alejandro; Bustamante, Lucas; Pichardo, Frank; Coloma, Luis A; Barrio-Amorós, César L; Salazar-Valenzuela, David; Prost, Stefan

    2018-04-01

    Advancements in portable scientific instruments provide promising avenues to expedite field work in order to understand the diverse array of organisms that inhabit our planet. Here, we tested the feasibility for in situ molecular analyses of endemic fauna using a portable laboratory fitting within a single backpack in one of the world's most imperiled biodiversity hotspots, the Ecuadorian Chocó rainforest. We used portable equipment, including the MinION nanopore sequencer (Oxford Nanopore Technologies) and the miniPCR (miniPCR), to perform DNA extraction, polymerase chain reaction amplification, and real-time DNA barcoding of reptile specimens in the field. We demonstrate that nanopore sequencing can be implemented in a remote tropical forest to quickly and accurately identify species using DNA barcoding, as we generated consensus sequences for species resolution with an accuracy of >99% in less than 24 hours after collecting specimens. The flexibility of our mobile laboratory further allowed us to generate sequence information at the Universidad Tecnológica Indoamérica in Quito for rare, endangered, and undescribed species. This includes the recently rediscovered Jambato toad, which was thought to be extinct for 28 years. Sequences generated on the MinION required as few as 30 reads to achieve high accuracy relative to Sanger sequencing, and with further multiplexing of samples, nanopore sequencing can become a cost-effective approach for rapid and portable DNA barcoding. Overall, we establish how mobile laboratories and nanopore sequencing can help to accelerate species identification in remote areas to aid in conservation efforts and be applied to research facilities in developing countries. This opens up possibilities for biodiversity studies by promoting local research capacity building, teaching nonspecialists and students about the environment, tackling wildlife crime, and promoting conservation via research-focused ecotourism.

  15. DNA barcoding of Clarias gariepinus, Coptodon zillii and Sarotherodon melanotheron from Southwestern Nigeria

    PubMed Central

    Falade, Mofolusho O.; Opene, Anthony J.; Benson, Otarigho

    2016-01-01

    DNA barcoding has been adopted as a gold standard rapid, precise and unifying identification system for animal species and provides a database of genetic sequences that can be used as a tool for universal species identification. In this study, we employed mitochondrial genes 16S rRNA (16S) and cytochrome oxidase subunit I (COI) for the identification of some Nigerian freshwater catfish and Tilapia species. Approximately 655 bp were amplified from the 5′ region of the mitochondrial cytochrome C oxidase subunit I (COI) gene whereas 570 bp were amplified for the 16S rRNA gene. Nucleotide divergences among sequences were estimated based on Kimura 2-parameter distances and the genetic relationships were assessed by constructing phylogenetic trees using the neighbour-joining (NJ) and maximum likelihood (ML) methods. Analyses of consensus barcode sequences for each species, and alignment of individual sequences from within a given species revealed highly consistent barcodes (99% similarity on average), which could be compared with deposited sequences in public databases. The nucleotide distance between species belonging to different genera based on COI ranged from 0.17% between Sarotherodon melanotheron and Coptodon zillii to 0.49% between Clarias gariepinus and C. zillii, indicating that S. melanotheron and C. zillii are closely related. Based on the data obtained, the utility of COI gene was confirmed in accurate identification of three fish species from Southwest Nigeria. PMID:27990256

  16. Identification of processed Chinese medicinal materials using DNA mini-barcoding.

    PubMed

    Song, Ming; Dong, Gang-Qiang; Zhang, Ya-Qin; Liu, Xia; Sun, Wei

    2017-07-01

    Most of Chinese medicinal herbs are subjected to traditional processing procedures, including stir-frying, charring, steaming, boiling, and calcining before they are released into dispensaries. The marketing and identification of processed medicinal materials is a growing issue in the marketplace. However, conventional methods of identification have limitations, while DNA mini-barcoding, based on the sequencing of a short-standardized region, has received considerable attention as a new potential means to identify processed medicinal materials. In the present study, six DNA barcode loci including ITS2, psbA-trnH, rbcL, matK, trnL (UAA) intron and its P6 loop, were employed for the authentication of 45 processed samples belonging to 15 species. We evaluated the amplification efficiency of each locus. We also examined the identification accuracy of the potential mini-barcode locus, of trnL (UAA) intron P6 loop. Our results showed that the five primary barcode loci were successfully amplified in only 8.89%-20% of the processed samples, while the amplification rates of the trnL (UAA) intron P6 loop were higher, at 75.56% successful amplification. We compared the mini-barcode sequences with Genbank using the Blast program. The analysis showed that 45.23% samples could be identified to genus level, while only one sample could be identified to the species level. We conclude that trnL (UAA) p6 loop is a candidate mini-barcode that has shown its potential and may become a universal mini-barcode as complementary barcode for authenticity testing and will play an important role in medicinal materials control. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  17. DNA barcoding the native flowering plants and conifers of Wales.

    PubMed

    de Vere, Natasha; Rich, Tim C G; Ford, Col R; Trinder, Sarah A; Long, Charlotte; Moore, Chris W; Satterthwaite, Danielle; Davies, Helena; Allainguillaume, Joel; Ronca, Sandra; Tatarinova, Tatiana; Garbett, Hannah; Walker, Kevin; Wilkinson, Mike J

    2012-01-01

    We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species). Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85%) are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination) is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments), formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment) is 81.6% within 10×10 km squares and 93.3% for 2×2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification.

  18. Evaluating ethanol-based sample preservation to facilitate use of DNA barcoding in routine freshwater biomonitoring programs using benthic macroinvertebrates.

    PubMed

    Stein, Eric D; White, Bryan P; Mazor, Raphael D; Miller, Peter E; Pilgrim, Erik M

    2013-01-01

    Molecular methods, such as DNA barcoding, have the potential to enhance biomonitoring programs worldwide. Altering routinely used sample preservation methods to protect DNA from degradation may pose a potential impediment to application of DNA barcoding and metagenomics for biomonitoring using benthic macroinvertebrates. Using higher volumes or concentrations of ethanol, requirements for shorter holding times, or the need to include additional filtering may increase cost and logistical constraints to existing biomonitoring programs. To address this issue we evaluated the efficacy of various ethanol-based sample preservation methods at maintaining DNA integrity. We evaluated a series of methods that were minimally modified from typical field protocols in order to identify an approach that can be readily incorporated into existing monitoring programs. Benthic macroinvertebrates were collected from a minimally disturbed stream in southern California, USA and subjected to one of six preservation treatments. Ten individuals from five taxa were selected from each treatment and processed to produce DNA barcodes from the mitochondrial gene cytochrome c oxidase I (COI). On average, we obtained successful COI sequences (i.e. either full or partial barcodes) for between 93-99% of all specimens across all six treatments. As long as samples were initially preserved in 95% ethanol, successful sequencing of COI barcodes was not affected by a low dilution ratio of 2∶1, transfer to 70% ethanol, presence of abundant organic matter, or holding times of up to six months. Barcoding success varied by taxa, with Leptohyphidae (Ephemeroptera) producing the lowest barcode success rate, most likely due to poor PCR primer efficiency. Differential barcoding success rates have the potential to introduce spurious results. However, routine preservation methods can largely be used without adverse effects on DNA integrity.

  19. Evaluating Ethanol-based Sample Preservation to Facilitate Use of DNA Barcoding in Routine Freshwater Biomonitoring Programs Using Benthic Macroinvertebrates

    PubMed Central

    Stein, Eric D.; White, Bryan P.; Mazor, Raphael D.; Miller, Peter E.; Pilgrim, Erik M.

    2013-01-01

    Molecular methods, such as DNA barcoding, have the potential to enhance biomonitoring programs worldwide. Altering routinely used sample preservation methods to protect DNA from degradation may pose a potential impediment to application of DNA barcoding and metagenomics for biomonitoring using benthic macroinvertebrates. Using higher volumes or concentrations of ethanol, requirements for shorter holding times, or the need to include additional filtering may increase cost and logistical constraints to existing biomonitoring programs. To address this issue we evaluated the efficacy of various ethanol-based sample preservation methods at maintaining DNA integrity. We evaluated a series of methods that were minimally modified from typical field protocols in order to identify an approach that can be readily incorporated into existing monitoring programs. Benthic macroinvertebrates were collected from a minimally disturbed stream in southern California, USA and subjected to one of six preservation treatments. Ten individuals from five taxa were selected from each treatment and processed to produce DNA barcodes from the mitochondrial gene cytochrome c oxidase I (COI). On average, we obtained successful COI sequences (i.e. either full or partial barcodes) for between 93–99% of all specimens across all six treatments. As long as samples were initially preserved in 95% ethanol, successful sequencing of COI barcodes was not affected by a low dilution ratio of 2∶1, transfer to 70% ethanol, presence of abundant organic matter, or holding times of up to six months. Barcoding success varied by taxa, with Leptohyphidae (Ephemeroptera) producing the lowest barcode success rate, most likely due to poor PCR primer efficiency. Differential barcoding success rates have the potential to introduce spurious results. However, routine preservation methods can largely be used without adverse effects on DNA integrity. PMID:23308097

  20. DNA Barcoding the Native Flowering Plants and Conifers of Wales

    PubMed Central

    de Vere, Natasha; Rich, Tim C. G.; Ford, Col R.; Trinder, Sarah A.; Long, Charlotte; Moore, Chris W.; Satterthwaite, Danielle; Davies, Helena; Allainguillaume, Joel; Ronca, Sandra; Tatarinova, Tatiana; Garbett, Hannah; Walker, Kevin; Wilkinson, Mike J.

    2012-01-01

    We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species). Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85%) are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination) is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments), formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment) is 81.6% within 10×10 km squares and 93.3% for 2×2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification. PMID:22701588

  1. Functional Analysis With a Barcoder Yeast Gene Overexpression System

    PubMed Central

    Douglas, Alison C.; Smith, Andrew M.; Sharifpoor, Sara; Yan, Zhun; Durbic, Tanja; Heisler, Lawrence E.; Lee, Anna Y.; Ryan, Owen; Göttert, Hendrikje; Surendra, Anu; van Dyk, Dewald; Giaever, Guri; Boone, Charles; Nislow, Corey; Andrews, Brenda J.

    2012-01-01

    Systematic analysis of gene overexpression phenotypes provides an insight into gene function, enzyme targets, and biological pathways. Here, we describe a novel functional genomics platform that enables a highly parallel and systematic assessment of overexpression phenotypes in pooled cultures. First, we constructed a genome-level collection of ~5100 yeast barcoder strains, each of which carries a unique barcode, enabling pooled fitness assays with a barcode microarray or sequencing readout. Second, we constructed a yeast open reading frame (ORF) galactose-induced overexpression array by generating a genome-wide set of yeast transformants, each of which carries an individual plasmid-born and sequence-verified ORF derived from the Saccharomyces cerevisiae full-length EXpression-ready (FLEX) collection. We combined these collections genetically using synthetic genetic array methodology, generating ~5100 strains, each of which is barcoded and overexpresses a specific ORF, a set we termed “barFLEX.” Additional synthetic genetic array allows the barFLEX collection to be moved into different genetic backgrounds. As a proof-of-principle, we describe the properties of the barFLEX overexpression collection and its application in synthetic dosage lethality studies under different environmental conditions. PMID:23050238

  2. Defining operational taxonomic units using DNA barcode data.

    PubMed

    Blaxter, Mark; Mann, Jenna; Chapman, Tom; Thomas, Fran; Whitton, Claire; Floyd, Robin; Abebe, Eyualem

    2005-10-29

    The scale of diversity of life on this planet is a significant challenge for any scientific programme hoping to produce a complete catalogue, whatever means is used. For DNA barcoding studies, this difficulty is compounded by the realization that any chosen barcode sequence is not the gene 'for' speciation and that taxa have evolutionary histories. How are we to disentangle the confounding effects of reticulate population genetic processes? Using the DNA barcode data from meiofaunal surveys, here we discuss the benefits of treating the taxa defined by barcodes without reference to their correspondence to 'species', and suggest that using this non-idealist approach facilitates access to taxon groups that are not accessible to other methods of enumeration and classification. Major issues remain, in particular the methodologies for taxon discrimination in DNA barcode data.

  3. Barcoding Tetrahymena: discriminating species and identifying unknowns using the cytochrome c oxidase subunit I (cox-1) barcode.

    PubMed

    Kher, Chandni P; Doerder, F Paul; Cooper, Jason; Ikonomi, Pranvera; Achilles-Day, Undine; Küpper, Frithjof C; Lynn, Denis H

    2011-01-01

    DNA barcoding using the mitochondrial cytochromecoxidase subunit I (cox-1) gene has recently gained popularity as a tool for species identification of a variety of taxa. The primary objective of our research was to explore the efficacy of using cox-1 barcoding for species identification within the genusTetrahymena. We first increased intraspecific sampling forTetrahymena canadensis, Tetrahymena hegewischi, Tetrahymena pyriformis, Tetrahymena rostrata, Tetrahymena thermophila, and Tetrahymena tropicalis. Increased sampling efforts show that intraspecific sequence divergence is typically less than 1%, though it may be more in some species. The barcoding also showed that some strains might be misidentified or mislabeled. We also used cox-1 barcodes to provide species identifications for 51 unidentified environmental isolates, with a success rate of 98%. Thus, cox-1 barcoding is an invaluable tool for protistologists, especially when used in conjunction with morphological studies. 2010 Elsevier GmbH. All rights reserved.

  4. Computational analysis of stochastic heterogeneity in PCR amplification efficiency revealed by single molecule barcoding

    PubMed Central

    Best, Katharine; Oakes, Theres; Heather, James M.; Shawe-Taylor, John; Chain, Benny

    2015-01-01

    The polymerase chain reaction (PCR) is one of the most widely used techniques in molecular biology. In combination with High Throughput Sequencing (HTS), PCR is widely used to quantify transcript abundance for RNA-seq, and in the context of analysis of T and B cell receptor repertoires. In this study, we combine DNA barcoding with HTS to quantify PCR output from individual target molecules. We develop computational tools that simulate both the PCR branching process itself, and the subsequent subsampling which typically occurs during HTS sequencing. We explore the influence of different types of heterogeneity on sequencing output, and compare them to experimental results where the efficiency of amplification is measured by barcodes uniquely identifying each molecule of starting template. Our results demonstrate that the PCR process introduces substantial amplification heterogeneity, independent of primer sequence and bulk experimental conditions. This heterogeneity can be attributed both to inherited differences between different template DNA molecules, and the inherent stochasticity of the PCR process. The results demonstrate that PCR heterogeneity arises even when reaction and substrate conditions are kept as constant as possible, and therefore single molecule barcoding is essential in order to derive reproducible quantitative results from any protocol combining PCR with HTS. PMID:26459131

  5. DNA Barcoding analysis of seafood accuracy in Washington, D.C. restaurants

    PubMed Central

    Stern, David B.; Castro Nallar, Eduardo; Rathod, Jason

    2017-01-01

    In Washington D.C., recent legislation authorizes citizens to test if products are properly represented and, if they are not, to bring a lawsuit for the benefit of the general public. Recent studies revealing the widespread phenomenon of seafood substitution across the United States make it a fertile area for consumer protection testing. DNA barcoding provides an accurate and cost-effective way to perform these tests, especially when tissue alone is available making species identification based on morphology impossible. In this study, we sequenced the 5′ barcoding region of the Cytochrome Oxidase I gene for 12 samples of vertebrate and invertebrate food items across six restaurants in Washington, D.C. and used multiple analytical methods to make identifications. These samples included several ambiguous menu listings, sequences with little genetic variation among closely related species and one sequence with no available reference sequence. Despite these challenges, we were able to make identifications for all samples and found that 33% were potentially mislabeled. While we found a high degree of mislabeling, the errors involved closely related species and we did not identify egregious substitutions as have been found in other cities. This study highlights the efficacy of DNA barcoding and robust analyses in identifying seafood items for consumer protection. PMID:28462038

  6. Barcoding Sponges: An Overview Based on Comprehensive Sampling

    PubMed Central

    Vargas, Sergio; Schuster, Astrid; Sacher, Katharina; Büttner, Gabrielle; Schätzle, Simone; Läuchli, Benjamin; Hall, Kathryn; Hooper, John N. A.; Erpenbeck, Dirk; Wörheide, Gert

    2012-01-01

    Background Phylum Porifera includes ∼8,500 valid species distributed world-wide in aquatic ecosystems ranging from ephemeral fresh-water bodies to coastal environments and the deep-sea. The taxonomy and systematics of sponges is complicated, and morphological identification can be both time consuming and erroneous due to phenotypic convergence and secondary losses, etc. DNA barcoding can provide sponge biologists with a simple and rapid method for the identification of samples of unknown taxonomic membership. The Sponge Barcoding Project (www.spongebarcoding.org), the first initiative to barcode a non-bilaterian metazoan phylum, aims to provide a comprehensive DNA barcode database for Phylum Porifera. Methodology/Principal Findings ∼7,400 sponge specimens have been extracted, and amplification of the standard COI barcoding fragment has been attempted for approximately 3,300 museum samples with ∼25% mean amplification success. Based on this comprehensive sampling, we present the first report on the workflow and progress of the sponge barcoding project, and discuss some common pitfalls inherent to the barcoding of sponges. Conclusion A DNA-barcoding workflow capable of processing potentially large sponge collections has been developed and is routinely used for the Sponge Barcoding Project with success. Sponge specific problems such as the frequent co-amplification of non-target organisms have been detected and potential solutions are currently under development. The initial success of this innovative project have already demonstrated considerable refinement of sponge systematics, evaluating morphometric character importance, geographic phenotypic variability, and the utility of the standard barcoding fragment for Porifera (despite its conserved evolution within this basal metazoan phylum). PMID:22802937

  7. Nuclear genomes distinguish cryptic species suggested by their DNA barcodes and ecology

    PubMed Central

    Janzen, Daniel H.; Burns, John M.; Cong, Qian; Hallwachs, Winnie; Dapkey, Tanya; Manjunath, Ramya; Hajibabaei, Mehrdad; Hebert, Paul D. N.; Grishin, Nick V.

    2017-01-01

    DNA sequencing brings another dimension to exploration of biodiversity, and large-scale mitochondrial DNA cytochrome oxidase I barcoding has exposed many potential new cryptic species. Here, we add complete nuclear genome sequencing to DNA barcoding, ecological distribution, natural history, and subtleties of adult color pattern and size to show that a widespread neotropical skipper butterfly known as Udranomia kikkawai (Weeks) comprises three different species in Costa Rica. Full-length barcodes obtained from all three century-old Venezuelan syntypes of U. kikkawai show that it is a rainforest species occurring from Costa Rica to Brazil. The two new species are Udranomia sallydaleyae Burns, a dry forest denizen occurring from Costa Rica to Mexico, and Udranomia tomdaleyi Burns, which occupies the junction between the rainforest and dry forest and currently is known only from Costa Rica. Whereas the three species are cryptic, differing but slightly in appearance, their complete nuclear genomes totaling 15 million aligned positions reveal significant differences consistent with their 0.00065-Mbp (million base pair) mitochondrial barcodes and their ecological diversification. DNA barcoding of tropical insects reared by a massive inventory suggests that the presence of cryptic species is a widespread phenomenon and that further studies will substantially increase current estimates of insect species richness. PMID:28716927

  8. DNA barcoding as a useful tool in the systematic study of wild bees of the tribe Augochlorini (Hymenoptera: Halictidae).

    PubMed

    González-Vaquero, Rocío Ana; Roig-Alsina, Arturo; Packer, Laurence

    2016-10-01

    Special care is needed in the delimitation and identification of halictid bee species, which are renowned for being morphologically monotonous. Corynura Spinola and Halictillus Moure (Halictidae: Augochlorini) contain species that are key elements in southern South American ecosystems. These bees are very difficult to identify due to close morphological similarity among species and high sexual dimorphism. We analyzed 170 barcode-compliant COI sequences from 19 species. DNA barcodes were useful to confirm gender associations and to detect two new cryptic species. Interspecific distances were significantly higher than those reported for other bees. Maximum intraspecific divergence was less than 1% in 14 species. Barcode index numbers (BINs) were useful to identify putative species that need further study. More than one BIN was assigned to five species. The name Corynura patagonica (Cockerell) probably refers to two cryptic species. The results suggest that Corynura and Halictillus species can be identified using DNA barcodes. The sequences of the species included in this study can be used as a reference to assess the identification of unknown specimens. This study provides additional support for the use of DNA barcodes in bee taxonomy and the identification of specimens, which is particularly relevant in insects of ecological importance such as pollinators.

  9. FBIS: A regional DNA barcode archival & analysis system for Indian fishes

    PubMed Central

    Nagpure, Naresh Sahebrao; Rashid, Iliyas; Pathak, Ajey Kumar; Singh, Mahender; Singh, Shri Prakash; Sarkar, Uttam Kumar

    2012-01-01

    DNA barcode is a new tool for taxon recognition and classification of biological organisms based on sequence of a fragment of mitochondrial gene, cytochrome c oxidase I (COI). In view of the growing importance of the fish DNA barcoding for species identification, molecular taxonomy and fish diversity conservation, we developed a Fish Barcode Information System (FBIS) for Indian fishes, which will serve as a regional DNA barcode archival and analysis system. The database presently contains 2334 sequence records of COI gene for 472 aquatic species belonging to 39 orders and 136 families, collected from available published data sources. Additionally, it contains information on phenotype, distribution and IUCN Red List status of fishes. The web version of FBIS was designed using MySQL, Perl and PHP under Linux operating platform to (a) store and manage the acquisition (b) analyze and explore DNA barcode records (c) identify species and estimate genetic divergence. FBIS has also been integrated with appropriate tools for retrieving and viewing information about the database statistics and taxonomy. It is expected that FBIS would be useful as a potent information system in fish molecular taxonomy, phylogeny and genomics. Availability The database is available for free at http://mail.nbfgr.res.in/fbis/ PMID:22715304

  10. BOKP: A DNA Barcode Reference Library for Monitoring Herbal Drugs in the Korean Pharmacopeia

    PubMed Central

    Liu, Jinxin; Shi, Linchun; Song, Jingyuan; Sun, Wei; Han, Jianping; Liu, Xia; Hou, Dianyun; Yao, Hui; Li, Mingyue; Chen, Shilin

    2017-01-01

    Herbal drug authentication is an important task in traditional medicine; however, it is challenged by the limitations of traditional authentication methods and the lack of trained experts. DNA barcoding is conspicuous in almost all areas of the biological sciences and has already been added to the British pharmacopeia and Chinese pharmacopeia for routine herbal drug authentication. However, DNA barcoding for the Korean pharmacopeia still requires significant improvements. Here, we present a DNA barcode reference library for herbal drugs in the Korean pharmacopeia and developed a species identification engine named KP-IDE to facilitate the adoption of this DNA reference library for the herbal drug authentication. Using taxonomy records, specimen records, sequence records, and reference records, KP-IDE can identify an unknown specimen. Currently, there are 6,777 taxonomy records, 1,054 specimen records, 30,744 sequence records (ITS2 and psbA-trnH) and 285 reference records. Moreover, 27 herbal drug materials were collected from the Seoul Yangnyeongsi herbal medicine market to give an example for real herbal drugs authentications. Our study demonstrates the prospects of the DNA barcode reference library for the Korean pharmacopeia and provides future directions for the use of DNA barcoding for authenticating herbal drugs listed in other modern pharmacopeias. PMID:29326593

  11. DNA barcoding the floras of biodiversity hotspots.

    PubMed

    Lahaye, Renaud; van der Bank, Michelle; Bogarin, Diego; Warner, Jorge; Pupulin, Franco; Gigot, Guillaume; Maurin, Olivier; Duthoit, Sylvie; Barraclough, Timothy G; Savolainen, Vincent

    2008-02-26

    DNA barcoding is a technique in which species identification is performed by using DNA sequences from a small fragment of the genome, with the aim of contributing to a wide range of ecological and conservation studies in which traditional taxonomic identification is not practical. DNA barcoding is well established in animals, but there is not yet any universally accepted barcode for plants. Here, we undertook intensive field collections in two biodiversity hotspots (Mesoamerica and southern Africa). Using >1,600 samples, we compared eight potential barcodes. Going beyond previous plant studies, we assessed to what extent a "DNA barcoding gap" is present between intra- and interspecific variations, using multiple accessions per species. Given its adequate rate of variation, easy amplification, and alignment, we identified a portion of the plastid matK gene as a universal DNA barcode for flowering plants. Critically, we further demonstrate the applicability of DNA barcoding for biodiversity inventories. In addition, analyzing >1,000 species of Mesoamerican orchids, DNA barcoding with matK alone reveals cryptic species and proves useful in identifying species listed in Convention on International Trade of Endangered Species (CITES) appendixes.

  12. DNA barcoding the floras of biodiversity hotspots

    PubMed Central

    Lahaye, Renaud; van der Bank, Michelle; Bogarin, Diego; Warner, Jorge; Pupulin, Franco; Gigot, Guillaume; Maurin, Olivier; Duthoit, Sylvie; Barraclough, Timothy G.; Savolainen, Vincent

    2008-01-01

    DNA barcoding is a technique in which species identification is performed by using DNA sequences from a small fragment of the genome, with the aim of contributing to a wide range of ecological and conservation studies in which traditional taxonomic identification is not practical. DNA barcoding is well established in animals, but there is not yet any universally accepted barcode for plants. Here, we undertook intensive field collections in two biodiversity hotspots (Mesoamerica and southern Africa). Using >1,600 samples, we compared eight potential barcodes. Going beyond previous plant studies, we assessed to what extent a “DNA barcoding gap” is present between intra- and interspecific variations, using multiple accessions per species. Given its adequate rate of variation, easy amplification, and alignment, we identified a portion of the plastid matK gene as a universal DNA barcode for flowering plants. Critically, we further demonstrate the applicability of DNA barcoding for biodiversity inventories. In addition, analyzing >1,000 species of Mesoamerican orchids, DNA barcoding with matK alone reveals cryptic species and proves useful in identifying species listed in Convention on International Trade of Endangered Species (CITES) appendixes. PMID:18258745

  13. DNA barcode reference data for the Korean herpetofauna and their applications.

    PubMed

    Jeong, Tae Jin; Jun, Jumin; Han, Sanghoon; Kim, Hyun Tae; Oh, Kyunghee; Kwak, Myounghai

    2013-11-01

    Recently, amphibians and reptiles have drawn attention because of declines in species and populations caused mainly by habitat loss, overexploitation and climate change. This study constructed a DNA barcode database for the Korean herpetofauna, including all the recorded amphibians and 68% of the recorded reptiles, to provide a useful, standardized tool for species identification in monitoring and management. A total of 103 individuals from 18 amphibian and 17 reptile species were used to generate barcode sequences using partial sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene and to compare it with other suggested barcode loci. Comparing 16S rRNA, cytochrome b (Cytb) and COI for amphibians and 12S rRNA, Cytb and COI for reptiles, our results revealed that COI is better than the other markers in terms of a high level of sequence variation without length variation and moderate amplification success. Although the COI marker had no clear barcoding gap because of the high level of intraspecific variation, all of the analysed individuals from the same species clustered together in a neighbour-joining tree. High intraspecific variation suggests the possibility of cryptic species. Finally, using this database, confiscated snakes were identified as Elaphe schrenckii, designated as endangered in Korea and a food contaminant was identified as the lizard Takydromus amurensis. © 2013 John Wiley & Sons Ltd.

  14. Barcoding Neotropical birds: assessing the impact of nonmonophyly in a highly diverse group.

    PubMed

    Chaves, Bárbara R N; Chaves, Anderson V; Nascimento, Augusto C A; Chevitarese, Juliana; Vasconcelos, Marcelo F; Santos, Fabrício R

    2015-07-01

    In this study, we verified the power of DNA barcodes to discriminate Neotropical birds using Bayesian tree reconstructions of a total of 7404 COI sequences from 1521 species, including 55 Brazilian species with no previous barcode data. We found that 10.4% of species were nonmonophyletic, most likely due to inaccurate taxonomy, incomplete lineage sorting or hybridization. At least 0.5% of the sequences (2.5% of the sampled species) retrieved from GenBank were associated with database errors (poor-quality sequences, NuMTs, misidentification or unnoticed hybridization). Paraphyletic species (5.8% of the total) can be related to rapid speciation events leading to nonreciprocal monophyly between recently diverged sister species, or to absence of synapomorphies in the small COI region analysed. We also performed two series of genetic distance calculations under the K2P model for intraspecific and interspecific comparisons: the first included all COI sequences, and the second included only monophyletic taxa observed in the Bayesian trees. As expected, the mean and median pairwise distances were smaller for intraspecific than for interspecific comparisons. However, there was no precise 'barcode gap', which was shown to be larger in the monophyletic taxon data set than for the data from all species, as expected. Our results indicated that although database errors may explain some of the difficulties in the species discrimination of Neotropical birds, distance-based barcode assignment may also be compromised because of the high diversity of bird species and more complex speciation events in the Neotropics. © 2014 John Wiley & Sons Ltd.

  15. Evaluating the capacity of plant DNA barcodes to discriminate species of cotton (Gossypium: Malvaceae).

    PubMed

    Ashfaq, Muhammad; Asif, Muhammad; Anjum, Zahid Iqbal; Zafar, Yusuf

    2013-07-01

    Although two plastid regions have been adopted as the standard markers for plant DNA barcoding, their limited resolution has provoked the consideration of other gene regions, especially in taxonomically diverse genera. The genus Gossypium (cotton) includes eight diploid genome groups (A-G, and K) and five allotetraploid species which are difficult to discriminate morphologically. In this study, we tested the effectiveness of three widely used markers (matK, rbcL, and ITS2) in the discrimination of 20 diploid and five tetraploid species of cotton. Sequences were analysed locus-wise and in combinations to determine the most effective strategy for species identification. Sequence recovery was high, ranging from 92% to 100% with mean pairwise interspecific distance highest for ITS2 (3.68%) and lowest for rbcL (0.43%). At a 0.5% threshold, the combination of matK+ITS2 produced the greatest number of species clusters. Based on 'best match' analysis, the combination of matK+ITS2 was best, while based on 'all species barcodes' analysis, ITS2 gave the highest percentage of correct species identifications (98.93%). The combination of sequences for all three markers produced the best resolved tree. The disparity index test based on matK+rbcL+ITS2 was significant (P < 0.05) for a higher number of species pairs than the individual gene sequences. Although all three barcodes separated the species with respect to their genome type, no single combination of barcodes could differentiate all the Gossypium species, and tetraploid species were particularly difficult. © 2013 John Wiley & Sons Ltd.

  16. A multiple-alignment based primer design algorithm for genetically highly variable DNA targets

    PubMed Central

    2013-01-01

    Background Primer design for highly variable DNA sequences is difficult, and experimental success requires attention to many interacting constraints. The advent of next-generation sequencing methods allows the investigation of rare variants otherwise hidden deep in large populations, but requires attention to population diversity and primer localization in relatively conserved regions, in addition to recognized constraints typically considered in primer design. Results Design constraints include degenerate sites to maximize population coverage, matching of melting temperatures, optimizing de novo sequence length, finding optimal bio-barcodes to allow efficient downstream analyses, and minimizing risk of dimerization. To facilitate primer design addressing these and other constraints, we created a novel computer program (PrimerDesign) that automates this complex procedure. We show its powers and limitations and give examples of successful designs for the analysis of HIV-1 populations. Conclusions PrimerDesign is useful for researchers who want to design DNA primers and probes for analyzing highly variable DNA populations. It can be used to design primers for PCR, RT-PCR, Sanger sequencing, next-generation sequencing, and other experimental protocols targeting highly variable DNA samples. PMID:23965160

  17. Molecular Identification of Commercialized Medicinal Plants in Southern Morocco

    PubMed Central

    Krüger, Åsa; Rydberg, Anders; Abbad, Abdelaziz; Björk, Lars; Martin, Gary

    2012-01-01

    Background Medicinal plant trade is important for local livelihoods. However, many medicinal plants are difficult to identify when they are sold as roots, powders or bark. DNA barcoding involves using a short, agreed-upon region of a genome as a unique identifier for species– ideally, as a global standard. Research Question What is the functionality, efficacy and accuracy of the use of barcoding for identifying root material, using medicinal plant roots sold by herbalists in Marrakech, Morocco, as a test dataset. Methodology In total, 111 root samples were sequenced for four proposed barcode regions rpoC1, psbA-trnH, matK and ITS. Sequences were searched against a tailored reference database of Moroccan medicinal plants and their closest relatives using BLAST and Blastclust, and through inference of RAxML phylograms of the aligned market and reference samples. Principal Findings Sequencing success was high for rpoC1, psbA-trnH, and ITS, but low for matK. Searches using rpoC1 alone resulted in a number of ambiguous identifications, indicating insufficient DNA variation for accurate species-level identification. Combining rpoC1, psbA-trnH and ITS allowed the majority of the market samples to be identified to genus level. For a minority of the market samples, the barcoding identification differed significantly from previous hypotheses based on the vernacular names. Conclusions/Significance Endemic plant species are commercialized in Marrakech. Adulteration is common and this may indicate that the products are becoming locally endangered. Nevertheless the majority of the traded roots belong to species that are common and not known to be endangered. A significant conclusion from our results is that unknown samples are more difficult to identify than earlier suggested, especially if the reference sequences were obtained from different populations. A global barcoding database should therefore contain sequences from different populations of the same species to assure the reference sequences characterize the species throughout its distributional range. PMID:22761800

  18. DNA Barcoding for Identification of ‘Candidatus Phytoplasmas’ Using a Fragment of the Elongation Factor Tu Gene

    PubMed Central

    Makarova, Olga; Contaldo, Nicoletta; Paltrinieri, Samanta; Kawube, Geofrey; Bertaccini, Assunta; Nicolaisen, Mogens

    2012-01-01

    Background Phytoplasmas are bacterial phytopathogens responsible for significant losses in agricultural production worldwide. Several molecular markers are available for identification of groups or strains of phytoplasmas. However, they often cannot be used for identification of phytoplasmas from different groups simultaneously or are too long for routine diagnostics. DNA barcoding recently emerged as a convenient tool for species identification. Here, the development of a universal DNA barcode based on the elongation factor Tu (tuf) gene for phytoplasma identification is reported. Methodology/Principal Findings We designed a new set of primers and amplified a 420–444 bp fragment of tuf from all 91 phytoplasmas strains tested (16S rRNA groups -I through -VII, -IX through -XII, -XV, and -XX). Comparison of NJ trees constructed from the tuf barcode and a 1.2 kbp fragment of the 16S ribosomal gene revealed that the tuf tree is highly congruent with the 16S rRNA tree and had higher inter- and intra- group sequence divergence. Mean K2P inter−/intra- group divergences of the tuf barcode did not overlap and had approximately one order of magnitude difference for most groups, suggesting the presence of a DNA barcoding gap. The use of the tuf barcode allowed separation of main ribosomal groups and most of their subgroups. Phytoplasma tuf barcodes were deposited in the NCBI GenBank and Q-bank databases. Conclusions/Significance This study demonstrates that DNA barcoding principles can be applied for identification of phytoplasmas. Our findings suggest that the tuf barcode performs as well or better than a 1.2 kbp fragment of the 16S rRNA gene and thus provides an easy procedure for phytoplasma identification. The obtained sequences were used to create a publicly available reference database that can be used by plant health services and researchers for online phytoplasma identification. PMID:23272216

  19. Noise reduction in single time frame optical DNA maps

    PubMed Central

    Müller, Vilhelm; Westerlund, Fredrik

    2017-01-01

    In optical DNA mapping technologies sequence-specific intensity variations (DNA barcodes) along stretched and stained DNA molecules are produced. These “fingerprints” of the underlying DNA sequence have a resolution of the order one kilobasepairs and the stretching of the DNA molecules are performed by surface adsorption or nano-channel setups. A post-processing challenge for nano-channel based methods, due to local and global random movement of the DNA molecule during imaging, is how to align different time frames in order to produce reproducible time-averaged DNA barcodes. The current solutions to this challenge are computationally rather slow. With high-throughput applications in mind, we here introduce a parameter-free method for filtering a single time frame noisy barcode (snap-shot optical map), measured in a fraction of a second. By using only a single time frame barcode we circumvent the need for post-processing alignment. We demonstrate that our method is successful at providing filtered barcodes which are less noisy and more similar to time averaged barcodes. The method is based on the application of a low-pass filter on a single noisy barcode using the width of the Point Spread Function of the system as a unique, and known, filtering parameter. We find that after applying our method, the Pearson correlation coefficient (a real number in the range from -1 to 1) between the single time-frame barcode and the time average of the aligned kymograph increases significantly, roughly by 0.2 on average. By comparing to a database of more than 3000 theoretical plasmid barcodes we show that the capabilities to identify plasmids is improved by filtering single time-frame barcodes compared to the unfiltered analogues. Since snap-shot experiments and computational time using our method both are less than a second, this study opens up for high throughput optical DNA mapping with improved reproducibility. PMID:28640821

  20. A new method for species identification via protein-coding and non-coding DNA barcodes by combining machine learning with bioinformatic methods.

    PubMed

    Zhang, Ai-bing; Feng, Jie; Ward, Robert D; Wan, Ping; Gao, Qiang; Wu, Jun; Zhao, Wei-zhong

    2012-01-01

    Species identification via DNA barcodes is contributing greatly to current bioinventory efforts. The initial, and widely accepted, proposal was to use the protein-coding cytochrome c oxidase subunit I (COI) region as the standard barcode for animals, but recently non-coding internal transcribed spacer (ITS) genes have been proposed as candidate barcodes for both animals and plants. However, achieving a robust alignment for non-coding regions can be problematic. Here we propose two new methods (DV-RBF and FJ-RBF) to address this issue for species assignment by both coding and non-coding sequences that take advantage of the power of machine learning and bioinformatics. We demonstrate the value of the new methods with four empirical datasets, two representing typical protein-coding COI barcode datasets (neotropical bats and marine fish) and two representing non-coding ITS barcodes (rust fungi and brown algae). Using two random sub-sampling approaches, we demonstrate that the new methods significantly outperformed existing Neighbor-joining (NJ) and Maximum likelihood (ML) methods for both coding and non-coding barcodes when there was complete species coverage in the reference dataset. The new methods also out-performed NJ and ML methods for non-coding sequences in circumstances of potentially incomplete species coverage, although then the NJ and ML methods performed slightly better than the new methods for protein-coding barcodes. A 100% success rate of species identification was achieved with the two new methods for 4,122 bat queries and 5,134 fish queries using COI barcodes, with 95% confidence intervals (CI) of 99.75-100%. The new methods also obtained a 96.29% success rate (95%CI: 91.62-98.40%) for 484 rust fungi queries and a 98.50% success rate (95%CI: 96.60-99.37%) for 1094 brown algae queries, both using ITS barcodes.

  1. Defining operational taxonomic units using DNA barcode data

    PubMed Central

    Blaxter, Mark; Mann, Jenna; Chapman, Tom; Thomas, Fran; Whitton, Claire; Floyd, Robin; Abebe, Eyualem

    2005-01-01

    Abstract The scale of diversity of life on this planet is a significant challenge for any scientific programme hoping to produce a complete catalogue, whatever means is used. For DNA barcoding studies, this difficulty is compounded by the realization that any chosen barcode sequence is not the gene ‘for’ speciation and that taxa have evolutionary histories. How are we to disentangle the confounding effects of reticulate population genetic processes? Using the DNA barcode data from meiofaunal surveys, here we discuss the benefits of treating the taxa defined by barcodes without reference to their correspondence to ‘species’, and suggest that using this non-idealist approach facilitates access to taxon groups that are not accessible to other methods of enumeration and classification. Major issues remain, in particular the methodologies for taxon discrimination in DNA barcode data. PMID:16214751

  2. The unholy trinity: taxonomy, species delimitation and DNA barcoding

    PubMed Central

    DeSalle, Rob; Egan, Mary G; Siddall, Mark

    2005-01-01

    Recent excitement over the development of an initiative to generate DNA sequences for all named species on the planet has in our opinion generated two major areas of contention as to how this ‘DNA barcoding’ initiative should proceed. It is critical that these two issues are clarified and resolved, before the use of DNA as a tool for taxonomy and species delimitation can be universalized. The first issue concerns how DNA data are to be used in the context of this initiative; this is the DNA barcode reader problem (or barcoder problem). Currently, many of the published studies under this initiative have used tree building methods and more precisely distance approaches to the construction of the trees that are used to place certain DNA sequences into a taxonomic context. The second problem involves the reaction of the taxonomic community to the directives of the ‘DNA barcoding’ initiative. This issue is extremely important in that the classical taxonomic approach and the DNA approach will need to be reconciled in order for the ‘DNA barcoding’ initiative to proceed with any kind of community acceptance. In fact, we feel that DNA barcoding is a misnomer. Our preference is for the title of the London meetings—Barcoding Life. In this paper we discuss these two concerns generated around the DNA barcoding initiative and attempt to present a phylogenetic systematic framework for an improved barcoder as well as a taxonomic framework for interweaving classical taxonomy with the goals of ‘DNA barcoding’. PMID:16214748

  3. DNA barcoding of Rhodiola (crassulaceae): a case study on a group of recently diversified medicinal plants from the Qinghai-Tibetan Plateau.

    PubMed

    Zhang, Jian-Qiang; Meng, Shi-Yong; Wen, Jun; Rao, Guang-Yuan

    2015-01-01

    DNA barcoding, the identification of species using one or a few short standardized DNA sequences, is an important complement to traditional taxonomy. However, there are particular challenges for barcoding plants, especially for species with complex evolutionary histories. We herein evaluated the utility of five candidate sequences - rbcL, matK, trnH-psbA, trnL-F and the internal transcribed spacer (ITS) - for barcoding Rhodiola species, a group of high-altitude plants frequently used as adaptogens, hemostatics and tonics in traditional Tibetan medicine. Rhodiola was suggested to have diversified rapidly recently. The genus is thus a good model for testing DNA barcoding strategies for recently diversified medicinal plants. This study analyzed 189 accessions, representing 47 of the 55 recognized Rhodiola species in the Flora of China treatment. Based on intraspecific and interspecific divergence and degree of monophyly statistics, ITS was the best single-locus barcode, resolving 66% of the Rhodiola species. The core combination rbcL+matK resolved only 40.4% of them. Unsurprisingly, the combined use of all five loci provided the highest discrimination power, resolving 80.9% of the species. However, this is weaker than the discrimination power generally reported in barcoding studies of other plant taxa. The observed complications may be due to the recent diversification, incomplete lineage sorting and reticulate evolution of the genus. These processes are common features of numerous plant groups in the high-altitude regions of the Qinghai-Tibetan Plateau.

  4. DNA barcoding of Bemisia tabaci complex (Hemiptera: Aleyrodidae) reveals southerly expansion of the dominant whitefly species on cotton in Pakistan.

    PubMed

    Ashfaq, Muhammad; Hebert, Paul D N; Mirza, M Sajjad; Khan, Arif M; Mansoor, Shahid; Shah, Ghulam S; Zafar, Yusuf

    2014-01-01

    Although whiteflies (Bemisia tabaci complex) are an important pest of cotton in Pakistan, its taxonomic diversity is poorly understood. As DNA barcoding is an effective tool for resolving species complexes and analyzing species distributions, we used this approach to analyze genetic diversity in the B. tabaci complex and map the distribution of B. tabaci lineages in cotton growing areas of Pakistan. Sequence diversity in the DNA barcode region (mtCOI-5') was examined in 593 whiteflies from Pakistan to determine the number of whitefly species and their distributions in the cotton-growing areas of Punjab and Sindh provinces. These new records were integrated with another 173 barcode sequences for B. tabaci, most from India, to better understand regional whitefly diversity. The Barcode Index Number (BIN) System assigned the 766 sequences to 15 BINs, including nine from Pakistan. Representative specimens of each Pakistan BIN were analyzed for mtCOI-3' to allow their assignment to one of the putative species in the B. tabaci complex recognized on the basis of sequence variation in this gene region. This analysis revealed the presence of Asia II 1, Middle East-Asia Minor 1, Asia 1, Asia II 5, Asia II 7, and a new lineage "Pakistan". The first two taxa were found in both Punjab and Sindh, but Asia 1 was only detected in Sindh, while Asia II 5, Asia II 7 and "Pakistan" were only present in Punjab. The haplotype networks showed that most haplotypes of Asia II 1, a species implicated in transmission of the cotton leaf curl virus, occurred in both India and Pakistan. DNA barcodes successfully discriminated cryptic species in B. tabaci complex. The dominant haplotypes in the B. tabaci complex were shared by India and Pakistan. Asia II 1 was previously restricted to Punjab, but is now the dominant lineage in southern Sindh; its southward spread may have serious implications for cotton plantations in this region.

  5. Barcoding of fresh water fishes from Pakistan.

    PubMed

    Karim, Asma; Iqbal, Asad; Akhtar, Rehan; Rizwan, Muhammad; Amar, Ali; Qamar, Usman; Jahan, Shah

    2016-07-01

    DNA bar-coding is a taxonomic method that uses small genetic markers in organisms' mitochondrial DNA (mt DNA) for identification of particular species. It uses sequence diversity in a 658-base pair fragment near the 5' end of the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene as a tool for species identification. DNA barcoding is more accurate and reliable method as compared with the morphological identification. It is equally useful in juveniles as well as adult stages of fishes. The present study was conducted to identify three farm fish species of Pakistan (Cyprinus carpio, Cirrhinus mrigala, and Ctenopharyngodon idella) genetically. All of them belonged to family cyprinidae. CO1 gene was amplified. PCR products were sequenced and analyzed by bioinformatic software. Conspecific, congenric, and confamilial k2P nucleotide divergence was estimated. From these findings, it was concluded that the gene sequence, CO1, may serve as milestone for the identification of related species at molecular level.

  6. Rapid and reliable high-throughput methods of DNA extraction for use in barcoding and molecular systematics of mushrooms.

    PubMed

    Dentinger, Bryn T M; Margaritescu, Simona; Moncalvo, Jean-Marc

    2010-07-01

    We present two methods for DNA extraction from fresh and dried mushrooms that are adaptable to high-throughput sequencing initiatives, such as DNA barcoding. Our results show that these protocols yield ∼85% sequencing success from recently collected materials. Tests with both recent (<2 year) and older (>100 years) specimens reveal that older collections have low success rates and may be an inefficient resource for populating a barcode database. However, our method of extracting DNA from herbarium samples using small amount of tissue is reliable and could be used for important historical specimens. The application of these protocols greatly reduces time, and therefore cost, of generating DNA sequences from mushrooms and other fungi vs. traditional extraction methods. The efficiency of these methods illustrates that standardization and streamlining of sample processing should be shifted from the laboratory to the field. © 2009 Blackwell Publishing Ltd.

  7. bold: The Barcode of Life Data System (http://www.barcodinglife.org)

    PubMed Central

    RATNASINGHAM, SUJEEVAN; HEBERT, PAUL D N

    2007-01-01

    The Barcode of Life Data System (bold) is an informatics workbench aiding the acquisition, storage, analysis and publication of DNA barcode records. By assembling molecular, morphological and distributional data, it bridges a traditional bioinformatics chasm. bold is freely available to any researcher with interests in DNA barcoding. By providing specialized services, it aids the assembly of records that meet the standards needed to gain BARCODE designation in the global sequence databases. Because of its web-based delivery and flexible data security model, it is also well positioned to support projects that involve broad research alliances. This paper provides a brief introduction to the key elements of bold, discusses their functional capabilities, and concludes by examining computational resources and future prospects. PMID:18784790

  8. [Identification and analysis of Corydalis boweri, Meconopsis horridula and their close related species of the same genus by using ITS2 DNA barcode].

    PubMed

    Dou, Rong-kun; Bi, Zhen-fei; Bai, Rui-xue; Ren, Yao-yao; Tan, Rui; Song, Liang-ke; Li, Di-qiang; Mao, Can-quan

    2015-04-01

    The study is aimed to ensure the quality and safety of medicinal plants by using ITS2 DNA barcode technology to identify Corydalis boweri, Meconopsis horridula and their close related species. The DNA of 13 herb samples including C. boweri and M. horridula from Lhasa of Tibet was extracted, ITS PCR were amplified and sequenced. Both assembled and web downloaded 71 ITS2 sequences were removed of 5. 8S and 28S. Multiple sequence alignment was completed and the intraspecific and interspecific genetic distances were calculated by MEGA 5.0, while the neighbor-joining phylogenetic trees were constructed. We also predicted the ITS2 secondary structure of C. boweri, M. horridula and their close related species. The results showed that ITS2 as DNA barcode was able to identify C. boweri, M. horridula as well as well as their close related species effectively. The established based on ITS2 barcode method provides the regular and safe detection technology for identification of C. boweri, M. horridula and their close related species, adulterants and counterfeits, in order to ensure their quality control, safe medication, reasonable development and utilization.

  9. Geographically widespread swordfish barcode stock identification: a case study of its application.

    PubMed

    Pappalardo, Anna Maria; Guarino, Francesca; Reina, Simona; Messina, Angela; De Pinto, Vito

    2011-01-01

    The swordfish (Xiphias gladius) is a cosmopolitan large pelagic fish inhabiting tempered and tropical waters and it is a target species for fisheries all around the world. The present study investigated the ability of COI barcoding to reliably identify swordfish and particularly specific stocks of this commercially important species. We applied the classical DNA barcoding technology, upon a 682 bp segment of COI, and compared swordfish sequences from different geographical sources (Atlantic, Indian Oceans and Mediterranean Sea). The sequences of the 5' hyper-variable fragment of the control region (5'dloop), were also used to validate the efficacy of COI as a stock-specific marker. This information was successfully applied to the discrimination of unknown samples from the market, detecting in some cases mislabeled seafood products. The NJ distance-based phenogram (K2P model) obtained with COI sequences allowed us to correlate the swordfish haplotypes to the different geographical stocks. Similar results were obtained with 5'dloop. Our preliminary data in swordfish Xiphias gladius confirm that Cytochrome Oxidase I can be proposed as an efficient species-specific marker that has also the potential to assign geographical provenance. This information might speed the samples analysis in commercial application of barcoding.

  10. Molecular Barcoding of Aquatic Oligochaetes: Implications for Biomonitoring

    PubMed Central

    Vivien, Régis; Wyler, Sofia; Lafont, Michel; Pawlowski, Jan

    2015-01-01

    Aquatic oligochaetes are well recognized bioindicators of quality of sediments and water in watercourses and lakes. However, the difficult taxonomic determination based on morphological features compromises their more common use in eco-diagnostic analyses. To overcome this limitation, we investigated molecular barcodes as identification tool for broad range of taxa of aquatic oligochaetes. We report 185 COI and 52 ITS2 rDNA sequences for specimens collected in Switzerland and belonging to the families Naididae, Lumbriculidae, Enchytraeidae and Lumbricidae. Phylogenetic analyses allowed distinguishing 41 lineages separated by more than 10 % divergence in COI sequences. The lineage distinction was confirmed by Automatic Barcode Gap Discovery (ABGD) method and by ITS2 data. Our results showed that morphological identification underestimates the oligochaete diversity. Only 26 of the lineages could be assigned to morphospecies, of which seven were sequenced for the first time. Several cryptic species were detected within common morphospecies. Many juvenile specimens that could not be assigned morphologically have found their home after genetic analysis. Our study showed that COI barcodes performed very well as species identifiers in aquatic oligochaetes. Their easy amplification and good taxonomic resolution might help promoting aquatic oligochaetes as bioindicators for next generation environmental DNA biomonitoring of aquatic ecosystems. PMID:25856230

  11. Application of DNA barcoding in biodiversity studies of shallow-water octocorals: molecular proxies agree with morphological estimates of species richness in Palau

    NASA Astrophysics Data System (ADS)

    McFadden, C. S.; Brown, A. S.; Brayton, C.; Hunt, C. B.; van Ofwegen, L. P.

    2014-06-01

    The application of DNA barcoding to anthozoan cnidarians has been hindered by their slow rates of mitochondrial gene evolution and the failure to identify alternative molecular markers that distinguish species reliably. Among octocorals, however, multilocus barcodes can distinguish up to 70 % of morphospecies, thereby facilitating the identification of species that are ecologically important but still very poorly known taxonomically. We tested the ability of these imperfect DNA barcodes to estimate species richness in a biodiversity survey of the shallow-water octocoral fauna of Palau using multilocus ( COI, mtMutS, 28S rDNA) sequences obtained from 305 specimens representing 38 genera of octocorals. Numbers and identities of species were estimated independently (1) by a taxonomic expert using morphological criteria and (2) by assigning sequences to molecular operational taxonomic units (MOTUs) using predefined genetic distance thresholds. Estimated numbers of MOTUs ranged from 73 to 128 depending on the barcode and distance threshold applied, bracketing the estimated number of 118 morphospecies. Concordance between morphospecies identifications and MOTUs ranged from 71 to 75 % and differed little among barcodes. For the speciose and ecologically dominant genus Sinularia, however, we were able to identify 95 % of specimens correctly simply by comparing mtMutS sequences and in situ photographs of colonies to an existing vouchered database. Because we lack a clear understanding of species boundaries in most of these taxa, numbers of morphospecies and MOTUs are both estimates of the true species diversity, and we cannot currently determine which is more accurate. Our results suggest, however, that the two methods provide comparable estimates of species richness for shallow-water Indo-Pacific octocorals. Use of molecular barcodes in biodiversity surveys will facilitate comparisons of species richness and composition among localities and over time, data that do not currently exist for any octocoral community.

  12. Comprehensive DNA barcoding of the herpetofauna of Germany.

    PubMed

    Hawlitschek, O; Morinière, J; Dunz, A; Franzen, M; Rödder, D; Glaw, F; Haszprunar, G

    2016-01-01

    We present the first comprehensive DNA barcoding study of German reptiles and amphibians representing likewise the first on the European herpetofauna. A total of 248 barcodes for all native species and subspecies in the country and a few additional taxa were obtained in the framework of the projects 'Barcoding Fauna Bavarica' (BFB) and 'German Barcode of Life' (GBOL). In contrast to many invertebrate groups, the success rate of the identification of mitochondrial lineages representing species via DNA barcode was almost 100% because no cases of Barcode Index Number (BIN) sharing were detected within German native reptiles and amphibians. However, as expected, a reliable identification of the hybridogenetic species complex in the frog genus Pelophylax was not possible. Deep conspecific lineages resulting in the identification of more than one BIN were found in Lissotriton vulgaris, Natrix natrix and the hybridogenetic Pelophylax complex. A high variety of lineages with different BINs was also found in the barcodes of wall lizards (Podarcis muralis), confirming the existence of many introduced lineages and the frequent occurrence of multiple introductions. Besides the reliable species identification of all life stages and even of tissue remains, our study highlights other potential applications of DNA barcoding concerning German amphibians and reptiles, such as the detection of allochthonous lineages, monitoring of gene flow and also noninvasive sampling via environmental DNA. DNA barcoding based on COI has now proven to be a reliable and efficient tool for studying most amphibians and reptiles as it is already for many other organism groups in zoology. © 2015 John Wiley & Sons Ltd.

  13. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding.

    PubMed

    Lan, Freeman; Demaree, Benjamin; Ahmed, Noorsher; Abate, Adam R

    2017-07-01

    The application of single-cell genome sequencing to large cell populations has been hindered by technical challenges in isolating single cells during genome preparation. Here we present single-cell genomic sequencing (SiC-seq), which uses droplet microfluidics to isolate, fragment, and barcode the genomes of single cells, followed by Illumina sequencing of pooled DNA. We demonstrate ultra-high-throughput sequencing of >50,000 cells per run in a synthetic community of Gram-negative and Gram-positive bacteria and fungi. The sequenced genomes can be sorted in silico based on characteristic sequences. We use this approach to analyze the distributions of antibiotic-resistance genes, virulence factors, and phage sequences in microbial communities from an environmental sample. The ability to routinely sequence large populations of single cells will enable the de-convolution of genetic heterogeneity in diverse cell populations.

  14. DNA Barcoding of Sigmodontine Rodents: Identifying Wildlife Reservoirs of Zoonoses

    PubMed Central

    Müller, Lívia; Gonçalves, Gislene L.; Cordeiro-Estrela, Pedro; Marinho, Jorge R.; Althoff, Sérgio L.; Testoni, André. F.; González, Enrique M.; Freitas, Thales R. O.

    2013-01-01

    Species identification through DNA barcoding is a tool to be added to taxonomic procedures, once it has been validated. Applying barcoding techniques in public health would aid in the identification and correct delimitation of the distribution of rodents from the subfamily Sigmodontinae. These rodents are reservoirs of etiological agents of zoonoses including arenaviruses, hantaviruses, Chagas disease and leishmaniasis. In this study we compared distance-based and probabilistic phylogenetic inference methods to evaluate the performance of cytochrome c oxidase subunit I (COI) in sigmodontine identification. A total of 130 sequences from 21 field-trapped species (13 genera), mainly from southern Brazil, were generated and analyzed, together with 58 GenBank sequences (24 species; 10 genera). Preliminary analysis revealed a 9.5% rate of misidentifications in the field, mainly of juveniles, which were reclassified after examination of external morphological characters and chromosome numbers. Distance and model-based methods of tree reconstruction retrieved similar topologies and monophyly for most species. Kernel density estimation of the distance distribution showed a clear barcoding gap with overlapping of intraspecific and interspecific densities < 1% and 21 species with mean intraspecific distance < 2%. Five species that are reservoirs of hantaviruses could be identified through DNA barcodes. Additionally, we provide information for the description of a putative new species, as well as the first COI sequence of the recently described genus Drymoreomys. The data also indicated an expansion of the distribution of Calomys tener. We emphasize that DNA barcoding should be used in combination with other taxonomic and systematic procedures in an integrative framework and based on properly identified museum collections, to improve identification procedures, especially in epidemiological surveillance and ecological assessments. PMID:24244670

  15. Calibrating snakehead diversity with DNA barcodes: expanding taxonomic coverage to enable identification of potential and established invasive species.

    PubMed

    Serrao, Natasha R; Steinke, Dirk; Hanner, Robert H

    2014-01-01

    Detecting and documenting the occurrence of invasive species outside their native range requires tools to support their identification. This can be challenging for taxa with diverse life stages and/or problematic or unresolved morphological taxonomies. DNA barcoding provides a potent method for identifying invasive species, as it allows for species identification at all life stages, including fragmentary remains. It also provides an efficient interim taxonomic framework for quantifying cryptic genetic diversity by parsing barcode sequences into discontinuous haplogroup clusters (typical of reproductively isolated species) and labelling them with unique alphanumeric identifiers. Snakehead fishes are a diverse group of opportunistic predators endemic to Asia and Africa that may potentially pose significant threats as aquatic invasive species. At least three snakehead species (Channa argus, C. maculata, and C. marulius) are thought to have entered North America through the aquarium and live-food fish markets, and have established populations, yet their origins remain unclear. The objectives of this study were to assemble a library of DNA barcode sequences derived from expert identified reference specimens in order to determine the identity and aid invasion pathway analysis of the non-indigenous species found in North America using DNA barcodes. Sequences were obtained from 121 tissue samples representing 25 species and combined with public records from GenBank for a total of 36 putative species, which then partitioned into 49 discrete haplogroups. Multiple divergent clusters were observed within C. gachua, C. marulius, C. punctata and C. striata suggesting the potential presence of cryptic species diversity within these lineages. Our findings demonstrate that DNA barcoding is a valuable tool for species identification in challenging and under-studied taxonomic groups such as snakeheads, and provides a useful framework for inferring invasion pathway analysis.

  16. Existence of species complex largely reduced barcoding success for invasive species of Tephritidae: a case study in Bactrocera spp.

    PubMed

    Jiang, F; Jin, Q; Liang, L; Zhang, A B; Li, Z H

    2014-11-01

    Fruit flies in the family Tephritidae are the economically important pests that have many species complexes. DNA barcoding has gradually been verified as an effective tool for identifying species in a wide range of taxonomic groups, and there are several publications on rapid and accurate identification of fruit flies based on this technique; however, comprehensive analyses of large and new taxa for the effectiveness of DNA barcoding for fruit flies identification have been rare. In this study, we evaluated the COI barcode sequences for the diagnosis of fruit flies using 1426 sequences for 73 species of Bactrocera distributed worldwide. Tree-based [neighbour-joining (NJ)]; distance-based, such as Best Match (BM), Best Close Match (BCM) and Minimum Distance (MD); and character-based methods were used to evaluate the barcoding success rates obtained with maintaining the species complex in the data set, treating a species complex as a single taxon unit, and removing the species complex. Our results indicate that the average divergence between species was 14.04% (0.00-25.16%), whereas within a species this was 0.81% (0.00-9.71%); the existence of species complexes largely reduced the barcoding success for Tephritidae, for example relatively low success rates (74.4% based on BM and BCM and 84.8% based on MD) were obtained when the sequences from species complexes were included in the analysis, whereas significantly higher success rates were achieved if the species complexes were treated as a single taxon or removed from the data set - BM (98.9%), BCM (98.5%) and MD (97.5%), or BM (98.1%), BCM (97.4%) and MD (98.2%). © 2014 John Wiley & Sons Ltd.

  17. Feasibility of nuclear ribosomal region ITS1 over ITS2 in barcoding taxonomically challenging genera of subtribe Cassiinae (Fabaceae).

    PubMed

    Mishra, Priyanka; Kumar, Amit; Rodrigues, Vereena; Shukla, Ashutosh K; Sundaresan, Velusamy

    2016-01-01

    The internal transcribed spacer (ITS) region is situated between 18S and 26S in a polycistronic rRNA precursor transcript. It had been proved to be the most commonly sequenced region across plant species to resolve phylogenetic relationships ranging from shallow to deep taxonomic levels. Despite several taxonomical revisions in Cassiinae, a stable phylogeny remains elusive at the molecular level, particularly concerning the delineation of species in the genera Cassia, Senna and Chamaecrista . This study addresses the comparative potential of ITS datasets (ITS1, ITS2 and concatenated) in resolving the underlying morphological disparity in the highly complex genera, to assess their discriminatory power as potential barcode candidates in Cassiinae. A combination of experimental data and an in-silico approach based on threshold genetic distances, sequence similarity based and hierarchical tree-based methods was performed to decipher the discriminating power of ITS datasets on 18 different species of Cassiinae complex. Lab-generated s equences were compared against those available in the GenBank using BLAST and were aligned through MUSCLE 3.8.31 and analysed in PAUP 4.0 and BEAST1.8 using parsimony ratchet, maximum likelihood and Bayesian inference (BI) methods of gene and species tree reconciliation with bootstrapping. DNA barcoding gap was realized based on the Kimura two-parameter distance model (K2P) in TaxonDNA and MEGA. Based on the K2P distance, significant divergences between the inter- and intra-specific genetic distances were observed, while the presence of a DNA barcoding gap was obvious. The ITS1 region efficiently identified 81.63% and 90% of species using TaxonDNA and BI methods, respectively. The PWG-distance method based on simple pairwise matching indicated the significance of ITS1 whereby highest number of variable (210) and informative sites (206) were obtained. The BI tree-based methods outperformed the similarity-based methods producing well-resolved phylogenetic trees with many nodes well supported by bootstrap analyses. The reticulated phylogenetic hypothesis using the ITS1 region mainly supported the relationship between the species of Cassiinae established by traditional morphological methods. The ITS1 region showed a higher discrimination power and desirable characteristics as compared to ITS2 and ITS1 + 2, thereby concluding to be the locus of choice. Considering the complexity of the group and the underlying biological ambiguities, the results presented here are encouraging for developing DNA barcoding as a useful tool for resolving taxonomical challenges in corroboration with morphological framework.

  18. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections.

    PubMed

    Baniecki, Mary Lynn; Faust, Aubrey L; Schaffner, Stephen F; Park, Daniel J; Galinsky, Kevin; Daniels, Rachel F; Hamilton, Elizabeth; Ferreira, Marcelo U; Karunaweera, Nadira D; Serre, David; Zimmerman, Peter A; Sá, Juliana M; Wellems, Thomas E; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E; Volkman, Sarah K; Wirth, Dyann F; Sabeti, Pardis C

    2015-03-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections.

  19. Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections

    PubMed Central

    Baniecki, Mary Lynn; Faust, Aubrey L.; Schaffner, Stephen F.; Park, Daniel J.; Galinsky, Kevin; Daniels, Rachel F.; Hamilton, Elizabeth; Ferreira, Marcelo U.; Karunaweera, Nadira D.; Serre, David; Zimmerman, Peter A.; Sá, Juliana M.; Wellems, Thomas E.; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E.; Volkman, Sarah K.; Wirth, Dyann F.; Sabeti, Pardis C.

    2015-01-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. PMID:25781890

  20. Applying plant DNA barcodes to identify species of Parnassia (Parnassiaceae).

    PubMed

    Yang, Jun-Bo; Wang, Yi-Ping; Möller, Michael; Gao, Lian-Ming; Wu, Ding

    2012-03-01

    DNA barcoding is a technique to identify species by using standardized DNA sequences. In this study, a total of 105 samples, representing 30 Parnassia species, were collected to test the effectiveness of four proposed DNA barcodes (rbcL, matK, trnH-psbA and ITS) for species identification. Our results demonstrated that all four candidate DNA markers have a maximum level of primer universality and sequencing success. As a single DNA marker, the ITS region provided the highest species resolution with 86.7%, followed by trnH-psbA with 73.3%. The combination of the core barcode regions, matK+rbcL, gave the lowest species identification success (63.3%) among any combination of multiple markers and was found unsuitable as DNA barcode for Parnassia. The combination of ITS+trnH-psbA achieved the highest species discrimination with 90.0% resolution (27 of 30 sampled species), equal to the four-marker combination and higher than any two or three marker combination including rbcL or matK. Therefore, matK and rbcL should not be used as DNA barcodes for the species identification of Parnassia. Based on the overall performance, the combination of ITS+trnH-psbA is proposed as the most suitable DNA barcode for identifying Parnassia species. DNA barcoding is a useful technique and provides a reliable and effective mean for the discrimination of Parnassia species, and in combination with morphology-based taxonomy, will be a robust approach for tackling taxonomically complex groups. In the light of our findings, we found among the three species not identified a possible cryptic speciation event in Parnassia. © 2011 Blackwell Publishing Ltd.

  1. Wolbachia and DNA barcoding insects: patterns, potential, and problems.

    PubMed

    Smith, M Alex; Bertrand, Claudia; Crosby, Kate; Eveleigh, Eldon S; Fernandez-Triana, Jose; Fisher, Brian L; Gibbs, Jason; Hajibabaei, Mehrdad; Hallwachs, Winnie; Hind, Katharine; Hrcek, Jan; Huang, Da-Wei; Janda, Milan; Janzen, Daniel H; Li, Yanwei; Miller, Scott E; Packer, Laurence; Quicke, Donald; Ratnasingham, Sujeevan; Rodriguez, Josephine; Rougerie, Rodolphe; Shaw, Mark R; Sheffield, Cory; Stahlhut, Julie K; Steinke, Dirk; Whitfield, James; Wood, Monty; Zhou, Xin

    2012-01-01

    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein--wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor--which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region.

  2. Disjunctitermes insularis, a new soldierless termite genus and species (Isoptera, Termitidae, Apicotermitinae) from Guadeloupe and Peru

    PubMed Central

    Scheffrahn, Rudolf H.; Carrijo, Tiago F.; Postle, Anthony C.; Tonini, Francesco

    2017-01-01

    Abstract Disjunctitermes insularis gen. n. & sp. n. is described from workers collected on Guadeloupe and in Peru and is the first soldierless termite found on a deep-water island. As with many soldierless and soil-feeding termite species, the enteric valve morphology is an essential diagnostic character of D. insularis. The D. insularis sequence cluster, derived from a barcode analysis with twelve other described genera of New World Apicotermitinae, is well resolved. Results of a stochastic dynamic spread model suggest that the occurrence of D. insularis on Guadeloupe may be the result of a pre-Colombian overwater dispersal event from mainland South America. PMID:28769627

  3. Interbreeding among deeply divergent mitochondrial lineages in the American cockroach (Periplaneta americana)

    NASA Astrophysics Data System (ADS)

    von Beeren, Christoph; Stoeckle, Mark Y.; Xia, Joyce; Burke, Griffin; Kronauer, Daniel J. C.

    2015-02-01

    DNA barcoding promises to be a useful tool to identify pest species assuming adequate representation of genetic variants in a reference library. Here we examined mitochondrial DNA barcodes in a global urban pest, the American cockroach (Periplaneta americana). Our sampling effort generated 284 cockroach specimens, most from New York City, plus 15 additional U.S. states and six other countries, enabling the first large-scale survey of P. americana barcode variation. Periplaneta americana barcode sequences (n = 247, including 24 GenBank records) formed a monophyletic lineage separate from other Periplaneta species. We found three distinct P. americana haplogroups with relatively small differences within (<=0.6%) and larger differences among groups (2.4%-4.7%). This could be interpreted as indicative of multiple cryptic species. However, nuclear DNA sequences (n = 77 specimens) revealed extensive gene flow among mitochondrial haplogroups, confirming a single species. This unusual genetic pattern likely reflects multiple introductions from genetically divergent source populations, followed by interbreeding in the invasive range. Our findings highlight the need for comprehensive reference databases in DNA barcoding studies, especially when dealing with invasive populations that might be derived from multiple genetically distinct source populations.

  4. The fish diversity in the upper reaches of the Salween River, Nujiang River, revealed by DNA barcoding.

    PubMed

    Chen, Weitao; Ma, Xiuhui; Shen, Yanjun; Mao, Yuntao; He, Shunping

    2015-11-30

    Nujiang River (NR), an essential component of the biodiversity hotspot of the Mountains of Southwest China, possesses a characteristic fish fauna and contains endemic species. Although previous studies on fish diversity in the NR have primarily consisted of listings of the fish species observed during field collections, in our study, we DNA-barcoded 1139 specimens belonging to 46 morphologically distinct fish species distributed throughout the NR basin by employing multiple analytical approaches. According to our analyses, DNA barcoding is an efficient method for the identification of fish by the presence of barcode gaps. However, three invasive species are characterized by deep conspecific divergences, generating multiple lineages and Operational Taxonomic Units (OTUs), implying the possibility of cryptic species. At the other end of the spectrum, ten species (from three genera) that are characterized by an overlap between their intra- and interspecific genetic distances form a single genetic cluster and share haplotypes. The neighbor-joining phenogram, Barcode Index Numbers (BINs) and Automatic Barcode Gap Discovery (ABGD) identified 43 putative species, while the General Mixed Yule-coalescence (GMYC) identified five more OTUs. Thus, our study established a reliable DNA barcode reference library for the fish in the NR and sheds new light on the local fish diversity.

  5. The fish diversity in the upper reaches of the Salween River, Nujiang River, revealed by DNA barcoding

    PubMed Central

    Chen, Weitao; Ma, Xiuhui; Shen, Yanjun; Mao, Yuntao; He, Shunping

    2015-01-01

    Nujiang River (NR), an essential component of the biodiversity hotspot of the Mountains of Southwest China, possesses a characteristic fish fauna and contains endemic species. Although previous studies on fish diversity in the NR have primarily consisted of listings of the fish species observed during field collections, in our study, we DNA-barcoded 1139 specimens belonging to 46 morphologically distinct fish species distributed throughout the NR basin by employing multiple analytical approaches. According to our analyses, DNA barcoding is an efficient method for the identification of fish by the presence of barcode gaps. However, three invasive species are characterized by deep conspecific divergences, generating multiple lineages and Operational Taxonomic Units (OTUs), implying the possibility of cryptic species. At the other end of the spectrum, ten species (from three genera) that are characterized by an overlap between their intra- and interspecific genetic distances form a single genetic cluster and share haplotypes. The neighbor-joining phenogram, Barcode Index Numbers (BINs) and Automatic Barcode Gap Discovery (ABGD) identified 43 putative species, while the General Mixed Yule-coalescence (GMYC) identified five more OTUs. Thus, our study established a reliable DNA barcode reference library for the fish in the NR and sheds new light on the local fish diversity. PMID:26616046

  6. Comparative analysis of the complete sequence of the plastid genome of Parthenium argentatum and identification of DNA barcodes to differentiate Parthenium species and lines

    PubMed Central

    2009-01-01

    Background Parthenium argentatum (guayule) is an industrial crop that produces latex, which was recently commercialized as a source of latex rubber safe for people with Type I latex allergy. The complete plastid genome of P. argentatum was sequenced. The sequence provides important information useful for genetic engineering strategies. Comparison to the sequences of plastid genomes from three other members of the Asteraceae, Lactuca sativa, Guitozia abyssinica and Helianthus annuus revealed details of the evolution of the four genomes. Chloroplast-specific DNA barcodes were developed for identification of Parthenium species and lines. Results The complete plastid genome of P. argentatum is 152,803 bp. Based on the overall comparison of individual protein coding genes with those in L. sativa, G. abyssinica and H. annuus, we demonstrate that the P. argentatum chloroplast genome sequence is most closely related to that of H. annuus. Similar to chloroplast genomes in G. abyssinica, L. sativa and H. annuus, the plastid genome of P. argentatum has a large 23 kb inversion with a smaller 3.4 kb inversion, within the large inversion. Using the matK and psbA-trnH spacer chloroplast DNA barcodes, three of the four Parthenium species tested, P. tomentosum, P. hysterophorus and P. schottii, can be differentiated from P. argentatum. In addition, we identified lines within P. argentatum. Conclusion The genome sequence of the P. argentatum chloroplast will enrich the sequence resources of plastid genomes in commercial crops. The availability of the complete plastid genome sequence may facilitate transformation efficiency by using the precise sequence of endogenous flanking sequences and regulatory elements in chloroplast transformation vectors. The DNA barcoding study forms the foundation for genetic identification of commercially significant lines of P. argentatum that are important for producing latex. PMID:19917140

  7. DNA barcodes for two scale insect families, mealybugs (Hemiptera: Pseudococcidae) and armored scales (Hemiptera: Diaspididae).

    PubMed

    Park, D-S; Suh, S-J; Hebert, P D N; Oh, H-W; Hong, K-J

    2011-08-01

    Although DNA barcode coverage has grown rapidly for many insect orders, there are some groups, such as scale insects, where sequence recovery has been difficult. However, using a recently developed primer set, we recovered barcode records from 373 specimens, providing coverage for 75 species from 31 genera in two families. Overall success was >90% for mealybugs and >80% for armored scale species. The G·C content was very low in most species, averaging just 16.3%. Sequence divergences (K2P) between congeneric species averaged 10.7%, while intra-specific divergences averaged 0.97%. However, the latter value was inflated by high intra-specific divergence in nine taxa, cases that may indicate species overlooked by current taxonomic treatments. Our study establishes the feasibility of developing a comprehensive barcode library for scale insects and indicates that its construction will both create an effective system for identifying scale insects and reveal taxonomic situations worthy of deeper analysis.

  8. Forensic identification of CITES protected slimming cactus (Hoodia) using DNA barcoding.

    PubMed

    Gathier, Gerard; van der Niet, Timotheus; Peelen, Tamara; van Vugt, Rogier R; Eurlings, Marcel C M; Gravendeel, Barbara

    2013-11-01

    Slimming cactus (Hoodia), found only in southwestern Africa, is a well-known herbal product for losing weight. Consequently, Hoodia extracts are sought-after worldwide despite a CITES Appendix II status. The failure to eradicate illegal trade is due to problems with detecting and identifying Hoodia using morphological and chemical characters. Our aim was to evaluate the potential of molecular identification of Hoodia based on DNA barcoding. Screening of nrITS1 and psbA-trnH DNA sequences from 26 accessions of Ceropegieae resulted in successful identification, while conventional chemical profiling using DLI-MS led to inaccurate detection and identification of Hoodia. The presence of Hoodia in herbal products was also successfully established using DNA sequences. A validation procedure of our DNA barcoding protocol demonstrated its robustness to changes in PCR conditions. We conclude that DNA barcoding is an effective tool for Hoodia detection and identification which can contribute to preventing illegal trade. © 2013 American Academy of Forensic Sciences.

  9. Morphological description and DNA barcoding of Hydrobaenus majus sp. nov. (Diptera: Chironomidae: Orthocladiinae) from the Russian Far East.

    PubMed

    Makarchenko, Eugenyi A; Makarchenko, Marina A; Semenchenko, Alexander A

    2015-08-14

    Illustrated descriptions of adult male, pupa and fourth instar larva, as well as DNA barcoding, of Hydrobaenus majus sp. nov. in comparison with the close related species H. sikhotealinensis Makarchenko et Makarchenko from the Russian Far East are provided. The species-specificity of H. majus sp. nov. COI sequences is analyzed and the sequences are presented as diagnostic characters--molecular markers of H. majus and H. sikhotealinensis.

  10. Profiling Nematode Communities in Unmanaged Flowerbed and Agricultural Field Soils in Japan by DNA Barcode Sequencing

    PubMed Central

    Morise, Hisashi; Miyazaki, Erika; Yoshimitsu, Shoko; Eki, Toshihiko

    2012-01-01

    Soil nematodes play crucial roles in the soil food web and are a suitable indicator for assessing soil environments and ecosystems. Previous nematode community analyses based on nematode morphology classification have been shown to be useful for assessing various soil environments. Here we have conducted DNA barcode analysis for soil nematode community analyses in Japanese soils. We isolated nematodes from two different environmental soils of an unmanaged flowerbed and an agricultural field using the improved flotation-sieving method. Small subunit (SSU) rDNA fragments were directly amplified from each of 68 (flowerbed samples) and 48 (field samples) isolated nematodes to determine the nucleotide sequence. Sixteen and thirteen operational taxonomic units (OTUs) were obtained by multiple sequence alignment from the flowerbed and agricultural field nematodes, respectively. All 29 SSU rDNA-derived OTUs (rOTUs) were further mapped onto a phylogenetic tree with 107 known nematode species. Interestingly, the two nematode communities examined were clearly distinct from each other in terms of trophic groups: Animal predators and plant feeders were markedly abundant in the flowerbed soils, in contrast, bacterial feeders were dominantly observed in the agricultural field soils. The data from the flowerbed nematodes suggests a possible food web among two different trophic nematode groups and plants (weeds) in the closed soil environment. Finally, DNA sequences derived from the mitochondrial cytochrome oxidase c subunit 1 (COI) gene were determined as a DNA barcode from 43 agricultural field soil nematodes. These nematodes were assigned to 13 rDNA-derived OTUs, but in the COI gene analysis were assigned to 23 COI gene-derived OTUs (cOTUs), indicating that COI gene-based barcoding may provide higher taxonomic resolution than conventional SSU rDNA-barcoding in soil nematode community analysis. PMID:23284767

  11. Assessing universality of DNA barcoding in geographically isolated selected desert medicinal species of Fabaceae and Poaceae

    PubMed Central

    Hussain, Fatma; Ahmed, Nisar; Ghorbani, Abdolbaset

    2018-01-01

    In pursuit of developing fast and accurate species-level molecular identification methods, we tested six DNA barcodes, namely ITS2, matK, rbcLa, ITS2+matK, ITS2+rbcLa, matK+rbcLa and ITS2+matK+rbcLa, for their capacity to identify frequently consumed but geographically isolated medicinal species of Fabaceae and Poaceae indigenous to the desert of Cholistan. Data were analysed by BLASTn sequence similarity, pairwise sequence divergence in TAXONDNA, and phylogenetic (neighbour-joining and maximum-likelihood trees) methods. Comparison of six barcode regions showed that ITS2 has the highest number of variable sites (209/360) for tested Fabaceae and (106/365) Poaceae species, the highest species-level identification (40%) in BLASTn procedure, distinct DNA barcoding gap, 100% correct species identification in BM and BCM functions of TAXONDNA, and clear cladding pattern with high nodal support in phylogenetic trees in both families. ITS2+matK+rbcLa followed ITS2 in its species-level identification capacity. The study was concluded with advocating the DNA barcoding as an effective tool for species identification and ITS2 as the best barcode region in identifying medicinal species of Fabaceae and Poaceae. Current research has practical implementation potential in the fields of pharmaco-vigilance, trade of medicinal plants and biodiversity conservation. PMID:29576968

  12. DNA Barcoding Green Microalgae Isolated from Neotropical Inland Waters

    PubMed Central

    Hadi, Sámed I. I. A.; Santana, Hugo; Brunale, Patrícia P. M.; Gomes, Taísa G.; Oliveira, Márcia D.; Matthiensen, Alexandre; Oliveira, Marcos E. C.; Silva, Flávia C. P.; Brasil, Bruno S. A. F.

    2016-01-01

    This study evaluated the feasibility of using the Ribulose Bisphosphate Carboxylase Large subunit gene (rbcL) and the Internal Transcribed Spacers 1 and 2 of the nuclear rDNA (nuITS1 and nuITS2) markers for identifying a very diverse, albeit poorly known group, of green microalgae from neotropical inland waters. Fifty-one freshwater green microalgae strains isolated from Brazil, the largest biodiversity reservoir in the neotropics, were submitted to DNA barcoding. Currently available universal primers for ITS1-5.8S-ITS2 region amplification were sufficient to successfully amplify and sequence 47 (92%) of the samples. On the other hand, new sets of primers had to be designed for rbcL, which allowed 96% of the samples to be sequenced. Thirty-five percent of the strains could be unambiguously identified to the species level based either on nuITS1 or nuITS2 sequences’ using barcode gap calculations. nuITS2 Compensatory Base Change (CBC) and ITS1-5.8S-ITS2 region phylogenetic analysis, together with morphological inspection, confirmed the identification accuracy. In contrast, only 6% of the strains could be assigned to the correct species based solely on rbcL sequences. In conclusion, the data presented here indicates that either nuITS1 or nuITS2 are useful markers for DNA barcoding of freshwater green microalgae, with advantage for nuITS2 due to the larger availability of analytical tools and reference barcodes deposited at databases for this marker. PMID:26900844

  13. Evaluation of the DNA barcodes in Dendrobium (Orchidaceae) from mainland Asia.

    PubMed

    Xu, Songzhi; Li, Dezhu; Li, Jianwu; Xiang, Xiaoguo; Jin, Weitao; Huang, Weichang; Jin, Xiaohua; Huang, Luqi

    2015-01-01

    DNA barcoding has been proposed to be one of the most promising tools for accurate and rapid identification of taxa. However, few publications have evaluated the efficiency of DNA barcoding for the large genera of flowering plants. Dendrobium, one of the largest genera of flowering plants, contains many species that are important in horticulture, medicine and biodiversity conservation. Besides, Dendrobium is a notoriously difficult group to identify. DNA barcoding was expected to be a supplementary means for species identification, conservation and future studies in Dendrobium. We assessed the power of 11 candidate barcodes on the basis of 1,698 accessions of 184 Dendrobium species obtained primarily from mainland Asia. Our results indicated that five single barcodes, i.e., ITS, ITS2, matK, rbcL and trnH-psbA, can be easily amplified and sequenced with the currently established primers. Four barcodes, ITS, ITS2, ITS+matK, and ITS2+matK, have distinct barcoding gaps. ITS+matK was the optimal barcode based on all evaluation methods. Furthermore, the efficiency of ITS+matK was verified in four other large genera including Ficus, Lysimachia, Paphiopedilum, and Pedicularis in this study. Therefore, we tentatively recommend the combination of ITS+matK as a core DNA barcode for large flowering plant genera.

  14. Evaluation of the DNA Barcodes in Dendrobium (Orchidaceae) from Mainland Asia

    PubMed Central

    Xu, Songzhi; Li, Dezhu; Li, Jianwu; Xiang, Xiaoguo; Jin, Weitao; Huang, Weichang; Jin, Xiaohua; Huang, Luqi

    2015-01-01

    DNA barcoding has been proposed to be one of the most promising tools for accurate and rapid identification of taxa. However, few publications have evaluated the efficiency of DNA barcoding for the large genera of flowering plants. Dendrobium, one of the largest genera of flowering plants, contains many species that are important in horticulture, medicine and biodiversity conservation. Besides, Dendrobium is a notoriously difficult group to identify. DNA barcoding was expected to be a supplementary means for species identification, conservation and future studies in Dendrobium. We assessed the power of 11 candidate barcodes on the basis of 1,698 accessions of 184 Dendrobium species obtained primarily from mainland Asia. Our results indicated that five single barcodes, i.e., ITS, ITS2, matK, rbcL and trnH-psbA, can be easily amplified and sequenced with the currently established primers. Four barcodes, ITS, ITS2, ITS+matK, and ITS2+matK, have distinct barcoding gaps. ITS+matK was the optimal barcode based on all evaluation methods. Furthermore, the efficiency of ITS+matK was verified in four other large genera including Ficus, Lysimachia, Paphiopedilum, and Pedicularis in this study. Therefore, we tentatively recommend the combination of ITS+matK as a core DNA barcode for large flowering plant genera. PMID:25602282

  15. mPUMA: a computational approach to microbiota analysis by de novo assembly of operational taxonomic units based on protein-coding barcode sequences.

    PubMed

    Links, Matthew G; Chaban, Bonnie; Hemmingsen, Sean M; Muirhead, Kevin; Hill, Janet E

    2013-08-15

    Formation of operational taxonomic units (OTU) is a common approach to data aggregation in microbial ecology studies based on amplification and sequencing of individual gene targets. The de novo assembly of OTU sequences has been recently demonstrated as an alternative to widely used clustering methods, providing robust information from experimental data alone, without any reliance on an external reference database. Here we introduce mPUMA (microbial Profiling Using Metagenomic Assembly, http://mpuma.sourceforge.net), a software package for identification and analysis of protein-coding barcode sequence data. It was developed originally for Cpn60 universal target sequences (also known as GroEL or Hsp60). Using an unattended process that is independent of external reference sequences, mPUMA forms OTUs by DNA sequence assembly and is capable of tracking OTU abundance. mPUMA processes microbial profiles both in terms of the direct DNA sequence as well as in the translated amino acid sequence for protein coding barcodes. By forming OTUs and calculating abundance through an assembly approach, mPUMA is capable of generating inputs for several popular microbiota analysis tools. Using SFF data from sequencing of a synthetic community of Cpn60 sequences derived from the human vaginal microbiome, we demonstrate that mPUMA can faithfully reconstruct all expected OTU sequences and produce compositional profiles consistent with actual community structure. mPUMA enables analysis of microbial communities while empowering the discovery of novel organisms through OTU assembly.

  16. FISH-BOL and seafood identification: geographically dispersed case studies reveal systemic market substitution across Canada.

    PubMed

    Hanner, Robert; Becker, Sven; Ivanova, Natalia V; Steinke, Dirk

    2011-10-01

    The Fish Barcode of Life campaign involves a broad international collaboration among scientists working to advance the identification of fishes using DNA barcodes. With over 25% of the world's known ichthyofauna currently profiled, forensic identification of seafood products is now feasible and is becoming routine. Driven by growing consumer interest in the food supply, investigative reporters from five different media establishments procured seafood samples (n = 254) from numerous retail establishments located among five Canadian metropolitan areas between 2008 and 2010. The specimens were sent to the Canadian Centre for DNA Barcoding for analysis. By integrating the results from these individual case studies in a summary analysis, we provide a broad perspective on seafood substitution across Canada. Barcodes were recovered from 93% of the samples (n = 236), and identified using the Barcode of Life Data Systems "species identification" engine ( www.barcodinglife.org ). A 99% sequence similarity threshold was employed as a conservative matching criterion for specimen identification to the species level. Comparing these results against the Canadian Food Inspection Agency's "Fish List" a guideline to interpreting "false, misleading or deceptive" names (as per s 27 of the Fish Inspection regulations) demonstrated that 41% of the samples were mislabeled. Most samples were readily identified; however, this was not true in all cases because some samples had no close match. Others were ambiguous due to limited barcode resolution (or imperfect taxonomy) observed within a few closely related species complexes. The latter cases did not significantly impact the results because even the partial resolution achieved was sufficient to demonstrate mislabeling. This work highlights the functional utility of barcoding for the identification of diverse market samples. It also demonstrates how barcoding serves as a bridge linking scientific nomenclature with approved market names, potentially empowering regulatory bodies to enforce labeling standards. By synchronizing taxonomic effort with sequencing effort and database curation, barcoding provides a molecular identification resource of service to applied forensics.

  17. Status of duckweed genomics and transcriptomics.

    PubMed

    Wang, W; Messing, J

    2015-01-01

    Duckweeds belong to the smallest flowering plants that undergo fast vegetative growth in an aquatic environment. They are commonly used in wastewater treatment and animal feed. Whereas duckweeds have been studied at the biochemical level, their reduced morphology and wide environmental adaption had not been subjected to molecular analysis until recently. Here, we review the progress that has been made in using a DNA barcode system and the sequences of chloroplast and mitochondrial genomes to identify duckweed species at the species or population level. We also review analysis of the nuclear genome sequence of Spirodela that provides new insights into fundamental biological questions. Indeed, reduced gene families and missing genes are consistent with its compact morphogenesis, aquatic floating and suppression of juvenile-to-adult transition. Furthermore, deep RNA sequencing of Spirodela at the onset of dormancy and Landoltia in exposure of nutrient deficiency illustrate the molecular network for environmental adaption and stress response, constituting major progress towards a post-genome sequencing phase, where further functional genomic details can be explored. Rapid advances in sequencing technologies could continue to promote a proliferation of genome sequences for additional ecotypes as well as for other duckweed species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. The first initiative of DNA barcoding of ornamental plants from Egypt and potential applications in horticulture industry

    PubMed Central

    Ashfaq, Muhammad; Ali, Hayssam M.; Yessoufou, Kowiyou

    2017-01-01

    DNA barcoding relies on short and standardized gene regions to identify species. The agricultural and horticultural applications of barcoding such as for marketplace regulation and copyright protection remain poorly explored. This study examines the effectiveness of the standard plant barcode markers (matK and rbcL) for the identification of plant species in private and public nurseries in northern Egypt. These two markers were sequenced from 225 specimens of 161 species and 62 plant families of horticultural importance. The sequence recovery was similar for rbcL (96.4%) and matK (84%), but the number of specimens assigned correctly to the respective genera and species was lower for rbcL (75% and 29%) than matK (85% and 40%). The combination of rbcL and matK brought the number of correct generic and species assignments to 83.4% and 40%, respectively. Individually, the efficiency of both markers varied among different plant families; for example, all palm specimens (Arecaceae) were correctly assigned to species while only one individual of Asteraceae was correctly assigned to species. Further, barcodes reliably assigned ornamental horticultural and medicinal plants correctly to genus while they showed a lower or no success in assigning these plants to species and cultivars. For future, we recommend the combination of a complementary barcode (e.g. ITS or trnH-psbA) with rbcL + matK to increase the performance of taxa identification. By aiding species identification of horticultural crops and ornamental palms, the analysis of the barcode regions will have large impact on horticultural industry. PMID:28199378

  19. The first initiative of DNA barcoding of ornamental plants from Egypt and potential applications in horticulture industry.

    PubMed

    O Elansary, Hosam; Ashfaq, Muhammad; Ali, Hayssam M; Yessoufou, Kowiyou

    2017-01-01

    DNA barcoding relies on short and standardized gene regions to identify species. The agricultural and horticultural applications of barcoding such as for marketplace regulation and copyright protection remain poorly explored. This study examines the effectiveness of the standard plant barcode markers (matK and rbcL) for the identification of plant species in private and public nurseries in northern Egypt. These two markers were sequenced from 225 specimens of 161 species and 62 plant families of horticultural importance. The sequence recovery was similar for rbcL (96.4%) and matK (84%), but the number of specimens assigned correctly to the respective genera and species was lower for rbcL (75% and 29%) than matK (85% and 40%). The combination of rbcL and matK brought the number of correct generic and species assignments to 83.4% and 40%, respectively. Individually, the efficiency of both markers varied among different plant families; for example, all palm specimens (Arecaceae) were correctly assigned to species while only one individual of Asteraceae was correctly assigned to species. Further, barcodes reliably assigned ornamental horticultural and medicinal plants correctly to genus while they showed a lower or no success in assigning these plants to species and cultivars. For future, we recommend the combination of a complementary barcode (e.g. ITS or trnH-psbA) with rbcL + matK to increase the performance of taxa identification. By aiding species identification of horticultural crops and ornamental palms, the analysis of the barcode regions will have large impact on horticultural industry.

  20. DNA barcoding and evaluation of genetic diversity in Cyprinidae fish in the midstream of the Yangtze River.

    PubMed

    Shen, Yanjun; Guan, Lihong; Wang, Dengqiang; Gan, Xiaoni

    2016-05-01

    The Yangtze River is the longest river in China and is divided into upstream and mid-downstream regions by the Three Gorges (the natural barriers of the Yangtze River), resulting in a complex distribution of fish. Dramatic changes to habitat environments may ultimately threaten fish survival; thus, it is necessary to evaluate the genetic diversity and propose protective measures. Species identification is the most significant task in many fields of biological research and in conservation efforts. DNA barcoding, which constitutes the analysis of a short fragment of the mitochondrial cytochrome c oxidase subunit I (COI) sequence, has been widely used for species identification. In this study, we collected 561 COI barcode sequences from 35 fish from the midstream of the Yangtze River. The intraspecific distances of all species were below 2% (with the exception of Acheilognathus macropterus and Hemibarbus maculatus). Nevertheless, all species could be unambiguously identified from the trees, barcoding gaps and taxonomic resolution ratio values. Furthermore, the COI barcode diversity was found to be low (≤0.5%), with the exception of H. maculatus (0.87%), A. macropterus (2.02%) and Saurogobio dabryi (0.82%). No or few shared haplotypes were detected between the upstream and downstream populations for ten species with overall nucleotide diversities greater than 0.00%, which indicated the likelihood of significant population genetic structuring. Our analyses indicated that DNA barcoding is an effective tool for the identification of cyprinidae fish in the midstream of the Yangtze River. It is vital that some protective measures be taken immediately because of the low COI barcode diversity.

  1. DNA Barcoding of Rhodiola (Crassulaceae): A Case Study on a Group of Recently Diversified Medicinal Plants from the Qinghai-Tibetan Plateau

    PubMed Central

    Zhang, Jian-Qiang; Meng, Shi-Yong; Wen, Jun; Rao, Guang-Yuan

    2015-01-01

    DNA barcoding, the identification of species using one or a few short standardized DNA sequences, is an important complement to traditional taxonomy. However, there are particular challenges for barcoding plants, especially for species with complex evolutionary histories. We herein evaluated the utility of five candidate sequences — rbcL, matK, trnH-psbA, trnL-F and the internal transcribed spacer (ITS) — for barcoding Rhodiola species, a group of high-altitude plants frequently used as adaptogens, hemostatics and tonics in traditional Tibetan medicine. Rhodiola was suggested to have diversified rapidly recently. The genus is thus a good model for testing DNA barcoding strategies for recently diversified medicinal plants. This study analyzed 189 accessions, representing 47 of the 55 recognized Rhodiola species in the Flora of China treatment. Based on intraspecific and interspecific divergence and degree of monophyly statistics, ITS was the best single-locus barcode, resolving 66% of the Rhodiola species. The core combination rbcL+matK resolved only 40.4% of them. Unsurprisingly, the combined use of all five loci provided the highest discrimination power, resolving 80.9% of the species. However, this is weaker than the discrimination power generally reported in barcoding studies of other plant taxa. The observed complications may be due to the recent diversification, incomplete lineage sorting and reticulate evolution of the genus. These processes are common features of numerous plant groups in the high-altitude regions of the Qinghai-Tibetan Plateau. PMID:25774915

  2. Creation of reference DNA barcode library and authentication of medicinal plant raw drugs used in Ayurvedic medicine.

    PubMed

    Vassou, Sophie Lorraine; Nithaniyal, Stalin; Raju, Balaji; Parani, Madasamy

    2016-07-18

    Ayurveda is a system of traditional medicine that originated in ancient India, and it is still in practice. Medicinal plants are the backbone of Ayurveda, which heavily relies on the plant-derived therapeutics. While Ayurveda is becoming more popular in several countries throughout the World, lack of authenticated medicinal plant raw drugs is a growing concern. Our aim was to DNA barcode the medicinal plants that are listed in the Ayurvedic Pharmacopoeia of India (API) to create a reference DNA barcode library, and to use the same to authenticate the raw drugs that are sold in markets. We have DNA barcoded 347 medicinal plants using rbcL marker, and curated rbcL DNA barcodes for 27 medicinal plants from public databases. These sequences were used to create Ayurvedic Pharmacopoeia of India - Reference DNA Barcode Library (API-RDBL). This library was used to authenticate 100 medicinal plant raw drugs, which were in the form of powders (82) and seeds (18). Ayurvedic Pharmacopoeia of India - Reference DNA Barcode Library (API-RDBL) was created with high quality and authentic rbcL barcodes for 374 out of the 395 medicinal plants that are included in the API. The rbcL DNA barcode differentiated 319 species (85 %) with the pairwise divergence ranging between 0.2 and 29.9 %. PCR amplification and DNA sequencing success rate of rbcL marker was 100 % even for the poorly preserved medicinal plant raw drugs that were collected from local markets. DNA barcoding revealed that only 79 % raw drugs were authentic, and the remaining 21 % samples were adulterated. Further, adulteration was found to be much higher with powders (ca. 25 %) when compared to seeds (ca. 5 %). The present study demonstrated the utility of DNA barcoding in authenticating medicinal plant raw drugs, and found that approximately one fifth of the market samples were adulterated. Powdered raw drugs, which are very difficult to be identified by taxonomists as well as common people, seem to be the easy target for adulteration. Developing a quality control protocol for medicinal plant raw drugs by incorporating DNA barcoding as a component is essential to ensure safety to the consumers.

  3. High-accuracy biodistribution analysis of adeno-associated virus variants by double barcode sequencing.

    PubMed

    Marsic, Damien; Méndez-Gómez, Héctor R; Zolotukhin, Sergei

    2015-01-01

    Biodistribution analysis is a key step in the evaluation of adeno-associated virus (AAV) capsid variants, whether natural isolates or produced by rational design or directed evolution. Indeed, when screening candidate vectors, accurate knowledge about which tissues are infected and how efficiently is essential. We describe the design, validation, and application of a new vector, pTR-UF50-BC, encoding a bioluminescent protein, a fluorescent protein and a DNA barcode, which can be used to visualize localization of transduction at the organism, organ, tissue, or cellular levels. In addition, by linking capsid variants to different barcoded versions of the vector and amplifying the barcode region from various tissue samples using barcoded primers, biodistribution of viral genomes can be analyzed with high accuracy and efficiency.

  4. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building

    PubMed Central

    Peñafiel, Nicolás; Arteaga, Alejandro; Bustamante, Lucas; Pichardo, Frank; Coloma, Luis A; Barrio-Amorós, César L; Salazar-Valenzuela, David; Prost, Stefan

    2018-01-01

    Abstract Background Advancements in portable scientific instruments provide promising avenues to expedite field work in order to understand the diverse array of organisms that inhabit our planet. Here, we tested the feasibility for in situ molecular analyses of endemic fauna using a portable laboratory fitting within a single backpack in one of the world's most imperiled biodiversity hotspots, the Ecuadorian Chocó rainforest. We used portable equipment, including the MinION nanopore sequencer (Oxford Nanopore Technologies) and the miniPCR (miniPCR), to perform DNA extraction, polymerase chain reaction amplification, and real-time DNA barcoding of reptile specimens in the field. Findings We demonstrate that nanopore sequencing can be implemented in a remote tropical forest to quickly and accurately identify species using DNA barcoding, as we generated consensus sequences for species resolution with an accuracy of >99% in less than 24 hours after collecting specimens. The flexibility of our mobile laboratory further allowed us to generate sequence information at the Universidad Tecnológica Indoamérica in Quito for rare, endangered, and undescribed species. This includes the recently rediscovered Jambato toad, which was thought to be extinct for 28 years. Sequences generated on the MinION required as few as 30 reads to achieve high accuracy relative to Sanger sequencing, and with further multiplexing of samples, nanopore sequencing can become a cost-effective approach for rapid and portable DNA barcoding. Conclusions Overall, we establish how mobile laboratories and nanopore sequencing can help to accelerate species identification in remote areas to aid in conservation efforts and be applied to research facilities in developing countries. This opens up possibilities for biodiversity studies by promoting local research capacity building, teaching nonspecialists and students about the environment, tackling wildlife crime, and promoting conservation via research-focused ecotourism. PMID:29617771

  5. Reliable DNA Barcoding Performance Proved for Species and Island Populations of Comoran Squamate Reptiles

    PubMed Central

    Hawlitschek, Oliver; Nagy, Zoltán T.; Berger, Johannes; Glaw, Frank

    2013-01-01

    In the past decade, DNA barcoding became increasingly common as a method for species identification in biodiversity inventories and related studies. However, mainly due to technical obstacles, squamate reptiles have been the target of few barcoding studies. In this article, we present the results of a DNA barcoding study of squamates of the Comoros archipelago, a poorly studied group of oceanic islands close to and mostly colonized from Madagascar. The barcoding dataset presented here includes 27 of the 29 currently recognized squamate species of the Comoros, including 17 of the 18 endemic species. Some species considered endemic to the Comoros according to current taxonomy were found to cluster with non-Comoran lineages, probably due to poorly resolved taxonomy. All other species for which more than one barcode was obtained corresponded to distinct clusters useful for species identification by barcoding. In most species, even island populations could be distinguished using barcoding. Two cryptic species were identified using the DNA barcoding approach. The obtained barcoding topology, a Bayesian tree based on COI sequences of 5 genera, was compared with available multigene topologies, and in 3 cases, major incongruences between the two topologies became evident. Three of the multigene studies were initiated after initial screening of a preliminary version of the barcoding dataset presented here. We conclude that in the case of the squamates of the Comoros Islands, DNA barcoding has proven a very useful and efficient way of detecting isolated populations and promising starting points for subsequent research. PMID:24069192

  6. DNA barcode-based molecular identification system for fish species.

    PubMed

    Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won

    2010-12-01

    In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .

  7. Scalable Amplification of Strand Subsets from Chip-Synthesized Oligonucleotide Libraries (Open Access)

    DTIC Science & Technology

    2015-11-16

    detailed discussion of barcode designs in Supplementary Note 1, Supplementary Fig. 1 and sequences in Supplementary Note 2). Whereas the nicking and...eight subpools, each as a one- or as a two-barcode version ( design details in Supplementary Note 1). All subpools amplified strands with the expected...for the c2ca designs . We used the same restriction enzymes (Nb.BsrDI and Nt.BspQI) that were encoded between the primers and the target sequences to

  8. Chemical genomic profiling via barcode sequencing to predict compound mode of action

    PubMed Central

    Piotrowski, Jeff S.; Simpkins, Scott W.; Li, Sheena C.; Deshpande, Raamesh; McIlwain, Sean; Ong, Irene; Myers, Chad L.; Boone, Charlie; Andersen, Raymond J.

    2015-01-01

    Summary Chemical genomics is an unbiased, whole-cell approach to characterizing novel compounds to determine mode of action and cellular target. Our version of this technique is built upon barcoded deletion mutants of Saccharomyces cerevisiae and has been adapted to a high-throughput methodology using next-generation sequencing. Here we describe the steps to generate a chemical genomic profile from a compound of interest, and how to use this information to predict molecular mechanism and targets of bioactive compounds. PMID:25618354

  9. DNA Barcoding in Fragaria L. (Strawberry) Species

    USDA-ARS?s Scientific Manuscript database

    DNA barcoding for species identification using a short DNA sequence has been successful in animals due to rapid mutation rates of the mitochondrial genome where the animal DNA barocode, cytochrome c oxidase 1 gene is located. The chloroplast PsbA-trnH spacer and the nuclear ribosomal internal transc...

  10. DNA Barcode for Identifying Folium Artemisiae Argyi from Counterfeits.

    PubMed

    Mei, Quanxi; Chen, Xiaolu; Xiang, Li; Liu, Yue; Su, Yanyan; Gao, Yuqiao; Dai, Weibo; Dong, Pengpeng; Chen, Shilin

    2016-01-01

    Folium Artemisiae Argyi is an important herb in traditional Chinese medicine. It is commonly used in moxibustion, medicine, etc. However, identifying Artemisia argyi is difficult because this herb exhibits similar morphological characteristics to closely related species and counterfeits. To verify the applicability of DNA barcoding, ITS2 and psbA-trnH were used to identify A. argyi from 15 closely related species and counterfeits. Results indicated that total DNA was easily extracted from all the samples and that both ITS2 and psbA-trnH fragments can be easily amplified. ITS2 was a more ideal barcode than psbA-trnH and ITS2+psbA-trnH to identify A. argyi from closely related species and counterfeits on the basis of sequence character, genetic distance, and tree methods. The sequence length was 225 bp for the 56 ITS2 sequences of A. argyi, and no variable site was detected. For the ITS2 sequences, A. capillaris, A. anomala, A. annua, A. igniaria, A. maximowicziana, A. princeps, Dendranthema vestitum, and D. indicum had single nucleotide polymorphisms (SNPs). The intraspecific Kimura 2-Parameter distance was zero, which is lower than the minimum interspecific distance (0.005). A. argyi, the closely related species, and counterfeits, except for Artemisia maximowicziana and Artemisia sieversiana, were separated into pairs of divergent clusters by using the neighbor joining, maximum parsimony, and maximum likelihood tree methods. Thus, the ITS2 sequence was an ideal barcode to identify A. argyi from closely related species and counterfeits to ensure the safe use of this plant.

  11. Advances in DNA metabarcoding for food and wildlife forensic species identification.

    PubMed

    Staats, Martijn; Arulandhu, Alfred J; Gravendeel, Barbara; Holst-Jensen, Arne; Scholtens, Ingrid; Peelen, Tamara; Prins, Theo W; Kok, Esther

    2016-07-01

    Species identification using DNA barcodes has been widely adopted by forensic scientists as an effective molecular tool for tracking adulterations in food and for analysing samples from alleged wildlife crime incidents. DNA barcoding is an approach that involves sequencing of short DNA sequences from standardized regions and comparison to a reference database as a molecular diagnostic tool in species identification. In recent years, remarkable progress has been made towards developing DNA metabarcoding strategies, which involves next-generation sequencing of DNA barcodes for the simultaneous detection of multiple species in complex samples. Metabarcoding strategies can be used in processed materials containing highly degraded DNA e.g. for the identification of endangered and hazardous species in traditional medicine. This review aims to provide insight into advances of plant and animal DNA barcoding and highlights current practices and recent developments for DNA metabarcoding of food and wildlife forensic samples from a practical point of view. Special emphasis is placed on new developments for identifying species listed in the Convention on International Trade of Endangered Species (CITES) appendices for which reliable methods for species identification may signal and/or prevent illegal trade. Current technological developments and challenges of DNA metabarcoding for forensic scientists will be assessed in the light of stakeholders' needs.

  12. DNA barcoding and morphological analysis for rapid identification of most economically important crop-infesting Sunn pests belonging to Eurygaster Laporte, 1833 (Hemiptera, Scutelleridae).

    PubMed

    Syromyatnikov, Mikhail Y; Golub, Victor B; Kokina, Anastasia V; Victoria A Soboleva; Popov, Vasily N

    2017-01-01

    The genus Eurygaster Laporte, 1833 includes ten species five of which inhabit the European part of Russia. The harmful species of the genus is E. integriceps . Eurygaster species identification based on the morphological traits is very difficult, while that of the species at the egg or larval stages is extremely difficult or impossible. Eurygaster integriceps , E. maura , and E. testudinaria differ only slightly between each other morphologically, E. maura and E. testudinaria being almost indiscernible. DNA barcoding based on COI sequences have shown that E. integriceps differs significantly from these closely related species, which enables its rapid and accurate identification. Based on COI nucleotide sequences, three species of Sunn pests, E. maura , E. testudinarius , E. dilaticollis , could not be differentiated from each other through DNA barcoding. The difference in the DNA sequences between the COI gene of E. integriceps and COI genes of E. maura and E. testudinarius was more than 4%. In the present study DNA barcoding of two Eurygaster species was performed for the first time on E. integriceps , the most dangerous pest in the genus, and E. dilaticollis that only inhabits natural ecosystems. The PCR-RFLP method was developed in this work for the rapid identification of E. integriceps .

  13. DNA barcode variability and host plant usage of fruit flies (Diptera: Tephritidae) in Thailand.

    PubMed

    Kunprom, Chonticha; Pramual, Pairot

    2016-10-01

    The objectives of this study were to examine the genetic variation in fruit flies (Diptera: Tephritidae) in Thailand and to test the efficiency of the mitochondrial cytochrome c oxidase subunit I (COI) barcoding region for species-level identification. Twelve fruit fly species were collected from 24 host plant species of 13 families. The number of host plant species for each fruit fly species ranged between 1 and 11, with Bactrocera correcta found in the most diverse host plants. A total of 123 COI sequences were obtained from these fruit fly species. Sequences from the NCBI database were also included, for a total of 17 species analyzed. DNA barcoding identification analysis based on the best close match method revealed a good performance, with 94.4% of specimens correctly identified. However, many specimens (3.6%) had ambiguous identification, mostly due to intra- and interspecific overlap between members of the B. dorsalis complex. A phylogenetic tree based on the mitochondrial barcode sequences indicated that all species, except for the members of the B. dorsalis complex, were monophyletic with strong support. Our work supports recent calls for synonymization of these species. Divergent lineages were observed within B. correcta and B. tuberculata, and this suggested that these species need further taxonomic reexamination.

  14. DNA barcoding and morphological analysis for rapid identification of most economically important crop-infesting Sunn pests belonging to Eurygaster Laporte, 1833 (Hemiptera, Scutelleridae)

    PubMed Central

    Syromyatnikov, Mikhail Y.; Golub, Victor B.; Kokina, Anastasia V.; Victoria A. Soboleva; Popov, Vasily N.

    2017-01-01

    Abstract The genus Eurygaster Laporte, 1833 includes ten species five of which inhabit the European part of Russia. The harmful species of the genus is E. integriceps. Eurygaster species identification based on the morphological traits is very difficult, while that of the species at the egg or larval stages is extremely difficult or impossible. Eurygaster integriceps, E. maura, and E. testudinaria differ only slightly between each other morphologically, E. maura and E. testudinaria being almost indiscernible. DNA barcoding based on COI sequences have shown that E. integriceps differs significantly from these closely related species, which enables its rapid and accurate identification. Based on COI nucleotide sequences, three species of Sunn pests, E. maura, E. testudinarius, E. dilaticollis, could not be differentiated from each other through DNA barcoding. The difference in the DNA sequences between the COI gene of E. integriceps and COI genes of E. maura and E. testudinarius was more than 4%. In the present study DNA barcoding of two Eurygaster species was performed for the first time on E. integriceps, the most dangerous pest in the genus, and E. dilaticollis that only inhabits natural ecosystems. The PCR-RFLP method was developed in this work for the rapid identification of E. integriceps. PMID:29118620

  15. Using high-throughput barcode sequencing to efficiently map connectomes

    PubMed Central

    Peikon, Ian D.; Kebschull, Justus M.; Vagin, Vasily V.; Ravens, Diana I.; Sun, Yu-Chi; Brouzes, Eric; Corrêa, Ivan R.; Bressan, Dario

    2017-01-01

    Abstract The function of a neural circuit is determined by the details of its synaptic connections. At present, the only available method for determining a neural wiring diagram with single synapse precision—a ‘connectome’—is based on imaging methods that are slow, labor-intensive and expensive. Here, we present SYNseq, a method for converting the connectome into a form that can exploit the speed and low cost of modern high-throughput DNA sequencing. In SYNseq, each neuron is labeled with a unique random nucleotide sequence—an RNA ‘barcode’—which is targeted to the synapse using engineered proteins. Barcodes in pre- and postsynaptic neurons are then associated through protein-protein crosslinking across the synapse, extracted from the tissue, and joined into a form suitable for sequencing. Although our failure to develop an efficient barcode joining scheme precludes the widespread application of this approach, we expect that with further development SYNseq will enable tracing of complex circuits at high speed and low cost. PMID:28449067

  16. Cytochrome c oxidase I primers for corbiculate bees: DNA barcode and mini-barcode.

    PubMed

    Françoso, E; Arias, M C

    2013-09-01

    Bees (Apidae), of which there are more than 19 900 species, are extremely important for ecosystem services and economic purposes, so taxon identity is a major concern. The goal of this study was to optimize the DNA barcode technique based on the Cytochrome c oxidase (COI) mitochondrial gene region. This approach has previously been shown to be useful in resolving taxonomic inconsistencies and for species identification when morphological data are poor. Specifically, we designed and tested new primers and standardized PCR conditions to amplify the barcode region for bees, focusing on the corbiculate Apids. In addition, primers were designed to amplify small COI amplicons and tested with pinned specimens. Short barcode sequences were easily obtained for some Bombus century-old museum specimens and shown to be useful as mini-barcodes. The new primers and PCR conditions established in this study proved to be successful for the amplification of the barcode region for all species tested, regardless of the conditions of tissue preservation. We saw no evidence of Wolbachia or numts amplification by these primers, and so we suggest that these new primers are of broad value for corbiculate bee identification through DNA barcode. © 2013 John Wiley & Sons Ltd.

  17. DNA barcoding and molecular systematics of the benthic and demersal organisms of the CEAMARC survey

    NASA Astrophysics Data System (ADS)

    Dettai, Agnes; Adamowizc, Sarah J.; Allcock, Louise; Arango, Claudia P.; Barnes, David K. A.; Barratt, Iain; Chenuil, Anne; Couloux, Arnaud; Cruaud, Corinne; David, Bruno; Denis, Françoise; Denys, Gael; Díaz, Angie; Eléaume, Marc; Féral, Jean-Pierre; Froger, Aurélie; Gallut, Cyril; Grant, Rachel; Griffiths, Huw J.; Held, Christoph; Hemery, Lenaïg G.; Hosie, Graham; Kuklinski, Piotr; Lecointre, Guillaume; Linse, Katrin; Lozouet, Pierre; Mah, Christopher; Monniot, Françoise; Norman, Mark D.; O'Hara, Timothy; Ozouf-Costaz, Catherine; Piedallu, Claire; Pierrat, Benjamin; Poulin, Elie; Puillandre, Nicolas; Riddle, Martin; Samadi, Sarah; Saucède, Thomas; Schubart, Christoph; Smith, Peter J.; Stevens, Darren W.; Steinke, Dirk; Strugnell, Jan M.; Tarnowska, K.; Wadley, Victoria; Ameziane, Nadia

    2011-08-01

    The Dumont d’Urville Sea (East Antarctic region) has been less investigated for DNA barcoding and molecular taxonomy than other parts of the Southern Ocean, such as the Ross Sea and the Antarctic Peninsula. The Collaborative East Antarctic MARine Census (CEAMARC) took place in this area during the austral summer of 2007-2008. The Australian vessel RSV Aurora Australis collected very diverse samples of demersal and benthic organisms. The specimens were sorted centrally, and then distributed to taxonomic experts for molecular and morphological taxonomy and identification, especially barcoding. The COI sequences generated from CEAMARC material provide a sizeable proportion of the Census of Antarctic Marine Life barcodes although the studies are still ongoing, and represent the only source of sequences for a number of species. Barcoding appears to be a valuable method for identification within most groups, despite low divergences and haplotype sharing in a few species, and it is also useful as a preliminary taxonomic exploration method. Several new species are being described. CEAMARC samples have already provided new material for phylogeographic and phylogenetic studies in cephalopods, pycnogonids, teleost fish, crinoids and sea urchins, helping these studies to provide a better insight in the patterns of evolution in the Southern Ocean.

  18. Plans and progress for building a Great Lakes fauna DNA ...

    EPA Pesticide Factsheets

    DNA reference libraries provide researchers with an important tool for assessing regional biodiversity by allowing unknown genetic sequences to be assigned identities, while also providing a means for taxonomists to validate identifications. Expanding the representation of Great Lakes species in such reference libraries is an explicit component of research at EPA’s Mid-Continent Ecology Division. Our DNA reference library building efforts began in 2012 with the goal of providing barcodes for at least 5 specimens of each native and nonindigenous fish and aquatic invertebrate species currently present in the Great Lakes. The approach is to pull taxonomically validated specimen for sequencing from EPA led sampling efforts of adult/juvenile fish, larval fish, benthic macroinvertebrates, and zooplankton; while also soliciting aid from state and federal agencies for tissue from “shopping list” organisms. The barcodes we generate are made available through the publicly accessible BOLD (Barcode of Life) database, and help inform a planned Great Lakes biodiversity inventory. To date, our submissions to BOLD are limited to fishes; of the 88 fish species listed as being present within Lake Superior, roughly half were successfully barcoded, while only 22 species met the desired quota of 5 barcoded specimens per species. As we continue to generate genomic information from our collections and the taxonomic representations become more complete, we will continue to

  19. The utility of mtDNA and rDNA for barcoding and phylogeny of plant-parasitic nematodes from Longidoridae (Nematoda, Enoplea).

    PubMed

    Palomares-Rius, J E; Cantalapiedra-Navarrete, C; Archidona-Yuste, A; Subbotin, S A; Castillo, P

    2017-09-07

    The traditional identification of plant-parasitic nematode species by morphology and morphometric studies is very difficult because of high morphological variability that can lead to considerable overlap of many characteristics and their ambiguous interpretation. For this reason, it is essential to implement approaches to ensure accurate species identification. DNA barcoding aids in identification and advances species discovery. This study sought to unravel the use of the mitochondrial marker cytochrome c oxidase subunit 1 (coxI) as barcode for Longidoridae species identification, and as a phylogenetic marker. The results showed that mitochondrial and ribosomal markers could be used as barcoding markers, except for some species from the Xiphinema americanum group. The ITS1 region showed a promising role in barcoding for species identification because of the clear molecular variability among species. Some species presented important molecular variability in coxI. The analysis of the newly provided sequences and the sequences deposited in GenBank showed plausible misidentifications, and the use of voucher species and topotype specimens is a priority for this group of nematodes. The use of coxI and D2 and D3 expansion segments of the 28S rRNA gene did not clarify the phylogeny at the genus level.

  20. From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity.

    PubMed

    Cristescu, Melania E

    2014-10-01

    DNA-based species identification, known as barcoding, transformed the traditional approach to the study of biodiversity science. The field is transitioning from barcoding individuals to metabarcoding communities. This revolution involves new sequencing technologies, bioinformatics pipelines, computational infrastructure, and experimental designs. In this dynamic genomics landscape, metabarcoding studies remain insular and biodiversity estimates depend on the particular methods used. In this opinion article, I discuss the need for a coordinated advancement of DNA-based species identification that integrates taxonomic and barcoding information. Such an approach would facilitate access to almost 3 centuries of taxonomic knowledge and 1 decade of building repository barcodes. Conservation projects are time sensitive, research funding is becoming restricted, and informed decisions depend on our ability to embrace integrative approaches to biodiversity science. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Cytochrome C oxidase subunit I barcodes provide an efficient tool for Jinqian Baihua She (Bungarus parvus) authentication

    PubMed Central

    Chao, Zhi; Liao, Jing; Liang, Zhenbiao; Huang, Suhua; Zhang, Liang; Li, Junde

    2014-01-01

    Objective: To test the feasibility of DNA barcoding for accurate identification of Jinqian Baihua She and its adulterants. Materials and Methods: Standard cytochrome C oxidase subunit I (COI) gene fragments were sequenced for DNA barcoding of 39 samples from 9 snake species, including Bungarus multicinctus, the officially recognized origin animal by Chinese Pharmacopoeia, and other 8 adulterate species. The aligned sequences, 658 base pairs in length, were analyzed for divergence using the Kimura-2-parameter (K2P) distance model with MEGA5.0. Results: The mean intraspecific K2P distance was 0.0103 and the average interspecific genetic distance was 0.2178 in B. multicinctus, far greater than the minimal interspecific genetic distance of 0.027 recommended for species identification. A neighbor-joining (NJ) tree was constructed, in which each species formed a monophyletic clade with bootstrap supports of 100%. All the data were submitted to Barcode of Life Data system version 3.0 (BOLD, http://www.barcodinglife.org) under the project title “DNA barcoding Bungarus multicinctus and its adulterants”. Ten samples of commercially available crude drugs of JBS were identified using the identification engine provided by BOLD. All the samples were clearly identified at the species level, among which five were found to be the adulterants and identified as Dinodon rufozonatum. Conclusion: DNA barcoding using the standard COI gene fragments provides an effective and accurate means for JBS identification and authentication. PMID:25422545

  2. "Crown of thorns" of Daphnia: an exceptional inducible defense discovered by DNA barcoding.

    PubMed

    Laforsch, Christian; Haas, Andreas; Jung, Nina; Schwenk, Klaus; Tollrian, Ralph; Petrusek, Adam

    2009-09-01

    DNA barcoding has emerged as valuable tool to document global biodiversity. Mitochondrial cytochrome oxidase I (COI) sequences serve as genetic markers to catalogue species richness in the animal kingdom and to identify cryptic and polymorphic animal species. Furthermore, DNA barcoding data serve as a fuel for ecological studies, as they provide the opportunity to unravel species interactions among hosts and parasites, predators and prey, and among competitors in unprecedented detail. In a recent paper we described how DNA barcoding in combination with morphological and ecological data unravelled a striking predator-prey interaction of organisms from temporary aquatic habitats, the predatory notostracan Triops and its prey, cladocerans of the Daphnia atkinsoni complex.

  3. DNA Barcoding of Bemisia tabaci Complex (Hemiptera: Aleyrodidae) Reveals Southerly Expansion of the Dominant Whitefly Species on Cotton in Pakistan

    PubMed Central

    Ashfaq, Muhammad; Hebert, Paul D. N.; Mirza, M. Sajjad; Khan, Arif M.; Mansoor, Shahid; Shah, Ghulam S.; Zafar, Yusuf

    2014-01-01

    Background Although whiteflies (Bemisia tabaci complex) are an important pest of cotton in Pakistan, its taxonomic diversity is poorly understood. As DNA barcoding is an effective tool for resolving species complexes and analyzing species distributions, we used this approach to analyze genetic diversity in the B. tabaci complex and map the distribution of B. tabaci lineages in cotton growing areas of Pakistan. Methods/Principal Findings Sequence diversity in the DNA barcode region (mtCOI-5′) was examined in 593 whiteflies from Pakistan to determine the number of whitefly species and their distributions in the cotton-growing areas of Punjab and Sindh provinces. These new records were integrated with another 173 barcode sequences for B. tabaci, most from India, to better understand regional whitefly diversity. The Barcode Index Number (BIN) System assigned the 766 sequences to 15 BINs, including nine from Pakistan. Representative specimens of each Pakistan BIN were analyzed for mtCOI-3′ to allow their assignment to one of the putative species in the B. tabaci complex recognized on the basis of sequence variation in this gene region. This analysis revealed the presence of Asia II 1, Middle East-Asia Minor 1, Asia 1, Asia II 5, Asia II 7, and a new lineage “Pakistan”. The first two taxa were found in both Punjab and Sindh, but Asia 1 was only detected in Sindh, while Asia II 5, Asia II 7 and “Pakistan” were only present in Punjab. The haplotype networks showed that most haplotypes of Asia II 1, a species implicated in transmission of the cotton leaf curl virus, occurred in both India and Pakistan. Conclusions DNA barcodes successfully discriminated cryptic species in B. tabaci complex. The dominant haplotypes in the B. tabaci complex were shared by India and Pakistan. Asia II 1 was previously restricted to Punjab, but is now the dominant lineage in southern Sindh; its southward spread may have serious implications for cotton plantations in this region. PMID:25099936

  4. Building a DNA barcode library of Alaska's non-marine arthropods.

    PubMed

    Sikes, Derek S; Bowser, Matthew; Morton, John M; Bickford, Casey; Meierotto, Sarah; Hildebrandt, Kyndall

    2017-03-01

    Climate change may result in ecological futures with novel species assemblages, trophic mismatch, and mass extinction. Alaska has a limited taxonomic workforce to address these changes. We are building a DNA barcode library to facilitate a metabarcoding approach to monitoring non-marine arthropods. Working with the Canadian Centre for DNA Barcoding, we obtained DNA barcodes from recently collected and authoritatively identified specimens in the University of Alaska Museum (UAM) Insect Collection and the Kenai National Wildlife Refuge collection. We submitted tissues from 4776 specimens, of which 81% yielded DNA barcodes representing 1662 species and 1788 Barcode Index Numbers (BINs), of primarily terrestrial, large-bodied arthropods. This represents 84% of the species available for DNA barcoding in the UAM Insect Collection. There are now 4020 Alaskan arthropod species represented by DNA barcodes, after including all records in Barcode of Life Data Systems (BOLD) of species that occur in Alaska - i.e., 48.5% of the 8277 Alaskan, non-marine-arthropod, named species have associated DNA barcodes. An assessment of the identification power of the library in its current state yielded fewer species-level identifications than expected, but the results were not discouraging. We believe we are the first to deliberately begin development of a DNA barcode library of the entire arthropod fauna for a North American state or province. Although far from complete, this library will become increasingly valuable as more species are added and costs to obtain DNA sequences fall.

  5. Molecular Identification of Dendrobium Species (Orchidaceae) Based on the DNA Barcode ITS2 Region and Its Application for Phylogenetic Study.

    PubMed

    Feng, Shangguo; Jiang, Yan; Wang, Shang; Jiang, Mengying; Chen, Zhe; Ying, Qicai; Wang, Huizhong

    2015-09-11

    The over-collection and habitat destruction of natural Dendrobium populations for their commercial medicinal value has led to these plants being under severe threat of extinction. In addition, many Dendrobium plants are similarly shaped and easily confused during the absence of flowering stages. In the present study, we examined the application of the ITS2 region in barcoding and phylogenetic analyses of Dendrobium species (Orchidaceae). For barcoding, ITS2 regions of 43 samples in Dendrobium were amplified. In combination with sequences from GenBank, the sequences were aligned using Clustal W and genetic distances were computed using MEGA V5.1. The success rate of PCR amplification and sequencing was 100%. There was a significant divergence between the inter- and intra-specific genetic distances of ITS2 regions, while the presence of a barcoding gap was obvious. Based on the BLAST1, nearest distance and TaxonGAP methods, our results showed that the ITS2 regions could successfully identify the species of most Dendrobium samples examined; Second, we used ITS2 as a DNA marker to infer phylogenetic relationships of 64 Dendrobium species. The results showed that cluster analysis using the ITS2 region mainly supported the relationship between the species of Dendrobium established by traditional morphological methods and many previous molecular analyses. To sum up, the ITS2 region can not only be used as an efficient barcode to identify Dendrobium species, but also has the potential to contribute to the phylogenetic analysis of the genus Dendrobium.

  6. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding.

    PubMed

    Ghahramanzadeh, R; Esselink, G; Kodde, L P; Duistermaat, H; van Valkenburg, J L C H; Marashi, S H; Smulders, M J M; van de Wiel, C C M

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non-invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH-psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH-psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics. © 2012 Blackwell Publishing Ltd.

  7. Accelerating plant DNA barcode reference library construction using herbarium specimens: improved experimental techniques.

    PubMed

    Xu, Chao; Dong, Wenpan; Shi, Shuo; Cheng, Tao; Li, Changhao; Liu, Yanlei; Wu, Ping; Wu, Hongkun; Gao, Peng; Zhou, Shiliang

    2015-11-01

    A well-covered reference library is crucial for successful identification of species by DNA barcoding. The biggest difficulty in building such a reference library is the lack of materials of organisms. Herbarium collections are potentially an enormous resource of materials. In this study, we demonstrate that it is likely to build such reference libraries using the reconstructed (self-primed PCR amplified) DNA from the herbarium specimens. We used 179 rosaceous specimens to test the effects of DNA reconstruction, 420 randomly sampled specimens to estimate the usable percentage and another 223 specimens of true cherries (Cerasus, Rosaceae) to test the coverage of usable specimens to the species. The barcode rbcLb (the central four-sevenths of rbcL gene) and matK was each amplified in two halves and sequenced on Roche GS 454 FLX+. DNA from the herbarium specimens was typically shorter than 300 bp. DNA reconstruction enabled amplification fragments of 400-500 bp without bringing or inducing any sequence errors. About one-third of specimens in the national herbarium of China (PE) were proven usable after DNA reconstruction. The specimens in PE cover all Chinese true cherry species and 91.5% of vascular species listed in Flora of China. It is very possible to build well-covered reference libraries for DNA barcoding of vascular species in China. As exemplified in this study, DNA reconstruction and DNA-labelled next-generation sequencing can accelerate the construction of local reference libraries. By putting the local reference libraries together, a global library for DNA barcoding becomes closer to reality. © 2015 John Wiley & Sons Ltd.

  8. Molecular Identification of Dendrobium Species (Orchidaceae) Based on the DNA Barcode ITS2 Region and Its Application for Phylogenetic Study

    PubMed Central

    Feng, Shangguo; Jiang, Yan; Wang, Shang; Jiang, Mengying; Chen, Zhe; Ying, Qicai; Wang, Huizhong

    2015-01-01

    The over-collection and habitat destruction of natural Dendrobium populations for their commercial medicinal value has led to these plants being under severe threat of extinction. In addition, many Dendrobium plants are similarly shaped and easily confused during the absence of flowering stages. In the present study, we examined the application of the ITS2 region in barcoding and phylogenetic analyses of Dendrobium species (Orchidaceae). For barcoding, ITS2 regions of 43 samples in Dendrobium were amplified. In combination with sequences from GenBank, the sequences were aligned using Clustal W and genetic distances were computed using MEGA V5.1. The success rate of PCR amplification and sequencing was 100%. There was a significant divergence between the inter- and intra-specific genetic distances of ITS2 regions, while the presence of a barcoding gap was obvious. Based on the BLAST1, nearest distance and TaxonGAP methods, our results showed that the ITS2 regions could successfully identify the species of most Dendrobium samples examined; Second, we used ITS2 as a DNA marker to infer phylogenetic relationships of 64 Dendrobium species. The results showed that cluster analysis using the ITS2 region mainly supported the relationship between the species of Dendrobium established by traditional morphological methods and many previous molecular analyses. To sum up, the ITS2 region can not only be used as an efficient barcode to identify Dendrobium species, but also has the potential to contribute to the phylogenetic analysis of the genus Dendrobium. PMID:26378526

  9. DNA barcode and identification of the varieties and provenances of Taiwan's domestic and imported made teas using ribosomal internal transcribed spacer 2 sequences.

    PubMed

    Lee, Shih-Chieh; Wang, Chia-Hsiang; Yen, Cheng-En; Chang, Chieh

    2017-04-01

    The major aim of made tea identification is to identify the variety and provenance of the tea plant. The present experiment used 113 tea plants [Camellia sinensis (L.) O. Kuntze] housed at the Tea Research and Extension Substation, from which 113 internal transcribed spacer 2 (ITS2) fragments, 104 trnL intron, and 98 trnL-trnF intergenic sequence region DNA sequences were successfully sequenced. The similarity of the ITS2 nucleotide sequences between tea plants housed at the Tea Research and Extension Substation was 0.379-0.994. In this polymerase chain reaction-amplified noncoding region, no varieties possessed identical sequences. Compared with the trnL intron and trnL-trnF intergenic sequence fragments of chloroplast cpDNA, the proportion of ITS2 nucleotide sequence variation was large and is more suitable for establishing a DNA barcode database to identify tea plant varieties. After establishing the database, 30 imported teas and 35 domestic made teas were used in this model system to explore the feasibility of using ITS2 sequences to identify the varieties and provenances of made teas. A phylogenetic tree was constructed using ITS2 sequences with the unweighted pair group method with arithmetic mean, which indicated that the same variety of tea plant is likely to be successfully categorized into one cluster, but contamination from other tea plants was also detected. This result provides molecular evidence that the similarity between important tea varieties in Taiwan remains high. We suggest a direct, wide collection of made tea and original samples of tea plants to establish an ITS2 sequence molecular barcode identification database to identify the varieties and provenances of tea plants. The DNA barcode comparison method can satisfy the need for a rapid, low-cost, frontline differentiation of the large amount of made teas from Taiwan and abroad, and can provide molecular evidence of their varieties and provenances. Copyright © 2016. Published by Elsevier B.V.

  10. Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae).

    PubMed

    Magnacca, Karl N; Brown, Mark J F

    2010-06-11

    The past several years have seen a flurry of papers seeking to clarify the utility and limits of DNA barcoding, particularly in areas such as species discovery and paralogy due to nuclear pseudogenes. Heteroplasmy, the coexistence of multiple mitochondrial haplotypes in a single organism, has been cited as a potentially serious problem for DNA barcoding but its effect on identification accuracy has not been tested. In addition, few studies of barcoding have tested a large group of closely-related species with a well-established morphological taxonomy. In this study we examine both of these issues, by densely sampling the Hawaiian Hylaeus bee radiation. Individuals from 21 of the 49 a priori morphologically-defined species exhibited coding sequence heteroplasmy at levels of 1-6% or more. All homoplasmic species were successfully identified by COI using standard methods of analysis, but only 71% of heteroplasmic species. The success rate in identifying heteroplasmic species was increased to 86% by treating polymorphisms as character states rather than ambiguities. Nuclear pseudogenes (numts) were also present in four species, and were distinguishable from heteroplasmic sequences by patterns of nucleotide and amino acid change. Heteroplasmy significantly decreased the reliability of species identification. In addition, the practical issue of dealing with large numbers of polymorphisms- and resulting increased time and labor required - makes the development of DNA barcode databases considerably more complex than has previously been suggested. The impact of heteroplasmy on the utility of DNA barcoding as a bulk specimen identification tool will depend upon its frequency across populations, which remains unknown. However, DNA barcoding is still likely to remain an important identification tool for those species that are difficult or impossible to identify through morphology, as is the case for the ecologically important solitary bee fauna.

  11. Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae)

    PubMed Central

    2010-01-01

    Background The past several years have seen a flurry of papers seeking to clarify the utility and limits of DNA barcoding, particularly in areas such as species discovery and paralogy due to nuclear pseudogenes. Heteroplasmy, the coexistence of multiple mitochondrial haplotypes in a single organism, has been cited as a potentially serious problem for DNA barcoding but its effect on identification accuracy has not been tested. In addition, few studies of barcoding have tested a large group of closely-related species with a well-established morphological taxonomy. In this study we examine both of these issues, by densely sampling the Hawaiian Hylaeus bee radiation. Results Individuals from 21 of the 49 a priori morphologically-defined species exhibited coding sequence heteroplasmy at levels of 1-6% or more. All homoplasmic species were successfully identified by COI using standard methods of analysis, but only 71% of heteroplasmic species. The success rate in identifying heteroplasmic species was increased to 86% by treating polymorphisms as character states rather than ambiguities. Nuclear pseudogenes (numts) were also present in four species, and were distinguishable from heteroplasmic sequences by patterns of nucleotide and amino acid change. Conclusions Heteroplasmy significantly decreased the reliability of species identification. In addition, the practical issue of dealing with large numbers of polymorphisms- and resulting increased time and labor required - makes the development of DNA barcode databases considerably more complex than has previously been suggested. The impact of heteroplasmy on the utility of DNA barcoding as a bulk specimen identification tool will depend upon its frequency across populations, which remains unknown. However, DNA barcoding is still likely to remain an important identification tool for those species that are difficult or impossible to identify through morphology, as is the case for the ecologically important solitary bee fauna. PMID:20540728

  12. Development of internal COI primers to improve and extend barcoding of fruit flies (Diptera: Tephritidae: Dacini).

    PubMed

    Krosch, Matt N; Strutt, Francesca; Blacket, Mark J; Batovska, Jana; Starkie, Melissa; Clarke, Anthony R; Cameron, Stephen L; Schutze, Mark K

    2018-06-06

    Accurate species-level identifications underpin many aspects of basic and applied biology; however, identifications can be hampered by a lack of discriminating morphological characters, taxonomic expertise or time. Molecular approaches, such as DNA 'barcoding' of the cytochrome c oxidase (COI) gene, are argued to overcome these issues. However, nuclear encoding of mitochondrial genes (numts) and poor amplification success of suboptimally preserved specimens can lead to erroneous identifications. One insect group for which these molecular and morphological problems are significant are the dacine fruit flies (Diptera: Tephritidae: Dacini). We addressed these issues associated with COI barcoding in the dacines by first assessing several 'universal' COI primers against public mitochondrial genome and numt sequences for dacine taxa. We then modified a set of four primers that more closely matched true dacine COI sequence and amplified two overlapping portions of the COI barcode region. Our new primers were tested alongside universal primers on a selection of dacine species, including both fresh preserved and decades-old dry specimens. Additionally, Bactrocera tryoni mitochondrial and nuclear genomes were compared to identify putative numts. Four numt clades were identified, three of which were amplified using existing universal primers. In contrast, our new primers preferentially amplified the 'true' mitochondrial COI barcode in all dacine species tested. The new primers also successfully amplified partial barcodes from dry specimens for which full length barcodes were unobtainable. Thus we recommend these new primers be incorporated into the suites of primers used by diagnosticians and quarantine labs for the accurate identification of dacine species. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. DNA barcodes for bio-surveillance: regulated and economically important arthropod plant pests.

    PubMed

    Ashfaq, Muhammad; Hebert, Paul D N

    2016-11-01

    Many of the arthropod species that are important pests of agriculture and forestry are impossible to discriminate morphologically throughout all of their life stages. Some cannot be differentiated at any life stage. Over the past decade, DNA barcoding has gained increasing adoption as a tool to both identify known species and to reveal cryptic taxa. Although there has not been a focused effort to develop a barcode library for them, reference sequences are now available for 77% of the 409 species of arthropods documented on major pest databases. Aside from developing the reference library needed to guide specimen identifications, past barcode studies have revealed that a significant fraction of arthropod pests are a complex of allied taxa. Because of their importance as pests and disease vectors impacting global agriculture and forestry, DNA barcode results on these arthropods have significant implications for quarantine detection, regulation, and management. The current review discusses these implications in light of the presence of cryptic species in plant pests exposed by DNA barcoding.

  14. Single-cell barcoding and sequencing using droplet microfluidics.

    PubMed

    Zilionis, Rapolas; Nainys, Juozas; Veres, Adrian; Savova, Virginia; Zemmour, David; Klein, Allon M; Mazutis, Linas

    2017-01-01

    Single-cell RNA sequencing has recently emerged as a powerful tool for mapping cellular heterogeneity in diseased and healthy tissues, yet high-throughput methods are needed for capturing the unbiased diversity of cells. Droplet microfluidics is among the most promising candidates for capturing and processing thousands of individual cells for whole-transcriptome or genomic analysis in a massively parallel manner with minimal reagent use. We recently established a method called inDrops, which has the capability to index >15,000 cells in an hour. A suspension of cells is first encapsulated into nanoliter droplets with hydrogel beads (HBs) bearing barcoding DNA primers. Cells are then lysed and mRNA is barcoded (indexed) by a reverse transcription (RT) reaction. Here we provide details for (i) establishing an inDrops platform (1 d); (ii) performing hydrogel bead synthesis (4 d); (iii) encapsulating and barcoding cells (1 d); and (iv) RNA-seq library preparation (2 d). inDrops is a robust and scalable platform, and it is unique in its ability to capture and profile >75% of cells in even very small samples, on a scale of thousands or tens of thousands of cells.

  15. DNA barcodes effectively identify the morphologically similar Common Opossum (Didelphis marsupialis) and Virginia Opossum (Didelphis virginiana) from areas of sympatry in Mexico.

    PubMed

    Cervantes, Fernando A; Arcangeli, Jésica; Hortelano-Moncada, Yolanda; Borisenko, Alex V

    2010-12-01

    Two morphologically similar species of opossum from the genus Didelphis-Didelphis virginiana and Didelphis marsupialis-cooccur sympatrically in Mexico. High intraspecific variation complicates their morphological discrimination, under both field and museum conditions. This study aims to evaluate the utility and reliability of using DNA barcodes (short standardized genome fragments used for DNA-based identification) to distinguish these two species. Sequences of the cytochrome c oxidase subunit I (Cox1) mitochondrial gene were obtained from 12 D. marsupialis and 29 D. virginiana individuals and were compared using the neighbor-joining (NJ) algorithm with Kimura's two-parameter (K2P) model of nucleotide substitution. Average K2P distances were 1.56% within D. virginiana and 1.65% in D. marsupialis. Interspecific distances between D. virginiana and D. marsupialis varied from 7.8 to 9.3% and their barcode sequences formed distinct non-overlapping clusters on NJ trees. All sympatric specimens of both species were effectively discriminated, confirming the utility of Cox1 barcoding as a tool for taxonomic identification of these morphologically similar taxa.

  16. DNA barcoding based on plastid matK and RNA polymerase for assessing the genetic identity of date (Phoenix dactylifera L.) cultivars.

    PubMed

    Enan, M R; Ahamed, A

    2014-02-14

    The cultivated date palm is the most agriculturally important species of the Arecaceae family. The standard chloroplast DNA barcode for land plants recommended by the Consortium for the Barcode of Life plant working group needs to be evaluated for a wide range of plant species. Therefore, we assessed the potential of the matK and rpoC1 markers for the authentication of date cultivars. There is not one universal method to authenticate date cultivars. In this study, 11 different date cultivars were sequenced and analyzed for matK and rpoC1 genes by using bioinformatic tools to establish a cultivar-specific molecular monogram. The chloroplast matK marker was more informative than the rpoC1 chloroplast DNA markers. Phylogenetic trees were constructed on the basis of the matK and rpoC1 sequences, and the results suggested that matK alone or in combination with rpoC1 can be used for determining the levels of genetic variation and for barcoding.

  17. Preparation of next-generation sequencing libraries using Nextera™ technology: simultaneous DNA fragmentation and adaptor tagging by in vitro transposition.

    PubMed

    Caruccio, Nicholas

    2011-01-01

    DNA library preparation is a common entry point and bottleneck for next-generation sequencing. Current methods generally consist of distinct steps that often involve significant sample loss and hands-on time: DNA fragmentation, end-polishing, and adaptor-ligation. In vitro transposition with Nextera™ Transposomes simultaneously fragments and covalently tags the target DNA, thereby combining these three distinct steps into a single reaction. Platform-specific sequencing adaptors can be added, and the sample can be enriched and bar-coded using limited-cycle PCR to prepare di-tagged DNA fragment libraries. Nextera technology offers a streamlined, efficient, and high-throughput method for generating bar-coded libraries compatible with multiple next-generation sequencing platforms.

  18. A comparative molecular analysis of water-filled limestone sinkholes in north-eastern Mexico.

    PubMed

    Sahl, Jason W; Gary, Marcus O; Harris, J Kirk; Spear, John R

    2011-01-01

    Sistema Zacatón in north-eastern Mexico is host to several deep, water-filled, anoxic, karstic sinkholes (cenotes). These cenotes were explored, mapped, and geochemically and microbiologically sampled by the autonomous underwater vehicle deep phreatic thermal explorer (DEPTHX). The community structure of the filterable fraction of the water column and extensive microbial mats that coat the cenote walls was investigated by comparative analysis of small-subunit (SSU) 16S rRNA gene sequences. Full-length Sanger gene sequence analysis revealed novel microbial diversity that included three putative bacterial candidate phyla and three additional groups that showed high intra-clade distance with poorly characterized bacterial candidate phyla. Limited functional gene sequence analysis in these anoxic environments identified genes associated with methanogenesis, sulfate reduction and anaerobic ammonium oxidation. A directed, barcoded amplicon, multiplex pyrosequencing approach was employed to compare ∼100,000 bacterial SSU gene sequences from water column and wall microbial mat samples from five cenotes in Sistema Zacatón. A new, high-resolution sequence distribution profile (SDP) method identified changes in specific phylogenetic types (phylotypes) in microbial mats at varied depths; Mantel tests showed a correlation of the genetic distances between mat communities in two cenotes and the geographic location of each cenote. Community structure profiles from the water column of three neighbouring cenotes showed distinct variation; statistically significant differences in the concentration of geochemical constituents suggest that the variation observed in microbial communities between neighbouring cenotes are due to geochemical variation. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  19. DNA Barcoding the Canadian Arctic Flora: Core Plastid Barcodes (rbcL + matK) for 490 Vascular Plant Species

    PubMed Central

    Saarela, Jeffery M.; Sokoloff, Paul C.; Gillespie, Lynn J.; Consaul, Laurie L.; Bull, Roger D.

    2013-01-01

    Accurate identification of Arctic plant species is critical for understanding potential climate-induced changes in their diversity and distributions. To facilitate rapid identification we generated DNA barcodes for the core plastid barcode loci (rbcL and matK) for 490 vascular plant species, representing nearly half of the Canadian Arctic flora and 93% of the flora of the Canadian Arctic Archipelago. Sequence recovery was higher for rbcL than matK (93% and 81%), and rbcL was easier to recover than matK from herbarium specimens (92% and 77%). Distance-based and sequence-similarity analyses of combined rbcL + matK data discriminate 97% of genera, 56% of species, and 7% of infraspecific taxa. There is a significant negative correlation between the number of species sampled per genus and the percent species resolution per genus. We characterize barcode variation in detail in the ten largest genera sampled (Carex, Draba, Festuca, Pedicularis, Poa, Potentilla, Puccinellia, Ranunculus, Salix, and Saxifraga) in the context of their phylogenetic relationships and taxonomy. Discrimination with the core barcode loci in these genera ranges from 0% in Salix to 85% in Carex. Haplotype variation in multiple genera does not correspond to species boundaries, including Taraxacum, in which the distribution of plastid haplotypes among Arctic species is consistent with plastid variation documented in non-Arctic species. Introgression of Poa glauca plastid DNA into multiple individuals of P. hartzii is problematic for identification of these species with DNA barcodes. Of three supplementary barcode loci (psbA–trnH, psbK–psbI, atpF–atpH) collected for a subset of Poa and Puccinellia species, only atpF–atpH improved discrimination in Puccinellia, compared with rbcL and matK. Variation in matK in Vaccinium uliginosum and rbcL in Saxifraga oppositifolia corresponds to variation in other loci used to characterize the phylogeographic histories of these Arctic-alpine species. PMID:24348895

  20. How effective are DNA barcodes in the identification of African rainforest trees?

    PubMed

    Parmentier, Ingrid; Duminil, Jérôme; Kuzmina, Maria; Philippe, Morgane; Thomas, Duncan W; Kenfack, David; Chuyong, George B; Cruaud, Corinne; Hardy, Olivier J

    2013-01-01

    DNA barcoding of rain forest trees could potentially help biologists identify species and discover new ones. However, DNA barcodes cannot always distinguish between closely related species, and the size and completeness of barcode databases are key parameters for their successful application. We test the ability of rbcL, matK and trnH-psbA plastid DNA markers to identify rain forest trees at two sites in Atlantic central Africa under the assumption that a database is exhaustive in terms of species content, but not necessarily in terms of haplotype diversity within species. We assess the accuracy of identification to species or genus using a genetic distance matrix between samples either based on a global multiple sequence alignment (GD) or on a basic local alignment search tool (BLAST). Where a local database is available (within a 50 ha plot), barcoding was generally reliable for genus identification (95-100% success), but less for species identification (71-88%). Using a single marker, best results for species identification were obtained with trnH-psbA. There was a significant decrease of barcoding success in species-rich clades. When the local database was used to identify the genus of trees from another region and did include all genera from the query individuals but not all species, genus identification success decreased to 84-90%. The GD method performed best but a global multiple sequence alignment is not applicable on trnH-psbA. Barcoding is a useful tool to assign unidentified African rain forest trees to a genus, but identification to a species is less reliable, especially in species-rich clades, even using an exhaustive local database. Combining two markers improves the accuracy of species identification but it would only marginally improve genus identification. Finally, we highlight some limitations of the BLAST algorithm as currently implemented and suggest possible improvements for barcoding applications.

  1. How Effective Are DNA Barcodes in the Identification of African Rainforest Trees?

    PubMed Central

    Parmentier, Ingrid; Duminil, Jérôme; Kuzmina, Maria; Philippe, Morgane; Thomas, Duncan W.; Kenfack, David; Chuyong, George B.; Cruaud, Corinne; Hardy, Olivier J.

    2013-01-01

    Background DNA barcoding of rain forest trees could potentially help biologists identify species and discover new ones. However, DNA barcodes cannot always distinguish between closely related species, and the size and completeness of barcode databases are key parameters for their successful application. We test the ability of rbcL, matK and trnH-psbA plastid DNA markers to identify rain forest trees at two sites in Atlantic central Africa under the assumption that a database is exhaustive in terms of species content, but not necessarily in terms of haplotype diversity within species. Methodology/Principal Findings We assess the accuracy of identification to species or genus using a genetic distance matrix between samples either based on a global multiple sequence alignment (GD) or on a basic local alignment search tool (BLAST). Where a local database is available (within a 50 ha plot), barcoding was generally reliable for genus identification (95–100% success), but less for species identification (71–88%). Using a single marker, best results for species identification were obtained with trnH-psbA. There was a significant decrease of barcoding success in species-rich clades. When the local database was used to identify the genus of trees from another region and did include all genera from the query individuals but not all species, genus identification success decreased to 84–90%. The GD method performed best but a global multiple sequence alignment is not applicable on trnH-psbA. Conclusions/Significance Barcoding is a useful tool to assign unidentified African rain forest trees to a genus, but identification to a species is less reliable, especially in species-rich clades, even using an exhaustive local database. Combining two markers improves the accuracy of species identification but it would only marginally improve genus identification. Finally, we highlight some limitations of the BLAST algorithm as currently implemented and suggest possible improvements for barcoding applications. PMID:23565134

  2. Quantitative Tracking of Salmonella Enteritidis Transmission Routes Using Barcode-Tagged Isogenic Strains in Chickens: Proof-of-Concept Study

    PubMed Central

    Yang, Yichao; Ricke, Steven C.; Tellez, Guillermo; Kwon, Young Min

    2017-01-01

    Salmonella is an important foodborne bacterial pathogen, however, a fundamental understanding on Salmonella transmission routes within a poultry flock remains unclear. In this study, a series of barcode-tagged strains were constructed by inserting six random nucleotides into a functionally neutral region on the chromosome of S. Enteritidis as a tool for quantitative tracking of Salmonella transmission in chickens. Six distinct barcode-tagged strains were used for infection or contamination at either low dose (103 CFUs; three strains) or high dose (105 CFUs; three strains) in three independent experiments (Experiment 1 oral gavage; Experiment 2 contaminated feed; Experiment 3 contaminated water). For all chick experiments, cecal and foot-wash samples were collected from a subset of the chickens at days 7 or/and 14, from which genomic DNA was extracted and used to amplify the barcode regions. After the resulting PCR amplicons were pooled and analyzed by MiSeq sequencing, a total of approximately 1.5 million reads containing the barcode sequences were analyzed to determine the relative frequency of every barcode-tagged strain in each sample. In Experiment 1, the high dose of oral infection was correlated with greater dominance of the strains in the ceca of the respective seeder chickens and also in the contact chickens yet at lesser degrees. When chicks were exposed to contaminated feed (Experiment 2) or water (Experiment 3), there were no clear patterns of the barcode-tagged strains in relation to the dosage, except that the strains introduced at low dose required a longer time to colonize the ceca with contaminated feed. Most foot-wash samples contained only one to three strains for the majority of the samples, suggesting potential existence of an unknown mechanism(s) for strain exclusion. These results demonstrated the proof of concept of using barcode tagged to investigate transmission dynamics of Salmonella in chickens in a quantitative manner. PMID:28261587

  3. DNA barcoding the Canadian Arctic flora: core plastid barcodes (rbcL + matK) for 490 vascular plant species.

    PubMed

    Saarela, Jeffery M; Sokoloff, Paul C; Gillespie, Lynn J; Consaul, Laurie L; Bull, Roger D

    2013-01-01

    Accurate identification of Arctic plant species is critical for understanding potential climate-induced changes in their diversity and distributions. To facilitate rapid identification we generated DNA barcodes for the core plastid barcode loci (rbcL and matK) for 490 vascular plant species, representing nearly half of the Canadian Arctic flora and 93% of the flora of the Canadian Arctic Archipelago. Sequence recovery was higher for rbcL than matK (93% and 81%), and rbcL was easier to recover than matK from herbarium specimens (92% and 77%). Distance-based and sequence-similarity analyses of combined rbcL + matK data discriminate 97% of genera, 56% of species, and 7% of infraspecific taxa. There is a significant negative correlation between the number of species sampled per genus and the percent species resolution per genus. We characterize barcode variation in detail in the ten largest genera sampled (Carex, Draba, Festuca, Pedicularis, Poa, Potentilla, Puccinellia, Ranunculus, Salix, and Saxifraga) in the context of their phylogenetic relationships and taxonomy. Discrimination with the core barcode loci in these genera ranges from 0% in Salix to 85% in Carex. Haplotype variation in multiple genera does not correspond to species boundaries, including Taraxacum, in which the distribution of plastid haplotypes among Arctic species is consistent with plastid variation documented in non-Arctic species. Introgression of Poa glauca plastid DNA into multiple individuals of P. hartzii is problematic for identification of these species with DNA barcodes. Of three supplementary barcode loci (psbA-trnH, psbK-psbI, atpF-atpH) collected for a subset of Poa and Puccinellia species, only atpF-atpH improved discrimination in Puccinellia, compared with rbcL and matK. Variation in matK in Vaccinium uliginosum and rbcL in Saxifraga oppositifolia corresponds to variation in other loci used to characterize the phylogeographic histories of these Arctic-alpine species.

  4. DNA barcoding and the identification of tree frogs (Amphibia: Anura: Rhacophoridae).

    PubMed

    Dang, Ning-Xin; Sun, Feng-Hui; Lv, Yun-Yun; Zhao, Bo-Han; Wang, Ji-Chao; Murphy, Robert W; Wang, Wen-Zhi; Li, Jia-Tang

    2016-07-01

    The DNA barcoding gene COI (cytochrome c oxidase subunit I) effectively identifies many species. Herein, we barcoded 172 individuals from 37 species belonging to nine genera in Rhacophoridae to test if the gene serves equally well to identify species of tree frogs. Phenetic neighbor joining and phylogenetic Bayesian inference were used to construct phylogenetic trees, which resolved all nine genera as monophyletic taxa except for Rhacophorus, two new matrilines for Liuixalus, and Polypedates leucomystax species complex. Intraspecific genetic distances ranged from 0.000 to 0.119 and interspecific genetic distances ranged from 0.015 to 0.334. Within Rhacophorus and Kurixalus, the intra- and interspecific genetic distances did not reveal an obvious barcode gap. Notwithstanding, we found that COI sequences unambiguously identified rhacophorid species and helped to discover likely new cryptic species via the synthesis of genealogical relationships and divergence patterns. Our results supported that COI is an effective DNA barcoding marker for Rhacophoridae.

  5. Classification of Sharks in the Egyptian Mediterranean Waters Using Morphological and DNA Barcoding Approaches

    PubMed Central

    Moftah, Marie; Abdel Aziz, Sayeda H.; Elramah, Sara; Favereaux, Alexandre

    2011-01-01

    The identification of species constitutes the first basic step in phylogenetic studies, biodiversity monitoring and conservation. DNA barcoding, i.e. the sequencing of a short standardized region of DNA, has been proposed as a new tool for animal species identification. The present study provides an update on the composition of shark in the Egyptian Mediterranean waters off Alexandria, since the latest study to date was performed 30 years ago, DNA barcoding was used in addition to classical taxonomical methodologies. Thus, 51 specimen were DNA barcoded for a 667 bp region of the mitochondrial COI gene. Although DNA barcoding aims at developing species identification systems, some phylogenetic signals were apparent in the data. In the neighbor-joining tree, 8 major clusters were apparent, each of them containing individuals belonging to the same species, and most with 100% bootstrap value. This study is the first to our knowledge to use DNA barcoding of the mitochondrial COI gene in order to confirm the presence of species Squalus acanthias, Oxynotus centrina, Squatina squatina, Scyliorhinus canicula, Scyliorhinus stellaris, Mustelus mustelus, Mustelus punctulatus and Carcharhinus altimus in the Egyptian Mediterranean waters. Finally, our study is the starting point of a new barcoding database concerning shark composition in the Egyptian Mediterranean waters (Barcoding of Egyptian Mediterranean Sharks [BEMS], http://www.boldsystems.org/views/projectlist.php?&#Barcoding%20Fish%20%28FishBOL%29). PMID:22087242

  6. The Species Dilemma of Northeast Indian Mahseer (Actinopterygii: Cyprinidae): DNA Barcoding in Clarifying the Riddle

    PubMed Central

    Laskar, Boni A.; Bhattacharjee, Maloyjo J.; Dhar, Bishal; Mahadani, Pradosh; Kundu, Shantanu; Ghosh, Sankar K.

    2013-01-01

    Background The taxonomic validity of Northeast Indian endemic Mahseer species, Tor progeneius and Neolissochilus hexastichus, has been argued repeatedly. This is mainly due to disagreements in recognizing the species based on morphological characters. Consequently, both the species have been concealed for many decades. DNA barcoding has become a promising and an independent technique for accurate species level identification. Therefore, utilization of such technique in association with the traditional morphotaxonomic description can resolve the species dilemma of this important group of sport fishes. Methodology/Principal Findings Altogether, 28 mahseer specimens including paratypes were studied from different locations in Northeast India, and 24 morphometric characters were measured invariably. The Principal Component Analysis with morphometric data revealed five distinct groups of sample that were taxonomically categorized into 4 species, viz., Tor putitora, T. progeneius, Neolissochilus hexagonolepis and N. hexastichus. Analysis with a dataset of 76 DNA barcode sequences of different mahseer species exhibited that the queries of T. putitora and N. hexagonolepis clustered cohesively with the respective conspecific database sequences maintaining 0.8% maximum K2P divergence. The closest congeneric divergence was 3 times higher than the mean conspecific divergence and was considered as barcode gap. The maximum divergence among the samples of T. progeneius and T. putitora was 0.8% that was much below the barcode gap, indicating them being synonymous. The query sequences of N. hexastichus invariably formed a discrete and a congeneric clade with the database sequences and maintained the interspecific divergence that supported its distinct species status. Notably, N. hexastichus was encountered in a single site and seemed to be under threat. Conclusion This study substantiated the identification of N. hexastichus to be a true species, and tentatively regarded T. progeneius to be a synonym of T. putitora. It would guide the conservationists to initiate priority conservation of N. hexastichus and T. putitora. PMID:23341979

  7. Barcoding of GPCR trafficking and signaling through the various trafficking roadmaps by compartmentalized signaling networks.

    PubMed

    Bahouth, Suleiman W; Nooh, Mohammed M

    2017-08-01

    Proper signaling by G protein coupled receptors (GPCR) is dependent on the specific repertoire of transducing, enzymatic and regulatory kinases and phosphatases that shape its signaling output. Activation and signaling of the GPCR through its cognate G protein is impacted by G protein-coupled receptor kinase (GRK)-imprinted "barcodes" that recruit β-arrestins to regulate subsequent desensitization, biased signaling and endocytosis of the GPCR. The outcome of agonist-internalized GPCR in endosomes is also regulated by sequence motifs or "barcodes" within the GPCR that mediate its recycling to the plasma membrane or retention and eventual degradation as well as its subsequent signaling in endosomes. Given the vast number of diverse sequences in GPCR, several trafficking mechanisms for endosomal GPCR have been described. The majority of recycling GPCR, are sorted out of endosomes in a "sequence-dependent pathway" anchored around a type-1 PDZ-binding module found in their C-tails. For a subset of these GPCR, a second "barcode" imprinted onto specific GPCR serine/threonine residues by compartmentalized kinase networks was required for their efficient recycling through the "sequence-dependent pathway". Mutating the serine/threonine residues involved, produced dramatic effects on GPCR trafficking, indicating that they played a major role in setting the trafficking itinerary of these GPCR. While endosomal SNX27, retromer/WASH complexes and actin were required for efficient sorting and budding of all these GPCR, additional proteins were required for GPCR sorting via the second "barcode". Here we will review recent developments in GPCR trafficking in general and the human β 1 -adrenergic receptor in particular across the various trafficking roadmaps. In addition, we will discuss the role of GPCR trafficking in regulating endosomal GPCR signaling, which promote biochemical and physiological effects that are distinct from those generated by the GPCR signal transduction pathway in membranes. Copyright © 2017. Published by Elsevier Inc.

  8. The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life.

    PubMed

    Zhou, Xin; Frandsen, Paul B; Holzenthal, Ralph W; Beet, Clare R; Bennett, Kristi R; Blahnik, Roger J; Bonada, Núria; Cartwright, David; Chuluunbat, Suvdtsetseg; Cocks, Graeme V; Collins, Gemma E; deWaard, Jeremy; Dean, John; Flint, Oliver S; Hausmann, Axel; Hendrich, Lars; Hess, Monika; Hogg, Ian D; Kondratieff, Boris C; Malicky, Hans; Milton, Megan A; Morinière, Jérôme; Morse, John C; Mwangi, François Ngera; Pauls, Steffen U; Gonzalez, María Razo; Rinne, Aki; Robinson, Jason L; Salokannel, Juha; Shackleton, Michael; Smith, Brian; Stamatakis, Alexandros; StClair, Ros; Thomas, Jessica A; Zamora-Muñoz, Carmen; Ziesmann, Tanja; Kjer, Karl M

    2016-09-05

    DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species. Most Trichoptera, as with most of life's species, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained tree searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the tree. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous species boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between 'Barcode Index Numbers' (BINs) and 'species' that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for species description.This article is part of the themed issue 'From DNA barcodes to biomes'. © 2016 The Authors.

  9. Taxonomic challenges in freshwater fishes: a mismatch between morphology and DNA barcoding in fish of the north-eastern part of the Congo basin.

    PubMed

    Decru, Eva; Moelants, Tuur; De Gelas, Koen; Vreven, Emmanuel; Verheyen, Erik; Snoeks, Jos

    2016-01-01

    This study evaluates the utility of DNA barcoding to traditional morphology-based species identifications for the fish fauna of the north-eastern Congo basin. We compared DNA sequences (COI) of 821 samples from 206 morphologically identified species. Best match, best close match and all species barcoding analyses resulted in a rather low identification success of 87.5%, 84.5% and 64.1%, respectively. The ratio 'nearest-neighbour distance/maximum intraspecific divergence' was lower than 1 for 26.1% of the samples, indicating possible taxonomic problems. In ten genera, belonging to six families, the number of species inferred from mtDNA data exceeded the number of species identified using morphological features; and in four cases indications of possible synonymy were detected. Finally, the DNA barcodes confirmed previously known identification problems within certain genera of the Clariidae, Cyprinidae and Mormyridae. Our results underscore the large number of taxonomic problems lingering in the taxonomy of the fish fauna of the Congo basin and illustrate why DNA barcodes will contribute to future efforts to compile a reliable taxonomic inventory of the Congo basin fish fauna. Therefore, the obtained barcodes were deposited in the reference barcode library of the Barcode of Life Initiative. © 2015 John Wiley & Sons Ltd.

  10. Representing high throughput expression profiles via perturbation barcodes reveals compound targets.

    PubMed

    Filzen, Tracey M; Kutchukian, Peter S; Hermes, Jeffrey D; Li, Jing; Tudor, Matthew

    2017-02-01

    High throughput mRNA expression profiling can be used to characterize the response of cell culture models to perturbations such as pharmacologic modulators and genetic perturbations. As profiling campaigns expand in scope, it is important to homogenize, summarize, and analyze the resulting data in a manner that captures significant biological signals in spite of various noise sources such as batch effects and stochastic variation. We used the L1000 platform for large-scale profiling of 978 representative genes across thousands of compound treatments. Here, a method is described that uses deep learning techniques to convert the expression changes of the landmark genes into a perturbation barcode that reveals important features of the underlying data, performing better than the raw data in revealing important biological insights. The barcode captures compound structure and target information, and predicts a compound's high throughput screening promiscuity, to a higher degree than the original data measurements, indicating that the approach uncovers underlying factors of the expression data that are otherwise entangled or masked by noise. Furthermore, we demonstrate that visualizations derived from the perturbation barcode can be used to more sensitively assign functions to unknown compounds through a guilt-by-association approach, which we use to predict and experimentally validate the activity of compounds on the MAPK pathway. The demonstrated application of deep metric learning to large-scale chemical genetics projects highlights the utility of this and related approaches to the extraction of insights and testable hypotheses from big, sometimes noisy data.

  11. Representing high throughput expression profiles via perturbation barcodes reveals compound targets

    PubMed Central

    Kutchukian, Peter S.; Li, Jing; Tudor, Matthew

    2017-01-01

    High throughput mRNA expression profiling can be used to characterize the response of cell culture models to perturbations such as pharmacologic modulators and genetic perturbations. As profiling campaigns expand in scope, it is important to homogenize, summarize, and analyze the resulting data in a manner that captures significant biological signals in spite of various noise sources such as batch effects and stochastic variation. We used the L1000 platform for large-scale profiling of 978 representative genes across thousands of compound treatments. Here, a method is described that uses deep learning techniques to convert the expression changes of the landmark genes into a perturbation barcode that reveals important features of the underlying data, performing better than the raw data in revealing important biological insights. The barcode captures compound structure and target information, and predicts a compound’s high throughput screening promiscuity, to a higher degree than the original data measurements, indicating that the approach uncovers underlying factors of the expression data that are otherwise entangled or masked by noise. Furthermore, we demonstrate that visualizations derived from the perturbation barcode can be used to more sensitively assign functions to unknown compounds through a guilt-by-association approach, which we use to predict and experimentally validate the activity of compounds on the MAPK pathway. The demonstrated application of deep metric learning to large-scale chemical genetics projects highlights the utility of this and related approaches to the extraction of insights and testable hypotheses from big, sometimes noisy data. PMID:28182661

  12. Identification of maca (Lepidium meyenii Walp.) and its adulterants by a DNA-barcoding approach based on the ITS sequence.

    PubMed

    Chen, Jin-Jin; Zhao, Qing-Sheng; Liu, Yi-Lan; Zha, Sheng-Hua; Zhao, Bing

    2015-09-01

    Maca (Lepidium meyenii) is an herbaceous plant that grows in high plateaus and has been used as both food and folk medicine for centuries because of its benefits to human health. In the present study, ITS (internal transcribed spacer) sequences of forty-three maca samples, collected from different regions or vendors, were amplified and analyzed. The ITS sequences of nineteen potential adulterants of maca were also collected and analyzed. The results indicated that the ITS sequence of maca was consistent in all samples and unique when compared with its adulterants. Therefore, this DNA-barcoding approach based on the ITS sequence can be used for the molecular identification of maca and its adulterants. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  13. Identification of Belgian mosquito species (Diptera: Culicidae) by DNA barcoding.

    PubMed

    Versteirt, V; Nagy, Z T; Roelants, P; Denis, L; Breman, F C; Damiens, D; Dekoninck, W; Backeljau, T; Coosemans, M; Van Bortel, W

    2015-03-01

    Since its introduction in 2003, DNA barcoding has proven to be a promising method for the identification of many taxa, including mosquitoes (Diptera: Culicidae). Many mosquito species are potential vectors of pathogens, and correct identification in all life stages is essential for effective mosquito monitoring and control. To use DNA barcoding for species identification, a reliable and comprehensive reference database of verified DNA sequences is required. Hence, DNA sequence diversity of mosquitoes in Belgium was assessed using a 658 bp fragment of the mitochondrial cytochrome oxidase I (COI) gene, and a reference data set was established. Most species appeared as well-supported clusters. Intraspecific Kimura 2-parameter (K2P) distances averaged 0.7%, and the maximum observed K2P distance was 6.2% for Aedes koreicus. A small overlap between intra- and interspecific K2P distances for congeneric sequences was observed. Overall, the identification success using best match and the best close match criteria were high, that is above 98%. No clear genetic division was found between the closely related species Aedes annulipes and Aedes cantans, which can be confused using morphological identification only. The members of the Anopheles maculipennis complex, that is Anopheles maculipennis s.s. and An. messeae, were weakly supported as monophyletic taxa. This study showed that DNA barcoding offers a reliable framework for mosquito species identification in Belgium except for some closely related species. © 2014 John Wiley & Sons Ltd.

  14. A reliable DNA barcode reference library for the identification of the North European shelf fish fauna.

    PubMed

    Knebelsberger, Thomas; Landi, Monica; Neumann, Hermann; Kloppmann, Matthias; Sell, Anne F; Campbell, Patrick D; Laakmann, Silke; Raupach, Michael J; Carvalho, Gary R; Costa, Filipe O

    2014-09-01

    Valid fish species identification is an essential step both for fundamental science and fisheries management. The traditional identification is mainly based on external morphological diagnostic characters, leading to inconsistent results in many cases. Here, we provide a sequence reference library based on mitochondrial cytochrome c oxidase subunit I (COI) for a valid identification of 93 North Atlantic fish species originating from the North Sea and adjacent waters, including many commercially exploited species. Neighbour-joining analysis based on K2P genetic distances formed nonoverlapping clusters for all species with a ≥99% bootstrap support each. Identification was successful for 100% of the species as the minimum genetic distance to the nearest neighbour always exceeded the maximum intraspecific distance. A barcoding gap was apparent for the whole data set. Within-species distances ranged from 0 to 2.35%, while interspecific distances varied between 3.15 and 28.09%. Distances between congeners were on average 51-fold higher than those within species. The validation of the sequence library by applying BOLDs barcode index number (BIN) analysis tool and a ranking system demonstrated high taxonomic reliability of the DNA barcodes for 85% of the investigated fish species. Thus, the sequence library presented here can be confidently used as a benchmark for identification of at least two-thirds of the typical fish species recorded for the North Sea. © 2014 John Wiley & Sons Ltd.

  15. A new species of the genus Hyalessa (Hemiptera, Cicadidae) from China, with DNA barcoding data and a key to related species.

    PubMed

    Wang, Xu; Qiu, Yue; Wei, Cong

    2016-03-02

    One new species of the genus Hyalessa China, H. wangi sp. nov., from Yunnan, China is described. Partial mitochondrial COI gene (DNA barcoding) of this new species is sequenced and uploaded to GenBank. A key to all species of Hyalessa is provided.

  16. [Identification of pyrrosiae folium and its adulterants based on psbA-trnH sequence].

    PubMed

    Zhang, Ya-Qin; Shi, Yue; Song, Ming; Lin, Yun-Han; Ma, Xiao-Xi; Sun, Wei; Xiang, Li; Liu, Xi

    2014-06-01

    In this study, the psbA-trnH sequence as DNA barcode was used to evaluate the accuracy and stability for identification pteridophyte medicinal material Pyrrosiae Foliumas from adulterants. Genomic DNA from 106 samples were extracted successfully. The Kimura 2-Parameter (K2P) distances and ML tree were calculated using software MEGA 6.0. The intra-specific genetic distances of 3 original plants were lower than inter-specific genetic distances of adulterants. The ML tree indicated that Pyrrosiae Folium can be distinguished from its adulterants obviously. Therefore, the psbA-trnH sequence as a barcode of the pteridophyte, can accurately and stably distinguish Pyrrosiae Folium from its adulterants.

  17. Mapping global biodiversity connections with DNA barcodes: Lepidoptera of Pakistan.

    PubMed

    Ashfaq, Muhammad; Akhtar, Saleem; Rafi, Muhammad Athar; Mansoor, Shahid; Hebert, Paul D N

    2017-01-01

    Sequences from the DNA barcode region of the mitochondrial COI gene are an effective tool for specimen identification and for the discovery of new species. The Barcode of Life Data Systems (BOLD) (www.boldsystems.org) currently hosts 4.5 million records from animals which have been assigned to more than 490,000 different Barcode Index Numbers (BINs), which serve as a proxy for species. Because a fourth of these BINs derive from Lepidoptera, BOLD has a strong capability to both identify specimens in this order and to support studies of faunal overlap. DNA barcode sequences were obtained from 4503 moths from 329 sites across Pakistan, specimens that represented 981 BINs from 52 families. Among 379 species with a Linnaean name assignment, all were represented by a single BIN excepting five species that showed a BIN split. Less than half (44%) of the 981 BINs had counterparts in other countries; the remaining BINs were unique to Pakistan. Another 218 BINs of Lepidoptera from Pakistan were coupled with the 981 from this study before being compared with all 116,768 BINs for this order. As expected, faunal overlap was highest with India (21%), Sri Lanka (21%), United Arab Emirates (20%) and with other Asian nations (2.1%), but it was very low with other continents including Africa (0.6%), Europe (1.3%), Australia (0.6%), Oceania (1.0%), North America (0.1%), and South America (0.1%). This study indicates the way in which DNA barcoding facilitates measures of faunal overlap even when taxa have not been assigned to a Linnean species.

  18. DNA Barcoding for Efficient Species- and Pathovar-Level Identification of the Quarantine Plant Pathogen Xanthomonas

    PubMed Central

    Tian, Qian; Zhao, Wenjun; Lu, Songyu; Zhu, Shuifang; Li, Shidong

    2016-01-01

    Genus Xanthomonas comprises many economically important plant pathogens that affect a wide range of hosts. Indeed, fourteen Xanthomonas species/pathovars have been regarded as official quarantine bacteria for imports in China. To date, however, a rapid and accurate method capable of identifying all of the quarantine species/pathovars has yet to be developed. In this study, we therefore evaluated the capacity of DNA barcoding as a digital identification method for discriminating quarantine species/pathovars of Xanthomonas. For these analyses, 327 isolates, representing 45 Xanthomonas species/pathovars, as well as five additional species/pathovars from GenBank (50 species/pathovars total), were utilized to test the efficacy of four DNA barcode candidate genes (16S rRNA gene, cpn60, gyrB, and avrBs2). Of these candidate genes, cpn60 displayed the highest rate of PCR amplification and sequencing success. The tree-building (Neighbor-joining), ‘best close match’, and barcode gap methods were subsequently employed to assess the species- and pathovar-level resolution of each gene. Notably, all isolates of each quarantine species/pathovars formed a monophyletic group in the neighbor-joining tree constructed using the cpn60 sequences. Moreover, cpn60 also demonstrated the most satisfactory results in both barcoding gap analysis and the ‘best close match’ test. Thus, compared with the other markers tested, cpn60 proved to be a powerful DNA barcode, providing a reliable and effective means for the species- and pathovar-level identification of the quarantine plant pathogen Xanthomonas. PMID:27861494

  19. Comparing and combining distance-based and character-based approaches for barcoding turtles.

    PubMed

    Reid, B N; LE, M; McCord, W P; Iverson, J B; Georges, A; Bergmann, T; Amato, G; Desalle, R; Naro-Maciel, E

    2011-11-01

    Molecular barcoding can serve as a powerful tool in wildlife forensics and may prove to be a vital aid in conserving organisms that are threatened by illegal wildlife trade, such as turtles (Order Testudines). We produced cytochrome oxidase subunit one (COI) sequences (650 bp) for 174 turtle species and combined these with publicly available sequences for 50 species to produce a data set representative of the breadth of the order. Variability within the barcode region was assessed, and the utility of both distance-based and character-based methods for species identification was evaluated. For species in which genetic material from more than one individual was available (n = 69), intraspecific divergences were 1.3% on average, although divergences greater than the customary 2% barcode threshold occurred within 15 species. High intraspecific divergences could indicate species with a high degree of internal genetic structure or possibly even cryptic species, although introgression is also probable in some of these taxa. Divergences between species of the same genus were 6.4% on average; however, 49 species were <2% divergent from congeners. Low levels of interspecific divergence could be caused by recent evolutionary radiations coupled with the low rates of mtDNA evolution previously observed in turtles. Complementing distance-based barcoding with character-based methods for identifying diagnostic sets of nucleotides provided better resolution in several cases where distance-based methods failed to distinguish species. An online identification engine was created to provide character-based identifications. This study constitutes the first comprehensive barcoding effort for this seriously threatened order. © 2011 Blackwell Publishing Ltd.

  20. When COI barcodes deceive: complete genomes reveal introgression in hairstreaks

    PubMed Central

    Shen, Jinhui; Borek, Dominika; Robbins, Robert K.; Opler, Paul A.; Otwinowski, Zbyszek; Grishin, Nick V.

    2017-01-01

    Two species of hairstreak butterflies from the genus Calycopis are known in the United States: C. cecrops and C. isobeon. Analysis of mitochondrial COI barcodes of Calycopis revealed cecrops-like specimens from the eastern US with atypical barcodes that were 2.6% different from either USA species, but similar to Central American Calycopis species. To address the possibility that the specimens with atypical barcodes represent an undescribed cryptic species, we sequenced complete genomes of 27 Calycopis specimens of four species: C. cecrops, C. isobeon, C. quintana and C. bactra. Some of these specimens were collected up to 60 years ago and preserved dry in museum collections, but nonetheless produced genomes as complete as fresh samples. Phylogenetic trees reconstructed using the whole mitochondrial and nuclear genomes were incongruent. While USA Calycopis with atypical barcodes grouped with Central American species C. quintana by mitochondria, nuclear genome trees placed them within typical USA C. cecrops in agreement with morphology, suggesting mitochondrial introgression. Nuclear genomes also show introgression, especially between C. cecrops and C. isobeon. About 2.3% of each C. cecrops genome has probably (p-value < 0.01, FDR < 0.1) introgressed from C. isobeon and about 3.4% of each C. isobeon genome may have come from C. cecrops. The introgressed regions are enriched in genes encoding transmembrane proteins, mitochondria-targeting proteins and components of the larval cuticle. This study provides the first example of mitochondrial introgression in Lepidoptera supported by complete genome sequencing. Our results caution about relying solely on COI barcodes and mitochondrial DNA for species identification or discovery. PMID:28179510

  1. Mapping global biodiversity connections with DNA barcodes: Lepidoptera of Pakistan

    PubMed Central

    Akhtar, Saleem; Rafi, Muhammad Athar; Mansoor, Shahid; Hebert, Paul D. N.

    2017-01-01

    Sequences from the DNA barcode region of the mitochondrial COI gene are an effective tool for specimen identification and for the discovery of new species. The Barcode of Life Data Systems (BOLD) (www.boldsystems.org) currently hosts 4.5 million records from animals which have been assigned to more than 490,000 different Barcode Index Numbers (BINs), which serve as a proxy for species. Because a fourth of these BINs derive from Lepidoptera, BOLD has a strong capability to both identify specimens in this order and to support studies of faunal overlap. DNA barcode sequences were obtained from 4503 moths from 329 sites across Pakistan, specimens that represented 981 BINs from 52 families. Among 379 species with a Linnaean name assignment, all were represented by a single BIN excepting five species that showed a BIN split. Less than half (44%) of the 981 BINs had counterparts in other countries; the remaining BINs were unique to Pakistan. Another 218 BINs of Lepidoptera from Pakistan were coupled with the 981 from this study before being compared with all 116,768 BINs for this order. As expected, faunal overlap was highest with India (21%), Sri Lanka (21%), United Arab Emirates (20%) and with other Asian nations (2.1%), but it was very low with other continents including Africa (0.6%), Europe (1.3%), Australia (0.6%), Oceania (1.0%), North America (0.1%), and South America (0.1%). This study indicates the way in which DNA barcoding facilitates measures of faunal overlap even when taxa have not been assigned to a Linnean species. PMID:28339501

  2. Cytochrome c oxidase subunit 1 barcode data of fish of the Nayband National Park in the Persian Gulf and analysis using meta-data flag several cryptic species.

    PubMed

    Asgharian, Hosseinali; Sahafi, Homayoun Hosseinzadeh; Ardalan, Aria Ashja; Shekarriz, Shahrokh; Elahi, Elahe

    2011-05-01

    We provide cytochrome c oxidase subunit 1 (COI) barcode sequences of fishes of the Nayband National Park, Persian Gulf, Iran. Industrial activities, ecological considerations and goals of The Fish Barcode of Life campaign make it crucial that fish species residing in the park be identified. To the best of our knowledge, this is the first report of barcoding data on fishes of the Persian Gulf. We examined 187 individuals representing 76 species, 56 genera and 32 families. The data flagged potentially cryptic species of Gerres filamentosus and Plectorhinchus schotaf. 16S rDNA data on these species are provided. Exclusion of these two potential cryptic species resulted in a mean COI intraspecific distance of 0.18%, and a mean inter- to intraspecific divergence ratio of 66.7. There was no overlap between maximum Kimura 2-parameter distances among conspecifics (1.66%) and minimum distance among congeneric species (6.19%). Barcodes shared among species were not observed. Neighbour-joining analysis showed that most species formed cohesive sequence units with little variation. Finally, the comparison of 16 selected species from this study with meta-data of conspecifics from Australia, India, China and South Africa revealed high interregion divergences and potential existence of six cryptic species. Pairwise interregional comparisons were more informative than global divergence assessments with regard to detection of cryptic variation. Our analysis exemplifies optimal use of the expanding barcode data now becoming available. © 2011 Blackwell Publishing Ltd.

  3. Vertical water mass structure in the North Atlantic influences the bathymetric distribution of species in the deep-sea coral genus Paramuricea

    NASA Astrophysics Data System (ADS)

    Radice, Veronica Z.; Quattrini, Andrea M.; Wareham, Vonda E.; Edinger, Evan N.; Cordes, Erik E.

    2016-10-01

    Deep-sea corals are the structural foundation of their ecosystems along continental margins worldwide, yet the factors driving their broad distribution are poorly understood. Environmental factors, especially depth-related variables including water mass properties, are thought to considerably affect the realized distribution of deep-sea corals. These factors are governed by local and regional oceanographic conditions that directly influence the dispersal of larvae, and therefore affect the ultimate distribution of adult corals. We used molecular barcoding of mitochondrial and nuclear sequences to identify species of octocorals in the genus Paramuricea collected from the Labrador Sea to the Grand Banks of Newfoundland, Canada at depths of 150-1500 m. The results of this study revealed overlapping bathymetric distributions of the Paramuricea species present off the eastern Canadian coast, including the presence of a few cryptic species previously designated as Paramuricea placomus. The distribution of Paramuricea species in the western North Atlantic differs from the Gulf of Mexico, where five Paramuricea species exhibit strong segregation by depth. The different patterns of Paramuricea species in these contrasting biogeographic regions provide insight into how water mass structure may shape species distribution. Investigating Paramuricea prevalence and distribution in conjunction with oceanographic conditions can help demonstrate the factors that generate and maintain deep-sea biodiversity.

  4. Developing a DNA barcode library for perciform fishes in the South China Sea: Species identification, accuracy and cryptic diversity.

    PubMed

    Hou, Gang; Chen, Wei-Tao; Lu, Huo-Sheng; Cheng, Fei; Xie, Song-Guang

    2018-01-01

    DNA barcodes were studied for 1,353 specimens representing 272 morphological species belonging to 149 genera and 55 families of Perciformes from the South China Sea (SCS). The average Kimura 2-parameter (K2P) distances within species, genera and families were 0.31%, 8.71% and 14.52%, respectively. A neighbour-joining (NJ) tree, Bayesian inference (BI) and maximum-likelihood (ML) trees and Automatic Barcode Gap Discovery (ABGD) revealed 260, 253 and 259 single-species-representing clusters, respectively. Barcoding gap analysis (BGA) demonstrated that barcode gaps were present for 178 of 187 species analysed with multiple specimens (95.2%), with the minimum interspecific distance to the nearest neighbour larger than the maximum intraspecific distance. A group of three Thunnus species (T. albacares, T. obesus and T. tonggol), a pair of Gerres species (G. oyena and G. japonicus), a pair of Istiblennius species (I. edentulous and I. lineatus) and a pair of Uranoscopus species (U. oligolepis and U. kaianus) were observed with low interspecific distances and overlaps between intra- and interspecific genetic distances. Three species (Apogon ellioti, Naucrates ductor and Psenopsis anomala) showed deep intraspecific divergences and generated two lineages each, suggesting the possibility of cryptic species. Our results demonstrated that DNA barcodes are highly reliable for delineating species of Perciformes in the SCS. The DNA barcode library established in this study will shed light on further research on the diversity of Perciformes in the SCS. © 2017 John Wiley & Sons Ltd.

  5. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants.

    PubMed

    Li, De-Zhu; Gao, Lian-Ming; Li, Hong-Tao; Wang, Hong; Ge, Xue-Jun; Liu, Jian-Quan; Chen, Zhi-Duan; Zhou, Shi-Liang; Chen, Shi-Lin; Yang, Jun-Bo; Fu, Cheng-Xin; Zeng, Chun-Xia; Yan, Hai-Fei; Zhu, Ying-Jie; Sun, Yong-Shuai; Chen, Si-Yun; Zhao, Lei; Wang, Kun; Yang, Tuo; Duan, Guang-Wen

    2011-12-06

    A two-marker combination of plastid rbcL and matK has previously been recommended as the core plant barcode, to be supplemented with additional markers such as plastid trnH-psbA and nuclear ribosomal internal transcribed spacer (ITS). To assess the effectiveness and universality of these barcode markers in seed plants, we sampled 6,286 individuals representing 1,757 species in 141 genera of 75 families (42 orders) by using four different methods of data analysis. These analyses indicate that (i) the three plastid markers showed high levels of universality (87.1-92.7%), whereas ITS performed relatively well (79%) in angiosperms but not so well in gymnosperms; (ii) in taxonomic groups for which direct sequencing of the marker is possible, ITS showed the highest discriminatory power of the four markers, and a combination of ITS and any plastid DNA marker was able to discriminate 69.9-79.1% of species, compared with only 49.7% with rbcL + matK; and (iii) where multiple individuals of a single species were tested, ascriptions based on ITS and plastid DNA barcodes were incongruent in some samples for 45.2% of the sampled genera (for genera with more than one species sampled). This finding highlights the importance of both sampling multiple individuals and using markers with different modes of inheritance. In cases where it is difficult to amplify and directly sequence ITS in its entirety, just using ITS2 is a useful backup because it is easier to amplify and sequence this subset of the marker. We therefore propose that ITS/ITS2 should be incorporated into the core barcode for seed plants.

  6. An aptamer-based bio-barcode assay with isothermal recombinase polymerase amplification for cytochrome-c detection and anti-cancer drug screening.

    PubMed

    Loo, Jacky F C; Lau, P M; Ho, H P; Kong, S K

    2013-10-15

    Based on a recently reported ultra-sensitive bio-barcode (BBC) assay, we have developed an aptamer-based bio-barcode (ABC) alternative to detect a cell death marker cytochrome-c (Cyto-c) and its subsequent application to screen anti-cancer drugs. Aptamer is a short single-stranded DNA selected from a synthetic DNA library by virtue of its high binding affinity and specificity to its target based on its unique 3D structure from the nucleotide sequence after folding. In the BBC assay, an antigen (Ag) in analytes is captured by a micro-magnetic particle (MMP) coated with capturing antibodies (Abs). Gold nanoparticles (NPs) with another recognition Ab against the same target and hundreds of identical DNA molecules of known sequence are subsequently added to allow the formation of sandwich structures ([MMP-Ab1]-Ag-[Ab2-NP-DNA]). After isolating the sandwiches by a magnetic field, the DNAs hybridized to their complementary DNAs covalently bound on the NPs are released from the sandwiches after heating. Acting as an Ag identification tag, these bio-barcode DNAs with known DNA sequence are then amplified by polymerase chain reaction (PCR) and detected by fluorescence. In our ABC assay, we employed a Cyto-c-specific aptamer to substitute both the recognition Ab and barcode DNAs on the NPs in the BBC assay; and a novel isothermal recombinase polymerase amplification for the time-consuming PCR. The detection limit of our ABC assay for the Cyto-c was found to be 10 ng/mL and this new assay can be completed within 3h. Several potential anti-cancer drugs have been tested in vitro for their efficacy to kill liver cancer with or without multi-drug resistance. © 2013 Elsevier B.V. All rights reserved.

  7. Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve.

    PubMed

    Telfer, Angela C; Young, Monica R; Quinn, Jenna; Perez, Kate; Sobel, Crystal N; Sones, Jayme E; Levesque-Beaudin, Valerie; Derbyshire, Rachael; Fernandez-Triana, Jose; Rougerie, Rodolphe; Thevanayagam, Abinah; Boskovic, Adrian; Borisenko, Alex V; Cadel, Alex; Brown, Allison; Pages, Anais; Castillo, Anibal H; Nicolai, Annegret; Glenn Mockford, Barb Mockford; Bukowski, Belén; Wilson, Bill; Trojahn, Brock; Lacroix, Carole Ann; Brimblecombe, Chris; Hay, Christoper; Ho, Christmas; Steinke, Claudia; Warne, Connor P; Garrido Cortes, Cristina; Engelking, Daniel; Wright, Danielle; Lijtmaer, Dario A; Gascoigne, David; Hernandez Martich, David; Morningstar, Derek; Neumann, Dirk; Steinke, Dirk; Marco DeBruin, Donna DeBruin; Dobias, Dylan; Sears, Elizabeth; Richard, Ellen; Damstra, Emily; Zakharov, Evgeny V; Laberge, Frederic; Collins, Gemma E; Blagoev, Gergin A; Grainge, Gerrie; Ansell, Graham; Meredith, Greg; Hogg, Ian; McKeown, Jaclyn; Topan, Janet; Bracey, Jason; Guenther, Jerry; Sills-Gilligan, Jesse; Addesi, Joseph; Persi, Joshua; Layton, Kara K S; D'Souza, Kareina; Dorji, Kencho; Grundy, Kevin; Nghidinwa, Kirsti; Ronnenberg, Kylee; Lee, Kyung Min; Xie, Linxi; Lu, Liuqiong; Penev, Lyubomir; Gonzalez, Mailyn; Rosati, Margaret E; Kekkonen, Mari; Kuzmina, Maria; Iskandar, Marianne; Mutanen, Marko; Fatahi, Maryam; Pentinsaari, Mikko; Bauman, Miriam; Nikolova, Nadya; Ivanova, Natalia V; Jones, Nathaniel; Weerasuriya, Nimalka; Monkhouse, Norman; Lavinia, Pablo D; Jannetta, Paul; Hanisch, Priscila E; McMullin, R Troy; Ojeda Flores, Rafael; Mouttet, Raphaëlle; Vender, Reid; Labbee, Renee N; Forsyth, Robert; Lauder, Rob; Dickson, Ross; Kroft, Ruth; Miller, Scott E; MacDonald, Shannon; Panthi, Sishir; Pedersen, Stephanie; Sobek-Swant, Stephanie; Naik, Suresh; Lipinskaya, Tatsiana; Eagalle, Thanushi; Decaëns, Thibaud; Kosuth, Thibault; Braukmann, Thomas; Woodcock, Tom; Roslin, Tomas; Zammit, Tony; Campbell, Victoria; Dinca, Vlad; Peneva, Vlada; Hebert, Paul D N; deWaard, Jeremy R

    2015-01-01

    Comprehensive biotic surveys, or 'all taxon biodiversity inventories' (ATBI), have traditionally been limited in scale or scope due to the complications surrounding specimen sorting and species identification. To circumvent these issues, several ATBI projects have successfully integrated DNA barcoding into their identification procedures and witnessed acceleration in their surveys and subsequent increase in project scope and scale. The Biodiversity Institute of Ontario partnered with the rare Charitable Research Reserve and delegates of the 6th International Barcode of Life Conference to complete its own rapid, barcode-assisted ATBI of an established land trust in Cambridge, Ontario, Canada. The existing species inventory for the rare Charitable Research Reserve was rapidly expanded by integrating a DNA barcoding workflow with two surveying strategies - a comprehensive sampling scheme over four months, followed by a one-day bioblitz involving international taxonomic experts. The two surveys resulted in 25,287 and 3,502 specimens barcoded, respectively, as well as 127 human observations. This barcoded material, all vouchered at the Biodiversity Institute of Ontario collection, covers 14 phyla, 29 classes, 117 orders, and 531 families of animals, plants, fungi, and lichens. Overall, the ATBI documented 1,102 new species records for the nature reserve, expanding the existing long-term inventory by 49%. In addition, 2,793 distinct Barcode Index Numbers (BINs) were assigned to genus or higher level taxonomy, and represent additional species that will be added once their taxonomy is resolved. For the 3,502 specimens, the collection, sequence analysis, taxonomic assignment, data release and manuscript submission by 100+ co-authors all occurred in less than one week. This demonstrates the speed at which barcode-assisted inventories can be completed and the utility that barcoding provides in minimizing and guiding valuable taxonomic specialist time. The final product is more than a comprehensive biotic inventory - it is also a rich dataset of fine-scale occurrence and sequence data, all archived and cross-linked in the major biodiversity data repositories. This model of rapid generation and dissemination of essential biodiversity data could be followed to conduct regional assessments of biodiversity status and change, and potentially be employed for evaluating progress towards the Aichi Targets of the Strategic Plan for Biodiversity 2011-2020.

  8. Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve

    PubMed Central

    Young, Monica R; Quinn, Jenna; Perez, Kate; Sobel, Crystal N; Sones, Jayme E; Levesque-Beaudin, Valerie; Derbyshire, Rachael; Fernandez-Triana, Jose; Rougerie, Rodolphe; Thevanayagam, Abinah; Boskovic, Adrian; Borisenko, Alex V; Cadel, Alex; Brown, Allison; Pages, Anais; Castillo, Anibal H; Nicolai, Annegret; Glenn Mockford, Barb Mockford; Bukowski, Belén; Wilson, Bill; Trojahn, Brock; Lacroix, Carole Ann; Brimblecombe, Chris; Hay, Christoper; Ho, Christmas; Steinke, Claudia; Warne, Connor P; Garrido Cortes, Cristina; Engelking, Daniel; Wright, Danielle; Lijtmaer, Dario A; Gascoigne, David; Hernandez Martich, David; Morningstar, Derek; Neumann, Dirk; Steinke, Dirk; Marco DeBruin, Donna DeBruin; Dobias, Dylan; Sears, Elizabeth; Richard, Ellen; Damstra, Emily; Zakharov, Evgeny V; Laberge, Frederic; Collins, Gemma E; Blagoev, Gergin A; Grainge, Gerrie; Ansell, Graham; Meredith, Greg; Hogg, Ian; McKeown, Jaclyn; Topan, Janet; Bracey, Jason; Guenther, Jerry; Sills-Gilligan, Jesse; Addesi, Joseph; Persi, Joshua; Layton, Kara K S; D'Souza, Kareina; Dorji, Kencho; Grundy, Kevin; Nghidinwa, Kirsti; Ronnenberg, Kylee; Lee, Kyung Min; Xie, Linxi; Lu, Liuqiong; Penev, Lyubomir; Gonzalez, Mailyn; Rosati, Margaret E; Kekkonen, Mari; Kuzmina, Maria; Iskandar, Marianne; Mutanen, Marko; Fatahi, Maryam; Pentinsaari, Mikko; Bauman, Miriam; Nikolova, Nadya; Ivanova, Natalia V; Jones, Nathaniel; Weerasuriya, Nimalka; Monkhouse, Norman; Lavinia, Pablo D; Jannetta, Paul; Hanisch, Priscila E; McMullin, R. Troy; Ojeda Flores, Rafael; Mouttet, Raphaëlle; Vender, Reid; Labbee, Renee N; Forsyth, Robert; Lauder, Rob; Dickson, Ross; Kroft, Ruth; Miller, Scott E; MacDonald, Shannon; Panthi, Sishir; Pedersen, Stephanie; Sobek-Swant, Stephanie; Naik, Suresh; Lipinskaya, Tatsiana; Eagalle, Thanushi; Decaëns, Thibaud; Kosuth, Thibault; Braukmann, Thomas; Woodcock, Tom; Roslin, Tomas; Zammit, Tony; Campbell, Victoria; Dinca, Vlad; Peneva, Vlada; Hebert, Paul D N

    2015-01-01

    Abstract Background Comprehensive biotic surveys, or ‘all taxon biodiversity inventories’ (ATBI), have traditionally been limited in scale or scope due to the complications surrounding specimen sorting and species identification. To circumvent these issues, several ATBI projects have successfully integrated DNA barcoding into their identification procedures and witnessed acceleration in their surveys and subsequent increase in project scope and scale. The Biodiversity Institute of Ontario partnered with the rare Charitable Research Reserve and delegates of the 6th International Barcode of Life Conference to complete its own rapid, barcode-assisted ATBI of an established land trust in Cambridge, Ontario, Canada. New information The existing species inventory for the rare Charitable Research Reserve was rapidly expanded by integrating a DNA barcoding workflow with two surveying strategies – a comprehensive sampling scheme over four months, followed by a one-day bioblitz involving international taxonomic experts. The two surveys resulted in 25,287 and 3,502 specimens barcoded, respectively, as well as 127 human observations. This barcoded material, all vouchered at the Biodiversity Institute of Ontario collection, covers 14 phyla, 29 classes, 117 orders, and 531 families of animals, plants, fungi, and lichens. Overall, the ATBI documented 1,102 new species records for the nature reserve, expanding the existing long-term inventory by 49%. In addition, 2,793 distinct Barcode Index Numbers (BINs) were assigned to genus or higher level taxonomy, and represent additional species that will be added once their taxonomy is resolved. For the 3,502 specimens, the collection, sequence analysis, taxonomic assignment, data release and manuscript submission by 100+ co-authors all occurred in less than one week. This demonstrates the speed at which barcode-assisted inventories can be completed and the utility that barcoding provides in minimizing and guiding valuable taxonomic specialist time. The final product is more than a comprehensive biotic inventory – it is also a rich dataset of fine-scale occurrence and sequence data, all archived and cross-linked in the major biodiversity data repositories. This model of rapid generation and dissemination of essential biodiversity data could be followed to conduct regional assessments of biodiversity status and change, and potentially be employed for evaluating progress towards the Aichi Targets of the Strategic Plan for Biodiversity 2011–2020. PMID:26379469

  9. Use of mitochondrial COI gene for the identification of family Salticidae and Lycosidae of spiders.

    PubMed

    Naseem, Sajida; Tahir, Hafiz Muhammad

    2018-01-01

    In recent years, DNA barcoding has become quite popular for molecular identification of species because it is simple, quick and an affordable method. Present study was conducted to identify spiders of most abundant families, i.e. Salticidae and Lycosidae from citrus orchards in Sargodha district using DNA barcoding. A total of 160 specimens were subjected to DNA barcoding but, sequences up to 600 bp were recovered for 156 specimens. This molecular approach proved helpful to assign the exact taxon to those specimens which were misidentified through morphological characters in the study. We were succeeded to discriminate six species of Lycosidae and nine species of Salticidae through DNA barcoding. Results revealed the presence of clear barcode gap (discontinuity in intra- and inter-specific divergences) for members of both families. Furthermore, the maximum intra-specific divergence was less than NN (nearest neighbour) distance for all species. This suggested the reliability of DNA barcoding for spider's identification up to species level. We got 98% success in our study. It is concluded from present study that DNA barcoding is more reliable tool especially for immature spiders, when morphological characters are ambiguous.

  10. DNA barcoding commercially important aquatic invertebrates of Turkey.

    PubMed

    Keskin, Emre; Atar, Hasan Hüseyin

    2013-08-01

    DNA barcoding was used in order to identify aquatic invertebrates sampled from fisheries bycatch and discards. A total of 440 unique cytochrome c oxidase sub unit I (COI) barcodes were generated for 22 species from three important phyla (Arthropoda, Cnidaria, and Mollusca). All the species were sequenced and submitted to GenBank and Barcode of Life Database (BOLD) databases using 654 bp-long fragment of mitochondrial COI gene. Two of them (Pontastacus leptodactylus and Rapana bezoar) were first records of the species for the BOLD database and six of them (Carcinus aestuarii, Loligo vulgaris, Melicertus kerathurus, Nephrops norvegicus, Scyllarides latus, and Scyllarus arctus) were first standard (>648 bp) COI barcode records for the GenBank database. COI barcodes were analyzed for nucleotide composition, nucleotide pair frequencies, and Kimura's two-parameter genetic distance. Mean genetic distance among species was found increasing at higher taxonomic levels. Neighbor-joining trees generated were congruent with morphometric-based taxonomic classification. Findings of this study clearly demonstrate that DNA barcodes could be used as an efficient molecular tool in identification of not only target species from fisheries but also bycatch and discard species, and so it could provide us leverage for a better understanding in monitoring and management of fisheries and biodiversity.

  11. A new record of ponyfish Deveximentum megalolepis (Perciformes: Leiognathidae) in Beibu Gulf of China

    NASA Astrophysics Data System (ADS)

    Ju, Yuman; Song, Na; Chen, Guobao; Sun, Dianrong; Han, Zhiqiang; Gao, Tianxiang

    2017-06-01

    A new record ponyfish, Deveximentum megalolepis Mochizuki and Hayashi, 1989, was documented based on its morphological characteristics and DNA barcode. Fifty specimens were collected from Beibu Gulf of China and identified as D. megalolepis by morphological characterization. The coloration, meristic traits, and morphometric measurements were consistent with previously published records. In general, it is a silver-white, laterally compressed and deep bodied ponyfish with 6-9 rows of scales on cheek; scale rows above lateral line 6-8; scale rows below lateral line 14-17. Mitochondrial cytochrome oxidase I subunit (COI) gene fragment was sequenced for phylogenetic analysis. There is no sequence variation of COI gene between the specimens collected in this study. The genetic distances between D. megalolepis and other congeneric species range from 3.6% to 14.0%, which were greater than the threshold for fish species delimitation. The COI sequence analysis also supported the validity of D. megalolepis at genetic level. However, the genetic distance between Chinese and Philippine individuals was about 1.2% and they formed two lineages in gene tree, which may be caused by the geographical distance.

  12. Integrated digital error suppression for improved detection of circulating tumor DNA

    PubMed Central

    Kurtz, David M.; Chabon, Jacob J.; Scherer, Florian; Stehr, Henning; Liu, Chih Long; Bratman, Scott V.; Say, Carmen; Zhou, Li; Carter, Justin N.; West, Robert B.; Sledge, George W.; Shrager, Joseph B.; Loo, Billy W.; Neal, Joel W.; Wakelee, Heather A.; Diehn, Maximilian; Alizadeh, Ash A.

    2016-01-01

    High-throughput sequencing of circulating tumor DNA (ctDNA) promises to facilitate personalized cancer therapy. However, low quantities of cell-free DNA (cfDNA) in the blood and sequencing artifacts currently limit analytical sensitivity. To overcome these limitations, we introduce an approach for integrated digital error suppression (iDES). Our method combines in silico elimination of highly stereotypical background artifacts with a molecular barcoding strategy for the efficient recovery of cfDNA molecules. Individually, these two methods each improve the sensitivity of cancer personalized profiling by deep sequencing (CAPP-Seq) by ~3 fold, and synergize when combined to yield ~15-fold improvements. As a result, iDES-enhanced CAPP-Seq facilitates noninvasive variant detection across hundreds of kilobases. Applied to clinical non-small cell lung cancer (NSCLC) samples, our method enabled biopsy-free profiling of EGFR kinase domain mutations with 92% sensitivity and 96% specificity and detection of ctDNA down to 4 in 105 cfDNA molecules. We anticipate that iDES will aid the noninvasive genotyping and detection of ctDNA in research and clinical settings. PMID:27018799

  13. Suitable DNA Barcoding for Identification and Supervision of Piper kadsura in Chinese Medicine Markets.

    PubMed

    Yu, Ning; Gu, Hong; Wei, Yulong; Zhu, Ning; Wang, Yanli; Zhang, Haiping; Zhu, Yue; Zhang, Xin; Ma, Chao; Sun, Aidong

    2016-09-12

    Piper kadsura is a vine-like medicinal plant which is widely used in clinical treatment. However, P. kadsura is often substituted by other materials in the markets, thereby causing health risks. In this study, 38 P. kadsura samples and eight sequences from GenBank, including a closely-related species and common adulterants were collected. This study aimed to identify an effective DNA barcode from four popular DNA loci for P. kadsura authentication. The success rates of PCR amplification, sequencing, and sequence acquisition of matK were 10.5%, 75%, and 7.9%, respectively; for rbcL they were 89.5%, 8.8%, and 7.9%, respectively; ITS2 rates were 86.8%, 3.0%, and 2.6%, respectively, while for psbA-trnH they were all 100%, which is much higher than for the other three loci. The sequences were aligned using Muscle, genetic distances were computed using MEGA 5.2.2, and barcoding gap was performed using TAXON DNA. Phylogenetic analysis showed that psbA-trnH could clearly distinguish P. kadsura from its closely related species and the common adulterant. psbA-trnH was then used to evaluate the fake proportions of P. kadsura. Results showed that 18.4% of P. kadsura samples were fake, indicating that adulterant species exist in the Chinese markets. Two-dimensional DNA barcoding imaging of P. kadsura was conducted, which was beneficial to the management of P. kadsura. We conclude that the psbA-trnH region is a powerful tool for P. kadsura identification and supervision in the current medicine markets.

  14. Highly-sensitive microRNA detection based on bio-bar-code assay and catalytic hairpin assembly two-stage amplification.

    PubMed

    Tang, Songsong; Gu, Yuan; Lu, Huiting; Dong, Haifeng; Zhang, Kai; Dai, Wenhao; Meng, Xiangdan; Yang, Fan; Zhang, Xueji

    2018-04-03

    Herein, a highly-sensitive microRNA (miRNA) detection strategy was developed by combining bio-bar-code assay (BBA) with catalytic hairpin assembly (CHA). In the proposed system, two nanoprobes of magnetic nanoparticles functionalized with DNA probes (MNPs-DNA) and gold nanoparticles with numerous barcode DNA (AuNPs-DNA) were designed. In the presence of target miRNA, the MNP-DNA and AuNP-DNA hybridized with target miRNA to form a "sandwich" structure. After "sandwich" structures were separated from the solution by the magnetic field and dehybridized by high temperature, the barcode DNA sequences were released by dissolving AuNPs. The released barcode DNA sequences triggered the toehold strand displacement assembly of two hairpin probes, leading to recycle of barcode DNA sequences and producing numerous fluorescent CHA products for miRNA detection. Under the optimal experimental conditions, the proposed two-stage amplification system could sensitively detect target miRNA ranging from 10 pM to 10 aM with a limit of detection (LOD) down to 97.9 zM. It displayed good capability to discriminate single base and three bases mismatch due to the unique sandwich structure. Notably, it presented good feasibility for selective multiplexed detection of various combinations of synthetic miRNA sequences and miRNAs extracted from different cell lysates, which were in agreement with the traditional polymerase chain reaction analysis. The two-stage amplification strategy may be significant implication in the biological detection and clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Identification of Rays through DNA Barcoding: An Application for Ecologists

    PubMed Central

    Cerutti-Pereyra, Florencia; Meekan, Mark G.; Wei, Nu-Wei V.; O'Shea, Owen; Bradshaw, Corey J. A.; Austin, Chris M.

    2012-01-01

    DNA barcoding potentially offers scientists who are not expert taxonomists a powerful tool to support the accuracy of field studies involving taxa that are diverse and difficult to identify. The taxonomy of rays has received reasonable attention in Australia, although the fauna in remote locations such as Ningaloo Reef, Western Australia is poorly studied and the identification of some species in the field is problematic. Here, we report an application of DNA-barcoding to the identification of 16 species (from 10 genera) of tropical rays as part of an ecological study. Analysis of the dataset combined across all samples grouped sequences into clearly defined operational taxonomic units, with two conspicuous exceptions: the Neotrygon kuhlii species complex and the Aetobatus species complex. In the field, the group that presented the most difficulties for identification was the spotted whiptail rays, referred to as the ‘uarnak’ complex. Two sets of problems limited the successful application of DNA barcoding: (1) the presence of cryptic species, species complexes with unresolved taxonomic status and intra-specific geographical variation, and (2) insufficient numbers of entries in online databases that have been verified taxonomically, and the presence of lodged sequences in databases with inconsistent names. Nevertheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to highlight species complexes where taxonomic uncertainty might confound ecological data. PMID:22701556

  16. A Universal Next-Generation Sequencing Protocol To Generate Noninfectious Barcoded cDNA Libraries from High-Containment RNA Viruses

    PubMed Central

    Moser, Lindsey A.; Ramirez-Carvajal, Lisbeth; Puri, Vinita; Pauszek, Steven J.; Matthews, Krystal; Dilley, Kari A.; Mullan, Clancy; McGraw, Jennifer; Khayat, Michael; Beeri, Karen; Yee, Anthony; Dugan, Vivien; Heise, Mark T.; Frieman, Matthew B.; Rodriguez, Luis L.; Bernard, Kristen A.; Wentworth, David E.

    2016-01-01

    ABSTRACT Several biosafety level 3 and/or 4 (BSL-3/4) pathogens are high-consequence, single-stranded RNA viruses, and their genomes, when introduced into permissive cells, are infectious. Moreover, many of these viruses are select agents (SAs), and their genomes are also considered SAs. For this reason, cDNAs and/or their derivatives must be tested to ensure the absence of infectious virus and/or viral RNA before transfer out of the BSL-3/4 and/or SA laboratory. This tremendously limits the capacity to conduct viral genomic research, particularly the application of next-generation sequencing (NGS). Here, we present a sequence-independent method to rapidly amplify viral genomic RNA while simultaneously abolishing both viral and genomic RNA infectivity across multiple single-stranded positive-sense RNA (ssRNA+) virus families. The process generates barcoded DNA amplicons that range in length from 300 to 1,000 bp, which cannot be used to rescue a virus and are stable to transport at room temperature. Our barcoding approach allows for up to 288 barcoded samples to be pooled into a single library and run across various NGS platforms without potential reconstitution of the viral genome. Our data demonstrate that this approach provides full-length genomic sequence information not only from high-titer virion preparations but it can also recover specific viral sequence from samples with limited starting material in the background of cellular RNA, and it can be used to identify pathogens from unknown samples. In summary, we describe a rapid, universal standard operating procedure that generates high-quality NGS libraries free of infectious virus and infectious viral RNA. IMPORTANCE This report establishes and validates a standard operating procedure (SOP) for select agents (SAs) and other biosafety level 3 and/or 4 (BSL-3/4) RNA viruses to rapidly generate noninfectious, barcoded cDNA amenable for next-generation sequencing (NGS). This eliminates the burden of testing all processed samples derived from high-consequence pathogens prior to transfer from high-containment laboratories to lower-containment facilities for sequencing. Our established protocol can be scaled up for high-throughput sequencing of hundreds of samples simultaneously, which can dramatically reduce the cost and effort required for NGS library construction. NGS data from this SOP can provide complete genome coverage from viral stocks and can also detect virus-specific reads from limited starting material. Our data suggest that the procedure can be implemented and easily validated by institutional biosafety committees across research laboratories. PMID:27822536

  17. Cryptic diversity in Australian stick insects (Insecta; Phasmida) uncovered by the DNA barcoding approach.

    PubMed

    Velonà, A; Brock, P D; Hasenpusch, J; Mantovani, B

    2015-05-18

    The barcoding approach was applied to analyze 16 Australian morphospecies of the order Phasmida, with the aim to test if it could be suitable as a tool for phasmid species identification and if its discrimination power would allow uncovering of cryptic diversity. Both goals were reached. Eighty-two specimens representing twelve morphospecies (Sipyloidea sp. A, Candovia annulata, Candovia sp. A, Candovia sp. B, Candovia sp. C, Denhama austrocarinata, Xeroderus kirbii, Parapodacanthus hasenpuschorum, Tropidoderus childrenii, Cigarrophasma tessellatum, Acrophylla wuelfingi, Eurycantha calcarata) were correctly recovered as clades through the molecular approach, their sequences forming monophyletic and well-supported clusters. In four instances, Neighbor-Joining tree and barcoding gap analyses supported either a specific (Austrocarausius mercurius, Anchiale briareus) or a subspecific (Anchiale austrotessulata, Extatosoma tiaratum) level of divergence within the analyzed morphospecies. The lack of an appropriate database of homologous coxI sequences prevented more detailed identification of undescribed taxa.

  18. Uncoupling of sgRNAs from their associated barcodes during PCR amplification of combinatorial CRISPR screens

    PubMed Central

    2018-01-01

    Many implementations of pooled screens in mammalian cells rely on linking an element of interest to a barcode, with the latter subsequently quantitated by next generation sequencing. However, substantial uncoupling between these paired elements during lentiviral production has been reported, especially as the distance between elements increases. We detail that PCR amplification is another major source of uncoupling, and becomes more pronounced with increased amounts of DNA template molecules and PCR cycles. To lessen uncoupling in systems that use paired elements for detection, we recommend minimizing the distance between elements, using low and equal template DNA inputs for plasmid and genomic DNA during PCR, and minimizing the number of PCR cycles. We also present a vector design for conducting combinatorial CRISPR screens that enables accurate barcode-based detection with a single short sequencing read and minimal uncoupling. PMID:29799876

  19. DNA barcoding as a tool for coral reef conservation

    NASA Astrophysics Data System (ADS)

    Neigel, J.; Domingo, A.; Stake, J.

    2007-09-01

    DNA Barcoding (DBC) is a method for taxonomic identification of animals that is based entirely on the 5' portion of the mitochondrial gene, cytochrome oxidase subunit I ( COI-5). It can be especially useful for identification of larval forms or incomplete specimens lacking diagnostic morphological characters. DBC can also facilitate the discovery of species and in defining “molecular taxonomic units” in problematic groups. However, DBC is not a panacea for coral reef taxonomy. In two of the most ecologically important groups on coral reefs, the Anthozoa and Porifera, COI-5 sequences have diverged too little to be diagnostic for all species. Other problems for DBC include paraphyly in mitochondrial gene trees and lack of differentiation between hybrids and their maternal ancestors. DBC also depends on the availability of databases of COI-5 sequences, which are still in early stages of development. A global effort to barcode all fish species has demonstrated the importance of large-scale coordination and is yielding promising results. Whether or not COI-5 by itself is sufficient for species assignments has become a contentious question; it is generally advantageous to use sequences from multiple loci.

  20. DNA Barcode Identification of Freshwater Snails in the Family Bithyniidae from Thailand

    PubMed Central

    Kulsantiwong, Jutharat; Prasopdee, Sattrachai; Ruangsittichai, Jiraporn; Ruangjirachuporn, Wipaporn; Boonmars, Thidarut; Viyanant, Vithoon; Pierossi, Paola; Hebert, Paul D. N.; Tesana, Smarn

    2013-01-01

    Freshwater snails in the family Bithyniidae are the first intermediate host for Southeast Asian liver fluke (Opisthorchis viverrini), the causative agent of opisthorchiasis. Unfortunately, the subtle morphological characters that differentiate species in this group are not easily discerned by non-specialists. This is a serious matter because the identification of bithyniid species is a fundamental prerequisite for better understanding of the epidemiology of this disease. Because DNA barcoding, the analysis of sequence diversity in the 5’ region of the mitochondrial COI gene, has shown strong performance in other taxonomic groups, we decided to test its capacity to resolve 10 species/ subspecies of bithyniids from Thailand. Our analysis of 217 specimens indicated that COI sequences delivered species-level identification for 9 of 10 currently recognized species. The mean intraspecific divergence of COI was 2.3% (range 0-9.2 %), whereas sequence divergences between congeneric species averaged 8.7% (range 0-22.2 %). Although our results indicate that DNA barcoding can differentiate species of these medically-important snails, we also detected evidence for the presence of one overlooked species and one possible case of synonymy. PMID:24223896

  1. Pyrosequencing analysis of microbial communities reveals dominant cosmopolitan phylotypes in deep-sea sediments of the eastern Mediterranean Sea.

    PubMed

    Polymenakou, Paraskevi N; Christakis, Christos A; Mandalakis, Manolis; Oulas, Anastasis

    2015-06-01

    The deep eastern basin of the Mediterranean Sea is considered to be one of the world's most oligotrophic areas in the world. Here we performed pyrosequenicng analysis of bacterial and archaeal communities in oxic nutrient-poor sediments collected from the eastern Mediterranean at 1025-4393 m depth. Microbial communities were surveyed by targeting the hypervariable V5-V6 regions of the 16S ribosomal RNA gene using bar-coded pyrosequencing. With a total of 13,194 operational taxonomic units (OTUs) or phylotypes at 97% sequence similarities, the phylogenetic affiliation of microbes was assigned to 23 bacterial and 2 archaeal known phyla, 23 candidate divisions at the phylum level and distributed into 186 families. It was further revealed that the microbial consortia inhabiting all sampling sites were highly diverse, but dominated by phylotypes closely related to members of the genus Pseudomonas and Marine Group I archaea. Such pronounced and widespread enrichment probably manifests the cosmopolitan character of these species and raises questions about their metabolic adaptation to the physical stressors and low nutrient availability of the deep eastern Mediterranean Sea. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Identification of a Herbal Powder by Deoxyribonucleic Acid Barcoding and Structural Analyses.

    PubMed

    Sheth, Bhavisha P; Thaker, Vrinda S

    2015-10-01

    Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. To identify a herbal powder obtained from a herbalist in the local vicinity of Rajkot, Gujarat, using deoxyribonucleic acid (DNA) barcoding and molecular tools. The DNA was extracted from a herbal powder and selected Cassia species, followed by the polymerase chain reaction (PCR) and sequencing of the rbcL barcode locus. Thereafter the sequences were subjected to National Center for Biotechnology Information (NCBI) basic local alignment search tool (BLAST) analysis, followed by the protein three-dimension structure determination of the rbcL protein from the herbal powder and Cassia species namely Cassia fistula, Cassia tora and Cassia javanica (sequences obtained in the present study), Cassia Roxburghii, and Cassia abbreviata (sequences retrieved from Genbank). Further, the multiple and pairwise structural alignment were carried out in order to identify the herbal powder. The nucleotide sequences obtained from the selected species of Cassia were submitted to Genbank (Accession No. JX141397, JX141405, JX141420). The NCBI BLAST analysis of the rbcL protein from the herbal powder showed an equal sequence similarity (with reference to different parameters like E value, maximum identity, total score, query coverage) to C. javanica and C. roxburghii. In order to solve the ambiguities of the BLAST result, a protein structural approach was implemented. The protein homology models obtained in the present study were submitted to the protein model database (PM0079748-PM0079753). The pairwise structural alignment of the herbal powder (as template) and C. javanica and C. roxburghii (as targets individually) revealed a close similarity of the herbal powder with C. javanica. A strategy as used here, incorporating the integrated use of DNA barcoding and protein structural analyses could be adopted, as a novel rapid and economic procedure, especially in cases when protein coding loci are considered. Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. A herbal powder was obtained from a herbalist in the local vicinity of Rajkot, Gujarat. An integrated approach using DNA barcoding and structural analyses was carried out to identify the herbal powder. The herbal powder was identified as Cassia javanica L.

  3. INTERNAL TRANSCRIBED SPACER (ITS), AN IDEAL DNA BARCODE FOR SPECIES DISCRIMINATION IN CRAWFURDIA WALL. (GENTIANACEAE).

    PubMed

    Zhang, Dequan; Jiang, Bei; Duan, Lizhen; Zhou, Nong

    2016-01-01

    DNA barcoding is a technique used to identify species based on species-specific differences in short regions of their DNA. It is widely used in species discrimination of medicinal plants and traditional medicines. In the present study, four potential DNA barcodes, namely rbcL , matK , trnH-psbA and ITS (nuclear ribosomal internal transcribed spacer) were adopted for species discrimination in Crawfurdia Wall (Genetiaceae). Identification ability of these DNA barcodes and combinations were evaluated using three classic methods (Distance, Blast and Tree-Building). As a result, ITS, trnH-psbA and rbcL regions showed great universality for a success rate of 100%; whereas matK was disappointing for which only 65% samples gained useful DNA sequences. ITS region, which could clearly and effectively identify the five species in Crawfurdia , performed very well in this study. On the contrary, trnH-psbA and rbcL performed poorly in discrimination among these species. ITS marker was an ideal DNA barcode in Crawfurdia and it should be incorporated into one of the core barcodes for seed plants.

  4. Services of DNA barcoding in different fields.

    PubMed

    Muhammad Tahir, Hafiz; Akhtar, Samreen

    2016-11-01

    DNA barcoding is a new master key for species identification and has greatly accelerated the pace of species discovery. In this novel and cost-effective technique, a short DNA sequence from a standard region of mitochondrial "CO1" gene called "barcode" is used. At present, researchers all over the world are utilizing this powerful tool for investigating biodiversity, differentiating cryptic species, testing food authenticity, identifying parasites, vectors, insect pests, and predators, monitoring of illegal trade of animals and their products, and identifying forensically important insects. In addition, this technique can potentially be used to monitor quality of drinking water, quickly identify the indicator species of lakes, rivers, and streams, identify species with harmful attributes or medicinal properties, monitor smuggling of endangered plants and animals and their products, and disease investigations. Despite non-favorable criticism from a few researchers, DNA barcoding has achieved immense popularity in the scientific community, especially among biologists. The present review provides an overview of DNA barcoding and its practical applications. The limitation, future prospective and main informative platforms for DNA barcoding have also been discussed.

  5. Increasing global participation in genetics research through DNA barcoding.

    PubMed

    Adamowicz, Sarah J; Steinke, Dirk

    2015-12-01

    DNA barcoding--the sequencing of short, standardized DNA regions for specimen identification and species discovery--has promised to facilitate rapid access to biodiversity knowledge by diverse users. Here, we advance our opinion that increased global participation in genetics research is beneficial, both to scientists and for science, and explore the premise that DNA barcoding can help to democratize participation in genetics research. We examine publication patterns (2003-2014) in the DNA barcoding literature and compare trends with those in the broader, related domain of genomics. While genomics is the older and much larger field, the number of nations contributing to the published literature is similar between disciplines. Meanwhile, DNA barcoding exhibits a higher pace of growth in the number of publications as well as greater evenness among nations in their proportional contribution to total authorships. This exploration revealed DNA barcoding to be a highly international discipline, with growing participation by researchers in especially biodiverse nations. We briefly consider several of the challenges that may hinder further participation in genetics research, including access to training and molecular facilities as well as policy relating to the movement of genetic resources.

  6. Utility of GenBank and the Barcode of Life Data Systems (BOLD) for the identification of forensically important Diptera from Belgium and France

    PubMed Central

    Sonet, Gontran; Jordaens, Kurt; Braet, Yves; Bourguignon, Luc; Dupont, Eréna; Backeljau, Thierry; De Meyer, Marc; Desmyter, Stijn

    2013-01-01

    Abstract Fly larvae living on dead corpses can be used to estimate post-mortem intervals. The identification of these flies is decisive in forensic casework and can be facilitated by using DNA barcodes provided that a representative and comprehensive reference library of DNA barcodes is available. We constructed a local (Belgium and France) reference library of 85 sequences of the COI DNA barcode fragment (mitochondrial cytochrome c oxidase subunit I gene), from 16 fly species of forensic interest (Calliphoridae, Muscidae, Fanniidae). This library was then used to evaluate the ability of two public libraries (GenBank and the Barcode of Life Data Systems – BOLD) to identify specimens from Belgian and French forensic cases. The public libraries indeed allow a correct identification of most specimens. Yet, some of the identifications remain ambiguous and some forensically important fly species are not, or insufficiently, represented in the reference libraries. Several search options offered by GenBank and BOLD can be used to further improve the identifications obtained from both libraries using DNA barcodes. PMID:24453564

  7. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals.

    PubMed

    Luo, Arong; Zhang, Aibing; Ho, Simon Yw; Xu, Weijun; Zhang, Yanzhou; Shi, Weifeng; Cameron, Stephen L; Zhu, Chaodong

    2011-01-28

    A well-informed choice of genetic locus is central to the efficacy of DNA barcoding. Current DNA barcoding in animals involves the use of the 5' half of the mitochondrial cytochrome oxidase 1 gene (CO1) to diagnose and delimit species. However, there is no compelling a priori reason for the exclusive focus on this region, and it has been shown that it performs poorly for certain animal groups. To explore alternative mitochondrial barcoding regions, we compared the efficacy of the universal CO1 barcoding region with the other mitochondrial protein-coding genes in eutherian mammals. Four criteria were used for this comparison: the number of recovered species, sequence variability within and between species, resolution to taxonomic levels above that of species, and the degree of mutational saturation. Based on 1,179 mitochondrial genomes of eutherians, we found that the universal CO1 barcoding region is a good representative of mitochondrial genes as a whole because the high species-recovery rate (> 90%) was similar to that of other mitochondrial genes, and there were no significant differences in intra- or interspecific variability among genes. However, an overlap between intra- and interspecific variability was still problematic for all mitochondrial genes. Our results also demonstrated that any choice of mitochondrial gene for DNA barcoding failed to offer significant resolution at higher taxonomic levels. We suggest that the CO1 barcoding region, the universal DNA barcode, is preferred among the mitochondrial protein-coding genes as a molecular diagnostic at least for eutherian species identification. Nevertheless, DNA barcoding with this marker may still be problematic for certain eutherian taxa and our approach can be used to test potential barcoding loci for such groups.

  8. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals

    PubMed Central

    2011-01-01

    Background A well-informed choice of genetic locus is central to the efficacy of DNA barcoding. Current DNA barcoding in animals involves the use of the 5' half of the mitochondrial cytochrome oxidase 1 gene (CO1) to diagnose and delimit species. However, there is no compelling a priori reason for the exclusive focus on this region, and it has been shown that it performs poorly for certain animal groups. To explore alternative mitochondrial barcoding regions, we compared the efficacy of the universal CO1 barcoding region with the other mitochondrial protein-coding genes in eutherian mammals. Four criteria were used for this comparison: the number of recovered species, sequence variability within and between species, resolution to taxonomic levels above that of species, and the degree of mutational saturation. Results Based on 1,179 mitochondrial genomes of eutherians, we found that the universal CO1 barcoding region is a good representative of mitochondrial genes as a whole because the high species-recovery rate (> 90%) was similar to that of other mitochondrial genes, and there were no significant differences in intra- or interspecific variability among genes. However, an overlap between intra- and interspecific variability was still problematic for all mitochondrial genes. Our results also demonstrated that any choice of mitochondrial gene for DNA barcoding failed to offer significant resolution at higher taxonomic levels. Conclusions We suggest that the CO1 barcoding region, the universal DNA barcode, is preferred among the mitochondrial protein-coding genes as a molecular diagnostic at least for eutherian species identification. Nevertheless, DNA barcoding with this marker may still be problematic for certain eutherian taxa and our approach can be used to test potential barcoding loci for such groups. PMID:21276253

  9. Testing the utility of matK and ITS DNA regions for discrimination of Allium species

    USDA-ARS?s Scientific Manuscript database

    Molecular phylogenetic analysis of the genus Allium L. has been mainly based on the nucleotide sequences of ITS region. In 2009 matK and rbcL were accepted as a two-locus DNA barcode to classify plant species by the Consortium for the Barcode of Life (CBOL) Plant Working Group. MatK region has been ...

  10. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family.

    PubMed

    Gao, Ting; Yao, Hui; Song, Jingyuan; Zhu, Yingjie; Liu, Chang; Chen, Shilin

    2010-10-26

    Five DNA regions, namely, rbcL, matK, ITS, ITS2, and psbA-trnH, have been recommended as primary DNA barcodes for plants. Studies evaluating these regions for species identification in the large plant taxon, which includes a large number of closely related species, have rarely been reported. The feasibility of using the five proposed DNA regions was tested for discriminating plant species within Asteraceae, the largest family of flowering plants. Among these markers, ITS2 was the most useful in terms of universality, sequence variation, and identification capability in the Asteraceae family. The species discriminating power of ITS2 was also explored in a large pool of 3,490 Asteraceae sequences that represent 2,315 species belonging to 494 different genera. The result shows that ITS2 correctly identified 76.4% and 97.4% of plant samples at the species and genus levels, respectively. In addition, ITS2 displayed a variable ability to discriminate related species within different genera. ITS2 is the best DNA barcode for the Asteraceae family. This approach significantly broadens the application of DNA barcoding to resolve classification problems in the family Asteraceae at the genera and species levels.

  11. Using DNA barcodes to identify a bird involved in a birdstrike at a Chinese airport.

    PubMed

    Yang, Rong; Wu, Xiaobing; Yan, Peng; Li, Xiaoqiang

    2010-10-01

    One day at dusk in August, 200X, an airplane was struck by a bird at a Chinese airport (M Airport). After a careful check, some blades of the plane's engine were found to be out of shape and a few feathers and some bloodstains were found in the air intake of the engine. In order to know which species of bird was involved in the birdstrike, firstly we extracted DNA from the bloodstains; secondly, the DNA barcode (portion of COI gene) of the unknown species was amplified by PCR method; thirdly, sequence divergences (K2P differences) of the DNA barcode between the unknown species and a library of 59 common bird species distributed at the airport area were analyzed. Furthermore, a neighbor-joining (NJ) tree based on COI barcodes was created to provide graphic representation of sequence divergences among the species to confirm the identification. The result showed that red-rumped swallow (Hirundo daurica) was involved in the birdstrike incident. Some suggestions to avoid birdstrikes caused by red-rumped swallows were given to the administrative department of M Airport to ensure flying safety.

  12. International Barcode of Life: Focus on big biodiversity in South Africa.

    PubMed

    Adamowicz, Sarah J; Hollingsworth, Peter M; Ratnasingham, Sujeevan; van der Bank, Michelle

    2017-11-01

    Participants in the 7th International Barcode of Life Conference (Kruger National Park, South Africa, 20-24 November 2017) share the latest findings in DNA barcoding research and its increasingly diversified applications. Here, we review prevailing trends synthesized from among 429 invited and contributed abstracts, which are collated in this open-access special issue of Genome. Hosted for the first time on the African continent, the 7th Conference places special emphasis on the evolutionary origins, biogeography, and conservation of African flora and fauna. Within Africa and elsewhere, DNA barcoding and related techniques are being increasingly used for wildlife forensics and for the validation of commercial products, such as medicinal plants and seafood species. A striking trend of the conference is the dramatic rise of studies on environmental DNA (eDNA) and on diverse uses of high-throughput sequencing techniques. Emerging techniques in these areas are opening new avenues for environmental biomonitoring, managing species-at-risk and invasive species, and revealing species interaction networks in unprecedented detail. Contributors call for the development of validated community standards for high-throughput sequence data generation and analysis, to enable the full potential of these methods to be realized for understanding and managing biodiversity on a global scale.

  13. A comparative study of COI and 16 S rRNA genes for DNA barcoding of cultivable carps in India.

    PubMed

    Mohanty, Mausumee; Jayasankar, Pallipuram; Sahoo, Lakshman; Das, Paramananda

    2015-02-01

    The 5' region of the mitochondrial DNA gene cytochrome c oxidase subunit I (COI) is the standard marker for DNA barcoding. However, 16 S rRNA has also been advocated for DNA barcoding in many animal species. Herein, we directly compare the usefulness of COI and 16 S rRNA in discriminating six cultivable carp species: Labeo rohita, Catla catla, Cirrhinus mrigala, Labeo fimbriatus, Labeo bata and Cirrhinus reba from India. Analysis of partial sequences of these two gene fragments from 171 individuals indicated close genetic relationship between Catla catla and Labeo rohita. The results of the present study indicated COI to be more useful than 16 S rRNA for DNA barcoding of Indian carps.

  14. Multilocus inference of species trees and DNA barcoding.

    PubMed

    Mallo, Diego; Posada, David

    2016-09-05

    The unprecedented amount of data resulting from next-generation sequencing has opened a new era in phylogenetic estimation. Although large datasets should, in theory, increase phylogenetic resolution, massive, multilocus datasets have uncovered a great deal of phylogenetic incongruence among different genomic regions, due both to stochastic error and to the action of different evolutionary process such as incomplete lineage sorting, gene duplication and loss and horizontal gene transfer. This incongruence violates one of the fundamental assumptions of the DNA barcoding approach, which assumes that gene history and species history are identical. In this review, we explain some of the most important challenges we will have to face to reconstruct the history of species, and the advantages and disadvantages of different strategies for the phylogenetic analysis of multilocus data. In particular, we describe the evolutionary events that can generate species tree-gene tree discordance, compare the most popular methods for species tree reconstruction, highlight the challenges we need to face when using them and discuss their potential utility in barcoding. Current barcoding methods sacrifice a great amount of statistical power by only considering one locus, and a transition to multilocus barcodes would not only improve current barcoding methods, but also facilitate an eventual transition to species-tree-based barcoding strategies, which could better accommodate scenarios where the barcode gap is too small or inexistent.This article is part of the themed issue 'From DNA barcodes to biomes'. © 2016 The Authors.

  15. New species and phylogenetic relationships of the spider genus Coptoprepes using morphological and sequence data (Araneae: Anyphaenidae).

    PubMed

    Barone, Mariana L; Werenkraut, Victoria; Ramírez, Martín J

    2016-10-17

    We present evidence from the standard cytochrome c oxidase subunit I (COI) barcoding marker and from new collections, showing that the males and females of C. ecotono Werenkraut & Ramírez were mismatched, and describe the female of that species for the first time. An undescribed male from Chile is assigned to the new species Coptoprepes laudani, together with the female that was previously thought as C. ecotono. The matching of sexes is justified after a dual cladistics analysis of morphological and sequence data in combination. New locality data and barcoding sequences are provided for other species of Coptoprepes, all endemic of the temperate forests of Chile and adjacent Argentina. Although morphology and sequences are not conclusive on the relationships of Coptoprepes species, the sequence data suggests that the species without a retrolateral tibial apophysis may belong to an independent lineage.

  16. Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna?

    PubMed Central

    2013-01-01

    Background The megadiverse Neotropical freshwater ichthyofauna is the richest in the world with approximately 6,000 recognized species. Interestingly, they are distributed among only 17 orders, and almost 80% of them belong to only three orders: Characiformes, Siluriformes and Perciformes. Moreover, evidence based on molecular data has shown that most of the diversification of the Neotropical ichthyofauna occurred recently. These characteristics make the taxonomy and identification of this fauna a great challenge, even when using molecular approaches. In this context, the present study aimed to test the effectiveness of the barcoding methodology (COI gene) to identify the mega diverse freshwater fish fauna from the Neotropical region. For this purpose, 254 species of fishes were analyzed from the Upper Parana River basin, an area representative of the larger Neotropical region. Results Of the 254 species analyzed, 252 were correctly identified by their barcode sequences (99.2%). The main K2P intra- and inter-specific genetic divergence values (0.3% and 6.8%, respectively) were relatively low compared with similar values reported in the literature, reflecting the higher number of closely related species belonging to a few higher taxa and their recent radiation. Moreover, for 84 pairs of species that showed low levels of genetic divergence (<2%), application of a complementary character-based nucleotide diagnostic approach proved useful in discriminating them. Additionally, 14 species displayed high intra-specific genetic divergence (>2%), pointing to at least 23 strong candidates for new species. Conclusions Our study is the first to examine a large number of freshwater fish species from the Neotropical area, including a large number of closely related species. The results confirmed the efficacy of the barcoding methodology to identify a recently radiated, megadiverse fauna, discriminating 99.2% of the analyzed species. The power of the barcode sequences to identify species, even with low interspecific divergence, gives us an idea of the distribution of inter-specific genetic divergence in these megadiverse fauna. The results also revealed hidden genetic divergences suggestive of reproductive isolation and putative cryptic speciation in some species (23 candidates for new species). Finally, our study constituted an important contribution to the international Barcoding of Life (iBOL.org) project, providing barcode sequences for use in identification of these species by experts and non-experts, and allowing them to be available for use in other applications. PMID:23497346

  17. How many species and under what names? Using DNA barcoding and GenBank data for west Central African amphibian conservation

    PubMed Central

    Mulcahy, Daniel G.; Vanthomme, Hadrien; Tobi, Elie; Wynn, Addison H.; Zimkus, Breda M.; McDiarmid, Roy W.

    2017-01-01

    Development projects in west Central Africa are proceeding at an unprecedented rate, often with little concern for their effects on biodiversity. In an attempt to better understand potential impacts of a road development project on the anuran amphibian community, we conducted a biodiversity assessment employing multiple methodologies (visual encounter transects, auditory surveys, leaf litter plots and pitfall traps) to inventory species prior to construction of a new road within the buffer zone of Moukalaba-Doudou National Park, Gabon. Because of difficulties in morphological identification and taxonomic uncertainty of amphibian species observed in the area, we integrated a DNA barcoding analysis into the project to improve the overall quality and accuracy of the species inventory. Based on morphology alone, 48 species were recognized in the field and voucher specimens of each were collected. We used tissue samples from specimens collected at our field site, material available from amphibians collected in other parts of Gabon and the Republic of Congo to initiate a DNA barcode library for west Central African amphibians. We then compared our sequences with material in GenBank for the genera recorded at the study site to assist in identifications. The resulting COI and 16S barcode library allowed us to update the number of species documented at the study site to 28, thereby providing a more accurate assessment of diversity and distributions. We caution that because sequence data maintained in GenBank are often poorly curated by the original submitters and cannot be amended by third-parties, these data have limited utility for identification purposes. Nevertheless, the use of DNA barcoding is likely to benefit biodiversity inventories and long-term monitoring, particularly for taxa that can be difficult to identify based on morphology alone; likewise, inventory and monitoring programs can contribute invaluable data to the DNA barcode library and the taxonomy of complex groups. Our methods provide an example of how non-taxonomists and parataxonomists working in understudied parts of the world with limited geographic sampling and comparative morphological material can use DNA barcoding and publicly available sequence data (GenBank) to rapidly identify the number of species and assign tentative names to aid in urgent conservation management actions and contribute to taxonomic resolution. PMID:29131846

  18. Systematic validation and atomic force microscopy of non-covalent short oligonucleotide barcode microarrays.

    PubMed

    Cook, Michael A; Chan, Chi-Kin; Jorgensen, Paul; Ketela, Troy; So, Daniel; Tyers, Mike; Ho, Chi-Yip

    2008-02-06

    Molecular barcode arrays provide a powerful means to analyze cellular phenotypes in parallel through detection of short (20-60 base) unique sequence tags, or "barcodes", associated with each strain or clone in a collection. However, costs of current methods for microarray construction, whether by in situ oligonucleotide synthesis or ex situ coupling of modified oligonucleotides to the slide surface are often prohibitive to large-scale analyses. Here we demonstrate that unmodified 20mer oligonucleotide probes printed on conventional surfaces show comparable hybridization signals to covalently linked 5'-amino-modified probes. As a test case, we undertook systematic cell size analysis of the budding yeast Saccharomyces cerevisiae genome-wide deletion collection by size separation of the deletion pool followed by determination of strain abundance in size fractions by barcode arrays. We demonstrate that the properties of a 13K unique feature spotted 20 mer oligonucleotide barcode microarray compare favorably with an analogous covalently-linked oligonucleotide array. Further, cell size profiles obtained with the size selection/barcode array approach recapitulate previous cell size measurements of individual deletion strains. Finally, through atomic force microscopy (AFM), we characterize the mechanism of hybridization to unmodified barcode probes on the slide surface. These studies push the lower limit of probe size in genome-scale unmodified oligonucleotide microarray construction and demonstrate a versatile, cost-effective and reliable method for molecular barcode analysis.

  19. The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life

    PubMed Central

    Frandsen, Paul B.; Holzenthal, Ralph W.; Beet, Clare R.; Bennett, Kristi R.; Blahnik, Roger J.; Bonada, Núria; Cartwright, David; Chuluunbat, Suvdtsetseg; Cocks, Graeme V.; Collins, Gemma E.; deWaard, Jeremy; Dean, John; Flint, Oliver S.; Hausmann, Axel; Hendrich, Lars; Hess, Monika; Hogg, Ian D.; Kondratieff, Boris C.; Malicky, Hans; Milton, Megan A.; Morinière, Jérôme; Morse, John C.; Mwangi, François Ngera; Pauls, Steffen U.; Gonzalez, María Razo; Rinne, Aki; Robinson, Jason L.; Salokannel, Juha; Shackleton, Michael; Smith, Brian; Stamatakis, Alexandros; StClair, Ros; Thomas, Jessica A.; Zamora-Muñoz, Carmen; Ziesmann, Tanja

    2016-01-01

    DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species. Most Trichoptera, as with most of life's species, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained tree searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the tree. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous species boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between ‘Barcode Index Numbers’ (BINs) and ‘species’ that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for species description. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481793

  20. Prospects and Problems for Identification of Poisonous Plants in China using DNA Barcodes.

    PubMed

    Xie, Lei; Wang, Ying Wei; Guan, Shan Yue; Xie, Li Jing; Long, Xin; Sun, Cheng Ye

    2014-10-01

    Poisonous plants are a deadly threat to public health in China. The traditional clinical diagnosis of the toxic plants is inefficient, fallible, and dependent upon experts. In this study, we tested the performance of DNA barcodes for identification of the most threatening poisonous plants in China. Seventy-four accessions of 27 toxic plant species in 22 genera and 17 families were sampled and three DNA barcodes (matK, rbcL, and ITS) were amplified, sequenced and tested. Three methods, Blast, pairwise global alignment (PWG) distance, and Tree-Building were tested for discrimination power. The primer universality of all the three markers was high. Except in the case of ITS for Hemerocallis minor, the three barcodes were successfully generated from all the selected species. Among the three methods applied, Blast showed the lowest discrimination rate, whereas PWG Distance and Tree-Building methods were equally effective. The ITS barcode showed highest discrimination rates using the PWG Distance and Tree-Building methods. When the barcodes were combined, discrimination rates were increased for the Blast method. DNA barcoding technique provides us a fast tool for clinical identification of poisonous plants in China. We suggest matK, rbcL, ITS used in combination as DNA barcodes for authentication of poisonous plants. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  1. Towards a global barcode library for Lymantria (Lepidoptera: Lymantriinae) tussock moths of biosecurity concern.

    PubMed

    deWaard, Jeremy R; Mitchell, Andrew; Keena, Melody A; Gopurenko, David; Boykin, Laura M; Armstrong, Karen F; Pogue, Michael G; Lima, Joao; Floyd, Robin; Hanner, Robert H; Humble, Leland M

    2010-12-09

    Detecting and controlling the movements of invasive species, such as insect pests, relies upon rapid and accurate species identification in order to initiate containment procedures by the appropriate authorities. Many species in the tussock moth genus Lymantria are significant forestry pests, including the gypsy moth Lymantria dispar L., and consequently have been a focus for the development of molecular diagnostic tools to assist in identifying species and source populations. In this study we expand the taxonomic and geographic coverage of the DNA barcode reference library, and further test the utility of this diagnostic method, both for species/subspecies assignment and for determination of geographic provenance of populations. Cytochrome oxidase I (COI) barcodes were obtained from 518 individuals and 36 species of Lymantria, including sequences assembled and generated from previous studies, vouchered material in public collections, and intercepted specimens obtained from surveillance programs in Canada. A maximum likelihood tree was constructed, revealing high bootstrap support for 90% of species clusters. Bayesian species assignment was also tested, and resulted in correct assignment to species and subspecies in all instances. The performance of barcoding was also compared against the commonly employed NB restriction digest system (also based on COI); while the latter is informative for discriminating gypsy moth subspecies, COI barcode sequences provide greater resolution and generality by encompassing a greater number of haplotypes across all Lymantria species, none shared between species. This study demonstrates the efficacy of DNA barcodes for diagnosing species of Lymantria and reinforces the view that the approach is an under-utilized resource with substantial potential for biosecurity and surveillance. Biomonitoring agencies currently employing the NB restriction digest system would gather more information by transitioning to the use of DNA barcoding, a change which could be made relatively seamlessly as the same gene region underlies both protocols.

  2. DNA barcodes from four loci provide poor resolution of taxonomic groups in the genus Crataegus.

    PubMed

    Zarrei, Mehdi; Talent, Nadia; Kuzmina, Maria; Lee, Jeanette; Lund, Jensen; Shipley, Paul R; Stefanović, Saša; Dickinson, Timothy A

    2015-04-28

    DNA barcodes can facilitate identification of organisms especially when morphological characters are limited or unobservable. To what extent this potential is realized in specific groups of plants remains to be determined. Libraries of barcode sequences from well-studied authoritatively identified plants represented by herbarium voucher specimens are needed in order for DNA barcodes to serve their intended purpose, where this is possible, and to understand the reasons behind their failure to do so, when this occurs. We evaluated four loci, widely regarded as universal DNA barcodes for plants, for their utility in hawthorn species identification. Three plastid regions, matK, rbcLa and psbA-trnH, and the internal transcribed spacer 2 (ITS2) of nuclear ribosomal DNA discriminate only some of the species of Crataegus that can be recognized on the basis of their morphology etc. This is, in part, because in Rosaceae tribe Maleae most individual plastid loci yield relatively little taxonomic resolution and, in part, because the effects of allopolyploidization have not been eliminated by concerted evolution of the ITS regions. Although individual plastid markers provided generally poor resolution of taxonomic groups in Crataegus, a few species were notable exceptions. In contrast, analyses of concatenated sequences of the 3 plastid barcode loci plus 11 additional plastid loci gave a well-resolved maternal phylogeny. In the ITS2 tree, different individuals of some species formed groups with taxonomically unrelated species. This is a sign of lineage sorting due to incomplete concerted evolution in ITS2. Incongruence between the ITS2 and plastid trees is best explained by hybridization between different lineages within the genus. In aggregate, limited between-species variation in plastid loci, hybridization and a lack of concerted evolution in ITS2 all combine to limit the utility of standard barcoding markers in Crataegus. These results have implications for authentication of hawthorn materials in natural health products. Published by Oxford University Press on behalf of the Annals of Botany Company.

  3. DNA barcodes from four loci provide poor resolution of taxonomic groups in the genus Crataegus

    PubMed Central

    Zarrei, Mehdi; Talent, Nadia; Kuzmina, Maria; Lee, Jeanette; Lund, Jensen; Shipley, Paul R.; Stefanović, Saša; Dickinson, Timothy A.

    2015-01-01

    DNA barcodes can facilitate identification of organisms especially when morphological characters are limited or unobservable. To what extent this potential is realized in specific groups of plants remains to be determined. Libraries of barcode sequences from well-studied authoritatively identified plants represented by herbarium voucher specimens are needed in order for DNA barcodes to serve their intended purpose, where this is possible, and to understand the reasons behind their failure to do so, when this occurs. We evaluated four loci, widely regarded as universal DNA barcodes for plants, for their utility in hawthorn species identification. Three plastid regions, matK, rbcLa and psbA-trnH, and the internal transcribed spacer 2 (ITS2) of nuclear ribosomal DNA discriminate only some of the species of Crataegus that can be recognized on the basis of their morphology etc. This is, in part, because in Rosaceae tribe Maleae most individual plastid loci yield relatively little taxonomic resolution and, in part, because the effects of allopolyploidization have not been eliminated by concerted evolution of the ITS regions. Although individual plastid markers provided generally poor resolution of taxonomic groups in Crataegus, a few species were notable exceptions. In contrast, analyses of concatenated sequences of the 3 plastid barcode loci plus 11 additional plastid loci gave a well-resolved maternal phylogeny. In the ITS2 tree, different individuals of some species formed groups with taxonomically unrelated species. This is a sign of lineage sorting due to incomplete concerted evolution in ITS2. Incongruence between the ITS2 and plastid trees is best explained by hybridization between different lineages within the genus. In aggregate, limited between-species variation in plastid loci, hybridization and a lack of concerted evolution in ITS2 all combine to limit the utility of standard barcoding markers in Crataegus. These results have implications for authentication of hawthorn materials in natural health products. PMID:25926325

  4. Molecular species identification with rich floristic sampling: DNA barcoding the pteridophyte flora of Japan.

    PubMed

    Ebihara, Atsushi; Nitta, Joel H; Ito, Motomi

    2010-12-08

    DNA barcoding is expected to be an effective identification tool for organisms with heteromorphic generations such as pteridophytes, which possess a morphologically simple gametophyte generation. Although a reference data set including complete coverage of the target local flora/fauna is necessary for accurate identification, DNA barcode studies including such rich taxonomic sampling on a countrywide scale are lacking. The Japanese pteridophyte flora (733 taxa including subspecies and varieties) was used to test the utility of two plastid DNA barcode regions (rbcL and trnH-psbA) with the intention of developing an identification system for native gametophytes. DNA sequences were obtained from each of 689 (94.0%) taxa for rbcL and 617 (84.2%) taxa for trnH-psbA. Mean interspecific divergence values across all taxon pairs (K2P genetic distances) did not reveal a significant difference in rate between trnH-psbA and rbcL, but mean K2P distances of each genus showed significant heterogeneity according to systematic position. The minimum fail rate of taxon discrimination in an identification test using BLAST (12.52%) was obtained when rbcL and trnH-psbA were combined, and became lower in datasets excluding infraspecific taxa or apogamous taxa, or including sexual diploids only. This study demonstrates the overall effectiveness of DNA barcodes for species identification in the Japanese pteridophyte flora. Although this flora is characterized by a high occurrence of apogamous taxa that pose a serious challenge to identification using DNA barcodes, such taxa are limited to a small number of genera, and only minimally detract from the overall success rate. In the case that a query sequence is matched to a known apogamous genus, routine species identification may not be possible. Otherwise, DNA barcoding is a practical tool for identification of most Japanese pteridophytes, and is especially anticipated to be helpful for identification of non-hybridizing gametophytes.

  5. Plant DNA barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo)

    PubMed Central

    Abu Salim, Kamariah; Chase, Mark W.; Dexter, Kyle G.; Pennington, R. Toby; Tan, Sylvester; Kaye, Maria Ellen; Samuel, Rosabelle

    2017-01-01

    DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via community phylogenetics, to investigate ecological and evolutionary processes that may be responsible for the community structure of forests. In this study, DNA barcodes for the two widely used plastid coding regions rbcL and matK are used to contribute to identification of morphologically undetermined individuals, as well as to investigate phylogenetic structure of tree communities in 70 subplots (10 × 10m) of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia). The combined matrix (rbcL + matK) comprised 555 haplotypes (from ≥154 genera, 68 families and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016), making a substantial contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used to reconstruct phylogenetic relationships using maximum likelihood, both with and without constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phylogeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to investigate the influence of phylogenetic resolution on results. Detection of non-random patterns of community assembly was determined by net relatedness index (NRI) and nearest taxon index (NTI). In most cases, community assembly was either random or phylogenetically clustered, which likely indicates the importance to community structure of habitat filtering based on phylogenetically correlated traits in determining community structure. Different phylogenetic trees gave similar overall results, but the Phylomatic tree produced greater variation across plots for NRI and NTI values, presumably due to noise introduced by using an unresolved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits over the traditionally used Phylomatic approach by increasing precision and accuracy and allowing the incorporation of taxonomically unidentified individuals into analyses. PMID:29049301

  6. Analyzing Mosquito (Diptera: Culicidae) Diversity in Pakistan by DNA Barcoding

    PubMed Central

    Ashfaq, Muhammad; Hebert, Paul D. N.; Mirza, Jawwad H.; Khan, Arif M.; Zafar, Yusuf; Mirza, M. Sajjad

    2014-01-01

    Background Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications. Methodology/Principal Findings Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010–2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection). The genus Aedes (Stegomyia) comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0–2.4%, while congeneric species showed from 2.3–17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments. Conclusions As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations. PMID:24827460

  7. Analyzing mosquito (Diptera: culicidae) diversity in Pakistan by DNA barcoding.

    PubMed

    Ashfaq, Muhammad; Hebert, Paul D N; Mirza, Jawwad H; Khan, Arif M; Zafar, Yusuf; Mirza, M Sajjad

    2014-01-01

    Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications. Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010-2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection). The genus Aedes (Stegomyia) comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0-2.4%, while congeneric species showed from 2.3-17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments. As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations.

  8. The changing epitome of species identification – DNA barcoding

    PubMed Central

    Ajmal Ali, M.; Gyulai, Gábor; Hidvégi, Norbert; Kerti, Balázs; Al Hemaid, Fahad M.A.; Pandey, Arun K.; Lee, Joongku

    2014-01-01

    The discipline taxonomy (the science of naming and classifying organisms, the original bioinformatics and a basis for all biology) is fundamentally important in ensuring the quality of life of future human generation on the earth; yet over the past few decades, the teaching and research funding in taxonomy have declined because of its classical way of practice which lead the discipline many a times to a subject of opinion, and this ultimately gave birth to several problems and challenges, and therefore the taxonomist became an endangered race in the era of genomics. Now taxonomy suddenly became fashionable again due to revolutionary approaches in taxonomy called DNA barcoding (a novel technology to provide rapid, accurate, and automated species identifications using short orthologous DNA sequences). In DNA barcoding, complete data set can be obtained from a single specimen irrespective to morphological or life stage characters. The core idea of DNA barcoding is based on the fact that the highly conserved stretches of DNA, either coding or non coding regions, vary at very minor degree during the evolution within the species. Sequences suggested to be useful in DNA barcoding include cytoplasmic mitochondrial DNA (e.g. cox1) and chloroplast DNA (e.g. rbcL, trnL-F, matK, ndhF, and atpB rbcL), and nuclear DNA (ITS, and house keeping genes e.g. gapdh). The plant DNA barcoding is now transitioning the epitome of species identification; and thus, ultimately helping in the molecularization of taxonomy, a need of the hour. The ‘DNA barcodes’ show promise in providing a practical, standardized, species-level identification tool that can be used for biodiversity assessment, life history and ecological studies, forensic analysis, and many more. PMID:24955007

  9. Discriminating plants using the DNA barcode rbcLb: an appraisal based on a large data set.

    PubMed

    Dong, Wenpan; Cheng, Tao; Li, Changhao; Xu, Chao; Long, Ping; Chen, Chumming; Zhou, Shiliang

    2014-03-01

    The ideal DNA barcode for plants remains to be discovered, and the candidate barcode rbcL has been met with considerable skepticism since its proposal. In fact, the variability within this gene has never been fully explored across all plant groups from algae to flowering plants, and its performance as a barcode has not been adequately tested. By analysing all of the rbcL sequences currently available in GenBank, we attempted to determine how well a region of rbcL performs as a barcode in species discrimination. We found that the rbcLb region was more variable than the frequently used rbcLa region. Both universal and plant group-specific primers were designed to amplify rbcLb, and the performance of rbcLa and rbcLb was tested in several ways. Using blast, both regions successfully identified all families and nearly all genera; however, the successful species identification rates varied significantly among plant groups, ranging from 24.58% to 85.50% for rbcLa and from 36.67% to 90.89% for rbcLb. Successful species discrimination ranged from 5.19% to 96.33% for rbcLa and from 22.09% to 98.43% for rbcLb in species-rich families, and from 0 to 88.73% for rbcLa and from 2.04% to 100% for rbcLb in species-rich genera. Both regions performed better for lower plants than for higher plants, although rbcLb performed significantly better than rbcLa overall, particularly for angiosperms. Considering the applicability across plants, easy and unambiguous alignment, high primer universality, high sequence quality and high species discrimination power for lower plants, we suggest rbcLb as a universal plant barcode. © 2013 John Wiley & Sons Ltd.

  10. Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot.

    PubMed

    Kress, W John; Erickson, David L; Swenson, Nathan G; Thompson, Jill; Uriarte, Maria; Zimmerman, Jess K

    2010-11-09

    Species number, functional traits, and phylogenetic history all contribute to characterizing the biological diversity in plant communities. The phylogenetic component of diversity has been particularly difficult to quantify in species-rich tropical tree assemblages. The compilation of previously published (and often incomplete) data on evolutionary relationships of species into a composite phylogeny of the taxa in a forest, through such programs as Phylomatic, has proven useful in building community phylogenies although often of limited resolution. Recently, DNA barcodes have been used to construct a robust community phylogeny for nearly 300 tree species in a forest dynamics plot in Panama using a supermatrix method. In that study sequence data from three barcode loci were used to generate a well-resolved species-level phylogeny. Here we expand upon this earlier investigation and present results on the use of a phylogenetic constraint tree to generate a community phylogeny for a diverse, tropical forest dynamics plot in Puerto Rico. This enhanced method of phylogenetic reconstruction insures the congruence of the barcode phylogeny with broadly accepted hypotheses on the phylogeny of flowering plants (i.e., APG III) regardless of the number and taxonomic breadth of the taxa sampled. We also compare maximum parsimony versus maximum likelihood estimates of community phylogenetic relationships as well as evaluate the effectiveness of one- versus two- versus three-gene barcodes in resolving community evolutionary history. As first demonstrated in the Panamanian forest dynamics plot, the results for the Puerto Rican plot illustrate that highly resolved phylogenies derived from DNA barcode sequence data combined with a constraint tree based on APG III are particularly useful in comparative analysis of phylogenetic diversity and will enhance research on the interface between community ecology and evolution.

  11. Barcoding exotic whitefly in Florida

    USDA-ARS?s Scientific Manuscript database

    A portion of a mitochondrial gene has been sequenced for three recent invasive whitefly pests in Florida: Fig whitefly, Bondar’s whitefly and rugose spiraling whitefly. Diagnostic tests based on these sequences remain to be developed. ...

  12. Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2.

    PubMed

    Gao, Ting; Yao, Hui; Song, Jingyuan; Liu, Chang; Zhu, Yingjie; Ma, Xinye; Pang, Xiaohui; Xu, Hongxi; Chen, Shilin

    2010-07-06

    To test whether the ITS2 region is an effective marker for use in authenticating of the family Fabaceae which contains many important medicinal plants. The ITS2 regions of 114 samples in Fabaceae were amplified. Sequence assembly was assembled by CodonCode Aligner V3.0. In combination with sequences from public database, the sequences were aligned by Clustal W, and genetic distances were computed using MEGA V4.0. The intra- vs. inter-specific variations were assessed by six metrics, wilcoxon two-sample tests and "barcoding gaps". Species identification was accomplished using TaxonGAP V2.4, BLAST1 and the nearest distance method. ITS2 sequences had considerable variation at the genus and species level. The intra-specific divergence ranged from 0% to 14.4%, with an average of 1.7%, and the inter-specific divergence ranged from 0% to 63.0%, with an average of 8.6%. Twenty-four species found in the Chinese Pharmacopoeia, along with another 66 species including their adulterants, were successfully identified based on ITS2 sequences. In addition, ITS2 worked well, with over 80.0% of species and 100% of genera being correctly differentiated for the 1507 sequences derived from 1126 species belonging to 196 genera. Our findings support the notion that ITS2 can be used as an efficient and powerful marker and a potential barcode to distinguish various species in Fabaceae. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Publishing large DNA sequence data in reduced spaces and lasting formats, in paper or PDF.

    PubMed

    Aguiar, Alexandre Pires

    2013-02-04

    Scientific publications carry a practical moral duty: they must last. Along that line of thinking, some methods are proposed to allow economically and structurally viable publication of DNA sequence data of any size in printed matter and PDFs. The proposal is primarily aimed at contributing for preserving information for the future, while allowing authors to avoid information splitting and complement storage ex situ, that is, in server machines, outside the publication proper. The technique may also help to solve the impasse between the ICZN Code requirement that a new nomen be associated to diagnostic characters for the taxon vs. the phylogenetic definition of taxa, based on cladograms only: sequence data are characters, and can now be easily and comfortably included in taxonomic publications, with direct textual mention to their diagnostic sections. The compression level achieved allows the inclusion of all wanted DNA or RNA sequences in the same printed matter or PDF publications where the sequences are cited and discussed. Reduced font sizes, invisible fonts, and original 2D black & white and color barcodes are illustrated and briefly discussed. The level of data compression achieved can allow each full page of sequence data, or about 5000 characters, to be precisely coded into a color barcode as small as a square of 1.5 mm. A practical example is provided with Taeniogonalos woodorum Smith (Hymenoptera, Trigonalidae). Free software to generate publishable barcodes from txt or FASTA files is provided at www.systaxon.ufes.br/dna.

  14. A DNA barcode library for ground beetles of Germany: the genus Amara Bonelli, 1810 (Insecta, Coleoptera, Carabidae)

    PubMed Central

    Raupach, Michael J.; Hannig, Karsten; Moriniére, Jérôme; Hendrich, Lars

    2018-01-01

    Abstract The genus Amara Bonelli, 1810 is a very speciose and taxonomically difficult genus of the Carabidae. The identification of many of the species is accomplished with considerable difficulty, in particular for females and immature stages. In this study the effectiveness of DNA barcoding, the most popular method for molecular species identification, was examined to discriminate various species of this genus from Central Europe. DNA barcodes from 690 individuals and 47 species were analysed, including sequences from previous studies and more than 350 newly generated DNA barcodes. Our analysis revealed unique BINs for 38 species (81%). Interspecific K2P distances below 2.2% were found for three species pairs and one species trio, including haplotype sharing between Amara alpina/Amara torrida and Amara communis/Amara convexior/Amara makolskii. This study represents another step in generating an extensive reference library of DNA barcodes for carabids, highly valuable bioindicators for characterizing disturbances in various habitats. PMID:29853775

  15. 20 years since the introduction of DNA barcoding: from theory to application.

    PubMed

    Fišer Pečnikar, Živa; Buzan, Elena V

    2014-02-01

    Traditionally, taxonomic identification has relied upon morphological characters. In the last two decades, molecular tools based on DNA sequences of short standardised gene fragments, termed DNA barcodes, have been developed for species discrimination. The most common DNA barcode used in animals is a fragment of the cytochrome c oxidase (COI) mitochondrial gene, while for plants, two chloroplast gene fragments from the RuBisCo large subunit (rbcL) and maturase K (matK) genes are widely used. Information gathered from DNA barcodes can be used beyond taxonomic studies and will have far-reaching implications across many fields of biology, including ecology (rapid biodiversity assessment and food chain analysis), conservation biology (monitoring of protected species), biosecurity (early identification of invasive pest species), medicine (identification of medically important pathogens and their vectors) and pharmacology (identification of active compounds). However, it is important that the limitations of DNA barcoding are understood and techniques continually adapted and improved as this young science matures.

  16. DNA barcodes identify Central Asian Colias butterflies (Lepidoptera, Pieridae).

    PubMed

    Laiho, Juha; Ståhls, Gunilla

    2013-12-30

    A majority of the known Colias species (Lepidoptera: Pieridae, Coliadinae) occur in the mountainous regions of Central-Asia, vast areas that are hard to access, rendering the knowledge of many species limited due to the lack of extensive sampling. Two gene regions, the mitochondrial COI 'barcode' region and the nuclear ribosomal protein RpS2 gene region were used for exploring the utility of these DNA markers for species identification. A comprehensive sampling of COI barcodes for Central Asian Colias butterflies showed that the barcodes facilitated identification of most of the included species. Phylogenetic reconstruction based on parsimony and Neighbour-Joining recovered most species as monophyletic entities. For the RpS2 gene region species-specific sequences were registered for some of the included Colias spp. Nevertheless, this gene region was not deemed useful as additional molecular 'barcode'. A parsimony analysis of the combined COI and RpS2 data did not support the current subgeneric classification based on morphological characteristics.

  17. A single mini-barcode test to screen for Australian mammalian predators from environmental samples

    PubMed Central

    MacDonald, Anna J; Sarre, Stephen D

    2017-01-01

    Abstract Identification of species from trace samples is now possible through the comparison of diagnostic DNA fragments against reference DNA sequence databases. DNA detection of animals from non-invasive samples, such as predator faeces (scats) that contain traces of DNA from their species of origin, has proved to be a valuable tool for the management of elusive wildlife. However, application of this approach can be limited by the availability of appropriate genetic markers. Scat DNA is often degraded, meaning that longer DNA sequences, including standard DNA barcoding markers, are difficult to recover. Instead, targeted short diagnostic markers are required to serve as diagnostic mini-barcodes. The mitochondrial genome is a useful source of such trace DNA markers because it provides good resolution at the species level and occurs in high copy numbers per cell. We developed a mini-barcode based on a short (178 bp) fragment of the conserved 12S ribosomal ribonucleic acid mitochondrial gene sequence, with the goal of discriminating amongst the scats of large mammalian predators of Australia. We tested the sensitivity and specificity of our primers and can accurately detect and discriminate amongst quolls, cats, dogs, foxes, and devils from trace DNA samples. Our approach provides a cost-effective, time-efficient, and non-invasive tool that enables identification of all 8 medium-large mammal predators in Australia, including native and introduced species, using a single test. With modification, this approach is likely to be of broad applicability elsewhere. PMID:28810700

  18. Aedes vittatus in Spain: current distribution, barcoding characterization and potential role as a vector of human diseases.

    PubMed

    Díez-Fernández, Alazne; Martínez-de la Puente, Josué; Ruiz, Santiago; Gutiérrez-López, Rafael; Soriguer, Ramón; Figuerola, Jordi

    2018-05-18

    Aedes vittatus is currently found in Africa, Asia and Europe, where it acts as a vector of pathogens causing animal and human diseases (e.g. chikungunya, Zika and dengue). Like other Aedes species, Ae. vittatus is able to breed in artificial containers. The ECDC has recently highlighted the need for molecular tools (i.e. barcoding characterization) that enable Aedes species to be identified in entomological surveys. We sampled mosquito larvae and adults in southern Spain and used a molecular approach to amplify and sequence a fragment of the cytochrome c oxidase subunit 1 gene (barcoding region) of the mosquitoes. The blast comparison of the mosquito sequences isolated from Spain with those deposited in public databases provided a ≥ 99% similarity with sequences for two Aedes mosquitoes, Ae. vittatus and Ae. cogilli, while similarities with other Aedes species were ≤ 94%. Aedes cogilli is only present in India and there are no records of this species from Europe. Due to the low genetic differences between Ae. vittatus and Ae. cogilli, the barcoding region should not be used as the only method for identifying Ae. vittatus, especially in areas where both of these Aedes species are present. This type of analysis should thus be combined with morphological identification using available keys and/or the characterization of other molecular markers. In addition, further entomological surveys should be conducted in order to identify the fine-scale distribution of this mosquito species in Europe.

  19. Who's there? - First morphological and DNA barcoding catalogue of the shallow Hawai'ian sponge fauna.

    PubMed

    Núñez Pons, Laura; Calcinai, Barbara; Gates, Ruth D

    2017-01-01

    The sponge fauna has been largely overlooked in the Archipelago of Hawai'i, notwithstanding the paramount role of this taxon in marine ecosystems. The lack of knowledge about Porifera populations inhabiting the Hawai'ian reefs limits the development of ecological studies aimed at understanding the functioning of these marine systems. Consequently, this project addresses this gap by describing the most representative sponge species in the shallow waters of the enigmatic bay of Kane'ohe Bay, in O'ahu Island. A total of 30 species (28 demosponges and two calcareous sponges) living associated to the reef structures are here reported. Six of these species are new records to the Hawai'ian Porifera catalogue and are suspected to be recent introductions to these islands. Morphological descriptions of the voucher specimens are provided, along with sequencing data of two partitions involving the mitochondrial cytochrome oxidase subunit 1 (COI) marker and a fragment covering partial (18S and 28S) and full (ITS-1, 5.8S and ITS-2) nuclear ribosomal genes. Species delimitations based on genetic distances were calculated to valitate how taxonomic assignments from DNA barcoding aligned with morphological identifications. Of the 60 sequences submitted to GenBank ~88% are the first sequencing records for the corresponding species and genetic marker. This work compiles the first catalogue combining morphological characters with DNA barcoding of Hawai'ian sponges, and contributes to the repository of public databases through the Sponge Barcoding Project initiative.

  20. Who’s there? – First morphological and DNA barcoding catalogue of the shallow Hawai’ian sponge fauna

    PubMed Central

    Gates, Ruth D.

    2017-01-01

    The sponge fauna has been largely overlooked in the Archipelago of Hawai’i, notwithstanding the paramount role of this taxon in marine ecosystems. The lack of knowledge about Porifera populations inhabiting the Hawai’ian reefs limits the development of ecological studies aimed at understanding the functioning of these marine systems. Consequently, this project addresses this gap by describing the most representative sponge species in the shallow waters of the enigmatic bay of Kane’ohe Bay, in O’ahu Island. A total of 30 species (28 demosponges and two calcareous sponges) living associated to the reef structures are here reported. Six of these species are new records to the Hawai’ian Porifera catalogue and are suspected to be recent introductions to these islands. Morphological descriptions of the voucher specimens are provided, along with sequencing data of two partitions involving the mitochondrial cytochrome oxidase subunit 1 (COI) marker and a fragment covering partial (18S and 28S) and full (ITS-1, 5.8S and ITS-2) nuclear ribosomal genes. Species delimitations based on genetic distances were calculated to valitate how taxonomic assignments from DNA barcoding aligned with morphological identifications. Of the 60 sequences submitted to GenBank ~88% are the first sequencing records for the corresponding species and genetic marker. This work compiles the first catalogue combining morphological characters with DNA barcoding of Hawai’ian sponges, and contributes to the repository of public databases through the Sponge Barcoding Project initiative. PMID:29267311

  1. Phylogenetic Reconstruction and DNA Barcoding for Closely Related Pine Moth Species (Dendrolimus) in China with Multiple Gene Markers

    PubMed Central

    Dai, Qing-Yan; Gao, Qiang; Wu, Chun-Sheng; Chesters, Douglas; Zhu, Chao-Dong; Zhang, Ai-Bing

    2012-01-01

    Unlike distinct species, closely related species offer a great challenge for phylogeny reconstruction and species identification with DNA barcoding due to their often overlapping genetic variation. We tested a sibling species group of pine moth pests in China with a standard cytochrome c oxidase subunit I (COI) gene and two alternative internal transcribed spacer (ITS) genes (ITS1 and ITS2). Five different phylogenetic/DNA barcoding analysis methods (Maximum likelihood (ML)/Neighbor-joining (NJ), “best close match” (BCM), Minimum distance (MD), and BP-based method (BP)), representing commonly used methodology (tree-based and non-tree based) in the field, were applied to both single-gene and multiple-gene analyses. Our results demonstrated clear reciprocal species monophyly for three relatively distant related species, Dendrolimus superans, D. houi, D. kikuchii, as recovered by both single and multiple genes while the phylogenetic relationship of three closely related species, D. punctatus, D. tabulaeformis, D. spectabilis, could not be resolved with the traditional tree-building methods. Additionally, we find the standard COI barcode outperforms two nuclear ITS genes, whatever the methods used. On average, the COI barcode achieved a success rate of 94.10–97.40%, while ITS1 and ITS2 obtained a success rate of 64.70–81.60%, indicating ITS genes are less suitable for species identification in this case. We propose the use of an overall success rate of species identification that takes both sequencing success and assignation success into account, since species identification success rates with multiple-gene barcoding system were generally overestimated, especially by tree-based methods, where only successfully sequenced DNA sequences were used to construct a phylogenetic tree. Non-tree based methods, such as MD, BCM, and BP approaches, presented advantages over tree-based methods by reporting the overall success rates with statistical significance. In addition, our results indicate that the most closely related species D. punctatus, D. tabulaeformis, and D. spectabilis, may be still in the process of incomplete lineage sorting, with occasional hybridizations occurring among them. PMID:22509245

  2. Towards barcode markers in Fungi: an intron map of Ascomycota mitochondria.

    PubMed

    Santamaria, Monica; Vicario, Saverio; Pappadà, Graziano; Scioscia, Gaetano; Scazzocchio, Claudio; Saccone, Cecilia

    2009-06-16

    A standardized and cost-effective molecular identification system is now an urgent need for Fungi owing to their wide involvement in human life quality. In particular the potential use of mitochondrial DNA species markers has been taken in account. Unfortunately, a serious difficulty in the PCR and bioinformatic surveys is due to the presence of mobile introns in almost all the fungal mitochondrial genes. The aim of this work is to verify the incidence of this phenomenon in Ascomycota, testing, at the same time, a new bioinformatic tool for extracting and managing sequence databases annotations, in order to identify the mitochondrial gene regions where introns are missing so as to propose them as species markers. The general trend towards a large occurrence of introns in the mitochondrial genome of Fungi has been confirmed in Ascomycota by an extensive bioinformatic analysis, performed on all the entries concerning 11 mitochondrial protein coding genes and 2 mitochondrial rRNA (ribosomal RNA) specifying genes, belonging to this phylum, available in public nucleotide sequence databases. A new query approach has been developed to retrieve effectively introns information included in these entries. After comparing the new query-based approach with a blast-based procedure, with the aim of designing a faithful Ascomycota mitochondrial intron map, the first method appeared clearly the most accurate. Within this map, despite the large pervasiveness of introns, it is possible to distinguish specific regions comprised in several genes, including the full NADH dehydrogenase subunit 6 (ND6) gene, which could be considered as barcode candidates for Ascomycota due to their paucity of introns and to their length, above 400 bp, comparable to the lower end size of the length range of barcodes successfully used in animals. The development of the new query system described here would answer the pressing requirement to improve drastically the bioinformatics support to the DNA Barcode Initiative. The large scale investigation of Ascomycota mitochondrial introns performed through this tool, allowing to exclude the introns-rich sequences from the barcode candidates exploration, could be the first step towards a mitochondrial barcoding strategy for these organisms, similar to the standard approach employed in metazoans.

  3. DNA barcoding of vouchered xylarium wood specimens of nine endangered Dalbergia species.

    PubMed

    Yu, Min; Jiao, Lichao; Guo, Juan; Wiedenhoeft, Alex C; He, Tuo; Jiang, Xiaomei; Yin, Yafang

    2017-12-01

    ITS2+ trnH - psbA was the best combination of DNA barcode to resolve the Dalbergia wood species studied. We demonstrate the feasibility of building a DNA barcode reference database using xylarium wood specimens. The increase in illegal logging and timber trade of CITES-listed tropical species necessitates the development of unambiguous identification methods at the species level. For these methods to be fully functional and deployable for law enforcement, they must work using wood or wood products. DNA barcoding of wood has been promoted as a promising tool for species identification; however, the main barrier to extensive application of DNA barcoding to wood is the lack of a comprehensive and reliable DNA reference library of barcodes from wood. In this study, xylarium wood specimens of nine Dalbergia species were selected from the Wood Collection of the Chinese Academy of Forestry and DNA was then extracted from them for further PCR amplification of eight potential DNA barcode sequences (ITS2, matK, trnL, trnH-psbA, trnV-trnM1, trnV-trnM2, trnC-petN, and trnS-trnG). The barcodes were tested singly and in combination for species-level discrimination ability by tree-based [neighbor-joining (NJ)] and distance-based (TaxonDNA) methods. We found that the discrimination ability of DNA barcodes in combination was higher than any single DNA marker among the Dalbergia species studied, with the best two-marker combination of ITS2+trnH-psbA analyzed with NJ trees performing the best (100% accuracy). These barcodes are relatively short regions (<350 bp) and amplification reactions were performed with high success (≥90%) using wood as the source material, a necessary factor to apply DNA barcoding to timber trade. The present results demonstrate the feasibility of using vouchered xylarium specimens to build DNA barcoding reference databases.

  4. Species-Level Para- and Polyphyly in DNA Barcode Gene Trees: Strong Operational Bias in European Lepidoptera

    PubMed Central

    Mutanen, Marko; Kivelä, Sami M.; Vos, Rutger A.; Doorenweerd, Camiel; Ratnasingham, Sujeevan; Hausmann, Axel; Huemer, Peter; Dincă, Vlad; van Nieukerken, Erik J.; Lopez-Vaamonde, Carlos; Vila, Roger; Aarvik, Leif; Decaëns, Thibaud; Efetov, Konstantin A.; Hebert, Paul D. N.; Johnsen, Arild; Karsholt, Ole; Pentinsaari, Mikko; Rougerie, Rodolphe; Segerer, Andreas; Tarmann, Gerhard; Zahiri, Reza; Godfray, H. Charles J.

    2016-01-01

    The proliferation of DNA data is revolutionizing all fields of systematic research. DNA barcode sequences, now available for millions of specimens and several hundred thousand species, are increasingly used in algorithmic species delimitations. This is complicated by occasional incongruences between species and gene genealogies, as indicated by situations where conspecific individuals do not form a monophyletic cluster in a gene tree. In two previous reviews, non-monophyly has been reported as being common in mitochondrial DNA gene trees. We developed a novel web service “Monophylizer” to detect non-monophyly in phylogenetic trees and used it to ascertain the incidence of species non-monophyly in COI (a.k.a. cox1) barcode sequence data from 4977 species and 41,583 specimens of European Lepidoptera, the largest data set of DNA barcodes analyzed from this regard. Particular attention was paid to accurate species identification to ensure data integrity. We investigated the effects of tree-building method, sampling effort, and other methodological issues, all of which can influence estimates of non-monophyly. We found a 12% incidence of non-monophyly, a value significantly lower than that observed in previous studies. Neighbor joining (NJ) and maximum likelihood (ML) methods yielded almost equal numbers of non-monophyletic species, but 24.1% of these cases of non-monophyly were only found by one of these methods. Non-monophyletic species tend to show either low genetic distances to their nearest neighbors or exceptionally high levels of intraspecific variability. Cases of polyphyly in COI trees arising as a result of deep intraspecific divergence are negligible, as the detected cases reflected misidentifications or methodological errors. Taking into consideration variation in sampling effort, we estimate that the true incidence of non-monophyly is ∼23%, but with operational factors still being included. Within the operational factors, we separately assessed the frequency of taxonomic limitations (presence of overlooked cryptic and oversplit species) and identification uncertainties. We observed that operational factors are potentially present in more than half (58.6%) of the detected cases of non-monophyly. Furthermore, we observed that in about 20% of non-monophyletic species and entangled species, the lineages involved are either allopatric or parapatric—conditions where species delimitation is inherently subjective and particularly dependent on the species concept that has been adopted. These observations suggest that species-level non-monophyly in COI gene trees is less common than previously supposed, with many cases reflecting misidentifications, the subjectivity of species delimitation or other operational factors. PMID:27288478

  5. A regional approach to plant DNA barcoding provides high species resolution of sedges (Carex and Kobresia, Cyperaceae) in the Canadian Arctic Archipelago.

    PubMed

    Clerc-Blain, Jessica L E; Starr, Julian R; Bull, Roger D; Saarela, Jeffery M

    2010-01-01

    Previous research on barcoding sedges (Carex) suggested that basic searches within a global barcoding database would probably not resolve more than 60% of the world's some 2000 species. In this study, we take an alternative approach and explore the performance of plant DNA barcoding in the Carex lineage from an explicitly regional perspective. We characterize the utility of a subset of the proposed protein-coding and noncoding plastid barcoding regions (matK, rpoB, rpoC1, rbcL, atpF-atpH, psbK-psbI) for distinguishing species of Carex and Kobresia in the Canadian Arctic Archipelago, a clearly defined eco-geographical region representing 1% of the Earth's landmass. Our results show that matK resolves the greatest number of species of any single-locus (95%), and when combined in a two-locus barcode, it provides 100% species resolution in all but one combination (matK + atpFH) during unweighted pair-group method with arithmetic mean averages (UPGMA) analyses. Noncoding regions were equally or more variable than matK, but as single markers they resolve substantially fewer taxa than matK alone. When difficulties with sequencing and alignment due to microstructural variation in noncoding regions are also considered, our results support other studies in suggesting that protein-coding regions are more practical as barcoding markers. Plastid DNA barcodes are an effective identification tool for species of Carex and Kobresia in the Canadian Arctic Archipelago, a region where the number of co-existing closely related species is limited. We suggest that if a regional approach to plant DNA barcoding was applied on a global scale, it could provide a solution to the generally poor species resolution seen in previous barcoding studies. © 2009 Blackwell Publishing Ltd.

  6. dropEst: pipeline for accurate estimation of molecular counts in droplet-based single-cell RNA-seq experiments.

    PubMed

    Petukhov, Viktor; Guo, Jimin; Baryawno, Ninib; Severe, Nicolas; Scadden, David T; Samsonova, Maria G; Kharchenko, Peter V

    2018-06-19

    Recent single-cell RNA-seq protocols based on droplet microfluidics use massively multiplexed barcoding to enable simultaneous measurements of transcriptomes for thousands of individual cells. The increasing complexity of such data creates challenges for subsequent computational processing and troubleshooting of these experiments, with few software options currently available. Here, we describe a flexible pipeline for processing droplet-based transcriptome data that implements barcode corrections, classification of cell quality, and diagnostic information about the droplet libraries. We introduce advanced methods for correcting composition bias and sequencing errors affecting cellular and molecular barcodes to provide more accurate estimates of molecular counts in individual cells.

  7. Utility of DNA barcoding for rapid and accurate assessment of bat diversity in Malaysia in the absence of formally described species.

    PubMed

    Wilson, J-J; Sing, K-W; Halim, M R A; Ramli, R; Hashim, R; Sofian-Azirun, M

    2014-02-19

    Bats are important flagship species for biodiversity research; however, diversity in Southeast Asia is considerably underestimated in the current checklists and field guides. Incorporation of DNA barcoding into surveys has revealed numerous species-level taxa overlooked by conventional methods. Inclusion of these taxa in inventories provides a more informative record of diversity, but is problematic as these species lack formal description. We investigated how frequently documented, but undescribed, bat taxa are encountered in Peninsular Malaysia. We discuss whether a barcode library provides a means of recognizing and recording these taxa across biodiversity inventories. Tissue was sampled from bats trapped at Pasir Raja, Dungun Terengganu, Peninsular Malaysia. The DNA was extracted and the COI barcode region amplified and sequenced. We identified 9 species-level taxa within our samples, based on analysis of the DNA barcodes. Six specimens matched to four previously documented taxa considered candidate species but currently lacking formal taxonomic status. This study confirms the high diversity of bats within Peninsular Malaysia (9 species in 13 samples) and demonstrates how DNA barcoding allows for inventory and documentation of known taxa lacking formal taxonomic status.

  8. EvoluCode: Evolutionary Barcodes as a Unifying Framework for Multilevel Evolutionary Data.

    PubMed

    Linard, Benjamin; Nguyen, Ngoc Hoan; Prosdocimi, Francisco; Poch, Olivier; Thompson, Julie D

    2012-01-01

    Evolutionary systems biology aims to uncover the general trends and principles governing the evolution of biological networks. An essential part of this process is the reconstruction and analysis of the evolutionary histories of these complex, dynamic networks. Unfortunately, the methodologies for representing and exploiting such complex evolutionary histories in large scale studies are currently limited. Here, we propose a new formalism, called EvoluCode (Evolutionary barCode), which allows the integration of different evolutionary parameters (eg, sequence conservation, orthology, synteny …) in a unifying format and facilitates the multilevel analysis and visualization of complex evolutionary histories at the genome scale. The advantages of the approach are demonstrated by constructing barcodes representing the evolution of the complete human proteome. Two large-scale studies are then described: (i) the mapping and visualization of the barcodes on the human chromosomes and (ii) automatic clustering of the barcodes to highlight protein subsets sharing similar evolutionary histories and their functional analysis. The methodologies developed here open the way to the efficient application of other data mining and knowledge extraction techniques in evolutionary systems biology studies. A database containing all EvoluCode data is available at: http://lbgi.igbmc.fr/barcodes.

  9. Barcoding and species recognition of opportunistic pathogens in Ochroconis and Verruconis.

    PubMed

    Samerpitak, Kittipan; Gerrits van den Ende, Bert H G; Stielow, J Benjamin; Menken, Steph B J; de Hoog, G Sybren

    2016-02-01

    The genera Ochroconis and Verruconis (Sympoventuriaceae, Venturiales) have remarkably high molecular diversity despite relatively high degrees of phenotypic similarity. Tree topologies, inter-specific and intra-specific heterogeneities, barcoding gaps and reciprocal monophyly of all currently known species were analyzed. It was concluded that all currently used genes viz. SSU, ITS, LSU, ACT1, BT2, and TEF1 were unable to reach all 'gold standard' criteria of barcoding markers. They could nevertheless be used for reasonably reliable identification of species, because the markers, although variable, were associated with large inter-specific heterogeneity. Of the coding protein-genes, ACT1 revealed highest potentiality as barcoding marker in mostly all parts of the investigated sequence. SSU, LSU, ITS, and ACT1 yielded consistent monophyly in all investigated species, but only SSU and LSU generated clear barcoding gaps. For phylogeny, LSU was an informative marker, suitable to reconstruct gene-trees showing correct phylogenetic relationships. Cryptic species were revealed especially in complexes with very high intra-specific variability. When all these complexes will be taxonomically resolved, ACT1 will probably appear to be the most reliable barcoding gene for Ochroconis and Verruconis. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. First results of the German Barcode of Life (GBOL) – Myriapoda project: Cryptic lineages in German Stenotaenia linearis (Koch, 1835) (Chilopoda, Geophilomorpha)

    PubMed Central

    Wesener, Thomas; Voigtländer, Karin; Decker, Peter; Oeyen, Jan Philip; Spelda, Jörg; Lindner, Norman

    2015-01-01

    Abstract As part of the German Barcode of Life (GBOL) Myriapoda program, which aims to sequence the COI barcoding fragment for 2000 specimens of Germany’s 200 myriapod species in the near future, 44 sequences of the centipede order Geophilomorpha are analyzed. The analyses are limited to the genera Geophilus Leach, 1814 and Stenotaenia Koch, 1847 and include a total of six species. A special focus is Stenotaenia, of which 19 specimens from southern, western and eastern Germany could be successfully sequenced. The Stenotaenia data shows the presence of three to four vastly different (13.7–16.7% p-distance) lineages of the genus in Germany. At least two of the three lineages show a wide distribution across Germany, only the lineage including topotypes of Stenotaenia linearis shows a more restricted distribution in southern Germany. In a maximum likelihood phylogenetic analysis the Italian species Stenotaenia ‘sorrentina’ (Attems, 1903) groups with the different German Stenotaenia linearis clades. The strongly different Stenotaenia linearis lineages within Germany, independent of geography, are a strong hint for the presence of additional, cryptic Stenotaenia species in Germany. PMID:26257532

  11. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar

    PubMed Central

    Smith, M. Alex; Fisher, Brian L; Hebert, Paul D.N

    2005-01-01

    The role of DNA barcoding as a tool to accelerate the inventory and analysis of diversity for hyperdiverse arthropods is tested using ants in Madagascar. We demonstrate how DNA barcoding helps address the failure of current inventory methods to rapidly respond to pressing biodiversity needs, specifically in the assessment of richness and turnover across landscapes with hyperdiverse taxa. In a comparison of inventories at four localities in northern Madagascar, patterns of richness were not significantly different when richness was determined using morphological taxonomy (morphospecies) or sequence divergence thresholds (Molecular Operational Taxonomic Unit(s); MOTU). However, sequence-based methods tended to yield greater richness and significantly lower indices of similarity than morphological taxonomy. MOTU determined using our molecular technique were a remarkably local phenomenon—indicative of highly restricted dispersal and/or long-term isolation. In cases where molecular and morphological methods differed in their assignment of individuals to categories, the morphological estimate was always more conservative than the molecular estimate. In those cases where morphospecies descriptions collapsed distinct molecular groups, sequence divergences of 16% (on average) were contained within the same morphospecies. Such high divergences highlight taxa for further detailed genetic, morphological, life history, and behavioral studies. PMID:16214741

  12. DNA barcoding of morphologically characterized mosquitoes belonging to the subfamily Culicinae from Sri Lanka.

    PubMed

    Weeraratne, Thilini Chathurika; Surendran, Sinnathamby Noble; Parakrama Karunaratne, S H P

    2018-04-25

    Vectors of mosquito-borne diseases in Sri Lanka, except for malaria, belong to the subfamily Culicinae, which includes nearly 84% of the mosquito fauna of the country. Hence, accurate and precise species identification of culicine mosquitoes is a crucial factor in implementing effective vector control strategies. During the present study, a combined effort using morphology and DNA barcoding was made to characterize mosquitoes of the subfamily Culicinae for the first time from nine districts of Sri Lanka. Cytochrome c oxidase subunit 1 (cox1) gene from the mitochondrial genome and the internal transcribed spacer 2 (ITS2) region from the nuclear ribosomal DNA were used for molecular characterization. According to morphological identification, the field collected adult mosquitoes belonged to 5 genera and 14 species, i.e. Aedes aegypti, Ae. albopictus, Ae. pallidostriatus, Aedes sp. 1, Armigeres sp. 1, Culex bitaeniorhynchus, Cx. fuscocephala, Cx. gelidus, Cx. pseudovishnui, Cx. quinquefasciatus, Cx. tritaeniorhynchus, Cx. whitmorei, Mansonia uniformis and Mimomyia chamberlaini. Molecular analyses of 62 cox1 and 36 ITS2 sequences were exclusively comparable with the morphological identifications of all the species except for Ae. pallidostriatus and Aedes sp. 1. Although the species identification of Armigeres sp. 1 specimens using morphological features was not possible during this study, DNA barcodes of the specimens matched 100% with the publicly available Ar. subalbatus sequences, giving their species status. Analysis of all the cox1 sequences (14 clades supported by strong bootstrap value in the Neighbor-Joining tree and interspecific distances of > 3%) showed the presence of 14 different species. This is the first available DNA sequence in the GenBank records for morphologically identified Ae. pallidostriatus. Aedes sp. 1 could not be identified morphologically or by publicly available sequences. Aedes aegypti, Ae. albopictus and all Culex species reported during the current study are vectors of human diseases. All these vector species showed comparatively high diversity. The current study reflects the significance of integrated systematic approach and use of cox1 and ITS genetic markers in mosquito taxonomy. Results of DNA barcoding were comparable with morphological identifications and, more importantly, DNA barcoding could accurately identify the species in the instances where the traditional morphological identification failed due to indistinguishable characters of damaged specimens and the presence of subspecies.

  13. Rapid and accurate taxonomic classification of insect (class Insecta) cytochrome c oxidase subunit 1 (COI) DNA barcode sequences using a naïve Bayesian classifier

    PubMed Central

    Porter, Teresita M; Gibson, Joel F; Shokralla, Shadi; Baird, Donald J; Golding, G Brian; Hajibabaei, Mehrdad

    2014-01-01

    Current methods to identify unknown insect (class Insecta) cytochrome c oxidase (COI barcode) sequences often rely on thresholds of distances that can be difficult to define, sequence similarity cut-offs, or monophyly. Some of the most commonly used metagenomic classification methods do not provide a measure of confidence for the taxonomic assignments they provide. The aim of this study was to use a naïve Bayesian classifier (Wang et al. Applied and Environmental Microbiology, 2007; 73: 5261) to automate taxonomic assignments for large batches of insect COI sequences such as data obtained from high-throughput environmental sequencing. This method provides rank-flexible taxonomic assignments with an associated bootstrap support value, and it is faster than the blast-based methods commonly used in environmental sequence surveys. We have developed and rigorously tested the performance of three different training sets using leave-one-out cross-validation, two field data sets, and targeted testing of Lepidoptera, Diptera and Mantodea sequences obtained from the Barcode of Life Data system. We found that type I error rates, incorrect taxonomic assignments with a high bootstrap support, were already relatively low but could be lowered further by ensuring that all query taxa are actually present in the reference database. Choosing bootstrap support cut-offs according to query length and summarizing taxonomic assignments to more inclusive ranks can also help to reduce error while retaining the maximum number of assignments. Additionally, we highlight gaps in the taxonomic and geographic representation of insects in public sequence databases that will require further work by taxonomists to improve the quality of assignments generated using any method.

  14. The Hemiptera (Insecta) of Canada: Constructing a Reference Library of DNA Barcodes

    PubMed Central

    Gwiazdowski, Rodger A.; Foottit, Robert G.; Maw, H. Eric L.; Hebert, Paul D. N.

    2015-01-01

    DNA barcode reference libraries linked to voucher specimens create new opportunities for high-throughput identification and taxonomic re-evaluations. This study provides a DNA barcode library for about 45% of the recognized species of Canadian Hemiptera, and the publically available R workflow used for its generation. The current library is based on the analysis of 20,851 specimens including 1849 species belonging to 628 genera and 64 families. These individuals were assigned to 1867 Barcode Index Numbers (BINs), sequence clusters that often coincide with species recognized through prior taxonomy. Museum collections were a key source for identified specimens, but we also employed high-throughput collection methods that generated large numbers of unidentified specimens. Many of these specimens represented novel BINs that were subsequently identified by taxonomists, adding barcode coverage for additional species. Our analyses based on both approaches includes 94 species not listed in the most recent Canadian checklist, representing a potential 3% increase in the fauna. We discuss the development of our workflow in the context of prior DNA barcode library construction projects, emphasizing the importance of delineating a set of reference specimens to aid investigations in cases of nomenclatural and DNA barcode discordance. The identification for each specimen in the reference set can be annotated on the Barcode of Life Data System (BOLD), allowing experts to highlight questionable identifications; annotations can be added by any registered user of BOLD, and instructions for this are provided. PMID:25923328

  15. BEST: barcode enabled sequencing of tetrads.

    PubMed

    Scott, Adrian C; Ludlow, Catherine L; Cromie, Gareth A; Dudley, Aimée M

    2014-05-01

    Tetrad analysis is a valuable tool for yeast genetics, but the laborious manual nature of the process has hindered its application on large scales. Barcode Enabled Sequencing of Tetrads (BEST)1 replaces the manual processes of isolating, disrupting and spacing tetrads. BEST isolates tetrads by virtue of a sporulation-specific GFP fusion protein that permits fluorescence-activated cell sorting of tetrads directly onto agar plates, where the ascus is enzymatically digested and the spores are disrupted and randomly arrayed by glass bead plating. The haploid colonies are then assigned sister spore relationships, i.e. information about which spores originated from the same tetrad, using molecular barcodes read during genotyping. By removing the bottleneck of manual dissection, hundreds or even thousands of tetrads can be isolated in minutes. Here we present a detailed description of the experimental procedures required to perform BEST in the yeast Saccharomyces cerevisiae, starting with a heterozygous diploid strain through the isolation of colonies derived from the haploid meiotic progeny.

  16. Multiplexed resequencing analysis to identify rare variants in pooled DNA with barcode indexing using next-generation sequencer.

    PubMed

    Mitsui, Jun; Fukuda, Yoko; Azuma, Kyo; Tozaki, Hirokazu; Ishiura, Hiroyuki; Takahashi, Yuji; Goto, Jun; Tsuji, Shoji

    2010-07-01

    We have recently found that multiple rare variants of the glucocerebrosidase gene (GBA) confer a robust risk for Parkinson disease, supporting the 'common disease-multiple rare variants' hypothesis. To develop an efficient method of identifying rare variants in a large number of samples, we applied multiplexed resequencing using a next-generation sequencer to identification of rare variants of GBA. Sixteen sets of pooled DNAs from six pooled DNA samples were prepared. Each set of pooled DNAs was subjected to polymerase chain reaction to amplify the target gene (GBA) covering 6.5 kb, pooled into one tube with barcode indexing, and then subjected to extensive sequence analysis using the SOLiD System. Individual samples were also subjected to direct nucleotide sequence analysis. With the optimization of data processing, we were able to extract all the variants from 96 samples with acceptable rates of false-positive single-nucleotide variants.

  17. Droplet barcoding for single cell transcriptomics applied to embryonic stem cells

    PubMed Central

    Klein, Allon M; Mazutis, Linas; Akartuna, Ilke; Tallapragada, Naren; Veres, Adrian; Li, Victor; Peshkin, Leonid; Weitz, David A; Kirschner, Marc W

    2015-01-01

    Summary It has long been the dream of biologists to map gene expression at the single cell level. With such data one might track heterogeneous cell sub-populations, and infer regulatory relationships between genes and pathways. Recently, RNA sequencing has achieved single cell resolution. What is limiting is an effective way to routinely isolate and process large numbers of individual cells for quantitative in-depth sequencing. We have developed a high-throughput droplet-microfluidic approach for barcoding the RNA from thousands of individual cells for subsequent analysis by next-generation sequencing. The method shows a surprisingly low noise profile and is readily adaptable to other sequencing-based assays. We analyzed mouse embryonic stem cells, revealing in detail the population structure and the heterogeneous onset of differentiation after LIF withdrawal. The reproducibility of these high-throughput single cell data allowed us to deconstruct cell populations and infer gene expression relationships. PMID:26000487

  18. Two new and one newly recorded species of Polypedilum Kieffer 1912 with DNA barcodes from Oriental China (Chironomidae: Diptera).

    PubMed

    Yan, Chuncai; Song, Chao; Liu, Ting; Zhao, Guangjun; Hou, Ziyuan; Cao, Wei; Wang, Xinhua

    2017-03-02

    Polypedilum (Tripodura) enshiense Song & Wang sp. n. and P. (Tripodura) jianfengense Song & Wang sp. n. are described and illustrated as male imagines from China. P. (Uresipedilum) paraconvictum Yamamoto, Yamamoto & Hirowatari, 2016 is recorded from China for the first time. Cytochrome coxidase subunit I (COI) sequence of above species are uploaded to Barcode of Life Data Systems (BOLD).

  19. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family

    PubMed Central

    2010-01-01

    Background Five DNA regions, namely, rbcL, matK, ITS, ITS2, and psbA-trnH, have been recommended as primary DNA barcodes for plants. Studies evaluating these regions for species identification in the large plant taxon, which includes a large number of closely related species, have rarely been reported. Results The feasibility of using the five proposed DNA regions was tested for discriminating plant species within Asteraceae, the largest family of flowering plants. Among these markers, ITS2 was the most useful in terms of universality, sequence variation, and identification capability in the Asteraceae family. The species discriminating power of ITS2 was also explored in a large pool of 3,490 Asteraceae sequences that represent 2,315 species belonging to 494 different genera. The result shows that ITS2 correctly identified 76.4% and 97.4% of plant samples at the species and genus levels, respectively. In addition, ITS2 displayed a variable ability to discriminate related species within different genera. Conclusions ITS2 is the best DNA barcode for the Asteraceae family. This approach significantly broadens the application of DNA barcoding to resolve classification problems in the family Asteraceae at the genera and species levels. PMID:20977734

  20. Integrating early detection with DNA barcoding: species identification of a non-native monitor lizard (Squamata: Varanidae) carcass in Mississippi, U.S.A.

    USGS Publications Warehouse

    Reed, Robert N.; Hopken, Matthew W.; Steen, David A.; Falk, Bryan G.; Piaggio, Antoinette J.

    2016-01-01

    Early detection of invasive species is critical to increasing the probability of successful management. At the primary stage of an invasion, invasive species are easier to control as the population is likely represented by just a few individuals. Detection of these first few individuals can be challenging, particularly if they are cryptic or otherwise characterized by low detectability. The engagement of members of the public may be critical to early detection as there are far more citizen s on the landscape than trained biologists. However, it can be difficult to assess the credibility of public reporting, especially when a diagnostic digital image or a physical specimen in good condition are lacking. DNA barcoding can be used for verification when morphological identification of a specimen is not possible or uncertain (i.e., degraded or partial specimen). DNA barcoding relies on obtaining a DNA sequence from a relatively small fragment of mitochondrial DNA and comparing it to a database of sequences containing a variety of expertly identified species. He rein we report the successful identification of a degraded specimen of a non-native, potentially invasive reptile species (Varanus niloticus) via DNA barcoding, after discovery and reporting by a member of the public.

  1. Limited performance of DNA barcoding in a diverse community of tropical butterflies

    PubMed Central

    Elias, Marianne; Hill, Ryan I; Willmott, Keith R; Dasmahapatra, Kanchon K; Brower, Andrew V.Z; Mallet, James; Jiggins, Chris D

    2007-01-01

    DNA ‘barcoding’ relies on a short fragment of mitochondrial DNA to infer identification of specimens. The method depends on genetic diversity being markedly lower within than between species. Closely related species are most likely to share genetic variation in communities where speciation rates are rapid and effective population sizes are large, such that coalescence times are long. We assessed the applicability of DNA barcoding (here the 5′ half of the cytochrome c oxidase I) to a diverse community of butterflies from the upper Amazon, using a group with a well-established morphological taxonomy to serve as a reference. Only 77% of species could be accurately identified using the barcode data, a figure that dropped to 68% in species represented in the analyses by more than one geographical race and at least one congener. The use of additional mitochondrial sequence data hardly improved species identification, while a fragment of a nuclear gene resolved issues in some of the problematic species. We acknowledge the utility of barcodes when morphological characters are ambiguous or unknown, but we also recommend the addition of nuclear sequence data, and caution that species-level identification rates might be lower in the most diverse habitats of our planet. PMID:17785265

  2. Specific PCR Identification between Peucedanum praeruptorum and Angelica decursiva and Identification between Them and Adulterant Using DNA Barcode.

    PubMed

    Han, Bang-Xing; Yuan, Yuan; Huang, Lu-Qi; Zhao, Qun; Tan, Ling-Ling; Song, Xiang-Wen; He, Xiao-Mei; Xu, Tao; Liu, Feng; Wang, Jian

    2017-01-01

    The traditional Chinese medicine (TCM) Qianhu and Zihuaqianhu are the dried roots of Peucedanum praeruptorum and Angelica decursiva , respectively. Since the plant sources of Qianhu and Zihuaqianhu are more complex, the chemical compositions of P. praeruptorum and A. decursiva are significantly different, and many adulterants exist because of the differences in traditional understanding and medication habits. Therefore, the rapid and accurate identification methods are required. The aim was to study the feasibility of using DNA barcoding to distinguish between Traditional Chinese medicine Qianhu ( Peucedanum praeruptorum ), Zihuaqianhu ( Angelica decursiva ), and common adulterants, based on internal transcribed spacer (ITS) sequences, as well as specific PCR identification between P. praeruptorum and A. decursiva . The ITS sequences of P. praeruptorum , A. decursiva , and adulterant were studied, and a phylogenetic tree was constructed. Based on the ITS barcode, the specific PCR primer pairs QH-CP19s/QH-CP19a and ZHQH-CP3s/ZHQH-CP3a were designed for P. praeruptorum and A. decursiva , respectively. The amplification conditions were optimized, and specific PCR products were obtained. The results showed that the phylogenetic trees constructed using the BI and MP methods were consistent, and P. praeruptorum and A. decursiva sequence haplotypes formed their own monophyly. The experimental results showed that in PCR products, the target bands appeared in the genuine drug and not in the adulterant, which suggests the high specificity of the two primer pairs. The ITS sequence was ideal DNA barcode to identify P. praeruptorum , A. decursiva , and adulterant. The specific PCR is a quick and effective method to distinguish between P. praeruptorum and A. decursiva . Peucedanum praeruptorum and Angelica decursiva sequence haplotypes formed their own monophyly.The ITS sequence was ideal DNA barcode to identify P. praeruptorum , A. decursiva , and adulterant.Specific PCR is a quick and effective method to distinguish between P. praeruptorum and A. decursiva . Abbreviations used: TCM: The traditional Chinese medicine, P.: Peucedanum , A.: Angelica , ITS: The internal transcribed spacer, PCR: Polymerase chain reaction, NCBI: National Center for Biotechnology Information, NI: Number of individuals, HN: Haplotype number; GAN: Gen Bank accession numbers, L.: Ligusticum , O.: Ostericum , A.: Angelica , P.: Pimpinella , BI: Bayesian inference, MP: Maximum parsimony, AIC: Akaike Information Criterion, MCMC: Markov Chains Monte Carlo, TBR: Tree bisection-reconnection, LPP: Length of PCR product, PRP: PCR reaction procedure, SNP: Single nucleotide polymorphisms, PP: Posterior probability, BS: Bootstrap.Qun Zhao.

  3. Identification of the vascular plants of Churchill, Manitoba, using a DNA barcode library

    PubMed Central

    2012-01-01

    Background Because arctic plant communities are highly vulnerable to climate change, shifts in their composition require rapid, accurate identifications, often for specimens that lack diagnostic floral characters. The present study examines the role that DNA barcoding can play in aiding floristic evaluations in the arctic by testing the effectiveness of the core plant barcode regions (rbcL, matK) and a supplemental ribosomal DNA (ITS2) marker for a well-studied flora near Churchill, Manitoba. Results This investigation examined 900 specimens representing 312 of the 354 species of vascular plants known from Churchill. Sequencing success was high for rbcL: 95% for fresh specimens and 85% for herbarium samples (mean age 20 years). ITS2 worked equally well for the fresh and herbarium material (89% and 88%). However, sequencing success was lower for matK, despite two rounds of PCR amplification, which reflected less effective primer binding and sensitivity to the DNA degradation (76% of fresh, 45% of herbaria samples). A species was considered as taxonomically resolved if its members showed at least one diagnostic difference from any other taxon in the study and formed a monophyletic clade. The highest species resolution (69%) was obtained by combining information from all three genes. The joint sequence information for rbcL and matK distinguished 54% of 286 species, while rbcL and ITS2 distinguished 63% of 285 species. Discrimination of species within Salix, which constituted 8% of the flora, was particularly problematic. Despite incomplete resolution, the barcode results revealed 22 misidentified herbarium specimens, and enabled the identification of field specimens which were otherwise too immature to identify. Although seven cases of ITS2 paralogy were noted in the families Cyperaceae, Juncaceae and Juncaginaceae, this intergenic spacer played an important role in resolving congeneric plant species at Churchill. Conclusions Our results provided fast and cost-effective solution to create a comprehensive, effective DNA barcode reference library for a local flora. PMID:23190419

  4. Identification of the vascular plants of Churchill, Manitoba, using a DNA barcode library.

    PubMed

    Kuzmina, Maria L; Johnson, Karen L; Barron, Hannah R; Hebert, Paul Dn

    2012-11-28

    Because arctic plant communities are highly vulnerable to climate change, shifts in their composition require rapid, accurate identifications, often for specimens that lack diagnostic floral characters. The present study examines the role that DNA barcoding can play in aiding floristic evaluations in the arctic by testing the effectiveness of the core plant barcode regions (rbcL, matK) and a supplemental ribosomal DNA (ITS2) marker for a well-studied flora near Churchill, Manitoba. This investigation examined 900 specimens representing 312 of the 354 species of vascular plants known from Churchill. Sequencing success was high for rbcL: 95% for fresh specimens and 85% for herbarium samples (mean age 20 years). ITS2 worked equally well for the fresh and herbarium material (89% and 88%). However, sequencing success was lower for matK, despite two rounds of PCR amplification, which reflected less effective primer binding and sensitivity to the DNA degradation (76% of fresh, 45% of herbaria samples). A species was considered as taxonomically resolved if its members showed at least one diagnostic difference from any other taxon in the study and formed a monophyletic clade. The highest species resolution (69%) was obtained by combining information from all three genes. The joint sequence information for rbcL and matK distinguished 54% of 286 species, while rbcL and ITS2 distinguished 63% of 285 species. Discrimination of species within Salix, which constituted 8% of the flora, was particularly problematic. Despite incomplete resolution, the barcode results revealed 22 misidentified herbarium specimens, and enabled the identification of field specimens which were otherwise too immature to identify. Although seven cases of ITS2 paralogy were noted in the families Cyperaceae, Juncaceae and Juncaginaceae, this intergenic spacer played an important role in resolving congeneric plant species at Churchill. Our results provided fast and cost-effective solution to create a comprehensive, effective DNA barcode reference library for a local flora.

  5. Identification of food and beverage spoilage yeasts from DNA sequence analyses

    USDA-ARS?s Scientific Manuscript database

    Detection, identification, and classification of yeasts has undergone a major transformation in the last decade and a half following application of gene sequence analyses and genome comparisons. Development of a database (barcode) of easily determined DNA sequences from domains 1 and 2 (D1/D2) of th...

  6. Searching for evidence of selection in avian DNA barcodes.

    PubMed

    Kerr, Kevin C R

    2011-11-01

    The barcode of life project has assembled a tremendous number of mitochondrial cytochrome c oxidase I (COI) sequences. Although these sequences were gathered to develop a DNA-based system for species identification, it has been suggested that further biological inferences may also be derived from this wealth of data. Recurrent selective sweeps have been invoked as an evolutionary mechanism to explain limited intraspecific COI diversity, particularly in birds, but this hypothesis has not been formally tested. In this study, I collated COI sequences from previous barcoding studies on birds and tested them for evidence of selection. Using this expanded data set, I re-examined the relationships between intraspecific diversity and interspecific divergence and sampling effort, respectively. I employed the McDonald-Kreitman test to test for neutrality in sequence evolution between closely related pairs of species. Because amino acid sequences were generally constrained between closely related pairs, I also included broader intra-order comparisons to quantify patterns of protein variation in avian COI sequences. Lastly, using 22 published whole mitochondrial genomes, I compared the evolutionary rate of COI against the other 12 protein-coding mitochondrial genes to assess intragenomic variability. I found no conclusive evidence of selective sweeps. Most evidence pointed to an overall trend of strong purifying selection and functional constraint. The COI protein did vary across the class Aves, but to a very limited extent. COI was the least variable gene in the mitochondrial genome, suggesting that other genes might be more informative for probing factors constraining mitochondrial variation within species. © 2011 Blackwell Publishing Ltd.

  7. DNA barcoding for conservation, seed banking and ecological restoration of Acacia in the Midwest of Western Australia.

    PubMed

    Nevill, Paul G; Wallace, Mark J; Miller, Joseph T; Krauss, Siegfried L

    2013-11-01

    We used DNA barcoding to address an important conservation issue in the Midwest of Western Australia, working on Australia's largest genus of flowering plant. We tested whether or not currently recommended plant DNA barcoding regions (matK and rbcL) were able to discriminate Acacia taxa of varying phylogenetic distances, and ultimately identify an ambiguously labelled seed collection from a mine-site restoration project. Although matK successfully identified the unknown seed as the rare and conservation priority listed A. karina, and was able to resolve six of the eleven study species, this region was difficult to amplify and sequence. In contrast, rbcL was straightforward to recover and align, but could not determine the origin of the seed and only resolved 3 of the 11 species. Other chloroplast regions (rpl32-trnL, psbA-trnH, trnL-F and trnK) had mixed success resolving the studied taxa. In general, species were better resolved in multilocus data sets compared to single-locus data sets. We recommend using the formal barcoding regions supplemented with data from other plastid regions, particularly rpl32-trnL, for barcoding in Acacia. Our study demonstrates the novel use of DNA barcoding for seed identification and illustrates the practical potential of DNA barcoding for the growing discipline of restoration ecology. © 2013 John Wiley & Sons Ltd.

  8. Strategies for Achieving High Sequencing Accuracy for Low Diversity Samples and Avoiding Sample Bleeding Using Illumina Platform

    PubMed Central

    Mitra, Abhishek; Skrzypczak, Magdalena; Ginalski, Krzysztof; Rowicka, Maga

    2015-01-01

    Sequencing microRNA, reduced representation sequencing, Hi-C technology and any method requiring the use of in-house barcodes result in sequencing libraries with low initial sequence diversity. Sequencing such data on the Illumina platform typically produces low quality data due to the limitations of the Illumina cluster calling algorithm. Moreover, even in the case of diverse samples, these limitations are causing substantial inaccuracies in multiplexed sample assignment (sample bleeding). Such inaccuracies are unacceptable in clinical applications, and in some other fields (e.g. detection of rare variants). Here, we discuss how both problems with quality of low-diversity samples and sample bleeding are caused by incorrect detection of clusters on the flowcell during initial sequencing cycles. We propose simple software modifications (Long Template Protocol) that overcome this problem. We present experimental results showing that our Long Template Protocol remarkably increases data quality for low diversity samples, as compared with the standard analysis protocol; it also substantially reduces sample bleeding for all samples. For comprehensiveness, we also discuss and compare experimental results from alternative approaches to sequencing low diversity samples. First, we discuss how the low diversity problem, if caused by barcodes, can be avoided altogether at the barcode design stage. Second and third, we present modified guidelines, which are more stringent than the manufacturer’s, for mixing low diversity samples with diverse samples and lowering cluster density, which in our experience consistently produces high quality data from low diversity samples. Fourth and fifth, we present rescue strategies that can be applied when sequencing results in low quality data and when there is no more biological material available. In such cases, we propose that the flowcell be re-hybridized and sequenced again using our Long Template Protocol. Alternatively, we discuss how analysis can be repeated from saved sequencing images using the Long Template Protocol to increase accuracy. PMID:25860802

  9. Deterministic versus stochastic model of reprogramming: new evidence from cellular barcoding technique

    PubMed Central

    Yunusova, Anastasia M.; Fishman, Veniamin S.; Vasiliev, Gennady V.

    2017-01-01

    Factor-mediated reprogramming of somatic cells towards pluripotency is a low-efficiency process during which only small subsets of cells are successfully reprogrammed. Previous analyses of the determinants of the reprogramming potential are based on average measurements across a large population of cells or on monitoring a relatively small number of single cells with live imaging. Here, we applied lentiviral genetic barcoding, a powerful tool enabling the identification of familiar relationships in thousands of cells. High-throughput sequencing of barcodes from successfully reprogrammed cells revealed a significant number of barcodes from related cells. We developed a computer model, according to which a probability of synchronous reprogramming of sister cells equals 10–30%. We conclude that the reprogramming success is pre-established in some particular cells and, being a heritable trait, can be maintained through cell division. Thus, reprogramming progresses in a deterministic manner, at least at the level of cell lineages. PMID:28446707

  10. DNA Barcoding the Medusozoa using mtCOI

    NASA Astrophysics Data System (ADS)

    Ortman, Brian D.; Bucklin, Ann; Pagès, Francesc; Youngbluth, Marsh

    2010-12-01

    The Medusozoa are a clade within the Cnidaria comprising the classes Hydrozoa, Scyphozoa, and Cubozoa. Identification of medusozoan species is challenging, even for taxonomic experts, due to their fragile forms and complex, morphologically-distinct life history stages. In this study 231 sequences for a portion of the mitochondrial Cytochrome Oxidase I (mtCOI) gene were obtained from 95 species of Medusozoans including; 84 hydrozoans (61 siphonophores, eight anthomedusae, four leptomedusae, seven trachymedusae, and four narcomedusae), 10 scyphozoans (three coronatae, four semaeostomae, two rhizostomae, and one stauromedusae), and one cubozoan. This region of mtCOI has been used as a DNA barcode (i.e., a molecular character for species recognition and discrimination) for a diverse array of taxa, including some Cnidaria. Kimura 2-parameter (K2P) genetic distances between sequence variants within species ranged from 0 to 0.057 (mean 0.013). Within the 13 genera for which multiple species were available, K2P distance between congeneric species ranged from 0.056 to 0.381. A cluster diagram generated by Neighbor Joining (NJ) using K2P distances reliably clustered all barcodes of the same species with ≥99% bootstrap support, ensuring accurate identification of species. Intra- and inter-specific variation of the mtCOI gene for the Medusozoa are appropriate for this gene to be used as a DNA barcode for species-level identification, but not for phylogenetic analysis or taxonomic classification of unknown sequences at higher taxonomic levels. This study provides a set of molecular tools that can be used to address questions of speciation, biodiversity, life-history, and population boundaries in the Medusozoa.

  11. DNA Barcodes for the FIshes of the Narmada, One of India’s Longest Rivers

    PubMed Central

    Khedkar, Gulab Dattarao; Jamdade, Rahul; Naik, Suresh; David, Lior; Haymer, David

    2014-01-01

    This study describes the species diversity of fishes of the Narmada River in India. A total of 820 fish specimens were collected from 17 sampling locations across the whole river basin. Fish were taxonomically classified into one of 90 possible species based on morphological characters, and then DNA barcoding was employed using COI gene sequences as a supplemental identification method. A total of 314 different COI sequences were generated, and specimens were confirmed to belong to 85 species representing 63 genera, 34 families and 10 orders. Findings of this study include the identification of five putative cryptic or sibling species and 43 species not previously known from the Narmada River basin. Five species are endemic to India and three are introduced species that had not been previously reported to occur in the Narmada River. Conversely, 43 species previously reported to occur in the Narmada were not found. Genetic diversity and distance values were generated for all of the species within genera, families and orders using Kimura’s 2 parameter distance model followed by the construction of a Neighbor Joining tree. High resolution clusters generated in NJ trees aided the groupings of species corresponding to their genera and families which are in confirmation to the values generated by Automatic Barcode Gap Discovery bioinformatics platform. This aided to decide a threshold value for the discrimination of species boundary from the Narmada River. This study provides an important validation of the use of DNA barcode sequences for monitoring species diversity and changes within complex ecosystems such as the Narmada River. PMID:24991801

  12. DNA barcodes for the fishes of the Narmada, one of India's longest rivers.

    PubMed

    Khedkar, Gulab Dattarao; Jamdade, Rahul; Naik, Suresh; David, Lior; Haymer, David

    2014-01-01

    This study describes the species diversity of fishes of the Narmada River in India. A total of 820 fish specimens were collected from 17 sampling locations across the whole river basin. Fish were taxonomically classified into one of 90 possible species based on morphological characters, and then DNA barcoding was employed using COI gene sequences as a supplemental identification method. A total of 314 different COI sequences were generated, and specimens were confirmed to belong to 85 species representing 63 genera, 34 families and 10 orders. Findings of this study include the identification of five putative cryptic or sibling species and 43 species not previously known from the Narmada River basin. Five species are endemic to India and three are introduced species that had not been previously reported to occur in the Narmada River. Conversely, 43 species previously reported to occur in the Narmada were not found. Genetic diversity and distance values were generated for all of the species within genera, families and orders using Kimura's 2 parameter distance model followed by the construction of a Neighbor Joining tree. High resolution clusters generated in NJ trees aided the groupings of species corresponding to their genera and families which are in confirmation to the values generated by Automatic Barcode Gap Discovery bioinformatics platform. This aided to decide a threshold value for the discrimination of species boundary from the Narmada River. This study provides an important validation of the use of DNA barcode sequences for monitoring species diversity and changes within complex ecosystems such as the Narmada River.

  13. Genome-wide mapping of autonomous promoter activity in human cells

    PubMed Central

    van Arensbergen, Joris; FitzPatrick, Vincent D.; de Haas, Marcel; Pagie, Ludo; Sluimer, Jasper; Bussemaker, Harmen J.; van Steensel, Bas

    2017-01-01

    Previous methods to systematically characterize sequence-intrinsic activity of promoters have been limited by relatively low throughput and the length of sequences that could be tested. Here we present Survey of Regulatory Elements (SuRE), a method to assay more than 108 DNA fragments, each 0.2–2kb in size, for their ability to drive transcription autonomously. In SuRE, a plasmid library is constructed of random genomic fragments upstream of a 20bp barcode and decoded by paired-end sequencing. This library is then transfected into cells and transcribed barcodes are quantified in the RNA by high throughput sequencing. When applied to the human genome, we achieved a 55-fold genome coverage, allowing us to map autonomous promoter activity genome-wide. By computational modeling we delineated subregions within promoters that are relevant for their activity. For instance, we show that antisense promoter transcription is generally dependent on the sense core promoter sequences, and that most enhancers and several families of repetitive elements act as autonomous transcription initiation sites. PMID:28024146

  14. DNA barcode based wildlife forensics for resolving the origin of claw samples using a novel primer cocktail.

    PubMed

    Khedkar, Gulab D; Abhayankar, Shil Bapurao; Nalage, Dinesh; Ahmed, Shaikh Nadeem; Khedkar, Chandraprakash D

    2016-11-01

    Excessive wildlife hunting for commercial purposes can have negative impacts on biodiversity and may result in species extinction. To ensure compliance with legal statutes, forensic identification approaches relying on molecular markers may be used to identify the species of origin of animal material from hairs, claw, blood, bone, or meat. Using this approach, DNA sequences from the COI "barcoding" gene have been used to identify material from a number of domesticated animal species. However, many wild species of carnivores still present great challenges in generating COI barcodes using standard "universal" primer pairs. In the work presented here, the mitochondrial COI gene was successfully amplified using a novel primer cocktail, and the products were sequenced to determine the species of twenty one unknown samples of claw material collected as part of forensic wildlife case investigations. Sixteen of the unknown samples were recognized to have originated from either Panthera leo or P. pardus individuals. The remaining five samples could be identified only to the family level due to the absence of reference animal sequences. This is the first report on the use of COI sequences for the identification of P. pardus and P. leo from claw samples as part of forensic investigations in India. The study also highlights the need for adequate reference material to aid in the resolution of suspected cases of illegal wildlife harvesting.

  15. First DNA Barcode Reference Library for the Identification of South American Freshwater Fish from the Lower Paraná River

    PubMed Central

    Brancolini, Florencia; del Pazo, Felipe; Posner, Victoria Maria; Grimberg, Alexis; Arranz, Silvia Eda

    2016-01-01

    Valid fish species identification is essential for biodiversity conservation and fisheries management. Here, we provide a sequence reference library based on mitochondrial cytochrome c oxidase subunit I for a valid identification of 79 freshwater fish species from the Lower Paraná River. Neighbour-joining analysis based on K2P genetic distances formed non-overlapping clusters for almost all species with a ≥99% bootstrap support each. Identification was successful for 97.8% of species as the minimum genetic distance to the nearest neighbour exceeded the maximum intraspecific distance in all these cases. A barcoding gap of 2.5% was apparent for the whole data set with the exception of four cases. Within-species distances ranged from 0.00% to 7.59%, while interspecific distances varied between 4.06% and 19.98%, without considering Odontesthes species with a minimum genetic distance of 0%. Sequence library validation was performed by applying BOLDs BIN analysis tool, Poisson Tree Processes model and Automatic Barcode Gap Discovery, along with a reliable taxonomic assignment by experts. Exhaustive revision of vouchers was performed when a conflicting assignment was detected after sequence analysis and BIN discordance evaluation. Thus, the sequence library presented here can be confidently used as a benchmark for identification of half of the fish species recorded for the Lower Paraná River. PMID:27442116

  16. A DNA barcode library for Germany's mayflies, stoneflies and caddisflies (Ephemeroptera, Plecoptera and Trichoptera).

    PubMed

    Morinière, Jérôme; Hendrich, Lars; Balke, Michael; Beermann, Arne J; König, Tobias; Hess, Monika; Koch, Stefan; Müller, Reinhard; Leese, Florian; Hebert, Paul D N; Hausmann, Axel; Schubart, Christoph D; Haszprunar, Gerhard

    2017-11-01

    Mayflies, stoneflies and caddisflies (Ephemeroptera, Plecoptera and Trichoptera) are prominent representatives of aquatic macroinvertebrates, commonly used as indicator organisms for water quality and ecosystem assessments. However, unambiguous morphological identification of EPT species, especially their immature life stages, is a challenging, yet fundamental task. A comprehensive DNA barcode library based upon taxonomically well-curated specimens is needed to overcome the problematic identification. Once available, this library will support the implementation of fast, cost-efficient and reliable DNA-based identifications and assessments of ecological status. This study represents a major step towards a DNA barcode reference library as it covers for two-thirds of Germany's EPT species including 2,613 individuals belonging to 363 identified species. As such, it provides coverage for 38 of 44 families (86%) and practically all major bioindicator species. DNA barcode compliant sequences (≥500 bp) were recovered from 98.74% of the analysed specimens. Whereas most species (325, i.e., 89.53%) were unambiguously assigned to a single Barcode Index Number (BIN) by its COI sequence, 38 species (18 Ephemeroptera, nine Plecoptera and 11 Trichoptera) were assigned to a total of 89 BINs. Most of these additional BINs formed nearest neighbour clusters, reflecting the discrimination of geographical subclades of a currently recognized species. BIN sharing was uncommon, involving only two species pairs of Ephemeroptera. Interestingly, both maximum pairwise and nearest neighbour distances were substantially higher for Ephemeroptera compared to Plecoptera and Trichoptera, possibly indicating older speciation events, stronger positive selection or faster rate of molecular evolution. © 2017 John Wiley & Sons Ltd.

  17. Untangling taxonomy: a DNA barcode reference library for Canadian spiders.

    PubMed

    Blagoev, Gergin A; deWaard, Jeremy R; Ratnasingham, Sujeevan; deWaard, Stephanie L; Lu, Liuqiong; Robertson, James; Telfer, Angela C; Hebert, Paul D N

    2016-01-01

    Approximately 1460 species of spiders have been reported from Canada, 3% of the global fauna. This study provides a DNA barcode reference library for 1018 of these species based upon the analysis of more than 30,000 specimens. The sequence results show a clear barcode gap in most cases with a mean intraspecific divergence of 0.78% vs. a minimum nearest-neighbour (NN) distance averaging 7.85%. The sequences were assigned to 1359 Barcode index numbers (BINs) with 1344 of these BINs composed of specimens belonging to a single currently recognized species. There was a perfect correspondence between BIN membership and a known species in 795 cases, while another 197 species were assigned to two or more BINs (556 in total). A few other species (26) were involved in BIN merges or in a combination of merges and splits. There was only a weak relationship between the number of specimens analysed for a species and its BIN count. However, three species were clear outliers with their specimens being placed in 11-22 BINs. Although all BIN splits need further study to clarify the taxonomic status of the entities involved, DNA barcodes discriminated 98% of the 1018 species. The present survey conservatively revealed 16 species new to science, 52 species new to Canada and major range extensions for 426 species. However, if most BIN splits detected in this study reflect cryptic taxa, the true species count for Canadian spiders could be 30-50% higher than currently recognized. © 2015 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  18. Detection of plant-based adulterants in turmeric powder using DNA barcoding.

    PubMed

    Parvathy, V A; Swetha, V P; Sheeja, T E; Sasikumar, B

    2015-01-01

    In its powdered form, turmeric [Curcuma longa L. (Zingiberaceae)], a spice of medical importance, is often adulterated lowering its quality. The study sought to detect plant-based adulterants in traded turmeric powder using DNA barcoding. Accessions of Curcuma longa L., Curcuma zedoaria Rosc. (Zingiberaceae), and cassava starch served as reference samples. Three barcoding loci, namely ITS, rbcL, and matK, were used for PCR amplification of the reference samples and commercial samples representing 10 different companies. PCR success rate, sequencing efficiency, occurrence of SNPs, and BLAST analysis were used to assess the potential of the barcoding loci in authenticating the traded samples of turmeric. The PCR and sequencing success of the loci rbcL and ITS were found to be 100%, whereas matK showed no amplification. ITS proved to be the ideal locus because it showed greater variability than rbcL in discriminating the Curcuma species. The presence of C. zedoaria could be detected in one of the samples whereas cassava starch, wheat, barley, and rye in other two samples although the label claimed nothing other than turmeric powder in the samples. Unlabeled materials in turmeric powder are considered as adulterants or fillers, added to increase the bulk weight and starch content of the commodity for economic gains. These adulterants pose potential health hazards to consumers who are allergic to these plants, lowering the product's medicinal value and belying the claim that the product is gluten free. The study proved DNA barcoding as an efficient tool for testing the integrity and the authenticity of commercial products of turmeric.

  19. DNA barcoding: an efficient tool to overcome authentication challenges in the herbal market.

    PubMed

    Mishra, Priyanka; Kumar, Amit; Nagireddy, Akshitha; Mani, Daya N; Shukla, Ashutosh K; Tiwari, Rakesh; Sundaresan, Velusamy

    2016-01-01

    The past couple of decades have witnessed global resurgence of herbal-based health care. As a result, the trade of raw drugs has surged globally. Accurate and fast scientific identification of the plant(s) is the key to success for the herbal drug industry. The conventional approach is to engage an expert taxonomist, who uses a mix of traditional and modern techniques for precise plant identification. However, for bulk identification at industrial scale, the process is protracted and time-consuming. DNA barcoding, on the other hand, offers an alternative and feasible taxonomic tool box for rapid and robust species identification. For the success of DNA barcode, the barcode loci must have sufficient information to differentiate unambiguously between closely related plant species and discover new cryptic species. For herbal plant identification, matK, rbcL, trnH-psbA, ITS, trnL-F, 5S-rRNA and 18S-rRNA have been used as successful DNA barcodes. Emerging advances in DNA barcoding coupled with next-generation sequencing and high-resolution melting curve analysis have paved the way for successful species-level resolution recovered from finished herbal products. Further, development of multilocus strategy and its application has provided new vistas to the DNA barcode-based plant identification for herbal drug industry. For successful and acceptable identification of herbal ingredients and a holistic quality control of the drug, DNA barcoding needs to work harmoniously with other components of the systems biology approach. We suggest that for effectively resolving authentication challenges associated with the herbal market, DNA barcoding must be used in conjunction with metabolomics along with need-based transcriptomics and proteomics. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. DNA barcoding reveals seasonal shifts in diet and consumption of deep-sea fishes in wedge-tailed shearwaters

    PubMed Central

    Ando, Haruko; Horikoshi, Kazuo; Suzuki, Hajime; Isagi, Yuji

    2018-01-01

    The foraging ecology of pelagic seabirds is difficult to characterize because of their large foraging areas. In the face of this difficulty, DNA metabarcoding may be a useful approach to analyze diet compositions and foraging behaviors. Using this approach, we investigated the diet composition and its seasonal variation of a common seabird species on the Ogasawara Islands, Japan: the wedge-tailed shearwater Ardenna pacifica. We collected fecal samples during the prebreeding (N = 73) and rearing (N = 96) periods. The diet composition of wedge-tailed shearwater was analyzed by Ion Torrent sequencing using two universal polymerase chain reaction primers for the 12S and 16S mitochondrial DNA regions that targeted vertebrates and mollusks, respectively. The results of a BLAST search of obtained sequences detected 31 and 1 vertebrate and mollusk taxa, respectively. The results of the diet composition analysis showed that wedge-tailed shearwaters frequently consumed deep-sea fishes throughout the sampling season, indicating the importance of these fishes as a stable food resource. However, there was a marked seasonal shift in diet, which may reflect seasonal changes in food resource availability and wedge-tailed shearwater foraging behavior. The collected data regarding the shearwater diet may be useful for in situ conservation efforts. Future research that combines DNA metabarcoding with other tools, such as data logging, may provide further insight into the foraging ecology of pelagic seabirds. PMID:29630670

  1. DNA barcoding of gypsy moths from China (Lepidoptera: Erebidae) reveals new haplotypes and divergence patterns within gypsy moth subspecies

    Treesearch

    Fang Chen; Youqing Luo; Melody A. Keena; Ying Wu; Peng Wu; Juan Shi

    2015-01-01

    The gypsy moth from Asia (two subspecies) is considered a greater threat to North America than European gypsy moth, because of a broader host range and females being capable of flight. Variation within and among gypsy moths from China (nine locations), one of the native countries of Asian gypsy moth, were compared using DNA barcode sequences (658 bp of mtDNA cytochrome...

  2. Land plants and DNA barcodes: short-term and long-term goals.

    PubMed

    Chase, Mark W; Salamin, Nicolas; Wilkinson, Mike; Dunwell, James M; Kesanakurthi, Rao Prasad; Haider, Nadia; Haidar, Nadia; Savolainen, Vincent

    2005-10-29

    Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic resources might work in the context of identification (versus phylogeny reconstruction). In this paper, we make such an assessment, particularly with two of the markers commonly sequenced in land plant phylogenetic studies, plastid rbcL and internal transcribed spacers of the large subunits of nuclear ribosomal DNA (ITS), and find that both of these DNA regions perform well even though the data currently available in GenBank/EBI were not produced to be used as barcodes and BLAST searches are not an ideal tool for this purpose. These results bode well for the use of even more variable regions of plastid DNA (such as, for example, psbA-trnH) as barcodes, once they have been widely sequenced. In the short term, efforts to bring land plant barcoding up to the standards being used now in other organisms should make swift progress. There are two categories of DNA barcode users, scientists in fields other than taxonomy and taxonomists. For the former, the use of mitochondrial and plastid DNA, the two most easily assessed genomes, is at least in the short term a useful tool that permits them to get on with their studies, which depend on knowing roughly which species or species groups they are dealing with, but these same DNA regions have important drawbacks for use in taxonomic studies (i.e. studies designed to elucidate species limits). For these purposes, DNA markers from uniparentally (usually maternally) inherited genomes can only provide half of the story required to improve taxonomic standards being used in DNA barcoding. In the long term, we will need to develop more sophisticated barcoding tools, which would be multiple, low-copy nuclear markers with sufficient genetic variability and PCR-reliability; these would permit the detection of hybrids and permit researchers to identify the 'genetic gaps' that are useful in assessing species limits.

  3. Land plants and DNA barcodes: short-term and long-term goals

    PubMed Central

    Chase, Mark W; Salamin, Nicolas; Wilkinson, Mike; Dunwell, James M; Kesanakurthi, Rao Prasad; Haidar, Nadia; Savolainen, Vincent

    2005-01-01

    Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic resources might work in the context of identification (versus phylogeny reconstruction). In this paper, we make such an assessment, particularly with two of the markers commonly sequenced in land plant phylogenetic studies, plastid rbcL and internal transcribed spacers of the large subunits of nuclear ribosomal DNA (ITS), and find that both of these DNA regions perform well even though the data currently available in GenBank/EBI were not produced to be used as barcodes and BLAST searches are not an ideal tool for this purpose. These results bode well for the use of even more variable regions of plastid DNA (such as, for example, psbA-trnH) as barcodes, once they have been widely sequenced. In the short term, efforts to bring land plant barcoding up to the standards being used now in other organisms should make swift progress. There are two categories of DNA barcode users, scientists in fields other than taxonomy and taxonomists. For the former, the use of mitochondrial and plastid DNA, the two most easily assessed genomes, is at least in the short term a useful tool that permits them to get on with their studies, which depend on knowing roughly which species or species groups they are dealing with, but these same DNA regions have important drawbacks for use in taxonomic studies (i.e. studies designed to elucidate species limits). For these purposes, DNA markers from uniparentally (usually maternally) inherited genomes can only provide half of the story required to improve taxonomic standards being used in DNA barcoding. In the long term, we will need to develop more sophisticated barcoding tools, which would be multiple, low-copy nuclear markers with sufficient genetic variability and PCR-reliability; these would permit the detection of hybrids and permit researchers to identify the ‘genetic gaps’ that are useful in assessing species limits. PMID:16214746

  4. Electronic hybridization detection in microarray format and DNA genotyping

    NASA Astrophysics Data System (ADS)

    Blin, Antoine; Cissé, Ismaïl; Bockelmann, Ulrich

    2014-02-01

    We describe an approach to substituting a fluorescence microarray with a surface made of an arrangement of electrolyte-gated field effect transistors. This was achieved using a dedicated blocking of non-specific interactions and comparing threshold voltage shifts of transistors exhibiting probe molecules of different base sequence. We apply the approach to detection of the 35delG mutation, which is related to non-syndromic deafness and is one of the most frequent mutations in humans. The process involves barcode sequences that are generated by Tas-PCR, a newly developed replication reaction using polymerase blocking. The barcodes are recognized by hybridization to surface attached probes and are directly detected by the semiconductor device.

  5. Electronic hybridization detection in microarray format and DNA genotyping

    PubMed Central

    Blin, Antoine; Cissé, Ismaïl; Bockelmann, Ulrich

    2014-01-01

    We describe an approach to substituting a fluorescence microarray with a surface made of an arrangement of electrolyte-gated field effect transistors. This was achieved using a dedicated blocking of non-specific interactions and comparing threshold voltage shifts of transistors exhibiting probe molecules of different base sequence. We apply the approach to detection of the 35delG mutation, which is related to non-syndromic deafness and is one of the most frequent mutations in humans. The process involves barcode sequences that are generated by Tas-PCR, a newly developed replication reaction using polymerase blocking. The barcodes are recognized by hybridization to surface attached probes and are directly detected by the semiconductor device. PMID:24569823

  6. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi

    PubMed Central

    Schoch, Conrad L.; Seifert, Keith A.; Huhndorf, Sabine; Robert, Vincent; Spouge, John L.; Levesque, C. André; Chen, Wen; Bolchacova, Elena; Voigt, Kerstin; Crous, Pedro W.; Miller, Andrew N.; Wingfield, Michael J.; Aime, M. Catherine; An, Kwang-Deuk; Bai, Feng-Yan; Barreto, Robert W.; Begerow, Dominik; Bergeron, Marie-Josée; Blackwell, Meredith; Boekhout, Teun; Bogale, Mesfin; Boonyuen, Nattawut; Burgaz, Ana R.; Buyck, Bart; Cai, Lei; Cai, Qing; Cardinali, G.; Chaverri, Priscila; Coppins, Brian J.; Crespo, Ana; Cubas, Paloma; Cummings, Craig; Damm, Ulrike; de Beer, Z. Wilhelm; de Hoog, G. Sybren; Del-Prado, Ruth; Dentinger, Bryn; Diéguez-Uribeondo, Javier; Divakar, Pradeep K.; Douglas, Brian; Dueñas, Margarita; Duong, Tuan A.; Eberhardt, Ursula; Edwards, Joan E.; Elshahed, Mostafa S.; Fliegerova, Katerina; Furtado, Manohar; García, Miguel A.; Ge, Zai-Wei; Griffith, Gareth W.; Griffiths, K.; Groenewald, Johannes Z.; Groenewald, Marizeth; Grube, Martin; Gryzenhout, Marieka; Guo, Liang-Dong; Hagen, Ferry; Hambleton, Sarah; Hamelin, Richard C.; Hansen, Karen; Harrold, Paul; Heller, Gregory; Herrera, Cesar; Hirayama, Kazuyuki; Hirooka, Yuuri; Ho, Hsiao-Man; Hoffmann, Kerstin; Hofstetter, Valérie; Högnabba, Filip; Hollingsworth, Peter M.; Hong, Seung-Beom; Hosaka, Kentaro; Houbraken, Jos; Hughes, Karen; Huhtinen, Seppo; Hyde, Kevin D.; James, Timothy; Johnson, Eric M.; Johnson, Joan E.; Johnston, Peter R.; Jones, E.B. Gareth; Kelly, Laura J.; Kirk, Paul M.; Knapp, Dániel G.; Kõljalg, Urmas; Kovács, Gábor M.; Kurtzman, Cletus P.; Landvik, Sara; Leavitt, Steven D.; Liggenstoffer, Audra S.; Liimatainen, Kare; Lombard, Lorenzo; Luangsa-ard, J. Jennifer; Lumbsch, H. Thorsten; Maganti, Harinad; Maharachchikumbura, Sajeewa S. N.; Martin, María P.; May, Tom W.; McTaggart, Alistair R.; Methven, Andrew S.; Meyer, Wieland; Moncalvo, Jean-Marc; Mongkolsamrit, Suchada; Nagy, László G.; Nilsson, R. Henrik; Niskanen, Tuula; Nyilasi, Ildikó; Okada, Gen; Okane, Izumi; Olariaga, Ibai; Otte, Jürgen; Papp, Tamás; Park, Duckchul; Petkovits, Tamás; Pino-Bodas, Raquel; Quaedvlieg, William; Raja, Huzefa A.; Redecker, Dirk; Rintoul, Tara L.; Ruibal, Constantino; Sarmiento-Ramírez, Jullie M.; Schmitt, Imke; Schüßler, Arthur; Shearer, Carol; Sotome, Kozue; Stefani, Franck O.P.; Stenroos, Soili; Stielow, Benjamin; Stockinger, Herbert; Suetrong, Satinee; Suh, Sung-Oui; Sung, Gi-Ho; Suzuki, Motofumi; Tanaka, Kazuaki; Tedersoo, Leho; Telleria, M. Teresa; Tretter, Eric; Untereiner, Wendy A.; Urbina, Hector; Vágvölgyi, Csaba; Vialle, Agathe; Vu, Thuy Duong; Walther, Grit; Wang, Qi-Ming; Wang, Yan; Weir, Bevan S.; Weiß, Michael; White, Merlin M.; Xu, Jianping; Yahr, Rebecca; Yang, Zhu L.; Yurkov, Andrey; Zamora, Juan-Carlos; Zhang, Ning; Zhuang, Wen-Ying; Schindel, David

    2012-01-01

    Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups. PMID:22454494

  7. The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions.

    PubMed

    Raupach, Michael J; Barco, Andrea; Steinke, Dirk; Beermann, Jan; Laakmann, Silke; Mohrbeck, Inga; Neumann, Hermann; Kihara, Terue C; Pointner, Karin; Radulovici, Adriana; Segelken-Voigt, Alexandra; Wesse, Christina; Knebelsberger, Thomas

    2015-01-01

    During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequences.

  8. Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes.

    PubMed

    Geiger, M F; Herder, F; Monaghan, M T; Almada, V; Barbieri, R; Bariche, M; Berrebi, P; Bohlen, J; Casal-Lopez, M; Delmastro, G B; Denys, G P J; Dettai, A; Doadrio, I; Kalogianni, E; Kärst, H; Kottelat, M; Kovačić, M; Laporte, M; Lorenzoni, M; Marčić, Z; Özuluğ, M; Perdices, A; Perea, S; Persat, H; Porcelotti, S; Puzzi, C; Robalo, J; Šanda, R; Schneider, M; Šlechtová, V; Stoumboudi, M; Walter, S; Freyhof, J

    2014-11-01

    Incomplete knowledge of biodiversity remains a stumbling block for conservation planning and even occurs within globally important Biodiversity Hotspots (BH). Although technical advances have boosted the power of molecular biodiversity assessments, the link between DNA sequences and species and the analytics to discriminate entities remain crucial. Here, we present an analysis of the first DNA barcode library for the freshwater fish fauna of the Mediterranean BH (526 spp.), with virtually complete species coverage (498 spp., 98% extant species). In order to build an identification system supporting conservation, we compared species determination by taxonomists to multiple clustering analyses of DNA barcodes for 3165 specimens. The congruence of barcode clusters with morphological determination was strongly dependent on the method of cluster delineation, but was highest with the general mixed Yule-coalescent (GMYC) model-based approach (83% of all species recovered as GMYC entity). Overall, genetic morphological discontinuities suggest the existence of up to 64 previously unrecognized candidate species. We found reduced identification accuracy when using the entire DNA-barcode database, compared with analyses on databases for individual river catchments. This scale effect has important implications for barcoding assessments and suggests that fairly simple identification pipelines provide sufficient resolution in local applications. We calculated Evolutionarily Distinct and Globally Endangered scores in order to identify candidate species for conservation priority and argue that the evolutionary content of barcode data can be used to detect priority species for future IUCN assessments. We show that large-scale barcoding inventories of complex biotas are feasible and contribute directly to the evaluation of conservation priorities. © 2014 John Wiley & Sons Ltd.

  9. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi.

    PubMed

    Schoch, Conrad L; Seifert, Keith A; Huhndorf, Sabine; Robert, Vincent; Spouge, John L; Levesque, C André; Chen, Wen

    2012-04-17

    Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative protein-coding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter- and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.

  10. Molecular barcodes detect redundancy and contamination in hairpin-bisulfite PCR

    PubMed Central

    Miner, Brooks E.; Stöger, Reinhard J.; Burden, Alice F.; Laird, Charles D.; Hansen, R. Scott

    2004-01-01

    PCR amplification of limited amounts of DNA template carries an increased risk of product redundancy and contamination. We use molecular barcoding to label each genomic DNA template with an individual sequence tag prior to PCR amplification. In addition, we include molecular ‘batch-stamps’ that effectively label each genomic template with a sample ID and analysis date. This highly sensitive method identifies redundant and contaminant sequences and serves as a reliable method for positive identification of desired sequences; we can therefore capture accurately the genomic template diversity in the sample analyzed. Although our application described here involves the use of hairpin-bisulfite PCR for amplification of double-stranded DNA, the method can readily be adapted to single-strand PCR. Useful applications will include analyses of limited template DNA for biomedical, ancient DNA and forensic purposes. PMID:15459281

  11. Beyond sequencing: optical mapping of DNA in the age of nanotechnology and nanoscopy.

    PubMed

    Levy-Sakin, Michal; Ebenstein, Yuval

    2013-08-01

    Next generation sequencing (NGS) is revolutionizing all fields of biological research but it fails to extract the full range of information associated with genetic material. Optical mapping of DNA grants access to genetic and epigenetic information on individual DNA molecules up to ∼1 Mbp in length. Fluorescent labeling of specific sequence motifs, epigenetic marks and other genomic information on individual DNA molecules generates a high content optical barcode along the DNA. By stretching the DNA to a linear configuration this barcode may be directly visualized by fluorescence microscopy. We discuss the advances of these methods in light of recent developments in nano-fabrication and super-resolution optical imaging (nanoscopy) and review the latest achievements of optical mapping in the context of genomic analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Efficiency of ITS Sequences for DNA Barcoding in Passiflora (Passifloraceae)

    PubMed Central

    Giudicelli, Giovanna Câmara; Mäder, Geraldo; de Freitas, Loreta Brandão

    2015-01-01

    DNA barcoding is a technique for discriminating and identifying species using short, variable, and standardized DNA regions. Here, we tested for the first time the performance of plastid and nuclear regions as DNA barcodes in Passiflora. This genus is a largely variable, with more than 900 species of high ecological, commercial, and ornamental importance. We analyzed 1034 accessions of 222 species representing the four subgenera of Passiflora and evaluated the effectiveness of five plastid regions and three nuclear datasets currently employed as DNA barcodes in plants using barcoding gap, applied similarity-, and tree-based methods. The plastid regions were able to identify less than 45% of species, whereas the nuclear datasets were efficient for more than 50% using “best match” and “best close match” methods of TaxonDNA software. All subgenera presented higher interspecific pairwise distances and did not fully overlap with the intraspecific distance, and similarity-based methods showed better results than tree-based methods. The nuclear ribosomal internal transcribed spacer 1 (ITS1) region presented a higher discrimination power than the other datasets and also showed other desirable characteristics as a DNA barcode for this genus. Therefore, we suggest that this region should be used as a starting point to identify Passiflora species. PMID:25837628

  13. Role of DNA barcoding in marine biodiversity assessment and conservation: An update

    PubMed Central

    Trivedi, Subrata; Aloufi, Abdulhadi A.; Ansari, Abid A.; Ghosh, Sankar K.

    2015-01-01

    More than two third area of our planet is covered by oceans and assessment of marine biodiversity is a challenging task. With the increasing global population, there is a tendency to exploit marine resources for food, energy and other requirements. This puts pressure on the fragile marine environment and necessitates sustainable conservation efforts. Marine species identification using traditional taxonomical methods is often burdened with taxonomic controversies. Here we discuss the comparatively new concept of DNA barcoding and its significance in marine perspective. This molecular technique can be useful in the assessment of cryptic species which is widespread in marine environment and linking the different life cycle stages to the adult which is difficult to accomplish in the marine ecosystem. Other advantages of DNA barcoding include authentication and safety assessment of seafood, wildlife forensics, conservation genetics and detection of invasive alien species (IAS). Global DNA barcoding efforts in the marine habitat include MarBOL, CeDAMar, CMarZ, SHARK-BOL, etc. An overview on DNA barcoding of different marine groups ranging from the microbes to mammals is revealed. In conjugation with newer and faster techniques like high-throughput sequencing, DNA barcoding can serve as an effective modern tool in marine biodiversity assessment and conservation. PMID:26980996

  14. DNA Barcoding Survey of Anurans across the Eastern Cordillera of Colombia and the Impact of the Andes on Cryptic Diversity

    PubMed Central

    Guarnizo, Carlos E.; Paz, Andrea; Muñoz-Ortiz, Astrid; Flechas, Sandra V.; Méndez-Narváez, Javier; Crawford, Andrew J.

    2015-01-01

    Colombia hosts the second highest amphibian species diversity on Earth, yet its fauna remains poorly studied, especially using molecular genetic techniques. We present the results of the first wide-scale DNA barcoding survey of anurans of Colombia, focusing on a transect across the Eastern Cordillera. We surveyed 10 sites between the Magdalena Valley to the west and the eastern foothills of the Eastern Cordillera, sequencing portions of the mitochondrial 16S ribosomal RNA and cytochrome oxidase subunit 1 (CO1) genes for 235 individuals from 52 nominal species. We applied two barcode algorithms, Automatic Barcode Gap Discovery and Refined Single Linkage Analysis, to estimate the number of clusters or “unconfirmed candidate species” supported by DNA barcode data. Our survey included ~7% of the anuran species known from Colombia. While barcoding algorithms differed slightly in the number of clusters identified, between three and ten nominal species may be obscuring candidate species (in some cases, more than one cryptic species per nominal species). Our data suggest that the high elevations of the Eastern Cordillera and the low elevations of the Chicamocha canyon acted as geographic barriers in at least seven nominal species, promoting strong genetic divergences between populations associated with the Eastern Cordillera. PMID:26000447

  15. Ultra-barcoding in cacao (Theobroma spp.; malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA

    USDA-ARS?s Scientific Manuscript database

    High-throughput next-generation sequencing was used to scan the genome and generate reliable sequence of high copy number regions. Using this method, we examined whole plastid genomes as well as nearly 6000 bases of nuclear ribosomal DNA sequences for nine genotypes of Theobroma cacao and an indivi...

  16. First Molecular Identification and Phylogeny of Moroccan Anopheles sergentii (Diptera: Culicidae) Based on Second Internal Transcribed Spencer (ITS2) and Cytochrome c Oxidase I (COI) Sequences.

    PubMed

    Benabdelkrim Filali, Oumama; Kabine, Mostafa; El Hamouchi, Adil; Lemrani, Meryem; Debboun, Mustapha; Sarih, M'hammed

    2018-06-05

    Anopheles sergentii known as the "oasis vector" or the "desert malaria vector" is considered the main vector of malaria in the southern parts of Morocco. Its presence in Morocco is confirmed for the first time through sequencing of mitochondrial DNA (mDNA) cytochrome c oxidase subunit I (COI) barcodes and nuclear ribosomal DNA (rDNA) second internal transcribed spacer (ITS2) sequences and direct comparison with specimens of A. sergentii of other countries. The DNA barcodes (n = 39) obtained from A. sergentii collected in 2015 and 2016 showed more diversity with 10 haplotypes, compared with 3 haplotypes obtained from ITS2 sequences (n = 59). Moreover, the comparison using the ITS2 sequences showed closer evolutionary relationship between the Moroccan and Egyptian strains than the Iranian strain. Nevertheless, genetic differences due to geographical segregation were also observed. This study provides the first report on the sequence of rDNA-ITS2 and mtDNA COI, which could be used to better understand the biodiversity of A. sergentii.

  17. Spiders (Araneae) of Churchill, Manitoba: DNA barcodes and morphology reveal high species diversity and new Canadian records.

    PubMed

    Blagoev, Gergin A; Nikolova, Nadya I; Sobel, Crystal N; Hebert, Paul D N; Adamowicz, Sarah J

    2013-11-26

    Arctic ecosystems, especially those near transition zones, are expected to be strongly impacted by climate change. Because it is positioned on the ecotone between tundra and boreal forest, the Churchill area is a strategic locality for the analysis of shifts in faunal composition. This fact has motivated the effort to develop a comprehensive biodiversity inventory for the Churchill region by coupling DNA barcoding with morphological studies. The present study represents one element of this effort; it focuses on analysis of the spider fauna at Churchill. 198 species were detected among 2704 spiders analyzed, tripling the count for the Churchill region. Estimates of overall diversity suggest that another 10-20 species await detection. Most species displayed little intraspecific sequence variation (maximum <1%) in the barcode region of the cytochrome c oxidase subunit I (COI) gene, but four species showed considerably higher values (maximum = 4.1-6.2%), suggesting cryptic species. All recognized species possessed a distinct haplotype array at COI with nearest-neighbour interspecific distances averaging 8.57%. Three species new to Canada were detected: Robertus lyrifer (Theridiidae), Baryphyma trifrons (Linyphiidae), and Satilatlas monticola (Linyphiidae). The first two species may represent human-mediated introductions linked to the port in Churchill, but the other species represents a range extension from the USA. The first description of the female of S. monticola was also presented. As well, one probable new species of Alopecosa (Lycosidae) was recognized. This study provides the first comprehensive DNA barcode reference library for the spider fauna of any region. Few cryptic species of spiders were detected, a result contrasting with the prevalence of undescribed species in several other terrestrial arthropod groups at Churchill. Because most (97.5%) sequence clusters at COI corresponded with a named taxon, DNA barcoding reliably identifies spiders in the Churchill fauna. The capacity of DNA barcoding to enable the identification of otherwise taxonomically ambiguous specimens (juveniles, females) also represents a major advance for future monitoring efforts on this group.

  18. DNA barcoding of human-biting black flies (Diptera: Simuliidae) in Thailand.

    PubMed

    Pramual, Pairot; Thaijarern, Jiraporn; Wongpakam, Komgrit

    2016-12-01

    Black flies (Diptera: Simuliidae) are important insect vectors and pests of humans and animals. Accurate identification, therefore, is important for control and management. In this study, we used mitochondrial cytochrome oxidase I (COI) barcoding sequences to test the efficiency of species identification for the human-biting black flies in Thailand. We used human-biting specimens because they enabled us to link information with previous studies involving the immature stages. Three black fly taxa, Simulium nodosum, S. nigrogilvum and S. doipuiense complex, were collected. The S. doipuiense complex was confirmed for the first time as having human-biting habits. The COI sequences revealed considerable genetic diversity in all three species. Comparisons to a COI sequence library of black flies in Thailand and in a public database indicated a high efficiency for specimen identification for S. nodosum and S. nigrogilvum, but this method was not successful for the S. doipuiense complex. Phylogenetic analyses revealed two divergent lineages in the S. doipuiense complex. Human-biting specimens formed a separate clade from other members of this complex. The results are consistent with the Barcoding Index Number System (BINs) analysis that found six BINs in the S. doipuiense complex. Further taxonomic work is needed to clarify the species status of these human-biting specimens. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Development and application of a recombination-based library versus library high- throughput yeast two-hybrid (RLL-Y2H) screening system.

    PubMed

    Yang, Fang; Lei, Yingying; Zhou, Meiling; Yao, Qili; Han, Yichao; Wu, Xiang; Zhong, Wanshun; Zhu, Chenghang; Xu, Weize; Tao, Ran; Chen, Xi; Lin, Da; Rahman, Khaista; Tyagi, Rohit; Habib, Zeshan; Xiao, Shaobo; Wang, Dang; Yu, Yang; Chen, Huanchun; Fu, Zhenfang; Cao, Gang

    2018-02-16

    Protein-protein interaction (PPI) network maintains proper function of all organisms. Simple high-throughput technologies are desperately needed to delineate the landscape of PPI networks. While recent state-of-the-art yeast two-hybrid (Y2H) systems improved screening efficiency, either individual colony isolation, library preparation arrays, gene barcoding or massive sequencing are still required. Here, we developed a recombination-based 'library vs library' Y2H system (RLL-Y2H), by which multi-library screening can be accomplished in a single pool without any individual treatment. This system is based on the phiC31 integrase-mediated integration between bait and prey plasmids. The integrated fragments were digested by MmeI and subjected to deep sequencing to decode the interaction matrix. We applied this system to decipher the trans-kingdom interactome between Mycobacterium tuberculosis and host cells and further identified Rv2427c interfering with the phagosome-lysosome fusion. This concept can also be applied to other systems to screen protein-RNA and protein-DNA interactions and delineate signaling landscape in cells.

  20. Nonlinear projection methods for visualizing Barcode data and application on two data sets.

    PubMed

    Olteanu, Madalina; Nicolas, Violaine; Schaeffer, Brigitte; Denys, Christiane; Missoup, Alain-Didier; Kennis, Jan; Larédo, Catherine

    2013-11-01

    Developing tools for visualizing DNA sequences is an important issue in the Barcoding context. Visualizing Barcode data can be put in a purely statistical context, unsupervised learning. Clustering methods combined with projection methods have two closely linked objectives, visualizing and finding structure in the data. Multidimensional scaling (MDS) and Self-organizing maps (SOM) are unsupervised statistical tools for data visualization. Both algorithms map data onto a lower dimensional manifold: MDS looks for a projection that best preserves pairwise distances while SOM preserves the topology of the data. Both algorithms were initially developed for Euclidean data and the conditions necessary to their good implementation were not satisfied for Barcode data. We developed a workflow consisting in four steps: collapse data into distinct sequences; compute a dissimilarity matrix; run a modified version of SOM for dissimilarity matrices to structure the data and reduce dimensionality; project the results using MDS. This methodology was applied to Astraptes fulgerator and Hylomyscus, an African rodent with debated taxonomy. We obtained very good results for both data sets. The results were robust against unbalanced species. All the species in Astraptes were well displayed in very distinct groups in the various visualizations, except for LOHAMP and FABOV that were mixed up. For Hylomyscus, our findings were consistent with known species, confirmed the existence of four unnamed taxa and suggested the existence of potentially new species. © 2013 John Wiley & Sons Ltd.

  1. A DNA Barcoding Approach to Characterize Pollen Collected by Honeybees

    PubMed Central

    Bruni, Ilaria; Scaccabarozzi, Daniela; Sandionigi, Anna; Barbuto, Michela; Casiraghi, Maurizio; Labra, Massimo

    2014-01-01

    In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy). A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study) was assembled. The database was used to identify pollen collected from the hives. Fifty-two plant species were identified at the molecular level. Results suggested rbcL alone could not distinguish among congeneric plants; however, psbA-trnH identified most of the pollen samples at the species level. Substantial variability in pollen composition was observed between the highest elevation locality (Alpe Moconodeno), characterized by arid grasslands and a rocky substrate, and the other two sites (Cornisella and Ortanella) at lower altitudes. Pollen from Ortanella and Cornisella showed the presence of typical deciduous forest species; however in samples collected at Ortanella, pollen of the invasive Lonicera japonica, and the ornamental Pelargonium x hortorum were observed. Our results indicated pollen composition was largely influenced by floristic local biodiversity, plant phenology, and the presence of alien flowering species. Therefore, pollen molecular characterization based on DNA barcoding might serve useful to beekeepers in obtaining honeybee products with specific nutritional or therapeutic characteristics desired by food market demands. PMID:25296114

  2. Identification of Uvaria sp by barcoding coupled with high-resolution melting analysis (Bar-HRM).

    PubMed

    Osathanunkul, M; Madesis, P; Ounjai, S; Pumiputavon, K; Somboonchai, R; Lithanatudom, P; Chaowasku, T; Wipasa, J; Suwannapoom, C

    2016-01-13

    DNA barcoding, which was developed about a decade ago, relies on short, standardized regions of the genome to identify plant and animal species. This method can be used to not only identify known species but also to discover novel ones. Numerous sequences are stored in online databases worldwide. One of the ways to save cost and time (by omitting the sequencing step) in species identification is to use available barcode data to design optimized primers for further analysis, such as high-resolution melting analysis (HRM). This study aimed to determine the effectiveness of the hybrid method Bar-HRM (DNA barcoding combined with HRM) to identify species that share similar external morphological features, rather than conduct traditional taxonomic identification that require major parts (leaf, flower, fruit) of the specimens. The specimens used for testing were those, which could not be identified at the species level and could either be Uvaria longipes or Uvaria wrayias, indicated by morphological identification. Primer pairs derived from chloroplast regions (matK, psbA-trnH, rbcL, and trnL) were used in the Bar-HRM. The results obtained from psbA-trnH primers were good enough to help in identifying the specimen while the rest were not. Bar-HRM analysis was proven to be a fast and cost-effective method for plant species identification.

  3. Fungal pathogen (mis-) identifications: a case study with DNA barcodes on Melampsora rusts of aspen and white poplar.

    PubMed

    Feau, Nicolas; Vialle, Agathe; Allaire, Mathieu; Tanguay, Philippe; Joly, David L; Frey, Pascal; Callan, Brenda E; Hamelin, Richard C

    2009-01-01

    Wide variation and overlap in morphological characters have led to confusion in species identification within the fungal rust genus Melampsora. The Melampsora species with uredinial-telial stages on white poplar and aspens are especially prone to misidentification. This group includes the Melampsora populnea species complex and the highly destructive pine twisting rust, Melampsora pinitorqua, which alternates between hosts in Populus section Populus and Pinus. Our objective was to compare morphologically based identification to genetic material extracted from Melampsora species pathogenic to aspen and white poplar. We compared morphometric traits and DNA barcodes obtained from internal transcribed spacer (ITS), large ribosomal RNA subunit (28S), and mitochondrial cytochrome oxidase 1 (CO1) sequences to delimit within this taxonomically difficult group. Eight different Melampsora species were initially defined based on host specificity and morphometric data. DNA barcodes were then overlaid on these initial species definitions. The DNA barcodes, specifically those defined on ITS and 28S sequences, provided a highly accurate means of identifying and resolving Melampsora taxa. We highlighted species misidentification in specimens from Canadian herbaria related to either Melampsora medusae f. sp. tremuloidae or Melampsora aecidioides. Finally, we evidenced that the north-American species found on Populus alba, M. aecidioides is closely related but distinct from the four species of the M. populnea complex (Melampsora larici-tremulae, Melampsora magnusiana, Melampsora pinitorqua, and Melampsora rostrupii) found in Eurasia.

  4. Systematic Validation and Atomic Force Microscopy of Non-Covalent Short Oligonucleotide Barcode Microarrays

    PubMed Central

    Cook, Michael A.; Chan, Chi-Kin; Jorgensen, Paul; Ketela, Troy; So, Daniel; Tyers, Mike; Ho, Chi-Yip

    2008-01-01

    Background Molecular barcode arrays provide a powerful means to analyze cellular phenotypes in parallel through detection of short (20–60 base) unique sequence tags, or “barcodes”, associated with each strain or clone in a collection. However, costs of current methods for microarray construction, whether by in situ oligonucleotide synthesis or ex situ coupling of modified oligonucleotides to the slide surface are often prohibitive to large-scale analyses. Methodology/Principal Findings Here we demonstrate that unmodified 20mer oligonucleotide probes printed on conventional surfaces show comparable hybridization signals to covalently linked 5′-amino-modified probes. As a test case, we undertook systematic cell size analysis of the budding yeast Saccharomyces cerevisiae genome-wide deletion collection by size separation of the deletion pool followed by determination of strain abundance in size fractions by barcode arrays. We demonstrate that the properties of a 13K unique feature spotted 20 mer oligonucleotide barcode microarray compare favorably with an analogous covalently-linked oligonucleotide array. Further, cell size profiles obtained with the size selection/barcode array approach recapitulate previous cell size measurements of individual deletion strains. Finally, through atomic force microscopy (AFM), we characterize the mechanism of hybridization to unmodified barcode probes on the slide surface. Conclusions/Significance These studies push the lower limit of probe size in genome-scale unmodified oligonucleotide microarray construction and demonstrate a versatile, cost-effective and reliable method for molecular barcode analysis. PMID:18253494

  5. Improving the Conservation of Mediterranean Chondrichthyans: The ELASMOMED DNA Barcode Reference Library

    PubMed Central

    Arculeo, Marco; Bonello, Juan J.; Bonnici, Leanne; Cannas, Rita; Carbonara, Pierluigi; Cau, Alessandro; Charilaou, Charis; El Ouamari, Najib; Fiorentino, Fabio; Follesa, Maria Cristina; Garofalo, Germana; Golani, Daniel; Guarniero, Ilaria; Hanner, Robert; Hemida, Farid; Kada, Omar; Lo Brutto, Sabrina; Mancusi, Cecilia; Morey, Gabriel; Schembri, Patrick J.; Serena, Fabrizio; Sion, Letizia; Stagioni, Marco; Tursi, Angelo; Vrgoc, Nedo; Steinke, Dirk; Tinti, Fausto

    2017-01-01

    Cartilaginous fish are particularly vulnerable to anthropogenic stressors and environmental change because of their K-selected reproductive strategy. Accurate data from scientific surveys and landings are essential to assess conservation status and to develop robust protection and management plans. Currently available data are often incomplete or incorrect as a result of inaccurate species identifications, due to a high level of morphological stasis, especially among closely related taxa. Moreover, several diagnostic characters clearly visible in adult specimens are less evident in juveniles. Here we present results generated by the ELASMOMED Consortium, a regional network aiming to sample and DNA-barcode the Mediterranean Chondrichthyans with the ultimate goal to provide a comprehensive DNA barcode reference library. This library will support and improve the molecular taxonomy of this group and the effectiveness of management and conservation measures. We successfully barcoded 882 individuals belonging to 42 species (17 sharks, 24 batoids and one chimaera), including four endemic and several threatened ones. Morphological misidentifications were found across most orders, further confirming the need for a comprehensive DNA barcoding library as a valuable tool for the reliable identification of specimens in support of taxonomist who are reviewing current identification keys. Despite low intraspecific variation among their barcode sequences and reduced samples size, five species showed preliminary evidence of phylogeographic structure. Overall, the ELASMOMED initiative further emphasizes the key role accurate DNA barcoding libraries play in establishing reliable diagnostic species specific features in otherwise taxonomically problematic groups for biodiversity management and conservation actions. PMID:28107413

  6. Developing diagnostic SNP panels for the identification of true fruit flies (Diptera: Tephritidae) within the limits of COI-based species delimitation

    PubMed Central

    2013-01-01

    Background Rapid and reliable identification of quarantine pests is essential for plant inspection services to prevent introduction of invasive species. For insects, this may be a serious problem when dealing with morphologically similar cryptic species complexes and early developmental stages that lack distinctive characters useful for taxonomic identification. DNA based barcoding could solve many of these problems. The standard barcode fragment, an approx. 650 base pairs long sequence of the 5′end of the mitochondrial cytochrome oxidase I (COI), enables differentiation of a very wide range of arthropods. However, problems remain in some taxa, such as Tephritidae, where recent genetic differentiation among some of the described species hinders accurate molecular discrimination. Results In order to explore the full species discrimination potential of COI, we sequenced the barcoding region of the COI gene of a range of economically important Tephritid species and complemented these data with all GenBank and BOLD entries for the systematic group available as of January 2012. We explored the limits of species delimitation of this barcode fragment among 193 putative Tephritid species and established operational taxonomic units (OTUs), between which discrimination is reliably possible. Furthermore, to enable future development of rapid diagnostic assays based on this sequence information, we characterized all single nucleotide polymorphisms (SNPs) and established “near-minimal” sets of SNPs that differentiate among all included OTUs with at least three and four SNPs, respectively. Conclusions We found that although several species cannot be differentiated based on the genetic diversity observed in COI and hence form composite OTUs, 85% of all OTUs correspond to described species. Because our SNP panels are developed based on all currently available sequence information and rely on a minimal pairwise difference of three SNPs, they are highly reliable and hence represent an important resource for developing taxon-specific diagnostic assays. For selected cases, possible explanations that may cause composite OTUs are discussed. PMID:23718854

  7. Scaling up the 454 Titanium Library Construction and Pooling of Barcoded Libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phung, Wilson; Hack, Christopher; Shapiro, Harris

    2009-03-23

    We have been developing a high throughput 454 library construction process at the Joint Genome Institute to meet the needs of de novo sequencing a large number of microbial and eukaryote genomes, EST, and metagenome projects. We have been focusing efforts in three areas: (1) modifying the current process to allow the construction of 454 standard libraries on a 96-well format; (2) developing a robotic platform to perform the 454 library construction; and (3) designing molecular barcodes to allow pooling and sorting of many different samples. In the development of a high throughput process to scale up the number ofmore » libraries by adapting the process to a 96-well plate format, the key process change involves the replacement of gel electrophoresis for size selection with Solid Phase Reversible Immobilization (SPRI) beads. Although the standard deviation of the insert sizes increases, the overall quality sequence and distribution of the reads in the genome has not changed. The manual process of constructing 454 shotgun libraries on 96-well plates is a time-consuming, labor-intensive, and ergonomically hazardous process; we have been experimenting to program a BioMek robot to perform the library construction. This will not only enable library construction to be completed in a single day, but will also minimize any ergonomic risk. In addition, we have implemented a set of molecular barcodes (AKA Multiple Identifiers or MID) and a pooling process that allows us to sequence many targets simultaneously. Here we will present the testing of pooling a set of selected fosmids derived from the endomycorrhizal fungus Glomus intraradices. By combining the robotic library construction process and the use of molecular barcodes, it is now possible to sequence hundreds of fosmids that represent a minimal tiling path of this genome. Here we present the progress and the challenges of developing these scaled-up processes.« less

  8. DNA Barcodes of Asian Houbara Bustard (Chlamydotis undulata macqueenii)

    PubMed Central

    Arif, Ibrahim A.; Khan, Haseeb A.; Williams, Joseph B.; Shobrak, Mohammad; Arif, Waad I.

    2012-01-01

    Populations of Houbara Bustards have dramatically declined in recent years. Captive breeding and reintroduction programs have had limited success in reviving population numbers and thus new technological solutions involving molecular methods are essential for the long term survival of this species. In this study, we sequenced the 694 bp segment of COI gene of the four specimens of Asian Houbara Bustard (Chlamydotis undulata macqueenii). We also compared these sequences with earlier published barcodes of 11 individuals comprising different families of the orders Gruiformes, Ciconiiformes, Podicipediformes and Crocodylia (out group). The pair-wise sequence comparison showed a total of 254 variable sites across all the 15 sequences from different taxa. Three of the four specimens of Houbara Bustard had an identical sequence of COI gene and one individual showed a single nucleotide difference (G > A transition at position 83). Within the bustard family (Otididae), comparison among the three species (Asian Houbara Bustard, Great Bustard (Otis tarda) and the Little Bustard (Tetrax tetrax)), representing three different genera, showed 116 variable sites. For another family (Rallidae), the intra-family variable sites among the individuals of four different genera were found to be 146. The COI genetic distances among the 15 individuals varied from 0.000 to 0.431. Phylogenetic analysis using 619 bp nucleotide segment of COI clearly discriminated all the species representing different genera, families and orders. All the four specimens of Houbara Bustard formed a single clade and are clearly separated from other two individuals of the same family (Otis tarda and Tetrax tetrax). The nucleotide sequence of partial segment of COI gene effectively discriminated the closely related species. This is the first study reporting the barcodes of Houbara Bustard and would be helpful in future molecular studies, particularly for the conservation of this threatened bird in Saudi Arabia. PMID:22408462

  9. Half of the European fruit fly species barcoded (Diptera, Tephritidae); a feasibility test for molecular identification

    PubMed Central

    Smit, John; Reijnen, Bastian; Stokvis, Frank

    2013-01-01

    Abstract A feasibility test of molecular identification of European fruit flies (Diptera: Tephritidae) based on COI barcode sequences has been executed. A dataset containing 555 sequences of 135 ingroup species from three subfamilies and 42 genera and one single outgroup species has been analysed. 73.3% of all included species could be identified based on their COI barcode gene, based on similarity and distances. The low success rate is caused by singletons as well as some problematic groups: several species groups within the genus Terellia and especially the genus Urophora. With slightly more than 100 sequences – almost 20% of the total – this genus alone constitutes the larger part of the failure for molecular identification for this dataset. Deleting the singletons and Urophora results in a success-rate of 87.1% of all queries and 93.23% of the not discarded queries as correctly identified. Urophora is of special interest due to its economic importance as beneficial species for weed control, therefore it is desirable to have alternative markers for molecular identification. We demonstrate that the success of DNA barcoding for identification purposes strongly depends on the contents of the database used to BLAST against. Especially the necessity of including multiple specimens per species of geographically distinct populations and different ecologies for the understanding of the intra- versus interspecific variation is demonstrated. Furthermore thresholds and the distinction between true and false positives and negatives should not only be used to increase the reliability of the success of molecular identification but also to point out problematic groups, which should then be flagged in the reference database suggesting alternative methods for identification. PMID:24453563

  10. Barcoding of Central European Cryptops centipedes reveals large interspecific distances with ghost lineages and new species records from Germany and Austria (Chilopoda, Scolopendromorpha)

    PubMed Central

    Wesener, Thomas; Voigtländer, Karin; Decker, Peter; Oeyen, Jan Philip; Spelda, Jörg

    2016-01-01

    Abstract In order to evaluate the diversity of Central European Myriapoda species in the course of the German Barcode of Life project, 61 cytochrome c oxidase I sequences of the genus Cryptops Leach, 1815, a centipede genus of the order Scolopendromorpha, were successfully sequenced and analyzed. One sequence of Scolopendra cingulata Latreille, 1829 and one of Theatops erythrocephalus Koch, 1847 were utilized as outgroups. Instead of the expected three species (Cryptops parisi Brolemann, 1920; Cryptops anomalans Newport, 1844; Cryptops hortensis (Donovan, 1810)), analyzed samples included eight to ten species. Of the eight clearly distinguishable morphospecies of Cryptops, five (Cryptops parisi; Cryptops croaticus Verhoeff, 1931; Cryptops anomalans; Cryptops umbricus Verhoeff, 1931; Cryptops hortensis) could be tentatively determined to species level, while a further three remain undetermined (one each from Germany, Austria and Croatia, and Slovenia). Cryptops croaticus is recorded for the first time from Austria. A single specimen (previously suspected as being Cryptops anomalans), was redetermined as Cryptops umbricus Verhoeff, 1931, a first record for Germany. All analyzed Cryptops species are monophyletic and show large genetic distances from one another (p-distances of 13.7–22.2%). Clear barcoding gaps are present in lineages represented by >10 specimens, highlighting the usefulness of the barcoding method for evaluating species diversity in centipedes. German specimens formally assigned to Cryptops parisi are divided into three clades differing by 8.4–11.3% from one another; their intra-lineage genetic distance is much lower at 0–1.1%. The three clades are geographically separate, indicating that they might represent distinct species. Aside from Cryptops parisi, intraspecific distances of Cryptops spp. in Central Europe are low (<3.3%). PMID:27081331

  11. Molecular identification and phylogenetic study of Demodex caprae.

    PubMed

    Zhao, Ya-E; Cheng, Juan; Hu, Li; Ma, Jun-Xian

    2014-10-01

    The DNA barcode has been widely used in species identification and phylogenetic analysis since 2003, but there have been no reports in Demodex. In this study, to obtain an appropriate DNA barcode for Demodex, molecular identification of Demodex caprae based on mitochondrial cox1 was conducted. Firstly, individual adults and eggs of D. caprae were obtained for genomic DNA (gDNA) extraction; Secondly, mitochondrial cox1 fragment was amplified, cloned, and sequenced; Thirdly, cox1 fragments of D. caprae were aligned with those of other Demodex retrieved from GenBank; Finally, the intra- and inter-specific divergences were computed and the phylogenetic trees were reconstructed to analyze phylogenetic relationship in Demodex. Results obtained from seven 429-bp fragments of D. caprae showed that sequence identities were above 99.1% among three adults and four eggs. The intraspecific divergences in D. caprae, Demodex folliculorum, Demodex brevis, and Demodex canis were 0.0-0.9, 0.5-0.9, 0.0-0.2, and 0.0-0.5%, respectively, while the interspecific divergences between D. caprae and D. folliculorum, D. canis, and D. brevis were 20.3-20.9, 21.8-23.0, and 25.0-25.3, respectively. The interspecific divergences were 10 times higher than intraspecific ones, indicating considerable barcoding gap. Furthermore, the phylogenetic trees showed that four Demodex species gathered separately, representing independent species; and Demodex folliculorum gathered with canine Demodex, D. caprae, and D. brevis in sequence. In conclusion, the selected 429-bp mitochondrial cox1 gene is an appropriate DNA barcode for molecular classification, identification, and phylogenetic analysis of Demodex. D. caprae is an independent species and D. folliculorum is closer to D. canis than to D. caprae or D. brevis.

  12. Identification and reassessment of the specific status of some tropical freshwater midges (Diptera: Chironomidae) using DNA barcode data.

    PubMed

    Pramual, Pairot; Simwisat, Kusumart; Martin, Jon

    2016-01-28

    Chironomidae are a highly diverse group of insects. Members of this family are often included in programs monitoring the health of freshwater ecosystems. However, a difficulty in morphological identification, particularly of larval stages is the major obstacle to this application. In this study, we tested the efficiency of mitochondrial cytochrome c oxidase I (COI) sequences as the DNA barcoding region for species identification of Chironomidae in Thailand. The results revealed 14 species with a high success rate (>90%) for the correct species identification, which suggests the potential usefulness of the technique. However, some morphological species possess high (>3%) intraspecific genetic divergence that suggests these species could be species complexes and need further morphological or cytological examination. Sequence-based species delimitation analyses indicated that most specimens identified as Chironomus kiiensis, Tokunaga 1936, in Japan are conspecific with C. striatipennis, Kieffer 1912, although a small number form a separate cluster. A review of the descriptions of Kiefferulus tainanus (Kieffer 1912) and its junior synonym, K. biroi (Kieffer 1918), following our results, suggests that this synonymy is probably not correct and that K. tainanus occurs in Japan, China and Singapore, while K. biroi occurs in India and Thailand. Our results therefore revealed the usefulness of DNA barcoding for correct species identification of Chironomidae, particularly the immature stages. In addition, DNA barcodes could also uncover hidden diversity that can guide further taxonomic study, and offer a more efficient way to identify species than morphological analysis where large numbers of specimens are involved, provided the identifications of DNA barcodes in the databases are correct. Our studies indicate that this is not the case, and we identify cases of misidentifications for C. flaviplumus, Tokunaga 1940 and K. tainanus.

  13. Complex species status for extinct moa (Aves: Dinornithiformes) from the genus Euryapteryx.

    PubMed

    Huynen, Leon; Lambert, David M

    2014-01-01

    The exact species status of New Zealand's extinct moa remains unknown. In particular, moa belonging to the genus Euryapteryx have been difficult to classify. We use the DNA barcoding sequence on a range of Euryapteryx samples in an attempt to resolve the species status for this genus. We obtained mitochondrial control region and the barcoding region from Cytochrome Oxidase Subunit I (COI) from a number of new moa samples and use available sequences from previous moa phylogenies and eggshell data to try and clarify the species status of Euryapteryx. Using the COI barcoding region we show that species status in Euryapteryx is complex with no clear separation between various individuals. Eggshell, soil, and bone data suggests that a Euryapteryx subspecies likely exists on New Zealand's North Island and can be characterized by a single mitochondrial control region SNP. COI divergences between Euryapteryx individuals from the south of New Zealand's South Island and those from the Far North of the North Island exceed 1.6% and are likely to represent separate species. Individuals from other areas of New Zealand were unable to be clearly separated based on COI differences possibly as a result of repeated hybridisation events. Despite the accuracy of the COI barcoding region to determine species status in birds, including that for the other moa genera, for moa from the genus Euryapteryx, COI barcoding fails to provide a clear result, possibly as a consequence of repeated hybridisation events between these moa. A single control region SNP was identified however that segregates with the two general morphological variants determined for Euryapteryx; a smaller subspecies restricted to the North Island of New Zealand, and a larger subspecies, found on both New Zealand's North and South Island.

  14. Quantitative Experimental Determination of Primer-Dimer Formation Risk by Free-Solution Conjugate Electrophoresis

    PubMed Central

    Desmarais, Samantha M.; Leitner, Thomas; Barron, Annelise E.

    2012-01-01

    DNA barcodes are short, unique ssDNA primers that “mark” individual biomolecules. To gain better understanding of biophysical parameters constraining primer-dimer formation between primers that incorporate barcode sequences, we have developed a capillary electrophoresis method that utilizes drag-tag-DNA conjugates to quantify dimerization risk between primer-barcode pairs. Results obtained with this unique free-solution conjugate electrophoresis (FSCE) approach are useful as quantitatively precise input data to parameterize computation models of dimerization risk. A set of fluorescently labeled, model primer-barcode conjugates were designed with complementary regions of differing lengths to quantify heterodimerization as a function of temperature. Primer-dimer cases comprised two 30-mer primers, one of which was covalently conjugated to a lab-made, chemically synthesized poly-N-methoxyethylglycine drag-tag, which reduced electrophoretic mobility of ssDNA to distinguish it from ds primer-dimers. The drag-tags also provided a shift in mobility for the dsDNA species, which allowed us to quantitate primer-dimer formation. In the experimental studies, pairs of oligonucleotide primer-barcodes with fully or partially complementary sequences were annealed, and then separated by free-solution conjugate CE at different temperatures, to assess effects on primer-dimer formation. When less than 30 out of 30 basepairs were bonded, dimerization was inversely correlated to temperature. Dimerization occurred when more than 15 consecutive basepairs formed, yet non-consecutive basepairs did not create stable dimers even when 20 out of 30 possible basepairs bonded. The use of free-solution electrophoresis in combination with a peptoid drag-tag and different fluorophores enabled precise separation of short DNA fragments to establish a new mobility shift assay for detection of primer-dimer formation. PMID:22331820

  15. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells.

    PubMed

    Klein, Allon M; Mazutis, Linas; Akartuna, Ilke; Tallapragada, Naren; Veres, Adrian; Li, Victor; Peshkin, Leonid; Weitz, David A; Kirschner, Marc W

    2015-05-21

    It has long been the dream of biologists to map gene expression at the single-cell level. With such data one might track heterogeneous cell sub-populations, and infer regulatory relationships between genes and pathways. Recently, RNA sequencing has achieved single-cell resolution. What is limiting is an effective way to routinely isolate and process large numbers of individual cells for quantitative in-depth sequencing. We have developed a high-throughput droplet-microfluidic approach for barcoding the RNA from thousands of individual cells for subsequent analysis by next-generation sequencing. The method shows a surprisingly low noise profile and is readily adaptable to other sequencing-based assays. We analyzed mouse embryonic stem cells, revealing in detail the population structure and the heterogeneous onset of differentiation after leukemia inhibitory factor (LIF) withdrawal. The reproducibility of these high-throughput single-cell data allowed us to deconstruct cell populations and infer gene expression relationships. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. De novo assembly and next-generation sequencing to analyse full-length gene variants from codon-barcoded libraries.

    PubMed

    Cho, Namjin; Hwang, Byungjin; Yoon, Jung-ki; Park, Sangun; Lee, Joongoo; Seo, Han Na; Lee, Jeewon; Huh, Sunghoon; Chung, Jinsoo; Bang, Duhee

    2015-09-21

    Interpreting epistatic interactions is crucial for understanding evolutionary dynamics of complex genetic systems and unveiling structure and function of genetic pathways. Although high resolution mapping of en masse variant libraries renders molecular biologists to address genotype-phenotype relationships, long-read sequencing technology remains indispensable to assess functional relationship between mutations that lie far apart. Here, we introduce JigsawSeq for multiplexed sequence identification of pooled gene variant libraries by combining a codon-based molecular barcoding strategy and de novo assembly of short-read data. We first validate JigsawSeq on small sub-pools and observed high precision and recall at various experimental settings. With extensive simulations, we then apply JigsawSeq to large-scale gene variant libraries to show that our method can be reliably scaled using next-generation sequencing. JigsawSeq may serve as a rapid screening tool for functional genomics and offer the opportunity to explore evolutionary trajectories of protein variants.

  17. Assessment of three plastid DNA barcode markers for identification of Clinacanthus nutans (Acanthaceae).

    PubMed

    Ismail, Noor Zafirah; Arsad, Hasni; Samian, Mohammed Razip; Hamdan, Mohammad Razak; Othman, Ahmad Sofiman

    2018-01-01

    This study was conducted to determine the feasibility of using three plastid DNA regions ( matK , trnH - psbA , and rbcL ) as DNA barcodes to identify the medicinal plant Clinacanthus nutans . In this study, C. nutans was collected at several different locations. Total genomic DNA was extracted, amplified by polymerase chain reaction (PCR), and sequenced using matK , trnH - psbA , and rbcL , primers. DNA sequences generated from PCR were submitted to the National Center for Biotechnology Information's (NCBI) GenBank. Identification of C. nutans was carried out using NCBI's Basic Local Alignment Search Tool (BLAST). The rbcL and trnH - psbA regions successfully identified C. nutans with sequencing rates of 100% through BLAST identification. Molecular Evolutionary Genetics Analysis (MEGA) 6.0 was used to analyze interspecific and intraspecific divergence of plastid DNA sequences. rbcL and matK exhibited the lowest average interspecific distance (0.0487 and 0.0963, respectively), whereas trnH - psbA exhibited the highest average interspecific distance (0.2029). The R package Spider revealed that trnH - psbA correctly identified Barcode of Life Data System (BOLD) 96%, best close match 79%, and near neighbor 100% of the species, compared to matK (BOLD 72%; best close match 64%; near neighbor 78%) and rbcL (BOLD 77%; best close match 62%; near neighbor 88%). These results indicate that trnH - psbA is very effective at identifying C. nutans , as it performed well in discriminating species in Acanthaceae.

  18. Evaluation of single and multilocus DNA barcodes towards species delineation in complex tree genus Terminalia

    PubMed Central

    Mishra, Priyanka; Kumar, Amit; Nagireddy, Akshitha; Shukla, Ashutosh K.

    2017-01-01

    DNA barcoding is used as a universal tool for delimiting species boundaries in taxonomically challenging groups, with different plastid and nuclear regions (rbcL, matK, ITS and psbA-trnH) being recommended as primary DNA barcodes for plants. We evaluated the feasibility of using these regions in the species-rich genus Terminalia, which exhibits various overlapping morphotypes with pantropical distribution, owing to its complex taxonomy. Terminalia bellerica and T. chebula are ingredients of the famous Ayurvedic Rasayana formulation Triphala, used for detoxification and rejuvenation. High demand for extracted phytochemicals as well as the high trade value of several species renders mandatory the need for the correct identification of traded plant material. Three different analytical methods with single and multilocus barcoding regions were tested to develop a DNA barcode reference library from 222 individuals representing 41 Terminalia species. All the single barcodes tested had a lower discriminatory power than the multilocus regions, and the combination of matK+ITS had the highest resolution rate (94.44%). The average intra-specific variations (0.0188±0.0019) were less than the distance to the nearest neighbour (0.106±0.009) with matK and ITS. Distance-based Neighbour Joining analysis outperformed the character-based Maximum Parsimony method in the identification of traded species such as T. arjuna, T. chebula and T. tomentosa, which are prone to adulteration. rbcL was shown to be a highly conservative region with only 3.45% variability between all of the sequences. The recommended barcode combination, rbcL+matK, failed to perform in the genus Terminalia. Considering the complexity of resolution observed with single regions, the present study proposes the combination of matK+ITS as the most successful barcode in Terminalia. PMID:28829803

  19. The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions

    PubMed Central

    Raupach, Michael J.; Barco, Andrea; Steinke, Dirk; Beermann, Jan; Laakmann, Silke; Mohrbeck, Inga; Neumann, Hermann; Kihara, Terue C.; Pointner, Karin; Radulovici, Adriana; Segelken-Voigt, Alexandra; Wesse, Christina; Knebelsberger, Thomas

    2015-01-01

    During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequences. PMID:26417993

  20. DNA barcoding of Rhododendron (Ericaceae), the largest Chinese plant genus in biodiversity hotspots of the Himalaya-Hengduan Mountains.

    PubMed

    Yan, Li-Jun; Liu, Jie; Möller, Michael; Zhang, Lin; Zhang, Xue-Mei; Li, De-Zhu; Gao, Lian-Ming

    2015-07-01

    The Himalaya-Hengduan Mountains encompass two global biodiversity hotspots with high levels of biodiversity and endemism. This area is one of the diversification centres of the genus Rhododendron, which is recognized as one of the most taxonomically challenging plant taxa due to recent adaptive radiations and rampant hybridization. In this study, four DNA barcodes were evaluated on 531 samples representing 173 species of seven sections of four subgenera in Rhododendron, with a high sampling density from the Himalaya-Hengduan Mountains employing three analytical methods. The varied approaches (nj, pwg and blast) had different species identification powers with blast performing best. With the pwg analysis, the discrimination rates for single barcodes varied from 12.21% to 25.19% with ITS < rbcL < matK < psbA-trnH. Combinations of ITS + psbA-trnH + matK and the four barcodes showed the highest discrimination ability (both 41.98%) among all possible combinations. As a single barcode, psbA-trnH performed best with a relatively high performance (25.19%). Overall, the three-marker combination of ITS + psbA-trnH + matK was found to be the best DNA barcode for identifying Rhododendron species. The relatively low discriminative efficiency of DNA barcoding in this genus (~42%) may possibly be attributable to too low sequence divergences as a result of a long generation time of Rhododendron and complex speciation patterns involving recent radiations and hybridizations. Taking the morphology, distribution range and habitat of the species into account, DNA barcoding provided additional information for species identification and delivered a preliminary assessment of biodiversity for the large genus Rhododendron in the biodiversity hotspots of the Himalaya-Hengduan Mountains. © 2014 John Wiley & Sons Ltd.

Top