Science.gov

Sample records for deep borehole instrumentation

  1. Deep Borehole Instrumentation Along San Francisco Bay Bridges - 2000

    SciTech Connect

    Hutchings, L.; Kasameyer, P.; Turpin, C.; Long, L.; Hollfelder, J.; McEvilly, T.; Clymer, R.; Uhrhammer, R.

    2000-03-01

    This is a progress report on the Bay Bridges downhole network. Between 2 and 8 instruments have been spaced along the Dumbarton, San Mateo, Bay, and San Rafael bridges in San Francisco Bay, California. The instruments will provide multiple use data that is important to geotechnical, structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and were drilled by Caltrans. There are twenty-one sensor packages at fifteen sites. The downhole instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox 731 accelerometers, and is capable of recording a micro g from local M = 1.0 earthquakes to 0.5 g strong ground motion form large Bay Area earthquakes. Preliminary results on phasing across the Bay Bridge, up and down hole wave amplification at Yerba Buena Island, and sensor orientation analysis are presented. Events recorded and located during 1999 are presented. Also, a senior thesis on the deep structure of the San Francisco Bay beneath the Bay Bridge is presented as an addendum.

  2. Geoscience experiments in boreholes: instrumentation

    SciTech Connect

    Traeger, R.K.

    1984-05-01

    Drilling is the only method available to obtain unambiguous information on processes occurring in the earth's crust. When core and virgin formation fluid samples are available, the geological state of the formation may be defined in the vicinity of the borehole with little ambiguity. Unfortunately, core recovery is expensive and often not complete, and drilling muds contaminate formation fluids. Thus, investigations turn to downhole instrumentation systems to evaluate in situ formation parameters. Some such instruments and the associated interpretative techniques are well developed, especially if they find usage in the evaluation of hydrocarbon reservoirs. Other sytems, particularly those that yield geochemical information are, at best, shallow-hole devices, but they could be engineered for deep-hole applications. Interpretations of logs obtained in igneous and metamorphic systems are not well developed. Finally, measurements away from the immediate vicinity of the borehole are possible but the technology is primitive. In situ instrumentation capabilities and needs for research in boreholes will be reviewed; the review will include details from recent US and European discussions of instrumentation needs. The capability and availability of slim hole logging tools will be summarized. Temperature limitations of the overall logging system will be discussed (current limits are 300/sup 0/C) and options for measurements to 500/sup 0/C will be described.

  3. Deep Borehole Disposal Safety Analysis.

    SciTech Connect

    Freeze, Geoffrey A.; Stein, Emily; Price, Laura L.; MacKinnon, Robert J.; Tillman, Jack Bruce

    2016-10-01

    This report presents a preliminary safety analysis for the deep borehole disposal (DBD) concept, using a safety case framework. A safety case is an integrated collection of qualitative and quantitative arguments, evidence, and analyses that substantiate the safety, and the level of confidence in the safety, of a geologic repository. This safety case framework for DBD follows the outline of the elements of a safety case, and identifies the types of information that will be required to satisfy these elements. At this very preliminary phase of development, the DBD safety case focuses on the generic feasibility of the DBD concept. It is based on potential system designs, waste forms, engineering, and geologic conditions; however, no specific site or regulatory framework exists. It will progress to a site-specific safety case as the DBD concept advances into a site-specific phase, progressing through consent-based site selection and site investigation and characterization.

  4. Deep Borehole Field Test Laboratory and Borehole Testing Strategy

    SciTech Connect

    Kuhlman, Kristopher L.; Brady, Patrick V.; MacKinnon, Robert J.; Heath, Jason E.; Herrick, Courtney G.; Jensen, Richard P.; Gardner, W. Payton; Sevougian, S. David; Bryan, Charles R.; Jang, Je-Hun; Stein, Emily R.; Bauer, Stephen J.; Daley, Tom; Freifeld, Barry M.; Birkholzer, Jens; Spane, Frank A.

    2016-09-19

    Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test design will demonstrate the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD. DOE sought input or expression of interest from States, local communities, individuals, private groups, academia, or any other stakeholders willing to host a Deep Borehole Field Test (DBFT). The DBFT includes drilling two boreholes nominally 200m [656’] apart to approximately 5 km [16,400’] total depth, in a region where crystalline basement is expected to begin at less than 2 km depth [6,560’]. The characterization borehole (CB) is the smaller-diameter borehole (i.e., 21.6 cm [8.5”] diameter at total depth), and will be drilled first. The geologic, hydrogeologic, geochemical, geomechanical and thermal testing will take place in the CB. The field test borehole (FTB) is the larger-diameter borehole (i.e., 43.2 cm [17”] diameter at total depth). Surface handling and borehole emplacement of test package will be demonstrated using the FTB to evaluate engineering feasibility and safety of disposal operations (SNL 2016).

  5. Excess plutonium disposition: The deep borehole option

    SciTech Connect

    Ferguson, K.L.

    1994-08-09

    This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.

  6. Disposition of plutonium in deep boreholes

    SciTech Connect

    Halsey, W.G.; Jardine, L.J.; Walter, C.E.

    1995-05-01

    Substantial inventories of excess plutonium are expected to result from dismantlement of U.S. and Russian nuclear weapons. Disposition of this material should be a high priority in both countries. A variety of disposition options are under consideration. One option is to place the plutonium either directly or in an immobilized form at the bottom of a deep borehole that is then sealed. Deep-borehole disposition involves placing plutonium several kilometers deep into old, stable, rock formations that have negligible free water present. Containment assurance is based on the presence of ancient groundwater indicating lack of migration and communication with the biosphere. Recovery would be extremely difficult (costly) and impossible to accomplish clandestinely.

  7. Deep Borehole Field Test Conceptual Design Report

    SciTech Connect

    Hardin, Ernest L.

    2016-09-30

    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBD concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.

  8. Regulatory issues for deep borehole plutonium disposition

    SciTech Connect

    Halsey, W.G.

    1995-03-01

    As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. Issues of concern include the regulatory, statutory and policy status of such a facility, the availability of sites with desirable characteristics and the technologies required for drilling deep holes, characterizing them, emplacing excess plutonium and sealing the holes. This white paper discusses the regulatory issues. Regulatory issues concerning construction, operation and decommissioning of the surface facility do not appear to be controversial, with existing regulations providing adequate coverage. It is in the areas of siting, licensing and long term environmental protection that current regulations may be inappropriate. This is because many current regulations are by intent or by default specific to waste forms, facilities or missions significantly different from deep borehole disposition of excess weapons usable fissile material. It is expected that custom regulations can be evolved in the context of this mission.

  9. Deep Borehole Field Test Research Activities at LBNL

    SciTech Connect

    Dobson, Patrick; Tsang, Chin-Fu; Kneafsey, Timothy; Borglin, Sharon; Piceno, Yvette; Andersen, Gary; Nakagawa, Seiji; Nihei, Kurt; Rutqvist, Jonny; Doughty, Christine; Reagan, Matthew

    2016-08-19

    The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterized by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.

  10. Deep Borehole Instrumentation Along San Francisco Bay Bridges: 1996 - 2003 and Strong Ground Motion Systhesis Along the San Francisco/Oakland Bay Bridge

    SciTech Connect

    Hutchings, L; Foxall, W; Kasameyer, P; larsen, S; Hayek, C; Tyler-Turpin, C; Aquilino, J; Long, L

    2005-04-22

    As a result of collaboration between the Berkeley Seismographic Station, Lawrence Livermore National Laboratory, and Caltrans, instrument packages have been placed in bedrock in six boreholes and two surface sites along the San Francisco/Oakland Bay Bridge. Since 1996 over 200 local earthquakes have been recorded. Prior to this study few seismic recording instruments existed in bed-rock in San Francisco Bay. We utilized the data to perform analysis of ground motion variability, wave passage, site response, and up-and down-hole wave propagation along the Bay Bridge. We also synthesized strong ground motion at nine locations along the Bay Bridge. Key to these studies is LLNL's effort to exploit the information available in weak ground motions (generally from earthquakes < M=4.0) to enhance predictions of seismic hazards. We found that Yerba Island has no apparent site response at the surface relative to a borehole site. The horizontal to vertical spectral ratio method best revealed no site response, while the complex signal spectral ratio method had the lowest variance for spectral ratios and best predicted surface recordings when the borehole recording was used as input. Both methods identified resonances at about the same frequencies. Regional attenuation results in a significant loss of high frequencies in both surface and borehole recordings. Records are band limited at near 3 Hz. Therefore a traditional rock outcrop site response, flat to high frequency in displacement, is not available. We applied a methodology to predict and synthesize strong ground motion along the San Francisco/Oakland Bay Bridge from a M=7.25 earthquake along the Hayward fault, about12 km distant. We synthesized for three-components and broad-band (0.0-25.0 Hz) ground motion accelerations, velocities, and displacements. We examined two different possible rupture scenarios, a ''mean'' and ''one standard deviation'' model. We combined the high frequency calculations (Hz > 0.7) based on

  11. Instruments and methods acoustic televiewer logging in glacier boreholes

    USGS Publications Warehouse

    Morin, R.H.; Descamps, G.E.; Cecil, L.D.

    2000-01-01

    The acoustic televiewer is a geophysical logging instrument that is deployed in a water-filled borehole and operated while trolling. It generates a digital, magnetically oriented image of the borehole wall that is developed from the amplitudes and transit times of acoustic waves emitted from the tool and reflected at the water-wall interface. The transit-time data are also converted to radial distances, from which cross-sectional views of the borehole shape can be constructed. Because the televiewer is equipped with both a three-component magnetometer and a two-component inclinometer, the borehole's trajectory in space is continuously recorded as well. This instrument is routinely used in mining and hydrogeologic applications, but in this investigation it was deployed in two boreholes drilled into Upper Fremont Glacier, Wyoming, U.S.A. The acoustic images recorded in this glacial setting are not as clear as those typically obtained in rocks, due to a lower reflection coefficient for water and ice than for water and rock. Results indicate that the depth and orientation of features intersecting the boreholes can be determined, but that interpreting their physical nature is problematic and requires corroborating information from inspection of cores. Nevertheless, these data can provide some insight into englacial structural characteristics. Additional information derived from the cross-sectional geometry of the borehole, as well as from its trajectory, may also be useful in studies concerned with stress patterns and deformation processes.

  12. Geomechanical Considerations for the Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Park, B. Y.

    2015-12-01

    Deep borehole disposal of high-level radioactive waste is under consideration as a potential alternative to shallower mined repositories. The disposal concept consists of drilling a borehole into crystalline basement rocks to a depth of 5 km, emplacement of canisters containing solid waste in the lower 2 km, and plugging and sealing the upper 3 km of the borehole. Crystalline rocks such as granites are particularly attractive for borehole emplacement because of their low permeability and porosity at depth, and high mechanical strength to resist borehole deformation. In addition, high overburden pressures contribute to sealing of some of the fractures that provide transport pathways. We present geomechanical considerations during construction (e.g., borehole breakouts, disturbed rock zone development, and creep closure), relevant to both the smaller-diameter characterization borehole (8.5") and the larger-diameter field test borehole (17"). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Deep Borehole Field Test Requirements and Controlled Assumptions.

    SciTech Connect

    Hardin, Ernest

    2015-07-01

    This document presents design requirements and controlled assumptions intended for use in the engineering development and testing of: 1) prototype packages for radioactive waste disposal in deep boreholes; 2) a waste package surface handling system; and 3) a subsurface system for emplacing and retrieving packages in deep boreholes. Engineering development and testing is being performed as part of the Deep Borehole Field Test (DBFT; SNL 2014a). This document presents parallel sets of requirements for a waste disposal system and for the DBFT, showing the close relationship. In addition to design, it will also inform planning for drilling, construction, and scientific characterization activities for the DBFT. The information presented here follows typical preparations for engineering design. It includes functional and operating requirements for handling and emplacement/retrieval equipment, waste package design and emplacement requirements, borehole construction requirements, sealing requirements, and performance criteria. Assumptions are included where they could impact engineering design. Design solutions are avoided in the requirements discussion. Deep Borehole Field Test Requirements and Controlled Assumptions July 21, 2015 iv ACKNOWLEDGEMENTS This set of requirements and assumptions has benefited greatly from reviews by Gordon Appel, Geoff Freeze, Kris Kuhlman, Bob MacKinnon, Steve Pye, David Sassani, Dave Sevougian, and Jiann Su.

  14. Deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  15. Optical instruments for a combined seismic and geodetic borehole observatory

    NASA Astrophysics Data System (ADS)

    Zumberge, Mark; Agnew, Duncan; Berger, Jonathan; Hatfield, William; Wyatt, Frank

    2016-04-01

    Optical interferometry offers displacement sensing with the unusual combination of high sensitivity, linearity, and wide dynamic range, and it can be adapted to high temperature environments. We have applied interferometric technology to inertial seismic instruments and to optical fibers for strain measurements. When combining these methods into a single borehole package the result is a system that provides three components of observatory quality seismic recordings, two components of tilt, gravity, and vertical strain. The borehole package is entirely passive with the need for only optical fibers to connect the sensor sonde with surface electronics. One of the sensors in the system is an optical fiber strainmeter, which consists of an optical fiber cable elastically stretched between two borehole anchor points separated by 100 m or more. The fiber's length is recorded optically, enabling sub-nanostrain detection of crustal deformations. A second sensor system uses laser interferometry to record the displacements of inertial mechanical suspensions - spring-mass for the vertical component and pendulums for the horizontal components - housed in a borehole sonde. The combined system is able to measure vertical and horizontal ground velocities, gravity, and tilt with sensitivities that compare favorably with any existing borehole system over time scales from 10 Hz to many days; because the downhole components are entirely passive, the instrument will have a long lifetime and could be made usable at high downhole temperatures. The simplicity and longevity of the metal and glass borehole sonde make it suitable for permanent cementation into a borehole to achieve good coupling and stability. Several versions of the borehole inertial system have been deployed on land with excellent results, and a number of our optical fiber strainmeters have been deployed - both onshore and offshore. The combined system is currently under development.

  16. Geomechanical Engineering Concepts Applied to Deep Borehole Disposal Wells

    NASA Astrophysics Data System (ADS)

    Herrick, C. G.; Haimson, B. C.; Lee, M.

    2015-12-01

    Deep borehole disposal (DBD) of certain defense-generated radioactive waste forms is being considered by the US Department of Energy (DOE) as an alternative to mined repositories. The 17 inch diameter vertical boreholes are planned to be drilled in crystalline basement rock. As part of an initial field test program, the DOE will drill a demonstration borehole, to be used to test equipment for handling and emplacing prototype nonradioactive waste containers, and a second smaller diameter borehole, to be used for site characterization. Both boreholes will be drilled to a depth of 5 km. Construction of such boreholes is expected to be complex because of their overall length, large diameter, and anticipated downhole conditions of high temperatures, pore pressures, and stress regimes. It is believed that successful development of DBD boreholes can only be accomplished if geologic and tectonic conditions are characterized and drill activities are designed based on that understanding. Our study focuses primarily on using the in situ state of stress to mitigate borehole wall failure, whether tensile or compressive. The measured stresses, or their constrained estimates, will include pore pressure, the vertical stress, the horizontal stresses and orientations, and thermally induced stresses. Pore pressure will be measured directly or indirectly. Horizontal stresses will be estimated from hydraulic fracturing tests, leak off tests, and breakout characteristics. Understanding the site stress condition along with the rock's strength characteristics will aid in the optimization of mud weight and casing design required to control borehole wall failure and other drilling problems.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6552A

  17. MICROHOLE TECHNOLOGY PROGRESS ON BOREHOLE INSTRUMENTATION DEVELOPMENT

    SciTech Connect

    J. ALBRIGHT

    2000-09-01

    Microhole technology development is based on the premise that with advances in electronics and sensors, large conventional-diameter wells are no longer necessary for obtaining subsurface information. Furthermore, microholes offer an environment for improved substance measurement. The combination of deep microholes having diameters of 1-3/8 in. at their terminal depth and 7/8-in. diameter logging tools will comprise a very low cost alternative to currently available technology for deep subsurface characterization and monitoring.

  18. Deep Borehole Disposal Remediation Costs for Off-Normal Outcomes

    SciTech Connect

    Finger, John T.; Cochran, John R.; Hardin, Ernest

    2015-08-17

    This memo describes rough-order-of-magnitude (ROM) cost estimates for a set of off-normal (accident) scenarios, as defined for two waste package emplacement method options for deep borehole disposal: drill-string and wireline. It summarizes the different scenarios and the assumptions made for each, with respect to fishing, decontamination, remediation, etc.

  19. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    SciTech Connect

    Cochran, John R.; Hardin, Ernest

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has

  20. A gas sampling system for withdrawing humid gases from deep boreholes

    SciTech Connect

    Rousseau, J.P.; Thordarson, W.; Kurzmack, M.A.

    1994-12-31

    A gas sampling system, designed to withdraw nearly vapor-saturated gases (93 to 100% relative humidity) from deep, unsaturated zone boreholes, was developed by the U.S. Geological Survey for use in the unsaturated zone borehole instrumentation and monitoring program at Yucca Mountain, Nye County, Nevada. This gas sampling system will be used to: (1) sample formation rock gases in support of the unsaturated zone hydrochemical characterization program; and (2) verify downhole, thermocouple psychrometer measurements of water potential in support of the unsaturated zone borehole instrumentation and monitoring program. Using this sampling system, nearly vapor-saturated formation rock-gases can be withdrawn from deep boreholes without condensing water vapor in the sampling tubes, and fractionating heavy isotopes of oxygen, hydrogen, and carbon. The sampling system described in this paper uses a dry carrier-gas (nitrogen) to lower the dew point temperature of the formation rock-gas at its source. Mixing of the dry carrier gas with the source gas takes place inside a specially designed downhole instrument station apparatus (DISA). Nitrogen inflow is regulated in a manner that lowers the dew point temperature of the source gas to a temperature that is colder than the coldest temperature that the mixed gas will experience in moving from warmer, deeper depths, to colder, shallower depths near the land surface. A test of this gas sampling system was conducted in December, 1992, in a 12.2 meter deep borehole that was instrumented in October, 1991. The water potential calculated using this system reproduced in-situ measurements of water potential to within five percent of the average value, as recorded by two thermocouple psychrometers that had been in operation for over 12 months.

  1. Site Characterization for a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Hardin, E. L.; Freeze, G. A.; Sassani, D.; Brady, P. V.

    2015-12-01

    The US Department of Energy Office of Nuclear Energy is at the beginning of 5-year Deep Borehole Field Test (DBFT) to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages over mined repositories, including incremental construction and loading, the enhanced natural barriers provided by deep continental crystalline basement, and reduced site characterization. Site characterization efforts need to determine an eligible site that does not have the following disqualifying characteristics: greater than 2 km to crystalline basement, upward vertical fluid potential gradients, presence of economically exploitable natural resources, presence of high permeability connection to the shallow subsurface, and significant probability of future seismic or volcanic activity. Site characterization activities for the DBFT will include geomechanical (i.e., rock in situ stress state, and fluid pressure), geological (i.e., rock and fracture infill lithology), hydrological (i.e., quantity of fluid, fluid convection properties, and solute transport mechanisms), and geochemical (i.e., rock-water interaction and natural tracers) aspects. Both direct (i.e., sampling and in situ testing) and indirect (i.e., borehole geophysical) methods are planned for efficient and effective characterization of these site aspects and physical processes. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth, and interpretation of material and system parameters relevant to numerical site simulation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  2. Conceptual waste packaging options for deep borehole disposal

    SciTech Connect

    Su, Jiann -Cherng; Hardin, Ernest L.

    2015-07-01

    -profile threaded connections at each end. The internal-flush design would be suitable for loading waste that arrives from the originating site in weld-sealed, cylindrical canisters. Internal, tapered plugs with sealing filet welds would seal the tubing at each end. The taper would be precisely machined onto both the tubing and the plug, producing a metal-metal sealing surface that is compressed as the package is subjected to hydrostatic pressure. The lower plug would be welded in place before loading, while the upper plug would be placed and welded after loading. Conceptual Waste Packaging Options for Deep Borehole Disposal July 30, 2015 iv Threaded connections between packages would allow emplacement singly or in strings screwed together at the disposal site. For emplacement on a drill string the drill pipe would be connected directly into the top package of a string (using an adapter sub to mate with premium semi-flush tubing threads). Alternatively, for wireline emplacement the same package designs could be emplaced singly using a sub with wireline latch, on the upper end. Threaded connections on the bottom of the lowermost package would allow attachment of a crush box, instrumentation, etc.

  3. Optimization of Deep Borehole Systems for HLW Disposal

    SciTech Connect

    Driscoll, Michael; Baglietto, Emilio; Buongiorno, Jacopo; Lester, Richard; Brady, Patrick; Arnold, B. W.

    2015-09-09

    This is the final report on a project to update and improve the conceptual design of deep boreholes for high level nuclear waste disposal. The effort was concentrated on application to intact US legacy LWR fuel assemblies, but conducted in a way in which straightforward extension to other waste forms, host rock types and countries was preserved. The reference fuel design version consists of a vertical borehole drilled into granitic bedrock, with the uppermost kilometer serving as a caprock zone containing a diverse and redundant series of plugs. There follows a one to two kilometer waste canister emplacement zone having a hole diameter of approximately 40-50 cm. Individual holes are spaced 200-300 m apart to form a repository field. The choice of verticality and the use of a graphite based mud as filler between the waste canisters and the borehole wall liner was strongly influenced by the expectation that retrievability would continue to be emphasized in US and worldwide repository regulatory criteria. An advanced version was scoped out using zinc alloy cast in place to fill void space inside a disposal canister and its encapsulated fuel assembly. This excludes water and greatly improves both crush resistance and thermal conductivity. However the simpler option of using a sand fill was found adequate and is recommended for near-term use. Thermal-hydraulic modeling of the low permeability and porosity host rock and its small (≤ 1%) saline water content showed that vertical convection induced by the waste’s decay heat should not transport nuclides from the emplacement zone up to the biosphere atop the caprock. First order economic analysis indicated that borehole repositories should be cost-competitive with shallower mined repositories. It is concluded that proceeding with plans to drill a demonstration borehole to confirm expectations, and to carry out priority experiments, such as retention and replenishment of in-hole water is in order.

  4. Deep Borehole Emplacement Mode Hazard Analysis Revision 0

    SciTech Connect

    Sevougian, S. David

    2015-08-07

    This letter report outlines a methodology and provides resource information for the Deep Borehole Emplacement Mode Hazard Analysis (DBEMHA). The main purpose is identify the accident hazards and accident event sequences associated with the two emplacement mode options (wireline or drillstring), to outline a methodology for computing accident probabilities and frequencies, and to point to available databases on the nature and frequency of accidents typically associated with standard borehole drilling and nuclear handling operations. Risk mitigation and prevention measures, which have been incorporated into the two emplacement designs (see Cochran and Hardin 2015), are also discussed. A key intent of this report is to provide background information to brief subject matter experts involved in the Emplacement Mode Design Study. [Note: Revision 0 of this report is concentrated more on the wireline emplacement mode. It is expected that Revision 1 will contain further development of the preliminary fault and event trees for the drill string emplacement mode.

  5. Site Guidelines for a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Sassani, D.; Kuhlman, K. L.; Freeze, G. A.; MacKinnon, R. J.; Perry, F.

    2015-12-01

    The US DOE Office of Nuclear Energy Used Nuclear Fuel Disposition Campaign (UFDC) is initiating a Deep Borehole Field Test (DBFT), without use of any radioactive waste, to evaluate the geoscience of the approach and technical capabilities for implementation. DOE has identified Sandia National Laboratories (SNL) as the Technical Lead for the UFDC DBFT Project, with the role of supporting DOE in (i) developing the overall DBFT Project Plan, (ii) management and integration of all DBFT Project activities, and (iii) providing Project technical guidance to DOE, other DOE National Laboratories, and university partners. The DBFT includes drilling one Characterization Borehole (CB-8.5" diameter), followed by an optional Field Test Borehole (FTB), to a depth of about 5,000 m (16,400 feet) into crystalline basement rock in a geologically stable continental location. The DBFT CB will be drilled and completed to facilitate downhole scientific testing and analyses. If site conditions are found to be favorable, DOE may drill the larger-diameter (17") FTB to facilitate proof-of-concept of handling, emplacement, and retrieval activities using surrogate waste containers. Guidelines for favorable DBFT site geohydrochemical and geomechanical conditions will be discussed and status of the DBFT Project will be provided. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6426A.

  6. Probe for temperature logging of deep cold boreholes

    NASA Astrophysics Data System (ADS)

    Zangirolami, M.; Cavagnero, G.; Rossi, A.

    2003-04-01

    A new probe has been developed for measuring some physical parameters in deep cold boreholes such as those of the European Project for Ice Coring in Antarctica (EPICA), which is targeted to drill two holes through the ice sheet down to the bedrock at DOME C and at Dronning Maud Land, Antarctica. The probe is operative in the temperature range 0 to -60^oC and for pressures up to 35 MPa, down to 3500 m depth and in the presence of aggressive fluid filling. The probe is equipped with : 1) a set of four thermometers. Three are fitted in the expandable arms of the probe, to log the temperature of the ice-wall. The fourth thermometer is fitted into a static arm in a central position, between the previous three, and logs the temperature of the borehole fluid, for comparison. Thermistor-type sensors have been selected, with a resolution of 2 mK in the interval near 0^oC. During laboratory tests a time constant of 2.7 s was obtained for the thermal sensors fitted in their protective case. After final assemblage of the probe the sensors were calibrated in the laboratory against a standard precision thermometer, over the range 0 to -60^oC; 2) a sensor for differential measurement of the pressure of the liquid column of the drill fluid, with a resolution of a few 10-6 MPa, sufficient to detect any convective cells, induced by the dishomogeneous composition of the mixing fluids; 3) a manometer (strain gauge) for measuring the hydrostatic pressure of the fluid column in the full range 0 to 35 MPa, from the surface to bottom hole, with a resolution better than 0.001 of the full range; 4) a vertical depth meter for direct measurement of depth on the wall of the borehole, to eliminate any uncertainties caused by variations in the length of the electro-mechanical drilling wire due to the fatigue and strain of drilling operations. The progressive depths are measured by a wheel counter and encoder on the upper arms of the probe, with an expected resolution better than 10-3; 5) a

  7. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  8. Thermal-Mechanical Modeling of Deep Borehole Disposal of High-Level Radioactive Waste

    NASA Astrophysics Data System (ADS)

    Arnold, B. W.; Clayton, D. J.; Herrick, C. G.; Hadgu, T.

    2010-12-01

    Disposal of high-level radioactive waste, including spent nuclear fuel, in deep (3 to 5 km) boreholes is a potential option for safely isolating these wastes from the surface and near-surface environment. Existing drilling technology permits reliable and cost-effective construction of such deep boreholes. Conditions favorable for deep borehole disposal in crystalline basement rocks, including low permeability, high salinity, and geochemically reducing conditions, exist at depth in many locations, particularly in geologically stable continental regions. Isolation of waste depends, in part, on the effectiveness of borehole seals and potential alteration of permeability in the disturbed host rock surrounding the borehole. Coupled thermal-mechanical-hydrologic processes induced by heat from the radioactive waste may impact the disturbed zone near the borehole and borehole wall stability. Numerical simulations of the coupled thermal-mechanical response in the host rock surrounding the borehole were conducted with three software codes or combinations of software codes. Software codes used in the simulations were FEHM, JAS3D, Aria, and Adagio. Simulations were conducted for disposal of spent nuclear fuel assemblies and for the higher heat output of vitrified waste from the reprocessing of fuel. Simulations were also conducted for both isotropic and anisotropic ambient horizontal stress in the host rock. Physical, thermal, and mechanical properties representative of granite host rock at a depth of 4 km were used in the models. Simulation results indicate peak temperature increases at the borehole wall of about 30 °C and 180 °C for disposal of fuel assemblies and vitrified waste, respectively. Peak temperatures near the borehole occur within about 10 years and decline rapidly within a few hundred years and with distance. The host rock near the borehole is placed under additional compression. Peak mechanical stress is increased by about 15 MPa (above the assumed ambient

  9. Thermal-mechanical modeling of deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Arnold, Bill Walter; Hadgu, Teklu

    2010-12-01

    Disposal of high-level radioactive waste, including spent nuclear fuel, in deep (3 to 5 km) boreholes is a potential option for safely isolating these wastes from the surface and near-surface environment. Existing drilling technology permits reliable and cost-effective construction of such deep boreholes. Conditions favorable for deep borehole disposal in crystalline basement rocks, including low permeability, high salinity, and geochemically reducing conditions, exist at depth in many locations, particularly in geologically stable continental regions. Isolation of waste depends, in part, on the effectiveness of borehole seals and potential alteration of permeability in the disturbed host rock surrounding the borehole. Coupled thermal-mechanical-hydrologic processes induced by heat from the radioactive waste may impact the disturbed zone near the borehole and borehole wall stability. Numerical simulations of the coupled thermal-mechanical response in the host rock surrounding the borehole were conducted with three software codes or combinations of software codes. Software codes used in the simulations were FEHM, JAS3D, Aria, and Adagio. Simulations were conducted for disposal of spent nuclear fuel assemblies and for the higher heat output of vitrified waste from the reprocessing of fuel. Simulations were also conducted for both isotropic and anisotropic ambient horizontal stress in the host rock. Physical, thermal, and mechanical properties representative of granite host rock at a depth of 4 km were used in the models. Simulation results indicate peak temperature increases at the borehole wall of about 30 C and 180 C for disposal of fuel assemblies and vitrified waste, respectively. Peak temperatures near the borehole occur within about 10 years and decline rapidly within a few hundred years and with distance. The host rock near the borehole is placed under additional compression. Peak mechanical stress is increased by about 15 MPa (above the assumed ambient

  10. Numerical Modeling of Deep Borehole Disposal Performance: Influence of Regional Hydrology

    NASA Astrophysics Data System (ADS)

    Stein, E. R.; Hammond, G. E.; Freeze, G. A.; Hadgu, T.

    2015-12-01

    Long-term waste isolation at a deep borehole disposal facility is most favorable at a site where the crystalline basement is hydraulically isolated and groundwater flow is negligible. Site suitability guidelines include evidence of lack of fluid flow in basement, for example lack of significant topographic relief, or evidence of ancient and/or saline groundwater at depth. However, lack of local topographic relief does not preclude regional hydraulic gradients created by recharge and discharge at distant outcrops; and precisely because of hydraulic isolation, the crystalline basement has the potential to be over- or under-pressured relative to overlying units. In the absence of previous boreholes in the area of a potential site, hydraulic gradients at depth are difficult to predict, and the possibility remains that a deep borehole drilled for the disposal of waste will encounter vertical or lateral driving forces for fluid flow. This study asks the question: How large a driving force can be tolerated while still maintaining repository performance? We use PFLOTRAN (an open source, massively parallel subsurface flow and reactive transport code) and a 3-D model domain (representing a disposal borehole in crystalline basement overlain by sedimentary strata) to examine the influence of horizontal and vertical hydraulic gradients on the long-term performance of a deep borehole radioactive waste repository. Simulations include steady-state lateral hydraulic gradients and transient vertical hydraulic gradients, and predict radionuclide concentrations in an overlying aquifer to quantify the potential influence of regional hydraulic gradients on repository performance.

  11. Disposition of excess weapon plutonium in deep boreholes - site selection handbook

    SciTech Connect

    Heiken, G.; Woldegabriel, G.; Morley, R.; Plannerer, H.; Rowley, J.

    1996-09-01

    One of the options for disposing of excess weapons plutonium is to place it near the base of deep boreholes in stable crystalline rocks. The technology needed to begin designing this means of disposition already exists, and there are many attractive sites available within the conterminous United States. There are even more potential sites for this option within Russia. The successful design of a borehole system must address two criteria: (1) how to dispose of 50 metric tons of weapons plutonium while making it inaccessible for unauthorized retrieval, and (2) how to prevent contamination of the accessible biosphere, defined here as the Earth`s surface and usable groundwaters.

  12. Development of a Universal Canister for Disposal of High-Level Waste in Deep Boreholes.

    SciTech Connect

    Price, Laura L.; Gomberg, Steve

    2015-11-01

    The mission of the United States Department of Energy’s Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. Some of the wastes that must be managed have been identified as good candidates for disposal in a deep borehole in crystalline rock. In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister-based system that can be used for handling these wastes during the disposition process (i.e., storage, transfer, transportation, and disposal) could facilitate the eventual disposal of these wastes. Development of specifications for the universal canister system will consider the regulatory requirements that apply to storage, transportation, and disposal of the capsules, as well as operational requirements and limits that could affect the design of the canister (e.g., deep borehole diameter). In addition, there are risks and technical challenges that need to be recognized and addressed as Universal Canister system specifications are developed. This paper provides an approach to developing specifications for such a canister system that is integrated with the overall efforts of the DOE’s Used Fuel Disposition Campaign's Deep Borehole Field Test and compatible with planned storage of potential borehole-candidate wastes.

  13. Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.

    2010-12-01

    Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.

  14. The Effect of Borehole Flow on Salinity Profiles From Deep Monitor Wells in Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Hunt, C. D.; El-Kadi, A. I.

    2008-12-01

    Ground-water resource management in Hawaii is based partly on salinity profiles from deep wells that are used to monitor the thickness of freshwater lenses and the transition zone between freshwater and saltwater. Vertical borehole flow in these wells may confound understanding of the actual salinity-depth profiles in the basaltic aquifers and lead to misinterpretations that hamper effective water-resource management. Causes and effects of borehole flow on salinity profiles are being evaluated at 40 deep monitor wells in Hawaii. Step- like changes in fluid electrical conductivity with respect to depth are indicative of borehole flow and are evident in almost all available salinity profiles. A regional trend in borehole flow direction, expected from basin-wide ground-water flow dynamics, is evident as major downward flow components in inland recharge areas and major upward flow components in discharge areas near the coast. The midpoint of the transition zone in one deep monitor well showed inconsequential depth displacements in response to barometric pressure and tidal fluctuations and to pumping from nearby wellfields. Commonly, the 1 mS/cm conductivity value is used to indicate the top of the transition zone. Contrary to the more stable midpoint, the depth of the 1 mS/cm conductivity value may be displaced by as much as 200 m in deep monitor wells near pumping wellfields. The displacement is complemented with an increase in conductivity at a particular depth in the upper part of the profile. The observed increase in conductivity is linear with increase in nearby pumpage. The largest deviations from expected aquifer-salinity profiles occur in deep monitor wells located in the area extending from east Pearl Harbor to Kalihi on Oahu, which coincides with the most heavily pumped part of the aquifer.

  15. Some logistical considerations in designing a system of deep boreholes for disposal of high-level radioactive waste.

    SciTech Connect

    Gray, Genetha Anne; Brady, Patrick Vane; Arnold, Bill Walter

    2012-09-01

    Deep boreholes could be a relatively inexpensive, safe, and rapidly deployable strategy for disposing Americas nuclear waste. To study this approach, Sandia invested in a three year LDRD project entitled %E2%80%9CRadionuclide Transport from Deep Boreholes.%E2%80%9D In the first two years, the borehole reference design and backfill analysis were completed and the supporting modeling of borehole temperature and fluid transport profiles were done. In the third year, some of the logistics of implementing a deep borehole waste disposal system were considered. This report describes what was learned in the third year of the study and draws some conclusions about the potential bottlenecks of system implementation.

  16. Deep Drilling Into the Chicxulub Impact Crater: Pemex Oil Exploration Boreholes Revisited

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Perez-Cruz, L.

    2007-05-01

    The Chicxulub structure was recognized in the 1940´s from gravity anomalies in oil exploration surveys by Pemex. Geophysical anomalies occur over the carbonate platform in NW Yucatan, where density and magnetic susceptibility contrasts with the carbonates suggested a buried igneous complex or basement uplift. The exploration program developed afterwards included several boreholes, starting with the Chicxulub-1 in 1952 and eventually comprising eight deep boreholes completed through the 1970s. The investigations showing Chicxulub as a large impact crater formed at the K/T boundary have relayed on the Pemex decades-long exploration program. Despite frequent reference to Pemex information, original data have not been openly available for detailed evaluation and incorporation with results from recent efforts. Logging data and core samples remain to be analyzed, reevaluated and integrated in the context of recent marine, aerial and terrestrial geophysical surveys and the drilling/coring projects of UNAM and ICDP. In this presentation we discuss the paleontological data, stratigraphic columns and geophysical logs for the Chicxulub-1 (1582m), Sacapuc-1 (1530m), Yucatan-6 (1631m) and Ticul-1 (3575m) boreholes. These boreholes remain the deepest ones drilled in Chicxulub and the only ones providing samples of the melt-rich breccias and melt sheet. Other boreholes include the Y1 (3221m), Y2 (3474m), Y4 (2398m) and Y5A (3003m), which give information on pre-impact stratigraphy and crystalline basement. We concentrate on log and microfossil data, stratigraphic columns, lateral correlation, integration with UNAM and ICDP borehole data, and analyses of sections of melt, impact breccias and basal Paleocene carbonates. Current plans for deep drilling in Chicxulub crater focus in the peak ring zone and central sector, with proposed marine and on-land boreholes to the IODP and ICDP programs. Future ICDP borehole will be located close to Chicxulub-1 and Sacapuc-1, which intersected

  17. Fluid injection and withdrawal in deep geothermal borehole.

    NASA Astrophysics Data System (ADS)

    Troiano, A.; Di Giuseppe, M. G.; Troise, C.; Tramelli, A.; De Natale, G.

    2012-04-01

    Geothermal systems represents a large resource that can provide, with a reasonable investment, a very high and cost-competitive power generating capacity. Considering also the very low environmental impact, their development represents, in the next decades, an enormous perspective. Despite this unquestionable potential, geothermal exploitation has always been perceived as limited, mainly because of the dependance of a site usefulness on several pre-existing conditions, mainly correlated to the reservoir rock's permeability and porosity, the amount of fluid saturation and, first of all, a convenient temperature-depth relationship. However, this major barrier it is not insurmountable and a notable progress in recent tests is achieved with the Enhanced Geothermal System (EGS), where massive fluid injection and withdrawal were performed to enlarge the natural fracture system of the basement rock. The permeability of the surrounding rocks results highly increased by pressurized fluids circulation and geothermal resources, in such way, become accessible in areas where deep reservoir exploitation, otherwise, could be not advantageous or even possible. Still problematic remains, however, most of the key technical requirements as, firstly, deep fluid injection, that represents a necessary field practice in EGS development. This kind of procedure have often strong and uncontrolled physical effects on the neighboring environment, involving possibly even large areas and, in particular, they represent one of the most important sources of seismicity induced by human activities. In some cases, seismicity reaches level that can not be sustained, as in the paradigmatic case of the 2006 M=3.4 earthquake induced in the Basel city (Swiss), with the consequent EGS project early termination. We test a numerical procedure that models deep fluid injection and withdrawal, during well stimulation, and its effects on induced seismicity. We propose such a procedure as a way to estimate how

  18. Analysis of well test data from selected intervals in Leuggern deep borehole

    SciTech Connect

    Karasaki, K. )

    1990-07-01

    Applicability of the PTST technique was verified by conducting a sensitivity study to the various parameters. The study showed that for ranges of skin parameters the true formation permeability was still successfully estimated using the PTST analysis technique. The analysis technique was then applied to field data from the deep borehole in Leuggern, Northern Switzerland. The analysis indicated that the formation permeability may be as much as one order of magnitude larger than the value based on no-skin analysis. Swabbing data from the Leuggern deep borehole were also analyzed assuming that they are constant pressure tests. The analysis of the swabbing data indicates that the formation transmissivity is as much as 20 times larger than the previously obtained value. This study is part of an investigation of the feasibility of geologic isolation of nuclear wastes being carried out by the US Department of Energy and the National Cooperative for the Storage of Radioactive Waste of Switzerland.

  19. Waste Handling and Emplacement Options for Disposal of Radioactive Waste in Deep Boreholes.

    SciTech Connect

    Cochran, John R.; Hardin, Ernest

    2015-11-01

    Traditional methods cannot be used to handle and emplace radioactive wastes in boreholes up to 16,400 feet (5 km) deep for disposal. This paper describes three systems that can be used for handling and emplacing waste packages in deep borehole: (1) a 2011 reference design that is based on a previous study by Woodward–Clyde in 1983 in which waste packages are assembled into “strings” and lowered using drill pipe; (2) an updated version of the 2011 reference design; and (3) a new concept in which individual waste packages would be lowered to depth using a wireline. Emplacement on coiled tubing was also considered, but not developed in detail. The systems described here are currently designed for U.S. Department of Energy-owned high-level waste (HLW) including the Cesium- 137/Strontium-90 capsules from the Hanford Facility and bulk granular HLW from fuel processing in Idaho.

  20. Apparent break in earthquake scaling due to path and site effects on deep borehole recordings

    USGS Publications Warehouse

    Ide, S.; Beroza, G.C.; Prejean, S.G.; Ellsworth, W.L.

    2003-01-01

    We reexamine the scaling of stress drop and apparent stress, rigidity times the ratio between seismically radiated energy to seismic moment, with earthquake size for a set of microearthquakes recorded in a deep borehole in Long Valley, California. In the first set of calculations, we assume a constant Q and solve for the corner frequency and seismic moment. In the second set of calculations, we model the spectral ratio of nearby events to determine the same quantities. We find that the spectral ratio technique, which can account for path and site effects or nonconstant Q, yields higher stress drops, particularly for the smaller events in the data set. The measurements determined from spectral ratios indicate no departure from constant stress drop scaling down to the smallest events in our data set (Mw 0.8). Our results indicate that propagation effects can contaminate measurements of source parameters even in the relatively clean recording environment of a deep borehole, just as they do at the Earth's surface. The scaling of source properties of microearthquakes made from deep borehole recordings may need to be reevaluated.

  1. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    SciTech Connect

    N. Lubchenko; M. Rodríguez-Buño; E.A. Bates; R. Podgorney; E. Baglietto; J. Buongiorno; M.J. Driscoll

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusion coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport mechanism

  2. Initial seismic observations from a deep borehole drilled into the Canadian Shield in northeast Alberta

    NASA Astrophysics Data System (ADS)

    Chan, Judith; Schmitt, Douglas R.

    2015-09-01

    The availability of a deep borehole in northeastern Alberta provides an unprecedented opportunity to study the in situ metamorphic craton rocks. This borehole reaches a depth of 2.4 km, with 1.8 km in the crystalline rocks, and is the only known borehole allowing access into the deeper rocks of the metamorphic Canadian Shield. In 2011, a zero-offset vertical seismic profile (VSP) was acquired to assist in the interpretation of seismic reflection data and geophysical logs. Three sets of upgoing tube waves interpreted from the raw profile correspond to the small-scale fluctuations in the borehole diameters and fracture zone in the crystalline rocks. A comparison between sonic log velocities and VSP velocities reveals a zone with increased velocity that could be due to the change in rock composition and texture in the basement rocks. The final processed profile is used to generate corridor stacks for differentiating between primary reflections and multiples in the seismic reflection profile. Analysis of the zero-offset VSP verifies existing log interpretation on the presence of fractures and the possible lithological changes in the metamorphic rocks of the Canadian Shield.

  3. Information on stress conditions in the oceanic crust from oval fractures in a deep borehole

    USGS Publications Warehouse

    Morin, R.H.

    1990-01-01

    Oval images etched into the wall of a deep borehole were detected in DSDP Hole 504B, eastern equatorial Pacific Ocean, from analysis of an acoustic televiewer log. A systematic inspection of these ovals has identified intriguing consistencies in appearance that cannot be explained satisfactorily by a random, coincidental distribution of pillow lavas. As an alternative hypothesis, Mohr-Coulomb failure criterion is used to account for the generation and orientation of similarly curved, stress-induced fractures. Consequently, these oval features can be interpreted as fractures and related directly to stress conditions in the oceanic crust at this site. The azimuth of the oval center corresponds to the orientation of maximum horizontal principal stress (SH), and the oval width, which spans approximately 180?? of the borehole, is aligned with the azimuth of minimum horizontal principal stress (Sh). The oval height is controlled by the fracture angle and thus is a function of the coefficient of internal friction of the rock. -from Author

  4. Deep borehole disposition of surplus fissile materials-The site selection process

    SciTech Connect

    Heiken, G.; WoldeGabriel, G.; Morley, R.; Plannerer, H

    1996-05-01

    One option for disposing of excess weapons plutonium is to place it near the base of deep boreholes in stable crystalline rocks. The technology exists to immediately begin the design of this means of disposition and there are many attractive sites available within the conterminous US. The borehole system utilizes mainly natural barriers to preven migration of Pu and U to the Earth`s surface. Careful site selection ensures favorable geologic conditions that provide natural long-lived migration barriers; they include deep, extremely stable rock formations, strongly reducing brines that exhibit increasing salinity with depth, and most importantly, demonstrated isolation or non-communication of deep fluids with the biosphere for millions of years. This isolation is the most important characteristic, with the other conditions mainly being those that will enhance the potential of locating and maintaining the isolated zones. Candidate sites will probably be located on the craton in very old Precambrian crystalline rocks, most likely the center of a granitic pluton. The sites will be located in tectonically stable areas with no recent volcanic or seismic activity, and situated away from tectonic features that might become active in the near geologic future.

  5. Deep Boreholes Seals Subjected to High P,T conditions - Proposed Experimental Studies

    NASA Astrophysics Data System (ADS)

    Caporuscio, F.

    2015-12-01

    Deep borehole experimental work will constrain the P,T conditions which "seal" material will experience in deep borehole crystalline rock repositories. The rocks of interest to this study include mafic (amphibolites) and silicic (granitic gneiss) end members. The experiments will systematically add components to capture discrete changes in both water and EBS component chemistries. Experiments in the system wall rock-clay-concrete-groundwater will evaluate interactions among components, including: mineral phase stability, metal corrosion rates and thermal limits. Based on engineered barrier studies, experimental investigations will move forward with three focusses. First, evaluation of interaction between "seal" materials and repository wall rock (crystalline) under fluid-saturated conditions over long-term (i.e., six-month) experiments; which reproduces the thermal pulse event of a repository. Second, perform experiments to determine the stability of zeolite minerals (analcime-wairakitess) under repository conditions. Both sets of experiments are critically important for understanding mineral paragenesis (zeolites and/or clay transformations) associated with "seals" in contact with wall rock at elevated temperatures. Third, mineral growth at the metal interface is a principal control on the survivability (i.e. corrosion) of waste canisters in a repository. The objective of this planned experimental work is to evaluate physio-chemical processes for 'seal' components and materials relevant to deep borehole disposal. These evaluations will encompass multi-laboratory efforts for the development of seals concepts and application of Thermal-Mechanical-Chemical (TMC) modeling work to assess barrier material interactions with subsurface fluids and other barrier materials, their stability at high temperatures, and the implications of these processes to the evaluation of thermal limits.

  6. An electromagnetic sounding experiment in Germany using the vertical gradient of geomagnetic variations observed in a deep borehole

    NASA Astrophysics Data System (ADS)

    Schmucker, Ulrich; Spitzer, Klaus; Steveling, Erich

    2009-09-01

    We have recorded for 13 d, geomagnetic variations simultaneously on the Earth's surface and in a borehole at 832 m depth straight below, with a sampling rate of 1 Hz. In addition, geoelectric variations were observed at the same site near Bad Königshofen in Frankonia, Germany. The penetrated moderately conductive Triassic sediments lie above highly resistive Permian deposits. A presumably crystalline basement begins at 1500-1900 m depth. The purpose of the experiment is to determine the skin effect of geomagnetic variations and to derive from it the equivalent to the magnetotelluric (MT) surface impedance, using the vertical gradient (VG) method of electromagnetic (EM) sounding. In this way, we were able to reproduce all four elements of the MT impedance tensor, except for an unexplained but consistent downward shift of VG phases against MT phases by roughly 15° for the two off-diagonal elements. Hence, our tensor evaluation goes beyond the common practice, to express the skin effect by a single VG transfer function in response to a layered structure. The otherwise good agreement of VG and MT results implies that at our test site, the MT impedance tensor is largely distortion-free and that, for example, its pronounced anisotropy should be regarded as a genuine characteristic of the EM response for a laterally non-uniform or possibly anisotropic deep structure. The drilling site lies within the range of a widespread induction anomaly. We have observed the resulting variations of the vertical magnetic component at the surface and in the borehole and found them to be identical. The thus established absence of a skin effect for the vertical component allows us to treat the sedimentary layer down to the depth of the borehole instrument as a thin sheet, and the pertinent thin-sheet approximation for EM induction forms the basis of our analysis. We have derived the required estimate of conductance from the skin effect of horizontal components, noting that this estimate

  7. Sensitivity Analysis on the Performance of Medium Deep Borehole Thermal Energy Storage Systems

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Bär, Kristian; Sass, Ingo

    2016-04-01

    Seasonal thermal energy storages using arrays of medium deep (400 m - 1500 m) borehole heat exchangers (BHE) have two main advantages over near surface (< 400 m) BHE storages. Medium deep borehole thermal energy storages (MD-BTES) have a lower thermal impact on shallow groundwater resources and require less surface area. However, the storage performance indicators like the efficiency, the storage capacity and the supplied fluid temperature of MD-BTES are unknown as such system has not been put into practice so far. To study the influence of various design and operation parameters on the storage performance, more than 240 numerical models of different MD-BTES systems were compared in a sensitivity analysis. Most importantly, the BHE length, the number of BHEs, the spacing between the BHEs, the inlet temperatures of the heat transfer fluid into the BHEs and the underground properties were varied. A simplified underground model was used and also a simplified operation procedure was applied for a period of 30 years of storage operation. The results show a strong dependency of the storage performance on the studied design and operation parameters as well as on the underground properties. In the best case, storage efficiency reaches over 80 % in the 30th year of operation, whereas poorly designed storage systems show efficiencies of less than 20 %.

  8. Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Vidal, Jeanne; Whitechurch, Hubert; Genter, Albert; Schmittbuhl, Jean; Baujard, Clément

    2015-04-01

    Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben Vidal J.1, Whitechurch H.1, Genter A.2, Schmittbuhl J.1, Baujard C.2 1 EOST, Université de Strasbourg 2 ES-Géothermie, Strasbourg The thermal regime of the Upper Rhine Graben (URG) is characterized by a series of geothermal anomalies on its French part near Soultz-sous-Forêts, Rittershoffen and in the surrounding area of Strasbourg. Sedimentary formations of these areas host oil field widely exploited in the past which exhibit exceptionally high temperature gradients. Thus, geothermal anomalies are superimposed to the oil fields which are interpreted as natural brine advection occurring inside a nearly vertical multi-scale fracture system cross-cutting both deep-seated Triassic sediments and Paleozoic crystalline basement. The sediments-basement interface is therefore very challenging for geothermal industry because most of the geothermal resource is trapped there within natural fractures. Several deep geothermal projects exploit local geothermal energy to use the heat or produce electricity and thus target permeable fractured rocks at this interface. In 1980, a geothermal exploration well was drilled close to Strasbourg down to the Permian sediments at 3220 m depth. Bottom hole temperature was estimated to 148°C but the natural flow rate was too low for an economic profitability (<7 L/s). Petrophysics and reservoir investigations based on core analysis revealed a low matrix porosity with fracture zones spatially isolated and sealed in the sandstone formations. Any stimulation operation was planned and the project was abandoned. The Soultz-sous-Forêts project, initiated in 1986, explored during more than 30 years the experimental geothermal site by drilling five boreholes, three of which extend to 5 km depth. They identified a temperature of 200° C at 5 km depth in the granitic basement but with a variable flow rate. Hydraulic and chemical stimulation operations were

  9. Borehole strainmeter measurements spanning the 2014, Mw6.0 South Napa Earthquake, California: The effect from instrument calibration

    USGS Publications Warehouse

    Langbein, John O.

    2015-01-01

    The 24 August 2014 Mw6.0 South Napa, California earthquake produced significant offsets on 12 borehole strainmeters in the San Francisco Bay area. These strainmeters are located between 24 and 80 km from the source and the observed offsets ranged up to 400 parts-per-billion (ppb), which exceeds their nominal precision by a factor of 100. However, the observed offsets of tidally calibrated strains differ by up to 130 ppb from predictions based on a moment tensor derived from seismic data. The large misfit can be attributed to a combination of poor instrument calibration and better modeling of the strain fit from the earthquake. Borehole strainmeters require in-situ calibration, which historically has been accomplished by comparing their measurements of Earth tides with the strain-tides predicted by a model. Although the borehole strainmeter accurately measure the deformation within the borehole, the long-wavelength strain signals from tides or other tectonic processes recorded in the borehole are modified by the presence of the borehole and the elastic properties of the grout and the instrument. Previous analyses of surface-mounted, strainmeter data and their relationship with the predicted tides suggest that tidal models could be in error by 30%. The poor fit of the borehole strainmeter data from this earthquake can be improved by simultaneously varying the components of the model tides up to 30% and making small adjustments to the point-source model of the earthquake, which reduces the RMS misfit from 130 ppb to 18 ppb. This suggests that relying on tidal models to calibrate borehole strainmeters significantly reduces their accuracy.

  10. Derivative-assisted classification of fractured zones crossing a deep borehole.

    PubMed

    Ji, Sung-Hoon; Lee, Dae Hyoung; Yeo, In Wook; Park, Kyoung-Woo; Koh, Yong-Kwon

    2014-01-01

    In this study, the derivative analysis using the derivative of drawdown with respect to log-time was utilized to determine candidates for hydraulic conductor domains (HCDs). At a 500-m deep borehole in the study site, the fractured rocks crossing the borehole were first classified in fractured and nonfractured zones by core logging and geophysical loggings, such as acoustic televiewing, density, and flow loggings. After conducting the hydraulic tests such as constant head withdrawal and recovery tests at the fractured zones and the nonfractured zones, the derivative analyses were carried out, of which the results were evaluated to determine the candidates for HCDs. For the nonfractured zones, the diagnostic plot has only a big hump indicating poor connection of the background fractures to the permeable geologic media, while those of the candidates for HCDs show various flow regimes. On the basis of these results, the candidates for HCDs among the fractured zones were determined. From discussion on the results, the combination of the spacing analysis and derivative analysis following a hydraulic test is recommended for determining the candidates for HCDs rather than other geophysical loggings.

  11. Task Order 22 – Engineering and Technical Support, Deep Borehole Field Test. AREVA Summary Review Report

    SciTech Connect

    Denton, Mark A.

    2016-01-19

    Under Task Order 22 of the industry Advisory and Assistance Services (A&AS) Contract to the Department of Energy (DOE) DE-NE0000291, AREVA has been tasked with providing assistance with engineering, analysis, cost estimating, and design support of a system for disposal of radioactive wastes in deep boreholes (without the use of radioactive waste). As part of this task order, AREVA was requested, through a letter of technical direction, to evaluate Sandia National Laboratory’s (SNL’s) waste package borehole emplacement system concept recommendation using input from DOE and SNL. This summary review report (SRR) documents this evaluation, with its focus on the primary input document titled: “Deep Borehole Field Test Specifications/M2FT-15SN0817091” Rev. 1 [1], hereafter referred to as the “M2 report.” The M2 report focuses on the conceptual design development for the Deep Borehole Field Test (DBFT), mainly the test waste packages (WPs) and the system for demonstrating emplacement and retrieval of those packages in the Field Test Borehole (FTB). This SRR follows the same outline as the M2 report, which allows for easy correlation between AREVA’s review comments, discussion, potential proposed alternatives, and path forward with information established in the M2 report. AREVA’s assessment focused on three primary elements of the M2 report: the conceptual design of the WPs proposed for deep borehole disposal (DBD), the mode of emplacement of the WP into DBD, and the conceptual design of the DBFT. AREVA concurs with the M2 report’s selection of the wireline emplacement mode specifically over the drill-string emplacement mode and generically over alternative emplacement modes. Table 5-1 of this SRR compares the pros and cons of each emplacement mode considered viable for DBD. The primary positive characteristics of the wireline emplacement mode include: (1) considered a mature technology; (2) operations are relatively simple; (3) probability of a

  12. Marine Seismic System(MSS) Deployment. Phase IV. Investigation of Techniques and Deployment Scenarios for Installation of Tri-Axial Seismometer in a Borehole in the Deep Ocean

    DTIC Science & Technology

    1983-05-31

    Demonstrate the baseline BIP drill string deployment techniques in deep water o Measure seismic signal and noise within a deep sea borehole o Record 5 days... deep ocean. UNCLASSIFIED/UNLIMITED DISTRIBUTION PREPARED BY: ROBERT L. WALLERSTEDT PROJECT ENGINEER GLOBAL MARINE DEVELOPMENT INC 2302 MARTIN...borehole in the deep ocean. UNCLASSIFIED/UNLIMITED DISTRIBUTION PREPARED BY: ROBERT L. WALLERSTEDT PROJECT ENGINEER GLOBAL MARINE DEVELOPMENT INC

  13. Deep Borehole Measurements for Characterizing the Magma/Hydrothermal System at Long Valley Caldera, CA

    SciTech Connect

    Carrrigan, Charles R.

    1989-03-21

    The Magma Energy Program of the Geothermal Technology Division is scheduled to begin drilling a deep (6 km) exploration well in Long Valley Caldera, California in 1989. The drilling site is near the center of the caldera which is associated with numerous shallow (5-7 km) geophysical anomalies. This deep well will present an unparalleled opportunity to test and validate geophysical techniques for locating magma as well as a test of the theory that magma is still present at drillable depths within the central portion of the caldera. If, indeed, drilling indicates magma, the geothermal community will then be afforded the unique possibility of examining the coupling between magmatic and hydrothermal regimes in a major volcanic system. Goals of planned seismic experiments that involve the well include the investigation of local crustal structure down to depths of 10 km as well as the determination of mechanisms for local seismicity and deformation. Borehole electrical and electromagnetic surveys will increase the volume and depth of rock investigated by the well through consideration of the conductive structure of the hydrothermal and underlying regimes. Currently active processes involving magma injection will be studied through observation of changes in pore pressure and strain. Measurements of in situ stress from recovered cores and hydraulic fracture tests will be used in conjunction with uplift data to determine those models for magmatic injection and inflation that are most applicable. Finally, studies of the thermal regime will be directed toward elucidating the coupling between the magmatic source region and the more shallow hydrothermal system in the caldera fill. To achieve this will require careful logging of borehole fluid temperature and chemistry. In addition, studies of rock/fluid interactions through core and fluid samples will allow physical characterization of the transition zone between hydrothermal and magmatic regimes.

  14. Invited Article: Deep Impact instrument calibration.

    PubMed

    Klaasen, Kenneth P; A'Hearn, Michael F; Baca, Michael; Delamere, Alan; Desnoyer, Mark; Farnham, Tony; Groussin, Olivier; Hampton, Donald; Ipatov, Sergei; Li, Jianyang; Lisse, Carey; Mastrodemos, Nickolaos; McLaughlin, Stephanie; Sunshine, Jessica; Thomas, Peter; Wellnitz, Dennis

    2008-09-01

    Calibration of NASA's Deep Impact spacecraft instruments allows reliable scientific interpretation of the images and spectra returned from comet Tempel 1. Calibrations of the four onboard remote sensing imaging instruments have been performed in the areas of geometric calibration, spatial resolution, spectral resolution, and radiometric response. Error sources such as noise (random, coherent, encoding, data compression), detector readout artifacts, scattered light, and radiation interactions have been quantified. The point spread functions (PSFs) of the medium resolution instrument and its twin impactor targeting sensor are near the theoretical minimum [ approximately 1.7 pixels full width at half maximum (FWHM)]. However, the high resolution instrument camera was found to be out of focus with a PSF FWHM of approximately 9 pixels. The charge coupled device (CCD) read noise is approximately 1 DN. Electrical cross-talk between the CCD detector quadrants is correctable to <2 DN. The IR spectrometer response nonlinearity is correctable to approximately 1%. Spectrometer read noise is approximately 2 DN. The variation in zero-exposure signal level with time and spectrometer temperature is not fully characterized; currently corrections are good to approximately 10 DN at best. Wavelength mapping onto the detector is known within 1 pixel; spectral lines have a FWHM of approximately 2 pixels. About 1% of the IR detector pixels behave badly and remain uncalibrated. The spectrometer exhibits a faint ghost image from reflection off a beamsplitter. Instrument absolute radiometric calibration accuracies were determined generally to <10% using star imaging. Flat-field calibration reduces pixel-to-pixel response differences to approximately 0.5% for the cameras and <2% for the spectrometer. A standard calibration image processing pipeline is used to produce archival image files for analysis by researchers.

  15. Deep borehole measurements for characterizing the magma/hydrothermal system at Long Valley Caldera, CA

    SciTech Connect

    Carrigan, C.R.

    1989-01-01

    The Magma Energy Program of the Geothermal Technology Division is scheduled to begin drilling a deep (6 km) exploration well in long Valley Caldera, California in 1989. The drilling site is near the center of the caldera which is associated with numerous shallow (5-7 km) geophysical anomalies. This deep well will present an unparalleled opportunity to test and validate geophysical techniques for locating magma as well as a test of the theory that magma is still present at drillable depths within the central portion of the caldera. If, indeed, drilling indicates magma, the geothermal community will then be afforded the unique possibility of examining the coupling between magmatic and hydrothermal regimes in a major volcanic system. Goals of planned seismic experiments that involve the well include the investigation of local crystal structure down to depths of 10 km as well as the determination of mechanisms for local seismicity and deformation. Borehole electrical and electromagnetic surveys will increase the volume and depth of rock investigated by the well through consideration of the conductive structure of the hydrothermal and underlying regimes. 9 refs., 5 figs.

  16. Preliminary results from hot-water drilling and borehole instrumentation on Store Glacier, West Greenland

    NASA Astrophysics Data System (ADS)

    Doyle, S. H.; Christoffersen, P.; Hubbard, B. P.; Young, T. J.; Hofstede, C. M.; Box, J.; Todd, J.; Bougamont, M. H.; Hubbard, A.

    2015-12-01

    As part of the Subglacial Access and Fast Ice Research Experiment (SAFIRE) pressurised hot water was used to drill four 603-616 m-long boreholes to the bed of the Greenland Ice Sheet at a site located 30 km from the calving front of fast-flowing, marine-terminating Store Glacier (70° N, ~1000 m elevation). Despite the boreholes freezing within hours, 4 wired sensor strings were successfully deployed in three of the boreholes. These included a thermistor string to obtain the englacial temperature profile installed in the same borehole as a string of tilt sensors to measure borehole deformation, and two sets of water pressure, electrical conductivity and turbidity sensors installed just above the bed in separate, adjacent boreholes. The boreholes made a strong hydrological connection to the bed during drilling, draining rapidly to ~80 m below the ice surface. The connection of subsequent boreholes was observed as a perturbation in water pressure and temperature recorded in neighbouring boreholes, indicating an effective hydrological sub- or en-glacial connection between them. The sensors, which were all connected to loggers at the surface by cables, operated for between ~30 and 80+ days before indications suggest that the cables stretched and then snapped - with the lowermost sensors failing first. The records obtained from these sensors reveal (i) high and increasing water pressure varying diurnally close to overburden albeit of a small magnitude (~ 0.3 m H2O), (ii) a minimum extrapolated englacial temperature of -21°C with above-freezing temperatures at the bed, and (iv) high rates of internal deformation and strain increasing towards the bed as evinced by increasing tilt with depth. These borehole observations are complemented by GPS measurements of ice motion, meteorological data, and seismic and radar surveys.

  17. Seismic Wave Velocities in Deep Sediments in Poland: Borehole and Refraction Data Compilation

    NASA Astrophysics Data System (ADS)

    Polkowski, Marcin; Grad, Marek

    2015-06-01

    Sedimentary cover has significant influence on seismic wave travel times and knowing its structure is of great importance for studying deeper structures of the Earth. Seismic tomography is one of the methods that require good knowledge of seismic velocities in sediments and unfortunately by itself cannot provide detailed information about distribution of seismic velocities in sedimentary cover. This paper presents results of P-wave velocity analysis in the old Paleozoic sediments in area of Polish Lowland, Folded Area, and all sediments in complicated area of the Carpathian Mountains in Poland. Due to location on conjunction of three major tectonic units — the Precambrian East European Craton, the Paleozoic Platform of Central and Western Europe, and the Alpine orogen represented by the Carpathian Mountains the maximum depth of these sediments reaches up to 25 000 m in the Carpathian Mountains. Seismic velocities based on 492 deep boreholes with vertical seismic profiling and a total of 741 vertical seismic profiles taken from 29 seismic refraction profiles are analyzed separately for 14 geologically different units. For each unit, velocity versus depth relations are approximated by second or third order polynomials.

  18. Fracture network characteristics of a deep borehole in the Table Mountain Group (TMG), South Africa

    NASA Astrophysics Data System (ADS)

    Lin, L.; Jia, H.; Xu, Y.

    2007-11-01

    Core samples from an 800-m deep borehole at the Rietfontein Farm, 10 km west of Graafwater, Western Cape, South Africa, were examined and interpreted for the hydrogeological significance of the Table Mountain Group (TMG) in the area. A suite of fracture data was collected and analysed to characterize the aquifer and conceptualize flow in the vicinity of the hole. Based on these data, the hydraulic conductivity, and density and coating intensity (due to precipitation) of the fractures against depth were computed. The dependence of fracture density on depth is very weak, while the intensity of fracture coatings is closely linked to the distribution of hydraulically active fractures that represents the maximum number of fractures currently open to groundwater flow. Four scenarios of depth ranges reflecting the development of hydraulically active fractures are proposed as a depth model of groundwater flow, implying that the majority of groundwater exists above 400 m depth. The top of the hydraulically inactive fracture zone clearly indicates that no groundwater flow could take place below a depth of about 570 m. The depth model gives a better understanding of the properties of the aquifers in the area and improves conceptual models, considering the lower limit of aquifer depth in particular.

  19. Borehole data to model caldera unrest: the example of Campi Flegrei Deep Drilling Project

    NASA Astrophysics Data System (ADS)

    Carlino, S.; De Natale, G.; Somma, R.; Troise, C.; Kilburn, C.; Tramelli, A.; Troiano, A.; Di Guiseppe, M.; Piochi, M.

    2013-12-01

    To understand the genesis and the physics governing the volcanic area of Campi Flegrei (Southern Italy) a drilling project started on July 2012, in the framework of the International Continental Scientific Drilling Program (ICDP). The Campi Flegrei Deep Drilling Project (CFDDP) schedules two phases: a pilot well, 500 m deep (I phase), and a 3.5 km deeper well (II planned phase), both located within the active resurgent caldera of Campi Flegrei, west to the city of Naples. In this framework new filed data from pilot borehole have been recorded by using a novel procedure of Leak Off Test (LOT). The test has been performed in order to obtain, before the onset of rock failure (which furnishes indication of the minimum principal stress value), a reliable value of in situ permeability. These new data, particularly the actual permeability, are fundamental to calibrate the caldera unrest model at Campi Flegrei and to advance in the quantitative analysis of volcanoes behavior for the assessment of possible future eruptive scenarios. Calderas worldwide are, in fact, characterized by frequent episodes of unrest which, only in few cases, culminate with eruption. This behavior is generally explained in terms of magma intrusion and/or disturbance of geothermal fluids in the shallow crust, which are both source of ground deformations and seismicity. A major goal is, thus, to determine the relative contribution of each process, because the potential for eruptions significantly enhanced if magma movements emerges as the primary component. Here we report the new results of the LOT and its implication in the modeling of Campi Flegrei caldera unrest.

  20. A new approach to hydrologic testing during drilling of a deep borehole and its application to the Swedish scientific deep drilling COSC project

    NASA Astrophysics Data System (ADS)

    Tsang, C. F.; Rosberg, J. E.; Juhlin, C.; Niemi, A. P.; Doughty, C.; Dobson, P. F.; Birkholzer, J. T.

    2015-12-01

    Drilling of a deep borehole does not normally allow for hydrogeologic testing during the drilling period. The only time hydraulic tests are performed is when drilling encounters a large-transmissivity zone as evidenced by a large loss (or high return) of drilling fluid. The present paper proposes a new approach, that of conducting Flowing Fluid Electric Conductivity (FFEC) logging during the drilling period, with negligible impact on drilling schedule, yet providing important and accurate information on depth locations of both high- and low-transmissivity zones and their in-situ hydraulic conductivities. The information can be used to guide downhole fluid sampling and post-drilling detailed testing of the borehole. The proposed method has been applied to the drilling of a 2500-m borehole at Åre, Northern Sweden, which was initiated on April 28 and completed on August 26, 2014, with 99% core recovery. This borehole, named COSC-1, was drilled as part of the Swedish Scientific Deep Drilling COSC project, where COSC stands for Collisional Orogeny in the Scandinavian Caledonides. The project is a multidisciplinary project with the aim of gaining a deeper understanding of mountain belt dynamics in the Scandinavian Caledonides. Scientific investigations which include a range of topics from studies of ancient orogeny to the present-day hydrological cycle are conducted under six working groups: (1) tectonics, (2) geophysics, (3) geothermics, (4) hydrology, (5) microbiology and (6) drilling management and technology. In this talk, the new approach to hydrologic testing during the drilling period will be described and its application to the drilling of COSC-1 borehole presented. Results show that from 300 m to the borehole bottom at 2500 m, there are eight hydraulically active zones or fractures in COSC-1, with very low transmissivity values ranging over one order of magnitude.

  1. Self-propelled instrumented deep drilling system

    NASA Technical Reports Server (NTRS)

    Myrick, Thomas M. (Inventor); Gorevan, Stephen (Inventor)

    2006-01-01

    An autonomous subsurface drilling device has spaced-apart forward and rearward feet sections coupled to an axial thruster mechanism between them to operate using an inchworm method of mobility. In one embodiment, forward and rearward drill sections are carried on forward and rearward feet sections for drilling into material in the borehole in both forward and rearward directions, to allow the device to maneuver in any direction underground. In another embodiment, a front drill section has a drill head for cutting into the borehole and conveying cuttings through a center spine tube to an on-board depository for the cuttings. The feet sections of the device employ a foot scroll drive unit to provide radial thrust and synchronous motion to the feet for gripping the borehole wall. The axial thrust mechanism has a tandem set of thrusters in which the second thruster is used to provide the thrust needed for drilling, but not walking. A steering mechanism composed of concentric inner and outer eccentric rings provided with the rearward feet section allow small corrections in both direction and magnitude to the drilling direction as drilling commences.

  2. Hydrologic testing during drilling: application of the flowing fluid electrical conductivity (FFEC) logging method to drilling of a deep borehole

    NASA Astrophysics Data System (ADS)

    Tsang, Chin-Fu; Rosberg, Jan-Erik; Sharma, Prabhakar; Berthet, Theo; Juhlin, Christopher; Niemi, Auli

    2016-09-01

    Drilling of a deep borehole does not normally allow for hydrologic testing during the drilling period. It is only done when drilling experiences a large loss (or high return) of drilling fluid due to penetration of a large-transmissivity zone. The paper proposes the possibility of conducting flowing fluid electrical conductivity (FFEC) logging during the drilling period, with negligible impact on the drilling schedule, yet providing important information on depth locations of both high- and low-transmissivity zones and their hydraulic properties. The information can be used to guide downhole fluid sampling and post-drilling detailed testing of the borehole. The method has been applied to the drilling of a 2,500-m borehole at Åre, central Sweden, firstly when the drilling reached 1,600 m, and then when the drilling reached the target depth of 2,500 m. Results unveil eight hydraulically active zones from 300 m down to borehole bottom, with depths determined to within the order of a meter. Further, the first set of data allows the estimation of hydraulic transmissivity values of the six hydraulically conductive zones found from 300 to 1,600 m, which are very low and range over one order of magnitude.

  3. Experimental Investigations Regarding the Use of Sand as an Inhibitor of Air Convection in Deep Seismic Boreholes

    USGS Publications Warehouse

    Holcomb, L. Gary; Sandoval, Leo; Hutt, Bob

    1998-01-01

    the level of tilt noise in long period data. However, low levels of tilt noise persisted even at great depth; this noise was caused by air convection in the vault in which the sensors were installed. Over the years, methods were developed to control the air motion with mechanical barriers (boxes) around the sensors and by stratifying (creating a situation in which the air temperature increases with height) the air in the vault near the seismometer. These methods decreased tilt noise in deep mines to very low levels. However, deep mines, that are economically and environmentally suitable and accessible to seismology, are not plentiful and are not evenly distributed over the earth's surface. Therefore, the borehole deployable Teledyne Geotech KS-36000 and later the KS-54000 sensor systems were developed to fulfill the need for instruments that could be installed at depth wherever high quality long period data was desired. Early in the development program, it became evident to the Teledyne Geotech personnel that air convection within the borehole was going to be a significant problem in KS deployments. Experimental and theoretical investigations conducted by Teledyne Geotech (see Douze and Sherwin, 1975, and Sherwin and Cook, 1976) produced a list of recommended installation procedures for reducing the effects of air convection. These procedures consisted of wrapping the sensor in a relatively thin layer of foam insulation, filling the free space volume in the vicinity of the centralizer-bail assembly with foam insulation, and the installation of styrofoam hole plugs immediately above the cable strain relief assembly at the top of the sensor package and at the top of the borehole. This technology has performed quite satisfactorily for over 20 years but evidence of tilt noise in the system output has persisted throughout the KS deployment program (the evidence was that the horizontal components were usually noisier than the vertical components) even in deep b

  4. Scalable statistics of correlated random variables and extremes applied to deep borehole porosities

    NASA Astrophysics Data System (ADS)

    Guadagnini, A.; Neuman, S. P.; Nan, T.; Riva, M.; Winter, C. L.

    2015-02-01

    We analyze scale-dependent statistics of correlated random hydrogeological variables and their extremes using neutron porosity data from six deep boreholes, in three diverse depositional environments, as example. We show that key statistics of porosity increments behave and scale in manners typical of many earth and environmental (as well as other) variables. These scaling behaviors include a tendency of increments to have symmetric, non-Gaussian frequency distributions characterized by heavy tails that decay with separation distance or lag; power-law scaling of sample structure functions (statistical moments of absolute increments) in midranges of lags; linear relationships between log structure functions of successive orders at all lags, known as extended self-similarity or ESS; and nonlinear scaling of structure function power-law exponents with function order, a phenomenon commonly attributed in the literature to multifractals. Elsewhere we proposed, explored and demonstrated a new method of geostatistical inference that captures all of these phenomena within a unified theoretical framework. The framework views data as samples from random fields constituting scale mixtures of truncated (monofractal) fractional Brownian motion (tfBm) or fractional Gaussian noise (tfGn). Important questions not addressed in previous studies concern the distribution and statistical scaling of extreme incremental values. Of special interest in hydrology (and many other areas) are statistics of absolute increments exceeding given thresholds, known as peaks over threshold or POTs. In this paper we explore the statistical scaling of data and, for the first time, corresponding POTs associated with samples from scale mixtures of tfBm or tfGn. We demonstrate that porosity data we analyze possess properties of such samples and thus follow the theory we proposed. The porosity data are of additional value in revealing a remarkable cross-over from one scaling regime to another at certain

  5. Extreme value statistics of scalable data exemplified by neutron porosities in deep boreholes

    NASA Astrophysics Data System (ADS)

    Guadagnini, A.; Neuman, S. P.; Nan, T.; Riva, M.; Winter, C. L.

    2014-10-01

    Spatial statistics of earth and environmental (as well as many other) data tend to vary with scale. Common manifestations of scale-dependent statistics include a tendency of increments to have symmetric, non-Gaussian frequency distributions characterized by heavy tails that decay with separation distance or lag; power-law scaling of sample structure functions (statistical moments of absolute increments) in midranges of lags; linear relationships between log structure functions of successive orders at all lags, known as extended self-similarity or ESS; and nonlinear scaling of structure function power-law exponents with function order, a phenomenon commonly attributed in the literature to multifractals. Elsewhere we proposed, explored and demonstrated a new method of geostatistical inference that captures all of these phenomena within a unified theoretical framework. The framework views data as samples from random fields constituting scale-mixtures of truncated (monofractal) fractional Brownian motion (tfBm) or fractional Gaussian noise (tfGn). Important questions not addressed in previous studies concern the distribution and statistical scaling of extreme incremental values. Of special interest in hydrology (and many other areas) are statistics of absolute increments exceeding given thresholds, known as peaks over thresholds or POTs. In this paper we explore for the first time the statistical behavior of POTs associated with samples from scale-mixtures of tfBm or tfGn. We are fortunate to have at our disposal thousands of neutron porosity values from six deep boreholes, in three diverse depositional environments, which we show possess the properties of such samples thus following the theory we proposed. The porosity data are of additional value in revealing a remarkable transition from one scaling regime to another at certain lags. The phenomena we uncover are of fundamental importance for the analysis of fluid flow and solute as well as particulate transport in

  6. First Microbial Community Assessment of Borehole Fluids from the Deep Underground Science and Engineering Laboratory (DUSEL)

    NASA Astrophysics Data System (ADS)

    Moser, D. P.; Anderson, C.; Bang, S.; Jones, T. L.; Boutt, D.; Kieft, T.; Sherwood Lollar, B.; Murdoch, L. C.; Pfiffner, S. M.; Bruckner, J.; Fisher, J. C.; Newburn, J.; Wheatley, A.; Onstott, T. C.

    2010-12-01

    Fluid and gas samples were collected from two flowing boreholes at the 4100 (1,250 m) and 4850 ft (1478 m) levels of the former Homestake Gold Mine in Lead, South Dakota. Service- and flood water samples were also collected as comparative benchmarks. With a maximum depth of 8,000 ft, (2,438 m), this mine currently hosts the Sanford Laboratory and is the proposed location for the US Deep Underground Science and Engineering Laboratory (DUSEL). The uncased 4100L hole is a legacy of mining; whereas, the cased 4850 hole was drilled in 2009 in support of large cavity construction. Both were packered or valved to exclude mine air and sampled anaerobically using aseptic technique. Physical measurements, aquatic and dissolved gas chemistry, cell counts, and microbial community assessments (SSU rRNA libraries) were performed on all samples. This study represents the first at Sanford Lab/DUSEL specifically focused on the deep biosphere rather than mine microbiology. Fluids from the two holes differed markedly, with that from 4100L being characterized by NaHCO3 and 4850 by Na2SO4. pH values of 8.2 vs. 7.5, conductivities (μS) of 1790 vs. 7667 and alkalinities (mg/L) of 767 vs. 187 were obtained from 4100L and 4850, respectively. As expected, the deeper 4850L hole had the higher temperature (38 vs. 30 oC). Neither had measureable nitrate, but both had similar dissolved organic C (DOC) concentrations (0.8 vs. 0.9 mg/L). Sulfate was present at 337 vs. 4,470 mg/L in 4100L and 4850L. Major dissolved gases were N2 (91 and 81 vol%), O2 (12 and 16 vol%) and CH4 (0.07 and 3.35 vol%) in 4100L and 4850L. The δ13C of CH4 was -51 and -56.7 permil in 4100L and 4850, respectively. The uncorrected 14C age of DIC was calculated at 25,310 (+/- 220) and 47,700 (+/-3,100) years for the two fluids. Cell counts were 5.9e3 and 2.01e5 in 4100L and 4850. Microbial community structure was diverse in both holes and distinct from that of service water. A large proportion of rRNA library clones were

  7. The Deep Space Network: A Radio Communications Instrument for Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.; Stelzried, C. T.; Noreen, G. K.; Slobin, S. D.; Petty, S. M.; Trowbridge, D. L.; Donnelly, H.; Kinman, P. W.; Armstrong, J. W.; Burow, N. A.

    1983-01-01

    The primary purpose of the Deep Space Network (DSN) is to serve as a communications instrument for deep space exploration, providing communications between the spacecraft and the ground facilities. The uplink communications channel provides instructions or commands to the spacecraft. The downlink communications channel provides command verification and spacecraft engineering and science instrument payload data.

  8. Petrophysical properties, mineralogy, fractures, and flow tests in 25 deep boreholes at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Nelson, Philip H.; Kibler, Joyce E.

    2014-01-01

    As part of a site investigation for the disposal of radioactive waste, numerous boreholes were drilled into a sequence of Miocene pyroclastic flows and related deposits at Yucca Mountain, Nevada. This report contains displays of data from 25 boreholes drilled during 1979–1984, relatively early in the site investigation program. Geophysical logs and hydrological tests were conducted in the boreholes; core and cuttings analyses yielded data on mineralogy, fractures, and physical properties; and geologic descriptions provided lithology boundaries and the degree of welding of the rock units. Porosity and water content were computed from the geophysical logs, and porosity results were combined with mineralogy from x-ray diffraction to provide whole-rock volume fractions. These data were composited on plates and used by project personnel during the 1990s. Improvements in scanning and computer technology now make it possible to publish these displays.

  9. Stochastic Representation and Uncertainty Assessment of a Deep Geothermal Reservoir Using Cross-Borehole ERT: A 3D Synthetic Case

    NASA Astrophysics Data System (ADS)

    Brunet, P.; Gloaguen, E.

    2014-12-01

    Designing and monitoring of geothermal systems is a complex task which requires a multidisciplinary approach. Deep geothermal reservoir models are prone to greater uncertainty, with a lack of direct data and lower resolution of surface geophysical methods. However, recent technical advances have enabled the potential use of permanent downhole vertical resistivity arrays for monitoring fluid injection. As electrical resistivity is sensitive to temperature changes, such data could provide valuable information for deep geothermal reservoir characterization. The objective of this study is to assess the potential of time-lapse cross-borehole ERT to constrain 3D realizations of geothermal reservoir properties. The synthetic case of a permeable geothermal reservoir in a sedimentary basin was set up, as a confined deep and saline sandstone aquifer with intermediate reservoir temperatures (150ºC), depth (1 km) and 30m thickness. The reservoir permeability distribution is heterogeneous, as the result of a fluvial depositional environment. The ERT monitoring system design is a triangular arrangement of 3 wells at 150 m spacing, including 1 injection and 1 extraction well. The optimal number and spacing of electrodes of the ERT array design is site-specific and has been assessed through a sensibility study. Dipole-dipole and pole-pole electrode configurations were used. The study workflow was the following: 1) Generation of a reference reservoir model and 100 stochastic realizations of permeability; 2) Simulation of saturated single-phase flow and heat transport of reinjection of cooled formation fluid (50ºC) with TOUGH2 software; 3) Time-lapse forward ERT modeling on the reference model and all realizations (observed and simulated apparent resistivity change); 4) heuristic optimization on ERT computed and calculated data. Preliminary results show significant reduction of parameter uncertainty, hence realization space, with assimilation of cross-borehole ERT data. Loss in

  10. The Subglacial Access and Fast Ice Research Experiment (SAFIRE): 2. Preliminary outcomes from hot-water drilling and borehole instrumentation on Store Glacier, West Greenland

    NASA Astrophysics Data System (ADS)

    Doyle, Samuel; Hubbard, Bryn; Christoffersen, Poul; Young, Tun Jan; Hofstede, Coen; Todd, Joe; Bougamont, Marion; Hubbard, Alun

    2015-04-01

    As part of the SAFIRE research programme, pressurised hot water was used to drill four 603-616 m-long boreholes to the bed of the Greenland Ice Sheet at a site located 30 km from the calving front of marine-terminating Store Glacier (70° N, ~1000 m elevation). Despite the boreholes freezing within hours, 4 wired sensor strings were successfully deployed in three of the boreholes. These included a thermistor string to obtain the englacial temperature profile installed in the same borehole as a string of tilt sensors to measure borehole deformation, and two sets of water pressure, electrical conductivity and turbidity sensors installed just above the bed in separate, adjacent boreholes. The boreholes made a strong hydrological connection to the bed during drilling, draining rapidly to ~80 m below the ice surface. The connection of subsequent boreholes was observed as a perturbation in water pressure and temperature recorded in neighbouring boreholes, indicating an effective hydrological sub- or en-glacial connection between them. The short (week long) records obtained from these sensors in summer 2014 tentatively reveal (i) water pressure varying diurnally close to overburden albeit of a small magnitude (~0.3 m H2O), (ii) a minimum extrapolated englacial temperature of -21° C, (iii) and thermistors in the lowest 10 m of the borehole recorded temperatures above the pressure melting point indicating the presence of water. Data loggers were left running and longer records should become available in the near future. Differential drilling and instrument installation depths together with observations of discrete, diurnal turbidity events provisionally suggest the presence of sediment at the bed. These preliminary borehole observations will be complemented by GPS measurements of ice motion, meteorological data, and seismic and radar surveys to be undertaken over the next two years.

  11. A Green's function approach for assessing the thermal disturbance caused by drilling deep boreholes in rock or ice

    USGS Publications Warehouse

    Clow, Gary D.

    2015-01-01

    A knowledge of subsurface temperatures in sedimentary basins, fault zones, volcanic environments and polar ice sheets is of interest for a wide variety of geophysical applications. However, the process of drilling deep boreholes in these environments to provide access for temperature and other measurements invariably disturbs the temperature field around a newly created borehole. Although this disturbance dissipates over time, most temperature measurements are made while the temperature field is still disturbed. Thus, the measurements must be ‘corrected’ for the drilling-disturbance effect if the undisturbed temperature field is to be determined. This paper provides compact analytical solutions for the thermal drilling disturbance based on 1-D (radial) and 2-D (radial and depth) Green's functions (GFs) in cylindrical coordinates. Solutions are developed for three types of boundary conditions (BCs) at the borehole wall: (1) prescribed temperature, (2) prescribed heat flux and (3) a prescribed convective condition. The BC at the borehole wall is allowed to vary both with depth and time. Inclusion of the depth dimension in the 2-D solution allows vertical heat-transfer effects to be quantified in situations where they are potentially important, that is, near the earth's surface, at the bottom of a well and when considering finite-drilling rates. The 2-D solution also includes a radial- and time-dependent BC at the earth's surface to assess the impact of drilling-related infrastructure (drilling pads, mud pits, permanent shelters) on the subsurface temperature field. Latent-heat effects due to the melting and subsequent refreezing of interstitial ice while drilling a borehole through ice-rich permafrost can be included in the GF solution as a moving-plane heat source (or sink) located at the solid–liquid interface. Synthetic examples are provided illustrating the 1-D and 2-D GF solutions. The flexibility of the approach allows the investigation of thermal

  12. A Green's function approach for assessing the thermal disturbance caused by drilling deep boreholes in rock or ice

    NASA Astrophysics Data System (ADS)

    Clow, Gary D.

    2015-12-01

    A knowledge of subsurface temperatures in sedimentary basins, fault zones, volcanic environments and polar ice sheets is of interest for a wide variety of geophysical applications. However, the process of drilling deep boreholes in these environments to provide access for temperature and other measurements invariably disturbs the temperature field around a newly created borehole. Although this disturbance dissipates over time, most temperature measurements are made while the temperature field is still disturbed. Thus, the measurements must be `corrected' for the drilling-disturbance effect if the undisturbed temperature field is to be determined. This paper provides compact analytical solutions for the thermal drilling disturbance based on 1-D (radial) and 2-D (radial and depth) Green's functions (GFs) in cylindrical coordinates. Solutions are developed for three types of boundary conditions (BCs) at the borehole wall: (1) prescribed temperature, (2) prescribed heat flux and (3) a prescribed convective condition. The BC at the borehole wall is allowed to vary both with depth and time. Inclusion of the depth dimension in the 2-D solution allows vertical heat-transfer effects to be quantified in situations where they are potentially important, that is, near the earth's surface, at the bottom of a well and when considering finite-drilling rates. The 2-D solution also includes a radial- and time-dependent BC at the earth's surface to assess the impact of drilling-related infrastructure (drilling pads, mud pits, permanent shelters) on the subsurface temperature field. Latent-heat effects due to the melting and subsequent refreezing of interstitial ice while drilling a borehole through ice-rich permafrost can be included in the GF solution as a moving-plane heat source (or sink) located at the solid-liquid interface. Synthetic examples are provided illustrating the 1-D and 2-D GF solutions. The flexibility of the approach allows the investigation of thermal drilling

  13. The deep space network, volume 18. [Deep Space Instrumentation Facility, Ground Communication Facility, and Network Control System

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Network Control System are described.

  14. The 1.1-Ga Midcontinent Rift System, central North America: sedimentology of two deep boreholes, Lake Superior region

    NASA Astrophysics Data System (ADS)

    Ojakangas, Richard W.; Dickas, Albert B.

    2002-03-01

    The Midcontinent Rift System (MRS) of central North America is a 1.1-Ga, 2500-km long structural feature that has been interpreted as a triple-junction rift developed over a mantle plume. As much as 20 km of subaerial lava flows, mainly flood basalts, are overlain by as much as 10 km of sedimentary rocks that are mostly continental fluvial red beds. This rock sequence, known as the Keweenawan Supergroup, has been penetrated by a few deep boreholes in the search for petroleum. In this paper, two deep boreholes in the Upper Peninsula of Michigan are described in detail for the first time. Both the Amoco Production #1-29R test, herein referred to as the St. Amour well, and the nearby Hickey Creek well drilled by Cleveland Cliffs Mining Services, were 100% cored. The former is 7238 ft (2410 m) deep and the latter is 5345 ft (1780 m) deep. The entirety of the stratigraphic succession of the Hickey Creek core correlates very well with the upper portion of the St. Amour core, as determined by core description and point-counting of 43 thin sections selected out of 100 studied thin sections. Two Lower Paleozoic units and two Keweenawan red bed units—the Jacobsville Sandstone and the underlying Freda Sandstone—are described. The Jacobsville is largely a feldspatholithic sandstone and the Freda is largely a lithofeldspathic sandstone. Below the Freda, the remaining footage of the St. Amour core consists of a thick quartzose sandstone unit that overlies a heterogenous unit of intercalated red bed units of conglomerate, sandstone, siltstone, and shale; black shale; individual basalt flows; and a basal ignimbritic rhyolite. This lower portion of the St. Amour core presents an enigma, as it correlates very poorly with other key boreholes located to the west and southwest. While a black shale sequence is similar to the petroleum-bearing Nonesuch Formation farther west, there is no conglomerate unit to correlate with the Copper Harbor Conglomerate. Other key boreholes are

  15. High Temperature Logging and Monitoring Instruments to Explore and Drill Deep into Hot Oceanic Crust.

    NASA Astrophysics Data System (ADS)

    Denchik, N.; Pezard, P. A.; Ragnar, A.; Jean-Luc, D.; Jan, H.

    2014-12-01

    Drilling an entire section of the oceanic crust and through the Moho has been a goal of the scientific community for more than half of a century. On the basis of ODP and IODP experience and data, this will require instruments and strategies working at temperature far above 200°C (reached, for example, at the bottom of DSDP/ODP Hole 504B), and possibly beyond 300°C. Concerning logging and monitoring instruments, progress were made over the past ten years in the context of the HiTI ("High Temperature Instruments") project funded by the european community for deep drilling in hot Icelandic geothermal holes where supercritical conditions and a highly corrosive environment are expected at depth (with temperatures above 374 °C and pressures exceeding 22 MPa). For example, a slickline tool (memory tool) tolerating up to 400°C and wireline tools up to 300°C were developed and tested in Icelandic high-temperature geothermal fields. The temperature limitation of logging tools was defined to comply with the present limitation in wireline cables (320°C). As part of this new set of downhole tools, temperature, pressure, fluid flow and casing collar location might be measured up to 400°C from a single multisensor tool. Natural gamma radiation spectrum, borehole wall ultrasonic images signal, and fiber optic cables (using distributed temperature sensing methods) were also developed for wireline deployment up to 300°C and tested in the field. A wireline, dual laterolog electrical resistivity tool was also developed but could not be field tested as part of HiTI. This new set of tools constitutes a basis for the deep exploration of the oceanic crust in the future. In addition, new strategies including the real-time integration of drilling parameters with modeling of the thermo-mechanical status of the borehole could be developed, using time-lapse logging of temperature (for heat flow determination) and borehole wall images (for hole stability and in-situ stress determination

  16. 3D reflection seismic imaging at the 2.5 km deep COSC-1 scientific borehole, central Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Hedin, Peter; Almqvist, Bjarne; Berthet, Théo; Juhlin, Christopher; Buske, Stefan; Simon, Helge; Giese, Rüdiger; Krauß, Felix; Rosberg, Jan-Erik; Alm, Per-Gunnar

    2016-10-01

    The 2.5 km deep scientific COSC-1 borehole (ICDP 5054-1-A) was successfully drilled with nearly complete core recovery during spring and summer of 2014. Downhole and on-core measurements through the targeted Lower Seve Nappe provide a comprehensive data set. An observed gradual increase in strain below 1700 m, with mica schists and intermittent mylonites increasing in frequency and thickness, is here interpreted as the basal thrust zone of the Lower Seve Nappe. This high strain zone was not fully penetrated at the total drilled depth and is thus greater than 800 m in thickness. To allow extrapolation of the results from downhole logging, core analysis and other experiments into the surrounding rock and to link these with the regional tectonic setting and evolution, three post-drilling high-resolution seismic experiments were conducted in and around the borehole. One of these, the first 3D seismic reflection land survey to target the nappe structures of the Scandinavian Caledonides, is presented here. It provides new information on the 3D geometry of structures both within the drilled Lower Seve Nappe and underlying rocks down to at least 9 km. The observed reflectivity correlates well with results from the core analysis and downhole logging, despite challenges in processing. Reflections from the uppermost part of the Lower Seve Nappe have limited lateral extent and varying dips, possibly related to mafic lenses or boudins of variable character within felsic rock. Reflections occurring within the high strain zone, however, are laterally continuous over distances of a kilometer or more and dip 10-15° towards the southeast. Reflections from structures beneath the high strain unit and the COSC-1 borehole can be followed through most of the seismic volume down to at least 9 km and have dips of varying degree, mainly in the east-west thrust direction of the orogen.

  17. Preliminary geotechnical evaluation of deep borehole facilities for nuclear waste disposal in shales

    SciTech Connect

    Nataraj, M.S. New Orleans Univ., LA . Dept. of Civil Engineering)

    1991-01-01

    This study is concerned with a preliminary engineering evaluation of borehole facilities for nuclear waste disposal in shales. Some of the geotechnical properties of Pierre, Rhinestreet, and typical illite shale have been collected. The influence of a few geotechnical properties on strength and deformation of host material is briefly examined. It appears that Pierre shale is very unstable and requires support to prevent collapse. Typical illite shale is more stable than Rhinestreet shale, although it undergoes relatively more deformation. 16 refs., 5 figs., 3 tabs.

  18. Venting formation fluids from deep-sea boreholes in a ridge flank setting: ODP Sites 1025 and 1026

    NASA Astrophysics Data System (ADS)

    Wheat, C. Geoffrey; Jannasch, Hans W.; Kastner, Miriam; Plant, Josh N.; Decarlo, Eric H.; Lebon, Geoff

    2004-08-01

    During ODP Leg 168, two of ten boreholes, ODP Holes 1025C and 1026B, were cased through the sediment section, penetrated basaltic crust that is overpressured, and sealed. In 1999 and 2000 the seals were removed, allowing crustal formation fluids to vent and be sampled. The composition of these fluids is compared to those of basal deep-sea pore waters, which have been the basis for estimating geochemical fluxes from low-temperature ridge flank hydrothermal systems. Estimates for the composition of the major ions in formation fluids based on basal pore waters are within 5% of the values measured in borehole fluids. Similar comparisons for minor and trace elements are not as good; some are reactive in the sediment section, resulting in large uncertainties in the pore water extrapolation, while others are influenced by a variety of contaminants, including steel, grease, drilling muds, and basal sediment. Evidence for contamination includes high dissolved and particulate concentrations of several metals (e.g., Fe, Cu, Co, Zn, and Pb) and measurable changes in concentration during the past four years in response to reaction with basal sediment. This new confidence in estimating the primary composition of formation fluids, coupled with advances in thermodynamic and kinetic models, reveals the possibility of anhydrite precipitation in ridge flank hydrothermal systems at temperatures of ˜70°C. Such new insights allow us to address the timing and conditions under which seawater-crustal reactions occur, leading to more accurate models of crustal evolution.

  19. Analysis of fractures from borehole televiewer logs in a 500m deep hole at Xiaguan, Yunnan province, Southwest China

    USGS Publications Warehouse

    Zhai, Qingshan; Springer, J.E.; Zoback, M.D.

    1990-01-01

    Fractures from a 500 m deep hole in the Red River fault zone were analyzed using an ultrasonic borehole televiewer. Four hundred and eighty individual fractures were identified between 19 m and 465 m depth. Fracture frequency had no apparent relation to the major stratigraphic units and did not change systematically with depth. Fracture orientation, however, did change with stratigraphic position. The borehole intersected 14 m of Cenozoic deposits, 363 m of lower Ordovician clastic sediments, and 106 m of older ultramafic intrusions. The clastic sequence was encountered again at a depth of 484 m, suggesting a large fault displacement. Fractures in the top 162 m of the sedimentary section appear randomly distributed. Below that depth, they are steeply dipping with northerly and north-westerly strikes, parallel to the major active faults in the region. Fractures in the ultramafic section strike roughly eastwest and are steeply dipping. These orientations are confined to the ultramafic section and are parallel to an older, inactive regional fault set. ?? 1990.

  20. A modular subsurface borehole-tower for deep vadose zone monitoring

    NASA Astrophysics Data System (ADS)

    Breitenstein, Daniel; Or, Dani

    2016-04-01

    Some of the most urgent contemporary societal challenges ranging from climate change to ecosystem services and food security are strongly linked to processes taking place in the vadose zone. The growing interest in this critical zone prompted a massive deployment of eco-hydrological networks (TERENO, CZO, and more) focusing on long term and highly resolved monitoring of key variables such as soil moisture, pressure, temperature, gas fluxes and more. A challenge in all these endeavors remains the reliable and consistent acquisition of variables to depths of eco-hydrological interest (a few meters in some cases), especially soil moisture. In the absence of off-the-shelf sensor systems capable of vertically resolved acquisition of these variables, we developed a prototype of a modular borehole-based tower for simultaneous monitoring of water content, temperature, oxygen and CO2 gas concentrations, and potentially other variables (relative humidity, capillary pressure). The modular tower is made up of 1.5 m sections of 75 mm PVC tubing with TDR waveguides mounted on outer walls. Each paired waveguides (0.15 m in length) were installed on two opposing sides of inflatable sections along the modular unit to ensure contact with the borehole walls. Oxygen and CO2 are measured using solid-state and optical gas sensors that could be periodically calibrated for potential drift. A prototype that could be extended to 6 m depth and preliminary calibration results will be presented (as a potential design for future CZO's). We welcome suggestions for expansion and improvements.

  1. Seismic imaging in the eastern Scandinavian Caledonides: siting the 2.5 km deep COSC-2 borehole, central Sweden

    NASA Astrophysics Data System (ADS)

    Juhlin, Christopher; Hedin, Peter; Gee, David G.; Lorenz, Henning; Kalscheuer, Thomas; Yan, Ping

    2016-05-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) project, a contribution to the International Continental Scientific Drilling Program (ICDP), aims to provide a deeper understanding of mountain belt dynamics. Scientific investigations include a range of topics, from subduction-related tectonics to the present-day hydrological cycle. COSC investigations and drilling activities are focused in central Scandinavia, where rocks from the middle to lower crust of the orogen are exposed near the Swedish-Norwegian border. Here, rock units of particular interest occur in the Seve Nappe Complex (SNC) of the so-called Middle Allochthon and include granulite facies migmatites (locally with evidence of ultra-high pressures) and amphibolite facies gneisses and mafic rocks. This complex overlies greenschist facies metasedimentary rocks of the dolerite-intruded Sarv Nappes and underlying, lower grade Jamtlandian Nappes (Lower Allochthon). Reflection seismic profiles have been an important component in the activities to image the subsurface structure in the area. Subhorizontal reflections in the upper 1-2 km are underlain and interlayered with strong west- to northwest-dipping reflections, suggesting significant east-vergent thrusting. Two 2.5 km deep fully cored boreholes are a major component of the project, which will improve our understanding of the subsurface structure and tectonic history of the area. Borehole COSC-1 (IGSN: http://hdl.handle.net/10273/ICDP5054EEW1001), drilled in the summer of 2014, targeted the subduction-related Seve Nappe Complex and the contact with the underlying allochthon. The COSC-2 borehole will be located further east and will investigate the lower grade, mainly Cambro-Silurian rocks of the Lower Allochthon, the Jamtlandian decollement, and penetrate into the crystalline basement rocks to identify the source of some of the northwest-dipping reflections. A series of high-resolution seismic profiles have been acquired along a composite ca

  2. Effects of groundwater withdrawal on borehole flow and salinity measured in deep monitor wells in Hawai'i-implications for groundwater management

    USGS Publications Warehouse

    Rotzoll, Kolja

    2010-01-01

    Water-resource managers in Hawai`i rely heavily on salinity profiles from deep monitor wells to estimate the thickness of freshwater and the depth to the midpoint of the transition zone between freshwater and saltwater in freshwater-lens systems. The deep monitor wells are typically open boreholes below the water table and extend hundreds of feet below sea level. Because of possible borehole-flow effects, there is concern that salinity profiles measured in these wells may not accurately reflect the salinity distribution in the aquifer and consequently lead to misinterpretations that adversely affect water-resource management. Steplike changes in salinity or temperature with depth in measured profiles from nonpumped deep monitor wells may be indicative of water moving within the well, and such changes are evident to some extent in all available profiles. The maximum vertical step length, or displacement, in measured profiles ranges from 7 to 644 feet. Vertical steps longer than 70 feet exceed the typical thickness of massive lava flows; they therefore cannot be attributed entirely to geologic structure and may be indicative of borehole flow. The longest vertical steps occur in monitor wells located in southern O'ahu, coinciding with the most heavily developed part of the aquifer. Although regional groundwater withdrawals have caused a thinning of the freshwater lens over the past several decades, the measured midpoint of the transition zone in most deep monitor wells has shown only inconsequential depth displacement in direct response to short-term variations in withdrawals from nearby production wells. For profiles from some deep monitor wells, however, the depth of the measured top of the transition zone, indicated by a specific-conductance value of 1,000 microsiemens per centimeter, has risen several hundred feet in response to withdrawals from nearby production wells. For these deep monitor wells, monitoring the apparent top of the transition zone may not

  3. Ice-Borehole Probe

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Carsey, Frank; Lane, Arthur; Engelhardt, Herman

    2006-01-01

    An instrumentation system has been developed for studying interactions between a glacier or ice sheet and the underlying rock and/or soil. Prior borehole imaging systems have been used in well-drilling and mineral-exploration applications and for studying relatively thin valley glaciers, but have not been used for studying thick ice sheets like those of Antarctica. The system includes a cylindrical imaging probe that is lowered into a hole that has been bored through the ice to the ice/bedrock interface by use of an established hot-water-jet technique. The images acquired by the cameras yield information on the movement of the ice relative to the bedrock and on visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a

  4. Geochemistry of Central Atlantic Magmatic Province (CAMP) sills from deep boreholes in the Amazonas and Solimões basins, Brazil

    NASA Astrophysics Data System (ADS)

    Hatlen Heimdal, Thea; Svensen, Henrik H.; Pereira, Egberto; Planke, Sverre

    2016-04-01

    The Central Atlantic Magmatic Province (CAMP) is one of the most extensive Large Igneous Provinces (LIPs), and is associated with the breakup of Pangea and the subsequent opening of the central Atlantic Ocean. A large part of the province, including > 1 M km2 basins containing sill intrusions, is located in Brazil but has received limited attention due to the lack of outcrops. We have studied CAMP sills from seven deep boreholes (up to 3100 m deep) in the Amazonas and Solimões basins, northern Brazil. The boreholes contain up to ~ 482 m of sills (18 % of the stratigraphy), with a maximum individual sill thickness of 140 m. The sills were partly emplaced into thick Carboniferous evaporites. The main mineral phases of the sills include plagioclase and pyroxene, with accessory apatite, biotite, ilmenite and quartz. The majority of the sills are low-Ti dolerites (TiO2 < 2 wt.%), with the exception of four samples (with 2.2 - 3.3 wt.% TiO2). The low-Ti rocks range from basalt to basaltic andesite and plot in the tholeiitic field defined within the total alkali versus silica (TAS) classification. C1 chondrite normalized Rare Earth Element (REE) patterns for both Ti-groups show increasing LREE compared to HREE (La/Lu = 2.2 - 4.1) with no major anomalies, and attest to a relatively evolved nature (La = 17-65 ppm). Primitive mantle normalized patterns for low-Ti rocks show negative anomalies for Nb, Ta, P and Ti and positive for K, whereas the high-Ti rocks show generally opposite anomalies. Late stage patches in the dolerites contain apatite, quartz and Cl-bearing biotite, suggesting the presence of halogens that may partly derive from the host sedimentary rocks.

  5. Seismic noise variations in a 770-m-deep borehole near Tulsa, Oklahoma

    SciTech Connect

    Harben, P.E.; Lawson, J.

    1992-12-01

    Maximizing the signal detectability at a global earthquake and/or treaty verification seismic monitoring station is an important goal. Minimizing the background seismic noise is the primary means of maximizing signal detectability. To assure that seismic signals are detected, variations of the background seismic noise also must be minimized. We investigated whether locating seismometers in boreholes might decrease background seismic noise and variations in this noise. We deployed three seismometers at different depths in a 770-m borehole near Tulsa, Oklahoma, and then analyzed the data from these seismometers to determine the background noise and variations in this noise as a function of depth, frequency, time of day, and season. Acceleration power density spectra means were calculated for the months of January, March, May, and July for five-minute noise samples taken at 3 a.m. and at 3 p.m. to determine seismic noise variations in the borehole in the 0.2--20 Hz frequency band. The three station depths were: 748,432, and 4 m. The spectra at all three stations were nearly identical between 0.2 and 0.6 Hz, consistent with microseism-dominated noise spectra in this frequency band. Above 0.6 Hz, there was a large difference in noise power with depth. Relative to the 748-m station, the 432-m station noise was 3--7 dB higher and the 4-m station noise was 8-30 dB higher. The standard deviations of the means were similar for all stations. Consequently, although seismic noise variations are larger at shallower depths in absolute terms, they were independent of depth relative to the means at each station. A seasonal change in the mean spectra for each month was identified in the 0.2--1 Hz frequency band. The mean levels were lowest in July and highest in January. This result has been observed elsewhere in the northern hemisphere and is attributed to larger microseism generation during the winter months because of more numerous and severe storms at sea.

  6. Current challenges for high-resolution monitoring of deep geological repository boreholes using terrestrial laser scanner and photogrammetry

    NASA Astrophysics Data System (ADS)

    Carrea, Dario; Savunen, Johanna; Abellan, Antonio; Derron, Marc-Henri; Mattila, Jussi; Jaboyedoff, Michel

    2015-04-01

    The Onkalo site has been selected as final deep geological repository for the disposal of nuclear waste in Finland. Several exploratory boreholes, similar to those that will host the nuclear waste, are currently under construction in order to analyse various technical aspects of the disposal. Among them, an accurate monitoring of the deformation of each borehole is required. The present study aims at finding the most suitable technique for measuring and monitoring small scale (below mm) deformations of these boreholes with high confidence and accuracy. Two different close-range monitoring techniques are compared here: a phase-shift terrestrial laser scanning (Z+F 5006i) and photogrammetry (Canon EOS 6D&EF20mm + Adamtech 3DM Mine Mapping Suite 2.5). Both techniques are applied using multi temporal acquisitions. As for the data acquired by the terrestrial laser scanner, our study has revealed that parts of the 3D datasets are affected by an artificial distortion, with a maximum shift up to 6 mm, which is clearly below the required accuracy. The origin of this artifact is related with the data acquisition strategy: since the accuracy of the laser measurement is affected by the incidence angle, we observed that when the incidence angle is higher than 45°, the range is unsatisfactorily underestimated. Furthermore, we found another issue in the influence of the surface condition on range measurement, such as wet versus dry, or dark versus light colored rock surface. As for the photogrammetric data, we observed that, when compared to a theoretical cylinder, the 3D point cloud was affected by a sub-millimetric distortion. This distortion is due to the construction and georeferencing of the final 3D model. The error can reach up to +/- 0.8 mm in the border areas of the picture, which is significant value as a millimetric deformation should be detected. Up to now, the photogrammetric acquisitions have provided more accurate results than the laser scanning, but there is a

  7. Seismic Interpretation and Well Logging Results of a Deep Borehole into the Canadian Shield in Northeastern Alberta: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Chan, J.; Schmitt, D.; Majorowicz, J. A.; Nieuwenhuis, G.; Poureslami Ardakani, E.; van der Baan, M.; Sahay, P. N.; Kueck, J.; Abasolo, M. R.

    2011-12-01

    With the increasing awareness of the need for the reduction of carbon emissions globally, geothermal energy, which offers a potential for cleaner energy generation, is one potential new source. In Alberta, these geothermal resources are likely to be found in the sedimentary basin, or in the deeper crystalline basement rocks. Alberta exhibits a very low geothermal gradient compared to other existing geothermal fields located in areas of volcanic and tectonic activity. To mitigate this effect, the focus in Alberta will involve the development of engineered geothermal systems (EGS) in the target resource. This project is part of the Helmholtz-Alberta Initiative (HAI), which is a research collaboration between scientists in Germany and Canada on energy projects for cleaner energy production. The first goal for EGS research and development is to develop a detailed geological-geophysical characterization of selected sites to delineate potential geothermal reservoirs in Northern Alberta. One of the selected sites is in the Fort McMurray area. Using an existing deep borehole that reaches a depth of 2.3 km into the crystalline basement, our aim is to identify geological features such as zones of fractures in the basin and/or basement that could provide an indication of enhanced fluid flow potential - a necessary component for any geothermal systems to be viable. The earlier stage of our research involves re-processing of surface seismic data. This helps to improve the signal-to-noise ratio for the geological interpretation of the subsurface, such as the locations of saline aquifers and faults that allow heat flow in the rocks, and zones of fractures that may indicate elevated porosity. Current re-processing of the seismic data displays sets of dipping reflectors which may intersect the borehole. Zero offset and walkaway vertical seismic profiles (VSP) were conducted at the borehole for direct comparison with the surface seismic sections. They are also useful in obtaining

  8. The measurement of long period and secular deformation with deep borehole tiltmeters

    NASA Technical Reports Server (NTRS)

    Cabaniss, G. H.

    1978-01-01

    Two clusters of instruments were emplaced in fractured bedrock in eastern Massachusetts in 1970 and 1975. The intrasite agreement at tidal periods was about two percent, but there is no agreement at longer periods. A strong temperature-induced annual component ranging from 3 to 15 urads was present on instruments installed at depths of 15-20m; it was not apparent on those at 100-120m. One instrument, in continuous operation for three years at 100m, showed a net drift of 0.3 urads down to the SW, with a maximum departure of 2.0 urads from the trend. Pore pressure variations, material corrosion and creep, and local movements are apparently the limiting factors to long-term measurements.

  9. On the suction drill as an effective tool to get rid of bore debris in a narrow deep borehole

    NASA Astrophysics Data System (ADS)

    Faßwald, J.; Kömle, N.; Bentley, M.

    2011-10-01

    In this experimental study a novel method for the removal of bore debris from narrow and deep boreholes is described. The idea is to use a constant flow of inert gas (e.g. N2) to transport the fine bore debris produced by a drill head to the surface and thereby clear the bore hole from the solid material. A theoretical study [1] has previously predicted that it should be possible to construct a system able to transport particles in the micrometer to millimeter range along the vertical direction over many meters - without consuming unreasonable amounts of gas.Such a system could be of great interest for drilling and sampling on the Moon, Mars and small bodies. In order to verify this statement experimentally, a series of laboratory tests was performed. The experimental setup consists of the following main components: (i) a gas regulation system allowing accurate measurement and control of the inlet gas flux and (ii) a device representing the suction drill. The "drill" consists of a 45 cm long Plexiglas sheath within which a central metal tube leads gas to the bottom of a (simulated) borehole, where it is diverted through thin outlet openings to flow back up the tube, driving out debris particles as it does so. Experiments with two particular sample materials were performed, namely (i) glass beads with a size range of 0.25 mm - 0.50 mm and (ii) the standardised lunar analog material JSC-1A, which is a milled basaltic lava with an average particle size of about 0.1 mm. In both cases the suction mechanism under vacuum worked very well and the theoretical predictions were largely confirmed. Similar results were obtained for JSC-1A samples and glass beads, although in case of the lunar analog material adhesive forces among the irregular particles might hinder the transport. The conclusion from our experiments is that suction of particles from deep bore holes is an effective method and needs rather moderate resources of gas supply. Thus it may be better suited for

  10. Deep bore hole instrumentation along San Francisco Bay Bridges

    SciTech Connect

    Bakun, W.; Bowman, J.; Clymer, R.; Foxall, W.; Hipley, P.; Hollfelder, J.; Hutchings, L.; Jarpe, S.; Kasameyer, P.; McEvilly, T.; Mualchin, L.; Palmer, M.

    1998-10-01

    The Bay Bridges down hole network consists of sensors in bore holes that are drilled 100 ft. into bedrock around and in the San Francisco Bay. Between 2 and 8 instruments have been spaced along the Dumbarton, San Mateo, Bay, and San Rafael bridges. The instruments will provide multiple use data that is important to geotechnical, structural engineering, and seismological studies. The holes are between 100 and 1000 ft deep and were drilled by Caltrans. There are twenty- one sensor packages at fifteen sites. Extensive financial support is being contributed by Caltrans, UCB, LBL, LLNL-LDRD, U.C. Campus/Laboratory Collaboration (CLC) program, and USGS. The down hole instrument package contains a three component HS-1 seismometer and three orthogonal Wilcox 73 1 accelerometers, and is capable of recording a micro g from local M = 1.0 earthquakes to 0.5 g strong ground motion form large Bay Area earthquakes.

  11. CALIPSO Borehole Instrumentation Project at Soufriere Hills Volcano, Montserrat, BWI: Data Acquisition, Telemetry, Integration, and Archival Systems

    NASA Astrophysics Data System (ADS)

    Mattioli, G. S.; Linde, A. T.; Sacks, I. S.; Malin, P. E.; Shalev, E.; Elsworth, D.; Hidayat, D.; Voight, B.; Young, S. R.; Dunkley, P. N.; Herd, R.; Norton, G.

    2003-12-01

    The CALIPSO Project (Caribbean Andesite Lava Island-volcano Precision Seismo-geodetic Observatory) has greatly enhanced the monitoring and scientific infrastructure at the Soufriere Hills Volcano, Montserrat with the recent installation of an integrated array of borehole and surface geophysical instrumentation at four sites. Each site was designed to be sufficiently hardened to withstand extreme meteorological events (e.g. hurricanes) and only require minimum routine maintenance over an expected observatory lifespan of >30 y. The sensor package at each site includes: a single-component, very broad band, Sacks-Evertson strainmeter, a three-component seismometer ( ˜Hz to 1 kHz), a Pinnacle Technologies series 5000 tiltmeter, and a surface Ashtech u-Z CGPS station with choke ring antenna, SCIGN mount and radome. This instrument package is similar to that envisioned by the Plate Boundary Observatory for deployment on EarthScope target volcanoes in western North America and thus the CALIPSO Project may be considered a prototype PBO installation with real field testing on a very active and dangerous volcano. Borehole sites were installed in series and data acquisition began immediately after the sensors were grouted into position at 200 m depth, with the first completed at Trants (5.8 km from dome) in 12-02, then Air Studios (5.2 km), Geralds (9.4 km), and Olveston (7.0 km) in 3-03. Analog data from the strainmeter (50 Hz sync) and seismometer (200 Hz) were initially digitized and locally archived using RefTek 72A-07 data acquisition systems (DAS) on loan from the PASSCAL instrument pool. Data were downloaded manually to a laptop approximately every month from initial installation until August 2003, when new systems were installed. Approximately 0.2 Tb of raw data in SEGY format have already been acquired and are currently archived at UARK for analysis by the CALIPSO science team. The July 12th dome collapse and vulcanian explosion events were recorded at 3 of the 4

  12. Collisional Orogeny in the Scandinavian Caledonides (COSC): Scientific objectives for the planned 2.5 km deep COSC-2 borehole

    NASA Astrophysics Data System (ADS)

    Juhlin, Christopher; Anderson, Mark; Dopson, Mark; Lorenz, Henning; Pascal, Christophe; Piazolo, Sandra; Roberts, Nick; Rosberg, Jan-Erik; Tsang, Chin-Fu

    2016-04-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project employs two fully cored boreholes for investigating mountain building processes at mid-crustal levels in a deeply eroded Paleozoic collisional orogen of Alpine-Himalayan size. The two COSC boreholes will provide a unique c. 5 km deep composite section from a hot allochthon through the underlying 'colder' nappes, the main décollement and into the basement of the collisional underriding plate. COSC's unprecedented wealth of geophysical field and borehole data combined with the petrology, geochronology and rock physics information obtained from the drill cores will develop into an integrated model for a major collisional mountain belt. This can be utilized as an analogue to better understand similar modern tectonic settings (Himalaya, Izu-Bonin-Mariana, amongst others) and, thus, advance our understanding of such complex systems and how they affect the (human) environment. COSC investigations and drilling activities are focused in the Åre-Mörsil area (Sweden) of central Scandinavia. The first drill hole, COSC-1, was completed in late August 2014 with near 100% core recovery down to 2.5 km. It targeted the high-grade metamorphic Seve Nappe Complex (SNC) and its contact with the underlying allochthon, investigating how this metasedimentary unit, that was initially deeply subducted during orogeny, was exhumed and then, still hot, emplaced as an allochthon onto the foreland of the underriding plate. COSC-2 will investigate the main Caledonian décollement, which is the major detachment that separates the Caledonian allochthons from the autochthonous basement of the Fennoscandian Shield, and the character of the deformation in the basement. Combined seismic, magnetotelluric (MT) and magnetic data provide control on the basement structure and the depth to the main décollement, believed to be hosted in the carbon-rich highly conductive Alum Shale. Key targets are to understand the

  13. Borehole Seismic Monitoring at Otway Using the Naylor-1 Instrument String

    SciTech Connect

    Daley, T.M.; Sharma, Sandeep; Dzunic, Aleksander; Urosevic, Milovan; Kepic, Anton; Sherlock, Don

    2009-06-01

    The Naylor-1 monitoring completion, a unique and innovative instrumentation package, was designed and fabricated in FY 2007 at Berkeley Laboratory. Tom Daley, Barry Freifeld and Duo Wang (all from Berkeley Lab) were on site at the Otway Project between September 26 and October 14, 2007, working with CO2CRC and their subcontractors, AGR Asia Pacific and Eastern Well Services to complete Naylor-1 and initiate baseline data collection. Figure 1 shows a schematic of Naylor-1's sensor layout. There are three U-tube geochemical samplers, with one located near the top of the residual CH{sub 4} gas cap and two located beneath the gas-water contact. The 21 geophones are used for performing three distinct seismic measurements, high resolution travel time (HRTT), walkaway vertical seismic profiling (WVSP), and microseismic monitoring. These activities are separated in to active source seismic and microseismic monitoring, and will be described separately.

  14. Analysis of stress-induced oval fractures in a borehole at Deep Sea Drilling Project Site 504, eastern equatorial Pacific

    USGS Publications Warehouse

    Morin, R.H.; Flamand, R.

    1999-01-01

    Deep Sea Drilling Project (DSDP) Hole 504B is located in the eastern equatorial Pacific Ocean and extends to a total depth of 2111 m beneath the seafloor (mbsf). Several acoustic televiewer logs have been obtained in this well during successive stages of drilling, and the resulting digital images have revealed numerous oval-shaped fractures seemingly etched into the borehole wall. A theoretical examination of these stress-induced features identifies a unique and ephemeral set of stress distributions and magnitudes that are necessary for their production. Consequently, the ovals provide a basis for quantifying the magnitudes and orientations of the maximum and minimum horizontal principal stresses, SH and Sh, at this site. Vertical, truncated breakouts and horizontal tensile fractures define the spatial boundaries of the ovals. Explicit criteria for their occurrence are combined with estimates for various physical properties of the rock to yield a range of possible values for the horizontal principal stresses. The conspicuous oval geometry is completed by a curved fracture that joins the vertical and horizontal components. Its degree of curvature is delineated by the modified Griffith failure criterion and is directly related to the principal stress difference (SH - Sh). Matching a series of type curves corresponding to specific values for (SH - Sh) with the actual undistorted well bore images allows the magnitude of the stress difference to be further constrained. With a value for (SH - Sh) of 45 ?? 5 MPa the individual magnitudes of SH and Sh are determined more precisely. Final estimates for the horizontal principal stresses in DSDP Hole 504B at a depth of 1200 mbsf are 141 MPa ??? SH ??? 149 MPa and 91 MPa ??? Sh ??? 109 MPa. Stress magnitudes derived from this approach rely heavily upon the values of a variety of physical properties, and complementary laboratory measurements performed on relevant rock samples provide critical information. Uncertainties in

  15. Determination of hydraulic properties of the Callovo-Oxfordian argillite at the bure site: Synthesis of the results obtained in deep boreholes using several in situ investigation techniques

    NASA Astrophysics Data System (ADS)

    Distinguin, Marc; Lavanchy, Jean-Marc

    Since 1991, ANDRA ( Agence Nationale pour la gestion des Déchets Radioactifs - National Radioactive Waste Management Agency) has been performing research on the possibility of geologic disposal of high level radioactive waste. In 1999, Andra began constructing an Underground Research Laboratory at Bure, a site located on the border of the Meuse-Haute-Marne departments, 300 km East of Paris. The laboratory is investigating the Callovo-Oxfordian argillite, a 130 m thick middle Jurassic stratum, at a depth of about 420 m. Argillite is a clay-rich sedimentary rock with low-permeability. Between 1994 and 2004, Andra collected from deep boreholes an impressive wealth of data covering a wide range of geosciences. This paper focuses on the hydraulic data related to argillite, including the results from short-term hydraulic packer tests and long-term monitoring of the formation pressures. Three types of tools are used on the site for investigations in deep boreholes. The first one is a conventional packer test tool used in the petroleum industry and adapted for hydrogeological purposes. The main objective is to determinate the permeability of the formation through short-term tests (24-72 h) at about 10 regular intervals. The two other types of tool are permanent monitoring devices. The electromagnetic pressure gauge (EPG) is totally isolated from the surface perturbations. There are no electric or hydraulic lines to the surface and the borehole is cemented. The advantage of this tool is that the formation almost recovers its initial pressure, avoiding disturbances from surface. Although the multi-packer equipment, installed in an open borehole can be affected by surface perturbations, it is used to measure pressure at different isolated levels in the same borehole ( i. e., 11 chambers in one borehole). Evaluations of the formation pressure (freshwater head) and hydraulic conductivity have been performed for all intervals investigated (19 short-term packer tests and 15 long

  16. Long Valley Deep Hole Geophysical Observatory --- Strain Instrumentation and Installation.

    NASA Astrophysics Data System (ADS)

    Sacks, S. I.; Linde, A.; Malin, P.; Roeloffs, E. A.; Hill, D. P.; Ellsworth, W. L.

    2003-12-01

    The Long Valley Exploratory Well, drilled in the middle of the resurgent dome in the Long Valley caldera, was started in 1989 and after rather checkered progress eventually reached a depth of about 9,831 feet. The hole is cased to a depth of 7178 feet with bare rock below that. At 8,500 feet there is an open fracture system with substantial permeability. One of the goals of the instrument installation is to enable monitoring of this deep aquifer. The most satisfactory rock away from obvious large fractures was at about 7,400 feet, and this was the installation depth. The instrumentation package consisted of a bottom hole seismometer at a depth of about 8500 feet, and a coupled instrument string that was cemented to the rock at a depth of 7400 feet. The instrument string, 73 feet long, had an inflatable packer with an extension at the bottom, coupled to a seismometer with a cement exit port above it, a 22 foot long spacing tube connected to a 20 foot long sensing volume strainmeter assembly. The strainmeter unit is essentially an annulus with the cementing pipe passing through it. In addition, two seismometer cables, two water bypass tubes and a packer inflation tube, pass through the strainmeter, which is actually two concentric strainmeters. The outer unit is a dilatometer and the inner unit is a vertical component strainmeter. Before installation, the strainmeters and the 8000 foot long stainless steel coupling tubes were filled with filtered and degassed water. The instrument string and attached bottom hole seismometer were then lowered down the hole attached to drill pipe. Two optical fiber vertical strainmeters (one interferometer and one time-of-flight loop) consisting of three fibers were attached to the drill pipe as it was installed. After the drill pipe reached target depth, it was secured to the well head. The packer, at the bottom of the instrument package, was inflated, thus providing a sealed bottom for the cement. Cement was then pumped down the

  17. Numerical simulation of flow in deep open boreholes in a coastal freshwater lens, Pearl Harbor Aquifer, O‘ahu, Hawai‘i

    USGS Publications Warehouse

    Rotzoll, Kolja

    2012-01-01

    The Pearl Harbor aquifer in southern O‘ahu is one of the most important sources of freshwater in Hawai‘i. A thick freshwater lens overlays brackish and saltwater in this coastal aquifer. Salinity profiles collected from uncased deep monitor wells (DMWs) commonly are used to monitor freshwater-lens thickness. However, vertical flow in DMWs can cause the measured salinity to differ from salinity in the adjacent aquifer or in an aquifer without a DWM. Substantial borehole flow and displacement of salinity in DMWs over several hundred feet have been observed in the Pearl Harbor aquifer. The objective of this study was to evaluate the effects of borehole flow on measured salinity profiles from DMWs. A numerical modeling approach incorporated aquifer hydraulic characteristics and recharge and withdrawal rates representative of the Pearl Harbor aquifer. Borehole flow caused by vertical hydraulic gradients associated with both the natural regional flow system and groundwater withdrawals was simulated. Model results indicate that, with all other factors being equal, greater withdrawal rates, closer withdrawal locations, or higher hydraulic conductivities of the well cause greater borehole flow and displacement of salinity in the well. Borehole flow caused by the natural groundwater-flow system is five orders of magnitude greater than vertical flow in a homogeneous aquifer, and borehole-flow directions are consistent with the regional flow system: downward flow in inland recharge areas and upward flow in coastal discharge areas. Displacement of salinity inside the DMWs associated with the regional groundwater-flow system ranges from less than 1 to 220 ft, depending on the location and assumed hydraulic conductivity of the well. For example, upward displacements of the 2 percent and 50 percent salinity depths in a well in the coastal discharge part of the flow system are 17 and 4.4 ft, respectively, and the average salinity difference between aquifer and borehole is 0

  18. Evaluation of In-Situ Stress Assessment from Deep Borehole in the Middle Coastal Plain and Its implication for Taiwan Tectonics

    NASA Astrophysics Data System (ADS)

    Yeh, E. C.; Li, W. C.; Chiang, T. C.; Lin, W.; Wang, T. T.; Yu, C. W.; Chiao, C. H.; Yang, M. W.

    2014-12-01

    Scientific study in deep boreholes has paid more attention as the demand of natural resources and waste disposal and risk evaluation of seismic hazard dramatically increases, such as petroleum exploitation, geothermal energy, carbon sequestration, nuclear waste disposal and seismogenic faulting. In the deep borehole geoengineering, knowledge of in-situ stress is essential for the design of drilling-casing plan. Understanding the relationship between fracture and in-situ stress is the key information to evaluate the potential of fracture seal/conduit and fracture reactivity. Also, assessment of in-situ stress can provide crucial information to investigate mechanism of earthquake faulting and stress variationfor earthquake cycles. Formations under the Coastal Plain in Taiwan have evaluated as saline-water formations with gently west-dipping and no distinct fractures endured by regional tectonics of arc-continental collision with N35W compression. The situation is characterized as a suitable place for carbon sequestration. In this study, we will integrate results from different in-situ stress determinations such as anelastic strain recovery (ASR), borehore breakout, hydraulic fracturing from a 3000m borehole of carbon sequestration testing site and further evaluate the seal feasibility and tectonic implication. Results of 30 ASR experiments between the depth of 1500m and 3000m showed the consistent normal faulting stress regime. Stress gradient of vertical stress, horizontal maximum stress and horizontal minimum stress with depth is estimated. Borehole breakout is not existed throughout 1500-3000m. The mean orientation of breakout is about 175deg and mean width of breakout is 84 deg. Based on rock mechanical data, maximum injection pressure of carbon sequestration can be evaulated. Furthermore, normal faulting stress regime is consistent with core observations and image logging, the horizontal maximum stress of 85deg inferred from breakout suggested that this place

  19. Thermal-Hydrology Simulations of Disposal of High-Level Radioactive Waste in a Single Deep Borehole

    SciTech Connect

    Hadgu, Teklu; Stein, Emily; Hardin, Ernest; Freeze, Geoffrey A.; Hammond, Glenn Edward

    2015-11-01

    Simulations of thermal-hydrology were carried out for the emplacement of spent nuclear fuel canisters and cesium and strontium capsules using the PFLOTRAN simulator. For the cesium and strontium capsules the analysis looked at disposal options such as different disposal configurations and surface aging of waste to reduce thermal effects. The simulations studied temperature and fluid flux in the vicinity of the borehole. Simulation results include temperature and vertical flux profiles around the borehole at selected depths. Of particular importance are peak temperature increases, and fluxes at the top of the disposal zone. Simulations of cesium and strontium capsule disposal predict that surface aging and/or emplacement of the waste at the top of the disposal zone reduces thermal effects and vertical fluid fluxes. Smaller waste canisters emplaced over a longer disposal zone create the smallest thermal effect and vertical fluid fluxes no matter the age of the waste or depth of emplacement.

  20. Evidence and characteristics of a diverse and metabolically active microbial community in deep subsurface clay borehole water.

    PubMed

    Wouters, Katinka; Moors, Hugo; Boven, Patrick; Leys, Natalie

    2013-12-01

    The Boom Clay in Belgium is investigated in the context of geological nuclear waste disposal, making use of the High Activity Disposal Experimental Site (HADES) underground research facility. This facility, located in the Boom Clay at a depth of 225 m below the surface, offers a unique access to a microbial community in an environment, of which all geological and geochemical characteristics are being thoroughly studied. This study presents the first elaborate description of a microbial community in water samples retrieved from a Boom Clay piezometer (borehole water). Using an integrated approach of microscopy, metagenomics, activity screening and cultivation, the presence and activity of this community are disclosed. Despite the presumed low-energy environment, microscopy and molecular analyses show a large bacterial diversity and richness, tending to correlate positively with the organic matter content of the environment. Among 10 borehole water samples, a core bacterial community comprising seven bacterial phyla is defined, including both aerobic and anaerobic genera with a range of metabolic preferences. In addition, a corresponding large fraction of this community is found cultivable and active. In conclusion, this study shows the possibility of a microbial community of relative complexity to persist in subsurface Boom Clay borehole water.

  1. Flowing fluid electrical conductivity logging of a deep borehole during and following drilling: estimation of transmissivity, water salinity and hydraulic head of conductive zones

    NASA Astrophysics Data System (ADS)

    Doughty, Christine; Tsang, Chin-Fu; Rosberg, Jan-Erik; Juhlin, Christopher; Dobson, Patrick F.; Birkholzer, Jens T.

    2016-11-01

    Flowing fluid electrical conductivity (FFEC) logging is a hydrogeologic testing method that is usually conducted in an existing borehole. However, for the 2,500-m deep COSC-1 borehole, drilled at Åre, central Sweden, it was done within the drilling period during a scheduled 1-day break, thus having a negligible impact on the drilling schedule, yet providing important information on depths of hydraulically conductive zones and their transmissivities and salinities. This paper presents a reanalysis of this set of data together with a new FFEC logging data set obtained soon after drilling was completed, also over a period of 1 day, but with a different pumping rate and water-level drawdown. Their joint analysis not only results in better estimates of transmissivity and salinity in the conducting fractures intercepted by the borehole, but also yields the hydraulic head values of these fractures, an important piece of information for the understanding of hydraulic structure of the subsurface. Two additional FFEC logging tests were done about 1 year later, and are used to confirm and refine this analysis. Results show that from 250 to 2,000 m depths, there are seven distinct hydraulically conductive zones with different hydraulic heads and low transmissivity values. For the final test, conducted with a much smaller water-level drawdown, inflow ceased from some of the conductive zones, confirming that their hydraulic heads are below the hydraulic head measured in the wellbore under non-pumped conditions. The challenges accompanying 1-day FFEC logging are summarized, along with lessons learned in addressing them.

  2. Flowing fluid electrical conductivity logging of a deep borehole during and following drilling: estimation of transmissivity, water salinity and hydraulic head of conductive zones

    NASA Astrophysics Data System (ADS)

    Doughty, Christine; Tsang, Chin-Fu; Rosberg, Jan-Erik; Juhlin, Christopher; Dobson, Patrick F.; Birkholzer, Jens T.

    2017-03-01

    Flowing fluid electrical conductivity (FFEC) logging is a hydrogeologic testing method that is usually conducted in an existing borehole. However, for the 2,500-m deep COSC-1 borehole, drilled at Åre, central Sweden, it was done within the drilling period during a scheduled 1-day break, thus having a negligible impact on the drilling schedule, yet providing important information on depths of hydraulically conductive zones and their transmissivities and salinities. This paper presents a reanalysis of this set of data together with a new FFEC logging data set obtained soon after drilling was completed, also over a period of 1 day, but with a different pumping rate and water-level drawdown. Their joint analysis not only results in better estimates of transmissivity and salinity in the conducting fractures intercepted by the borehole, but also yields the hydraulic head values of these fractures, an important piece of information for the understanding of hydraulic structure of the subsurface. Two additional FFEC logging tests were done about 1 year later, and are used to confirm and refine this analysis. Results show that from 250 to 2,000 m depths, there are seven distinct hydraulically conductive zones with different hydraulic heads and low transmissivity values. For the final test, conducted with a much smaller water-level drawdown, inflow ceased from some of the conductive zones, confirming that their hydraulic heads are below the hydraulic head measured in the wellbore under non-pumped conditions. The challenges accompanying 1-day FFEC logging are summarized, along with lessons learned in addressing them.

  3. Pore Fluid Pressure and State of Stress Above the Plate Interface from Observations in a 3 Kilometer Deep Borehole: IODP Site C0002, Nankai Trough Subduction Zone

    NASA Astrophysics Data System (ADS)

    Tobin, H. J.; Saffer, D. M.; Hirose, T.; Castillo, D. A.; Kitajima, H.; Sone, H.

    2014-12-01

    During IODP Expedition 348 from October 2013 to January 2014, Site C0002 was drilled to more than 3000 meters' depth into the inner accretionary wedge at the Nankai Trough, setting a new depth record for scientific ocean drilling. It is the first hole to access the deep interior of an active convergent margin. Site C0002 is part of the NanTroSEIZE project off the Kii-Kumano region of Japan, designed to shed light on plate boundary fault zone processes near the up-dip edge of seismogenic locking and slip. The zone from 865 - 3056 meters below the sea floor was sampled via logging-while-drilling measurements, continuous sampling of drill cuttings, and limited coring. This interval was composed of lithified middle to late Miocene hemipelagic sediments and turbidites that are markedly deformed and dip steeply. P-wave speeds from sonic logs increase with depth to ~ 1600 meters, but are constant to slightly decreasing with depth from 1600 to 3050 meters. We hypothesize that this change in trend indicates the onset of elevated pore fluid pressure, but structural and lithologic factors may also play a role. We explore several methods for quantitative estimation of sonic-derived fluid pressure conditions in the inner wedge. A borehole leak-off test (LOT) and a series of borehole pressurization and injection tests were also performed, which we synthesize to estimate the least principal stress, or Shmin. Furthermore, downhole pressure while drilling (PWD) measurements recorded during borehole packoff events provide information on the maximum principal stress, SHmax. Taken together, the LOT and PWD observations suggest that the inner wedge at ~ 2000 meters depth is currently in a strike-slip stress regime, despite its position as the hanging wall of a main plate boundary thrust. This may be a transitional stress regime between shallow normal and deep thrust, controlled by depth-dependent magnitude of the tectonic convergence-related principal stress. Our results document for

  4. Molecular analysis of bacterial diversity in kerosene-based drilling fluid from the deep ice borehole at Vostok, East Antarctica.

    PubMed

    Alekhina, Irina A; Marie, Dominique; Petit, Jean Robert; Lukin, Valery V; Zubkov, Vladimir M; Bulat, Sergey A

    2007-02-01

    Decontamination of ice cores is a critical issue in phylogenetic studies of glacial ice and subglacial lakes. At the Vostok drill site, a total of 3650 m of ice core have now been obtained from the East Antarctic ice sheet. The ice core surface is coated with a hard-to-remove film of impure drilling fluid comprising a mixture of aliphatic and aromatic hydrocarbons and foranes. In the present study we used 16S rRNA gene sequencing to analyze the bacterial content of the Vostok drilling fluid sampled from four depths in the borehole. Six phylotypes were identified in three of four samples studied. The two dominant phylotypes recovered from the deepest (3400 and 3600 m) and comparatively warm (-10 degrees C and -6 degrees C, respectively) borehole horizons were from within the genus Sphingomonas, a well-known degrader of polyaromatic hydrocarbons. The remaining phylotypes encountered in all samples proved to be human- or soil-associated bacteria and were presumed to be drilling fluid contaminants of rare occurrence. The results obtained indicate the persistence of bacteria in extremely cold, hydrocarbon-rich environments. They show the potential for contamination of ice and subglacial water samples during lake exploration, and the need to develop a microbiological database of drilling fluid findings.

  5. The Deep Space Network: An instrument for radio science research

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.

    1981-01-01

    Doppler and ranging data routinely generated at the Deep Space Stations of the California Institute of Technology-Jet Propulsion Laboratory Deep Space Network serve as an excellent source of radio science information. Important radio science experiments based on Deep Space Network generated radio metric data have included confirmation of Einstein's Theory of Relativity, measurement of the masses and gravitational harmonics of the planets out to Saturn, and measurement of electron density distribution and turbulence in the solar corona. In response to an increased level of radio science requirements, the Deep Space Network chose in 1976 to implement a new radio science system, which was completed in late 1978. Key features include (1) highly phase stable open loop receivers, (2) reduction of recorded data bandwidth through use of programmed local oscillators, and (3) real time digitization and recording on computer compatible tape.

  6. A causal relationship between the slow slip event and deep low frequency tremor indicated by strain data recorded at Shingu borehole station

    NASA Astrophysics Data System (ADS)

    Fukuda, M.; Sagiya, T.; Asai, Y.

    2008-12-01

    In the southwest Japan, synchronized deep low frequency tremors and short-term slow slip events occur repeatedly in several regions such as Tokai, northern Kii Peninsula and western Shikoku areas, and these activities are partitioned by 'gaps' of tremors. Although concurrent occurrences of slow slips and tremors have been detected at various subducting plate boundary, their physical mechanism is still not well understood. We are monitoring crustal deformation at Shingu city on the southeastern coast of Kii Peninsula, with an integrated multi-component borehole monitoring system developed by Ishii et al. [2002]. The borehole sensor unit consists of 6 strain sensors (4 in horizontal, 2 in vertical), 2 pendulum tilt sensors, magnetic direction finder and a quartz thermometer and installed at 510m depth. Fukuda et al. [2007] reported two types of strain changes, one associated with deep low frequency tremors and the other without tremors from November 2005 to March 2006. We extend the analysis period to 41 months, from January 2004 to September 2007. We identified 11 episodic strain changes. One of them was caused by heavy rainfall but the rest of the changes are considered to be slow slips. Among all the slow slips identified, five events occurred associated with reported tremor events, but the rest 5 changes were not accompanied by tremors. These slow slip events are characterized by N-S compression (0.017 - 0.063 ppm), and E-W extension (0.013 - 0.071 ppm), NW-SE extension (0.008 - 0.097 ppm), and last 4 - 9 days. We estimate a fault model for each event by forward modeling, and find that the all the strain changes can be attributed to reverse faulting on the plate boundary beneath the Kii Peninsula. An interesting strain change occurred from 26 Dec. 2004 to 2 Jan. 2005. In this period, a tremor activity propagated southwestward on central Kii Peninsula and the level of activity remarkably drops when the activity propagated into the tremor gap zone. After that, the

  7. The Cenozoic history of the Armorican Massif: New insights from the deep CDB1 borehole (Rennes Basin, France)

    NASA Astrophysics Data System (ADS)

    Bauer, Hugues; Bessin, Paul; Saint-Marc, Pierre; Châteauneuf, Jean-Jacques; Bourdillon, Chantal; Wyns, Robert; Guillocheau, François

    2016-05-01

    Borehole CDB1 (675.05 m) crosses the deepest Cenozoic sedimentary basin of the Armorican Massif, the Rennes Basin, to reach the underlying basement at a depth of 404.92 m, made up of the Late Neoproterozoic to Early Cambrian Brioverian Group, weathered down to 520 m depth. The basin's Cenozoic deposits are divided into seven formations, ranging from Early-Middle Bartonian to Late Pliocene in age. Coastal sediments at the very base, along with a thick Priabonian lacustrine episode, imply a major revision of the regional palaeogeography, whilst a very steady and low-energy lacustrine-palustrine environment throughout the Priabonian and Early Rupelian argue for an aggradational system associated with uniform subsidence. Palynological assemblages attest to environmental and climatic changes through the Eocene and Early Oligocene, in accordance with regional and global trends (Eocene-Oligocene Transition).

  8. Instrumentation for Microfabrication with Deep X-ray Lithography

    NASA Astrophysics Data System (ADS)

    Pantenburg, F. J.

    2007-01-01

    Deep X-ray lithography for microfabrication is performed at least at ten synchrotron radiation centers worldwide. The characteristic energies of these sources range from 1.4 keV up to 8 keV, covering mask making capabilities, deep X-ray lithography up to ultra deep x-ray lithography of several millimeters resist thickness. Limitations in deep X-ray lithography arise from hard X-rays in the SR-spectrum leading to adhesion losses of resist lines after the developing process, as well as heat load due to very high fluxes leading to thermal expansion of mask and resist during exposure and therefore to microstructure distortion. Considering the installations at ANKA as an example, the advantages of mirrors and central beam stops for DXRL are presented. Future research work will concentrate on feature sizes much below 1 μm, while the commercialization of DXRL goes in the direction of massive automation, including parallel exposures of several samples in a very wide SR-fan, developing and inspection.

  9. Comparison of Deep Drill Braced Monument (DDBM) and Borehole Strainmeter (BSM) Wellhead GPS antenna mounts: a Plate Boundary Observatory (PBO) case study from Dinsmore, CA

    NASA Astrophysics Data System (ADS)

    Williams, T. B.; Austin, K. E.; Borsa, A. A.; Feaux, K.; Jackson, M. E.; Johnson, W.; Mencin, D.

    2010-12-01

    With the 2009 installation of GPS station P793 in Dinsmore, CA, the Plate Boundary Observatory (PBO) created a unique opportunity to directly compare a traditional deep drill braced GPS monument (DDBM) with a borehole strainmeter (BSM) wellhead GPS monument. PBO installed a GPS antenna to the wellhead of BSM B935 to perform a direct comparison to DDBM P327 in an attempt to determine stability and long-term behavior of both. The two adjacent stations share power and communications and are roughly 20 meters apart. The steel BSM casing is cemented ~520ft in meta-sandstone & shale, while the DDBM is anchored ~30ft deep in alluvial river gravels. Both stations are located inside a rural auto wrecking yard, which has potential sources of fixed noise in the form of multipath reflections off large metal objects. Preliminary analysis indicates consistent measurements in the North-South component, and a ~3.3 mm difference in the East-West component that has been detected between the two stations over a 450-day period (~2.7 mm/yr). The analysis utilizes standard PBO data products and differences time series data from each station in the SNARF 1.0 and IGS 2005 reference frames. We estimate the time dependent seasonal variations observed at each station and compare with available temperature and precipitation data to attempt to identify the cause of differential movement between the monuments.

  10. Advanced instrument system for real-time and time-series microbial geochemical sampling of the deep (basaltic) crustal biosphere

    NASA Astrophysics Data System (ADS)

    Cowen, James P.; Copson, David A.; Jolly, James; Hsieh, Chih-Chiang; Lin, Huei-Ting; Glazer, Brian T.; Wheat, C. Geoffrey

    2012-03-01

    Integrated Ocean Drilling Program borehole CORK (Circulation Obviation Retrofit Kit) observatories provide long-term access to hydrothermal fluids circulating within the basaltic crust (basement), providing invaluable opportunities to study the deep biosphere. We describe the design and application parameters of the GeoMICROBE instrumented sled, an autonomous sensor and fluid sampling system. The GeoMICROBE system couples with CORK fluid delivery lines to draw large volumes of fluids from crustal aquifers to the seafloor. These fluids pass a series of in-line sensors and an in situ filtration and collection system. GeoMICROBE's major components include a primary valve manifold system, a positive displacement primary pump, sensors (e.g., fluid flow rate, temperature, dissolved O2, electrochemistry-voltammetry analyzer), a 48-port in situ filtration and fluid collection system, computerized controller, seven 24 V-40 A batteries and wet-mateable (ODI) communications with submersibles. This constantly evolving system has been successfully connected to IODP Hole 1301A on the eastern flank of the Juan de Fuca Ridge. Also described here is a mobile pumping system (MPS), which possesses many of the same components as the GeoMICROBE (e.g., pump, sensors, controller), but is directly powered and controlled in real time via submersible operations; the MPS has been employed repeatedly to collect pristine basement fluids for a variety of geochemical and microbial studies.

  11. The Deep Space Network. An instrument for radio navigation of deep space probes

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.; Jordan, J. F.; Berman, A. L.; Wackley, J. A.; Yunck, T. P.

    1982-01-01

    The Deep Space Network (DSN) network configurations used to generate the navigation observables and the basic process of deep space spacecraft navigation, from data generation through flight path determination and correction are described. Special emphasis is placed on the DSN Systems which generate the navigation data: the DSN Tracking and VLBI Systems. In addition, auxiliary navigational support functions are described.

  12. The Deep Space Network: An instrument for radio astronomy research

    NASA Technical Reports Server (NTRS)

    Renzetti, N. A.; Levy, G. S.; Kuiper, T. B. H.; Walken, P. R.; Chandlee, R. C.

    1988-01-01

    The NASA Deep Space Network operates and maintains the Earth-based two-way communications link for unmanned spacecraft exploring the solar system. It is NASA's policy to also make the Network's facilities available for radio astronomy observations. The Network's microwave communication systems and facilities are being continually upgraded. This revised document, first published in 1982, describes the Network's current radio astronomy capabilities and future capabilities that will be made available by the ongoing Network upgrade. The Bibliography, which includes published papers and articles resulting from radio astronomy observations conducted with Network facilities, has been updated to include papers to May 1987.

  13. The Deep Space Network as an instrument for radio science research

    NASA Technical Reports Server (NTRS)

    Asmar, S. W.; Renzetti, N. A.

    1993-01-01

    Radio science experiments use radio links between spacecraft and sensor instrumentation that is implemented in the Deep Space Network. The deep space communication complexes along with the telecommunications subsystem on board the spacecraft constitute the major elements of the radio science instrumentation. Investigators examine small changes in the phase and/or amplitude of the radio signal propagating from a spacecraft to study the atmospheric and ionospheric structure of planets and satellites, planetary gravitational fields, shapes, masses, planetary rings, ephemerides of planets, solar corona, magnetic fields, cometary comae, and such aspects of the theory of general relativity as gravitational waves and gravitational redshift.

  14. Geochemistry of fluids emitted at the CA1 borehole (Alban Hills volcano, central Italy): new insights on deep fluids circulation and origin

    NASA Astrophysics Data System (ADS)

    Pizzino, Luca; Cinti, Daniele; Voltattorni, Nunzia; Sciarra, Alessandra; Quattrocchi, Fedora

    2010-05-01

    In the framework of a multidisciplinary project funded by the Italian Department of Civil Protection, focused on the Alban Hills volcano (Central Italy), a 350 m deep borehole (named CA1) was drilled near Santa Maria delle Mole village, adjacent to the western rim of the Tuscolano-Artemisio caldera, where several phenomena of unrest recently occurred. In the period 1989-90 a seismic swarm affected this area and a related uplift was recognized by geodetic investigations and satellite images analysis. In addition, this area is affected by high gas concentrations (mainly CO2, radon and H2S) both in aquifers and soils. Episodes of gas exhalation from soil and/or gas burst occurred in the past, causing illness and casualties among local inhabitants and animals, marking the considered area as exposed to a high Natural Gas Hazard. During the phase of hydraulic fracturing tests a blow-out occurred, allowing the collection of issuing fluids for their chemical and isotopic characterisation, in order to emphasise their origin. New geochemical data provided additional information about both the deep volcanic circulation of fluids and their possible connection to a deep-seated magma chamber. We present a general and schematic hydro-geochemical-structural model of the most degassing sector of the volcano, by merging all the information acquired in the last 15 years. Geochemical features highlight some peculiarities in both chemical and isotopic composition of the emitted fluids. Water shows a Na-HCO3 chemistry and a very high salinity never found till now throughout the Alban Hills district (TDS=7 g/l), probably due to the prolonged interaction of the CO2-rich fluids with clays. Activity plots were used to identify the main gas-water-rock interaction processes. Stable O and H isotopes reveal a meteoric origin of water, excluding any other source (juvenile and/or connate). Water is tritium-free, pointing to a long residence time of water in the aquifer. Gas phase is CO2-dominated

  15. Research on auto monitoring and control instrument of deep foundation pit engineering

    NASA Astrophysics Data System (ADS)

    Feng, Qian; Li, Heng; Zhang, Yi; Wang, Xutao; Wang, Hao; Xu, Xueyong

    2012-01-01

    At present, deep foundation pit supporting structure and slope soil deep displacement monitoring of conventional method is artificial repeated measurements, but sometimes pit instability is sudden, use this method to reach the purposes of real-time monitoring. This paper developed the instrument from the ordinary inclinometer, based on artificial measurement, improve it to the automatic measurement, monitoring personnel remain within doors can be remote, real-time control and obtaining measurement data, can really achieve real-time monitoring, can meet the requirements of building deep foundation pit monitoring needs, also has a geological disaster monitoring application prospect.

  16. Research on auto monitoring and control instrument of deep foundation pit engineering

    NASA Astrophysics Data System (ADS)

    Feng, Qian; Li, Heng; Zhang, Yi; Wang, Xutao; Wang, Hao; Xu, Xueyong

    2011-11-01

    At present, deep foundation pit supporting structure and slope soil deep displacement monitoring of conventional method is artificial repeated measurements, but sometimes pit instability is sudden, use this method to reach the purposes of real-time monitoring. This paper developed the instrument from the ordinary inclinometer, based on artificial measurement, improve it to the automatic measurement, monitoring personnel remain within doors can be remote, real-time control and obtaining measurement data, can really achieve real-time monitoring, can meet the requirements of building deep foundation pit monitoring needs, also has a geological disaster monitoring application prospect.

  17. LAqui-core, a 150 m deep borehole into the depocenter of the basin controlled by the 2009 Mw=6.1 L'Aquila earthquake fault

    NASA Astrophysics Data System (ADS)

    Porreca, M.; Mochales Lopez, T.; Smedile, A.; Buratti, N.; Macri', P.; Di Chiara, A.; Nicolosi, I.; D'ajello Caracciolo, F.; Carluccio, R.; Di Giulio, G.; Vassallo, M.; Amoroso, S.; Villani, F.; Tallini, M.; Sagnotti, L.; Speranza, F.

    2013-12-01

    INSAR images showed that the 2009 Mw=6.1 normal faulting L'Aquila earthquake produced a maximum co-seismic subsidence of ca. 15 cm in the depocenter of the Middle Aterno basin (Abruzzi, central Italy), on the hanging-wall of the Paganica fault. This continental basin is one of the several fault-controlled extensional basins of the central Apennines and its sedimentation history is poorly known due to the scarcity of outcrops in the weakly incised infilling cover. During May-June 2013, a 151 m deep borehole was drilled in the basin depocenter, as shown by INSAR images. The recovered core (LAqui-core) consists of continental Holocene and Pleistocene clastic sediments and it do not reach the basin substrate. In the same area, we have also performed preliminary geological and geophysical (electrical resistivity tomography and seismic noise survey) investigations in order to select the best drilling location. We have also taken into account recently published high-resolution seismic tomographic data acquired in the same area, showing an evident thickening of low Vp sediments in correspondence of the depocenter. These approaches have been useful to infer the geometry and sedimentary facies architecture of the basin. A first general stratigraphic setting has been defined by means of lithostratigraphic description of the core. It can be subdivided in two main sequences. The upper sequence is composed by 41 meters of silt and sand deposits, interbedded with m-thick rounded gravel intervals. This sequence is interpreted as related to fluvial-alluvial fan depositional environments. An erosional discontinuity separates this upper sequence from the lower clay and sand sequence, typical of a lacustrine depositional environment. The lacustrine sequence continues till the bottom of the borehole and is interrupted in the middle by a 30 m thick coarse gravel deposit. On this stratigraphic record we have collected samples for different kind of analyses (now in progress), involving

  18. Diverse Portfolio of Scientific Instrumentation Initiatives of the Deep Carbon Observatory

    NASA Astrophysics Data System (ADS)

    Schiffries, Craig; Hazen, Robert; Hemley, Russell; Mangum, Andrea

    2016-04-01

    Advances in scientific instrumentation are important drivers of scientific discovery. The Deep Carbon Observatory (DCO) supports a diverse portfolio of scientific instrumentation initiatives worldwide as part of its ten-year quest to achieve a transformational understanding of the quantities, movements, origins, and forms of Earth's deep carbon. Substantial progress has been made in the development of a wide range of instruments, including: • Quantum cascade laser-infrared absorption spectrometer for clumped methane isotope thermometry (Shuhei Ono) • Large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of methane and other gases (Edward Young, Douglas Rumble) • Volcanic field deployment of the laser isotope ratio-meter (Damien Weidmann) • Novel large-volume diamond anvil cell for neutron scattering (Malcolm Guthrie, Reinhard Boehler) • Novel synchrotron x-ray probes for deep carbon (Wendy Mao) • Ultrafast laser instrument for in situ measurements of elastic, electronic, and transport properties of carbon-bearing fluids and crystalline materials (Alexander Goncharov) • Combined instrument for molecular imaging in geochemistry (Andrew Steele) • Pressurized Underwater Sample Handler (Isabelle Daniel, Karyn Rogers) These and other DCO instrumentation projects are highly leveraged investments involving a large number of sponsors, partners, and collaborators.

  19. Room Q data report: Test borehole data from April 1989 through November 1991

    SciTech Connect

    Jensen, A.L.; Howard, C.L.

    1993-03-01

    Pore-pressure and fluid-flow tests were performed in 15 boreholes drilled into the bedded evaporites of the Salado Formation from within the Waste Isolation Pilot Plant (WIPP). The tests measured fluid flow and pore pressure within the Salado. The boreholes were drilled into the previously undisturbed host rock around a proposed cylindrical test room, Room Q, located on the west side of the facility about 655 m below ground surface. The boreholes were about 23 m deep and ranged over 27.5 m of stratigraphy. They were completed and instrumented before excavation of Room Q. Tests were conducted in isolated zones at the end of each borehole. Three groups of 5 isolated zones extend above, below, and to the north of Room Q at increasing distances from the room axis. Measurements recorded before, during, and after the mining of the circular test room provided data about borehole closure, pressure, temperature, and brine seepage into the isolated zones. The effects of the circular excavation were recorded. This data report presents the data collected from the borehole test zones between April 25, 1989 and November 25, 1991. The report also describes test development, test equipment, and borehole drilling operations.

  20. A Coulomb stress model for induced seismicity distribution due to fluid injection and withdrawal in deep boreholes

    NASA Astrophysics Data System (ADS)

    Troiano, Antonio; Di Giuseppe, Maria Giulia; Troise, Claudia; Tramelli, Anna; De Natale, Giuseppe

    2013-10-01

    Fluid injection in and withdrawal from wells are basic procedures in mining activities and deep resources exploitation, such as oil and gas extraction, permeability enhancement for geothermal exploitation and waste fluid disposal. All of these activities have the potential to induce seismicity, as exemplified by the 2006 Basel earthquake (ML 3.4). Despite several decades of experience, the mechanisms of induced seismicity are not known in detail, which prevents effective risk assessment and/or mitigation. In this study, we provide an interpretation of induced seismicity based on computation of Coulomb stress changes that result from fluid injection/withdrawal at depth, mainly focused on the interpretation of induced seismicity due to stimulation of a geothermal reservoir. Seismicity is, theoretically, more likely where Coulomb stress changes are larger. For modeling purposes, we simulate the thermodynamic evolution of a system after fluid injection/withdrawal. The associated changes in pressure and temperature are subsequently considered as sources of incremental stress changes, which are then converted to Coulomb stress changes on favourably oriented faults, taking into account the background regional stress. Numerical results are applied to the water injection that was performed to create the fractured reservoir at the enhanced-geothermal-system site, Soultz-sous-Forets (France). Our approach describes well the observed seismicity, and provides an explanation for the different behaviors of a system when fluids are injected or withdrawn.

  1. Posterior occipitocervical instrumented fusion for dropped head syndrome after deep brain stimulation.

    PubMed

    Pereira, E A C; Wilson-MacDonald, J; Green, A L; Aziz, T Z; Cadoux-Hudson, T A D

    2010-04-01

    We describe dropped head syndrome in a patient with Parkinson's disease receiving subthalamic nucleus deep brain stimulation (DBS). Posterior occipitocervical instrumented fusion after transarticular screw fixation of an odontoid fracture is shown and its rationale explained. Pedunculopontine nucleus DBS as treatment for fall-predominant Parkinson's disease, and globus pallidus interna DBS for dystonia-predominant Parkinson's disease, are discussed.

  2. Temperature data acquired from the DOI/GTN-P Deep Borehole Array on the Arctic Slope of Alaska, 1973-2013

    NASA Astrophysics Data System (ADS)

    Clow, G. D.

    2014-05-01

    A homogeneous set of temperature measurements obtained from the DOI/GTN-P Deep Borehole Array between 1973 and 2013 is presented; DOI/GTN-P is the US Department of the Interior contribution to the Global Terrestrial Network for Permafrost (GTN-P). The 23-element array is located on the Arctic Slope of Alaska, a region of cold continuous permafrost. Most of the monitoring wells are situated on the Arctic coastal plain between the Brooks Range and the Arctic Ocean, while others are in the foothills to the south. The data represent the true temperatures in the wellbores and surrounding rocks at the time of the measurements; they have not been corrected to remove the thermal disturbance caused by drilling the wells. With a few exceptions, the drilling disturbance is estimated to have been on the order of 0.1 K or less by 1989. Thus, most of the temperature measurements acquired during the last 25 yr are little affected by the drilling disturbance. The data contribute to ongoing efforts to monitor changes in the thermal state of permafrost in both hemispheres by the Global Terrestrial Network for Permafrost, one of the primary subnetworks of the Global Terrestrial Observing System (GTOS). The data will also be useful for refining our basic understanding of the physical conditions in permafrost in Arctic Alaska, as well as providing important information for validating predictive models used for climate impact assessments. The processed data are available from the Advanced Cooperative Arctic Data and Information Service (ACADIS) repository at doi:10.5065/D6N014HK.

  3. Method for isolating two aquifers in a single borehole

    DOEpatents

    Burklund, Patrick W.

    1985-10-22

    A method for isolating and individually instrumenting separate aquifers within a single borehole. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  4. Method for isolating two aquifers in a single borehole

    DOEpatents

    Burklund, P.W.

    1984-01-20

    A method for isolating and individually instrumenting separate aquifers within a single borehole is disclosed. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  5. Deployment of the Oklahoma borehole seismic experiment

    SciTech Connect

    Harben, P.E.; Rock, D.W.

    1989-01-20

    This paper discusses the Oklahoma borehole seismic experiment, currently in operation, set up by members of the Lawrence Livermore National Laboratory Treaty Verification Program and the Oklahoma Geophysical Observatory to determine deep-borehole seismic characteristics in geology typical of large regions in the Soviet Union. We evaluated and logged an existing 772-m deep borehole on the Observatory site by running caliper, cement bonding, casing inspection, and hole-deviation logs. Two Teledyne Geotech borehole-clamping seismometers were placed at various depths and spacings in the deep borehole. Currently, they are deployed at 727 and 730 m. A Teledyne Geotech shallow-borehole seismometer was mounted in a 4.5-m hole, one meter from the deep borehole. The seismometers' system coherency were tested and found to be excellent to 35 Hz. We have recorded seismic noise, quarry blasts, regional earthquakes and teleseisms in the present configuration. We will begin a study of seismic noise and attenuation as a function of depth in the near future. 7 refs., 18 figs.

  6. Use of vacuum assisted closure in instrumented spinal deformities for children with postoperative deep infections

    PubMed Central

    Canavese, Federico; Krajbich, Joseph I

    2010-01-01

    Background: Postoperative deep infections are relatively common in children with instrumented spinal deformities, whose healing potential is somewhat compromised. Children with underlying diagnosis of cerebral palsy, spina bifida and other chronic debilitating conditions are particularly susceptible. Vacuum-assisted closure (VAC) is a newer technique to promote healing of wounds resistant to treatment by established methods. This article aims to review the efficacy of the VAC system in the treatment of deep spinal infections following spinal instrumentation and fusion in children and adolescents. Materials and Methods: We reviewed 33 patients with deep postoperative surgical site infection treated with wound VAC technique. We reviewed clinical and laboratory data, including the ability to retain the spinal hardware, loss of correction and recurrent infections. Results: All patients successfully completed their wound VAC treatment regime. None had significant loss of correction and one had persistent infection requiring partial hardware removal. The laboratory indices normalized in all but three patients. Conclusions: Wound VAC technique is a useful tool in the armamentarium of the spinal surgeon dealing with patients susceptible to wound infections, especially those with neuromuscular diseases. It allows for retention of the instrumentation and maintenance of the spinal correction. It is reliable and easy to use. PMID:20419005

  7. The Habitat Demonstration Unit Project: A Modular Instrumentation System for a Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Kennedy, Kriss J.; Yim, Hester; Williamsn, Robert M.; Hafermalz, Scott; Wagner, Raymond S.

    2011-01-01

    NASA is focused on developing human exploration capabilities in low Earth orbit (LEO), expanding to near Earth asteroids (NEA), and finally to Mars. Habitation is a crucial aspect of human exploration, and a current focus of NASA activities. The Habitation Demonstration Unit (HDU) is a project focused on developing an autonomous habitation system that enables human exploration of space by providing engineers and scientists with a test bed to develop, integrate, test, and evaluate habitation systems. A critical feature of the HDU is the instrumentation system, which monitors key subsystems within the habitat. The following paper will discuss the HDU instrumentation system performance and lessons learned during the 2010 Desert Research and Technology Studies (D-RaTS). In addition, this paper will discuss the evolution of the instrumentation system to support the 2011 Deep Space Habitat configuration, the challenges, and the lessons learned of implementing this configuration. In 2010, the HDU was implemented as a pressurized excursion module (PEM) and was tested at NASA s D-RaTS in Arizona [1]. For this initial configuration, the instrumentation system design used features that were successful in previous habitat instrumentation projects, while also considering challenges, and implementing lessons learned [2]. The main feature of the PEM instrumentation system was the use of a standards-based wireless sensor node (WSN), implementing an IEEE 802.15.4 protocol. Many of the instruments were connected to several WSNs, which wirelessly transmitted data to the command and data handling system via a mesh network. The PEM instrumentation system monitored the HDU during field tests at D-RaTS, and the WSN data was later analyzed to understand the performance of this system. In addition, several lessons learned were gained from the field test experience, which fed into the instrumentation design of the next generation of the HDU.

  8. Acoustic borehole logging

    SciTech Connect

    Medlin, W.L.; Manzi, S.J.

    1990-10-09

    This patent describes an acoustic borehole logging method. It comprises traversing a borehole with a borehole logging tool containing a transmitter of acoustic energy having a free-field frequency spectrum with at least one characteristic resonant frequency of vibration and spaced-apart receiver, repeatedly exciting the transmitter with a swept frequency tone burst of a duration sufficiently greater than the travel time of acoustic energy between the transmitter and the receiver to allow borehole cavity resonances to be established within the borehole cavity formed between the borehole logging tool and the borehole wall, detecting acoustic energy amplitude modulated by the borehole cavity resonances with the spaced-apart receiver, and recording an amplitude verses frequency output of the receiver in correlation with depth as a log of the borehole frequency spectrum representative of the subsurface formation comprising the borehole wall.

  9. Who are the active players of the Iberian Margin deep biosphere? Microbial diversity of borehole U1385 through analysis of 16S rDNA and rRNA

    NASA Astrophysics Data System (ADS)

    Russell, J. A.; Orsi, W.; Edgcomb, V. P.; Biddle, J.

    2013-12-01

    Microbial community structure and activity in marine deep subsurface environments across the globe have been assayed using various molecular biology tools including 16S rDNA sequencing, microarrays, FISH/CARD-FISH, and metagenomics. Many studies involving these techniques are DNA-based. This limits study of microbial function in these environments as DNA does not degrade as quickly as RNA and may lead to misinterpreting relic microbial genes as important for present-day activity. In this study, the diversity of bacteria and archaea from sediments of the Iberian Margin IODP borehole U1385 was analyzed from bulk extracted DNA and RNA at seven different depths ranging from 10 to 123 meters below seafloor (mbsf). Presented data suggests that the picture of microbial diversity obtained from DNA is markedly different from that seen through analysis of RNA. IODP borehole U1385 offers a great comparison to ODP Site 1229, a well characterized borehole on the Peru Margin. Similar sediment depositional history and geochemistry will allow exploration of what represents a 'typical' continental margin sediment microbial community or if microbial endemism is established despite similar conditions. This study represents the first molecular exploration of sediment microbial communities from the Iberian Margin IODP Site U1385.

  10. Methods for enhancing the efficiency of creating a borehole using high power laser systems

    SciTech Connect

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-06-24

    Methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena to enhance the formation of Boreholes. Methods for the laser operations to reduce the critical path for forming a borehole in the earth. These methods can deliver high power laser energy down a deep borehole, while maintaining the high power to perform operations in such boreholes deep within the earth.

  11. Mechanical behavior of deep cryogenically treated martensitic shape memory nickel–titanium rotary endodontic instruments

    PubMed Central

    Vinothkumar, Thilla Sekar; Kandaswamy, Deivanayagam; Prabhakaran, Gopalakrishnan; Rajadurai, Arunachalam

    2016-01-01

    Objectives: The aim of this study was to investigate the role of deep cryogenic treatment (DCT) on the cyclic fatigue resistance and cutting efficiency of martensitic shape memory (SM) nickel–titanium (NiTi) rotary endodontic instruments. Materials and Methods: Seventy-five HyFlex® CM instruments were randomly divided into three groups of 25 each and subjected to different DCT (–185° C) conditions based on soaking time: DCT 24 group: 24 h, DCT 6 group: 6 h, and control group. Each group was randomly subdivided for evaluation of cyclic fatigue resistance in custom-made artificial canals (n = 15) and cutting efficiency in plexiglass simulators (n = 10). The cyclic fatigue resistance was measured by calculating the number of cycles to failure (NCF) and cutting efficiency was measured using the loss of weight method. Results: Increase in NCF of instruments in DCT 24 group was highly significant (P < 0.01; Tukey's honest significant difference). There was no difference in weight loss of plexiglass simulators in all the groups (P > 0.05; one-way analysis of variance). In conclusion, deep dry cryogenic treatment with 24 h soaking time significantly increases the cyclic fatigue resistance without affecting the cutting efficiency of SM NiTi endodontic instruments. Materials and Methods: Seventy-five HyFlex® CM instruments were randomly divided into three groups of 25 each and subjected to different DCT (–185° C) conditions based on soaking time: DCT 24 group: 24 h, DCT 6 group: 6 h, and control group. Each group was randomly subdivided for evaluation of cyclic fatigue resistance in custom-made artificial canals (n = 15) and cutting efficiency in plexiglass simulators (n = 10). The cyclic fatigue resistance was measured by calculating the number of cycles to failure (NCF) and cutting efficiency was measured using the loss of weight method. Results: Increase in NCF of instruments in DCT 24 group was highly significant (P < 0.01; Tukey's honest significant difference

  12. Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4993

    SciTech Connect

    Rust, Colleen F.; Barnett, D. BRENT; Bowles, Nathan A.; Horner, Jake A.

    2007-02-28

    A core hole (C4998) and three boreholes (C4993, C4996, and C4997) were drilled to acquire stratigraphic and downhole seismic data to model potential seismic impacts and to refine design specifications and seismic criteria for the Waste Treatment Plant (WTP) under construction on the Hanford Site. Borehole C4993 was completed through the Saddle Mountains Basalt, the upper portion of the Wanapum Basalt, and associated sedimentary interbeds, to provide a continuous record of the rock penetrated by all four holes and to provide access to the subsurface for geophysical measure¬ment. Presented and compiled in this report are field-generated records for the deep mud rotary borehole C4993 at the WTP site. Material for C4993 includes borehole logs, lithologic summary, and record of rock chip samples collected during drilling through the months of August through early October. The borehole summary report also includes documentation of the mud rotary drilling, borehole logging, and sample collection.

  13. Surveying of a borehole for position determination

    SciTech Connect

    Russell, A. W.; Russell, M. K.

    1985-04-02

    A borehole is surveyed by positioning at the mouth of the borehole a survey instrument having a casing and a three-axis rate gyroscope unit mounted within the casing, and sensing at least two components of gravity in at least two mutually transverse directions with respect to the survey instrument by means of a gravity sensor unit. The survey instrument is then moved along the borehole with the start and finish of the run being at the mouth of the borehole or at some known reference along the path of the borehole. During the run the rates of rotation about three non-coplanar axes are sensed at a series of locations along the length of the borehole by means of the rate gyroscope unit. The position of the borehole at each measuring location is then calculated by determining the initial set of direction cosines from the sensed gravity components and an assumed initial value of the azimuth angle and incrementing these values using the rates of rotation sensed by the rate gyroscope unit to obtain the sets of direction cosines at subsequent measuring locations.

  14. Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0

    SciTech Connect

    Wijesinghe, A.M.; Shaffer, R.J.

    1996-01-15

    The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

  15. FANTINA instrument suite: A payload proposed to measure the asteroid's structure from deep interior to regolith

    NASA Astrophysics Data System (ADS)

    Plettemeier, D.; Herique, A.

    2013-12-01

    Our knowledge of the internal structure of asteroids is, so far, indirect - relying entirely on inferences from remote sensing observations of the surface, and theoretical modeling. What are the properties of the regolith and deep interior? And what are the physical processes that shape their internal structures? Is it a rubble pile or a monolith? In the first case: what is the size distribution of constituent blocks, and the spatial distribution of voids? Direct measurements are needed to provide answers to these fundamental questions that will directly improve our ability to understand the geologic context of the asteroid from which the returned samples will be collected. After a review of the science objectives, this paper presents the FANTINA instrument suite, proposed to instrument Marco Polo R mission and specifically designed to help to answer these questions and support sample acquisition and analysis. The FANTINA science package, in the form of a lander with a radar component onboard the orbiter, is aimed at understanding the physical structure and evolution of the building blocks of the planets at various scales. FANTINA will use radar sounding, a penetrating geophysical technique, to investigate the internal structure of the asteroid. A bistatic radar, FANTINA-B, utilizes a separate transmitter and receiver (on orbiter and lander, similar to the CONSERT radar on ROSETTA) to conduct tomographic investigations of the global deep interior. On the lander this method will be used in combination with a visible imaging system (Camera, FANTINA-C) and accelerometer (Accelerometric sensor, FANTINA-A) to characterize the structure and physical properties of the near surface. A monostatic radar (FANTINA-M, a WISDOM-like instrument) accommodated onboard the orbiter will probe the first ten meters of the regolith and provide an understanding of the transition from the surface environment, where samples are collected, to the deep interior.

  16. Characterization of a clay-rich rock through development and installation of specific hydrogeological and diffusion test equipment in deep boreholes

    NASA Astrophysics Data System (ADS)

    Delay, Jacques; Distinguin, Marc; Dewonck, Sarah

    Andra (Agence Nationale pour la Gestion des Déchets Radioactifs - National Radioactive Waste Management Agency) has developed specific tools and methodologies to evaluate and understand the main transport mechanisms of solute species in an argillaceous rock in the framework of the scientific program of the Meuse/Haute-Marne Underground Research Laboratory. This paper focuses on three specific equipments already installed in boreholes for the determination of convection and diffusion parameters in a very low permeability environment. The first one is a specific borehole completion for head and permeability measurements with an integrated wireless telemetry device. In 1995, Andra devised a probe equipped with a pressure sensor to monitor the long-term evolution of electro-magnetically transmitted pore pressures. The data gathered by this first device, and a second one installed in 2001, have shown the occurrence of overpressures in very low permeability formations. The second device is derived from the multipacker system used for monitoring the drainage of the Oxfordian limestone due to the sinking of the shaft above the Callovo-Oxfordian. It is used for obtaining from a single borehole, a pressure profile of the argillaceous formation and its encasing units. To date, the major information obtained with these two borehole equipments is the existence of a 25-35 m anomalous excess hydraulic head in the 130 m thick Callovo-Oxfordian argillaceous formation. Head values in the argillaceous rock exceed those in the overlying Oxfordian limestone by 25-35 m, and those in the underlying Dogger by over 45 m. The third equipment described in the paper, is derived from the experiment carried out at the Mont Terri rock laboratory since 1996 for the characterization of diffusion and retention processes. The system is adapted for a borehole drilled from the surface. The objectives of this experiment are as follows: Verification of the predominant role played by molecular diffusion

  17. GEOPHYSICS AND SITE CHARACTERIZATION AT THE HANFORD SITE THE SUCCESSFUL USE OF ELECTRICAL RESISTIVITY TO POSITION BOREHOLES TO DEFINE DEEP VADOSE ZONE CONTAMINATION - 11509

    SciTech Connect

    GANDER MJ; LEARY KD; LEVITT MT; MILLER CW

    2011-01-14

    Historic boreholes confirmed the presence of nitrate and radionuclide contaminants at various intervals throughout a more than 60 m (200 ft) thick vadose zone, and a 2010 electrical resistivity survey mapped the known contamination and indicated areas of similar contaminants, both laterally and at depth; therefore, electrical resistivity mapping can be used to more accurately locate characterization boreholes. At the Hanford Nuclear Reservation in eastern Washington, production of uranium and plutonium resulted in the planned release of large quantities of contaminated wastewater to unlined excavations (cribs). From 1952 until 1960, the 216-U-8 Crib received approximately 379,000,000 L (100,000,000 gal) of wastewater containing 25,500 kg (56,218 lb) uranium; 1,029,000 kg (1,013 tons) of nitrate; 2.7 Ci of technetium-99; and other fission products including strontium-90 and cesium-137. The 216-U-8 Crib reportedly holds the largest inventory of waste uranium of any crib on the Hanford Site. Electrical resistivity is a geophysical technique capable of identifying contrasting physical properties; specifically, electrically conductive material, relative to resistive native soil, can be mapped in the subsurface. At the 216-U-8 Crib, high nitrate concentrations (from the release of nitric acid [HNO{sub 3}] and associated uranium and other fission products) were detected in 1994 and 2004 boreholes at various depths, such as at the base of the Crib at 9 m (30 ft) below ground surface (bgs) and sporadically to depths in excess of 60 m (200 ft) bgs. These contaminant concentrations were directly correlative with the presence of observed low electrical resistivity responses delineated during the summer 2010 geophysical survey. Based on this correlation and the recently completed mapping of the electrically conductive material, additional boreholes are planned for early 2011 to identify nitrate and radionuclide contamination: (a) throughout the entire vertical length of the

  18. The infill timing of a quaternary intermontane basin: new chrono-stratigraphic and palaeoenvironmental data by a 900 m deep borehole from Campochiaro (central-southern Apennine, Italy)

    NASA Astrophysics Data System (ADS)

    Amato, Vincenzo; Aucelli, Pietro P. C.; Cesarano, Massimo; Cifelli, Francesca; Leone, Natalia; Mattei, Massimo; Russo Ermolli, Elda; Petrosino, Paola; Rosskopf, Carmen M.

    2016-04-01

    The axial zone of the central-southern Apennine (Molise sector), is characterized by the presence of several quaternary tectonic depressions (Venafro, Isernia, Carpino, Sessano, Boiano and Sepino), generally NW-SE and NE-SW elongated, filled by very thick fluvial-marshy successions. Transtensive and extensional tectonic phases, alternating by relative stable tectonic periods with prevailing climatic variation induced processes, contributed to the infilling. In fact, during Early Pleistocene, the transtensive tectonic phases and, from the end of Early Pleistocene, the extensional tectonic phases, were responsible to enhance the subsidence into the basins, thanks to the activity of the high angle faults, generally NW-SE, NESW and E-O oriented, influencing also their environmental and sedimentary evolution. Between the late Middle Pleistocene and the early Upper Pleistocene, the subsidence reduced, and alluvial plain and alluvial fans environments improved. In the last years, several studies on the Boiano intermontane basin, bounded at south by Matese massif, were carried out. A detailed morpho-stratigraphic and tectonic evolution of the basin was proposed since Middle Pleistocene (MIS 13, 500 ka BP), thanks to field surveys and boreholes facies analyses, supported by Ar/Ar datings, tephrostratigraphical and pollen data. However, still now, the presence of Early Pleistocene eposits was only supposed. Succession. A deep continuous core (900 m) was carried out in the Campochiaro sector of the basin. Facies analyses, supported by preliminary paleomagnetic and tephrostratigraphic data, allow us to recognize the top of the prequaternary bedrock (Molise Flysch, Miocene) at 240 m of depth and to divide the whole succession in 4 main stratigraphic units. From the bottom to the top, the infilling is made of: Unit 1 (240-150 m), presenting lacustrine-palustrine environments, alternating clays and clayey-silts layers, constrained to Early Pleistocene; Unit 2 (150-123 m

  19. Implementation of Distributed Services for a Deep Sea Moored Instrument Network

    NASA Astrophysics Data System (ADS)

    Oreilly, T. C.; Headley, K. L.; Risi, M.; Davis, D.; Edgington, D. R.; Salamy, K. A.; Chaffey, M.

    2004-12-01

    The Monterey Ocean Observing System (MOOS) is a moored observatory network consisting of interconnected instrument nodes on the sea surface, midwater, and deep sea floor. We describe Software Infrastructure and Applications for MOOS ("SIAM"), which implement the management, control, and data acquisition infrastructure for the moored observatory. Links in the MOOS network include fiber-optic and 10-BaseT copper connections between the at-sea nodes. A Globalstar satellite transceiver or 900 MHz Freewave terrestrial line-of-sight RF modem provides the link to shore. All of these links support Internet protocols, providing TCP/IP connectivity throughout a system that extends from shore to sensor nodes at the air-sea interface, through the oceanic water column to a benthic network of sensor nodes extending across the deep sea floor. Exploiting this TCP/IP infrastructure as well as capabilities provided by MBARI's MOOS mooring controller, we use powerful Internet software technologies to implement a distributed management, control and data acquisition system for the moored observatory. The system design meets the demanding functional requirements specified for MOOS. Nodes and their instruments are represented by Java RMI "services" having well defined software interfaces. Clients anywhere on the network can interact with any node or instrument through its corresponding service. A client may be on the same node as the service, may be on another node, or may reside on shore. Clients may be human, e.g. when a scientist on shore accesses a deployed instrument in real-time through a user interface. Clients may also be software components that interact autonomously with instruments and nodes, e.g. for purposes such as system resource management or autonomous detection and response to scientifically interesting events. All electrical power to the moored network is provided by solar and wind energy, and the RF shore-to-mooring links are intermittent and relatively low

  20. A novel quality of life instrument for deep brain stimulation in movement disorders

    PubMed Central

    Kuehler, A; Henrich, G; Schroeder, U; Conrad, B; Herschbach, P; Ceballos-Baumann, A

    2003-01-01

    Objective: To develop a short instrument to examine quality of life (QoL) which specifically addresses patients with movement disorders treated by deep brain stimulation (DBS). Design: The instrument was developed within an existing concept of a modular questionnaire (questions on life satisfaction: "general life satisfaction" QLSM-A, and "satisfaction with health" QLSM-G), in which each item is weighted according to its relative importance to the individual. Methods: Items were generated by interviews with 20 DBS patients, followed by item reduction and scale generation, factor analysis to determine relevant and final questionnaire items, estimation of reliability, and validation based on the medical outcome study 36 item short form health survey (SF-36) and the EuroQol (EQ-5D) (data from 152 patients with Parkinson's disease, essential tremor, or idiopathic torsion dystonia, including 75 patients with DBS). Results: Initial questionnaires were reduced to 12 items for a "movement disorder module" (QLSM-MD), and five items for a "deep brain stimulation module" (QLSM-DBS). Psychometric analysis revealed Cronbach's α values of of 0.87 and 0.73, and satisfactory correlation coefficients for convergent validity with SF-36 and EQ-5D. Conclusions: QLSM-MD and QLSM-DBS can evaluate quality of life aspects of DBS in movement disorders. Psychometric evaluation showed the questionnaires to be reliable, valid, and well accepted by the patients. PMID:12876228

  1. Deep Brain Stimulation: In Search of Reliable Instruments for Assessing Complex Personality-Related Changes

    PubMed Central

    Ineichen, Christian; Baumann-Vogel, Heide; Christen, Markus

    2016-01-01

    During the last 25 years, more than 100,000 patients have been treated with Deep Brain Stimulation (DBS). While human clinical and animal preclinical research has shed light on the complex brain-signaling disturbances that underpin e.g., Parkinson’s disease (PD), less information is available when it comes to complex psychosocial changes following DBS interventions. In this contribution, we propose to more thoroughly investigate complex personality-related changes following deep brain stimulation through refined and reliable instruments in order to help patients and their relatives in the post-surgery phase. By pursuing this goal, we first outline the clinical importance DBS has attained followed by discussing problematic and undesired non-motor problems that accompany some DBS interventions. After providing a brief definition of complex changes, we move on by outlining the measurement problem complex changes relating to non-motor symptoms currently are associated with. The latter circumstance substantiates the need for refined instruments that are able to validly assess personality-related changes. After providing a brief paragraph with regard to conceptions of personality, we argue that the latter is significantly influenced by certain competencies which themselves currently play only a tangential role in the clinical DBS-discourse. Increasing awareness of the latter circumstance is crucial in the context of DBS because it could illuminate a link between competencies and the emergence of personality-related changes, such as new-onset impulse control disorders that have relevance for patients and their relatives. Finally, we elaborate on the field of application of instruments that are able to measure personality-related changes. PMID:27618110

  2. Method and system for advancement of a borehole using a high power laser

    DOEpatents

    Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.

    2014-09-09

    There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

  3. Apatite Fission Track and (U-Th)/He data from deep boreholes and regional transects in South Africa: implications for the exhumation pattern and uplift of the southern African plateau

    NASA Astrophysics Data System (ADS)

    Beucher, R.; Brown, R. W.; Dobson, K.; Persano, C.; Stuart, F.; Roelofse, F.

    2012-04-01

    Evolution of the southern African plateau remains contentious because of discrepancies between interpretations derived from geomorphic and stratigraphic evidence and quantitative, empirical estimates of the erosional history. Evidence of a large-scale seismic mantle anomaly suggests that the high elevation of the plateau might be related to active upward flow within the mantle. However, various published geodynamic models predict conflicting pictures of the vertical motion with Africa going up or down. These differences result from uncertainties on the viscosity and density structure of the mantle and also to how seismic velocity is finally scaled and used to drive deep mantle flow as well as how plate motions are incorporated into the models. Whatever the process involved, the km-scale vertical motions predicted by from the models must have been accompanied by an increase in erosion rates and rock exhumation. In this study we use a combination of apatite fission-track (AFTA) and (U-Th)/He thermochronometry (AHe) to resolve thermal events occurring in the shallow part of the crust. We present analyses of transects crossing the Great Escarpment together with samples from deep boreholes (1-2 km depth). The borehole approach enables constraints to be placed on the timing and amount of cooling even in cases of relatively low amount erosion while outcrop samples enable discussion of the regional exhumation patterns. A dozen deep boreholes from above and below the great escarpment have been sampled. We present fission track and AHe results for five of them. The AHe analyses are performed as single grain analyses with an average number of 15+ aliquots per sample for a total of 250+ single grain analyses in order to provide a high resolution chronology and to quantify the dispersion of single crystal ages. The shallowest borehole is 0.8 km and the deepest is 1.6 km, with most of them deeper than one kilometer. A spatial pattern is clearly evidenced with boreholes located

  4. Entry Boreholes Summary Report for the Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Horner, Jake A.

    2007-02-28

    This report describes the 2006 fiscal year field activities associated with the installation of four cable-tool-drilled boreholes located within the boundary of the Waste Treatment Plant (WTP), DOE Hanford site, Washington. The cable-tool-drilled boreholes extend from surface to ~20 ft below the top of basalt and were utilized as cased entry holes for three deep boreholes (approximately 1400 ft) that were drilled to support the acquisition of sub-surface geophysical data, and one deep corehole (1400 ft) that was drilled to acquire continuous core samples from underlying basalt and sedimentary interbeds. The geophysical data acquired from these boreholes will be integrated into a seismic response model that will provide the basis for defining the seismic design criteria for the WTP facilities.

  5. Measuring and interpretation of three-component borehole magnetic data

    NASA Astrophysics Data System (ADS)

    Virgil, C.; Ehmann, S.; Hördt, A.; Leven, M.; Steveling, E.

    2012-04-01

    Three-component borehole magnetics provides important additional information compared with total field or horizontal and vertical measurements. The "Göttinger Bohrloch Magnetometer" (GBM) is capable of recording the vector of the magnetic field along with the orientation of the tool using three fluxgate magnetometers and fibre-optic gyros. The GBM was successfully applied in the Outokumpu Deep Drill Hole (OKU R2500), Finland in September 2008 and in the Louisville Seamount Trail (IODP Expedition 330) from December 2010 until February 2011, and in several shallower boreholes. With the declination of the magnetic field, the GBM provides additional information compared to conventional tools, which reduces the ambiguity for structural interpretation. The position of ferromagnetic objects in the vicinity of the borehole can be computed with higher accuracy. In the case of drilled-through structures, three-component borehole magnetics allow the computation of the vector of magnetization. Using supplementary susceptibility data, the natural remanent magnetization (NRM) vector can be derived, which yields information about the apparent polar wander curve and/or about the structural evolution of the rock units. The NRM vector can further be used to reorient core samples in regions of strong magnetization. The most important aspect in three-component borehole magnetics is the knowledge of the orientation of the probe along the drillhole. With the GBM we use three fibre-optic gyros (FOG), which are aligned orthogonal to each other. These instruments record the turning rate about the three main axes of the probe. The FOGs benefit from a high resolution (< 9 · 10-4 °) and a low drift (< 2 °/h). However, to reach optimal results, extensive data processing and calibration measurements are necessary. Properties to be taken into account are the misalignment, scaling factors and offsets of the fluxgate and FOG triplet, temperature dependent drift of the FOGs, misalignment of the

  6. A borehole jack for deformability, strength, and stress measurements in a 2-inch borehole

    NASA Technical Reports Server (NTRS)

    Goodman, R. E.; Hovland, H. J.; Chirapuntu, S.

    1971-01-01

    A borehole jack devised for lunar exploration is described and results of its use in simulated lunar solids are presented. A hydraulic cylinder mounted between two stiff plates acts to spread the plates apart against the borehole walls when pressured. The spreading is measured by a displacement transducer and the load is measured hydraulically. The main improvement over previous instruments is the increased stroke, which allows large deformations of the borehole. Twenty-eight pistons are used to obtain a high hydraulic efficiency, and three return pistons are also provided. Pressure-deformation curves were obtained for each test on Lunar Soil Simulant No. 2, a light gray silty basalt powder.

  7. Resolving the age of the first-order topography of southern Africa: new insight from joint (U-Th)/He and fission track dating of samples from deep boreholes

    NASA Astrophysics Data System (ADS)

    Beucher, R.; Brown, R. W.; Persano, C.; Stuart, F.; Gallagher, K.

    2011-12-01

    The topography of Africa is unusually high with respect to other continents and its origin remains strongly debated. Africa's topography is strongly bimodal as it is distributed between the high plateau areas in its central part (circa 1000 m), and significantly less elevated areas with higher relief around its borders. The geodynamical interpretation of this feature is not straightforward as the plateau is essentially surrounded by passive margins and oceanic ridges. However, abundant seismic studies have revealed a deep seismic anomaly beneath Africa and suggest that forces related to active upward flow within the mantle are dynamically sustaining its high elevation. If the large anomaly provides a mechanism explaining the south African plateau, a lot of questions remain on the timing of uplift. Geodynamic models allow Africa to go up or down but fail to put constrains on the age of the uplift. This is mainly because of a lack of tight constraints on the viscosity and density structure of the mantle, which lead to several models with uplift occurring either during Cretaceous or Miocene times. The question of the age of the plateau therefore remains unresolved. Thermochronology and techniques such as fission track and U-Th/He analyses provide tools to address this question by constraining the erosion history. In this study we take advantage of the availability of deep boreholes located all across south-Africa to sample truly vertical profiles through the plateau. The key advantage of this approach is that it enables constraints to be placed on the timing and amount of cooling resulting from relatively low amounts of erosion. A dozen boreholes from above and below the great escarpment have been sampled. We present fission track and U-Th/He results for three of them. The U-Th/He analyses are performed as single grain analyses with an average number of 15+ aliquots per sample for a total of 250+ single grain analyses in order to provide a high resolution chronology

  8. Using a multiwavelength suite of microwave instruments to investigate the microphysical structure of deep convective cores

    NASA Astrophysics Data System (ADS)

    Battaglia, A.; Mroz, K.; Lang, Tim; Tridon, F.; Tanelli, S.; Tian, Lin; Heymsfield, Gerald M.

    2016-08-01

    Due to the large natural variability of its microphysical properties, the characterization of solid precipitation is a longstanding problem. Since in situ observations are unavailable in severe convective systems, innovative remote sensing retrievals are needed to extend our understanding of such systems. This study presents a novel technique able to retrieve the density, mass, and effective diameter of graupel and hail in severe convection through the combination of airborne microwave remote sensing instruments. The retrieval is applied to measure solid precipitation properties within two convective cells observed on 23-24 May 2014 over North Carolina during the IPHEx campaign by the NASA ER-2 instrument suite. Between 30 and 40 degrees of freedom of signal are associated with the measurements, which is insufficient to provide full microphysics profiling. The measurements have the largest impact on the retrieval of ice particle sizes, followed by ice water contents. Ice densities are mainly driven by a priori assumptions, though low relative errors in ice densities suggest that in extensive regions of the convective system, only particles with densities larger than 0.4 g/cm3 are compatible with the observations. This is in agreement with reports of large hail on the ground and with hydrometeor classification derived from ground-based polarimetric radars observations. This work confirms that multiple scattering generated by large ice hydrometeors in deep convection is relevant for airborne radar systems already at Ku band. A fortiori, multiple scattering will play a pivotal role in such conditions also for Ku band spaceborne radars (e.g., the GPM Dual Precipitation Radar).

  9. Using a multiwavelength suite of microwave instruments to investigate the microphysical structure of deep convective cores.

    PubMed

    Battaglia, A; Mroz, K; Lang, Tim; Tridon, F; Tanelli, S; Tian, Lin; Heymsfield, Gerald M

    2016-08-27

    Due to the large natural variability of its microphysical properties, the characterization of solid precipitation is a longstanding problem. Since in situ observations are unavailable in severe convective systems, innovative remote sensing retrievals are needed to extend our understanding of such systems. This study presents a novel technique able to retrieve the density, mass, and effective diameter of graupel and hail in severe convection through the combination of airborne microwave remote sensing instruments. The retrieval is applied to measure solid precipitation properties within two convective cells observed on 23-24 May 2014 over North Carolina during the IPHEx campaign by the NASA ER-2 instrument suite. Between 30 and 40 degrees of freedom of signal are associated with the measurements, which is insufficient to provide full microphysics profiling. The measurements have the largest impact on the retrieval of ice particle sizes, followed by ice water contents. Ice densities are mainly driven by a priori assumptions, though low relative errors in ice densities suggest that in extensive regions of the convective system, only particles with densities larger than 0.4 g/cm(3) are compatible with the observations. This is in agreement with reports of large hail on the ground and with hydrometeor classification derived from ground-based polarimetric radars observations. This work confirms that multiple scattering generated by large ice hydrometeors in deep convection is relevant for airborne radar systems already at Ku band. A fortiori, multiple scattering will play a pivotal role in such conditions also for Ku band spaceborne radars (e.g., the GPM Dual Precipitation Radar).

  10. Borehole data transmission apparatus

    DOEpatents

    Kotlyar, Oleg M.

    1993-01-01

    A borehole data transmission apparatus whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  11. Borehole data transmission apparatus

    DOEpatents

    Kotlyar, O.M.

    1993-03-23

    A borehole data transmission apparatus is described whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  12. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume VI S-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (VI), all S-wave measurements are presented that were performed in Borehole C4997 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  13. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume V S-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (V), all S-wave measurements are presented that were performed in Borehole C4996 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

  14. Borehole induction coil transmitter

    DOEpatents

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  15. Borehole geological assessment

    NASA Technical Reports Server (NTRS)

    Spuck, W. H., III (Inventor)

    1979-01-01

    A method and apparatus are discussed for performing geological assessments of a formation located along a borehole, and a boring tool that bores a pair of holes into the walls of the borehole and into the surrounding strata along with a pair of probes which are installed in the holes. One of the probes applies an input such as a current or pressured fluid, and the other probe senses a corresponding input which it receives from the strata.

  16. Tidal calibration of Plate Boundary Observatory borehole strainmeters: Roles of vertical and shear coupling

    USGS Publications Warehouse

    Roeloffs, Evelyn

    2010-01-01

    A multicomponent borehole strainmeter directly measures changes in the diameter of its cylindrical housing at several azimuths. To transform these measurements to formation strains requires a calibration matrix, which must be estimated by analyzing the installed strainmeter's response to known strains. Typically, theoretical calculations of Earth tidal strains serve as the known strains. This paper carries out such an analysis for 12 Plate Boundary Observatory (PBO) borehole strainmeters, postulating that each of the strainmeters' four gauges responds ("couples") to all three horizontal components of the formation strain tensor, as well as to vertical strain. Orientation corrections are also estimated. The fourth extensometer in each PBO strainmeter provides redundant information used to reduce the chance that coupling coefficients could be misleadingly fit to inappropriate theoretical tides. Satisfactory fits between observed and theoretically calculated tides were obtained for three PBO strainmeters in California, where the calculated tides are corroborated by other instrumentation, as well as for six strainmeters in Oregon and Washington, where no other instruments have ever recorded Earth tidal strain. Several strainmeters have unexpectedly large coupling coefficients for vertical strain, which increases the strainmeter's response to atmospheric pressure. Vertical coupling diminishes, or even changes the sign of, the apparent response to areal strain caused by Earth tides or deep Earth processes because near the free surface, vertical strains are opposite in sign to areal strain. Vertical coupling does not impair the shear strain response, however. PBO borehole strainmeters can provide calibrated shear strain time series of transient strain associated with tectonic or magmatic processes.

  17. Development of a Compact, Deep-Penetrating Heat Flow Instrument for Lunar Landers: In-Situ Thermal Conductivity System

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.

  18. Integration of 2D and 3D reflection seismic data with deep boreholes in the Kevitsa Ni-Cu-PGE deposit, northern Finland

    NASA Astrophysics Data System (ADS)

    Koivisto, Emilia; Malehmir, Alireza; Voipio, Teemu; Wijns, Chris

    2013-04-01

    Kevitsa is a large disseminated sulphide Ni-Cu-PGE deposit hosted by the Kevitsa mafic-ultramafic intrusion in northern Finland and dated as about 2.06 Ga old. The Geological Survey of Finland first discovered the Kevitsa deposit in 1987. Open pit mining by Kevitsa Mining Oy/First Quantum Minerals Ltd. commenced in June 2012. The final pit depth is planned to be 550-600 m. The estimated ore reserves of the Kevitsa intrusion are about 240 million tones (using a nickel cut-off grade of 0.1%). The expected life-of-mine is 20-30 years. More than 400 hundred holes have been drilled in the Kevitsa area, but most are concentrated close to the known deposit and do not provide a comprehensive understanding of the extent of the intrusion. The basal contact of the intrusion is penetrated by only about 30 drill holes, most of which are shallow. A better knowledge of the geometry of the intrusion would provide a framework for near-mine and deep exploration in the area. An exact knowledge on the basal contact of the intrusion would also provide an exploration target for the contact-type mineralization that is often more massive and richer in Ni-Cu. In December 2007, a series of 2D reflection seismic profiles was acquired in the Kevitsa area. It consisted of four connected survey lines between 6 and 11 km long. In 2010, the initial positive results of the 2D seismic survey led Kevitsa Mining Oy/First Quantum Minerals Ltd. to initiate a 3D reflection seismic survey. The 3D seismic survey is limited to the closer vicinity of the known deposit, while the 2D seismic survey was designed to provide a more regional view of the Kevitsa intrusive complex. The main aims of the 2D and 3D seismic surveys were to delineate the shape and extent of the ore-bearing Kevitsa intrusion and the geometry of some of the host rock and surrounding units, and extract information about the larger-scale structures and structures important for mine-planning purposes. The 2D and 3D seismic data were used to

  19. Log response of ultrasonic imaging and its significance for deep mineral prospecting of scientific drilling borehole-2 in Nanling district, China

    NASA Astrophysics Data System (ADS)

    Xiao, Kun; Zou, Changchun; Xiang, Biao; Yue, Xuyuan; Zhou, Xinpeng; Li, Jianguo; Zhao, Bin

    2014-10-01

    The hole NLSD-2, one of the deepest scientific drilling projects in the metallic ore districts of China, is the second scientific drilling deep hole in the Nanling district. Its ultimate depth is 2012.12 m. This hole was created through the implementation of continuous coring, and the measuring of a variety of geophysical well logging methods was performed over the course of the drilling process. This paper analyzes the characteristic responses of the fracture and fractured zone by ultrasonic imaging log data, and characterizes various rules of fracture parameters which change according to drilling depth. It then discusses the denotative meaning of the log results of polymetallic mineralization layers. The formation fractures develop most readily in a depth of 100~200 m, 600~850 m and 1450~1550 m of the hole NLSD-2, and high angle fractures develop most prominently. The strike direction of the fractures is mainly NW-SE, reflecting the orientation of maximum horizontal principal stress. For the polymetallic mineralization layer that occurred in the fractured zone, the characteristic response of ultrasonic imaging log is a wide dark zone, and the characteristic responses of conventional logs displayed high polarizability, high density, high acoustic velocity and low resistivity. All the main polymetallic mineralization layers are developed in fractures or fractured zones, and the fractures and fractured zones can be identified by an ultrasonic imaging log, thus the log results indirectly indicate the occurrence of polymetallic mineralization layers. Additionally, the relationship between the dip direction of fractures and the well deviation provides guidance for straightening of the drilling hole.

  20. Borehole dilatometer installation, operation, and maintenance at sites in Hawaii

    USGS Publications Warehouse

    Myren, G.D.; Johnston, M.J.S.; Mueller, R.J.

    2006-01-01

    In response to concerns about the potential hazard of Mauna Loa volcano in Hawaii, the USGS began efforts in 1998 to add four high-resolution borehole sites. Located at these sites are; strainmeters, tiltmeters, seismometers, accelerometers and other instrumentation. These instruments are capable of providing continuous monitoring of the magma movement under Mauna Loa. Each site was planned to provide multi-parameter monitoring of volcanic activity. In June of 2000, a contract was let for the core drilling of three of these four sites. They are located at Hokukano (west side of Mauna Loa) above Captain Cook, Hawaii; at Mauna Loa Observatory (11,737 feet near the summit), and at Mauna Loa Strip Road (east side of Mauna Loa). Another site was chosen near Halema'uma u' and Kilauea's summit, in the Keller deep well. (See maps). The locations of these instruments are shown in Figure 1 with their latitude and longitude in Table 1. The purpose of this network is to monitor crustal deformation associated with volcanic intrusions and earthquakes on Mauna Loa and Kilauea volcanoes. This report describes the methods used to locate sites, install dilatometers, other instrumentation, and telemetry. We also provide a detailed description of the electronics used for signal amplification and telemetry, plus techniques used for instrument maintenance. Instrument sites were selected in regions of hard volcanic rock where the expected signals from magmatic activity were calculated to be a maximum and the probability of earthquakes with magnitude 4 or greater is large. At each location, an attempt was made to separate tectonic and volcanic signals from known noise sources for each instrument type.

  1. Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Reidel, Steve P.

    2006-05-26

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

  2. Uranium-thorium series radionuclides in brines and reservoir rocks from two deep geothermal boreholes in the Salton Sea Geothermal Field, southeastern California

    NASA Astrophysics Data System (ADS)

    Zukin, Jeffrey G.; Hammond, Douglas E.; Teh-Lung, Ku; Elders, Wilfred A.

    1987-10-01

    Naturally occurring U and Th series radionuclides have been analyzed in high temperature brines (~300°C, 25 wt% dissolved solids) and associated rocks from two deep geothermal wells located on the northeastern margin of the Salton Sea Geothermal Field (SSGF). These data are part of a study of the SSGF as a natural analog of possible radionuclide behavior near a nuclear waste repository constructed in salt beds, and permit evaluation of some characteristics of water-rock interaction in the SSGF. Rock/Brine concentration ratios ( Rc = (dpm/ g) rock/(dpm/ g) brine) were found to vary from near unity for isotopes of Ra, Pb and Rn to about 5 × 10 5 for 232Th. The high sorptivity of 232Th is closely followed by that of 238U and 234U ( Rc ~ 5 × 10 4), suggesting that U is retained in the +4 oxidation state by the reducing conditions in the brines. The relatively high solubility of 210Pb and 212Pb is attributed to formation of chloride complexes, while the high Ra solubility is attributed to chloride complexing, a lack of suitable adsorption sites due to the high brine salinity and temperature, and the reducing conditions that prevent MnO 2 and RaSO 4 from forming. The 228Ra /226Ra ratios in the brines are approximately equal to those of their parents ( 232Th /230Th ) in associated rocks, indicating that Ra equilibration in the brine-rock system is achieved within the mean life of 228Ra (8.3 years). The 224Ra /228Ra ratios in these brines are about 0.7, indicating that either (1) brine composition is not homogeneous and 224Ra decays in fracture zones deficient in Ra and Th as the brine travels to the wellhead or (2) Ra equilibration in the brine-host rock system is not complete within the mean life of 224Ra (5.2 days) because the desorption of 224Ra from the solid phase is impeded. The 228Ac /228Ra activity ratio in the SSGF brines studied is <0.1, and from this ratio the residence time of 228Ac in the brine before sorption onto solid surfaces is estimated to be <70

  3. Low Noise Borehole Triaxial Seismometer Phase II

    SciTech Connect

    Kerr, James D; McClung, David W

    2006-11-06

    This report describes the preliminary design and the effort to date of Phase II of a Low Noise Borehole Triaxial Seismometer for use in networks of seismic stations for monitoring underground nuclear explosions. The design uses the latest technology of broadband seismic instrumentation. Each parameter of the seismometer is defined in terms of the known physical limits of the parameter. These limits are defined by the commercially available components, and the physical size constraints. A theoretical design is proposed, and a preliminary prototype model of the proposed instrument has been built. This prototype used the sensor module of the KS2000. The installation equipment (hole locks, etc.) has been designed and one unit has been installed in a borehole. The final design of the sensors and electronics and leveling mechanism is in process. Noise testing is scheduled for the last quarter of 2006.

  4. Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.

    SciTech Connect

    Gardner, Martin G.; Price, Randall K.

    2007-02-01

    During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

  5. Instructions for borehole sampling

    SciTech Connect

    Reynolds, K.D.; Lindsey, K.A.

    1994-11-11

    Geologic systems generally are complex with physical properties and trends that can be difficult to predict. Subsurface geology exerts a fundamental control on groundwater flow and contaminant transport. The primary source for direct observation of subsurface geologic information is a borehole. However, direct observations from a borehole essentially are limited to the diameter and spacing of boreholes and the quality of the information derived from the drilling. Because it is impractical to drill a borehole every few feet to obtain data, it is necessary to maximize the data gathered during limited drilling operations. A technically defensible balance between the customer`s data quality objectives and control of drilling costs through limited drilling can be achieved with proper conduct of operations. This report presents the minimum criteria for geologic and hydrologic characterization and sampling that must be met during drilling. It outlines the sampling goals that need to be addressed when drilling boreholes, and the types of drilling techniques that work best to achieve these goals under the geologic conditions found at Hanford. This report provides general guidelines for: (1) how sampling methods are controlled by data needs, (2) how minimum sampling requirements change as knowledge and needs change, and (3) when drilling and sampling parameters need to be closely controlled with respect to the specific data needs. Consequently, the report is divided into two sections that center on: (1) a discussion of basic categories of subsurface characterization, sampling, and sampling techniques, and (2) guidelines for determining which drilling and sampling techniques meet required characterization and sampling objectives.

  6. Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact

    NASA Astrophysics Data System (ADS)

    Kent, A. R.; Grill, W. M.

    2012-06-01

    The clinical efficacy of deep brain stimulation (DBS) for the treatment of movement disorders depends on the identification of appropriate stimulation parameters. Since the mechanisms of action of DBS remain unclear, programming sessions can be time consuming, costly and result in sub-optimal outcomes. Measurement of electrically evoked compound action potentials (ECAPs) during DBS, generated by activated neurons in the vicinity of the stimulating electrode, could offer insight into the type and spatial extent of neural element activation and provide a potential feedback signal for the rational selection of stimulation parameters and closed-loop DBS. However, recording ECAPs presents a significant technical challenge due to the large stimulus artefact, which can saturate recording amplifiers and distort short latency ECAP signals. We developed DBS-ECAP recording instrumentation combining commercial amplifiers and circuit elements in a serial configuration to reduce the stimulus artefact and enable high fidelity recording. We used an electrical circuit equivalent model of the instrumentation to understand better the sources of the stimulus artefact and the mechanisms of artefact reduction by the circuit elements. In vitro testing validated the capability of the instrumentation to suppress the stimulus artefact and increase gain by a factor of 1000 to 5000 compared to a conventional biopotential amplifier. The distortion of mock ECAP (mECAP) signals was measured across stimulation parameters, and the instrumentation enabled high fidelity recording of mECAPs with latencies of only 0.5 ms for DBS pulse widths of 50 to 100 µs/phase. Subsequently, the instrumentation was used to record in vivo ECAPs, without contamination by the stimulus artefact, during thalamic DBS in an anesthetized cat. The characteristics of the physiological ECAP were dependent on stimulation parameters. The novel instrumentation enables high fidelity ECAP recording and advances the potential use

  7. An FPGA-based instrumentation platform for use at deep cryogenic temperatures

    SciTech Connect

    Conway Lamb, I. D.; Colless, J. I.; Hornibrook, J. M.; Pauka, S. J.; Waddy, S. J.; Reilly, D. J.; Frechtling, M. K.

    2016-01-15

    We describe the operation of a cryogenic instrumentation platform incorporating commercially available field-programmable gate arrays (FPGAs). The functionality of the FPGAs at temperatures approaching 4 K enables signal routing, multiplexing, and complex digital signal processing in close proximity to cooled devices or detectors within the cryostat. The performance of the FPGAs in a cryogenic environment is evaluated, including clock speed, error rates, and power consumption. Although constructed for the purpose of controlling and reading out quantum computing devices with low latency, the instrument is generic enough to be of broad use in a range of cryogenic applications.

  8. An FPGA-based instrumentation platform for use at deep cryogenic temperatures.

    PubMed

    Conway Lamb, I D; Colless, J I; Hornibrook, J M; Pauka, S J; Waddy, S J; Frechtling, M K; Reilly, D J

    2016-01-01

    We describe the operation of a cryogenic instrumentation platform incorporating commercially available field-programmable gate arrays (FPGAs). The functionality of the FPGAs at temperatures approaching 4 K enables signal routing, multiplexing, and complex digital signal processing in close proximity to cooled devices or detectors within the cryostat. The performance of the FPGAs in a cryogenic environment is evaluated, including clock speed, error rates, and power consumption. Although constructed for the purpose of controlling and reading out quantum computing devices with low latency, the instrument is generic enough to be of broad use in a range of cryogenic applications.

  9. Piezotube borehole seismic source

    DOEpatents

    Daley, Tom M; Solbau, Ray D; Majer, Ernest L

    2014-05-06

    A piezoelectric borehole source capable of permanent or semipermanent insertion into a well for uninterrupted well operations is described. The source itself comprises a series of piezoelectric rings mounted to an insulative mandrel internally sized to fit over a section of well tubing, the rings encased in a protective housing and electrically connected to a power source. Providing an AC voltage to the rings will cause expansion and contraction sufficient to create a sonic pulse. The piezoelectric borehole source fits into a standard well, and allows for uninterrupted pass-through of production tubing, and other tubing and electrical cables. Testing using the source may be done at any time, even concurrent with well operations, during standard production.

  10. Lifting liquid from boreholes

    SciTech Connect

    Reese, T.E.

    1983-05-17

    A device for lifting liquid from boreholes comprises a pump which is located downhole in the region of a production formation and which consists of a fluid-actuated, double-action piston. The pump is connected by fluid pressure lines to a source of fluid pressure disposed above ground and a switching valve is connected to provide fluid pressure to alternate sides of the piston to effect reciprocation thereof.

  11. Compact, Deep-Penetrating Geothermal Heat Flow Instrumentation for Lunar Landers

    NASA Technical Reports Server (NTRS)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the two separate measurements of geothermal gradient in, and thermal conductivity of, the vertical soi/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey [I] and previously the International Lunar Network [2]. The two lunar-landing missions planned later this decade by JAXA [3] and ESA [4] also consider geothermal measurements a priority.

  12. Deciphering the Complex Chemistry of Deep-Ocean Particles Using Complementary Synchrotron X-ray Microscope and Microprobe Instruments.

    PubMed

    Toner, Brandy M; German, Christopher R; Dick, Gregory J; Breier, John A

    2016-01-19

    The reactivity and mobility of natural particles in aquatic systems have wide ranging implications for the functioning of Earth surface systems. Particles in the ocean are biologically and chemically reactive, mobile, and complex in composition. The chemical composition of marine particles is thought to be central to understanding processes that convert globally relevant elements, such as C and Fe, among forms with varying bioavailability and mobility in the ocean. The analytical tools needed to measure the complex chemistry of natural particles are the subject of this Account. We describe how a suite of complementary synchrotron radiation instruments with nano- and micrometer focusing, and X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) capabilities are changing our understanding of deep-ocean chemistry and life. Submarine venting along mid-ocean ridges creates hydrothermal plumes where dynamic particle-forming reactions occur as vent fluids mix with deep-ocean waters. Whether plumes are net sources or sinks of elements in ocean budgets depends in large part on particle formation, reactivity, and transport properties. Hydrothermal plume particles have been shown to host microbial communities and exhibit complex size distributions, aggregation behavior, and composition. X-ray microscope and microprobe instruments can address particle size and aggregation, but their true strength is in measuring chemical composition. Plume particles comprise a stunning array of inorganic and organic phases, from single-crystal sulfides to poorly ordered nanophases and polymeric organic matrices to microbial cells. X-ray microscopes and X-ray microprobes with elemental imaging, XAS, and XRD capabilities are ideal for investigating these complex materials because they can (1) measure the chemistry of organic and inorganic constituents in complex matrices, usually within the same particle or aggregate, (2) provide strong signal-to-noise data with exceedingly small

  13. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume III P-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    In this volume (III), all P-wave measurements are presented that were performed in Borehole C4997 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 390 to 1220 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 40 ft (later relocated to 27.5 ft due to visibility in borehole after rain) in Borehole C4997, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4997, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  14. Toward long-term geochemical sampling of gases and deep fluids in subduction zone fore-arcs: New instrument developments

    NASA Astrophysics Data System (ADS)

    Tryon, M. D.; Labonte, A. L.; Fueri, E.; Hilton, D. R.; Brown, K. M.

    2004-12-01

    We present preliminary results of an on-going instrument development study aimed at quantifying the rate of elemental loss to the ocean/atmosphere in active fore-arc margins. Work on subduction zones to date has focused on elemental fluxes associated with magmatism at the arc front. For example, the flux of carbon output along the strike of the Central America arc is ˜ 5 x 107 mol/yr/km, or ~14% of that potentially available by input via the trench (Shaw et al., EPSL, 2003). This result indicates that carbon is (a) efficiently recycled to the (deeper) mantle, i.e. the mantle beyond the zone of arc magma generation, and/or (b) lost in the fore-arc region. There are few constraints on elemental losses at the fore-arc region; the present work, therefore, is motivated by quantifying the flux of volatiles (and other species) lost in the early stages of the subduction cycle. This will allow a qualitative assessment of the importance of deep recycling and contribute to an increased understanding of the hydrogeology of active margins. The Chemical and Aqueous Transport (CAT) meters (Tryon et al., Deep Sea Research, 2001) used in this study record a time series of flow rates by injecting a tracer at a constant known rate into the flow stream through the instrument and by sampling downstream of this point for tracer dilution. They also collect a time series of seep fluids in copper coils and maintain them at seafloor pressure during recovery. The Optical Flow Meter (OFM) measures flow by determining the time-of-flight of a tracer pulse injected into the flow stream. An osmotic pump is used to sample fluids in a manner similar to the CAT meters. A series of tests utilizing both sets of instruments has been conducted at the Extrovert Cliffs site in Monterey Bay during 2004. Sites chosen range from diffuse flow sites with output rates of 10s of cm/yr to highly focused visibly flowing sites: all localities are covered by extensive microbial mats and chemosynthetic clams. Our

  15. INSTRUMENTS AND METHODS OF INVESTIGATION: Deep Impact experiment: possible observable effects

    NASA Astrophysics Data System (ADS)

    Klumov, Boris A.; Kim, V. V.; Lomonosov, I. V.; Sultanov, Valerii G.; Shutov, A. V.; Fortov, Vladimir E.

    2005-07-01

    A hypervelocity collision of a metal impactor and the nucleus of the Tempel 1 comet is to be carried out in July 2005 in the framework of the Deep Impact active experiment in space. This paper discusses certain observable consequences of this impact. Numerical simulation of the impact process made it possible to evaluate the diameter of the impact-produced crater as a function of the initial density and porosity of the cometary nucleus. A substantial part of the shockwave-compressed cometary material that is evaporated at the unloading stage may become heated to temperatures on the order of (1-2)×104 K. A change in the chemical composition of the hot vapor in the process of its expansion was computed using a model elemental composition of the cometary nucleus; this may prove useful for determining the parameters of the flash induced by the impact in the visible optical, UV, IR, and radio wavelength bands.

  16. Borehole radar for geothermal applications

    SciTech Connect

    Scott, M.W.; Caffey, T.W.H.

    1991-01-01

    An initial evaluation of a continuous wave borehole radar system with steerable antennas has been completed. Candidate antennas have been identified which meet the size requirements for borehole applications. The patterns of these antennas are not dependent on the properties of the surrounding media when the antenna dimensions are less than one-tenth wavelength. The beam patterns can be steered adequately to allow the volume of earth within several meters of a borehole to be investigated. 7 refs., 5 figs.

  17. Alternative technical summary report for direct disposition in deep boreholes: Direct disposal of plutonium metal/plutonium dioxide in compound canisters, Version 4.0. Fissile Materials Disposition Program

    SciTech Connect

    Wijesinghe, A.M.

    1996-08-23

    This report summarizes and compares the Immobilized and Direct Beep Borehole Disposition Alternatives. The important design concepts, facility features and operational procedures are briefly described, and a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

  18. Borehole sealing method and apparatus

    DOEpatents

    Hartley, James N.; Jansen, Jr., George

    1977-01-01

    A method and apparatus is described for sealing boreholes in the earth. The borehole is blocked at the sealing level, and a sealing apparatus capable of melting rock and earth is positioned in the borehole just above seal level. The apparatus is heated to rock-melting temperature and powdered rock or other sealing material is transported down the borehole to the apparatus where it is melted, pooling on the mechanical block and allowed to cool and solidify, sealing the hole. Any length of the borehole can be sealed by slowly raising the apparatus in the borehole while continuously supplying powdered rock to the apparatus to be melted and added to the top of the column of molten and cooling rock, forming a continuous borehole seal. The sealing apparatus consists of a heater capable of melting rock, including means for supplying power to the heater, means for transporting powdered rock down the borehole to the heater, means for cooling the apparatus and means for positioning the apparatus in the borehole.

  19. Tuned borehole gravity gradiometer

    SciTech Connect

    Lautzenhiser, T.V.; Nekut, A.G. Jr.

    1986-04-15

    A tuned borehole gravity gradiometer is described for detecting variations in gravity gradient which consists of: a suspended dipole mass system having symmetrically distributed dipole masses and suspension means for suspending the dipole masses such that the gravity gradient to be measured produces an angular displacement about a rotation axis of the dipole mass system from a reference position; and tuning means with the dipole mass system for selectively varying the sensitivity to angular displacements with respect to the rotation axis of the dipole mass system to variations in gravity gradient, wherein the tuning means includes means for selectively varying the metacentric height of the dipole mass system.

  20. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume I P-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (I), all P-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 370 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4993, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  1. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume II P-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (II), all P-wave measurements are presented that were performed in Borehole C4996 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 360 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1180 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4996, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4996, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  2. Borehole Tilt Measurements at the Charlevoix Observatory, Quebec.

    DTIC Science & Technology

    1983-01-31

    the added length. The Earth Physics Branch also drilled a nearby deep water well. The borehole was drilled by Les Puits de Quebec under subcontract...Geophys. Res. Letters, 5, 477-479. El-Sabh, M .1., T.S. Murty, et L. Levesque, 1979, Mouvements des eaux induits par la maree et le vent dans l’estuaire du

  3. The experimental results and analysis of a borehole radar prototype

    NASA Astrophysics Data System (ADS)

    Liu, Sixin; Wu, Junjun; Dong, Hang; Fu, Lei; Wang, Fei

    2012-04-01

    A prototype of borehole radar has been successfully tested in three sites for different purposes under a field condition. The objective of the prototype is providing an effective down-hole tool for detecting targets in deep boreholes situated in a relatively high conductivity area such as the metal ores. The first testing site is at a geothermal field. The fractures extending more than 20 m from the borehole are delineated by the borehole radar in the single-hole reflection mode. The second testing site is located in a jade mine for basement evaluation. The cross-hole measurement mode was used to detect the cavities made by previous unorganized mining activities. Several high-velocity anomalies were found in the velocity profile and presumably the targets of the mine shafts and tunnels. The third test site is located in a mineralized belt characterized by low resistivity less than 1000 Ohm m, the surface-borehole measurement was carried out and the data were processed with velocity tomography. The low-velocity zone corresponds to a mineralized zone from geological records. The three testing results proved the readiness of this borehole radar prototype for further deployment in more complicated and realistic field situations.

  4. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume IV S-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.

    SciTech Connect

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    In this volume (IV), all S-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. S-wave measurements were performed over the depth range of 370 to 1300 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Shear (S) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition, a second average shear wave record was recorded by reversing the polarity of the motion of the T-Rex base plate. In this sense, all the signals recorded in the field were averaged signals. In all cases, the base plate was moving perpendicular to a radial line between the base plate and the borehole which is in and out of the plane of the figure shown in Figure 1.1. The definition of “in-line”, “cross-line”, “forward”, and “reversed” directions in items 2 and 3 of Section 2 was based on the moving direction of the base plate. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas (UT) was embedded near the borehole at about 1.5 ft below the ground surface. The Redpath geophone and the UT geophone were properly aligned so that one of the horizontal components in each geophone was aligned with the direction of horizontal shaking of the T-Rex base plate. This volume is organized into 12 sections as follows. Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vs Profile at Borehole C4993

  5. Side hole drilling in boreholes

    NASA Technical Reports Server (NTRS)

    Collins, Jr., Earl R. (Inventor)

    1980-01-01

    Apparatus for use in a borehole or other restricted space to bore a side hole into the strata surrounding the borehole, including a flexible shaft with a drill at its end, and two trains of sheathing members that can be progressively locked together into a rigid structure around the flexible shaft as it is directed sidewardly into the strata.

  6. Installation and Initial Results of Borehole Strainmeters around the Marmara Sea in Turkey.

    NASA Astrophysics Data System (ADS)

    Mencin, David; Bohnhoff, Marco; Ozener, Haluk; Mattioli, Glen; Bilham, Roger; Johnson, Wade; Gottlieb, Mike; Van Boskirk, Elizabeth; Aracel, Digdem; Bulut, Fatih; Bal, Osman

    2016-04-01

    Twice in the past 1000 years a sequence of damaging earthquakes has propagated during the course of a few decades along the North Anatolian fault (NAF) in Turkey towards Istanbul, with the final earthquake in the sequence catastrophically destroying the city. This occurred most recently in 1509 when the population was only about 200,000 yet ten thousand people died. The population of greater Istanbul is now 20 million, building stock more fragile, and the last earthquake of the current westward propagating sequence is considered geologically imminent. An opportunity to enhance the detection capability of a suite of deep seismometers installed near Istanbul has arisen, that will permit us to observe, characterize, and possibly predict the moment of imminent failure along the NAF, as well as monitor the tectonic processes leading to this failure. As an augmentation of the Geophysical Observatory at the North Anatolian Fault (GONAF), UNAVCO installed two continuous creepmeters and six borehole strainmeters between July 2014 and October 2015 into boreholes provided by the several international sponsors, including NSF, GFZ, AFAD and Bogazici University Kandilli Observatory. The entire geophysical sensor network is collectively referred to as GeoGONAF. The borehole strainmeters enhance the ability of the scientific instrumentation to monitor ultra-slow process near the probable source zone of the Mw>7 earthquake that is soon expected beneath the Marmara Sea. The strainmeters and creepmeters allow us to make geodetic observations of this segment of the fault before, during and after a large earthquake, which combined with the seismic data from GONAF will provide valuable data for understanding earthquake processes. Installed instruments have already recorded both local and teleseismic events and observed creep events on the on-shore segments of the NAF to the East of the Marmara. In addition we have seen typical hydrological loading signals associated with normal modes of

  7. Alternative technical summary report for immobilized disposition in deep boreholes: Immobilized disposal of plutonium in coated ceramic pellets in grout without canisters, Version 4.0. Fissile materials disposition program

    SciTech Connect

    Wijesinghe, A.M.

    1996-08-23

    This paper summarizes and compares the immobilized and direct borehole disposition alternatives previously presented in the alternative technical summary. The important design concepts, facility features and operational procedures are first briefly described. This is followed by a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

  8. Borehole Muon Detector Development

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.

    2015-12-01

    Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.

  9. Seismic investigations for high resolution exploration ahead and around boreholes

    NASA Astrophysics Data System (ADS)

    Jaksch, Katrin; Giese, Ruediger; Kopf, Matthias

    2013-04-01

    Deep reservoirs usually will be explored with a surface seismic survey often in combination with borehole seismic measurements like VSP or SWD which can improve the velocity model of the underground. Reservoirs especially in geothermal fields are often characterized by small-scale structures. Additionally, with depth the need for exploration methods with a high resolution increases because standard methods like borehole seismic measurements cannot improve their resolution with depth. To localize structures with more accuracy methods with higher resolution in the range of meters are necessary. Within the project SPWD - Seismic Prediction While Drilling a new exploration method will be developed. With an implementation of seismic sources and receivers in one device an exploration method ahead and around the borehole will be enabled. Also, a high resolution independent from the depth will be achieved. Therefore active and powerful seismic sources are necessary to reach an acceptable penetration depth. Step by step seismic borehole devices were developed, which can be used under different conditions. Every borehole device contains four seismic sources and several three-component geophones. A small distance between actuators and geophones allows detecting also the high frequency content of the wave field reflected at geological structures. Also, exploration with a high resolution is possible. A first borehole device was developed for basic conditions in horizontal boreholes without special terms to temperature or pressure. In a mine first methodical measurements for the initiated wave field were performed. Therefor an existing seismic test area at the research and education mine of the TU Bergakademie Freiberg was extended with boreholes. In the seismic test area, consisting of a dense geophone array with three-component geophone anchors, two horizontal and one vertical borehole was drilled. To achieve a radiation pattern in predefined directions by constructive

  10. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the

  11. Borehole Initiatives In France and Greece: The Grenoble and Corinth Gulf Vertical Arrays

    NASA Astrophysics Data System (ADS)

    Lemeille, F.; Berge-Thierry, C.; Hatzfeld, D.; Bernard, P.

    The near-surface geological site conditions in the upper tens of meters are one of the dominant factors in controlling the amplitude and variation of strong ground motion, and the damage patterns that result from large earthquakes. Our understanding of these site effects comes primarily from surface recordings. In recent years, however, the increase in the number of borehole instruments provides a significant step forward in directly measuring the effects of surface geology. In the last ten years, the IPSN has been involved in the Garner Valley Deep Accelerom- eter Project (GVDA) in Southern California in collaboration with the Nuclear Regula- tory Commission (NRC) and the University of California Santa Barbara (UCSB) both in the USA. This project has produced valuable data to study site effects and it con- stituted a milestone in terms of managing experience of a vertical array. In this way in order to study site effects in the European Community, IPSN is also collaborating in two recent projects, one in Grenoble (France), and another in the Gulf of Corinth (Greece). In the Grenoble valley, a 556 m deep borehole has been drilled. This project is also supported by the LGIT in 1999-2000 with local and ministerial funding. The ref- erence accelerometer is in the Mesozoic basement at 556 m deep. On the surface, the accelerometer is also part of the Permanent Accelerometric Network ruled by the LGIT. The borehole drilling was performed together with acoustic logging. One year of recording of accelerations is available on the Web. The LGIT, BRGM and INPG/3S carried out geophysical experiments on the site as well. In the framework of CORSEIS European program, IPSN together with ENS Paris, IPG Paris (France), AUTH and NKUA (Greece), are supporting a vertical array of accelerometers and pore pressure transducers dedicated to the study of liquefaction and nonlinearity in the Aigion harbor. These phenomena occurred during the June 15 1995 (M = 6.2) event. All transducers are

  12. A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project

    SciTech Connect

    Fernandez, J.A.; Case, J.B.; Givens, C.A.; Carney, B.C.

    1994-04-01

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

  13. Advanced Borehole Radar for Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental

  14. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer

    Marvinney, Robert

    2013-11-06

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  15. Performance of a Borehole XRF Spectrometer for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Carlberg, Ingrid A.; Elam, W. T.; WIllard-Schmoe, Ella

    2007-01-01

    We have designed and constructed a borehole XRF Spectrometer (XRFS) as part of the Mars Subsurface Access program. It will be used to determine the composition of the Mars regolith at various depths by insertion into a pre-drilled borehole. The primary performance metrics for the instrument are the lower limits of detection over a wide range of the periodic table. Power consumption during data collection was also measured. The prototype instrument is complete and preliminary testing has been performed. Terrestrial soil Standard Reference Materials were used as the test samples. Detection limits were about 10 weight parts-per-million for most elements, with light elements being higher, up to 1.4 weight percent for magnesium. Power consumption (excluding ground support components) was 12 watts.

  16. Characterization of Permeable Zones by the Measurement of Borehole Temperature

    NASA Astrophysics Data System (ADS)

    Tai, Tung-Lin; Chuang, Po-Yu; Lee, Tsai-Ping; Chia, Yeeping

    2015-04-01

    Subsurface temperature distribution has become an important issue in hydrogeologic studies. The major heat transfer mechanisms in porous medium are conduction and convection. Temperature profile in geological formations with different thermal conductivity would be controlled primarily by heat conduction. The temperature change related to water flows is caused by heat convection. Consequently, temperature profiles are affected by a variety of factors, such as surface temperature change, well diameter, groundwater level change, and water flows inside the borehole. In this study, we use temperature probe as a well logging device to investigate the borehole conditions. There is the depth correction for the time lag problem resulting from the equilibration time of the sensors during the logging process. Then the field measurement was conducted in a 60-m deep well in a gravelly aquifer to characterize the temperature profile of screened zone. In the shallow depth, the change of temperature is primarily influenced by seasonal variation and daily fluctuation. Below the depth of 30-m, the change of temperature was subject to geothermal gradient. However, the slope of temperature profiles changed at approximately 42-m deep, the top of well screen, and it indicated the effects of heat convection in the aquifer. In addition, the measured temperature in the borehole may not represent the actual temperature of aquifer. The measured temperature in the screened section changed continuously in response to pumping, but stabilized an hour data when 2 to 3 times of the borehole water volume is extracted. This phenomenon is related to the temperature mixing with the upper borehole water and aquifer permeability. On the other hand, if the aquifer permeability is high enough, it may influence the temperature profile in borehole through the high flow velocity. The test results indicated that, in order to obtain the actual temperature or chemical constituents, we have to pump 2 to 3 times

  17. 30 CFR 75.1322 - Stemming boreholes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Stemming boreholes. 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes. (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  18. 30 CFR 75.1322 - Stemming boreholes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Stemming boreholes 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  19. 30 CFR 75.1322 - Stemming boreholes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Stemming boreholes. 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes. (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  20. 30 CFR 75.1322 - Stemming boreholes

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Stemming boreholes 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  1. 30 CFR 75.1322 - Stemming boreholes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stemming boreholes 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  2. Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.

    SciTech Connect

    Brouns, Thomas M.

    2007-07-15

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

  3. Development of a magnetostrictive borehole seismic source

    SciTech Connect

    Cutler, R.P.; Sleefe, G.E.; Keefe, R.G.

    1997-04-01

    A magnetostrictive borehole seismic source was developed for use in high resolution crosswell surveys in environmental applications. The source is a clamped, vertical-shear, swept frequency, reaction-mass shaker design consisting of a spring pre-loaded magnetostrictive rod with permanent magnet bias, drive coils to induce an alternating magnetic field, and an integral tungsten reaction mass. The actuator was tested extensively in the laboratory. It was then incorporated into an easily deployable clamped downhole tool capable of operating on a standard 7 conductor wireline in borehole environments to 10,000{degrees} deep and 100{degrees}C. It can be used in either PVC or steel cased wells and the wells can be dry or fluid filled. It has a usable frequency spectrum of {approx} 150 to 2000 Hz. The finished tool was successfully demonstrated in a crosswell test at a shallow environmental site at Hanford, Washington. The source transmitted signals with a S/N ratio of 10-15 dB from 150-720 Hz between wells spaced 239 feet apart in unconsolidated gravel. The source was also tested successfully in rock at an oil field test site, transmitting signals with a S/N ratio of 5-15 dB over the full sweep spectrum from 150-2000 Hz between wells spaced 282 feet apart. And it was used successfully on an 11,000{degrees} wireline at a depth of 4550{degrees}. Recommendations for follow-on work include improvements to the clamp, incorporation of a higher sample rate force feedback controller, and increases in the force output of the tool.

  4. The Modular Borehole Monitoring Program. A research program to optimize well-based monitoring for geologic carbon sequestration

    SciTech Connect

    Freifeld, Barry; Daley, Tom; Cook, Paul; Trautz, Robert; Dodds, Kevin

    2014-12-31

    Understanding the impacts caused by injection of large volumes of CO2 in the deep subsurface necessitates a comprehensive monitoring strategy. While surface-based and other remote geophysical methods can provide information on the general morphology of a CO2 plume, verification of the geochemical conditions and validation of the remote sensing data requires measurements from boreholes that penetrate the storage formation. Unfortunately, the high cost of drilling deep wellbores and deploying instrumentation systems constrains the number of dedicated monitoring borings as well as limits the technologies that can be incorporated in a borehole completion. The objective of the Modular Borehole Monitoring (MBM) Program was to develop a robust suite of well-based tools optimized for subsurface monitoring of CO2 that could meet the needs of a comprehensive well-based monitoring program. It should have enough flexibility to be easily reconfigured for various reservoir geometries and geologies. The MBM Program sought to provide storage operators with a turn-key fully engineered design that incorporated key technologies, function over the decades long time-span necessary for post-closure reservoir monitoring, and meet industry acceptable risk profiles for deep-well installations. While still within the conceptual design phase of the MBM program, the SECARB Anthropogenic Test in Citronelle, Alabama, USA was identified as a deployment site for our engineered monitoring systems. The initial step in designing the Citronelle MBM system was to down-select from the various monitoring tools available to include technologies that we considered essential to any program. Monitoring methods selected included U-tube geochemical sampling, discrete quartz pressure and temperature gauges, an integrated fibre-optic bundle consisting of distributed temperature and heat-pulse sensing, and a sparse string of conventional 3C-geophones. While not originally planned

  5. The Modular Borehole Monitoring Program. A research program to optimize well-based monitoring for geologic carbon sequestration

    DOE PAGES

    Freifeld, Barry; Daley, Tom; Cook, Paul; ...

    2014-12-31

    Understanding the impacts caused by injection of large volumes of CO2 in the deep subsurface necessitates a comprehensive monitoring strategy. While surface-based and other remote geophysical methods can provide information on the general morphology of a CO2 plume, verification of the geochemical conditions and validation of the remote sensing data requires measurements from boreholes that penetrate the storage formation. Unfortunately, the high cost of drilling deep wellbores and deploying instrumentation systems constrains the number of dedicated monitoring borings as well as limits the technologies that can be incorporated in a borehole completion. The objective of the Modular Borehole Monitoring (MBM)more » Program was to develop a robust suite of well-based tools optimized for subsurface monitoring of CO2 that could meet the needs of a comprehensive well-based monitoring program. It should have enough flexibility to be easily reconfigured for various reservoir geometries and geologies. The MBM Program sought to provide storage operators with a turn-key fully engineered design that incorporated key technologies, function over the decades long time-span necessary for post-closure reservoir monitoring, and meet industry acceptable risk profiles for deep-well installations. While still within the conceptual design phase of the MBM program, the SECARB Anthropogenic Test in Citronelle, Alabama, USA was identified as a deployment site for our engineered monitoring systems. The initial step in designing the Citronelle MBM system was to down-select from the various monitoring tools available to include technologies that we considered essential to any program. Monitoring methods selected included U-tube geochemical sampling, discrete quartz pressure and temperature gauges, an integrated fibre-optic bundle consisting of distributed temperature and heat-pulse sensing, and a sparse string of conventional 3C-geophones. While not originally planned within the initial MBM

  6. Borehole Effects in Triaxial Induction Logging

    SciTech Connect

    Bertete-Aguirre, H; Cherkaev, E; Tripp, A

    2000-09-15

    Traditional induction tools use source arrays in which both receiving and transmitting magnetic dipoles are oriented along the borehole axis. This orientation has been preferred for traditional isotropic formation evaluation in vertical boreholes because borehole effects are minimized by the source-receiver-borehole symmetry. However, this source-receiver geometry tends to minimize the response of potentially interesting geological features? such as bed resistivity anisotropy and fracturing which parallels the borehole. Traditional uniaxial tool responses are also ambiguous in highly deviated boreholes in horizontally layered formations. Resolution of these features would be enhanced by incorporating one or more source transmitters that are perpendicular to the borehole axis. Although these transmitters can introduce borehole effects, resistive oil-based muds minimize borehole effects for horizontal source data collection and interpretation. However, the use of oil based muds is contraindicated in environmentally sensitive areas. For this reason, it is important to be able to assess the influence of conductive water based muds on the new generation of triaxial induction tools directed toward geothermal resource evaluation and to develop means of ameliorating any deleterious effects. The present paper investigates the effects of a borehole on triaxial measurements. The literature contains a great deal of work on analytic expressions for the EM response of a magnetic dipole contained in a borehole with possible invasion zones. Moran and Gianzero (1979) for example investigate borehole effects using such an expression. They show that for conductive borehole fluids, the borehole response can easily swamp the formation response for horizontal dipoles. This is also true when the source dipoles are enclosed in a resistive cavity, as shown by Howard (1981) using a mode match modeling technique.

  7. The Antartic Ice Borehole Probe

    NASA Technical Reports Server (NTRS)

    Behar, A.; Carsey, F.; Lane, A.; Engelhardt, H.

    2000-01-01

    The Antartic Ice Borehole Probe mission is a glaciological investigation, scheduled for November 2000-2001, that will place a probe in a hot-water drilled hole in the West Antartic ice sheet. The objectives of the probe are to observe ice-bed interactions with a downward looking camera, and ice inclusions and structure, including hypothesized ice accretion, with a side-looking camera.

  8. Borehole drilling fluid and method

    SciTech Connect

    Carriere, D.B.; Lauzon, R.V.

    1981-11-17

    An improved drilling fluid and method for drilling a borehole, the drilling fluid comprising an aqueous dispersion of an emulsion polymerized latex comprised of an interpolymer of an olefinically unsaturated carboxylic acid monomer and at least one other, non-carboxylated polymerizable monomer, the latex being of a type which undergoes rapid increase in viscosity upon the addition of a sufficient amount of a basic material.

  9. Borehole drilling fluid and method

    SciTech Connect

    Carriere, D. B.; Lauzon, R. V.

    1984-12-04

    An improved drilling fluid and method for drilling a borehole, the drilling fluid comprising an aqueous dispersion of an emulsion polymerized latex comprised of an interpolymer of an olefinically unsaturated carboxylic acid monomer and at least one other, non-carboxylated polymerizable monomer, the latex being of a type which undergoes rapid increase in viscosity upon the addition of a sufficient amount of a basic material.

  10. Electromagnetic fields in cased borehole

    SciTech Connect

    Lee, Ki Ha; Kim, Hee Joon; Uchida, Toshihiro

    2001-07-20

    Borehole electromagnetic (EM) measurements, using fiberglass-cased boreholes, have proven useful in oil field reservoir characterization and process monitoring (Wilt et al., 1995). It has been presumed that these measurements would be impossible in steel-cased wells due to the very large EM attenuation and phase shifts. Recent laboratory and field studies have indicated that detection of EM signals through steel casing should be possible at low frequencies, and that these data provide a reasonable conductivity image at a useful scale. Thus, we see an increased application of this technique to mature oilfields, and an immediate extension to geothermal industry as well. Along with the field experiments numerical model studies have been carried out for analyzing the effect of steel casing to the EM fields. The model used to be an infinitely long uniform casing embedded in a homogeneous whole space. Nevertheless, the results indicated that the formation signal could be accurately recovered if the casing characteristics were independently known (Becker et al., 1998; Lee el al., 1998). Real steel-cased wells are much more complex than the simple laboratory models used in work to date. The purpose of this study is to develop efficient numerical methods for analyzing EM fields in realistic settings, and to evaluate the potential application of EM technologies to cross-borehole and single-hole environment for reservoir characterization and monitoring.

  11. Cross-borehole flow analysis to characterize fracture connections in the Melechov Granite, Bohemian-Moravian Highland, Czech Republic

    USGS Publications Warehouse

    Paillet, Frederick L.; Williams, John H.; Urik, Joseph; Lukes, Joseph; Kobr, Miroslav; Mares, Stanislav

    2012-01-01

    Application of the cross-borehole flow method, in which short pumping cycles in one borehole are used to induce time-transient flow in another borehole, demonstrated that a simple hydraulic model can characterize the fracture connections in the bedrock mass between the two boreholes. The analysis determines the properties of fracture connections rather than those of individual fractures intersecting a single borehole; the model contains a limited number of adjustable parameters so that any correlation between measured and simulated flow test data is significant. The test was conducted in two 200-m deep boreholes spaced 21 m apart in the Melechov Granite in the Bohemian-Moravian Highland, Czech Republic. Transient flow was measured at depth stations between the identified transmissive fractures in one of the boreholes during short-term pumping and recovery periods in the other borehole. Simulated flows, based on simple model geometries, closely matched the measured flows. The relative transmissivity and storage of the inferred fracture connections were corroborated by tracer testing. The results demonstrate that it is possible to assess the properties of a fracture flow network despite being restricted to making measurements in boreholes in which a local population of discrete fractures regulates the hydraulic communication with the larger-scale aquifer system.

  12. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of

  13. Fiber optic DTS in sealed and heated boreholes for active groundwater flow characterization

    NASA Astrophysics Data System (ADS)

    Coleman, Thomas; Parker, Beth; Cherry, John; Mondanos, Michael

    2013-04-01

    In recent years, advances in technology have allowed temperature profiling to evolve to offer new insight into fractured rock hydrogeology. Temperature profiles in open boreholes within fractured rock have long been used to identify and characterize flow in the rock formation and/or in the borehole. An advance in temperature logging makes use of precision temperature profiles collected using wireline trolling methods in a heated borehole to identify fractures with active groundwater flow by creating a thermal disequilibrium and monitoring the temperature response. A second development is based on collecting wireline temperature profiles within a sealed borehole to eliminate short circuiting effects caused by the open borehole conduit. The borehole is temporarily sealed with a flexible impervious fabric liner so that the water column in the borehole is static and cross-connection is eliminated. Though highly precise temperature and spatial measurements are possible using these techniques, the temporal resolution is limited by the rate at which the wireline probe can be raised and lowered in the borehole. There is a need to measure temperature profiles continuously over time to characterize transient processes. Fibre optic distributed temperature sensing (DTS) is a technique that allows for collecting temperature profiles continuously. This tool was advanced by the oil and gas industry for collecting temperature data in multi kilometer deep boreholes over relatively coarse measurement scales. In contrast, very fine spatial and temperature resolutions are needed for freshwater contaminant fractured rock hydrogeology where the scale of interest is much more acute. Recent advances in the spatial, temperature, and temporal resolution of DTS systems allow this technology to be adapted well to the shallow subsurface environment. This project demonstrates the first application of DTS used in conjunction with flexible borehole liners in a heated borehole environment. The

  14. Study of borehole probing methods to improve the ground characterization

    NASA Astrophysics Data System (ADS)

    Naeimipour, Ali

    Collecting geological information allows for optimizing ground control measures in underground structures. This includes understanding of the joints and discontinuities and rock strength to develop rock mass classifications. An ideal approach to collect such information is through correlating the drilling data from the roofbolters to assess rock strength and void location and properties. The current instrumented roofbolters are capable of providing some information on these properties but not fully developed for accurate ground characterization. To enhance existing systems additional instrumentation and testing was conducted in laboratory and field conditions. However, to define the geology along the boreholes, the use of probing was deemed to be most efficient approach for locating joints and structures in the ground and evaluation of rock strength. Therefore, this research focuses on selection and evaluation of proper borehole probes that can offer a reliable assessment of rock mass structure and rock strength. In particular, attention was paid to borehole televiewer to characterize rock mass structures and joints and development of mechanical rock scratcher for determination of rock strength. Rock bolt boreholes are commonly drilled in the ribs and the roof of underground environments. They are often small (about 1.5 inches) and short (mostly 2-3 meter). Most of them are oriented upward and thus, mostly dry or perhaps wet but not filled with water. No suitable system is available for probing in such conditions to identify the voids/joints and specifically to measure rock strength for evaluation of rock mass and related optimization of ground support design. A preliminary scan of available borehole probes proved that the best options for evaluation of rock structure is through analysis of borehole images, captured by optical televiewers. Laboratory and field trials with showed that these systems can be used to facilitate measurement of the location, frequency and

  15. Hydraulically controlled discrete sampling from open boreholes

    USGS Publications Warehouse

    Harte, Philip T.

    2013-01-01

    Groundwater sampling from open boreholes in fractured-rock aquifers is particularly challenging because of mixing and dilution of fluid within the borehole from multiple fractures. This note presents an alternative to traditional sampling in open boreholes with packer assemblies. The alternative system called ZONFLO (zonal flow) is based on hydraulic control of borehole flow conditions. Fluid from discrete fractures zones are hydraulically isolated allowing for the collection of representative samples. In rough-faced open boreholes and formations with less competent rock, hydraulic containment may offer an attractive alternative to physical containment with packers. Preliminary test results indicate a discrete zone can be effectively hydraulically isolated from other zones within a borehole for the purpose of groundwater sampling using this new method.

  16. The effect of error in theoretical Earth tide on calibration of borehole strainmeters

    USGS Publications Warehouse

    Langbein, John

    2010-01-01

    Since the installation of borehole strainmeters into the ground locally distorts the strain in the rock, these strainmeters require calibration from a known source which typically is the Earth tide. Consequently, the accuracy of the observed strain changes from borehole strainmeters depends upon the calibration derived from modeling the Earth tide. Previous work from the mid-1970s, which is replicated here, demonstrate that the theoretical tide can differ by 30% from the tide observed at surface-mounted, long-baseline strainmeters. In spite of possible inaccurate tidal models, many of the 74 borehole strainmeters installed since 2005 can be “calibrated”. However, inaccurate tidal models affect the amplitude and phase of observed transient strain changes which needs to be considered along with the precision of the data from the inherent drift of these borehole instruments. In particular, the error from inaccurate tidal model dominates the error budget in the observation of impulsive, sub-daily, strain-transients.

  17. A Fiber-Optic Borehole Seismic Vector Sensor System for Geothermal Site Characterization and Monitoring

    SciTech Connect

    Paulsson, Bjorn N.P.; Thornburg, Jon A; He, Ruiqing

    2015-04-21

    Seismic techniques are the dominant geophysical techniques for the characterization of subsurface structures and stratigraphy. The seismic techniques also dominate the monitoring and mapping of reservoir injection and production processes. Borehole seismology, of all the seismic techniques, despite its current shortcomings, has been shown to provide the highest resolution characterization and most precise monitoring results because it generates higher signal to noise ratio and higher frequency data than surface seismic techniques. The operational environments for borehole seismic instruments are however much more demanding than for surface seismic instruments making both the instruments and the installation much more expensive. The current state-of-the-art borehole seismic instruments have not been robust enough for long term monitoring compounding the problems with expensive instruments and installations. Furthermore, they have also not been able to record the large bandwidth data available in boreholes or having the sensitivity allowing them to record small high frequency micro seismic events with high vector fidelity. To reliably achieve high resolution characterization and long term monitoring of Enhanced Geothermal Systems (EGS) sites a new generation of borehole seismic instruments must therefore be developed and deployed. To address the critical site characterization and monitoring needs for EGS programs, US Department of Energy (DOE) funded Paulsson, Inc. in 2010 to develop a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into ultra-high temperature and high pressure boreholes. Tests of the fiber optic seismic vector sensors developed on the DOE funding have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown

  18. Shear wave transducer for boreholes

    DOEpatents

    Mao, N.H.

    1984-08-23

    A technique and apparatus is provided for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data are used to back-calculate the applied stress.

  19. The program at JPL to investigate the nuclear interaction of RTG's with scientific instruments on deep space probes

    NASA Technical Reports Server (NTRS)

    Truscello, V.

    1972-01-01

    A major concern in the integration of a radioisotope thermoelectric generator (RTG) with a spacecraft designed to explore the outer planets is the effect of the emitted radiation on the normal operation of scientific instruments. The necessary techniques and tools developed to allow accurate calculation of the neutron and gamma spectrum emanating from the RTG. The specific sources of radiation were identified and quantified. Monte Carlo techniques are then employed to perform the nuclear transport calculations. The results of these studies are presented. An extensive experimental program was initiated to measure the response of a number of scientific components to the nuclear radiation.

  20. A new interpretation of the deep-part of Senegal-Mauritanian Basin in the Diourbel-Thies area by integrating seismic, magnetic, gravimetric and borehole data: Implication for petroleum exploration

    NASA Astrophysics Data System (ADS)

    Ndiaye, Matar; Ngom, Papa Malick; Gorin, Georges; Villeneuve, Michel; Sartori, Mario; Medou, Joseph

    2016-09-01

    The Diourbel-Thies area is located in the centre of the onshore part of the Senegal-Mauritanian Basin (SMB). The new interpretation of old petroleum data (2-D seismic lines and drilling data of three oil wells) in the deeppart of this poorly evaluated zone, integrating gravimetric and magnetic data, has allowed the distinction of the Hercynian ante-rift phase (U1) which is distinguished from the syn-rift phase (U2) probably of Permo-Triassic to Middle Jurassic age. The syn-rift phase resulted in a series of compartments or grabens infilling aligned in a North-South direction. Tholeiitic volcanism of the Central Atlantic Magmatic Province (CAMP) is present in the syn-rift phase of the Diourbel-Thies area. The syn-rift deposits and associated volcanics allow us to surmise that the Diourbel basin represents a deeper rift basin. In comparison with other Central Atlantic Margins (CAM), the Diourbel rift basin could be one of the numerous rift basins that formed during the Permo-Triassic age. From a petroleum exploration perspective, the existence of the Diourbel rift basin is attractive because of the presence of structures that are excellent for deep gas exploration.

  1. Development of a borehole stress meter for studying earthquake predictions and rock mechanics, and stress seismograms of the 2011 Tohoku earthquake ( M 9.0)

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroshi; Asai, Yasuhiro

    2015-02-01

    Although precursory signs of an earthquake can occur before the event, it is difficult to observe such signs with precision, especially on earth's surface where artificial noise and other factors complicate signal detection. One possible solution to this problem is to install monitoring instruments into the deep bedrock where earthquakes are likely to begin. When evaluating earthquake occurrence, it is necessary to elucidate the processes of stress accumulation in a medium and then release as a fault (crack) is generated, and to do so, the stress must be observed continuously. However, continuous observations of stress have not been implemented yet for earthquake monitoring programs. Strain is a secondary physical quantity whose variation varies depending on the elastic coefficient of the medium, and it can yield potentially valuable information as well. This article describes the development of a borehole stress meter that is capable of recording both continuous stress and strain at a depth of about 1 km. Specifically, this paper introduces the design principles of the stress meter as well as its actual structure. It also describes a newly developed calibration procedure and the results obtained to date for stress and strain studies of deep boreholes at three locations in Japan. To show examples of the observations, records of stress seismic waveforms generated by the 2011 Tohoku earthquake ( M 9.0) are presented. The results demonstrate that the stress meter data have sufficient precision and reliability.

  2. Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Barnett, D. BRENT; Garcia, Benjamin J.

    2006-12-15

    Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

  3. Electrical resistance tomography using steel cased boreholes as long electrodes

    SciTech Connect

    Daily, W; Newmark, R L; Ramirez, A

    1999-07-20

    Electrical resistance tomography (ERT) using multiple electrodes installed in boreholes has been shown to be useful for both site characterization and process monitoring. In some cases, however, installing multiple downhole electrodes is too costly (e.g., deep targets) or risky (e.g., contaminated sites). For these cases we have examined the possibility of using the steel casings of existing boreholes as electrodes. Several possibilities can be considered. The first case we investigated uses an array of steel casings as electrodes. This results in very few data and thus requires additional constraints to limit the domain of possible inverse solutions. Simulations indicate that the spatial resolution and sensitivity are understandably low but it is possible to coarsely map the lateral extent of subsurface processes such as steam floods. The second case uses an array of traditional point borehole electrodes combined with long-conductor electrodes (steel casings). Although this arrangement provides more data, in many cases it results in poor reconstructions of test targets. Results indicate that this method may hold promise for low resolution imaging where steel casings can be used as electrodes but the merits depend strongly on details of each application. Field tests using these configurations are currently being conducted.

  4. The Impact II, a Very High-Resolution Quadrupole Time-of-Flight Instrument (QTOF) for Deep Shotgun Proteomics.

    PubMed

    Beck, Scarlet; Michalski, Annette; Raether, Oliver; Lubeck, Markus; Kaspar, Stephanie; Goedecke, Niels; Baessmann, Carsten; Hornburg, Daniel; Meier, Florian; Paron, Igor; Kulak, Nils A; Cox, Juergen; Mann, Matthias

    2015-07-01

    Hybrid quadrupole time-of-flight (QTOF) mass spectrometry is one of the two major principles used in proteomics. Although based on simple fundamentals, it has over the last decades greatly evolved in terms of achievable resolution, mass accuracy, and dynamic range. The Bruker impact platform of QTOF instruments takes advantage of these developments and here we develop and evaluate the impact II for shotgun proteomics applications. Adaption of our heated liquid chromatography system achieved very narrow peptide elution peaks. The impact II is equipped with a new collision cell with both axial and radial ion ejection, more than doubling ion extraction at high tandem MS frequencies. The new reflectron and detector improve resolving power compared with the previous model up to 80%, i.e. to 40,000 at m/z 1222. We analyzed the ion current from the inlet capillary and found very high transmission (>80%) up to the collision cell. Simulation and measurement indicated 60% transfer into the flight tube. We adapted MaxQuant for QTOF data, improving absolute average mass deviations to better than 1.45 ppm. More than 4800 proteins can be identified in a single run of HeLa digest in a 90 min gradient. The workflow achieved high technical reproducibility (R2 > 0.99) and accurate fold change determination in spike-in experiments in complex mixtures. Using label-free quantification we rapidly quantified haploid against diploid yeast and characterized overall proteome differences in mouse cell lines originating from different tissues. Finally, after high pH reversed-phase fractionation we identified 9515 proteins in a triplicate measurement of HeLa peptide mixture and 11,257 proteins in single measurements of cerebellum-the highest proteome coverage reported with a QTOF instrument so far.

  5. The Impact II, a Very High-Resolution Quadrupole Time-of-Flight Instrument (QTOF) for Deep Shotgun Proteomics*

    PubMed Central

    Beck, Scarlet; Michalski, Annette; Raether, Oliver; Lubeck, Markus; Kaspar, Stephanie; Goedecke, Niels; Baessmann, Carsten; Hornburg, Daniel; Meier, Florian; Paron, Igor; Kulak, Nils A.; Cox, Juergen; Mann, Matthias

    2015-01-01

    Hybrid quadrupole time-of-flight (QTOF) mass spectrometry is one of the two major principles used in proteomics. Although based on simple fundamentals, it has over the last decades greatly evolved in terms of achievable resolution, mass accuracy, and dynamic range. The Bruker impact platform of QTOF instruments takes advantage of these developments and here we develop and evaluate the impact II for shotgun proteomics applications. Adaption of our heated liquid chromatography system achieved very narrow peptide elution peaks. The impact II is equipped with a new collision cell with both axial and radial ion ejection, more than doubling ion extraction at high tandem MS frequencies. The new reflectron and detector improve resolving power compared with the previous model up to 80%, i.e. to 40,000 at m/z 1222. We analyzed the ion current from the inlet capillary and found very high transmission (>80%) up to the collision cell. Simulation and measurement indicated 60% transfer into the flight tube. We adapted MaxQuant for QTOF data, improving absolute average mass deviations to better than 1.45 ppm. More than 4800 proteins can be identified in a single run of HeLa digest in a 90 min gradient. The workflow achieved high technical reproducibility (R2 > 0.99) and accurate fold change determination in spike-in experiments in complex mixtures. Using label-free quantification we rapidly quantified haploid against diploid yeast and characterized overall proteome differences in mouse cell lines originating from different tissues. Finally, after high pH reversed-phase fractionation we identified 9515 proteins in a triplicate measurement of HeLa peptide mixture and 11,257 proteins in single measurements of cerebellum—the highest proteome coverage reported with a QTOF instrument so far. PMID:25991688

  6. Borehole EM Monitoring at Aquistore: Final Report to the Carbon Capture Project (CCP)

    SciTech Connect

    Daley, Thomas M.; Smith, J. Torquil; Beyer, John Henry; LaBrecque, Douglas

    2012-10-15

    Geologic carbon sequestration (GCS) is a technology whose goal is to prevent atmospheric release of greenhouse gases via injection of carbon dioxide (CO2) into an underground reservoir for long term storage. GCS is typically part of a program of carbon capture and storage (CCS) that captures CO2 from point sources such as power plants, transports the CO2 to a storage site, and operates an injection facility. One recent CCS pilot project is the Aquistore CO2 sequestration project, near Estevan, Saskatchewan, Canada. The Aquistore project is managed by the Petroleum Technology Research Centre (PTRC) and will be one of the first integrated CCS projects storing CO2 in a deep saline aquifer from a coal fired power plant (PTRC, 2011). Aquistore is expected to store 500,000 tons of CO2 during its lifetime (Ministry of Environment, 2012). Assuring the long-term, safe storage of CO2 requires the development of effective monitoring strategies. As part of the geophysical monitoring effort at Aquistore, there were initial plans for deployment of borehole electrodes for electrical or electromagnetic measurements to monitor CO2 within the reservoir. The injected CO2 displaces saline brine in the reservoir, and because CO2 has a high resistivity compared to brine, the overall resistivity of the formation increases and can be monitored by measuring electric or magnetic fields. Previous work by Lawrence Berkeley National Laboratory (LBNL) had indicated that borehole-to-surface electromagnetic monitoring, using an electric dipole source near the bottom of a well penetrating the reservoir, could detect the resistivity change induced by GCS. To assess the potential application of electromagnetic monitoring at Aquistore, Lawrence Berkeley National Laboratory and Multi-Phase Technologies collaborated on a two-part study including (1) numerical forward modeling of a time

  7. Evaluation of borehole geophysical logs at the Sharon Steel Farrell Works Superfund site, Mercer County, Pennsylvania

    USGS Publications Warehouse

    McAuley, Steven D.

    2004-01-01

    On April 14?15, 2003, geophysical logging was conducted in five open-borehole wells in and adjacent to the Sharon Steel Farrell Works Superfund Site, Mercer County, Pa. Geophysical-logging tools used included caliper, natural gamma, single-point resistance, fluid temperature, and heatpulse flowmeter. The logs were used to determine casing depth, locate subsurface fractures, identify water-bearing fractures, and identify and measure direction and rate of vertical flow within the borehole. The results of the geophysical logging were used to determine the placement of borehole screens, which allows monitoring of water levels and sampling of water-bearing zones so that the U.S. Environmental Protection Agency can conduct an investigation of contaminant movement in the fractured bedrock. Water-bearing zones were identified in three of five boreholes at depths ranging from 46 to 119 feet below land surface. Borehole MR-3310 (MW03D) showed upward vertical flow from 71 to 74 feet below land surface to a receiving zone at 63-68 feet below land surface, permitting potential movement of ground water, and possibly contaminants, from deep to shallow zones. No vertical flow was measured in the other four boreholes.

  8. Non-contact infrared temperature measurements in dry permafrost boreholes

    NASA Astrophysics Data System (ADS)

    Junker, Ralf; Grigoriev, Mikhail N.; Kaul, Norbert

    2008-04-01

    While planning the COAST Expedition to the Siberian Laptev Sea in 2005, the question of how to make a short equilibrium temperature measurement in a dry borehole arose. As a result, an infrared borehole tool was developed and used in three dry boreholes (up to 60.2 m deep) in the coastal transition zone from terrestrial to sub-sea permafrost near Mamontovy Klyk in the western Laptev Sea. A depth versus temperature profile was acquired with equilibration times of 50 × 10-3 s at each depth interval. Comparison with a common resistor string revealed an offset due to limitations of accuracy of the infrared technique and the influence of the probe's massive steel housing. Therefore it was necessary to calibrate the infrared sensor with a high precision temperature logger in each borehole. The results of the temperature measurements show a highly dynamic transition zone with temperature gradients up to -0.092°C/m and heat flow of -218 mW/m. A period of submergence of only 600 years the drilled sub-sea permafrost is approaching the overlying seawater temperature at -1.61°C with a temperature gradient of 0.021°C/m and heat flow of 49 mW/m. Further offshore, 11 km from the coastline, a temperature gradient of 0.006°C/m and heat flow of 14 mW/m occur. Thus the sub-sea permafrost in the Mamontovy Klyk region has reached a critical temperature for the presence of interstitial ice. The aim of this article is to give a brief feasibility study of infrared downhole temperature measurements and to present experiences and results of its successful application.

  9. Backtracking urbanization from borehole temperature

    NASA Astrophysics Data System (ADS)

    Bayer, Peter; Rivera, Jaime A.; Blum, Philipp; Rybach, Ladislaus

    2016-04-01

    The thermal regime in shallow ground is influenced by various factors such as short and long term climatic variations, atmospheric urban warming, land use change and geothermal energy use. Temperature profiles measured in boreholes represent precious archives of the past thermal conditions at the ground surface. Changes at the ground surface induce time-dependent variations in heat transfer. Consequently, instantaneous and persistent changes such as recent atmospheric climate change or paving of streets cause perturbations in temperature profiles, which now can be found in depths of hundred meters and even more. In our work, we focus on the influence of urbanization on temperature profiles. We inspect profiles measured in borehole heat exchanger (BHE) tubes before start of energy extraction. These were obtained at four locations in the city and suburbs of Zurich, Switzerland, by lowering a specifically developed temperature logging sensor in the 200-400 m long tubes. Increased temperatures indicate the existence of a subsurface urban heat island (SUHI). At the studied locations groundwater flow can be considered negligible, and thus conduction is the governing heat transport process. These locations are also favorable, as long-term land use changes and atmospheric temperature variations are well documented for more than the last century. For simulating transient land use changes and their effects on borehole temperature profiles, a novel analytical framework based on the superposition of Green's functions is presented. This allows flexible and fast computation of the long term three-dimensional evolution of the thermal regime in shallow ground. It also facilitates calibration of unknown spatially distributed parameter values and their correlation. With the given spatial and temporal discretization of land use and background atmospheric temperature variations, we are able to quantify the heat contribution by asphalt and buildings. By Bayesian inversion it is

  10. Quantification of Natural Gradient Flow Using Active Fiber Optic DTS in Sealed Boreholes

    NASA Astrophysics Data System (ADS)

    Coleman, T. I.; Parker, B. L.; Munn, J. D.; Chalari, A.; Mondanos, M.

    2014-12-01

    Temperature has been used for many years to characterize flow in fractured rock systems. Fiber-optic distributed temperature sensing (DTS) was adopted by the oil/gas industry over two decades ago for monitoring processes in deep fractured rock environments. Improvements in DTS system resolutions, methodology advancements, and improved data processing techniques have caused recent popularity for shallow fractured rock hydrogeologic applications. A powerful advance in DTS methodology is the use of response data collected during active cable heating. When applied to borehole applications active heating creates a thermal disequilibrium in the aquifer system that enhances the detection of groundwater flow. Active DTS has been applied to open borehole environments; however, characterization methods based on open borehole measurements are limited in that only the effects of unnatural flow (i.e. vertical cross-connection and redistribution of flow creating local, induced flows) can be observed. To characterize natural gradient flow processes borehole effects need to be minimized.The literature shows borehole sealing using flexible impervious fabric liners creates a static water column in the well that eliminates the negative effects of cross-connection. Measurements in this sealed environment have been shown by others to be representative of natural gradient flow conditions, rather than the conditions created by the borehole short circuiting units or fractures with varying hydraulic head. A new method for flow system characterization using active DTS in sealed boreholes has been developed with excellent prospects for quantitation of natural gradient groundwater fluxes and related hydraulic properties. This project demonstrates the utility of using an analytical solution for calculating apparent thermal conductivities and natural gradient groundwater fluxes at depth-discrete intervals observed continuously along a borehole using active DTS. Groundwater flux data can then be

  11. Borehole-geophysical investigation of the University of Connecticut landfill, Storrs, Connecticut

    USGS Publications Warehouse

    Johnson, Carole D.; Haeni, F.P.; Lane, Jr., John W.; White, Eric A.

    2002-01-01

    A borehole-geophysical investigation was conducted to help characterize the hydrogeology of the fractured-rock aquifer and the distribution of unconsolidated glacial deposits near the former landfill and chemical waste-disposal pits at the University of Connecticut in Storrs, Connecticut. Eight bedrock boreholes near the landfill and three abandoned domestic wells located nearby were logged using conventional and advanced borehole-geophysical methods from June to October 1999. The conventional geophysical-logging methods included caliper, gamma, fluid temperature, fluid resistivity, and electromagnetic induction. The advanced methods included deviation, optical and acoustic imaging of the borehole wall, heat-pulse flowmeter, and directional radar reflection. Twenty-one shallow piezometers (less than 50-feet deep) were logged with gamma and electromagnetic induction tools to delineate unconsolidated glacial deposits. Five additional shallow bedrock wells were logged with conventional video camera, caliper, electromagnetic induction, and fluid resistivity and temperature tools. The rock type, foliation, and fracturing of the site were characterized from high-resolution optical-televiewer (OTV) images of rocks penetrated by the boreholes. The rocks are interpreted as fine- to medium-grained quartz-feldspar-biotite-garnet gneiss and schist with local intrusions of quartz diorite and pegmatite and minor concentrations of sulfide mineralization similar to rocks described as the Bigelow Brook Formation on regional geologic maps. Layers containing high concentrations of sulfide minerals appear as high electrical conductivity zones on electromagnetic-induction and borehole-radar logs. Foliation in the rocks generally strikes to the northeast-southwest and dips to the west, consistent with local outcrop observations. The orientation of foliation and small-scale gneissic layering in the rocks, however, varies locally and with depth in some of the boreholes. In two of the

  12. Kimberly Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimberly drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama and is located near the margin of the plain. Data submitted by project collaborator Doug Schmitt, University of Alberta

  13. Kimama Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta

  14. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, Bruce P.; Sleefe, Gerard E.; Striker, Richard P.

    1993-01-01

    A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  15. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  16. Third Party Borehole Seismic Experiments During the Ocean Drilling Program

    NASA Astrophysics Data System (ADS)

    Swift, S. A.; Stephen, R. A.; Hoskins, H.; Bolmer, T.

    2003-12-01

    Third party borehole seismic experiments on the Ocean Drilling Program began with an oblique seismic experiment on Leg 102 at Site 418 in the Western Atlantic. Upper ocean crust here is characterized by a normal seismic layer 2 vertical velocity gradient, lateral velocity variations, azimuthal anisotropy, and azimuth dependent scattering. A normal incidence VSP was run on Leg 118 in the gabbro sequence at Hole 735B on the Southwest Indian Ridge. The vertical seismic velocity inferred from arrival times is similar to that observed horizontally by refraction in ocean layer 3, but attenuation is anomalously high, which prompted the hypothesis that the gabbro cored may not actually represent the bulk of Layer 3 material. The VSP data acquired at Hole 504B in the eastern equatorial Pacific on Legs 111 and 148 helped to constrain the P and S velocity structure at the site and showed that upper layer 3 at this site, at a depth of over 2 km into the crust, consisted of the lower portion of the sheeted dikes rather than gabbro. Both offset and normal incidence VSPs were run on Leg 164 to study the seismic velocity structure of gas hydrates on the Blake Ridge. A new innovation on ODP was the deployment of broadband seismometers in boreholes. Whereas the conventional VSPs and offset VSPs mentioned above operate in the frequency range from 1 to 100Hz, broadband seismometers are used in earthquake seismology and operate in the range from 0.001 to 10Hz. The first broadband seismometer test was carried out from the drill ship on Leg 128 in the Japan Sea. Subsequently 4 permanent broadband borehole seismic observatories were installed in the Western Pacific and Japan Trench on Legs 186, 191 and 195. The ODP era also saw the development of systems for re-entering boreholes from conventional research vessels after the drill ship left the site. Borehole seismic experiments and installations that used this wireline re-entry technology were carried out in DSDP Holes 534 (Blake

  17. Characterization of magnetized ore bodies based on three-component borehole magnetic and directional borehole seismic measurements

    NASA Astrophysics Data System (ADS)

    Virgil, Christopher; Neuhaus, Martin; Hördt, Andreas; Giese, Rüdiger; Krüger, Kay; Jurczyk, Andreas; Juhlin, Christopher; Juhojuntti, Niklas

    2016-04-01

    In the last decades magnetic prospecting using total field data was used with great success for localization and characterization of ferromagnetic ore bodies. Especially borehole magnetic measurements reveal important constraints on the extent and depth of potential mining targets. However, due to the inherent ambiguity of the interpretation of magnetic data, the resulting models of the distribution of magnetized material, such as iron ore bodies, are not entirely reliable. Variations in derived parameters like volume and estimated ore content of the expected body have significant impact on the economic efficiency of a planned mine. An important improvement is the introduction of three-component borehole magnetic sondes. Modern tools comprise orientation modules which allow the continuous determination of the tool's heading regardless of the well inclination and independent of the magnetic field. Using the heading information the recorded three-component magnetic data can be transferred from the internal tool's frame to the geographic reference frame. The vector information yields a more detailed and reliable description of the ore bodies compared to total field or horizontal and vertical field data. Nevertheless complementary information to constrain the model is still advisable. The most important supplementary information for the interpretation of magnetic data is the knowledge of the structural environment of the target regions. By discriminating dissimilar rock units, a geometrical starting model can be derived, constraining the magnetic interpretation and leading to a more robust estimation of the rock magnetizations distribution. The most common approach to reveal the lithological setting rests upon seismic measurements. However, for deep drilling targets surface seismic and VSP lack the required spatial resolution of 10s of meters. A better resolution is achieved by using directed sources and receivers inside the borehole. Here we present the application of

  18. Geohydrology of the Stockton Formation and cross-contamination through open boreholes, Hatboro Borough and Warminster Township, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Macchiaroli, Paola; Towle, M.T.

    1996-01-01

    The study area consists of a 9-square-mile area underlain by sedimentary rocks of the middle arkose member of the Stockton Formation of Upper Triassic age. In the Hatboro area, the Stockton Formation strikes approximately N. 65 degrees E. and dps approximately 9 degrees NW. The rocks are chiefly arkosic sandstone and siltstone. Rocks of the Stocton Formation form a complex, heterogeneous, multiaquifer system consisting of a series of gently dipping lithologic units with different hydraulic properties. Most ground water in the unweathered zone moves through a network of interconnecting secondary openigns-fractures, bedding plans, and joints. Ground water is unconfined in the shallower part of the aquifer and semiconfined or confined in the deeper part of the aquifer. Nearly all deep wells in the Stockton Formation are open to several water-bearing zones and are multiaquifer wells. Each water-bearing zone usually has a different hydraulic head. Where differences in hydraulic head exist between water-bearing zones, water in the well bore flows under nonpumping conditions in the direction of decreasing head. Determination of the potential for borehole flow was based on caliper, natural-gamma, single- point-resistance, fluid-resistivity, and (or) fluid-temperature logs that were run in 162 boreholes 31 to 655 feet deep. The direction and rate of borehole-fluid movement were determined in 83 boreholes by the bring-tracing method and in 10 boreholes by use of a heat-pulse flowmeter. Borehole flow was measurable in 65 of the 93 boreholes (70 percent). Fluid movement at rates up to 17 gallons per minute was measured. Downward flow was measured in 36 boreholes, and upward flow was measured in 23 boreholes, not including those boreholes in which two directions of flow were measured. Both upward and downward vertical flow was measured in six boreholes; these boreholes are 396 to 470 feet deep and were among the deepest boreholes logged. Fluid movement was upward in the upper

  19. One Year of Data of Scimpi Borehole Measurements

    NASA Astrophysics Data System (ADS)

    Insua, T. L.; Moran, K.; Kulin, I.; Farrington, S.; Newman, J. B.; Riedel, M.; Scherwath, M.; Heesemann, M.; Pirenne, B.; Iturrino, G. J.; Masterson, W.; Furman, C.

    2014-12-01

    The Simple Cabled Instrument for Measuring Parameters In-Situ (SCIMPI) is a new subseafloor observatory designed to study dynamic processes in the subseabed using a simple and low-cost approach compared to a Circulation Obviation Retrofit Kit (CORK). SCIMPI was successfully installed at the Integrated Ocean Drilling Program (IODP) Site U1416 during IODP Expedition 341S in May 2013. SCIMPI is designed to measure pore pressure, temperature and electrical resistivity over time in a borehole. The first SCIMPI prototype comprises nine modules joined in a single array by flexible cables. Multiple floats keep the system taut against a sinker bar weight located on SCIMPI and resting on the bottom of the borehole. All the modules record temperature and electrical resistivity, and three are also equipped with pressure sensors. Currently, SCIMPI operates as an autonomous instrument with a data logger that is recovered using an ROV. The second recovery of the SCIMPI data logger took place during the Ocean Networks Canada maintenance cruise, Wiring the Abyss 2014, on May 25th, 2014. The pressure sensor data show a stable trend in which tidal effects are observed in through the one year deployment. The temperature measurements in all the modules became stable over time with smaller variations over the last several months. The only temperature sensor differing from this trend is the shallowest, located at 8 meters below seafloor. This module shows a sudden spike of ~20°C that on April 5th, 2014, an event that was repeated several times from April 25th until recovery of modules. The electrical resistivity sensors show variations over time that could be related to gas hydrate dynamics at the Site. Interpretation of these data is speculative at this time but borehole-sealing processes as well as the formation of gas hydrate are potential processes influencing the recordings. SCIMPI will soon be connected to Ocean Networks Canada's NEPTUNE observatory at Clayoquot Slope node to

  20. Quantifying The Quality Of PBO Borehole Strainmeter Data

    NASA Astrophysics Data System (ADS)

    Hodgkinson, K. M.; Henderson, D. B.; Mencin, D.; Phillips, D. A.; Gallaher, W. W.; Johnson, W.; Pyatt, C.; Van Boskirk, E.; Mattioli, G. S.

    2012-12-01

    UNAVCO operates a network of 75 borehole strainmeter as part of the Plate Boundary Observatory (PBO), the geodetic component of the Earthscope program. The quality of the borehole strainmeter data is monitored both to inform UNAVCO's field engineers of possible instrument problems and to convey to the community the level of confidence they can have in recorded signals when they incorporate the data into geophysical models. In this presentation we describe the metrics developed to track data quality and show how the results have varied since completion of the network in October 2008. The metrics are designed to assess performance across the broad range of frequencies over which a strainmeter operates: the ability to record teleseisms, the signal to noise ratio in the tidal bands, the state of compression of the borehole and the presence of offsets in the time series. Strainmeters are designed to have optimal performance at periods of minutes to days, their purpose in PBO is to provide a temporal and spatial resolution of strain transients that cannot be obtained with GPS or seismology. Embedded within a network of over 1100 continuously operating GPS sites and collocated with seismometers, the strainmeter network completes the spectrum of plate boundary deformation signals that PBO can detect. We will explore the application of techniques now standard for seismic data, power spectral density analysis, to the strain data set. Creating a spectral fingerprint for each instrument could allow identification of changes in site characteristics and enable researchers to select strainmeters that are good candidates for detecting particular strain events such as aseismic creep or Episodic Tremor and Slip strain pulses.

  1. Canister Design for Deep Borehole Disposal of Nuclear Waste

    DTIC Science & Technology

    2006-05-01

    Transportation (DOT), the Nuclear Regulatory Commission (NRC), and the Environmental Protection Agency ( EPA ). DOT regulations specify...approval of packaging and shipping procedures The EPA regulations set limits on radiation doses allowed for members of the public and the amount of...radioactive material introduced by nuclear facilities into the environment. The following are the EPA regulations: Table 1-3. Environmental

  2. 30 CFR 75.1318 - Loading boreholes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) When loading boreholes drilled at an angle of 45 degrees or greater from the horizontal in solid rock or loading long holes drilled upward in anthracite mines— (1) The first cartridge in each...

  3. 30 CFR 75.1318 - Loading boreholes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) When loading boreholes drilled at an angle of 45 degrees or greater from the horizontal in solid rock or loading long holes drilled upward in anthracite mines— (1) The first cartridge in each...

  4. 30 CFR 75.1318 - Loading boreholes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) When loading boreholes drilled at an angle of 45 degrees or greater from the horizontal in solid rock or loading long holes drilled upward in anthracite mines— (1) The first cartridge in each...

  5. 30 CFR 75.1318 - Loading boreholes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) When loading boreholes drilled at an angle of 45 degrees or greater from the horizontal in solid rock or loading long holes drilled upward in anthracite mines— (1) The first cartridge in each...

  6. 30 CFR 75.1318 - Loading boreholes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) When loading boreholes drilled at an angle of 45 degrees or greater from the horizontal in solid rock or loading long holes drilled upward in anthracite mines— (1) The first cartridge in each...

  7. Joint inversion of surface and borehole magnetic amplitude data

    NASA Astrophysics Data System (ADS)

    Li, Zelin; Yao, Changli; Zheng, Yuanman; Yuan, Xiaoyu

    2016-04-01

    3D magnetic inversion for susceptibility distribution is a powerful tool in quantitative interpretation of magnetic data in mineral exploration. However, the inversion and interpretation of such data are faced with two problems. One problem is the poor imaging results of deep sources when only surface data are inverted. The other is the unknown total magnetization directions of sources when strong remanence exists. To deal with these problems simultaneously, we propose a method through the joint inversion of surface and borehole magnetic amplitude data. In this method, we first transform both surface and borehole magnetic data to magnetic amplitude data that are less sensitive to the directions of total magnetization, and then preform a joint inversion of the whole amplitude data to generate a 3D susceptibility distribution. The amplitude inversion algorithm uses Tikhonov regularization and imposes a positivity constraint on the effective susceptibility defined as the ratio of magnetization magnitude over the geomagnetic field strength. In addition, a distance-based weighting function is used to make the algorithm applicable to joint data sets. To solve this positivity-constraint inversion problem efficiently, an appropriate optimization method must be chosen. We first use an interior-point method to incorporate the positivity constraint into the total objective function, and then minimize the objective function via a Gauss-Newton method due to the nonlinearity introduced by the positivity constraint and the amplitude data. To further improve the efficiency of the inversion algorithm, we use a conjugate gradient method to carry out the fast matrix-vector multiplication during the minimization. To verify the utility of the proposed method, we invert the synthetic and field data using three inversion methods, including the joint inversion of surface and borehole three-component magnetic data, the inversion of surface magnetic amplitude data, and the proposed joint

  8. Ceramic Borehole Seals for Nuclear Waste Disposal Applications

    NASA Astrophysics Data System (ADS)

    Lowry, B.; Coates, K.; Wohletz, K.; Dunn, S.; Patera, E.; Duguid, A.; Arnold, B.; Zyvoloski, G.; Groven, L.; Kuramyssova, K.

    2015-12-01

    Sealing plugs are critical features of the deep borehole system design. They serve as structural platforms to bear the weight of the backfill column, and as seals through their low fluid permeability and bond to the borehole or casing wall. High hydrostatic and lithostatic pressures, high mineral content water, and elevated temperature due to the waste packages and geothermal gradient challenge the long term performance of seal materials. Deep borehole nuclear waste disposal faces the added requirement of assuring performance for thousands of years in large boreholes, requiring very long term chemical and physical stability. A high performance plug system is being developed which capitalizes on the energy of solid phase reactions to form a ceramic plug in-situ. Thermites are a family of self-oxidized metal/oxide reactions with very high energy content and the ability to react under water. When combined with engineered additives the product exhibits attractive structural, sealing, and corrosion properties. In the initial phase of this research, exploratory and scaled tests demonstrated formulations that achieved controlled, fine grained, homogeneous, net shape plugs composed predominantly of ceramic material. Laboratory experiments produced plug cores with confined fluid permeability as low as 100 mDarcy, compressive strength as high as 70 MPa (three times the strength of conventional well cement), with the inherent corrosion resistance and service temperature of ceramic matrices. Numerical thermal and thermal/structural analyses predicted the in-situ thermal performance of the reacted plugs, showing that they cooled to ambient temperature (and design strength) within 24 to 48 hours. The current development effort is refining the reactant formulations to achieve desired performance characteristics, developing the system design and emplacement processes to be compatible with conventional well service practices, and understanding the thermal, fluid, and structural

  9. Macrofouling of deep-sea instrumentation after three years at 3690 m depth in the Charlie Gibbs fracture zone, mid-Atlantic ridge, with emphasis on hydroids (Cnidaria: Hydrozoa)

    NASA Astrophysics Data System (ADS)

    Blanco, R.; Shields, M. A.; Jamieson, A. J.

    2013-12-01

    Macrofouling is a common problem when deploying underwater instrumentation for long periods of time. It is a problem which can effect scientific experiments and monitoring missions though the creation of artificial reefs (thus increasing local biological activity) and reduce the quality of scientific data. Macrofouling is an issue typically considered to be restricted to the photic zones and is absent or negligible in the deep sea. To the contrary, the recovery of an accidentally lost deep-sea lander after 3 years submergence at 3960 m on the Mid-Atlantic Ridge (North Atlantic) revealed dense colonisation of macrofouling organisms. These organisms were found attached to all surfaces of the lander regardless of orientation and materials. The occurrence of such deep-sea macrofouling should be carefully investigated given the recent developments in long-term deep-sea observatory networks.

  10. Borehole Deformation and Failure in Anisotropic Media

    NASA Astrophysics Data System (ADS)

    Gaede, Oliver; Regenauer-Lieb, Klaus; Lumley, David

    2010-05-01

    Borehole breakouts develop due to compressive shear failure along the borehole wall and subsequent spalling of near wellbore rock. These compressive shear failures can occur during drilling and lead to a borehole enlargement in the direction of the minimum horizontal stress. In order to investigate the initiation of borehole breakouts in anisotropic media a numerical analysis of the borehole deformation has been performed. The numerical model is based on an extensive geophysical and geomechanical dataset, provided by BHP Billiton Petroleum. This dataset was established during the development and production phase of an oil reservoir on the North West Shelf, Western Australia. The aim of this study is to estimate the severity of the influence of anisotropy on the breakout process. It is proposed that there is a hierarchy among the possible influences on the breakout process: 1. The regional stress field has a first order effect on the borehole breakout direction. 2. This is followed by a preferential fracture direction or anisotropic failure criterion of the medium. 3. And finally the elastic anisotropy of the medium affecting the local stress field around the borehole. A clear separation of these influences through methods of observation is not always trivial. Firstly, the preferential fracture direction and the elastic anisotropy, at least to some degree, are functions of the regional stress field. Secondly, most of the knowledge we have about the regional stress field in relatively aseismic regions is inferred from borehole breakout data. Therefore a numerical simulation is chosen as a method of study. Material properties like elastic anisotropy or failure criterion and even their dependency on the stress field can easily be manipulated. This geophysical and geomechanical data is used to populate the numerical model. The regional stress field is implemented as a boundary condition. The commercial Finite Element package ABAQUS is used to obtain the stress / strain

  11. Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4996

    SciTech Connect

    Adams , S. C.; Ahlquist, Stephen T.; Fetters, Jeffree R.; Garcia, Ben; Rust, Colleen F.

    2007-01-28

    This report presents the field-generated borehole log, lithologic summary, and the record of samples collected during the recent drilling and sampling of the basalt interval of borehole C4996 at the Waste Treatment Plant (WTP) on the Hanford Site. Borehole C4996 was one of four exploratory borings, one core hole and three boreholes, drilled to investigate and acquire detailed stratigraphic and down-hole seismic data. This data will be used to define potential seismic impacts and refine design specifications for the Hanford Site WTP.

  12. Intermediate scale borehole (Room C): In situ data report (January 1989--June 1993)

    SciTech Connect

    Munson, D.E.; Christian-Frear, T.L.; Baird, G.T.; Labreche, D.A.; Ball, J.R.

    1994-11-01

    Data are presented from the intermediate scale borehole test, an in situ test fielded in the pillar separating Rooms C1 and C2 at the Waste Isolation Pilot Plant (WIPP). The test was to provide data on the influence of scale, if any, on the structural behavior of underground openings in salt. These data include selected fielding information, test configuration, instrumentation activities, and comprehensive results from a large number of gages. Construction of the test began in December 1989, with the drilling of the intermediate scale borehole in December 1990. Gage data in this report cover the period from January 1989 through June 1993.

  13. Vertical cross contamination of trichloroethylene in a borehole in fractured sandstone.

    PubMed

    Sterling, S N; Parker, B L; Cherry, J A; Williams, J H; Lane, J W; Haeni, F P

    2005-01-01

    Boreholes drilled through contaminated zones in fractured rock create the potential for vertical movement of contaminated ground water between fractures. The usual assumption is that purging eliminates cross contamination; however, the results of a field study conducted in a trichloroethylene (TCE) plume in fractured sandstone with a mean matrix porosity of 13% demonstrates that matrix-diffusion effects can be strong and persistent. A deep borehole was drilled to 110 m below ground surface (mbgs) near a shallow bedrock well containing high TCE concentrations. The borehole was cored continuously to collect closely spaced samples of rock for analysis of TCE concentrations. Geophysical logging and flowmetering were conducted in the open borehole, and a removable multilevel monitoring system was installed to provide hydraulic-head and ground water samples from discrete fracture zones. The borehole was later reamed to complete a well screened from 89 to 100 mbgs; persistent TCE concentrations at this depth ranged from 2100 to 33,000 microg/L. Rock-core analyses, combined with the other types of borehole information, show that nearly all of this deep contamination was due to the lingering effects of the downward flow of dissolved TCE from shallower depths during the few days of open-hole conditions that existed prior to installation of the multilevel system. This study demonstrates that transfer of contaminant mass to the matrix by diffusion can cause severe cross contamination effects in sedimentary rocks, but these effects generally are not identified from information normally obtained in fractured-rock investigations, resulting in potential misinterpretation of site conditions.

  14. Vertical cross contamination of trichloroethylene in a borehole in fractured sandstone

    USGS Publications Warehouse

    Sterling, S.N.; Parker, B.L.; Cherry, J.A.; Williams, J.H.; Lane, J.W.; Haeni, F.P.

    2005-01-01

    Boreholes drilled through contaminated zones in fractured rock create the potential for vertical movement of contaminated ground water between fractures. The usual assumption is that purging eliminates cross contamination; however, the results of a field study conducted in a trichloroethylene (TCE) plume in fractured sandstone with a mean matrix porosity of 13% demonstrates that matrix-diffusion effects can be strong and persistent. A deep borehole was drilled to 110 m below ground surface (mbgs) near a shallow bedrock well containing high TCE concentrations. The borehole was cored continuously to collect closely spaced samples of rock for analysis of TCE concentrations. Geophysical logging and flowmetering were conducted in the open borehole, and a removable multilevel monitoring system was installed to provide hydraulic-head and ground water samples from discrete fracture zones. The borehole was later reamed to complete a well screened from 89 to 100 mbgs; persistent TCE concentrations at this depth ranged from 2100 to 33,000 ??g/L. Rock-core analyses, combined with the other types of borehole information, show that nearly all of this deep contamination was due to the lingering effects of the downward flow of dissolved TCE from shallower depths during the few days of open-hole conditions that existed prior to installation of the multilevel system. This study demonstrates that transfer of contaminant mass to the matrix by diffusion can cause severe cross contamination effects in sedimentary rocks, but these effects generally are not identified from information normally obtained in fractured-rock investigations, resulting in potential misinterpretation of site conditions. Copyright ?? 2005 National Ground Water Association.

  15. Unique Thermophiles Supported by the Ocean Crustal Fluids Exiting From a Borehole in the Eastern Flank of Juan de Fuca Ridge.

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Inagaki, F.; Suzuki, Y.; Takai, K.; Horikoshi, K.

    2005-12-01

    Very little is known about the potential of ocean crustal fluids on ridge flanks to sustain microbial ecosystem. An unprecedented chance to investigate the occurrence of microbes within the crustal fluids is given by a borehole observatory, CORK (Circulation Obviation Retrofit Kit). The CORK consists of two parts: instruments installed in the sealed part of the cased borehole drilled by the Ocean Drilling Program (ODP), and a data logger and fluids sampling port sitting on the seafloor. Recently, a study using the CORK suggested the presence of unique microorganisms in ~64 deg C of crustal fluids emanated from a 295-meter-deep borehole in the eastern flank of Juan de Fuca Ridge (35 Ma crust) (Cowen et al., 2003, Science, 299, 120-123). Most of the 16S rRNA gene detected in the fluids related to sulfate-reducing genera (Desulfotomaculum, Ammonifex, and Desulfonatronovibrio), implying that fluids circulating within aging ocean crust potentially support microbial sulfate-reduction. When we recovered the CORK during the Juan de Fuca cruise of Integrated Ocean Drilling Program (IODP), sulfide deposits attached to the CORK body was found. The microbial community in the sulfide deposits inferred by clone sequencing of environmental 16S rRNA genes was distinct from those hitherto reported in other microbial habitats including natural deep-sea vents on ridge crests and subduction zones, but similar in part with that reported in the fluids emanated from the same CORK. Most frequently retrieved clones of bacterial and archaeal 16S rRNA gene were related to Ammonifex and Methanococcales, respectively. Semi-quantitative cultivation experiments revealed that over 103 cells per cm3 of the sulfide deposits were culturable. Surprisingly, none of the microbes widely distributing in natural deep-sea hydrothermal environments, i.e. Thermococcales, Aquificales, and epsilon-Proteobacteria, could be detected or cultured. Culturable microbial community consisted mainly of

  16. Simple, Affordable and Sustainable Borehole Observatories for Complex Monitoring Objectives

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Hammerschmidt, S.; Davis, E.; Saffer, D.; Wheat, G.; LaBonte, A.; Meldrum, R.; Heesemann, M.; Villinger, H.; Freudenthal, T.; Ratmeyer, V.; Renken, J.; Bergenthal, M.; Wefer, G.

    2012-04-01

    Around 20 years ago, the scientific community started to use borehole observatories, so-called CORKs or Circulation Obviation Retrofit Kits, which are installed inside submarine boreholes, and which allow the re-establishment and monitoring of in situ conditions. From the first CORKs which allowed only rudimentary fluid pressure and temperature measurements, the instruments evolved to multi-functional and multi-level subseafloor laboratories, including, for example, long-term fluid sampling devices, in situ microbiological experiments or strainmeter. Nonetheless, most boreholes are still left uninstrumented, which is a major loss for the scientific community. In-stallation of CORKs usually requires a drillship and subsequent ROV assignments for data download and instru-ment maintenance, which is a major logistic and financial effort. Moreover, the increasing complexity of the CORK systems increased not only the expenses but led also to longer installation times and a higher sensitivity of the in-struments to environmental constraints. Here, we present three types of Mini-CORKs, which evolved back to more simple systems yet providing a wide range of possible in situ measurements. As a regional example the Nankai Trough is chosen, where repeated subduction thrust earthquakes with M8+ occurred. The area has been investigated by several drilling campaigns of the DSDP, ODP and IODP, where boreholes were already instrumented by different CORKs. Unfortunately, some of the more complex systems showed incomplete functionality, and moreover, the increased ship time forced IODP to rely on third party funds for the observatories. Consequently, the need for more affordable CORKs arose, which may be satisfied by the systems presented here. The first type, the so-called SmartPlug, provides two pressure transducers and four temperature sensors, and monitors a hydrostatic reference section and an isolated zone of interest. It was already installed at the Nankai Trough accretionary

  17. Characterization of mudstone, clayey rock and argillite towards stabilisation of boreholes by developing new drilling strategies for geothermal resources exploration

    NASA Astrophysics Data System (ADS)

    Witthaus, M.; Lempp, Ch.; Röckel, Th.; Hecht, Ch.; Herold, M.

    2009-04-01

    In this study, relating to the BMU Project „ borehole stabilisation as an important factor for the utilization of deep geothermal resources" (Project No. 0327594), sediment rocks with comparable lithology to the pelite beds of the Upper Rhine zone were investigated by a number of geomechanical tests. The investigation will provide detailed information on the geomechanical behaviour (brittle and ductile deformation) of clay stone formations in order to find out critical reasons for the instability of boreholes at a depth of about 2000 m. The main aspect of the study is to develop improved technical options in order to increase borehole stability. Many geothermal energy projects started near the Upper Rhine Rift in order to produce electricity, as the geothermal gradient rises there to about 150° C at 3 - 4 km depth. For these enhanced geothermal systems it is necessary to drill deep boreholes to install geothermal heat exchangers, so that the injected cold water conducts the high temperature of the rocks (Hot Dry Rock-Technology). The drillings have to be intersected through different rock layers that are influenced by varying regional stress fields respective to their depth. Between depths of 1500 to 2000 m within the Upper Rhine zone some of the drilled boreholes were in some parts very unstable, especially in formations where mud- and clay stones were dominant, as well as in interbedded strata with sandstones. As the maximum load capacity of these clays is very low and due to their ductile as well as brittle deformation behaviour, borehole convergence and borehole breakouts are detected. These changes were also caused by deep injection of drilling fluid into the rock formation, increasing the pore pressure there, so that hydraulic tension cracks were induced (hydraulic fracturing). This occurred mainly during drilling and it is the reason why there is an imminent risk of the stability of geothermal boreholes in geological formations composed of mudstones, clay

  18. Combination of surface and borehole seismic data for robust target-oriented imaging

    NASA Astrophysics Data System (ADS)

    Liu, Yi; van der Neut, Joost; Arntsen, Børge; Wapenaar, Kees

    2016-05-01

    A novel application of seismic interferometry (SI) and Marchenko imaging using both surface and borehole data is presented. A series of redatuming schemes is proposed to combine both data sets for robust deep local imaging in the presence of velocity uncertainties. The redatuming schemes create a virtual acquisition geometry where both sources and receivers lie at the horizontal borehole level, thus only a local velocity model near the borehole is needed for imaging, and erroneous velocities in the shallow area have no effect on imaging around the borehole level. By joining the advantages of SI and Marchenko imaging, a macrovelocity model is no longer required and the proposed schemes use only single-component data. Furthermore, the schemes result in a set of virtual data that have fewer spurious events and internal multiples than previous virtual source redatuming methods. Two numerical examples are shown to illustrate the workflow and to demonstrate the benefits of the method. One is a synthetic model and the other is a realistic model of a field in the North Sea. In both tests, improved local images near the boreholes are obtained using the redatumed data without accurate velocities, because the redatumed data are close to the target.

  19. Vadose Zone Characterization and Monitoring Beneath Waste Disposal Pits Using Horizontal Boreholes

    NASA Astrophysics Data System (ADS)

    McLin, S. G.; Newman, B. D.; Broxton, D. E.

    2004-12-01

    Vadose zone characterization and monitoring immediately below landfills using horizontal boreholes is an emerging technology. However, this topic has received little attention in the peer-reviewed literature. The value of this approach is that activities are conducted below the waste, providing clear and rapid verification of containment. Here we report on two studies that examined the utility of horizontal boreholes for environmental characterization and monitoring under radioactive waste disposal pits. Both studies used core sample analyses to determine the presence of various radionuclides, organics, or metals. At one borehole site, water content and pore-water chloride concentrations were also used to interpret vadose zone behavior. At another site, we examined the feasibility of using flexible membrane liners in uncased boreholes for periodic monitoring. For this demonstration, these retrievable liners were air-injected into boreholes on multiple occasions carrying different combinations of environmental surveillance equipment. Instrument packages included a neutron logging device to measure volumetric water at regular intervals, high-absorbency collectors that wicked available water from borehole walls, or vent tubes that were used to measure air permeability and collect air samples. The flexible and retrievable liner system was an effective way to monitor water content and collect air permeability data. The high-absorbency collectors were efficient at extracting liquid water for contaminant analyses even at volumetric water contents below 10 percent, and revealed vapor-phase tritium migration at one disposal pit. Both demonstration studies proved that effective characterization and periodic monitoring in horizontal boreholes is both feasible and adaptable to many waste disposal problems and locations.

  20. Characterization plan for the immobilized low-activity waste borehole

    SciTech Connect

    Reidel, S.P.; Reynolds, K.D.

    1998-03-01

    The US Department of Energy`s (DOE`s) Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford in large underground tanks since 1944. Approximately 209,000 m{sup 3} (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized by private vendors. The DOE will receive the vitrified waste from private vendors and dispose of the low-activity fraction in the Hanford Site 200 East Area. The Immobilized Low-Activity Waste Disposal Complex (ILAWDC) is part of the disposal complex. This report is a plan to drill the first characterization borehole and collect data at the ILAWDC. This plan updates and revises the deep borehole portion of the characterization plan for the ILAWDC by Reidel and others (1995). It describes data collection activities for determining the physical and chemical properties of the vadose zone and the saturated zone at and in the immediate vicinity of the proposed ILAWDC. These properties then will be used to develop a conceptual geohydrologic model of the ILAWDC site in support of the Hanford ILAW Performance Assessment.

  1. Electrical resistance tomography using steel cased boreholes as electrodes

    SciTech Connect

    Newmark, R L; Daily, W; Ramirez, A

    1999-03-22

    Electrical resistance tomography (ERT) using multiple electrodes installed in boreholes has been shown to be useful for both site characterization and process monitoring. In some cases, however, installing multiple downhole electrodes is too costly (e.g., deep targets) or risky (e.g., contaminated sites). For these cases we have examined the possibility of using the steel casings of existing boreholes as electrodes. The first case we investigated used an array of steel casings as electrodes. This results in very few data and thus requires additional constraints to limit the domain of possible inverse solutions. Simulations indicate that the spatial resolution and sensitivity are understandably low but it is possible to coarsely map the lateral extent of subsurface processes such as steam floods. A hybrid case uses traditional point electrode arrays combined with long-conductor electrodes (steel casings). Although this arrangement provides more data, in many cases it results in poor reconstructions of test targets. Results indicate that this method may hold promise for low resolution imaging where steel casings can be used as electrodes.

  2. Interim reclamation report, Basalt Waste Isolation project: Boreholes, 1989

    SciTech Connect

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

    1990-03-01

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. An extensive site characterization program was begun to determine the feasibility of using the basalts beneath the Hanford Site for the repository. Site research focused primarily on determining the direction and speed of groundwater movement, the uniformity of basalt layers, and tectonic stability. Some 98 boreholes were sited, drilled, deepened, or modified by BWIP between 1977 and 1988 to test the geologic properties of the Site. On December 22, 1987, President Reagan signed into law the Nuclear Waste Policy Amendments Act of 1987, which effectively stopped all repository-related activities except reclamation of disturbed lands at the Hanford Site. This report describes the development of the reclamation program for the BWIP boreholes, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 48 refs., 28 figs., 14 tabs.

  3. BASIMO - Borehole Heat Exchanger Array Simulation and Optimization Tool

    NASA Astrophysics Data System (ADS)

    Schulte, Daniel; Rühaak, Wolfram; Welsch, Bastian; Bär, Kristian; Sass, Ingo

    2016-04-01

    Borehole heat exchangers represent a well-established technology, which pushes for new fields of applications and novel modifications. Current simulation tools cannot - or only to some extent - describe features like inclined or partly insulated boreholes unless they run fully discretized models of the borehole heat exchangers. However, fully discretized models often come at a high computational cost, especially for large arrays of borehole heat exchangers. We present a tool, which uses one dimensional thermal resistance and capacity models for the borehole heat exchangers coupled with a numerical finite element model for the subsurface heat transport. An unstructured tetrahedral mesh bypasses the limitations of structured grids for borehole path geometries, while the thermal resistance and capacity model is improved to account for borehole heat exchanger properties changing with depth. The presented tool benefits from the fast analytical solution of the thermal interactions within the boreholes while still allowing for a detailed consideration of the borehole heat exchanger properties.

  4. Optimization of Borehole Heat Exchanger Arrays

    NASA Astrophysics Data System (ADS)

    Schulte, Daniel; Rühaak, Wolfram; Welsch, Bastian; Oladyshkin, Sergey; Sass, Ingo

    2016-04-01

    Arrays of borehole heat exchangers are an increasingly popular source for renewable energy. Furthermore, they can serve as borehole thermal energy storages for seasonally fluctuating heat sources like solar thermal energy or district heating grids. However, the uncertainty of geological parameters and the nonlinear behavior of the complex system make it difficult to simulate and predict the required design of borehole heat exchanger arrays. As a result, the arrays easily turn out to be over or undersized, which compromises the economic feasibility of these systems. Here, we present a novel optimization strategy for the design of borehole thermal energy storages. The arbitrary polynomial chaos expansion method is used to build a proxy model from a set of numerical training simulations, which allows for the consideration of parameter uncertainties. Thus, the resulting proxy model bypasses the problem of excessive computation time for the numerous function calls required for a mathematical optimization. Additionally, we iteratively refine the proxy model during the optimization procedure using additional numerical simulation runs. With the presented solution, many aspects of borehole heat exchanger arrays can be optimized under geological uncertainty.

  5. Borehole survey system utilizing strapdown inertial navigation

    SciTech Connect

    Hulsing, R.H.

    1989-03-14

    A signal processing method is described for use in borehole surveys, consisting of: (a) transforming the acceleration signals in the first coordinate system to obtain inertial signals representative of movement of the probe in a second coordinate system that is fixed relative to the earth, the inertial signals in the second coordinate system including probe velocity signals; (b) generating a signal representative of the amount of cable being fed into the entrance opening of the borehole; (c) processing the signal representative of the amount of cable being feed into the entrance opening of the borehole; (d) transforming the inertial signals representative of movement of the probe in the second coordinate system into inertial signals representative of movement of the probe in the first coordinate system; (e) combining the signal representative of the progress of the probe along the borehole with the inertial signals representative of movement of the probe in the first coordinate system to obtain error signals; (f) transforming the error signals into the second coordinate system to obtain error correction signals; (g) combining the error correction signals with the inertial signals representative of movement of the probe in the second coordinate system to obtain corrected probe velocity signals; and (h) integrating the corrected probe velocity signals to obtain signals representative of the course of the borehole relative to the second coordinate system.

  6. Initial Borehole Accelerometer Array Observations Near the North Portal of the ESF

    SciTech Connect

    David von Seggern

    2005-08-17

    This report addresses observed ground motions at the site of the proposed surface facilities associated with the designated repository for high-level nuclear waste at Yucca Mountain, Nevada. In 2003 an accelerometer array was installed at three boreholes on the pad of the north portal of the ESF (Exploratory Studies Facility) at Yucca Mountain, Nevada, by the Nevada Seismological Laboratory (NSL). These boreholes, roughly 150 m apart and initially used for extensive geological and geophysical surveys, were ideal locations to measure the subsurface ground motions at the proposed site of surface facilities such as the Waste Handling Building. Such measurements will impact the design of the facilities. Accelerometer emplacement depths of approximately 15 m from the surface and then at the bottom of the boreholes, roughly 100 m, were chosen. Accelerometers were also placed at the surface next to the boreholes, for a total of nine accelerometers, all three-component. Data recording was accomplished with onsite recorders, with the onsite data transmitted to a central computer at a trailer on the pad. All requirements were met to qualify these data as ''Q''. Due to the lack of significant recordings during 2003, several low signal-to-noise (S/N) quality events were chosen for processing. The maximum horizontal peak ground acceleration (PGA) recorded at the pad was approximately 1 cm/s2 in 2003; the corresponding peak ground velocity (PGV) was approximately 0.01 cm/s. PGA and PGV were obtained at all nine accelerometers for most of these events, and spectra were computed. Ground motion amplitudes varied significantly across the boreholes. Higher ground amplifications were observed at the surface for the two boreholes that penetrated a thick amount ({approx} 30 m) of fill and Quaternary alluvium compared to the one that had less than 2 m of such. Additionally, surface-to-deep recordings showed as much as a factor of five amplification at these two boreholes. Signal

  7. Gamma-ray spectral calculations for uranium borehole logging

    SciTech Connect

    Close, D.A.; Evans, M.L.; Jain, M.

    1980-06-01

    Gamma-ray transport calculations were performed to determine the energy distribution of gamma rays inside a borehole introduced into an infinite medium. The gamma rays from the naturally occurring radioactive isotopes of potassium, thorium, and uranium were uniformly distributed in a sandstone formation (having a porosity of 0.30 and a saturation of 1.0) surrounding the borehole. A sonde was placed coaxially inside the borehole. Parametric studies were done to determine how the borehole radius, borehole fluid, and borehole casing influence the gamma-ray flux inside the sonde.

  8. Symposium on high-temperature well-logging instrumentation

    SciTech Connect

    Dennis, B.R.

    1986-06-01

    The symposium contains papers about developments in borehole logging instrumentation that can withstand downhole temperatures in excess of 300/sup 0/C and pressures greater than 103 MPa. Separate abstracts have been prepared for individual papers. (ACR)

  9. Characterization of Preferential Flow Paths from Single and Cross-borehole Flowmeter tests in a Fractured Aquifer

    NASA Astrophysics Data System (ADS)

    Bour, O.; Le Borgne, T.; Paillet, F.; Caudal, J.

    2006-12-01

    boreholes are about 100 meters deep and intersect a series of producing zones with variable inflows. We show that cross borehole flowmeter tests are an efficient method to image the geometry of preferential permeable flow paths at the Plumeur site. We found that the high transmissivity zones are well connected over distances of at least 150 meters all over the site. In parallel, the synthesis of all hydraulic tests on the Plumeur fractured crystalline aquifer show that a large range of hydraulic properties characterizes the site. However, we observe that borehole scale variability of transmissivity estimates vanishes at larger scale and that the transmissivity converges towards the high values of the transmissivity distribution. This effect may be explained by the organization of the flow field in the subsurface, and particularly the good connectivity of the permeable zones all over the site. On the other hand, storage coefficient estimates remain relatively variable even when obtained from long term pumping tests.

  10. Using borehole geophysics and cross-borehole flow testing to define hydraulic connections between fracture zones in bedrock aquifers

    USGS Publications Warehouse

    Paillet, Frederick L.

    1993-01-01

    Nearly a decade of intensive geophysical logging at fractured rock hydrology research sites indicates that geophysical logs can be used to identify and characterize fractures intersecting boreholes. However, borehole-to-borehole flow tests indicate that only a few of the apparently open fractures found to intersect boreholes conduct flow under test conditions. This paper presents a systematic approach to fracture characterization designed to define the distribution of fractures along boreholes, relate the measured fracture distribution to structure and lithology of the rock mass, and define the nature of fracture flow paths across borehole arrays. Conventional electrical resistivity, gamma, and caliper logs are used to define lithology and large-scale structure. Borehole wall image logs obtained with the borehole televiewer are used to give the depth, orientation, and relative size of fractures in situ. High-resolution flowmeter measurements are used to identify fractures conducting flow in the rock mass adjacent to the boreholes. Changes in the flow field over time are used to characterize the hydraulic properties of fracture intersections between boreholes. Application of this approach to an array of 13 boreholes at the Mirror Lake, New Hamsphire site demonstrates that the transient flow analysis can be used to distinguish between fractures communicating with each other between observation boreholes, and those that are hydraulically isolated from each other in the surrounding rock mass. The Mirror Lake results also demonstrate that the method is sensitive to the effects of boreholes on the hydraulic properties of the fractured-rock aquifer. Experiments conducted before and after the drilling of additional boreholes in the array and before and after installation of packers in existing boreholes demonstrate that the presence of new boreholes or the inflation of packers in existing boreholes has a large effect on the measured hydraulic properties of the rock mass

  11. Radiation pattern of a borehole radar antenna

    USGS Publications Warehouse

    Ellefsen, K.J.; Wright, D.L.

    2002-01-01

    To understand better how a borehole antenna radiates radar waves into a formation, this phenomenon is simulated numerically using the finite-difference, time-domain method. The simulations are of two different antenna models that include features like a driving point fed by a coaxial cable, resistive loading of the antenna, and a water-filled borehole. For each model, traces are calculated in the far-field region, and then, from these traces, radiation patterns are calculated. The radiation patterns show that the amplitude of the radar wave is strongly affected by its frequency, its propagation direction, and the resistive loading of the antenna.

  12. The derivation of an anisotropic velocity model from combined surface and borehole seismic experiments at the COSC-1 borehole, central Sweden

    NASA Astrophysics Data System (ADS)

    Simon, Helge; Krauß, Felix; Hedin, Peter; Buske, Stefan; Giese, Rüdiger; Juhlin, Christopher

    2016-04-01

    The Scandinavian Caledonides provide a well preserved example of a Paleozoic continent-continent collision, where the surface geology in combination with geophysical data provide control of the geometry of parts of the Caledonian structure. The project COSC (Collisional Orogeny in the Scandinavian Caledonides) investigates the structure and physical conditions of the orogen units and the underlying basement with two approximately 2.5 km deep fully cored boreholes in western Jämtland, central Sweden. In 2014 the COSC-1 borehole was successfully drilled through the Seve Nappe Complex. This unit, mainly consisting of gneisses, belongs to the so-called Middle Allochthons and has been ductilely deformed and transported during collisional orogeny. A major seismic survey was conducted in and around the COSC-1 borehole which comprised both seismic reflection and transmission experiments. Combined with core analysis and downhole logging, the survey will allow extrapolation of the structures away from the borehole. The survey consisted of three parts: 1) a high-resolution zero-offset Vertical Seismic Profile (VSP), 2) a multi-azimuthal walkaway VSP in combination with three long offset surface receiver lines, and 3) a limited 3D seismic survey. Data from the multi-azimuthal walkaway VSP experiment and the long offset surface lines were used to derive a detailed velocity model around the borehole from the inversion of first arrival traveltimes. The comparison of velocities from these tomography results with a velocity function calculated from the zero-offset VSP revealed clear differences in velocities for mainly horizontally and vertically traveling waves. Therefore, an anisotropic VTI model was constructed, using the P-wave velocity function from zero-offset VSP and the Thomson parameters ɛ and δ. The latter were partly derived from ultrasonic lab measurements on COSC-1 core samples. Traveltimes were calculated with an anisotropic eikonal solver and serve as the basis

  13. The U-tube: A new paradigm in borehole fluid sampling

    SciTech Connect

    Freifeld, B. M.

    2009-10-01

    Fluid samples from deep boreholes can provide insights into subsurface physical, chemical, and biological conditions. Recovery of intact, minimally altered aliquots of subsurface fluids is required for analysis of aqueous chemistry, isotopic composition, and dissolved gases, and for microbial community characterization. Unfortunately, for many reasons, collecting geofluids poses a number of challenges, from formation contamination by drilling to maintaining integrity during recovery from depths. Not only are there substantial engineering issues in retrieval of a representative sample, but there is often the practical reality that fluid sampling is just one of many activities planned for deep boreholes. The U-tube geochemical sampling system presents a new paradigm for deep borehole fluid sampling. Because the system is small, its ability to integrate with other measurement systems and technologies opens up numerous possibilities for multifunctional integrated wellbore completions. To date, the U-tube has been successfully deployed at four different field sites, each with a different deployment modality, at depths from 260 m to 2 km. While the U-tube has proven to be highly versatile, these installations have resulted in data that provide additional insights for improving future U-tube deployments.

  14. Single-hole borehole radar detection of layered structures orthogonal to the borehole

    NASA Astrophysics Data System (ADS)

    Murray, W.; Williams, C.; Lewis, C.; Josh, M.

    2000-04-01

    A vertical borehole may pass through natural layered structures which are orthogonal or near-orthogonal to the borehole. Such structures, particularly if they are layers with a smooth surface, can be very difficult to detect with a borehole radar which has the required long range and low center frequency for remote structure detection. Methods of supplementing the radar data are discussed and include the use of an additional radar with a much higher center frequency, the use of a dielectric probe and the use of a look-ahead radar.

  15. Application of integrated magnetic resonance sounding and resistivity methods for borehole implementation. A case study in Cambodia

    NASA Astrophysics Data System (ADS)

    Vouillamoz, Jean-Michel; Descloitres, Marc; Bernard, Jean; Fourcassier, Pierre; Romagny, Laurent

    2002-05-01

    A geophysical survey was conducted in Cambodia to measure the contribution of geophysics to a running drilling programme. The geology of the area (the province of Siem Reap) mainly consists of recent heterogeneous sediments of sand, silt and clay. The thickness of this formation ranges from 20 to 100 m and lies on Jurassic to Tertiary rocks. Surveys were done with direct current methods [one-dimensional vertical electrical sounding (1D VES), and two-dimensional (2D) electrical imaging], time domain electromagnetic (TDEM) sounding and proton magnetic resonance sounding (MRS). To validate the geophysical results, boreholes were drilled and tested with electrical logs and pumping tests. We found that: (1) The resistivity methods (VES, 2D electrical imaging and TDEM) are very sensitive to the groundwater electrical conductivity which is highly heterogeneous within the province. A preliminary relationship between measured groundwater conductivity and aquifer resistivity is proposed. (2) The MRS gives accurate information on groundwater occurrence for the 5- to 60-m-deep layers. A preliminary relationship between MRS data (aquifer transmissivity estimated from MRS field measurements) and hydrodynamic parameters (aquifer local transmissivity and borehole relative specific capacity estimated from borehole pumping tests) is proposed. (3) The resistivity methods and MRS are complementary, and a joint use is recommended. (4) At the survey scale, the borehole success rate was improved from 56% to 90% by the use of geophysics. Crossing the technical and cost analyses, we propose a geophysical methodology to implement boreholes in the province of Siem Reap. This methodology could both increase the borehole success rate and save money at the programme scale. It consists of the use of: MRS, TDEM and electrical methods jointly where the borehole success rate is less than 30%. MRS and TDEM jointly where the borehole success rate ranges from 30% to 50%. Electrical methods (VES and 2D

  16. Radiation pattern of a borehole radar antenna

    USGS Publications Warehouse

    Ellefsen, K.J.; Wright, D.L.

    2005-01-01

    The finite-difference time-domain method was used to simulate radar waves that were generated by a transmitting antenna inside a borehole. The simulations were of four different models that included features such as a water-filled borehole and an antenna with resistive loading. For each model, radiation patterns for the far-field region were calculated. The radiation patterns show that the amplitude of the radar wave was strongly affected by its frequency, the water-filled borehole, the resistive loading of the antenna, and the external metal parts of the antenna (e.g., the cable head and the battery pack). For the models with a water-filled borehole, their normalized radiation patterns were practically identical to the normalized radiation pattern of a finite-length electric dipole when the wavelength in the formation was significantly greater than the total length of the radiating elements of the model antenna. The minimum wavelength at which this criterion was satisfied depended upon the features of the antenna, especially its external metal parts. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  17. BOREHOLE FLOWMETERS: FIELD APPLICATION AND DATA ANALYSIS

    EPA Science Inventory

    This paper reviews application of borehole flowmeters in granular and fractured rocks. Basic data obtained in the field are the ambient flow log and the pumping-induced flow log. These basic logs may then be used to calculate other quantities of interest. The paper describes the ...

  18. Performance of a Borehole X-ray Fluorescence Spectrometer for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Carlberg, Ingrid A.; Elam, W. T.; Willard-Schmoe, Ella

    2008-01-01

    We have designed and constructed a borehole X-ray Fluorescence Spectrometer (XRFS) as part of the Mars Subsurface Access program [1]. It can be used to determine the composition of the Mars regolith at various depths by insertion into a pre-drilled borehole. The primary requirements and performance metrics for the instrument are to obtain parts-per-million (ppm) lower limits of detection over a wide range of elements in the periodic table (Magnesium to Lead). Power consumption during data collection was also measured. The prototype instrument is complete and preliminary testing has been performed. Terrestrial soil Standard Reference Materials were used as the test samples. Detection limits were about 10 weight ppm for most elements, with light elements being higher, up to 1.4 weight percent for magnesium. Power consumption (excluding ground support components) was 12 watts.

  19. Hydrogeological Characteristics of Fractured Rocks around the In-DEBS Test Borehole at the Underground Research Facility (KURT)

    NASA Astrophysics Data System (ADS)

    Ko, Nak-Youl; Kim, Geon Young; Kim, Kyung-Su

    2016-04-01

    In the concept of the deep geological disposal of radioactive wastes, canisters including high-level wastes are surrounded by engineered barrier, mainly composed of bentonite, and emplaced in disposal holes drilled in deep intact rocks. The heat from the high-level radioactive wastes and groundwater inflow can influence on the robustness of the canister and engineered barrier, and will be possible to fail the canister. Therefore, thermal-hydrological-mechanical (T-H-M) modeling for the condition of the disposal holes is necessary to secure the safety of the deep geological disposal. In order to understand the T-H-M coupling phenomena at the subsurface field condition, "In-DEBS (In-Situ Demonstration of Engineered Barrier System)" has been designed and implemented in the underground research facility, KURT (KAERI Underground Research Tunnel) in Korea. For selecting a suitable position of In-DEBS test and obtaining hydrological data to be used in T-H-M modeling as well as groundwater flow simulation around the test site, the fractured rock aquifer including the research modules of KURT was investigated through the in-situ tests at six boreholes. From the measured data and results of hydraulic tests, the range of hydraulic conductivity of each interval in the boreholes is about 10-7-10-8 m/s and that of influx is about 10-4-10-1 L/min for NX boreholes, which is expected to be equal to about 0.1-40 L/min for the In-DEBS test borehole (diameter of 860 mm). The test position was determined by the data and availability of some equipment for installing In-DEBS in the test borehole. The mapping for the wall of test borehole and the measurements of groundwater influx at the leaking locations was carried out. These hydrological data in the test site will be used as input of the T-H-M modeling for simulating In-DEBS test.

  20. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  1. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  2. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  3. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  4. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  5. Rock Mass Characterization by High-Resolution Sonic and GSI Borehole Logging

    NASA Astrophysics Data System (ADS)

    Agliardi, F.; Sapigni, M.; Crosta, G. B.

    2016-11-01

    We investigate the relationships between the in situ P-wave velocity (Vp) of rock masses, measured by borehole acoustic logging, and their Geological Strength Index (GSI), to support a reliable assessment of equivalent continuum rock mass properties at depth. We quantified both Vp and GSI in three deep boreholes drilled in a crystalline core complex of the central Italian Alps. The boreholes were driven up to 400 m in depth and provided high-quality drill cores in gneiss, schist and metasedimentary rocks with variable lithology. Geological and geomechanical logging was carried out for over 800 m of cores, and acoustic logging was performed for more than 600 m of borehole length. High-resolution core logging in terms of GSI was obtained using an original quantitative approach. Candidate empirical correlation functions linking Vp and GSI were tested by a two-step statistical analysis of the experimental dataset, including outlier removal and nonlinear regression analysis. We propose a sigmoid Vp-GSI equation valid over a depth range between 100 and 400 m. This accounts for extremely variable lithological, weathering and rock mass damage conditions, complementing existing shallow-depth approaches and showing potential for practical applications in different engineering settings.

  6. Improved agreement between borehole and other proxy reconstructions of paleoclimate via a new common temperature reference scheme

    NASA Astrophysics Data System (ADS)

    Smerdon, J. E.; Pollack, H. N.

    2005-12-01

    Comparisons between temperature reconstructions derived from proxy data require common temperature reference. Given any number of proxy time series scaled to temperature, one must decide how to reference each reconstruction on a common temperature scale such that their relative variability has comparable meaning. Two choices are common: 1) an absolute temperature scaling in which time series are referenced to the Kelvin, Celsius or Fahrenheit scales; or 2) an anomaly scaling in which each time series is referenced to its own mean during a specified time interval. This latter choice is typically applied because the relative variability of each proxy time series is often the topic of interest. For example, a widely applied convention references all temperature reconstructions to their mean temperature during the 1961-90 time interval. While this scheme is appropriate for reconstructions with equal temporal resolution, it can lead to inappropriate comparisons between reconstructions with different resolutions. We demonstrate that comparisons between borehole reconstructions, comprising piecewise centennial trends, with other annually-resolved proxy reconstructions have inadvertently exaggerated the amount of disagreement between the two estimates of past climate change. This exaggeration arises because the borehole reconstructions have been referenced to other anomaly series using the mean temperature of the 20th-century borehole trend between 1961 and 1990. A more appropriate referencing scheme for the borehole reconstructions pins the zero crossing of the 20th-century trend in the borehole time series to the equivalent point in the linear trend of the 20th-century instrumental record. Such a referencing approach reduces the disagreement between borehole reconstructions and other estimates of past climate change. For example, the difference in minimum 16th-century temperatures in the Northern Hemisphere between borehole and other proxy-based estimates is reduced by

  7. Workshop on borehole measurements and interpretation in scientific drilling - identification of problems and proposals for their solution: proceedings

    SciTech Connect

    Cooper, D.L.; Traeger, R.K.

    1984-03-01

    Critical instrumentation needs for borehole-oriented, geoscience research were identified in a program consisting of formal presentations, psoter sessions and a workshop. The proceedings include results of the workshops, abstracts of the papers and poster sessions, and the attendance list. Details of any of the presentations should be obtained from the individual authors. Separate entries were prepared for individual presentations.

  8. Electrical resistance tomography from measurements inside a steel cased borehole

    DOEpatents

    Daily, William D.; Schenkel, Clifford; Ramirez, Abelardo L.

    2000-01-01

    Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.

  9. OSL-thermochronometry of feldspar from the KTB borehole, Germany

    NASA Astrophysics Data System (ADS)

    Guralnik, Benny; Jain, Mayank; Herman, Frédéric; Ankjærgaard, Christina; Murray, Andrew S.; Valla, Pierre G.; Preusser, Frank; King, Georgina E.; Chen, Reuven; Lowick, Sally E.; Kook, Myungho; Rhodes, Edward J.

    2015-08-01

    The reconstruction of thermal histories of rocks (thermochronometry) is a fundamental tool both in Earth science and in geological exploration. However, few methods are currently capable of resolving the low-temperature thermal evolution of the upper ∼2 km of the Earth's crust. Here we introduce a new thermochronometer based on the infrared stimulated luminescence (IRSL) from feldspar, and validate the extrapolation of its response to artificial radiation and heat in the laboratory to natural environmental conditions. Specifically, we present a new detailed Na-feldspar IRSL thermochronology from a well-documented thermally-stable crustal environment at the German Continental Deep Drilling Program (KTB). There, the natural luminescence of Na-feldspar extracted from twelve borehole samples (0.1-2.3 km depth, corresponding to 10-70 °C) can be either (i) predicted within uncertainties from the current geothermal gradient, or (ii) inverted into a geothermal palaeogradient of 29 ± 2 °C km-1, integrating natural thermal conditions over the last ∼65 ka. The demonstrated ability to invert a depth-luminescence dataset into a meaningful geothermal palaeogradient opens new venues for reconstructing recent ambient temperatures of the shallow crust (<0.3 Ma, 40-70 °C range), or for studying equally recent and rapid transient cooling in active orogens (<0.3 Ma, >200 °C Ma-1 range). Although Na-feldspar IRSL is prone to field saturation in colder or slower environments, the method's primary relevance appears to be for borehole and tunnel studies, where it may offer remarkably recent (<0.3 Ma) information on the thermal structure and history of hydrothermal fields, nuclear waste repositories and hydrocarbon reservoirs.

  10. LIBSLog: Laser Induced Breakdown Spectroscopy (LIBS) based logging tool for exploration of boreholes

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Chu, P.

    2012-12-01

    We present a novel downhole instrument, currently under development at Honeybee Robotics with SBIR funding from NASA. The device is designed to characterize elemental composition as a function of depth in terrestrial and non-terrestrial geological formations. The instrument consists of a miniaturized LIBS analyzer integrated in a 2" diameter drill string. While the drill provides subsurface access, the LIBS analyzer provides information on the elemental composition of the borehole wall. This instrument has a variety of space applications ranging from exploration of the Moon for which it was originally designed, to Mars and Europa. The system can also be deployed in a wireline configuration as a logging probe, called LIBSLog. The LIBSLog could be lowered into existing boreholes and scan the borehole wall with depth. Subsurface analysis is usually performed by sample acquisition through a drill or excavator, followed by sample preparation and subsequent sample presentation to an instrument or suite of instruments. An alternative approach consisting in bringing a miniaturized version of the instrument to the sample has many advantages over the traditional methodology, as it allows faster response, reduced probability of cross-contamination and a simplification in the sampling mechanisms. The results for lunar simulant NU-LHT-2M show a value for the concentration of iron ranging between 2.29% and 3.05% depending on the atomic line selected. The accepted value for the sample analyzed is 2.83%, showing the capability for the system in development to provide qualitative and semi-quantitative analysis in real-time.

  11. BOREHOLE NEUTRON ACTIVATION: THE RARE EARTHS.

    USGS Publications Warehouse

    Mikesell, J.L.; Senftle, F.E.

    1987-01-01

    Neutron-induced borehole gamma-ray spectroscopy has been widely used as a geophysical exploration technique by the petroleum industry, but its use for mineral exploration is not as common. Nuclear methods can be applied to mineral exploration, for determining stratigraphy and bed correlations, for mapping ore deposits, and for studying mineral concentration gradients. High-resolution detectors are essential for mineral exploration, and by using them an analysis of the major element concentrations in a borehole can usually be made. A number of economically important elements can be detected at typical ore-grade concentrations using this method. Because of the application of the rare-earth elements to high-temperature superconductors, these elements are examined in detail as an example of how nuclear techniques can be applied to mineral exploration.

  12. Promising pneumatic punchers for borehole drilling

    SciTech Connect

    A.A. Lipin

    2005-03-15

    The state of borehole drilling by downhole pneumatic punchers and their potential use in open and underground mining as well as in exploration for reliable sampling are analyzed. Performance specification is presented for the new-generation pneumatic punchers equipped with a pin tool, effectively operating at a compressed-air pressure of 0.5-0.7 MPa, and with an additional extended exhaust from the power stroke chamber during working cycle.

  13. Advances in borehole geophysics for hydrology

    SciTech Connect

    Nelson, P.H.

    1982-01-01

    Borehole geophysical methods provide vital subsurface information on rock properties, fluid movement, and the condition of engineered borehole structures. Within the first category, salient advances include the continuing improvement of the borehole televiewer, refinement of the electrical conductivity dipmeter for fracture characterization, and the development of a gigahertz-frequency electromagnetic propagation tool for water saturation measurements. The exploration of the rock mass between boreholes remains a challenging problem with high potential; promising methods are now incorporating high-density spatial sampling and sophisticated data processing. Flow-rate measurement methods appear adequate for all but low-flow situations. At low rates the tagging method seems the most attractive. The current exploitation of neutron-activation techniques for tagging means that the wellbore fluid itself is tagged, thereby eliminating the mixing of an alien fluid into the wellbore. Another method uses the acoustic noise generated by flow through constrictions and in and behind casing to detect and locate flaws in the production system. With the advent of field-recorded digital data, the interpretation of logs from sedimentary sequences is now reaching a sophisticated level with the aid of computer processing and the application of statistical methods. Lagging behind are interpretive schemes for the low-porosity, fracture-controlled igneous and metamorphic rocks encountered in the geothermal reservoirs and in potential waste-storage sites. Progress is being made on the general problem of fracture detection by use of electrical and acoustical techniques, but the reliable definition of permeability continues to be an elusive goal.

  14. Hydrogeologic Testing During Drilling of COSC-1 Borehole: Application of FFEC Logging Method

    NASA Astrophysics Data System (ADS)

    Tsang, Chin-Fu; Rosberg, Jan-Erik; Sharma, Prabhakar; Niemi, Auli; Juhlin, Christopher

    2015-04-01

    Drilling of a deep borehole does not normally allow for hydrogeologic testing during the drilling period. The only time hydraulic testing is done during the drilling operations is when drilling experiences a large loss (or high return) of drilling fluid representing encountering of a large-transmissivity zone. Then, either the zone is cemented for drilling to continue or drilling is stopped for conducting, for example, a drill-stem test (DST), which involves installation of a packer above the drilling depth and performing a pressure or flow transient test. The first alternative means loss of critical information on in-situ hydraulic transmissivities and the second option enables the study of only the one high-transmissivity zone, with a significant delay of the drilling schedule. The drilling of the COSC-1 borehole at Åre, Northern Sweden, presented an opportunity of conducting a particular hydraulic testing with negligible impact on drilling schedule, yet providing important and accurate information on in-situ hydraulic conductivities on both high- and low-transmissivity zones, already during the drilling period. This information can be used to guide downhole fluid sampling programs and future detailed borehole testing. The particular testing method used is the Flowing Fluid Electric Conductivity (FFEC) Logging Method, which has the capability of identifying large and small hydraulically active zones and providing data for estimating their transmissivity values and local formation water salinity. In this paper, the method will be described and its application to the drilling of COSC-1 borehole presented. Results show that from 300 m to the borehole bottom at 2500 m, there are eight hydraulic active zones in COSC-1, with very low transmissivity values which range over one order of magnitude.

  15. Simple, Affordable and Sustainable Borehole Observatories for Complex Monitoring Objectives

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Wefer, G.

    2014-12-01

    Seafloor drill rigs are remotely operated systems that provide a cost effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. We here report on another milestone in using seafloor rigs: The development and installation of shallow borehole observatories. Three different systems have been developed for the MeBo seafloor drill, which is operated by MARUM, Univ. Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK, is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. Of these MeBoCORKs, two systems have to be distinguished: The CORK-A (A = autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference). The CORK-B (B = bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by ROV and utilises a hotstab connection in the upper portion of the drill string. Either design relies on a hostab connection from beneath which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect pore water in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner. Instead of transferring data upon command using an acoustic modem, the MeBoPUPPI contains a pop-up telemetry with Iridium link. After a

  16. Deep drilling; Probing beneath the earth's surface

    SciTech Connect

    Rosen, J.250

    1991-06-01

    This paper reports on boreholes from 4.5 to greater than 10 kilometers deep that are pushing back the boundaries of earth science as they yield information that is used to refine seismic surveys, chart the evolution of sedimentary basins and shield volcanos, and uncover important clues on the origin and migration of mantle-derived water and gas.

  17. Hydrogeology of the Hawaii Scientific Drilling Project borehole KP-1 1. Hydraulic conditions adjacent to the well bore

    USGS Publications Warehouse

    Paillet, Frederick L.; Thomas, D.M.

    1996-01-01

    Temperature and formation resistivity logs obtained in borehole KP-1 of the Hawaii Scientific Drilling Project indicate that the adjacent formation is characterized by several zones of distinctly different average temperature and water salinity. A series of hydraulic analyses and water sampling programs were conducted to rule out the possibility of local hydraulic effects associated with the presence of the borehole in the generation of these apparent groundwater zones. Hydraulic tests and sampling with the borehole cased to a depth of 710 m and open below that depth indicate that the deep aquifer contains seawater at a temperature nearly identical to that of the open ocean at the same depth. Various analyses give estimates of aquifer transmissivity of about 10-3 m2/s in the vicinity of the borehole. Isolation of this deeper aquifer from the overlying groundwater zones was investigated by perforating the casing at six locations and then measuring the changes in water level in the borehole, in the salinity of the fluid column, in the temperature profile of the fluid column, and in the rate of flow in the fluid column induced by the perforations. These results positively confirm that the zones of distinctly different formation properties indicated on the temperature and resistivity logs are not caused by flow in or around casing. Flow and fluid column salinity induced by the perforations also confirm significant differences between the hydraulic heads and geochemistry of the different groundwater zones inferred from the well logs.

  18. Effect of borehole design on electrical impedance tomography measurements

    NASA Astrophysics Data System (ADS)

    Mozaffari, Amirpasha; Huisman, Johan Alexander; Treichel, Andrea; Zimmermann, Egon; Kelter, Matthias; Vereecken, Harry

    2015-04-01

    Electrical Impedance Tomography (EIT) is a sophisticated non-invasive tool to investigate the subsurface in engineering and environmental studies. To increase the depth of investigation, EIT measurements can be made in boreholes. However, the presence of the borehole may affect EIT measurements. Here, we aim to investigate the effect of different borehole components on EIT measurements using 2,5-D and 3D finite element modeling and unstructured meshes. To investigate the effect of different borehole components on EIT measurements, a variety of scenarios were designed. In particular, the effect of the water-filled borehole, the PVC casing, and the gravel filter were investigated relative to complex resistivity simulations for a homogenous medium with chain and electrode modules. It was found that the results of the complex resistivity simulations were best understood using the sensitivity distribution of the electrode configuration under consideration. In all simulations, the sensitivity in the vicinity of the borehole was predominantly negative. Therefore, the introduction of the water-filled borehole caused an increase in the real part of the impedance, and a decrease (more negative) in the imaginary part of the simulated impedance. The PVC casing mostly enhanced the effect of the water-filled borehole described above, although this effect was less clear for some electrode configuration. The effect of the gravel filter mostly reduced the effect of the water-filled borehole with PVC casing. For EIT measurements in a single borehole, the highest simulated phase error was 12% for a Wenner configuration with electrode spacing of 0.33 m. This error decreased with increasing electrode spacing. In the case of cross-well configurations, the error in the phase shit was as high as 6%. Here, it was found that the highest errors occur when both current electrodes are located in the same borehole. These results indicated that cross-well measurements are less affected by the

  19. Combined use of straddle packer testing and FLUTe profiling for hydraulic testing in fractured rock boreholes

    NASA Astrophysics Data System (ADS)

    Quinn, Patryk; Cherry, John A.; Parker, Beth L.

    2015-05-01

    A combination of high resolution hydraulic tests using straddle packers and transmissivity (T) profiling using the FLUTe flexible liner method (liner profiling) in densely fractured rock boreholes is shown to be efficient for the determination of the vertical distribution of T along the entire hole. The liner T profiling method takes a few hours or less to scan the entire borehole length resulting in a T profile. Under favorable conditions this method has good reliability for identifying the highest T zones identified by distinct decreases in liner velocity when these zones are covered by the descending liner. In contrast, for one short test interval (e.g., 1-2 m) the multiple-test, straddle-packer method takes a few hours to measure T with good precision and accuracy using a combination of steady-state and transient tests (e.g., constant head step tests, slug tests, and constant rate pumping tests). Because of the time consuming aspect of this multiple-test method, it is most efficient in each borehole to conduct straddle packer testing only in priority zones selected after assessment of other borehole data collected prior to packer testing. The T profile from the liner method is instrumental in selecting high permeable zones for application of the multiple-test method using straddle packers, which in turn, refines the T estimation from the liner profile. Results from three boreholes in densely fractured sandstone demonstrate this approach showing the synergistic use of the methods with emphasis on information important for determining hydraulic apertures.

  20. Effects of the deviation characteristics of nuclear waste emplacement boreholes on borehole liner stresses; Yucca Mountain Project

    SciTech Connect

    Glowka, D.A.

    1990-09-01

    This report investigates the effects of borehole deviation on the useability of lined boreholes for the disposal of high-level nuclear waste at the proposed Yucca Mountain Repository in Nevada. Items that lead to constraints on borehole deviation include excessive stresses that could cause liner failure and possible binding of a waste container inside the liner during waste emplacement and retrieval operations. Liner stress models are developed for two general borehole configurations, one for boreholes drilled with a steerable bit and one for boreholes drilled with a non-steerable bit. Procedures are developed for calculating liner stresses that arise both during insertion of the liner into a borehole and during the thermal expansion process that follows waste emplacement. The effects of borehole curvature on the ability of the waste container to pass freely inside the liner without binding are also examined. Based on the results, specifications on borehole deviation allowances are developed for specific vertical and horizontal borehole configurations of current interest. 11 refs., 22 figs., 4 tabs.

  1. COSC-1 technical operations: drilling and borehole completion

    NASA Astrophysics Data System (ADS)

    Rosberg, Jan-Erik; Bjelm, Leif; Larsson, Stellan; Juhlin, Christopher; Lorenz, Henning; Almqvist, Bjarne

    2015-04-01

    COSC-1, the first out of the two planned fully cored boreholes within the COSC-project, was completed in late August 2014. Drilling was performed using the national scientific drilling infrastructure, the so called Riksriggen, operated by Lund University, and resulted in a 2495.8 m deep borehole with almost 100 % core recovery. The rig is an Atlas Copco CT20C diamond core-drill rig, a rig type commonly used for mineral exploration. A major advantage with this type of drill rig compared to conventional rotary rigs is that it can operate on very small drill sites. Thus, it leaves a small environmental footprint, in this case around 1000 m2. The rig was operated by 3 persons over 12 hour shifts. Before the core drilling started a local drilling company installed a conductor casing down to 103 m, which was required for the installation of a Blow Out Preventer (BOP). The core drilling operation started using H-size and a triple tube core barrel (HQ3), resulting in a hole diameter of 96 mm and a core diameter of 61.1 mm down to 1616 m. In general, the drilling using HQ3 was successful with 100 % core recovery and core was acquired at rate on the order 30-60 m/day when the drilling wasn't interrupted by other activities, such as bit change, servicing or testing. The HRQ-drill string was installed as a temporary casing from surface down to 1616 m. Subsequently, drilling was conducted down to 1709 m with N-size and a triple tube core barrel (NQ3), resulting in a hole diameter of 75.7 mm and a core diameter of 45 mm. At 1709 m the coring assembly was changed to N-size double tube core barrel (NQ), resulting in a hole diameter of 75.7 mm and a core diameter of 47.6 mm and the core barrel extended to 6 m. In this way precious time was saved and the good rock quality ensured high core recovery even with the double tube. In general, the drilling using NQ3 and NQ was successful with 100 % core recovery at around 36 m/day by the end of the drilling operation. The main problem

  2. Moving to Google Cloud: Renovation of Global Borehole Temperature Database for Climate Research

    NASA Astrophysics Data System (ADS)

    Xiong, Y.; Huang, S.

    2013-12-01

    Borehole temperature comprises an independent archive of information on climate change which is complementary to the instrumental and other proxy climate records. With support from the international geothermal community, a global database of borehole temperatures has been constructed for the specific purpose of the study on climate change. Although this database has become an important data source in climate research, there are certain limitations partially because the framework of the existing borehole temperature database was hand-coded some twenty years ago. A database renovation work is now underway to take the advantages of the contemporary online database technologies. The major intended improvements include 1) dynamically linking a borehole site to Google Earth to allow for inspection of site specific geographical information; 2) dynamically linking an original key reference of a given borehole site to Google Scholar to allow for a complete list of related publications; and 3) enabling site selection and data download based on country, coordinate range, and contributor. There appears to be a good match between the enhancement requirements for this database and the functionalities of the newly released Google Fusion Tables application. Google Fusion Tables is a cloud-based service for data management, integration, and visualization. This experimental application can consolidate related online resources such as Google Earth, Google Scholar, and Google Drive for sharing and enriching an online database. It is user friendly, allowing users to apply filters and to further explore the internet for additional information regarding the selected data. The users also have ways to map, to chart, and to calculate on the selected data, and to download just the subset needed. The figure below is a snapshot of the database currently under Google Fusion Tables renovation. We invite contribution and feedback from the geothermal and climate research community to make the

  3. Local fluid flow and borehole strain in the South Iceland Seismic Zone

    NASA Astrophysics Data System (ADS)

    Jónsson, S.; Segall, P.; Ágústsson, K.; Agnew, D.

    2003-12-01

    Installation of 175 borehole strainmeters is planned for PBO. It is therefore vital to understand the behavior of existing strainmeter installations. We investigate signals recorded by three borehole dilatometers in the south Iceland seismic zone following two Mw6.5 earthquakes in June 2000. Poroelastic relaxation has been documented following these events based on InSAR and water level data [Jónsson et al., 2003, Nature]. According to poroelastic theory for a homogeneous isotropic (unfractured) medium, the anticipated post-seismic volumetric strain has the same sign as the coseismic strain step. For example, coseismic compression results in pore-pressure increases; post-earthquake fluid drainage causes additional compression. However, we find that observed strain changes vary considerably between different instruments after the earthquakes. One instrument (HEL) behaves as expected with transient strain increasing with the same sign as the coseismic strain step. Another instrument (SAU) shows partial strain relaxation, opposite in sign to the coseismic signal. The third (BUR) exhibits complete strain relaxation by 3-4 days after the earthquakes (i.e., BUR does not record any permanent strain). BUR has responded in the same fashion to three different earthquakes and two volcanic eruptions, demonstrating conclusively that the transient response is due to processes local to the borehole. Fluid drainage from cracks can explain these observations. Rapid straining results in compression (extension) of the rock and strainmeter. Fluid filled fractures near the borehole transmit normal stress, due to the relative incompressibility of water. Thus, at short time scales the instrument records a coseismic strain step. With time, however, fluid flows out of (in to) the fractures, and the normal stress transmitted across the fractures decreases (increases). As the stress relaxes the strainmeter expands (contracts), reversing the coseismic strain. Barometric responses are

  4. Visual texture for automated characterisation of geological features in borehole televiewer imagery

    NASA Astrophysics Data System (ADS)

    Al-Sit, Waleed; Al-Nuaimy, Waleed; Marelli, Matteo; Al-Ataby, Ali

    2015-08-01

    Detailed characterisation of the structure of subsurface fractures is greatly facilitated by digital borehole logging instruments, the interpretation of which is typically time-consuming and labour-intensive. Despite recent advances towards autonomy and automation, the final interpretation remains heavily dependent on the skill, experience, alertness and consistency of a human operator. Existing computational tools fail to detect layers between rocks that do not exhibit distinct fracture boundaries, and often struggle characterising cross-cutting layers and partial fractures. This paper presents a novel approach to the characterisation of planar rock discontinuities from digital images of borehole logs. Multi-resolution texture segmentation and pattern recognition techniques utilising Gabor filters are combined with an iterative adaptation of the Hough transform to enable non-distinct, partial, distorted and steep fractures and layers to be accurately identified and characterised in a fully automated fashion. This approach has successfully detected fractures and layers with high detection accuracy and at a relatively low computational cost.

  5. Canister, Sealing Method And Composition For Sealing A Borehole

    SciTech Connect

    Brown, Donald W.; Wagh, Arun S.

    2005-06-28

    Method and composition for sealing a borehole. A chemically bonded phosphate ceramic sealant for sealing, stabilizing, or plugging boreholes is prepared by combining an oxide or hydroxide and a phosphate with water to form slurry. The slurry is introduced into the borehole where the seal, stabilization or plug is desired, and then allowed to set up to form the high strength, minimally porous sealant, which binds strongly to itself and to underground formations, steel and ceramics.

  6. Modeling and visualizing borehole information on virtual globes using KML

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-feng; Wang, Xi-feng; Zhang, Bing

    2014-01-01

    Advances in virtual globes and Keyhole Markup Language (KML) are providing the Earth scientists with the universal platforms to manage, visualize, integrate and disseminate geospatial information. In order to use KML to represent and disseminate subsurface geological information on virtual globes, we present an automatic method for modeling and visualizing a large volume of borehole information. Based on a standard form of borehole database, the method first creates a variety of borehole models with different levels of detail (LODs), including point placemarks representing drilling locations, scatter dots representing contacts and tube models representing strata. Subsequently, the level-of-detail based (LOD-based) multi-scale representation is constructed to enhance the efficiency of visualizing large numbers of boreholes. Finally, the modeling result can be loaded into a virtual globe application for 3D visualization. An implementation program, termed Borehole2KML, is developed to automatically convert borehole data into KML documents. A case study of using Borehole2KML to create borehole models in Shanghai shows that the modeling method is applicable to visualize, integrate and disseminate borehole information on the Internet. The method we have developed has potential use in societal service of geological information.

  7. Borehole sounding device with sealed depth and water level sensors

    DOEpatents

    Skalski, Joseph C.; Henke, Michael D.

    2005-08-02

    A borehole device having proximal and distal ends comprises an enclosure at the proximal end for accepting an aircraft cable containing a plurality of insulated conductors from a remote position. A water sensing enclosure is sealingly attached to the enclosure and contains means for detecting water, and sending a signal on the cable to the remote position indicating water has been detected. A bottom sensing enclosure is sealingly attached to the water sensing enclosure for determining when the borehole device encounters borehole bottom and sends a signal on the cable to the remote position indicating that borehole bottom has been encountered.

  8. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2012-11-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  9. Phase Identification of Seismic Borehole Samples

    SciTech Connect

    Crum, Jarrod V.; Riley, Brian J.

    2006-11-01

    This report documents the phase identification results obtained by x-ray diffraction (XRD) analysis of samples taken from borehole C4998 drilled at the Waste Treatment Plant (WTP) on the Hanford Site (REF). XRD samples were taken from fractures and vesicles or are minerals of interest at areas of interest within the basalt formations cored. The samples were powder mounted and analyzed. Search-match software was used to select the best match from the ICDD mineral database based on peak locations and intensities.

  10. Fiber optic communication in borehole applications

    SciTech Connect

    Franco, R.J.; Morgan, J.R.

    1997-04-01

    The Telemetry Technology Development Department have, in support of the Advanced Geophysical Technology Department and the Oil Recovery Technology Partnership, developed a fiber optic communication capability for use in borehole applications. This environment requires the use of packaging and component technologies to operate at high temperature (up to 175{degrees}C) and survive rugged handling. Fiber optic wireline technology has been developed by The Rochester Corporation under contract to Sandia National Labs and produced a very rugged, versatile wireline cable. This development has utilized commercial fiber optic component technologies and demonstrated their utility in extreme operating environments.

  11. Results of borehole geophysical logging and hydraulic tests conducted in Area D supply wells, former US Naval Air Warfare Center, Warminster, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Grazul, Kevin E.

    1998-01-01

    Borehole geophysical logging, aquifer tests, and aquifer-isolation (packer) tests were conducted in four supply wells at the former U.S. Naval Air Warfare Center (NAWC) in Warminster, PA to identify the depth and yield of water-bearing zones, occurrence of borehole flow, and effect of pumping on nearby wells. The study was conducted as part of an ongoing evaluation of ground-water contamination at the NAWC. Caliper, natural-gamma, single-point resistance, fluid resistivity, and fluid temperature logs and borehole television surveys were run in the supply wells, which range in depth from 242 to 560 ft (feet). Acoustic borehole televiewer and borehole deviation logs were run in two of the wells. The direction and rate of borehole-fluid movement under non-pumping conditions were measured with a high-resolution heatpulse flowmeter. The logs were used to locate water-bearing fractures, determine probable zones of vertical borehole-fluid movement, and determine the depth to set packers. An aquifer test was conducted in each well to determine open-hole specific capacity and the effect of pumping the open borehole on water levels in nearby wells. Specific capacities ranged from 0.21 to 1.7 (gal/min)/ft (gallons per minute per foot) of drawdown. Aquifer-isolation tests were conducted in each well to determine depth-discrete specific capacities and to determine the effect of pumping an individual fracture or fracture zone on water levels in nearby wells. Specific capacities of individual fractures and fracture zones ranged from 0 to 2.3 (gal/min)/ft. Most fractures identified as water-producing or water-receiving zones by borehole geophysical methods produced water when isolated and pumped. All hydrologically active fractures below 250 ft below land surface were identified as water-receiving zones and produced little water when isolated and pumped. In the two wells greater then 540 ft deep, downward borehole flow to the deep water-receiving fractures is caused by a large

  12. The Deep Space Network. [tracking and communication functions and facilities

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized. The Deep Space Instrumentation Facility, the Ground Communications Facility, and the Network Control System are described.

  13. Borehole measurement of the Newtonian gravitational constant

    NASA Astrophysics Data System (ADS)

    Hsui, Albert T.

    1987-08-01

    Gravimetric measurements in a borehole within the Michigan Basin, obtained in September 1983, were utilized to estimate the Newtonian gravitational constant. Gravitational constants are computed using gravity measurements from two stations along the same vertical and by knowing the total rock mass sandwiched between these two stations. The calculation of rock formation density using a gamma-gamma density log is described. The gravity values are analyzed in terms of reference surface values, and it is observed that the gravity increases with depth. Borehole measurement determined gravity constant values ranged from 6.6901 + or - 0.0668 x 10 to the -11th cu m/kg sec sq (at station separation 264.5 + or - 0.5 m) to 6.7000 + or - 0.0650 x 10 to the -11th cu m/kg sec sq (at 1163.5 + or - 0.5 m), which are higher than the laboratory value of Luther and Towler (1982) of 6.672 + or - 0.0004 x 10 to the -11th cu m/kg sec sq. It is noted that the data correlate well with the values of Stacey (1981).

  14. Second ILAW Site Borehole Characterization Plan

    SciTech Connect

    SP Reidel

    2000-08-10

    The US Department of Energy's Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford since 1944. Approximately 209,000 m{sup 3} (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low-activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized. The low-activity vitrified waste will be disposed of in the 200 East Area of the Hanford Site. This report is a plan to drill and characterize the second borehole for the Performance Assessment. The first characterization borehole was drilled in 1998. The plan describes data collection activities for determining physical and chemical properties of the vadose zone and saturated zone on the northeast side of the proposed disposal site. These data will then be used in the 2005 Performance Assessment.

  15. A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays

    SciTech Connect

    Paulsson Geophysical Services

    2008-03-31

    The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

  16. Acoustic-electromagnetic effects of tectonic movements of the crust - borehole survey

    NASA Astrophysics Data System (ADS)

    Uvarov, V. N.; Malkin, E. I.; Druzhin, G. I.; Sannikov, D. V.; Pukhov, V. M.

    2015-04-01

    Borehole radiophysical properties are briefly described. Borehole investigation of lithosphere acoustic-electromagnetic radiation was carried out in a seismically active region. Four main types of anomalies of acoustic-electromagnetic radiation were distinguished. They correspond to shear and bulk relaxations of tectonic stress. Stability of phase relations of acoustic and electromagnetic signals in the region of anomalies was detected that allows us to state their coherence. It was concluded that the reason of mutual coherence of acoustic and electromagnetic signals is the magnetoelastic effect of the casing pipe. A mechanism of generation of rock self-induced vibrations during tectonic stress relaxation causing acoustic-electromagnetic emission was suggested. It was concluded that "sigmoid" anomalies may correlate with excitation of eigen vibrations in a fracture cavity during brittle shear relaxation of rock tectonic stress. An explanation of the change of anomalous "sigmoid" signal frequency was given. It is considered to be the result of growth of rock fracture cavity and the decrease of tectonic stress relaxation. It was concluded that a borehole, cased in a steel pipe, together with a system of inductance coils and a hydrophone is the effective sounding sensor for acoustic fields of interior deep layers. It may be applied to investigate and to monitor the geodynamic activity, in particular, in earthquake forecasts and in monitoring of hydrocarbon deposits during their production.

  17. Climate trends in northern Ontario and Québec from borehole temperature profiles

    NASA Astrophysics Data System (ADS)

    Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-12-01

    The ground surface temperature histories of the past 500 years were reconstructed at 10 sites containing 18 boreholes in northeastern Canada. The boreholes, between 400 and 800 m deep, are located north of 51° N and west and east of James Bay in northern Ontario and Québec. We find that both sides of James Bay have experienced similar ground surface temperature histories with a warming of 1.51 ± 0.76 K during the period of 1850 to 2000, similar to borehole reconstructions for the southern portion of the Superior Province and in agreement with available proxy data. A cooling period corresponding to the Little Ice Age was found at only one site. Despite permafrost maps locating the sites in a region of discontinuous permafrost, the ground surface temperature histories suggest that the potential for permafrost was minimal to absent over the past 500 years. This could be the result of air surface temperature interpolation used in permafrost models being unsuitable to account for the spatial variability of ground temperatures along with an offset between ground and air surface temperatures due to the snow cover.

  18. A combined surface and borehole seismic survey at the COSC-1 borehole

    NASA Astrophysics Data System (ADS)

    Simon, Helge; Krauß, Felix; Hedin, Peter; Buske, Stefan; Giese, Rüdiger; Juhlin, Christopher

    2015-04-01

    The ICDP project COSC (Collisional Orogeny in the Scandinavian Caledonides) focuses on the mid Paleozoic Caledonide Orogen in Scandinavia in order to better understand orogenic processes, from the past and in recent active mountain belts. The Scandinavian Caledonides provide a well preserved example of a Paleozoic continent-continent collision. Surface geology in combination with geophysical data provide control of the geometry of the Caledonian structure, including the allochthon and the underlying autochthon, as well as the shallow W-dipping décollement surface that separates the two and consist of a thin skin of Cambrian black shales. During spring/summer 2014 the COSC-1 borehole was drilled to approx. 2.5 km depth near the town of Åre (western Jämtland/Sweden) with nearly 100 % of core recovery and cores in best quality. After the drilling was finished, a major seismic survey was conducted in and around the COSC-1 borehole which comprised both seismic reflection and transmission experiments. Besides a high resolution zero-offset VSP (Vertical Seismic Profiling) experiment also a multi-azimuthal walkaway VSP survey took place. For the latter the source points were distributed along three profile lines centered radially around the borehole. For the central part up to 2.5 km away from the borehole, a hydraulic hammer source was used, which hits the ground for about 20 s with an linear increasing hit rate. For the far offset shots up to 5 km, explosive sources were used. The wavefield of both source types was recorded in the borehole using an array of 15 three-component receivers with a geophone spacing of 10 m. This array was deployed at 7 different depth levels during the survey. At the same time the wavefield was also recorded at the surface by 180 standalone three-component receivers placed along each of the three up to 10 km long lines, as well as with a 3D array of single-component receivers in the central part of the survey area around the borehole. Here

  19. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Boreholes in advance of mining. 75.388 Section... of mining. (a) Boreholes shall be drilled in each advancing working place when the working place... cannot be examined, and before mining continues, a certified person shall, if possible, determine—...

  20. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Boreholes in advance of mining. 75.388 Section... of mining. (a) Boreholes shall be drilled in each advancing working place when the working place... cannot be examined, and before mining continues, a certified person shall, if possible, determine—...

  1. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Boreholes in advance of mining. 75.388 Section... of mining. (a) Boreholes shall be drilled in each advancing working place when the working place... cannot be examined, and before mining continues, a certified person shall, if possible, determine—...

  2. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Boreholes in advance of mining. 75.388 Section... of mining. (a) Boreholes shall be drilled in each advancing working place when the working place... cannot be examined, and before mining continues, a certified person shall, if possible, determine—...

  3. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boreholes in advance of mining. 75.388 Section... of mining. (a) Boreholes shall be drilled in each advancing working place when the working place... cannot be examined, and before mining continues, a certified person shall, if possible, determine—...

  4. In-well hydraulics of the electromagnetic borehole flowmeter

    SciTech Connect

    Dinwiddie, C.L.; Foley, N.A.; Molz, F.J.

    1999-03-01

    Previous studies have suggested that head losses associated with the application of the electromagnetic borehole flowmeter (EBF) can have important and detrimental effects on the use of the instrument for measurement of hydraulic conductivity (K) profiles. Head losses associated with flow through the meter may cause bypass flow around the packer if the well is gravel packed. In any type of well, changing head losses with meter position can cause changes in flow into the well that are not related directly to the K distribution. Such flow changes, or redistribution, can cause errors in the calculation of the K profile. Numerical simulations, based on measured head losses, indicate that bypass flow in gravel packed systems increases with increasing flow rate through the meter, increasing gravel pack conductivity, and increasing gravel pack thickness. Ideally, the EBF should not be used in gravel packed wells, due to the occurrence of bypass flow. Investigations into the flow redistribution phenomenon indicate that the top portion of the aquifer is where the greatest over-estimation of K occurs. The portion of the well below the flowmeter is isolated from the observed drawdown as measured from the surface. In this region, the well experiences a reduced drawdown, which differs from the observed drawdown by an amount equal to the head loss at that meter position. Flow redistribution causes a more pronounced effect in more highly conductive mediums and may be almost negligible in mediums of low conductivity.

  5. Borehole P- and S-wave velocity at thirteen stations in Southern California

    USGS Publications Warehouse

    Gibbs, James F.; Boore, David M.; Tinsley, John C.; Mueller, Charles S.

    2001-01-01

    from five of the shallower holes to supplement the velocity interpretation. The two 90-meter boreholes (SB1, CPB) have been instrumented with borehole seismometers for continuous monitoring of earthquake activity (Rogers et al., 1998). No drill samples or cuttings were obtained from the other six sites, but driller's logs were scanned for major changes noted there. The velocity models at those sites were interpreted using only the measured data and major changes in the driller's log as noted above. The sites are shown in Figure 1 and listed in Table 1, which gives references to information regarding the strong-motion data. Several hundred strong-motion records of the main-shock were written by this moderate size earthquake (ML = 5.9), making it important from a scientific and engineering prospective (Brady et al., 1988; Shakal et al., 1988).

  6. First quarter chemical borehole studies in the drift scale test

    SciTech Connect

    DeLoach, L., LLNL

    1998-05-19

    The chemistry boreholes of the Drift Scale Test (DST) have been designed to gather geochemical information and assess the impact of thermal perturbations on gas and liquid phases present in pore spaces and fractures within the rock. There are a total of ten boreholes dedicated to these chemical studies. Two arrays of five boreholes each were drilled from the access/observation drift (AOD) in planes which run normal to the heater drift and which are located approximately 15 and 45% of the way along the length of the drift as measured from the bulkhead. The boreholes each have a length of about 40 meters and have been drilled at low angles directed just above or just below the heater plane. In each array, three boreholes are directed at increasingly steeper angles (< 25-) above the line of wing heaters and two are directed at shallow angles below the wing heater plane.

  7. Numerical Borehole Breakdown Investigations using XFEM

    NASA Astrophysics Data System (ADS)

    Beckhuis, Sven; Leonhart, Dirk; Meschke, Günther

    2016-04-01

    During pressurization of a wellbore a typical downhole pressure record shows the following regimes: first the applied wellbore pressure balances the reservoir pressure, then after the compressive circumferential hole stresses are overcome, tensile stresses are induced on the inside surface of the hole. When the magnitude of these stresses reach the tensile failure stress of the surrounding rock medium, a fracture is initiated and propagates into the reservoir. [1] In standard theories this pressure, the so called breakdown pressure, is the peak pressure in the down-hole pressure record. However experimental investigations [2] show that the breakdown did not occur even if a fracture was initiated at the borehole wall. Drilling muds had the tendency to seal and stabilize fractures and prevent fracture propagation. Also fracture mechanics analysis of breakdown process in mini-frac or leak off tests [3] show that the breakdown pressure could be either equal or larger than the fracture initiation pressure. In order to gain a deeper understanding of the breakdown process in reservoir rock, numerical investigations using the extended finite element method (XFEM) for hydraulic fracturing of porous materials [4] are discussed. The reservoir rock is assumed to be pre-fractured. During pressurization of the borehole, the injection pressure, the pressure distribution and the position of the highest flux along the fracture for different fracturing fluid viscosities are recorded and the influence of the aforementioned values on the stability of fracture propagation is discussed. [1] YEW, C. H. (1997), "Mechanics of Hydraulic Fracturing", Gulf Publishing Company [2] MORITA, N.; BLACK, A. D.; FUH, G.-F. (1996), "Borehole Breakdown Pressure with Drilling Fluids". International Journal of Rock Mechanics and Mining Sciences 33, pp. 39-51 [3] DETOURNAY, E.; CARBONELL, R. (1996), "Fracture Mechanics Analysis of the Breakdown Process in Minifrac or Leakoff Test", Society of Petroleum

  8. Microbial diversity within Juan de Fuca ridge basement fluids sampled from oceanic borehole observatories

    NASA Astrophysics Data System (ADS)

    Jungbluth, S.; Bowers, R.; Lin, H.; Hsieh, C.; Cowen, J. P.; Rappé, M.

    2012-12-01

    Three generations of sampling and instrumentation platforms known as Circulation Obviation Retrofit Kit (CORK) observatories affixed to Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) boreholes are providing unrivaled access to fluids originating from 1.2-3.5 million-years (Myr) old basaltic crust of the eastern flank of the Juan de Fuca ridge. Borehole fluid samples obtained via a custom seafloor fluid pumping and sampling system coupled to CORK continuous fluid delivery lines are yielding critical insights into the biogeochemistry and nature of microbial life inhabiting the sediment-covered basement environment. Direct microscopic enumeration revealed microbial cell abundances that are 2-41% of overlying bottom seawater. Snapshots of basement fluid microbial diversity and community structure have been obtained through small subunit ribosomal RNA (SSU rRNA) gene cloning and sequencing from five boreholes that access a range of basement ages and temperatures at the sediment-basement interface. SSU rRNA gene clones were derived from four different CORK installations (1026B, 1301A, 1362A, and 1362B) accessing relatively warmer (65°C) and older (3.5 Myr) ridge flank, and one location (1025C) accessing relatively cooler (39°C) and younger (1.2 Myr) ridge flank, revealing that warmer basement fluids had higher microbial diversity. A sampling time-series collected from borehole 1301A has revealed a microbial community that is temporally variable, with the dominant lineages changing between years. Each of the five boreholes sampled contained a unique microbial assemblage, however, common members are found from both cultivated and uncultivated lineages within the archaeal and bacterial domains, including meso- and thermophilic microbial lineages involved with sulfur cycling (e.g Thiomicrospira, Sulfurimonas, Desulfocapsa, Desulfobulbus). In addition, borehole fluid environmental gene clones were also closely related to uncultivated lineages

  9. Development of New Fluorescence Instrument for extended Deep-UV to NIR Excitation-Emission Matrices with Simultaneous Absorbance and Inner-Filter Effect Correction

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2013-12-01

    Characterization of dissolved organic matter components, including humic and fulvic acids, chlorophyll and algae, oils and proteins, among others, using fluorescence excitation-emission matrices (EEMs) is now widely accepted due to the rapidly afforded high-sensitivity and selectivity. However, to date no single instrument has been able to effectively cover the entire spectral range from 200 nm to over 800 nm and also facilitate the simultaneous absorbance spectral acquisition required for correcting the concentration dependent inner filter effects that can distort the quantification of the fluorescence signal. The new instrument uses a UV-enhanced light source coupled to a scanning double grating monochromator for the full UV-NIR absorbance and fluorescence excitation scanning as well as a UV to NIR sensitive CCD-spectrograph for rapid fluorescence emission detection. Both the absorbance and fluorescence detection are uniquely corrected using an optically and kinetically coordinated reference detector system. Other major problems solved for the long-range scanning for EEMs include 1) the removal of second order light from the excitation path which is accomplished using an automated filter wheel and 2) masking of the higher order emission bands which is accomplished by effective software masking. A key feature of the system is the facilitation of continuous ';on-the-fly' processing of the NIST traceable corrected fluorescence and absorbance data for immediate multivariate processing to support several commercially available packages for parallel factor analysis (PARAFAC) and principal component analysis (PCA). Several examples of qualitative and quantitative analyses with the system will be explained including: 1) measuring natural organic matter components associated with disinfection by-product formation in drinking water treatment and fouling permeates of filtration membranes, 2) measuring chlorophyll spectra associated with classification of algal species

  10. Tilt observations using borehole tiltmeters. 2. Analysis of data from Yellowstone National Park

    SciTech Connect

    Meertens, C.; Levine, J.; Busby, R. National Inst. of Standards and Technology, Boulder, CO Univ. of Colorado, Boulder )

    1989-01-10

    The authors have installed borehole tiltmeters at five sites in Yellowstone National Park, Wyoming, and have used these instruments to measure the spatial variation of the amplitude and phase of the principal semidiurnal tide. The measured tides vary both with position and azimuth and differ from the sum of the body tide and the ocean load by up to 50%. The difference predicted by a finite element model constructed from seismic, refraction, and gravity data has a maximum value of only 12%, although the discrepancy between these observations and the model is only marginally significant at some sites. The disagreement between the model and the observations is much larger than they observed using the same instruments a other sites and cannot be attributed to an instrumental effect. They have been unable to modify the model to explain their results while keeping it consistent with the previous observations.

  11. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect

    Bjorn N.P. Paulsson

    2005-08-21

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of

  12. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect

    Bjorn N. P. Paulsson

    2005-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of

  13. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect

    Bjorn N.P Paulsson

    2006-05-05

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of

  14. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2004-05-01

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the

  15. Head assembly for multiposition borehole extensometer

    DOEpatents

    Frank, Donald N.

    1983-01-01

    A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

  16. Borehole hydraulic coal mining system analysis

    NASA Technical Reports Server (NTRS)

    Floyd, E. L.

    1977-01-01

    The borehole hydraulic coal mining system accesses the coal seam through a hole drilled in the overburden. The mining device is lowered through the hole into the coal seam where it fragments the coal with high pressure water jets which pump it to the surface as a slurry by a jet pump located in the center of the mining device. The coal slurry is then injected into a pipeline for transport to the preparation plant. The system was analyzed for performance in the thick, shallow coal seams of Wyoming, and the steeply pitching seams of western Colorado. Considered were all the aspects of the mining operation for a 20-year mine life, producing 2,640,000 tons/yr. Effects on the environment and the cost of restoration, as well as concern for health and safety, were studied. Assumptions for design of the mine, the analytical method, and results of the analysis are detailed.

  17. Corrosion tests in the Marchwood geothermal borehole

    NASA Astrophysics Data System (ADS)

    Lawrence, P. F.

    1982-03-01

    Corrosion tests in the high salinity brine produced during a production test at the Marchwood borehole. These tests were intended to obtain preliminary information on the corrosion of a range of metals and alloys most likely to be used for downhole service, heat exchangers and associated equipment, if hot water from this aquifer is used to provide a long-term energy source. Specimens of appropriate candidate materials were exposed to flowing brine in the surface pipework and also downhole at a depth of 663 m. The brine was pumped to the surface by a multi-stage electric submersible pump. The downhole specimens, which were installed with the pump, were exposed for a period of 83 days. The surface specimens were exposed during the well production test for 33.3 days. The product brine was around three times sea water concentration, at a temperature of 72 C and pH 6.2.

  18. Borehole plugging materials development program, report 2

    SciTech Connect

    Gulick, C.W. Jr.; Boa, J.A. Jr.; Walley, D.M.; Buck, A.D.

    1980-02-01

    The data for 2 yr of grout mixtures durability studies developed for the borehole plugging program of the Nuclear Waste Isolation Pilot Plant (WIPP) are reported. In addition, data for 1 yr of durability studies of grout mixture field samples used to plug the ERDA No. 10 exploratory drill hole near the WIPP site are included. The grout samples and the data do not show any evidence of deterioration during the durability studies that include exposure to brine at both ambient and elevated temperatures. The data include strength, compressional wave velocity, dynamic modulus, expansion, weight change, porosity, permeability, bond strength, chemical analysis of cements, and petrographic examinations. The work was performed at the Concrete Division of the Structures Laboratory of the US Army Engineer Waterways Experiments Station (WES), Vicksburg, Mississippi. The work is continuing at WES.

  19. Development of a hydraulic borehole seismic source

    SciTech Connect

    Cutler, R.P.

    1998-04-01

    This report describes a 5 year, $10 million Sandia/Industry project to develop an advanced borehole seismic source for use in oil and gas exploration and production. The development Team included Sandia, Chevron, Amoco, Conoco, Exxon, Raytheon, Pelton, and GRI. The seismic source that was developed is a vertically oriented, axial point force, swept frequency, clamped, reaction-mass vibrator design. It was based on an early Chevron prototype, but the new tool incorporates a number of improvements which make it far superior to the original prototype. The system consists of surface control electronics, a special heavy duty fiber optic wireline and draw works, a cablehead, hydraulic motor/pump module, electronics module, clamp, and axial vibrator module. The tool has a peak output of 7,000 lbs force and a useful frequency range of 5 to 800 Hz. It can operate in fluid filled wells with 5.5-inch or larger casing to depths of 20,000 ft and operating temperatures of 170 C. The tool includes fiber optic telemetry, force and phase control, provisions to add seismic receiver arrays below the source for single well imaging, and provisions for adding other vibrator modules to the tool in the future. The project yielded four important deliverables: a complete advanced borehole seismic source system with all associated field equipment; field demonstration surveys funded by industry showing the utility of the system; industrial sources for all of the hardware; and a new service company set up by their industrial partner to provide commercial surveys.

  20. The Plate Boundary Observatory Borehole Strainmeter Program: Overview of Data Analysis and Products

    NASA Astrophysics Data System (ADS)

    Hodgkinson, K.; Anderson, G.; Hasting, M.; Hoyt, B.; Jackson, M.; Lee, E.; Matykiewicz, J.; Mencin, D.; Persson, E.; Smith, S.; Torrez, D.; Wright, J.

    2006-12-01

    The PBO borehole strainmeter network is now the largest in the US with 19 strainmeters installed along the Western US Plate Boundary: 14 in the Pacific North West and 5 in Anza, Southern California. With five drilling crews operating though October 2006 the network should grow to 28 strainmeters by December 2006. The areas include Parkfield and Mt St. Helens, PBO's first strainmeter installation in a volcanic region. PBO strainmeter sites are multi-instrumented. Seismic, pore pressure, atmospheric pressure, rainfall and temperature data are measured at almost all sites. Tiltmeters will also be installed at some sites. The strainmeters record at 20-sps, 1-sps and 10-minute interval and are downloaded hourly. The 1-sps data are sent to the NCEDC and IRIS DMC within a few minutes of being retrieved from the strainmeter. The data are archived in SEED format and can be viewed and analyzed with any SEED handling software. PBO's Borehole Strainmeter Analysis Center (BSMAC) in Socorro, NM, produces processed strain data every 10 to 14 days. The data are stored in XML format giving the user the option to use PBO edits or to work with unedited data. The XML file contains time series corrections for the atmospheric pressure, the Earth tides and borehole effects. Every 3 months the data are reviewed and the borehole trends and tidal signal are re- estimated to form the best possible processed data set. PBO reviewed the quality of the data collected by the first 8 strainmeters in a workshop in January 2006. The group discussed coring, examined the borehole trends, tidal signal, and a PSD analysis of data from each strainmeter. A second workshop, focusing on data analysis and in-situ calibration, will take place in October 2006. The UNAVCO strainmeter web page (http://pboweb.unavco.org) provides links to the raw and processed data and is a source for information on data formats, links to software and instrument documentation. An XML log file for each strainmeter provides a

  1. Combined wave propagation analysis of earthquake recordings from borehole and building sensors

    NASA Astrophysics Data System (ADS)

    Petrovic, B.; Parolai, S.; Dikmen, U.; Safak, E.; Moldobekov, B.; Orunbaev, S.

    2015-12-01

    In regions highly exposed to natural hazards, Early Warning Systems can play a central role in risk management and mitigation procedures. To improve at a relatively low cost the spatial resolution of regional earthquake early warning (EEW) systems, decentralized onsite EEW and building monitoring, a wireless sensing unit, the Self-Organizing Seismic Early Warning Information Network (SOSEWIN) was developed and further improved to include the multi-parameter acquisition. SOSEWINs working in continuous real time mode are currently tested on various sites. In Bishkek and Istanbul, an instrumented building is located close to a borehole equipped with downhole sensors. The joint data analysis of building and borehole earthquake recordings allows the study of the behavior of the building, characteristics of the soil, and soil-structure interactions. The interferometric approach applied to recordings of the building response is particularly suitable to characterize the wave propagation inside a building, including the propagation velocity of shear waves and attenuation. Applied to borehole sensors, it gives insights into velocity changes in different layers, reflections and mode conversion, and allows the estimation of the quality factor Qs. We used combined building and borehole data from the two test sites: 1) to estimate the characteristics of wave propagation through the building to the soil and back, and 2) to obtain an empirical insight into soil-structure interactions. The two test sites represent two different building and soil types, and soil structure impedance contrasts. The wave propagation through the soil to the building and back is investigated by the joint interferometric approach. The propagation of up and down-going waves through the building and soil is clearly imaged and the reflection of P and S waves from the earth surface and the top of the building identified. An estimate of the reflected and transmitted energy amounts is given, too.

  2. Interpretation of Borehole Geophysical Logs at Area C, Former Naval Air Warfare Center, Warminster Township, Bucks County, Pennsylvania, 2007

    USGS Publications Warehouse

    Sloto, Ronald A.

    2008-01-01

    This study was done by the U.S. Geological Survey in cooperation with the U.S. Navy at Area C of the former Naval Air Warfare Center in Warminster Township, Bucks County, Pa., in support of hydrogeological investigations conducted by the Navy to address ground-water contamination in the Stockton Formation. Borehole geophysical logs were collected, heatpulse-flowmeter measurements were made, and borehole television surveys were run in seven boreholes ranging from 31 to 75 feet deep. Caliper logs and borehole television surveys were used to identify fractures and the location of possible water-bearing zones. Heatpulse-flowmeter measurements were used to identify fractures that were water-bearing zones. Natural-gamma and single-point-resistance logs were used to correlate lithology across the area. Elevated concentrations of tetrachloroethylene (PCE) were measured in water samples from wells with water-bearing zones in the interval of the aquifer where monitor well HN-23A is screened. Water samples from wells with water-bearing zones above or below this interval had substantially lower concentrations of PCE. Wells screened in this interval yielded less than 0.5 gallon per minute, indicating that the interval has low permeability; this may account for the small areal extent and slow migration of PCE.

  3. A new high-precision borehole-temperature logging system used at GISP2, Greenland, and Taylor Dome, Antarctica

    USGS Publications Warehouse

    Clow, G.D.; Saltus, R.W.; Waddington, E.D.

    1996-01-01

    We describe a high-precision (0.1-1.0 mK) borehole-temperature (BT) logging system developed at the United States Geological Survey (USGS) for use in remote polar regions. We discuss calibration, operational and data-processing procedures, and present an analysis of the measurement errors. The system is modular to facilitate calibration procedures and field repairs. By interchanging logging cables and temperature sensors, measurements can be made in either shallow air-filled boreholes or liquid-filled holes up to 7 km deep. Data can be acquired in either incremental or continuous-logging modes. The precision of data collected by the new logging system is high enough to detect and quantify various thermal effects at the milli-Kelvin level. To illustrate this capability, we present sample data from the 3 km deep borehole at GISP2, Greenland, and from a 130m deep air-filled hole at Taylor Dome, Antarctica. The precision of the processed GTSP2 continuous temperature logs is 0.25-0.34 mK, while the accuracy is estimated to be 4.5 mK. The effects of fluid convection and the dissipation of the thermal disturbance caused by drilling the borehole are clearly visible in the data. The precision of the incremental Taylor Dome measurements varies from 0.11 to 0.32mK, depending on the wind strength during the experiments. With this precision, we found that temperature fluctuations and multi-hour trends in the BT measurements correlate well with atmospheric-pressure changes.

  4. Simple, affordable and sustainable borehole observatories for complex monitoring objectives

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Lange, M.; Fleischmann, T.; Hammerschmidt, S.; Seiter, C.; Wefer, G.

    2014-12-01

    Seafloor drill rigs are remotely operated systems that provide a cost effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. We here report on another milestone in using seafloor rigs: the development and installation of shallow borehole observatories. Three different systems have been developed for the MARUM-MeBo seafloor drill, which is operated by MARUM, University of Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK, is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. Of these MeBoCORKs, two systems have to be distinguished: the CORK-A (A = autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference). The CORK-B (B = bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by ROV and utilises a hotstab connection in the upper portion of the drill string. Either design relies on a hotstab connection from beneath which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect pore water in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner. Instead of transferring data upon command using an acoustic modem, the MeBoPUPPI contains a pop-up telemetry with Iridium link

  5. Simple, affordable, and sustainable borehole observatories for complex monitoring objectives

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Lange, M.; Fleischmann, T.; Hammerschmidt, S.; Seiter, C.; Wefer, G.

    2015-05-01

    Seafloor drill rigs are remotely operated systems that provide a cost-effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. Here we report on another milestone in using seafloor rigs: the development and installation of shallow borehole observatories. Three different systems have been developed for the MARUM-MeBo (Meeresboden-Bohrgerat) seafloor drill, which is operated by MARUM, University of Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK (Circulation Obviation Retrofit Kit), is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. In these MeBoCORKs, two systems have to be distinguished: the CORK-A (A stands for autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference); the CORK-B (B stands for bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by a remotely operated underwater vehicle (ROV) and utilises a hot-stab connection in the upper portion of the drill string. Either design relies on a hot-stab connection from beneath in which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect porewater in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner

  6. Determining Aquifer Storage Properties Using Borehole Geophysical Data

    NASA Astrophysics Data System (ADS)

    Wempe, W.; Clayton, N.; Coulibaly, K.

    2006-12-01

    Specific yield and specific storage are essential parameters for groundwater management planning. These storage properties can be determined using a number of methods, however they are typically interpreted from multi-well aquifer pump tests. The interpretation of storage properties using pump tests can be strongly influenced and biased by small-scale hydrostratigraphic heterogeneities and boundary effects. We investigate using high resolution geophysical data collected in boreholes to provide depth-continuous logs of storage properties within heterogeneous aquifers. The advantage of using borehole geophysical data to interpret storage properties is that the estimates are unaffected by boundary conditions and that small-scale heterogeneities around the borehole can be resolved and then incorporated in more advanced interpretations of pump tests, which sample away from the borehole wall. This improved interpretation of storage properties ultimately leads to improved groundwater management planning and optimal well design, thus reducing economic risks associated with high cost production or aquifer storage and recovery wells. Our interpretations of specific yield are based on measurements of effective porosity that are made using borehole nuclear magnetic resonance tools and our interpretations of specific storage are based on measurements of aquifer compressibility that are made using borehole dipole shear sonic tools. With several case studies, we demonstrate how to interpret storage properties from these types of borehole geophysical data and show the benefits of incorporating the heterogeneity of storage properties in groundwater management planning.

  7. Borehole seismic in crystalline environment at the COSC-project in Central Sweden

    NASA Astrophysics Data System (ADS)

    Krauß, Felix; Hedin, Peter; Almqvist, Bjarne; Simon, Helge; Giese, Rüdiger; Buske, Stefan; Juhlin, Christopher; Lorenz, Henning

    2016-04-01

    As support for the COSC drilling project (Collisional Orogeny in the Scandinavian Caledonides), an extensive seismic survey took place during September and October 2014 in and around the newly drilled 2.5 km deep COSC-1 borehole. The main aim of the COSC project is to better understand orogenic processes in past and recently active mountain belts. For this, the Scandinavian Caledonides provide a well preserved case of Paleozoic collision of the Laurentia and Baltica continental plates. Surface geology and geophysical data provide knowledge about the geometry of the Caledonian structure. The reflectivity geometry of the upper crust was imaged by regional seismic data and the resistivity structure by magnetotelluric methods. The crustal model was refined by seismic pre-site surveys in 2010 and 2011 to define the exact position of the first borehole, COSC-1. The completely cored COSC-1 borehole was drilled in Central Sweden through the Seve Nappe Complex, a part of the Middle Allochthon of the Scandinavian Caledonides that comprises units originating from the outer margin of Baltica. The upper 2350 m consist of alternating layers of highly strained felsic and calc-silicate gneisses and amphibolites. Below 1710 m the mylonite content increases successively and indicates a high strain zone of at least 800 m thickness. At ca. 2350 m, the borehole leaves the Seve Nappe Complex and enters underlying mylonitised lower grade metasedimentary units of unknown tectonostratigraphic position. The seismic survey consisted of three parts: a limited 3D-survey, a high resolution zero-offset VSP (vertical seismic profile) and a multi-azimuthal walkaway VSP (MSP) experiment with sources and receivers along three surface profiles and receivers at seven different depth levels of the borehole. For the zero-offset VSP (ZVSP) a hydraulic hammer source was used and activated over a period of 20 s as a sequence of impacts with increasing hit frequency. The wave field was recorded with 3

  8. The buckling of drillstrings in curved sections of boreholes

    SciTech Connect

    Sampaio, J.H.B. Jr.

    1998-12-31

    A model for the buckling of drillstrings within curved boreholes is important in the drilling of extended reach and horizontal wells. It has been noted in drilling operations that a curved borehole increases the buckling resistance of the drillstring compared to a straight borehole. The effects of the curvature, however, cannot be correctly determined from the current buckling models developed for straight boreholes, from where the current models for curved boreholes in the literature borrow their fundamentals. A mathematical model for analyzing buckling of drillstring within curved boreholes has been developed. This model predicts the unloading buckling force of a drillstring. The results show that one can apply higher axial forces at the bit and obtain longer extended reach or horizontal sections without putting the drillstring under risk of helical buckling and the consequent lock-up of the column. The model presented here, called the Hypergeometric Model, uses an analytical method employing an inclined beam-column theory with moving boundary conditions. The boundaries are numerically adjusted until a fit between the buckled section and the curved borehole is obtained. The buckling force varies with the inclination along the curved section of a borehole. Thus buckling force curves as functions of inclination can be derived and used in simulations and drillstring design. Excellent experimental results compared to the predictions support the model. This model also includes friction effects between the drillstring and the borehole wall. In this paper, the author presents the mathematics of the Hypergeometric Model with an illustrative result. The experimental results, simulations and field applications are deferred to a following presentation.

  9. BoreholeAR: A mobile tablet application for effective borehole database visualization using an augmented reality technology

    NASA Astrophysics Data System (ADS)

    Lee, Sangho; Suh, Jangwon; Park, Hyeong-Dong

    2015-03-01

    Boring logs are widely used in geological field studies since the data describes various attributes of underground and surface environments. However, it is difficult to manage multiple boring logs in the field as the conventional management and visualization methods are not suitable for integrating and combining large data sets. We developed an iPad application to enable its user to search the boring log rapidly and visualize them using the augmented reality (AR) technique. For the development of the application, a standard borehole database appropriate for a mobile-based borehole database management system was designed. The application consists of three modules: an AR module, a map module, and a database module. The AR module superimposes borehole data on camera imagery as viewed by the user and provides intuitive visualization of borehole locations. The map module shows the locations of corresponding borehole data on a 2D map with additional map layers. The database module provides data management functions for large borehole databases for other modules. Field survey was also carried out using more than 100,000 borehole data.

  10. Microbial Adaptations to Biosustainabilitiy in Deep-Subsurface Environments on Earth

    NASA Astrophysics Data System (ADS)

    Pratt, L. M.; Onstott, T. C.

    2005-12-01

    Exploration for life on Mars and icy moons in our solar system necessitates development of innovative techniques for life-detection followed by field testing in analogue environments on Earth. A collaborative international effort is underway to drill and sample within regions of persistent permafrost in northern Canada for the purpose of characterizing microbial ecosystems adapted to long-term cold conditions. In 2001 and 2002, Finnish and Canadian scientists installed an instrumented borehole array in a commercial gold mine with sampling valves at 890 and 1130 meters below the surface. Numerous water and gas samples from the Lupin borehole array have been analyzed for molecular and isotopic compositions of organic and inorganic chemical constituents. Boreholes with the lowest concentration of methane and largest 34S fractionation between dissolved sulfate and sulfide are the focus of microbiological sampling. Microbial diversity at Lupin is being assessed by culturing, sequencing, and direct detection of microbial reactions. Cell counts indicate a low biodensity, ranging from 100 to100,000 cells/ml. Phylogenetic analysis using 16S rDNA indicates low biodiversity with the planktonic biota dominated by a distinctive new phlyotype having 95-97% similarity to Thiohalobaccili. Similarly, the subsurface brines sampled at depths of 1500 to 3500 meters in the Witwatersrand basin of South Africa yield low biodensity and biodiversity with the dominant phylotype being a Desulfotomaculum-like organism that appears to represent a new species and new family. Microbes sampled in fracture water at kilometer depths below the surface are significantly different from surface extremophiles and show specific genetic adaptations to biosustainability in deep-subsurface environments.

  11. The strong ground motion in Mexico City: array and borehole data analysis.

    NASA Astrophysics Data System (ADS)

    Roullé, A.; Chávez-García, F. J.

    2003-04-01

    Site response at Mexico City has been intensively studied for the last 15 years, since the disastrous 1985 earthquakes. After those events, more than 100 accelerographs were installed, and their data have been extremely useful in quantifying amplification and in the subsequent upgrading of the building code. However, detailed analysis of the wavefield has been hampered by the lack of absolute time in the records and the large spacing between stations in terms of dominant wavelengths. In 2001, thanks to the support of CONACYT, Mexico, a new dense accelerographic network was installed in the lake bed zone of Mexico City. The entire network, including an existing network of 3 surface and 2 borehole stations operated by CENAPRED, consists in 12 surface and 4 borehole stations (at 30, 102 and 50 meters). Each station has a 18 bits recorder and a GPS receiver so that the complete network is a 3D array with absolute time. The main objective of this array is to provide data that can help us to better understand the wavefield that propagates in Mexico City during large earthquakes. Last year, a small event of magnitude 6.0 was partially recorded by 6 of the 12 surface stations and all the borehole stations. We analysed the surface data using different array processing techniques such as f-k methods and MUSIC algorithm and the borehole ones using a cross-correlation method. For periods inferior to the site resonance period, the soft clay layer with very low propagation velocities (less than 500 m/s) and a possible multipathing rule the wavefield pattern. For the large period range, the dominant surface wave comes from the epicentral direction and propagates with a quicker velocity (more than 1500 m/s) that corresponds to the velocity of deep layers. The analysis of borehole data shows the presence of different quick wavetrains in the short period range that could correspond to the first harmonic modes of Rayleigh waves. To complete this study, four others events recorded in

  12. Borehole water and hydrologic model around the Nojima fault, SW Japan

    NASA Astrophysics Data System (ADS)

    Fujimoto, K.; Ueda, A.; Ohtani, T.; Takahashi, M.; Ito, H.; Tanaka, H.; Boullier, Anne-Marie

    2007-10-01

    The active fault drilling at Nojima Hirabayashi after the 1995 Hyogoken-nanbu (Kobe) earthquake (M JMA = 7.2) provides us with a unique opportunity to investigate subsurface fault structure and the in-situ properties of fault and fluid. The borehole intersected the fault gouge of the Nojima fault at a depth interval of 623 m to 625 m. The lithology is mostly Cretaceous granodiorite with some porphyry dikes. The fault core is highly permeable due to fracturing. The borehole water was sampled in 1996 and 2000 from the depth interval between 630 and 650 m, just below the fault core. The chemical and isotopic compositions were analyzed. Carbon and oxygen isotope ratios of carbonates from the fault core were analyzed to estimate the origin of fluid. The following conclusions were obtained. (1) The ionic and isotopic compositions of borehole water did not change from 1996 to 2000. They are mostly derived from local ground water as mentioned by Sato and Takahashi [Sato, T., Takahashi, M., 2000. Chemical and isotopic compositions of groundwater obtained from the Hirabayashi well. Geological Survey of Japan Interim Report No. EQ/00/1, 187-192.]. (2) Geochemical speciation revealed that the borehole water was derived from a relatively deep reservoir, which may be situated at a depth of 3 to 4 km where the temperature is about 80-90 °C. (3) The shallower part of the Nojima fault (shallower than the reservoir depth) has not been healed from the hydrological viewpoints 5 years after the event, in contrast to the rapid healing detected by S wave splitting [Tadokoro, K., Ando, M., 2002. Evidence for rapid fault healing derived from temporal changes in S wave splitting, Geophys. Res. Lett., 29, 10.1029/2001GL013644.]. (4) Precipitation of calcite from the present borehole water since drilling supports the idea of precipitation of some calcite in coseismic hydraulic fractures in the fault core [Boullier, A-M., Fujimoto, K., Ohtani, T., Roman-Ross, G., Lewin, E., Ito, H., Pezard, P

  13. Methods for use in detecting seismic waves in a borehole

    DOEpatents

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  14. Canister, sealing method and composition for sealing a borehole

    SciTech Connect

    Brown, Donald W.; Wagh, Arun S.

    2003-05-13

    Canister, sealing method and composition for sealing a borehole. The canister includes a container with slurry inside the container, one or more slurry exits at one end of the container, a pump at the other end of the container, and a piston inside that pushes the slurry though the slurry exit(s), out of the container, and into a borehole. An inflatable packer outside the container provides stabilization in the borehole. A borehole sealing material is made by combining an oxide or hydroxide and a phosphate with water to form a slurry which then sets to form a high strength, minimally porous material which binds well to itself, underground formations, steel and ceramics.

  15. Method and apparatus for suppressing waves in a borehole

    DOEpatents

    West, Phillip B.

    2005-10-04

    Methods and apparatus for suppression of wave energy within a fluid-filled borehole using a low pressure acoustic barrier. In one embodiment, a flexible diaphragm type device is configured as an open bottomed tubular structure for disposition in a borehole to be filled with a gas to create a barrier to wave energy, including tube waves. In another embodiment, an expandable umbrella type device is used to define a chamber in which a gas is disposed. In yet another embodiment, a reverse acting bladder type device is suspended in the borehole. Due to its reverse acting properties, the bladder expands when internal pressure is reduced, and the reverse acting bladder device extends across the borehole to provide a low pressure wave energy barrier.

  16. Explicit infiltration function for boreholes under constant head conditions

    NASA Astrophysics Data System (ADS)

    Hinnell, A. C.; Lazarovitch, N.; Warrick, A. W.

    2009-10-01

    Infiltration per unit area of the source region from discs, strips and furrows has previously been shown to be the sum of the one-dimensional infiltration and an edge effect term. Here we apply the same approach to examine infiltration under a constant head from boreholes (both lined and unlined). A critical empirical parameter (γ) in the edge effect term is related to the radius of the borehole, soil hydraulic properties, boundary and initial conditions. For lined boreholes, γ has a narrow range and for the examples investigated, a constant value of 1.06 introduces less than 5% error compared to using the case-specific γ value. For unlined boreholes, γ is larger, ranging between 1.02 and 3.16 for the examples investigated, and should be estimated for specific conditions.

  17. Geophysical borehole logging in the unsaturated zone, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Schimschal, Ulrich; Nelson, Philip H.; ,

    1991-01-01

    Borehole geophysical logging for site characterization in the volcanic rocks at the proposed nuclear waste repository at Yucca Mountain, Nevada, requires data collection under rather unusual conditions. Logging tools must operate in rugose, dry holes above the water table in the unsaturated zone. Not all logging tools will operate in this environment, therefore; careful consideration must be given to selection and calibration. A sample suite of logs is presented that demonstrates correlation of geological formations from borehole to borehole, the definition of zones of altered mineralogy, and the quantitative estimates of rock properties. We show the results of an exploratory calculation of porosity and water saturation based upon density and epithermal neutron logs. Comparison of the results with a few core samples is encouraging, particularly because the logs can provide continuous data in boreholes where core samples are not available.

  18. Data Qualification Report: Borehole Straigraphic Contacts

    SciTech Connect

    R.W. Clayton; C. Lum

    2000-04-18

    The data set considered here is the borehole stratigraphic contacts data (DTN: M09811MWDGFM03.000) used as input to the Geologic Framework Model. A Technical Assessment method used to evaluate these data with a two-fold approach: (1) comparison to the geophysical logs on which the contacts were, in part, based; and (2) evaluation of the data by mapping individual units using the entire data set. Qualification of the geophysical logs is being performed in a separate activity. A representative subset of the contacts data was chosen based on importance of the contact and representativeness of that contact in the total data set. An acceptance window was established for each contact based on the needs of the data users. Data determined to be within the acceptance window were determined to be adequate for their intended use in three-dimensional spatial modeling and were recommended to be Qualified. These methods were chosen to provide a two-pronged evaluation that examines both the origin and results of the data. The result of this evaluation is a recommendation to qualify all contacts. No data were found to lie outside the pre-determined acceptance window. Where no geophysical logs are available, data were evaluated in relation to surrounding data and by impact assessment. These data are also recommended to be qualified. The stratigraphic contact data contained in this report (Attachment VII; DTN: M00004QGFMPICK.000) are intended to replace the source data, which will remain unqualified.

  19. Use of borehole radar tomography to monitor steam injection in fractured limestone

    USGS Publications Warehouse

    Gregoire, C.; Joesten, P.K.

    2006-01-01

    Borehole radar tomography was used as part of a pilot study to monitor steam-enhanced remediation of a fractured limestone contaminated with volatile organic compounds at the former Loring Air Force Base, Maine, USA. Radar tomography data were collected using 100-MHz electric-dipole antennae before and during steam injection to evaluate whether cross-hole radar methods could detect changes in medium properties resulting from the steam injection. Cross-hole levelrun profiles, in which transmitting and receiving antennae are positioned at a common depth, were made before and after the collection of each full tomography data set to check the stability of the radar instruments. Before tomographic inversion, the levelrun profiles were used to calibrate the radar tomography data to compensate for changes in traveltime and antenna power caused by instrument drift. Observed changes in cross-hole radar traveltime and attenuation before and during steam injection were small. Slowness- and attenuation-difference tomograms indicate small increases in radar slowness and attenuation at depths greater than about 22 m below the surface, consistent with increases in water temperature observed in the boreholes used for the tomography. Based on theoretical modelling results, increases in slowness and attenuation are interpreted as delineating zones where steam injection heating increased the electrical conductivity of the limestone matrix and fluid. The results of this study show the potential of cross-hole radar tomography methods to monitor the effects of steam-induced heating in fractured rock environments. ?? 2006 European Association of Geoscientists & Engineers.

  20. Bond strength of cementitious borehole plugs in welded tuff

    SciTech Connect

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young`s modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs.

  1. Application of Borehole SIP Technique to Sulfide Mineral Exploration

    NASA Astrophysics Data System (ADS)

    Kim, Changryol; Park, Mi Kyung; Park, Samgyu; Sung, Nak Hoon; Shin, Seung Wook

    2016-04-01

    In the study, SIP (Spectral Induced Polarization) well logging probe system was developed to rapidly locate the metal ore bodies with sulfide minerals in the boreholes. The newly developed SIP logging probe employed the non-polarizable electrodes, consisting of zinc chloride (ZnCl2), sodium chloride (NaCl), gypsum (CaSO4·2H2O), and water (H2O), instead of existing copper electrodes, leading to eliminating the EM coupling effect in the IP surveys as much as possible. In addition, the SIP logging system is designed to make measurements down to maximum 500 meters in depth in the boreholes. The SIP well logging was conducted to examine the applicability of the SIP probe system to the boreholes at the ore mine in Jecheon area, Korea. The boreholes used in the SIP logging are known to have penetrated the metal ore bodies with sulfide minerals from the drilling investigations. The ore mine of the study area is the scarn deposits surrounded by the limestone or lime-silicate rocks in Ordovician period. The results of the SIP well logging have shown that the borehole segments with limestone or lime-silicate rocks yielded the insignificant SIP responses while the borehole segments with sulfide minerals (e.g. pyrite) provided the significant phase shifts of the SIP responses. The borehole segments penetrating the metal ore body, so-called cupola, have shown very high response of the phase shift, due to the high contents of the sulfide mineral pyrite. The phase shifts of the SIP response could be used to estimate the grade of the ore bodies since the higher contents of the sulfide minerals, the higher magnitudes of the phase shifts in the SIP responses. It is, therefore, believed that the borehole SIP technique can be applied to investigate the metal ore bodies with sulfide minerals, and that could be used to estimate the ore grades as a supplementary tool in the future.

  2. Observations of joint persistence and connectivity across boreholes

    SciTech Connect

    Thapa, B.B.; Karasaki, K.

    1996-01-01

    Observations of joint persistence and connectivity are made by comparison of digital borehole wall images of fractures, fluid conductivity logs and hydraulic injections test results. The fractures were found to be generally impersistent across vertical boreholes about 8 m apart. Many hydraulic connections were found in the same volume of rock. Direct connections through single fractures seem to be rare and connectivity appears to be controlled by fracture networks, even over small volumes.

  3. Borehole geophysics applied to ground-water investigations

    USGS Publications Warehouse

    Keys, W.S.

    1990-01-01

    The purpose of this manual is to provide hydrologists, geologists, and others who have the necessary background in hydrogeology with the basic information needed to apply the most useful borehole-geophysical-logging techniques to the solution of problems in ground-water hydrology. Geophysical logs can provide information on the construction of wells and on the character of the rocks and fluids penetrated by those wells, as well as on changes in the character of these factors over time. The response of well logs is caused by petrophysical factors, by the quality, temperature, and pressure of interstitial fluids, and by ground-water flow. Qualitative and quantitative analysis of analog records and computer analysis of digitized logs are used to derive geohydrologic information. This information can then be extrapolated vertically within a well and laterally to other wells using logs. The physical principles by which the mechanical and electronic components of a logging system measure properties of rocks, fluids, and wells, as well as the principles of measurement, must be understood if geophysical logs are to be interpreted correctly. Plating a logging operation involves selecting the equipment and the logs most likely to provide the needed information. Information on well construction and geohydrology is needed to guide this selection. Quality control of logs is an important responsibility of both the equipment operator and the log analyst and requires both calibration and well-site standardization of equipment. Logging techniques that are widely used in ground-water hydrology or that have significant potential for application to this field include spontaneous potential, resistance, resistivity, gamma, gamma spectrometry, gamma-gamma, neutron, acoustic velocity, acoustic televiewer, caliper, and fluid temperature, conductivity, and flow. The following topics are discussed for each of these techniques: principles and instrumentation, calibration and standardization

  4. Ontario Power Generation's Proposed Deep Geologic Repository, Tiverton, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Jensen, M.

    2009-05-01

    Ontario Power Generation is proposing to develop a Deep Geologic Repository (DGR) for the long-term management of its Low and Intermediate Level Radioactive Waste (L&ILW) at the Bruce site located near Tiverton, Ontario, 225 km northwest of Toronto. The shaft accessed repository, as envisioned, would accommodate 200,000 m3 (as packaged) of L&ILW in emplacement rooms excavated at a depth of 680 m within the Ordovician age argillaceous limestone Cobourg Formation. The Bruce site is underlain by an approximate 860 m thick Paleozoic sedimentary sequence comprised of near horizontally bedded carbonates, shales, evaporates and sandstones, Devonian to Cambrian in age, overlying crystalline basement rocks. Regional and site-specific geoscientific studies to verify the suitability of the Bruce site to host the DGR were initiated in 2006. The focus for the geoscientific investigations has been on gathering data to develop and test an understanding of the evolution and stability of the geologic, hydrogeologic, hydrogeochemical and geomechanical environ as it relates to demonstrating repository safety. Scheduled for completion in 2010, the interim results, which have included the drilling, coring and testing of 4 deep boreholes, are providing evidence of a predictable geosphere with a deep seated (>400 m), low permeability (K < 10-13 m sec-1), low porosity (0.01-0.08), saline (TDS > 250 gm l-1) groundwater regime that is ancient and resilient to external perturbations (e.g. glaciation). Work program activities in this regard have included, among others, detailed studies of rock core lithology, mineralogy and petrophysics, rock matrix pore fluid and groundwater characterisation, in-situ rock mass hydraulic testing, geomechanical rock core testing, 2-D seismic reflection surveys and long-term hydraulic borehole instrumentation. These data, in addition to regional and site-scale hydrogeologic modelling of the sedimentary sequence that among other aspects is examining groundwater

  5. The Synthetic Convection Log - geophysical detection and identification of density-driven convection in monitoring wells and boreholes

    NASA Astrophysics Data System (ADS)

    Berthold, S.

    2009-12-01

    column into sections that are characterized by density-driven flow and sections that are characterized by no density-driven convective flow. Additionally, it classifies the sections with density-driven flow according to its flow type. The applicability of the SYNCO-Log and relevance of the results is shown on the example of borehole measurements from both groundwater monitoring wells and deep boreholes of the International Continental Drilling Program (ICDP). The research is funded by the German Research Foundation (DFG) under the label BO 1082/10-1 within the priority program 1006 “International Continental Drilling Program (ICDP)“.

  6. Microbial communities at the borehole observatory on the Costa Rica Rift flank (Ocean Drilling Program Hole 896A).

    PubMed

    Nigro, Lisa M; Harris, Kate; Orcutt, Beth N; Hyde, Andrew; Clayton-Luce, Samuel; Becker, Keir; Teske, Andreas

    2012-01-01

    The microbiology of subsurface, hydrothermally influenced basaltic crust flanking mid-ocean ridges has remained understudied, due to the difficulty in accessing the subsurface environment. The instrumented boreholes resulting from scientific ocean drilling offer access to samples of the formation fluids circulating through oceanic crust. We analyzed the phylogenetic diversity of bacterial communities of fluid and microbial mat samples collected in situ from the observatory at Ocean Drilling Program Hole 896A, drilled into ~6.5 million-year-old basaltic crust on the flank of the Costa Rica Rift in the equatorial Pacific Ocean. Bacterial 16S rRNA gene sequences recovered from borehole fluid and from a microbial mat coating the outer surface of the fluid port revealed both unique and shared phylotypes. The dominant bacterial clones from both samples were related to the autotrophic, sulfur-oxidizing genus Thiomicrospira. Both samples yielded diverse gamma- and alphaproteobacterial phylotypes, as well as members of the Bacteroidetes, Planctomycetes, and Verrucomicrobia. Analysis of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) genes (cbbL and cbbM) from the sampling port mat and from the borehole fluid demonstrated autotrophic carbon assimilation potential for in situ microbial communities; most cbbL genes were related to those of the sulfur-oxidizing genera Thioalkalivibrio and Thiomicrospira, and cbbM genes were affiliated with uncultured phylotypes from hydrothermal vent plumes and marine sediments. Several 16S rRNA gene phylotypes from the 896A observatory grouped with phylotypes recovered from seawater-exposed basalts and sulfide deposits at inactive hydrothermal vents, but there is little overlap with hydrothermally influenced basaltic boreholes 1026B and U1301A on the Juan de Fuca Ridge flank, suggesting that site-specific characteristics of Hole 896A (i.e., seawater mixing into borehole fluids) affect the microbial community composition.

  7. 25 years long-term deformation at Mt. Etna Continuous Borehole Tilt and Vertical GPS Displacements recordings

    NASA Astrophysics Data System (ADS)

    Bonaccorso, Alessandro; Bonforte, Alessandro; Gambino, Salvatore

    2016-04-01

    In the 1980s, shallow borehole tilt measurements saw a reprise in the monitoring of geodynamic active areas, while from the beginning of the 1990s the Global Positioning System (GPS) development also provided the opportunity to repeat geodetic measurements in geodynamic and volcanic areas. At Mt. Etna, the continuous measurements from shallow borehole tiltmeters have been successfully used to infer the mechanisms of magma accumulation and intrusive processes that foreran and accompanied the several eruptions occurring during the last thirty years on this very active volcano. The long-term deformation, associated with unrest and/or eruptive phases, is expected to be larger than tectonic deformation and therefore significant long-lived trends could be detected. For the first time, we present 25 years (1990 - 2014) of continuous borehole tilt recorded at Etna volcano at different stations and vertical displacement periodically measured by GPS. We analyze long-term series that comprise several main flank eruptions, which we believe are unique in the landscape of instrumental monitoring of geodynamic active areas. The good similarity of the patterns obtained from the two independent long-term measurements (borehole tilt and GPS) confirms the long-term stability of the borehole signals, the overall reliability of vertical GPS variations and provides robust support to the interpretation on the volcano dynamics. The tilt and GPS data series reveal that during this lengthy period, there were two primary volcanic phases: i) a major recharging in the period 1994 - 2001 that culminated with the two major explosive-effusive flank eruptions in 2001 and 2002-2003, and ii) a subsequent prolonged period of re-equilibrium that was accompanied by three other effusive flank eruptions and 44 episodes of lava fountains in 2011-2013. This highlights that, in the long-term (tens of years), a single strong recharge phase may not imply a following single main eruption, but could even

  8. Borehole sampling of fracture populations - compensating for borehole sampling bias in crystalline bedrock aquifers, Mirror Lake, Grafton County, New Hampshire

    USGS Publications Warehouse

    McDonald, G.D.; Paillet, Frederick L.; Barton, C.C.; Johnson, C.D.

    1997-01-01

    The clustering of orientations of hydraulically conductive fractures in bedrock at the Mirror Lake, New Hampshire fractured rock study site was investigated by comparing the orientations of fracture populations in two subvertical borehole arrays with those mapped on four adjacent subvertical roadcuts. In the boreholes and the roadcuts, the orientation of fracture populations appears very similar after borehole data are compensated for undersampling of steeply dipping fractures. Compensated borehole and pavement fracture data indicate a northeast-striking population of fractures with varying dips concentrated near that of the local foliation in the adjacent rock. The data show no correlation between fracture density (fractures/linear meter) and distance from lithologic contacts in both the boreholes and the roadcuts. The population of water-producing borehole fractures is too small (28 out of 610 fractures) to yield meaningful orientation comparisons. However, the orientation of large aperture fractures (which contains all the producing fractures) contains two or three subsidiary clusters in orientation frequency that are not evident in stereographic projections of the entire population containing all aperture sizes. Further, these subsidiary orientation clusters do not coincide with the dominant (subhorizontal and subvertical) regional fracture orientations.

  9. Induced seismicity after borehole fluid injections

    NASA Astrophysics Data System (ADS)

    Langenbruch, Cornelius; Shapiro, Serge

    2010-05-01

    We present a model for the temporal distribution of microseismic events induced by borehole fluid injections into reservoirs. We put the focus on seismicity induced after the stop of fluid injections. Here, our main concern is the identification of parameters controlling the decay rate of seismicity after injection stops. The particular importance of a theoretical model for the occurrence of seismicity after stop of injection is underlined by observations after stimulations of geothermal reservoirs at different locations. These stimulations have shown that the post injection phase contains a high seismic risk, which is up to now uncontrollable, because the processes leading to the occurrence of post injection events are not well understood. Based on the assumption that pore pressure diffusion is the governing mechanism leading to the triggering of seismic events, we develop a method to calculate the seismicity rate during and after fluid injections. We show that the obtained solution after injection is very similar to the frequency scaling law of aftershocks, namely the Omori law. We propose a modified Omori law, which describes how post injection seismicity depends on parameters of injection source and reservoir rock and the strength of a pre-existing fracture system in the reservoir. We analyze two end members of fracture strength, representing stable and unstable pre-existing fracture systems. Our results shows, that the decay rate of post injection seismicity is highly dependent on the strength of the fracture system. Furthermore, we show that the existence of an unstable fracture system in a reservoir results in a critical trend of seismic activity, which explains the occurrence of events with the largest magnitude close after the stop of injection. This result coincides with observations made after the stimulation of Enhanced Geothermal Systems (EGS). We verify our theoretical model by an application to synthetic data sets resulting from finite element

  10. The Plate Boundary Observatory Borehole Seismic Network

    NASA Astrophysics Data System (ADS)

    Hasting, M.; Eakins, J.; Anderson, G.; Hodgkinson, K.; Johnson, W.; Mencin, D.; Smith, S.; Jackson, M.; Prescott, W.

    2006-12-01

    As part of the NSF-funded EarthScope Plate Boundary Observatory, UNAVCO will install and operate 103 borehole seismic stations throughout the western United States. These stations continuously record three- component seismic data at 100 samples per second, using Geo-Space HS-1-LT 2-HZ geophones in a sonde developed by SONDI and Consultants (Duke University). Each seismic package is connected to an uphole Quanterra Q330 data logger and Marmot external buffer, from which UNAVCO retrieves data in real time. UNAVCO uses the Antelope software suite from Boulder Real-Time Technologies (BRTT) for all data collection and transfer, metadata generation and distribution, and monitoring of the network. The first stations were installed in summer 2005, with 19 stations installed by September 2006, and a total of 28 stations expected by December 2006. In a prime example of cooperation between the PBO and USArray components of EarthScope, the USArray Array Network Facility (ANF), operated by UC San Diego, handled data flow and network monitoring for the PBO seismic stations in the initial stages of network operations. We thank the ANF staff for their gracious assistance over the last several months. Data flow in real time from the remote stations to the UNAVCO Boulder Network Operations Center, from which UNAVCO provides station command and control; verification and distribution of metadata; and basic quality control for all data. From Boulder, data flow in real time to the IRIS DMC for final quality checks, archiving, and distribution. Historic data are available from June 2005 to the present, and are updated in real time with typical latencies of less than ten seconds. As of 1 September 2006, the PBO seismic network had returned 60 GB of raw data. Please visit http://pboweb.unavco.org for additional information on the PBO seismic network.

  11. The electrical resistivity method in cased boreholes

    SciTech Connect

    Schenkel, C.J.

    1991-05-01

    The use of downhole current sources in resistivity mapping can greatly enhance the detection and delineation of subsurface features. The purpose of this work is to examine the resistivity method for current sources in wells cased with steel. The resistivity method in cased boreholes with downhole current sources is investigated using the integral equation (IE) technique. The casing and other bodies are characterized as conductivity inhomogeneities in a half-space. For sources located along the casing axis, an axially symmetric Green's function is used to formulate the surface potential and electric field (E-field) volume integral equations. The situations involving off-axis current sources and three-dimensional (3-D) bodies is formulated using the surface potential IE method. The solution of the 3-D Green's function is presented in cylindrical and Cartesian coordinate systems. The methods of moments is used to solve the Fredholm integral equation of the second kind for the response due to the casing and other bodies. The numerical analysis revealed that the current in the casing can be approximated by its vertical component except near the source and the axial symmetric approximation of the casing is valid even for the 3-D problem. The E-field volume IE method is an effective and efficient technique to simulate the response of the casing in a half-space, whereas the surface potential approach is computationally better when multiple bodies are involved. Analyzing several configurations of the current source indicated that the casing response is influenced by four characteristic factors: conduction length, current source depth,casing depth, and casing length. 85 refs., 133 figs., 11 tabs.

  12. Aeronautic instruments

    NASA Technical Reports Server (NTRS)

    Everling, E; Koppe, H

    1924-01-01

    The development of aeronautic instruments. Vibrations, rapid changes of the conditions of flight and of atmospheric conditions, influence of the air stream all call for particular design and construction of the individual instruments. This is shown by certain examples of individual instruments and of various classes of instruments for measuring pressure, change of altitude, temperature, velocity, inclination and turning or combinations of these.

  13. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust

    PubMed Central

    Salas, Everett C.; Bhartia, Rohit; Anderson, Louise; Hug, William F.; Reid, Ray D.; Iturrino, Gerardo; Edwards, Katrina J.

    2015-01-01

    The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 105 cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities. PMID:26617595

  14. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust.

    PubMed

    Salas, Everett C; Bhartia, Rohit; Anderson, Louise; Hug, William F; Reid, Ray D; Iturrino, Gerardo; Edwards, Katrina J

    2015-01-01

    The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

  15. Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 2. Borehole constraints

    USGS Publications Warehouse

    Ruppel, Carolyn D.; Herman, Bruce M.; Brothers, Laura L.; Hart, Patrick E.

    2016-01-01

    Borehole logging data from legacy wells directly constrain the contemporary distribution of subsea permafrost in the sedimentary section at discrete locations on the U.S. Beaufort Margin and complement recent regional analyses of exploration seismic data to delineate the permafrost's offshore extent. Most usable borehole data were acquired on a ∼500 km stretch of the margin and within 30 km of the contemporary coastline from north of Lake Teshekpuk to nearly the U.S.-Canada border. Relying primarily on deep resistivity logs that should be largely unaffected by drilling fluids and hole conditions, the analysis reveals the persistence of several hundred vertical meters of ice-bonded permafrost in nearshore wells near Prudhoe Bay and Foggy Island Bay, with less permafrost detected to the east and west. Permafrost is inferred beneath many barrier islands and in some nearshore and lagoonal (back-barrier) wells. The analysis of borehole logs confirms the offshore pattern of ice-bearing subsea permafrost distribution determined based on regional seismic analyses and reveals that ice content generally diminishes with distance from the coastline. Lacking better well distribution, it is not possible to determine the absolute seaward extent of ice-bearing permafrost, nor the distribution of permafrost beneath the present-day continental shelf at the end of the Pleistocene. However, the recovery of gas hydrate from an outer shelf well (Belcher) and previous delineation of a log signature possibly indicating gas hydrate in an inner shelf well (Hammerhead 2) imply that permafrost may once have extended across much of the shelf offshore Camden Bay.

  16. Subsea ice-bearing permafrost on the U.S. Beaufort Margin: 2. Borehole constraints

    NASA Astrophysics Data System (ADS)

    Ruppel, Carolyn D.; Herman, Bruce M.; Brothers, Laura L.; Hart, Patrick E.

    2016-11-01

    Borehole logging data from legacy wells directly constrain the contemporary distribution of subsea permafrost in the sedimentary section at discrete locations on the U.S. Beaufort Margin and complement recent regional analyses of exploration seismic data to delineate the permafrost's offshore extent. Most usable borehole data were acquired on a ˜500 km stretch of the margin and within 30 km of the contemporary coastline from north of Lake Teshekpuk to nearly the U.S.-Canada border. Relying primarily on deep resistivity logs that should be largely unaffected by drilling fluids and hole conditions, the analysis reveals the persistence of several hundred vertical meters of ice-bonded permafrost in nearshore wells near Prudhoe Bay and Foggy Island Bay, with less permafrost detected to the east and west. Permafrost is inferred beneath many barrier islands and in some nearshore and lagoonal (back-barrier) wells. The analysis of borehole logs confirms the offshore pattern of ice-bearing subsea permafrost distribution determined based on regional seismic analyses and reveals that ice content generally diminishes with distance from the coastline. Lacking better well distribution, it is not possible to determine the absolute seaward extent of ice-bearing permafrost, nor the distribution of permafrost beneath the present-day continental shelf at the end of the Pleistocene. However, the recovery of gas hydrate from an outer shelf well (Belcher) and previous delineation of a log signature possibly indicating gas hydrate in an inner shelf well (Hammerhead 2) imply that permafrost may once have extended across much of the shelf offshore Camden Bay.

  17. The 1996-2009 borehole dilatometer installations, operation, and maintenance at sites in Long Valley Caldera, CA

    USGS Publications Warehouse

    Myren, Glenn; Johnston, Malcolm; Mueller, Robert

    2011-01-01

    High seismicity levels with accelerating uplift (under the resurgent dome) in Long Valley caldera in the eastern Sierra Nevada from 1989 to 1997, triggered upgrades to dilational strainmeters and other instrumentation installed in the early 1980's following a series of magnitude 6 earthquakes. This included two additional high-resolution borehole strainmeters and replacement of the failed strainmeter at Devil's Postpile. The purpose of the borehole-monitoring network is to monitor crustal deformation and other geophysical parameters associated with volcanic intrusions and earthquakes in the Long Valley Caldera. Additional instrumentation was added at these sites to improve the capability of providing continuous monitoring of the magma source under the resurgent dome. Sites were selected in regions of hard crystalline rock, where the expected signals from magmatic activity were calculated to be a maximum and the probability of an earthquake of magnitude 4 or greater is large. For the most part, the dilatometers were installed near existing arrays of surface tiltmeters, seismometers, level line, and GPS arrays. At each site, attempts are made to separate tectonic and volcanic signals from known noise sources in each instrument type. Each of these sites was planned to be a multi-parameter monitoring site, which included measurements of 3-component seismic velocity and acceleration, borehole strain, tilt, pore pressure and magnetic field. Using seismicity, geophysical knowledge, geologic and topographic maps, and geologists recommendations, lists of preliminary sites were chosen. Additional requirements were access, and telemetry constraints. When the final site choice was made, a permit was obtained from the U.S. Forest Service. Following this selection process, two new borehole sites were installed on the north and south side of the Long Valley Caldera in June of 1999. One site was located near Big Spring Campground to the east of Crestview. The second site was

  18. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  19. Stress magnitude and orientation in deep coalbed biosphere off Shimokita ~IODP Expedition337 drilling project

    NASA Astrophysics Data System (ADS)

    Wu, H. Y.; Lin, W.; Yamada, Y.

    2015-12-01

    One of IODP expedition (Borehole C0020A) is located in the forearc basin formed by the subducting between Pacific plate and Eurasian plate off Shimokita Peninsula. This ~2.5km deep scientific drilling collected the high-resolution wire-line resistivity logging, caliper data, Dipole Sonic waveforms; geophysical properties measurements and core samples. The riser drilling operations produced one good conditions borehole even this drilling operation was applied right after 311 Tohoku earthquake. Based on the high-resolutions Formation Micro Imager (FMI) images, both breakout and tensile fractures along the borehole wall indicating the in-situ stress orientation are detected in the unwrapped resistivity images. In this research, a reasonable geomechanical model based on the breakout width and physical properties is constructed to estimate the stress magnitude profile in this borehole. Besides, the openhole leak-off test revealed the information of Shmin magnitude. In general, stress direction along the borehole is slight rotated to east with drilling to the bottom of the borehole. Geomechanical model constarined the principal stresses in Strike-slip stress regime to satisfy the occurrences of borehole enlargements and tensile fractures. Some blank zones with no borehole wall failure and vertical fractures indicated the stress anomaly might be controlled by local lithological facies. Comparing to the JFAST drilling, this site is out of Japan trench slip zone and shows almost parallel stress direcion to the trench (~90 degree apart of Shmin with Site C0019).

  20. Methane Emissions from Abandoned Boreholes in South Eastern Australia

    NASA Astrophysics Data System (ADS)

    Day, S. J.; Fry, R.; Dell'Amico, M.; Williams, D.; Halliburton, B.; Element, A.

    2015-12-01

    The Surat Basin in south-eastern Queensland is one of Australia's main coal bed methane production areas. It has also been subject to coal exploration over many years and consequently there are thousands of abandoned exploration boreholes throughout the region. Here, we present some results of field measurements aimed at locating leaking legacy exploration boreholes in the Surat Basin and to quantify their emission rates. We also discuss emission measurements made on abandoned CBM wells in Queensland and NSW that have been decommissioned according to modern practices. Leaking boreholes were located using a Picarro 2301 CH4 analyser mounted in a vehicle that was driven through gas fields in the Surat Basin. Where surface emissions were indicated by elevated ambient CH4 levels, the emission rate was measured using soil flux chambers at each site. For comparison, soil gas flux measurements were also made on natural surfaces and agricultural land throughout the study areas. Ten borehole sources were located during the surveys, yielding emission rates from less than 0.1 kg CH4 day-1 to more than 100 kg CH4 day-1. A number of other known exploration borehole sites were examined which had no detectable CH4 emissions. Plugged and abandoned CBM wells showed no CH4 emissions except in two cases where emission rates of about 0.07 g CH4 day-1 were detected, which were comparable to natural wetland CH4 emissions. Preliminary results suggest that modern decommissioning practices appear to be effective in preventing CH4 leakage from CBM abandoned wells. However, legacy coal exploration boreholes may represent a significant source of CH4 in the Surat Basin, although the proportion of these holes leaking CH4 is yet to be determined. Moreover, it is not yet clear if emissions from boreholes are affected by changes in groundwater induced by water extraction associated with gas production and agriculture. This is an area requiring further research.

  1. Gyroscopic Instruments for Instrument Flying

    NASA Technical Reports Server (NTRS)

    Brombacher, W G; Trent, W C

    1938-01-01

    The gyroscopic instruments commonly used in instrument flying in the United States are the turn indicator, the directional gyro, the gyromagnetic compass, the gyroscopic horizon, and the automatic pilot. These instruments are described. Performance data and the method of testing in the laboratory are given for the turn indicator, the directional gyro, and the gyroscopic horizon. Apparatus for driving the instruments is discussed.

  2. Heat-flow determination in three DSDP boreholes near the Japan Trench

    NASA Astrophysics Data System (ADS)

    Burch, Thomas K.; Langseth, Marcus G.

    1981-10-01

    The first deep borehole determinations of temperature gradients and heat flow on the landward wall of the Japan Trench and forearc were made on IPOD DSDP leg 57. These heat flow values are based on temperature logs corrected to equilibrium, using a detailed model of the drilling disturbance. Heat flow values on a deeply submerged marine terrace, landward of the trench slope break are 28 and 32 mW m-2. A measurement in the midslope terrace basin on the landward wall of the trench yielded a value of 22 mW m-2. The results are in good agreement with earlier seafloor measurements and indicate that most of the forearc area is characterized by heat flow about one half of that over oceanic lithosphere seaward of the trench. Our observations indicate only a small increase of heat flow from the trench to the volcanic arc, in agreement with thermal models, which suggests that the subduction of the relatively cold oceanic plate continues to dominate the temperature structure for distances of up to 250 km landward of the trench. The temperature profile in the borehole on the midslope terrace indicates possible vertical flow of pore waters. Hundreds of conductivity determinations were made using a new technique.

  3. The application of moment methods to the analysis of fluid electrical conductivity logs in boreholes

    SciTech Connect

    Loew, S. ); Tsang, Chin-Fu; Hale, F.V. ); Hufschmied, P. , Baden )

    1990-08-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geologic repository for nuclear waste. Previous reports have presented a procedure for analyzing a time sequence of wellbore electric conductivity logs in order to obtain outflow parameters of fractures intercepted by the borehole, and a code, called BORE, used to simulate borehole fluid conductivity profiles given these parameters. The present report describes three new direct (not iterative) methods for analyzing a short time series of electric conductivity logs based on moment quantities of the individual outflow peaks and applies them to synthetic as well as to field data. The results of the methods discussed show promising results and are discussed in terms of their respective advantages and limitations. In particular it is shown that one of these methods, the so-called Partial Moment Method,'' is capable of reproducing packer test results from field experiments in the Leuggern deep well within a factor of three, which is below the range of what is recognized as the precision of packer tests themselves. Furthermore the new method is much quicker than the previously used iterative fitting procedure and is even capable of handling transient fracture outflow conditions. 20 refs., 11 figs., 10 tabs.

  4. Heat-flow determination in three DSDP boreholes near the Japan trench

    SciTech Connect

    Burch, T.K.; Langseth, M.G.

    1981-10-10

    The first deep borehole determinations of temperature gradients and heat flow of the landward wall of the Japan Trench and forearc were made on IPOD DSDP leg 57. These heat flow values are based on temperature logs corrected to equilibrium, using a detailed model of the drilling disturbance. Heat flow values on a deeply submerged terrace, landward of the trench slope break are 28 and 32 mW m/sup -2/. A measurement in the midslope terrace basin on the landward wall of the trench yielded a value of 22 mW m/sup -2/. The results are in good agreement with earlier seafloor measurements and indicate that most of the forearc area is characterized by heat flow about one half of that over oceanic lithosphere seaward of the trench. Our observations indicate only a small increase of heat flow from the trench to the volcanic arc, in agreement with thermal models, which suggests that the subduction of the relatively cold oceanic plate continues to dominate the temperature structure for distances of up to 250 km landward of the trench. The temperature profile in the borehole on the midslope terrace indicates possible vertical flow of pore waters. Hundreds of conductivity determinations were made using a new technique.

  5. Process for establishing a clear horizontal borehole in a subterranean formation

    SciTech Connect

    Richards, W.L.; Henderson, R.L.; Aul, G.N.; Pauley, B.W.

    1987-09-08

    This patent describes a process for establishing a clear, generally horizontal borehole path in a subterranean formation having sloughing or caving characteristics. The process comprises the steps of: drilling a generally horizontal borehole into a subterranean formation having sloughing or caving characteristics using a drill bit and drill pipe; lubricating the drill bit and drill pipe with a mud capable of forming a cake on the borehole walls; withdrawing the drill bit and drill pipe and replacing the drill bit with a casing shoe. The cake maintains the borehole wall integrity while the drill pipe is removed from the borehole; inserting the casing shoe and drill pipe into the borehole; simultaneously inserting a liner into the generally horizontal borehole inside of the drill pipe; and removing the drill pipe and casing shoe while holding the liner within the borehole, the casing shoe passing on the outside of the liner as it is removed, the liner providing a clean path through the borehole.

  6. An in-well heat-tracer-test method for evaluating borehole flow conditions

    NASA Astrophysics Data System (ADS)

    Sellwood, Stephen M.; Hart, David J.; Bahr, Jean M.

    2015-12-01

    An improved method is presented for characterizing vertical borehole flow conditions in open boreholes using in-well heat tracer tests monitored by a distributed temperature sensing (DTS) system. This flow logging method uses an electrical resistance heater to warm slugs of water within bedrock boreholes and DTS monitoring of subsequent heat migration to measure borehole flow characteristics. Use of an electrical resistance heater allows for controlled test initiation, while the DTS allows for detailed monitoring of heat movement within the borehole. The method was evaluated in bedrock boreholes open to Cambrian sandstone formations in south-central Wisconsin (USA). The method was successfully used to measure upward flow, downward flow, and zero flow, and to identify changes in borehole flow rates associated with fracture flow and porous media flow. The main benefits of the DTS-monitored in-well heat tracer test method of borehole flow logging are (1) borehole flow direction and changes in borehole fluid velocity are readily apparent from a simple plot of the field data, (2) the case of zero vertical borehole flow is easily and confidently identified, and (3) the ability to monitor temperatures over the full borehole length simultaneously and in rapid succession provides detailed flow data with minimal disturbance of the borehole flow. The results of this study indicate that DTS-monitored in-well heat tracer tests are an effective method of characterizing borehole flow conditions.

  7. Three-component borehole wall-locking seismic detector

    DOEpatents

    Owen, Thomas E.

    1994-01-01

    A seismic detector for boreholes is described that has an accelerometer sensor block for sensing vibrations in geologic formations of the earth. The density of the seismic detector is approximately matched to the density of the formations in which the detector is utilized. A simple compass is used to orient the seismic detector. A large surface area shoe having a radius approximately equal to the radius of the borehole in which the seismic detector is located may be pushed against the side of the borehole by actuating cylinders contained in the seismic detector. Hydraulic drive of the cylinders is provided external to the detector. By using the large surface area wall-locking shoe, force holding the seismic detector in place is distributed over a larger area of the borehole wall thereby eliminating concentrated stresses. Borehole wall-locking forces up to ten times the weight of the seismic detector can be applied thereby ensuring maximum detection frequency response up to 2,000 hertz using accelerometer sensors in a triaxial array within the seismic detector.

  8. Uemachi flexure zone investigated by borehole database and numeical simulation

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Takemura, K.

    2014-12-01

    The Uemachi fault zone extending north and south, locates in the center of the Osaka City, in Japan. The Uemachi fault is a blind reverse fault and forms the flexure zone. The effects of the Uemachi flexure zone are considered in constructing of lifelines and buildings. In this region, the geomorphological survey is difficult because of the regression of transgression. Many organizations have carried out investigations of fault structures. Various surveys have been conducted, such as seismic reflection survey in and around Osaka. Many borehole data for construction conformations have been collected and the geotechnical borehole database has been constructed. The investigation with several geological borehole data provides the subsurface geological information to the geotechnical borehole database. Various numerical simulations have been carried out to investigate the growth of a blind reverse fault in unconsolidated sediments. The displacement of the basement was given in two ways. One is based on the fault movement, such as dislocation model, the other is a movement of basement block of hanging wall. The Drucker-Prager and elastic model were used for the sediment and basement, respectively. The simulation with low and high angle fault movements, show the good agree with the actual distribution of the marine clay inferred from borehole data in the northern and southern Uemachi fault flexure zone, respectively. This research is partly funded by the Comprehensive Research on the Uemachi Fault Zone (from FY2010 to FY2012) by The Ministry of Education, Culture, Sports, Science and Technology (MEXT).

  9. Three-component borehole wall-locking seismic detector

    SciTech Connect

    Owen, T.E.

    1994-04-12

    A seismic detector for boreholes is described that has an accelerometer sensor block for sensing vibrations in geologic formations of the earth. The density of the seismic detector is approximately matched to the density of the formations in which the detector is utilized. A simple compass is used to orient the seismic detector. A large surface area shoe having a radius approximately equal to the radius of the borehole in which the seismic detector is located may be pushed against the side of the borehole by actuating cylinders contained in the seismic detector. Hydraulic drive of the cylinders is provided external to the detector. By using the large surface area wall-locking shoe, force holding the seismic detector in place is distributed over a larger area of the borehole wall thereby eliminating concentrated stresses. Borehole wall-locking forces up to ten times the weight of the seismic detector can be applied thereby ensuring maximum detection frequency response up to 2,000 hertz using accelerometer sensors in a triaxial array within the seismic detector. 5 figures.

  10. Subsurface Rock Physical Properties by Downhole Loggings - Case Studies of Continental Deep Drilling in Kanto Distinct, Japan

    NASA Astrophysics Data System (ADS)

    Omura, K.

    2014-12-01

    In recent years, many examples of physical logging have been carried out in deep boreholes. The loggings are direct in-situ measurements of rock physical properties under the ground. They provide significant basic data for the geological, geophysical and geotechnical investigations, e.g., tectonic history, seismic wave propagation, and ground motion prediction. Since about 1980's, Natl. Res. Inst. for Earth Sci. and Disast. Prev. (NIED) dug deep boreholes (from 200m to 3000m depth) in sedimentary basin of Kanto distinct, Japan, for purposes of installing seismographs and hydrological instruments, and in-situ stress and pore pressure measurements. At that time, downhole physical loggings were conducted in the boreholes: spontaneous potential, electrical resistance, elastic wave velocity, formation density, neutron porosity, total gamma ray, caliper, temperature loggings. In many cases, digital data values were provided every 2m or 1m or 0.1m. In other cases, we read printed graphs of logging plots and got digital data values. Data from about 30 boreholes are compiled. Especially, particular change of logging data at the depth of an interface between a shallow part (soft sedimentary rock) and a base rock (equivalent to hard pre-Neogene rock) is examined. In this presentation, the correlations among physical properties of rock (especially, formation density, elastic wave velocity and electrical resistance) are introduced and the relation to the lithology is discussed. Formation density, elastic wave velocity and electric resistance data indicate the data are divide in two groups that are higher or lower than 2.5g/cm3: the one correspond to a shallow part and the other correspond to a base rock part. In each group, the elastic wave velocity and electric resistance increase with increase of formation density. However the rates of increases in the shallow part are smaller than in the base rock part. The shallow part has lower degree of solidification and higher porosity

  11. Negative hysteresis effect observed during calibration of the US Bureau of Mines borehole deformation gauge

    SciTech Connect

    Ganow, H.C.

    1985-08-01

    The US Bureau of Mines borehole deformation gauge (BMG) was designed in the early 1960`s to allow rock stress measurements by the overcoring method. Since that time it has become a de facto standard against which the performance of other borehole deformation gauges is often judged. However, during recent in situ stress studies in the Climax Stock at the Nevada Test Site a strange "negative hysteresis" in the order of 300 to 500 microstrains was observed in standard calibration data. Here, the relaxation curve lies below the indentation (compression) curves as if the system were to somehow respond with an energy release. Therefore, a precision micro-indentation apparatus has been designed and used to perform a series of tests allowing a better understanding of the BMG button to cantilever interaction. Results indicate that the hysteresis effect is caused by differential motion between the button base and the cantilever resulting from the geometric motion inherent in the cantilever. The very large apparent hysteresis is mainly caused by cycling opposing cantilevers through the instrument`s entire dynamic range, and the fundamental imprecision inherent in use of the standard micrometers to calibrate the BMG. Laboratory mean hysteresis magnitudes for a polished cantilever typically range from 3 to 25 microstrain for 100 and 1000 microstrain relaxations on 1000 microstrain deflection loops intended to simulate typical field data. The error percentage is thought to remain fairly constant with deformation loop size, and is sufficiently small such that it can be safely ignored. The hysteresis effect can probably be reduced, and instrument stability improved by machining a small 90 degree cone in the cantilever in which a slightly larger mating cone on the base of the indentation button would reside. 5 refs. 26 figs., 1 tab.

  12. A Web-Based Borehole Strong-motion Data Dissemination Portal

    NASA Astrophysics Data System (ADS)

    Steidl, J. H.; Seale, S.; Ratzesberger, H.; Civilini, F.; Vaughan, N.

    2009-12-01

    Accelerometric and pore pressure data from instrumented boreholes in southern California are producing very interesting observations from a large data set that includes 100’s of earthquake observations each month. While the majority of these are very small events, they provide the control data that represents the linear behavior of the site. In addition, the largest motions recorded to date, ~10%g, are getting to the regime where nonlinear soil behavior effects become important. In order to make these data more accessible to the seismology and earthquake engineering research community, software development of a web-based data dissemination portal has taken place under the George E. Brown Jr., Network for Earthquake Engineering (NEES) program. This development includes processing and analysis tools, and web-based data dissemination available through the NEES@UCSB website [http://nees.ucsb.edu]. Of interest to the research community are the tools developed to provide search, waveform viewing, and download capabilities for access to data acquired through the various borehole-monitoring programs at UC Santa Barbara. Researchers interested in obtaining data recorded at the various field sites can use the map-based search tool to select a particular station and instrument(s). The user is then provided another map-based interface that allows the user to select events with choice of magnitude, distance, and time period. Once the user has selected an event of interest, the ability to view the data is provided, along with some waveform parameters like peak velocity and acceleration. The records can then be downloaded in a number of common formats, including MSEED, SAC, and an ASCII text-based real-time data viewer (RDV) format. The last format allows the data to be viewed in the NEES RDV tool, a platform independent JAVA program developed to display both real-time streaming data, or playback data that has been downloaded through the web-based event search tool.

  13. Characterizing the Weeks Island Salt Dome drilling of and seismic measurements from boreholes

    SciTech Connect

    Sattler, A.R.; Harding, R.S.; Jacobson, R.D.; Finger, J.T.; Keefe, R.; Neal, J.T.

    1996-10-01

    A sinkhole 36 ft across, 30 ft deep was first observed in the alluvium over the Weeks Island Salt Dome (salt mine converted for oil storage by US Strategic Petroleum Reserve) May 1992. Four vertical, two slanted boreholes were drilled for diagnostics. Crosswell seismic data were generated; the velocity images suggest that the sinkhole collapse is complicated, not a simple vertical structure. The coring operation was moderately difficult; limited core was obtained through the alluvium, and the quality of the salt core from the first two vertical wells was poor. Core quality improved with better bit selection, mud, and drilling method. The drilling fluid program provided fairly stable holes allowing open hole logs to be run. All holes were cemented successfully (although it took 3 attempts in one case).

  14. Near-surface velocities and attenuation at two boreholes near Anza, California, from logging data

    USGS Publications Warehouse

    Fletcher, Joe B.; Fumal, T.; Hsi-Ping, Liu; Carroll, L.C.

    1990-01-01

    To investigate near-surface site effects in granite rock, we drilled 300-m deep boreholes at two sites which are collocated with stations from the digital array at Anza, California. Significant motion perpendicular to the polarizations of the first shear-wave arrival was recorded within a few meters of the surface. Apparently, the rock structure is sufficiently complicated that body waves are being converted (SH to SV at oblique incidence) very close to the surface. The presence of these elliptical particle motions within a mere few m of the pure shear-wave source suggests that the detection of polarizations perpendicular to the main shear arrival at a single location at the surface is not, by itself, a good method for detecting shear-wave splitting within the upper few tens of kilometers of the earth's crust. -from Authors

  15. Analysis of borehole-radar reflection logs from selected HC boreholes at the Project Shoal area, Churchill County, Nevada

    USGS Publications Warehouse

    Lane, J.W.; Joesten, P.K.; Pohll, G.M.; Mihevic, Todd

    2001-01-01

    Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna.Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m.Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures.Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground

  16. Electrical resistivity borehole measurements: application to an urban tunnel site

    NASA Astrophysics Data System (ADS)

    Denis, A.; Marache, A.; Obellianne, T.; Breysse, D.

    2002-06-01

    This paper shows how it is possible to use wells drilled during geotechnical pre-investigation of a tunneling site to obtain a 2-D image of the resistivity close to a tunnel boring machine. An experimental apparatus is presented which makes it possible to perform single and borehole-to-borehole electrical measurements independent of the geological and hydrogeological context, which can be activated at any moment during the building of the tunnel. This apparatus is first demonstrated through its use on a test site. Numerical simulations and data inversion are used to analyse the experimental results. Finally, electrical resistivity tomography and single-borehole measurements on a tunneling site are presented. Experimental results show the viability of the apparatus and the efficiency of the inverse algorithm, and also highlight the limitations of the electrical resistivity tomography as a tool for geotechnical investigation in urban areas.

  17. Thermophysical and mechanical properties of granite and its effects on borehole stability in high temperature and three-dimensional stress.

    PubMed

    Wang, Yu; Liu, Bao-lin; Zhu, Hai-yan; Yan, Chuan-liang; Li, Zhi-jun; Wang, Zhi-qiao

    2014-01-01

    When exploiting the deep resources, the surrounding rock readily undergoes the hole shrinkage, borehole collapse, and loss of circulation under high temperature and high pressure. A series of experiments were conducted to discuss the compressional wave velocity, triaxial strength, and permeability of granite cored from 3500 meters borehole under high temperature and three-dimensional stress. In light of the coupling of temperature, fluid, and stress, we get the thermo-fluid-solid model and governing equation. ANSYS-APDL was also used to stimulate the temperature influence on elastic modulus, Poisson ratio, uniaxial compressive strength, and permeability. In light of the results, we establish a temperature-fluid-stress model to illustrate the granite's stability. The compressional wave velocity and elastic modulus, decrease as the temperature rises, while poisson ratio and permeability of granite increase. The threshold pressure and temperature are 15 MPa and 200 °C, respectively. The temperature affects the fracture pressure more than the collapse pressure, but both parameters rise with the increase of temperature. The coupling of thermo-fluid-solid, greatly impacting the borehole stability, proves to be a good method to analyze similar problems of other formations.

  18. Thermophysical and Mechanical Properties of Granite and Its Effects on Borehole Stability in High Temperature and Three-Dimensional Stress

    PubMed Central

    Bao-lin, Liu; Hai-yan, Zhu; Chuan-liang, Yan; Zhi-jun, Li; Zhi-qiao, Wang

    2014-01-01

    When exploiting the deep resources, the surrounding rock readily undergoes the hole shrinkage, borehole collapse, and loss of circulation under high temperature and high pressure. A series of experiments were conducted to discuss the compressional wave velocity, triaxial strength, and permeability of granite cored from 3500 meters borehole under high temperature and three-dimensional stress. In light of the coupling of temperature, fluid, and stress, we get the thermo-fluid-solid model and governing equation. ANSYS-APDL was also used to stimulate the temperature influence on elastic modulus, Poisson ratio, uniaxial compressive strength, and permeability. In light of the results, we establish a temperature-fluid-stress model to illustrate the granite's stability. The compressional wave velocity and elastic modulus, decrease as the temperature rises, while poisson ratio and permeability of granite increase. The threshold pressure and temperature are 15 MPa and 200°C, respectively. The temperature affects the fracture pressure more than the collapse pressure, but both parameters rise with the increase of temperature. The coupling of thermo-fluid-solid, greatly impacting the borehole stability, proves to be a good method to analyze similar problems of other formations. PMID:24778592

  19. In situ calibration of and algorithm for strain monitoring using four-gauge borehole strainmeters (FGBS)

    NASA Astrophysics Data System (ADS)

    Qiu, Zehua; Tang, Lei; Zhang, Baohong; Guo, Yanping

    2013-04-01

    Borehole strainmeters have proved very useful in geodynamic research. Because the sensors are imbedded in rock, their in situ calibration is of crucial importance. The four-gauge borehole strainmeter (FGBS) is a Chinese invention to monitor the temporal variation in horizontal strain. The four gauges in the FGBS are arranged at 45° intervals to bring about a simple self-consistency equation, which serves as a means of checking that the measurements obtained from the FGBS are correct. The instruments currently used in China are usually placed at depths of several tens of meters to avoid disturbances at the surface, while still being sufficiently near the surface for the vertical stress to be regarded as zero - the premise on which the theoretical model of this observation is based. In this paper, an index of data credibility is established, based on the self-consistency equation, to allow evaluation of the observations. A relative in situ calibration has been developed to calculate a relative correction factor for each gauge's sensitivity, termed the gauge weight, and this has proven effective in enhancing data credibility. Parameters for deriving strain from readings are determined by a concise absolute in situ calibration with the aid of the theoretical Earth tide. Instead of averaging four groups of solutions, a simpler comprehensive algorithm is developed to transform readings into strain. Data from 24 Chinese sites of YRY-4-type FGBS are processed and evaluated to be fairly good.

  20. Method and system for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Johnson, Paul A [Santa Fe, NM; Ten Cate, James A [Los Alamos, NM; Guyer, Robert [Reno, NV; Le Bas, Pierre-Yves [Los Alamos, NM; Vu, Cung [Houston, TX; Nihei, Kurt [Oakland, CA; Schmitt, Denis P [Katy, TX; Skelt, Christopher [Houston, TX

    2012-02-14

    A compact array of transducers is employed as a downhole instrument for acoustic investigation of the surrounding rock formation. The array is operable to generate simultaneously a first acoustic beam signal at a first frequency and a second acoustic beam signal at a second frequency different than the first frequency. These two signals can be oriented through an azimuthal rotation of the array and an inclination rotation using control of the relative phases of the signals from the transmitter elements or electromechanical linkage. Due to the non-linearity of the formation, the first and the second acoustic beam signal mix into the rock formation where they combine into a collimated third signal that propagates in the formation along the same direction than the first and second signals and has a frequency equal to the difference of the first and the second acoustic signals. The third signal is received either within the same borehole, after reflection, or another borehole, after transmission, and analyzed to determine information about rock formation. Recording of the third signal generated along several azimuthal and inclination directions also provides 3D images of the formation, information about 3D distribution of rock formation and fluid properties and an indication of the dynamic acoustic non-linearity of the formation.

  1. Reclamation report, Basalt Waste Isolation Project, boreholes 1990

    SciTech Connect

    Brandt, C.A.; Rickard, W.H. Jr.; Cadoret, N.A.

    1991-01-01

    The restoration of areas disturbed activities of the Basalt Waste Isolation Project (BWIP) has been undertaken by the US Department of Energy (DOE) in fulfillment of obligations and commitments made under the National Environmental Policy Act and the Nuclear Waste Policy Act. This restoration program comprises three separate projects: borehole reclamation, Near Surface Test Facility reclamation, and Exploratory Shaft Facility reclamation. Detailed descriptions of these reclamation projects may be found in a number of previous reports. This report describes the second phase of the reclamation program for the BWIP boreholes and analyzes its success relative to the reclamation objective. 6 refs., 14 figs., 13 tabs.

  2. Observing ETS Evolution With Borehole Strainmeters

    NASA Astrophysics Data System (ADS)

    Wang, K.; Dragert, H.; Roeloffs, E. A.

    2011-12-01

    The behaviour of along-strike propagation was recognized in the first report of the discovery of Cascadia slow slip [Dragert et al., 2001]. Even with very few and sparsely distributed GPS stations, it could be estimated that the slow slip in 1999 propagated in the northwest direction at ~6 km/day. It was later established that the occurrence of tremor at Cascadia tracks the along-strike propagation of the slips. Recent introduction of Gladwin borehole strainmeters (BSM) as well as the densification of GPS coverage under the Plate Boundary Observatory has enabled more detailed monitoring of the slip migration. In this study we analyze the behaviour of strategically located BSMs in ETS episodes and use the strain records to examine the along-strike migration of prolonged ETS in northern Cascadia. Consistent with the conclusion of a tidal calibration study [Roeloffs, 2010], we found that the BSM areal strains in this area are generally unusable, but the shear strains yield useful information. Although tidal calibration was conducted only for a subset of the BSMs, there appears to be a general correspondence between BSMs that yield good results in the tidal calibration and those that yield clear signals in multiple ETS episodes. BSMs are sensitive to many tectonic and nontectonic processes. Long-term trends caused by time-dependent adjustment of the surrounding formation and seasonal variations caused by surface and subsurface fluid pressure changes may be removed by analysis of long data records in conjunction with supplementary data, such as streamflow, from individual sites. Such corrections reduce uncertainties in the net strain remaining after a slow slip event. When detailed corrections are not feasible or possible, very simple processing of BSM data still provides useful information on the timing of the sudden change due to the slow slip and the sign of that change (increase or decrease). Despite various limitations, the BSM data have improved the

  3. Borehole temperatures reveal details of 20th century warming at Bruce Plateau, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Zagorodnov, V.; Nagornov, O.; Scambos, T. A.; Muto, A.; Mosley-Thompson, E.; Pettit, E. C.; Tyuflin, S.

    2012-06-01

    Two ice core boreholes of 143.18 m and 447.73 m (bedrock) were drilled during the 2009-2010 austral summer on the Bruce Plateau at a location named LARISSA Site Beta (66°02' S, 64°04' W, 1975.5 m a.s.l.). Both boreholes were logged with thermistors shortly after drilling. The shallow borehole was instrumented for 4 months with a series of resistance thermometers with satellite uplink. Surface temperature proxy data derived from an inversion of the borehole temperature profiles are compared to available multi-decadal records from weather stations and ice cores located along a latitudinal transect of the Antarctic Peninsula to West Antarctica. The LARISSA Site Beta profiles show temperatures decreasing from the surface downward through the upper third of the ice, and warming thereafter to the bed. The average temperature for the most recent year is -14.78°C (measured at 15 m depth, abbreviated T15). A minimum temperature of -15.8°C is measured at 173 m depth, and basal temperature is estimated to be -10.2°C. Current mean annual temperature and the gradient in the lower part of the measured temperature profile have a best fit with an accumulation rate of 1.9×103 kg m-2 a-1 and basal heat flux (q) of 88 mW m-2, if steady-state conditions are assumed. However, the mid-level temperature variations show that recent temperature has varied significantly. Reconstructed surface temperatures (Ts=T15) over the last 200 yr are derived by an inversion technique (Tikhonov and Samarskii, 1990). From this, we find that cold temperatures (minimum Ts=-16.2°C) prevailed from ~1920 to ~1940, followed by a gradual rise of temperature to -14.2°C around 1995, then cooling over the following decade and warming in the last few years. The coldest period was preceded by a relatively warm 19th century at T15≥-15°C. To facilitate regional comparisons of the surface temperature history, we use our T15 data and nearby weather station records to refine estimates of lapse rates

  4. New insights on the Karoo shale gas potential from borehole KZF-1 (Western Cape, South Africa)

    NASA Astrophysics Data System (ADS)

    Campbell, Stuart A.; Götz, Annette E.; Montenari, Michael

    2016-04-01

    A study on world shale reserves conducted by the Energy Information Agency (EIA) in 2013 concluded that there could be as much as 390 Tcf recoverable reserves of shale gas in the southern and south-western parts of the Karoo Basin. This would make it the 8th-largest shale gas resource in the world. However, the true extent and commercial viability is still unknown, due to the lack of exploration drilling and modern 3D seismic. Within the framework of the Karoo Research Initiative (KARIN), two deep boreholes were drilled in the Eastern and Western Cape provinces of South Africa. Here we report on new core material from borehole KZF-1 (Western Cape) which intersected the Permian black shales of the Ecca Group, the Whitehill Formation being the main target formation for future shale gas production. To determine the original source potential for shale gas we investigated the sedimentary environments in which the potential source rocks formed, addressing the research question of how much sedimentary organic matter the shales contained when they originally formed. Palynofacies indicates marginal marine conditions of a stratified basin setting with low marine phytoplankton percentages (acritarchs, prasinophytes), good AOM preservation, high terrestrial input, and a high spores:bisaccates ratio (kerogen type III). Stratigraphically, a deepening-upward trend is observed. Laterally, the basin configuration seems to be much more complex than previously assumed. Furthermore, palynological data confirms the correlation of marine black shales of the Prince Albert and Whitehill formations in the southern and south-western parts of the Karoo Basin with the terrestrial coals of the Vryheid Formation in the north-eastern part of the basin. TOC values (1-6%) classify the Karoo black shales as promising shale gas resources, especially with regard to the high thermal maturity (Ro >3). The recently drilled deep boreholes in the southern and south-western Karoo Basin, the first since the

  5. Pressure-induced brine migration into an open borehole in a salt repository

    SciTech Connect

    Hwang, Y.; Chambre, P.L.; Lee, W.W.L.; Pigford, T.H.

    1987-06-01

    This report provides some solutions to models that predict the brine accumulation in an open borehole. In this model, brine flow rates are controlled by pressure differences between the salt and the borehole. (TEM)

  6. Report on the Test and Evaluation of the Kinemetrics/Quanterra Q730B Borehole Digitizers

    SciTech Connect

    KROMER,RICHARD P.; MCDONALD,TIMOTHY S.

    1999-10-01

    Sandia National Laboratories has tested and evaluated the Kinemetrics/Quanterra Q730B-bb (broadband) and Q730B-sp (short period) borehole installation remote digitizers. The test results included in this report were for response to static and dynamic input signals, seismic application performance, data time-tag accuracy, and reference signal generator (calibrator) performance. Most test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and P1241 (Preliminary Draft) for Analog to Digital Converters; others were designed by Sandia specifically for seismic application evaluation and for supplementary criteria not addressed in the IEEE standards. When appropriate, test instrumentation calibration is traceable to the National Institute for Standards Technology (NIST).

  7. Intrinsic germanium detector used in borehole sonde for uranium exploration

    USGS Publications Warehouse

    Senftle, F.E.; Moxham, R.M.; Tanner, A.B.; Boynton, G.R.; Philbin, P.W.; Baicker, J.A.

    1976-01-01

    A borehole sonde (~1.7 m long; 7.3 cm diameter) using a 200 mm2 planar intrinsic germanium detector, mounted in a cryostat cooled by removable canisters of frozen propane, has been constructed and tested. The sonde is especially useful in measuring X- and low-energy gamma-ray spectra (40–400 keV). Laboratory tests in an artificial borehole facility indicate its potential for in-situ uranium analyses in boreholes irrespective of the state of equilibrium in the uranium series. Both natural gamma-ray and neutron-activation gamma-ray spectra have been measured with the sonde. Although the neutron-activation technique yields greater sensitivity, improvements being made in the resolution and efficiency of intrinsic germanium detectors suggest that it will soon be possible to use a similar sonde in the passive mode for measurement of uranium in a borehole down to about 0.1% with acceptable accuracy. Using a similar detector and neutron activation, the sonde can be used to measure uranium down to 0.01%.

  8. Development of a mobile borehole investigation software using augmented reality

    NASA Astrophysics Data System (ADS)

    Son, J.; Lee, S.; Oh, M.; Yun, D. E.; Kim, S.; Park, H. D.

    2015-12-01

    Augmented reality (AR) is one of the most developing technologies in smartphone and IT areas. While various applications have been developed using the AR, there are a few geological applications which adopt its advantages. In this study, a smartphone application to manage boreholes using AR has been developed. The application is consisted of three major modules, an AR module, a map module and a data management module. The AR module calculates the orientation of the device and displays nearby boreholes distributed in three dimensions using the orientation. This module shows the boreholes in a transparent layer on a live camera screen so the user can find and understand the overall characteristics of the underground geology. The map module displays the boreholes on a 2D map to show their distribution and the location of the user. The database module uses SQLite library which has proper characteristics for mobile platforms, and Binary XML is adopted to enable containing additional customized data. The application is able to provide underground information in an intuitive and refined forms and to decrease time and general equipment required for geological field investigations.

  9. Conversion of borehole Stoneley waves to channel waves in coal

    SciTech Connect

    Johnson, P.A.; Albright, J.N.

    1987-01-01

    Evidence for the mode conversion of borehole Stoneley waves to stratigraphically guided channel waves was discovered in data from a crosswell acoustic experiment conducted between wells penetrating thin coal strata located near Rifle, Colorado. Traveltime moveout observations show that borehole Stoneley waves, excited by a transmitter positioned at substantial distances in one well above and below a coal stratum at 2025 m depth, underwent partial conversion to a channel wave propagating away from the well through the coal. In an adjacent well the channel wave was detected at receiver locations within the coal, and borehole Stoneley waves, arising from a second partial conversion of channel waves, were detected at locations above and below the coal. The observed channel wave is inferred to be the third-higher Rayleigh mode based on comparison of the measured group velocity with theoretically derived dispersion curves. The identification of the mode conversion between borehole and stratigraphically guided waves is significant because coal penetrated by multiple wells may be detected without placing an acoustic transmitter or receiver within the waveguide. 13 refs., 6 figs., 1 tab.

  10. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, W.D.; Ramirez, A.L.

    1999-06-22

    An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.

  11. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, William D.; Ramirez, Abelardo L.

    1999-01-01

    An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.

  12. Application of linear inverse theory to borehole gravity data

    SciTech Connect

    Burkhard, N.R.

    1991-09-01

    Traditional borehole gravity interpretations are based upon an earth model which assumes horizontal, laterally infinite, uniformly thick, and constant density layers. I apply discrete stabilized linear inverse theory to determine the density distribution directly from borehole gravity observations that have been corrected for drift, tide, and terrain. The stabilization is the result of including a priori data about the free-air gradient and the density structure in the inversion process. The discrete generalized linear inverse approach enables one to solve for a density distribution using all of the borehole gravity data. Moreover, the data need not be free-air corrected. An important feature of the approach is that density estimates are not required to be density averages between adjacent borehole gravity observations as in the traditional method. This approach further permits the explicit incorporation of independent density information from gamma-gamma logging tools or laboratory core measurements. Finally, explicit linear constraints upon the density and/or free-air gradient can also be handled. The non-uniqueness of the density structure determined by the inversion process is represented in a resolution matrix. 12 refs., 11 figs.

  13. DEVELOPMENT AND APPLICATION OF BOREHOLE FLOWMETERS FOR ENVIRONMENTAL ASSESSMENT

    EPA Science Inventory

    In order to understand the origin of contaminant plumes and infer their future migration, one requires a knowledge of the hydraulic conductivity (K) distribution. n many aquifers, the borehole flowmeter offers the most direct technique available for developing a log of hydraulic ...

  14. Cross-borehole fracture mapping using electromagnetic geotomography

    SciTech Connect

    Ramirez, A L; Deadrick, F J; Lytle, R J

    1982-05-12

    The Lawrence Livermore National Laboratory is evaluating high resolution geophysical techniques for characterization of nuclear waste repository sites. This report presents the results of the first phase of this project. We describe the evaluation of a new geophysical technique used to map fractures remotely between boreholes: electromagnetic geotomography used in conjunction with water tracers. Salt water is forced into the fractured rock mass, attenuating the high frequency electromagnetic waves used for probing. The locations in the rock where the salt water has induced signal losses are then mapped by geotomography. An experiment using this technique has been performed near Oracle, Arizona, in a granitic rock mass. The data obtained were reduced to gray level images, which show the calculated signal transmission properties of the rock mass. We analyzed these images and compared them with borehole geophysical data: neutron logs, acoustic velocity logs, caliper logs, and acoustic televiewer logs. Comparisons between the images and the borehole geophysical data suggest that geotomography has merit when used to map fracture in granite. Image anomalies, which can be indicative of fracturing along the borehole walls, usually coincide with geophysical log anomalies. Under the conditions of the Oracle experiment, available data indicate that clusters of fracture zones were detected. Single fractures were not detected. The thickness of the smallest recognizable fractured zone was 0.6 m (2 ft).

  15. Thermal modeling of bore fields with arbitrarily oriented boreholes

    NASA Astrophysics Data System (ADS)

    Lazzarotto, Alberto

    2016-04-01

    The accurate prediction of the thermal behavior of bore fields for shallow geothermal applications is necessary to carry out a proper design of such systems. A classical methodology to perform this analysis is the so-called g-function method. Most commercial tools implementing this methodology are designed to handle only bore fields configurations with vertical boreholes. This is a limitation since this condition might not apply in a real installation. In a recent development by the author, a semi-analytical method to determine g-function for bore fields with arbitrarily oriented boreholes was introduced. The strategy utilized is based on the idea introduced by Cimmino of representing boreholes as stacked finite line sources. The temperature along these finite lines is calculated by applying the superposition of the effects of each linear heat source in the field. This modeling technique allows to approximate uneven heat distribution along the boreholes which is a key feature for the calculation of g-functions according to Eskilson's boundary conditions. The method has been tested for a few simple configurations and showed results that are similar compare to previous results computed numerically by Eskilson. The method has been then successfully applied to the g-function calculation of an existing large scale highly asymmetrical bore field.

  16. Report for borehole explosion data acquired in the 1999 Los Angeles Region Seismic Experiment (LARSE II), Southern California: Part I, description of the survey

    USGS Publications Warehouse

    Fuis, Gary S.; Murphy, Janice M.; Okaya, David A.; Clayton, Robert W.; Davis, Paul M.; Thygesen, Kristina; Baher, Shirley A.; Ryberg, Trond; Benthien, Mark L.; Simila, Gerry; Perron, J. Taylor; Yong, Alan K.; Reusser, Luke; Lutter, William J.; Kaip, Galen; Fort, Michael D.; Asudeh, Isa; Sell, Russell; Van Schaack, John R.; Criley, Edward E.; Kaderabek, Ronald; Kohler, Will M.; Magnuski, Nickolas H.

    2001-01-01

    The Los Angeles Region Seismic Experiment (LARSE) is a joint project of the U.S. Geological Survey (USGS) and the Southern California Earthquake Center (SCEC). The purpose of this project is to produce seismic images of the subsurface of the Los Angeles region down to the depths at which earthquakes occur, and deeper, in order to remedy a deficit in our knowledge of the deep structure of this region. This deficit in knowledge has persisted despite over a century of oil exploration and nearly 70 years of recording earthquakes in southern California. Understanding the deep crustal structure and tectonics of southern California is important to earthquake hazard assessment. Specific imaging targets of LARSE include (a) faults, especially blind thrust faults, which cannot be reliably detected any other way; and (b) the depths and configurations of sedimentary basins. Imaging of faults is important in both earthquake hazard assessment but also in modeling earthquake occurrence. Earthquake occurrence cannot be understood unless the earthquake-producing "machinery" (tectonics) is known (Fuis and others, 2001). Imaging the depths and configurations of sedimentary basins is important because earthquake shaking at the surface is enhanced by basin depth and by the presence of sharp basin edges (Wald and Graves, 1998, Working Group on California Earthquake Probabilities, 1995; Field and others, 2001). (Sedimentary basins are large former valleys now filled with sediment eroded from nearby mountains.) Sedimentary basins in the Los Angeles region that have been investigated by LARSE include the Los Angeles, San Gabriel Valley, San Fernando Valley, and Santa Clarita Valley basins. The seismic imaging surveys of LARSE include recording of earthquakes (both local and distant earthquakes) along several corridors (or transects) through the Los Angeles region and also recording of man-made sources along these same corridors. Man-made sources have included airguns offshore and borehole

  17. Fluid pressure, sediment compressibility, and secular and transient strain in subduction prisms: Results from ODP CORK borehole hydrologic observatories

    NASA Astrophysics Data System (ADS)

    Davis, E. E.; Becker, K.

    2005-12-01

    Instruments for long-term hydrogeological monitoring in Ocean Drilling Program boreholes have been installed in five subduction zone settings, including Cascadia, Barbados, Mariana, Costa Rica, and Nankai. Pressure records reveal a wide range of average formation states that are consistent with formation permeability and proximity to sources of formation fluid. For example, near-hydrostatic pressures (excess pore-pressure ratio λ* ~ 0) are observed in the silty parts of the Nankai accretionary prism and in the upper oceanic crust beneath the Costa Rica prism, where well-drained conditions are inferred to be present, and elevated pressures (λ* up to 0.5) have been recorded in finer-grained sedimentary sections near the toe of prisms (e.g., at the level of the decollement in the fine-grained part of the Barbados accretionary prism). In no instances have high pressures (approaching lithostatic, λ* = 1) been observed, although operational difficulties have thus far precluded installations in underthrust sediment sequences where the highest average pressures are expected to be maintained. Records often reveal non-steady behavior, with variations occurring over a broad frequency range. Tidal-frequency variations present in all records are the consequence of oceanographic loading at the seafloor. The amplitude of these signals provide constraints on formation compressibility. Estimated values vary with depth and consolidation state, and range from 5 x 10-9 to 3.5 x 10-10 Pa-1. Once these signals are removed, other transients can be observed, including ones correlated with both seismic and aseismic deformation. Secular strain has been seen in hydrologically isolated parts of the formations at several sites. At the Mariana forearc site, seismic-frequency pressure variations and persistent positive pressure changes were observed at the time of two large (Mb ~ 7.0) deep (~ 70 km) earthquakes located roughly 200 km away; these signals are inferred to reflect local formation

  18. Fluid pressure and temperature transients detected at the Nankai Trough Megasplay Fault: Results from the SmartPlug borehole observatory

    NASA Astrophysics Data System (ADS)

    Hammerschmidt, S.; Davis, E. E.; Kopf, A.

    2013-07-01

    The SmartPlug is the first borehole observatory in the IODP Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE). It comprises a retrievable bridge plug with an autonomous instrument for pressure (P) and temperature (T) monitoring. The borehole observatory was installed at Site C0010 of the Integrated Ocean Drilling Program (IODP) Kumano transect crossing the Nankai Trough, SE offshore Japan, to obtain fluid pressure and temperature data from where the borehole penetrates one of the shallow branches of the subduction megasplay fault at 410 mbsf. In this manuscript, a 15 month-long P-T record collected by the SmartPlug is evaluated. Despite the 1 min sampling interval, pressure variations related to local storms and to tsunami and seismic waves from regional and distant earthquakes are observed. Seismic waves of one regional earthquake appear to have led to a drop in formation pressure that may be the consequence of a seismic-wave-induced increase in permeability. Pressure variations related to Rayleigh waves are typically larger in the formation than in the inadvertently sealed casing above, whereas seafloor loading signals imposed by tides, tsunamis, and storm-generated waves are larger in the casing than in the formation. This difference presumably reflects the different response to strain generated by formation deformation vs. strain caused by loading at the seafloor. No seismogenic or aseismic deformation event at the megasplay fault or within the accretionary prism was observed during this initial 15-month-long recording period. A SmartPlug observatory monitored the Nankai Trough Megasplay Fault for 15 months. In situ borehole pressure (P) and temperature (T) data were collected and evaluated. After the data were de-tided and filtered, several P transients were detected. P transients were caused by storm-induced microseism, seismic and tsunami waves. No indications for recent activity of the Megasplay Fault were found.

  19. Methods and apparatus for removal and control of material in laser drilling of a borehole

    DOEpatents

    Rinzler, Charles C; Zediker, Mark S; Faircloth, Brian O; Moxley, Joel F

    2014-01-28

    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  20. 30 CFR 57.12083 - Support of power cables in shafts and boreholes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Support of power cables in shafts and boreholes... NONMETAL MINES Electricity Underground Only § 57.12083 Support of power cables in shafts and boreholes. Power cables in shafts and boreholes shall be fastened securely in such a manner as to prevent...

  1. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place...

  2. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place...

  3. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place...

  4. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place...

  5. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place...

  6. Methods and apparatus for removal and control of material in laser drilling of a borehole

    DOEpatents

    Rinzler, Charles C.; Zediker, Mark S.; Faircloth, Brian O.; Moxley, Joel F.

    2016-12-06

    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  7. UXO location and identification using borehole magnetometery

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Al-Nuaimy, Waleed; Huang, Yi; Gascoyne, Jon

    2005-06-01

    It is estimated that 10% of war-time bombs did not explode and can be found at the ground surface or buried at a depth of up to 8 meters depending on the formation of the soil. These unexploded bombs or ordnance (UXO) pose a real danger to construction workers and properties. Ground surface based methods become ineffective for objects sinking into deep places due to rapidly diminishing anomalous field and interfering metal debris distributed over ground surface. To overcome the difficulties, a unique inversion algorithm is proposed in this work with advantages of fast convergence and maximization of information extracted from individual hole measurement. It is more reliable than traditional methods by examining the possibilities within a number of estimations. The information from individual hole measurement is fully interpreted hence suggestion can be made for the positioning of next drilling in order to minimize the number of holes required for clearance. Based upon the recovered information, a comparison method is proposed for the identification and discrimination of UXO items from other objects that may be found in the environment, such as steel pipes and steel barrels. It is not sensitive to the interference in the data once the dipole moment is recovered. The results from a test site demonstrates its supreme capability to deal with real-world inversion problems having small number of available data points.

  8. Cordless Instruments

    NASA Astrophysics Data System (ADS)

    1981-01-01

    Black & Decker's new cordless lightweight battery powered precision instruments, adapted from NASA's Apollo Lunar Landing program, have been designed to give surgeons optimum freedom and versatility in the operating room. Orthopedic instrument line includes a drill, a driver/reamer and a sagittal saw. All provide up to 20 minutes on a single charge. Power pack is the instrument's handle which is removable for recharging. Microprocessor controlled recharging unit can recharge two power packs together in 30 minutes. Instruments can be gas sterilized, steam-sterilized in an autoclave or immersed for easy cleaning.

  9. Borehole climatology: a discussion based on contributions from climate modeling

    NASA Astrophysics Data System (ADS)

    González-Rouco, J. F.; Beltrami, H.; Zorita, E.; Stevens, M. B.

    2008-01-01

    Progress in understanding climate variability through the last millennium leans on simulation and reconstruction efforts. Exercises blending both approaches present a great potential for answering questions relevant both for the simulation and reconstruction of past climate, and depend on the specific peculiarities of proxies and methods involved in climate reconstructions, as well as on the realism and limitations of model simulations. This paper explores research specifically related to paleoclimate modeling and borehole climatology as a branch of climate reconstruction that has contributed significantly to our knowledge of the low frequency climate evolution during the last five centuries. The text flows around three main issues that group most of the interaction between model and geothermal efforts: the use of models as a validation tool for borehole climate reconstructions; comparison of geothermal information and model simulations as a means of either model validation or inference about past climate; and implications of the degree of realism on simulating subsurface climate on estimations of future climate change. The use of multi-centennial simulations as a surrogate reality for past climate suggests that within the simplified reality of climate models, methods and assumptions in borehole reconstructions deliver a consistent picture of past climate evolution at long time scales. Comparison of model simulations and borehole profiles indicate that borehole temperatures are responding to past external forcing and that more realism in the development of the soil model components in climate models is desirable. Such an improved degree of realism is important for the simulation of subsurface climate and air-ground interaction; results indicate it could also be crucial for simulating the adequate energy balance within climate change scenario experiments.

  10. Borehole climatology: a discussion based on contributions from climate modeling

    NASA Astrophysics Data System (ADS)

    González-Rouco, J. F.; Beltrami, H.; Zorita, E.; Stevens, M. B.

    2009-03-01

    Progress in understanding climate variability through the last millennium leans on simulation and reconstruction efforts. Exercises blending both approaches present a great potential for answering questions relevant both for the simulation and reconstruction of past climate, and depend on the specific peculiarities of proxies and methods involved in climate reconstructions, as well as on the realism and limitations of model simulations. This paper explores research specifically related to paleoclimate modeling and borehole climatology as a branch of climate reconstruction that has contributed significantly to our knowledge of the low frequency climate evolution during the last five centuries. The text flows around three main issues that group most of the interaction between model and geothermal efforts: the use of models as a validation tool for borehole climate reconstructions; comparison of geothermal information and model simulations as a means of either model validation or inference about past climate; and implications of the degree of realism on simulating subsurface climate on estimations of future climate change. The use of multi-centennial simulations as a surrogate reality for past climate suggests that within the simplified reality of climate models, methods and assumptions in borehole reconstructions deliver a consistent picture of past climate evolution at long time scales. Comparison of model simulations and borehole profiles indicate that borehole temperatures are responding to past external forcing and that more realism in the development of the soil model components in climate models is desirable. Such an improved degree of realism is important for the simulation of subsurface climate and air-ground interaction; results indicate it could also be crucial for simulating the adequate energy balance within climate change scenario experiments.

  11. Comparison of phase velocities from array measurements of Rayleigh waves associated with microtremor and results calculated from borehole shear-wave velocity profiles

    USGS Publications Warehouse

    Liu, Hsi-Ping; Boore, David M.; Joyner, William B.; Oppenheimer, David H.; Warrick, Richard E.; Zhang, Wenbo; Hamilton, John C.; Brown, Leo T.

    2000-01-01

    Shear-wave velocities (VS) are widely used for earthquake ground-motion site characterization. VS data are now largely obtained using borehole methods. Drilling holes, however, is expensive. Nonintrusive surface methods are inexpensive for obtaining VS information, but not many comparisons with direct borehole measurements have been published. Because different assumptions are used in data interpretation of each surface method and public safety is involved in site characterization for engineering structures, it is important to validate the surface methods by additional comparisons with borehole measurements. We compare results obtained from a particular surface method (array measurement of surface waves associated with microtremor) with results obtained from borehole methods. Using a 10-element nested-triangular array of 100-m aperture, we measured surface-wave phase velocities at two California sites, Garner Valley near Hemet and Hollister Municipal Airport. The Garner Valley site is located at an ancient lake bed where water-saturated sediment overlies decomposed granite on top of granite bedrock. Our array was deployed at a location where seismic velocities had been determined to a depth of 500 m by borehole methods. At Hollister, where the near-surface sediment consists of clay, sand, and gravel, we determined phase velocities using an array located close to a 60-m deep borehole where downhole velocity logs already exist. Because we want to assess the measurements uncomplicated by uncertainties introduced by the inversion process, we compare our phase-velocity results with the borehole VS depth profile by calculating fundamental-mode Rayleigh-wave phase velocities from an earth model constructed from the borehole data. For wavelengths less than ~2 times of the array aperture at Garner Valley, phase-velocity results from array measurements agree with the calculated Rayleigh-wave velocities to better than 11%. Measurement errors become larger for wavelengths 2

  12. Challenging design and development of Ma_Miss, a miniaturised spectrometric instrument for Mars sub-soil analysis

    NASA Astrophysics Data System (ADS)

    Battistelli, E.; Coradini, A.; Mugnuolo, R.; Capanni, A.; Paolinetti, R.; Re, E.; Magnani, P.

    2011-05-01

    This paper describes Ma_Miss (Mars Multispectral Imager for Subsurface Studies), the miniaturized instrument for spectrometric and stratigraphic analysis of sub-soil developed by SELEX Galileo in the context of ESA ExoMars mission. The Ma_Miss experiment is coordinated by the Principal Investigator Angioletta Coradini (IFSI-INAF, Rome) and is funded by the Italian Space Agency (ASI). The exploration of Mars requires a detailed in-situ investigation of the Martian surface and sub-surface. Determining the composition of the Martian subsoil will provide a direct indication of the steps through which the sample material evolved along geological timescales. Ma_Miss is an instrument fully integrated in the Drill system (developed by SELEX Galileo) hosted by a Rover operating on Mars surface; Ma_Miss illuminates the wall of the drill borehole and acquires its reflectance signal in the Visible and Infrared (0.4-2.2 micron) range, analyzes it through a miniaturized spectrometer (20nm spectral resolution), and transmits the digital data to the Rover. The innovative instrument concept was driven by several key needs, related to challenging scientific requirements and extreme environmental constraints. Implementation of the concept has required a deep interdisciplinary concurrent development in order to solve critical aspects of engineering and manufacturing, covering miniaturized monolithic optics and novel concept for fiberoptic connectors capable to automatically mate/de-mate during the robotic assembly of the Drill elements on Mars.

  13. Analysis of geophysical well logs obtained in the State 2-14 borehole, Salton Sea geothermal area, California

    USGS Publications Warehouse

    Paillet, Frederick L.; Morin, R.H.

    1988-01-01

    A complete suite of conventional geophysical well logs was obtained in the upper part of a 3220-m-deep borehole drilled into geothermally altered alluvial sediments on the southeastern edge of the Salton Sea. Geophysical logs obtained in the State 2-14 borehole indicate that neutron porosity, gamma-gamma, and deep-induction logs provide useful information on lithologic trends with depth. The natural gamma log contains almost continuous, high-frequency fluctuations that obscure lithologic trends and that may be related to recent radioisotope redistribution and departure from radiometric equilibrium. Acoustic transit time logs give unrealistically low in situ compressional velocities ranging from 1.8 to 3.0 km/s, whereas acoustic waveform logs indicate that sediment compressional velocities range from less than 3.0 km/s shallower than 1000 m in depth to almost 5.0 km/s at depths greater than 2000 m. Analyses indicate that most log values lie between two lithologic end points: an electrically conductive claystone with moderate neutron porosity, but no effective porosity, and an electrically nonconductive, fully cemented siltstone that has small but finite porosity. -from Authors

  14. SURVEY INSTRUMENT

    DOEpatents

    Borkowski, C J

    1954-01-19

    This pulse-type survey instrument is suitable for readily detecting {alpha} particles in the presence of high {beta} and {gamma} backgrounds. The instruments may also be used to survey for neutrons, {beta} particles and {gamma} rays by employing suitably designed interchangeable probes and selecting an operating potential to correspond to the particular probe.

  15. The multi-parameter borehole system and high resolution seismic studies in the western part of the main Marmara Fault in the frame of MARSITE Project.

    NASA Astrophysics Data System (ADS)

    Ozel, Oguz; Guralp, Cansun; Tunc, Suleyman; Yalcinkaya, Esref

    2016-04-01

    The main objective of this study is to install a multi-parameter borehole system and surface array as close to the main Marmara Fault (MMF) in the western Marmara Sea as possible, and measure continuously the evolution of the state of the fault zone surrounding the MMF and to detect any anomaly or change, which may occur before earthquakes by making use of the data from the arrays already running in the eastern part of the Marmara Sea. The multi-parameter borehole system is composed of very wide dynamic range and stable borehole (VBB) broad band seismic sensor, and incorporate strain meter, tilt meter, and temperature and local hydrostatic pressure measuring devices. The borehole seismic station uses the latest update technologies and design ideas to record "Earth tides" signals to the smallest magnitude -3 events. Additionally, a surface microearthquake observation array, consisting of 8-10 seismometers around the borehole is established to obtain continuous high resolution locations of micro-seismicity and to better understand the existing seismically active structures and their roles in local tectonic settings.Bringing face to face the seismograms of microearthquakes recorded by borehole and surface instruments portrays quite different contents. The shorter recording duration and nearly flat frequency spectrum up to the Nyquist frequencies of borehole records are faced with longer recording duration and rapid decay of spectral amplitudes at higher frequencies of a surface seismogram. The main causative of the observed differences are near surface geology effects that mask most of the source related information the seismograms include, and that give rise to scattering, generating longer duration seismograms. In view of these circumstances, studies on microearthquakes employing surface seismograms may bring on misleading results. Particularly, the works on earthquake physics and nucleation process of earthquakes requires elaborate analysis of tiny events. It is

  16. Borehole Measurements of Interfacial and Co-seismic Seismoelectric Effects

    NASA Astrophysics Data System (ADS)

    Butler, K. E.; Dupuis, J. C.; Kepic, A. W.; Harris, B. D.

    2006-12-01

    We have recently carried out a series of seismoelectric field experiments employing various hammer seismic sources on surface and a multi-electrode `eel' lowered into slotted PVC-cased boreholes penetrating porous sediments. Deploying grounded dipole receivers in boreholes has a number of advantages over surface-based measurements. Ambient noise levels are reduced because earth currents from power lines and other sources tend to flow horizontally, especially near the surface. The earth also provides natural shielding from higher frequency spherics and radio frequency interference while the water-filled borehole significantly decreases the electrode contact impedance which in turn reduces Johnson noise and increases resilience to capacitively- coupled noise sources. From a phenomenological point of view, the potential for measuring seismoelectric conversions from various geological or pore fluid contacts at depth can be assessed by lowering antennas directly through those interfaces. Furthermore, co-seismic seismoelectric signals that are normally considered to be noise in surface measurements are of interest for well logging in the borehole environment. At Fredericton, Canada, broadband co-seismic effects, having a dominant frequency of 350-400 Hz were measured at quarter meter intervals in a borehole penetrating glacial sediments including tills, sands, and a silt/clay aquitard. Observed signal strengths of a few microvolts/m were found to be consistent with the predictions of a simplified theoretical model for the co-seismic effect expected to accompany the regular `fast' P-wave. In Australia we have carried out similar vertical profiling experiments in hydrogeological monitoring boreholes that pass through predominantly sandy sediments containing fresh to saline water near Ayr, QLD and Perth, WA. While co-seismic effects are generally seen to accompany P-wave and other seismic arrivals, the most interesting result has been the observation, at three sites, of

  17. Borehole Strain Measurements on Volcanoes: Insights from Montserrat and Hekla

    NASA Astrophysics Data System (ADS)

    Linde, A. T.; Sacks, S. I.

    2010-12-01

    In Fall 2000 we reported that data from Sacks-Evertson borehole strainmeters allowed a short term (~20 minutes) warning of an eruption of Hekla, Iceland, in 2000 and showed clear changes before an eruption of Izu-Oshima, Japan, in 1986. In 2002-2003 (CALIPSO program) we installed a small net of strainmeters near Montserrat’s Soufriere Hills Volcano, an active andesitic dome building volcano. We have sites in Long Valley and Hawaii (with USGS); at Vesuvius, Campi Flegrei area, Stromboli and (planned) Etna (with Italian colleagues). Gladwin strainmeters have been installed at Yellowstone and Mt. St. Helens (PBO). Our recent volcano research efforts have been on Montserrat and Hekla. Analyses of a very large dome collapse (Montserrat) in July 2003 (Voight et al, 2006) and an explosion in March 2004 (Linde et al., 2010) reveal a reservoir at about 5 km with a NW-SE trending dike extending from the reservoir to about 1.5 km from the surface. A number of explosions require only a narrow conduit (15 m radius) that extends from the top of the dike to the surface (Voight et al. 2010); others have a different strain signature and require deeper sources. A 1 month long clear strain excursion required an additional contribution from a reservoir at about 11 km (Hautmann et al. in prep). Many small signals with similar strain change patterns take place over much shorter time scales (2 - 20 mins) are presumably due to gas transfer. We now realize, from the 2000 eruption of Hekla, that the magma geometry is quite different from that in all earlier models. The reservoir is about 11 km deep but the dike that breaks the surface in Hekla's characteristic fissure eruption does not extend to the reservoir as had been thought; but to no more than about 1 km. Although undetectable by any available surface measurements, there must be a conduit to connect the reservoir to the dike. In Sturkell et al. (in prep) we propose that this conduit is now sufficiently large in diameter to remain

  18. Characterization of complex rock masses by combined borehole GSI and sonic logging

    NASA Astrophysics Data System (ADS)

    Sapigni, Michele; Agliardi, Federico; Crosta, Giovanni B.

    2015-04-01

    Reliable assessment of the strength and hydraulic properties of rock masses at depth is key to a number of geological, engineering and geohazard applications, including tunnelling, reservoir characterization and slope stability analysis. Rock mass investigations usually exploit direct geomechanical core logging and indirect geophysical techniques. A cost-effective and reliable characterisation of rock mass quality by direct investigation is often hampered by extremely variable lithological and structural conditions. On the other hand, available indirect methods correlating rock mass properties with geophysical investigation results apply to near-surface (upper few tens of meters in depth) and rely on rock mass descriptors poorly suitable for complex rocks (including deformed, weathered, or damaged rocks). Thus, there is a need to set up: 1) robust and versatile approaches to quantify (direct) rock mass descriptors suitable for complex geological conditions from drillcores; 2) statistically-sound relationships between such descriptors and rock mass properties obtained by (indirect) geophysical methods. We focus on the analysis of relationships between sonic P-wave velocity and rock mass quality described by the Geological Strength Index (GSI), both quantified in deep boreholes. The GSI is a suitable descriptor of rock mass structure and weathering, suitable for application to nearly all kind of rock types and geological conditions. We used site investigation data gathered to design a 9.2 km long headrace tunnel in a crystalline core complex of the central italian Alps. We analysed three boreholes up to 400 m deep in gneiss and meta-sedimentary rocks (including gypsum-anhydrite, marbles, decomposed carbonates) from which high quality HQ drillcores were extracted, allowing high-resolution geological and geomechanical logging. In the same boreholes, geophysical logging was performed using a "full-wave" sonic tool (transmitter operating at 27 kHz, receivers recording up

  19. Final report on decommissioning boreholes and wellsite restoration, Gulf Coast Interior Salt Domes of Mississippi

    SciTech Connect

    Not Available

    1989-04-01

    In 1978, eight salt domes in Texas, Louisiana, and Mississippi were identified for study as potential locations for a nuclear waste repository as part of the National Waste Terminal Storage (NWTS) program. Three domes were selected in Mississippi for ``area characterization`` phase study as follows: Lampton Dome near Columbia, Cypress Creek Dome near New Augusta, and Richton Dome near Richton. The purpose of the studies was to acquire geologic and geohydrologic information from shallow and deep drilling investigations to enable selection of sites suitable for more intensive study. Eleven deep well sites were selected for multiple-well installations to acquire information on the lithologic and hydraulic properties of regional aquifers. In 1986, the Gulf Coast salt domes were eliminated from further consideration for repository development by the selection of three candidate sites in other regions of the country. In 1987, well plugging and restoration of these deferred sites became a closeout activity. The primary objectives of this activity are to plug and abandon all wells and boreholes in accordance with state regulations, restore all drilling sites to as near original condition as feasible, and convey to landowners any wells on their property that they choose to maintain. This report describes the activities undertaken to accomplish these objectives, as outlines in Activity Plan 1--2, ``Activity Plan for Well Plugging and Site Restoration of Test Hole Sites in Mississippi.``

  20. Borehole cylindrical noise during hole-surface and hole-hole resistivity measurements

    NASA Astrophysics Data System (ADS)

    Osiensky, James L.; Nimmer, Robin; Binley, Andrew M.

    2004-04-01

    Drilled boreholes generally are the only feasible means to access the subsurface for the emplacement of downhole electrodes for most hole-hole and hole-surface resistivity experiments. However, the very existence of the borehole itself creates the potential for significant noise due to the inevitable conductivity contrast that develops between the borehole walls and the formation. Borehole cylindrical noise develops whenever a current source is placed in a drilled borehole. Borehole geometries may range from nearly perfect cylinders to highly, irregular, rugose holes in consolidated rock, to relatively minor, collapsed, disturbed zones in caving sediments. Boreholes in non-caving formations generally are filled with artificial, conductive materials to afford crucial, electrical continuity between downhole electrodes and the borehole walls. Filled boreholes form cylindrically shaped heterogeneities that create significant noise due to preferential current flow up and down the conductive columns. Selected conditions are simulated with a finite difference model to illustrate the significance of borehole cylindrical noise on hole-hole and hole-surface mise-à-la-masse electrical potentials near a current electrode. Mise-à-la-masse electrical potentials measured during a field tracer experiment also are presented. These measurements are used to illustrate significant errors may develop in the interpretation of apparent resistivity estimates out to a distance of several meters from the current source if borehole cylindrical noise is not recognized and accounted for in the analysis of electrical potential data.

  1. PARTICLE DISPLACEMENTS ON THE WALL OF A BOREHOLE FROM INCIDENT PLANE WAVES.

    USGS Publications Warehouse

    Lee, M.W.

    1987-01-01

    Particle displacements from incident plane waves at the wall of a fluid-filled borehole are formulated by applying the seismic reciprocity theorem to far-field displacement fields. Such displacement fields are due to point forces acting on a fluid-filled borehole under the assumption of long wavelengths. The displacement fields are analyzed to examine the effect of the borehole on seismic wave propagation, particularly for vertical seismic profiling (VSP) measurements. When the shortest wavelength of interest is approximately 25 times longer than the borehole's diameter, the scattered displacements are proportional to the first power of incident frequency and borehole diameter. When the shortest wavelength of interest is about 40 times longer than the borehole's diameter, borehole effects on VSP measurements using a wall-locking geophone are negligible.

  2. Chicxulub Impact Crater and Yucatan Carbonate Platform - Stratigraphy and Petrography of PEMEX Borehole Cores

    NASA Astrophysics Data System (ADS)

    Gutierrez-Cirlos, A. G.; Perez-Drago, G.; Perez-Cruz, L.; Urrutia-Fucugauchi, J.

    2008-12-01

    Chicxulub impact crater is the best preserved of the three large multi-ring structures documented in the terrestrial record. Chicxulub, formed 65 Ma ago, is associated with the Cretaceous/Tertiary (K/T) boundary layer and the impact related to the organism extinctions and events marking the boundary. The crater is buried under Tertiary sediments in the Yucatan carbonate platform in the southern Gulf of Mexico. The structure was initially recognized from gravity and magnetic anomalies in the PEMEX exploration surveys of the northwestern Yucatan peninsula. The exploration program included eight deep boreholes completed from 1952 through the 1970s. The investigations showing Chicxulub as a large complex impact crater formed at the K/T boundary have relayed on the PEMEX decades-long exploration program. However, despite frequent use of PEMEX information and core samples, significant parts of the database and cores remain to be evaluated, analyzed and incorporated with results from recent efforts. Access to PEMEX Core Repository has permitted to study the cores and collect new samples from some of the boreholes. We analyzed cores from Yucatan-6, Chicxulub-1, Sacapuc-1, Ticul-1, Yucatan-1 and Yucatan-4 boreholes to make new detailed stratigraphic correlations and petrographic characterization, using information from PEMEX database and the recent studies. In C-1 cores, breccias show 4-8 cm clasts of fine grained altered melt dispersed in a medium to coarse grained matrix composed of pyroxene and feldspar with little macroscopic alteration. Clasts contain 0.2 to 0.1 cm fragments of silicate material (basement) that show variable degrees of digestion. Melt samples from C-1 N10 comes from interval 1,393-1,394 m, and show a fine-to-medium grained coherent microcrystalline groundmass. Melt and breccias in Y-6 extend from about 1,100 m to more than 1,400 m. Sequence is well sorted, with an apparent gradation in both the lithic and melt clasts. In this presentation we report on

  3. Petrography of Permian "Gondwana" coals from boreholes in northwestern Bangladesh, based on semiautomated reflectance scanning

    USGS Publications Warehouse

    Bostick, N.H.; Betterton, W.J.; Gluskoter, H.J.; Nazrul, Islam M.

    1991-01-01

    Drilling through Quaternary alluvium and Tertiary cover at low-gravity anomalies in northwestern Bangladesh showed the presence of Permian sedimentary rocks in depressions that may be as much as a thousand meters deep in the crystalline basement. These Permian strata include low-sulfur, high-volatile bituminous coals in beds as thick as 15 m. The maceral group composition of these coals was determined by semiautomated reflectance scanning with a motorized microscope stage, rather than by point counting. This method was chosen to give objectively recorded raw analytical data and to provide a graphical picture of each sample. The coals are mostly "Gondwana" type (poorly layered "plum pudding" with abundant minerals and inertinite in a vitrinite groundmass) that would be classed as semi-dull (inerto-gelitite) coals. However, six samples have more than 70% vitrinite. None of the samples would be classed as sapropelic (liptinitic). The upper, middle, and lower main seams in borehole GDH-45 were sampled in 10 benches (0.1-3 m thick) each. Inertinite ranges from 7 to 100 vol% (mineral free basis) in individual benches, but composite seam averages are 41, 54 and 67%. Inertinite increases toward the top of two main seams so the bottom would yield the most valuable first mine slices. Some benches with extremely high inertinite content, such as the top 7 m of the lower thick seam, might be mined specially for blending with foreign low-inert coals to increase coke strength. The free swelling index reaches 7.5 in several vitrinite-rich benches, which can indicate good coking coal. Much of the vitrinite is fluorescent, which indicates secondary bituminization characteristic of vitrinite in good coking coals. Ash yields range from 8 to 52%, with composite seam averages of 15, 14 and 24%. Rare visible pyrite is in veinlets or small nodules; framboids and dispersed pyrite are absent. In borehole GDH-40 near Barapukuria (200-500 m depth), the mean random reflectance of vitrinite "A

  4. The influence of wellbore inflow on electromagnetic borehole flowmeter measurements

    USGS Publications Warehouse

    Clemo, T.; Barrash, W.; Reboulet, E.C.; Johnson, T.C.; Leven, C.

    2009-01-01

    This paper describes a combined field, laboratory, and numerical study of electromagnetic borehole flowmeter measurements acquired without the use of a packer or skirt to block bypass flow around the flowmeter. The most significant finding is that inflow through the wellbore screen changes the ratio of flow through the flowmeter to wellbore flow. Experiments reveal up to a factor of two differences in this ratio for conditions with and without inflow through the wellbore screen. Standard practice is to assume the ratio is constant. A numerical model has been developed to simulate the effect of inflow on the flowmeter. The model is formulated using momentum conservation within the borehole and around the flowmeter. The model is embedded in the MODFLOW-2000 ground water flow code. ?? 2009 National Ground Water Association.

  5. Borehole observations of continuous strain and fluid pressure: Chapter 9

    USGS Publications Warehouse

    Roeloffs, Evelyn A.; Linde, A.T.

    2007-01-01

    Strain is expansion, contraction, or distortion of the volcanic edifice and surrounding crust. As a result of magma movement, volcanoes may undergo enormous strain prior to and during eruption. Global Positioning System (GPS) observations can in principle be used to determine strain by taking the difference between two nearby observations and dividing by the distance between them. Two GPS stations 1 km apart, each providing displacement information accurate to the nearest millimeter, could detect strain as small as 2 mm km-1, or 2 × 10-6. It is possible, however, to measure strains at least three orders of magnitude smaller using borehole strainmeters. In fact, it is even possible to measure strains as small as 10-8 using observations of groundwater levels in boreholes.

  6. Deriving historical total solar irradiance from lunar borehole temperatures

    NASA Astrophysics Data System (ADS)

    Miyahara, Hiroko; Wen, Guoyong; Cahalan, Robert F.; Ohmura, Atsumu

    2008-01-01

    We study the feasibility of deriving historical TSI (Total Solar Irradiance) from lunar borehole temperatures. As the Moon lacks Earth's dynamic features, lunar borehole temperatures are primarily driven by solar forcing. Using Apollo observed lunar regolith properties, we computed present-day lunar regolith temperature profiles for lunar tropical, mid-latitude, and polar regions for two scenarios of solar forcing reconstructed by Lean (2000) and Wang et al. (2005). Results show that these scenarios can be distinguished by small but potentially detectable differences in temperature, on the order of 0.01 K and larger depending on latitude, within ~10 m depth of the Moon's surface. Our results provide a physical basis and guidelines for reconstructing historical TSI from data obtainable in future lunar exploration.

  7. New UK in-situ stress orientation for northern England and controls on borehole wall deformation identified using borehole imaging

    NASA Astrophysics Data System (ADS)

    Kingdon, Andrew; Fellgett, Mark W.; Waters, Colin N.

    2016-04-01

    The nascent development of a UK shale gas industry has highlighted the inadequacies of previous in-situ stress mapping which is fundamental to the efficacy and safety of potential fracturing operations. The limited number of stress inversions from earthquake focal plane mechanisms and overcoring measurements of in-situ stress in prospective areas increases the need for an up-to-date stress map. Borehole breakout results from 36 wells with newly interpreted borehole imaging data are presented. Across northern England these demonstrate a consistent maximum horizontal stress orientation (SHmax) orientation of 150.9° and circular standard deviation of 13.1°. These form a new and quality assured evidence base for both industry and its regulators. Widespread use of high-resolution borehole imaging tools has facilitated investigation of micro-scale relationships between stress and lithology, facilitating identification of breakouts as short as 25 cm. This is significantly shorter than those identified by older dual-caliper logging (typically 1-10+ m). Higher wall coverage (90%+ using the highest resolution tools) and decreasing pixel size (down to 4mm vertically by 2° of circumference) also facilitates identification of otherwise undetectable sub-centimetre width Drilling Induced Tensile Fractures (DIFs). Examination of borehole imaging from wells in North Yorkshire within the Carboniferous Pennine Coal Measures Group has showed that even though the stress field is uniform, complex micro-stress relationships exist. Different stress field indicators (SFI) are significantly affected by geology with differing failure responses from adjacent lithologies, highlighted by borehole imaging on sub-metre scales. Core-log-borehole imaging integration over intervals where both breakouts and DIFs have been identified allows accurate depth matching and thus allows a synthesis of failure for differing lithology and micro-structures under common in-situ conditions. Understanding these

  8. Instrumentation '79.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Surveys the state of commerical development of analytical instrumentation as reflected by the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. Includes optical spectroscopy, liquid chromatography, magnetic spectrometers, and x-ray. (Author/MA)

  9. Temperature field and heat flow of the Danish-German border region - borehole measurements and numerical modelling

    NASA Astrophysics Data System (ADS)

    Fuchs, Sven; Balling, Niels

    2016-04-01

    We present a regional 3D numerical crustal temperature model and analyze the present-day conductive thermal field of the Danish-German border region located in the North German Basin. A comprehensive analysis of borehole and well-log data on a regional scale is conducted to derive both the model parameterization with a spatial distribution of rock thermal conductivity and new heat-flow values. The latter one are used to setup the numerical lower boundary condition. Measured heat flow and borehole temperature observations (59 values from 24 wells) are used to constrain the modelling results (calibration and validation). The prediction uncertainties between observed and modelled temperatures at deep borehole sites are small (rms = 3.5°C). For eight deep boreholes, new values of terrestrial surface heat flow are derived, ranging between 72 and 84 mW/m² (mean of 80 ± 5 mW/m²). Those values are up to 20 mW/m² higher than low values reported in some previous studies for this region. Heat flow from the mantle is estimated to be between 33 and 40 mW/m² (q1-q3; mean of 37 ± 7 mW/m²). Pronounced lateral temperature variations are caused mainly by complex geological structures, including a large amount of salt structures and marked lateral variations in the thickness of basin sediments. The associated variations in rock thermal conductivity generate significant variations in model heat flow and large variations in temperature gradients. Major geothermal sandstone reservoirs (e.g. Rhaetian and Middle Buntsandstein) are mainly found with temperatures within the range of 40-80°C, which is suitable for low enthalpy heating purposes in most of the area. Higher temperatures of up to 120-160°C, of interest for the production of electricity, are observed only in the very south-eastern part of the study area (Glückstadt-Graben area). In combination with the structural geological model and information on reservoir hydraulic properties, the presented temperature model will

  10. 24 CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect

    Erik C. Westman

    2002-07-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method of emplacing the array in a long, horizontal borehole. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  11. Research on One Borehole Hydraulic Coal Mining System

    NASA Astrophysics Data System (ADS)

    XIA, Bairu; ZENG, Xiping; MAO, Zhixin

    The Borehole Hydraulic Coal Mining System (BHCMS) causes fragmentation of coal seams and removes coal slump through a drilled hole using high-pressure water jet. Then the mixture of coal and water as slurry are driven out of the borehole by hydraulic or air-lifting method, and are separated at the surface. This paper presents a case study of hydraulic borehole coal mining. The three key techniques of the BHCMS, namely, hydraulic lift of jet pump, air lift, and water jet disintegration are discussed and analyzed in this paper based on theoretical analysis and field experiments. Some useful findings have been obtained: (1) The design of jet pump, air lift system, and water jet has to be integrated appropriately in order to improve mining efficiency and coal recovery rate, and to decrease energy consumption. The design of hydraulic lift jet pump must meet the requirement of the minimum floating speed of coal particles. The optimization of nondimensional parameters and prevention of cavitation have to be considered in the design; (2) With regard to selecting the nozzle types of jet pump, center nozzle or annular nozzle can be selected according to the size of the removed particles; (3) Through air-lift and back pressure, the water head can be decreased to improve the lift capacity of jet pump and decrease the power loss. The air lift has great limitation if it is used solely to extract coal, but if it is employed in conjunction with jet pump, the lift capacity of jet pump can be increased greatly; (4) With water jets, the air lift can improve the fragmentation radius and capacity. The main factors that affect the effect of water jet are the submergible status of jet, jet pressure, and flowrate. The ideal jet of the monitor in the borehole hydraulic coal-mining system is a nonsubmergible free jet. Through air lift, the nonsubmergible free jet can be set up in the mining hole.

  12. Shear wave transducer for stress measurements in boreholes

    DOEpatents

    Mao, Nai-Hsien

    1987-01-01

    A technique and apparatus for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data is used to back-calculate the applied stress.

  13. Chemical energy system for a borehole seismic source. [Final report

    SciTech Connect

    Engelke, R.; Hedges, R.O.

    1996-03-01

    We describe a detonation system that will be useful in the seismological examination of geological structures. The explosive component of this system is produced by the mixing of two liquids; these liquids are classified as non-explosive materials by the Department of Transportation. This detonation system could be employed in a borehole tool in which many explosions are made to occur at various points in the borehole. The explosive for each explosion would be mixed within the tool immediately prior to its being fired. Such an arrangement ensures that no humans are ever in proximity to explosives. Initiation of the explosive mixture is achieved with an electrical slapper detonator whose specific parameters are described; this electrical initiation system does not contain any explosive. The complete electrical/mechanical/explosive system is shown to be able to perform correctly at temperatures {le}120{degrees}C and at depths in a water-filled borehole of {le} 4600 ft (i.e., at pressures of {le}2000 psig).

  14. Comparison of climate model simulated and observed borehole temperature profiles

    NASA Astrophysics Data System (ADS)

    Gonzalez-Rouco, J. F.; Stevens, M. B.; Beltrami, H.; Goosse, H.; Rath, V.; Zorita, E.; Smerdon, J.

    2009-04-01

    Advances in understanding climate variability through the last millennium lean on simulation and reconstruction efforts. Progress in the integration of both approaches can potentially provide new means of assessing confidence on model projections of future climate change, of constraining the range of climate sensitivity and/or attributing past changes found in proxy evidence to external forcing. This work addresses specifically possible strategies for comparison of paleoclimate model simulations and the information recorded in borehole temperature profiles (BTPs). First efforts have allowed to design means of comparison of model simulated and observed BTPs in the context of the climate of the last millennium. This can be done by diffusing the simulated temperatures into the ground in order to produce synthetic BTPs that can be in turn assigned to collocated, real BTPs. Results suggest that there is sensitivity of borehole temperatures at large and regional scales to changes in external forcing over the last centuries. The comparison between borehole climate reconstructions and model simulations may also be subjected to non negligible uncertainties produced by the influence of past glacial and Holocene changes. While the thermal climate influence of the last deglaciation can be found well below 1000 m depth, such type of changes can potentially exert an influence on our understanding of subsurface climate in the top ca. 500 m. This issue is illustrated in control and externally forced climate simulations of the last millennium with the ECHO-G and LOVECLIM models, respectively.

  15. Potable water strategies in southern Mudug, Somalia, with special reference to the local economics of motorised borehole systems for watering nomadic livestock

    NASA Astrophysics Data System (ADS)

    Banks, David

    2008-06-01

    The southern Mudug region of Somalia has been without coherent national government and an international non-governmental organisation (NGO)/UN presence in recent years. Despite this, a functioning water economy can be found, with supply elements based on rainwater harvesting (berkads), shallow wells, motorised deep borehole systems and water tankering. The author argues that this is partly because groundwater has a clear economic value to villages (they can sell it to nomads) and to nomads (without it they will lose the capital that is their livestock), and because there is a revenue collection structure at motorised borehole systems. The ability to understand the economic value of water from the perspective of the user community is a key ingredient in a successful water-supply project in impoverished rural areas.

  16. Interpretation of Borehole Geophysical Logs, Aquifer-Isolation Tests, and Water-Quality Data for Sites 1, 3, and 5 at the Willow Grove Naval Air Station/Joint Reserve Base, Horsham Township, Montgomery County, Pennsylvania: 2005

    USGS Publications Warehouse

    Sloto, Ronald A.

    2007-01-01

    Borehole geophysical logging, heatpulse-flowmeter measurements, borehole television surveys, and aquifer-isolation tests were conducted in 2005 at the Willow Grove Naval Air Station/Joint Reserve Base (NAS/JRB) in Horsham Township, Montgomery County, Pa. This study was done by the U.S. Geological Survey (USGS) in cooperation with the U.S. Navy in support of hydrogeological investigations to address ground-water contamination. Data collected for this study are valuable for understanding ground-water flow in the Stockton Formation at the local and regional scale. The Willow Grove NAS/JRB is underlain by the Stockton Formation, which consists of sedimentary rocks of Triassic age. The rocks of the Stockton Formation form a complex, heterogeneous aquifer with partially connected zones of high permeability. Borehole geophysical logs, heatpulse-flowmeter measurements, and borehole television surveys made in seven boreholes ranging from 70 to 350 ft deep were used to identify potential water-producing fractures and fracture zones and to select intervals for aquifer-isolation tests. An upward vertical hydraulic gradient was measured in one borehole, a downward vertical hydraulic gradient was measured in four boreholes, both an upward and a downward vertical hydraulic gradient were measured in one borehole, and no flow was measurable in one borehole. The aquifer-isolation tests isolated 30 discrete fractures in the seven boreholes for collection of depth-discrete hydraulic and water-quality data. Of the 30 fractures identified as potentially water producing, 26 fractures (87 percent) produced more than 1 gallon per minute of water. The specific capacity of the isolated intervals producing more than 1 gallon per minute ranged from 0.02 to 5.2 gallons per minute per foot. There was no relation between specific capacity and depth of the fracture. Samples for analysis for volatile organic compounds were collected from each isolated zone. Tetrachloroethylene (PCE) was the most

  17. Feasibility of Lateral Emplacement in Very Deep Borehole Disposal of High Level Nuclear Waste

    DTIC Science & Technology

    2010-06-01

    81 FIGURE 3-32: CANDU GEOLOGIC DISPOSAL OVER-PACK AND ...micro-beads as a filler material in CANDU disposal packages as shown in Figure 3-32. Figure 3-32: CANDU Geologic Disposal Over-pack and Canister...per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing

  18. Deep Earthquakes.

    ERIC Educational Resources Information Center

    Frohlich, Cliff

    1989-01-01

    Summarizes research to find the nature of deep earthquakes occurring hundreds of kilometers down in the earth's mantle. Describes further research problems in this area. Presents several illustrations and four references. (YP)

  19. Microseismic Monitoring Using Surface and Borehole Seismic Stations in an Oil Field, North Oman

    NASA Astrophysics Data System (ADS)

    El-Hussain, I.; Al-Hashmi, S.; Al-Shijbi, Y.; Al-Saifi, M.; Al-Toubi, K.; Al-Lazki, A.; Al-Kindy, F.

    2009-05-01

    Five shallow borehole seismic stations were installed to monitor microearthquake activities in a carbonate oil field in northern Oman since 1999. This shallow network of seismic station operated continuously until 2002 after which intermittent seismic recording took place due to lack of maintenance and failure of some stations. The objectives of the study are to determine the microseismic parameters in the oil field and to determine the spatial and temporal distribution of these events to evaluate possible triggering mechanism. Well over 400 microearthquakes per year were recorded in the first three years of operation and after that the level of seismic recording fell to less than 200 microearthquakes per year due to failure of some stations. In March 2008, temporary seismic experiment consisting of five near surface seismic stations were installed in the oil field to augment the shallow network station and to evaluate surface installment of seismic instrument to monitor microseismic activities. It has been recognized that microearthquakes data such as size, spatial, and temporal distribution provide information on the pressure waves initiated by either production of or injection of fluids into reservoirs. A total of 44 local microearthquake events were analyzed and located during the temporary seismic stations deployment using a non-linear location software that allows the use of variable accurate velocity model of the subsurface. The events location is confined to oil field reservoir boundary during the recording period and more events occurring at shallow depth. The correlation coefficient between gas production and number of events is the higher compared with the oil production or water injection. The focal plane solution for the largest event in the sequence indicates normal faulting with extensional stress consistent with the existing mapped normal faults in the oil field. Microseismic signal clearly detected by the collocated sensors of the near surface

  20. Remote Borehole Strainmeter Sites: Power system optimization improves data quality and increases equipment uptime

    NASA Astrophysics Data System (ADS)

    Pyatt, C.; Van Boskirk, E.; Gallaher, W.; Hodgkinson, K. M.; Henderson, D. B.; Gottlieb, M. H.; Johnson, W.; Fox, O.; Mencin, D.; Mattioli, G.

    2012-12-01

    The Earthscope Plate Boundary Observatory (PBO) Borehole strainmeter network consists of 74 sites, spanning the west coast of North America from Anza, California to Vancouver Island, British Columbia. Several instruments are installed at each site (including Gladwin Tensor Strainmeter, 3-component geophone, barometer, and rain gauge), with associated data storage and communications equipment. Selected sites also are co-located with high-precision GPS, tiltmeter, pore pressure sensor and metpack. The peak load for a site with VSAT communications is approximately 65W. Most sites are AC powered with battery backup systems. 21 sites are located in remote areas where AC power is unavailable; of these, 18 use solar panels and batteries as the primary power source. During O&M phase of PBO, two issues have brought the borehole solar sites into focus. First, most solar sites cannot continuously operate throughout the winter months because of inclement weather and local topography that blocks the solar array, which results in data loss. Second, high frequency noise is introduced into the instrument data stream by the solar charging system. Reducing noise levels at higher frequencies would decrease the detection threshold for short term transients, such as aseismic creep events, thus allowing researchers to leverage the overlap between simultaneous seismometer and strainmeter observations. Several improvements have been made to optimize the power system as well as decrease noise. TriStar TS-MPPT-60 solar controllers have been installed, which optimize solar flux by tracking and responding to the solar array maximum power point. The battery charge algorithm is designed to provide gains of up to 15% efficiency during winter months. In addition, the new solar controllers have been engineered to limit noise, and also feature remote network interfaces and data logging capability. For those sites where topography impacts the function of the solar power system, methanol fuel cells

  1. Sampling technology for gas hydrates by borehole bottom freezing

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Sun, Youhong; Gao, Ke; Liu, Baochang; Yu, Ping; Ma, Yinlong; Yang, Yang

    2014-05-01

    Exploiting gas hydrate is based on sample drilling, the most direct method to evaluate gas hydrates. At present, the pressure-tight core barrel is a main truth-preserving core sampling tool. This paper puts forward a new gas hydrate-borehole bottom freezing sampling technique. The new sampling technique includes three key components: sampler by borehole bottom freezing, mud cooling system and low temperature mud system. The sampler for gas hydrates by borehole bottom freezing presents a novel approach to the in-situ sampling of gas hydrate. This technique can significantly reduce the sampling pressure and prevent decomposition of the hydrate samples due to the external cold source which may freeze the hydrate cores on the bottom of borehole. The freezing sampler was designed and built based on its thermal-mechanical properties and structure, which has a single action mechanism, control mechanism and freezing mechanism. The technique was tested with a trial of core drilling. Results demonstrate that the new technique can be applied to obtain freezing samples from the borehole bottom. In the sampling process of gas hydrate, mud needs to be kept at a low temperature state to prevent the in-situ decomposition of the hydrate if the temperature of mud is too high. Mud cooling system is an independent system for lowing the temperature of mud that returns to the surface. It can cool mud rapidly, maintain its low temperature steadily, and ensure the temperature of the inlet well mud to meet the gas hydrate drilling operation requirement. The mud cooling system has been applied to the drilling engineering project in the Qilian mountain permafrost in northwest China, and achieved the gas hydrates in permafrost. The ordinary mud could not meet the requirements of good performance at low temperature. Low temperature mud system for NaCl and KCl is developed, whose resistance to the temperature is as low as 20 below zero.In-situ sampling of gas hydrates can be achieved through

  2. Identification of water-bearing zones by the use of geophysical logs and borehole television surveys, collected February to September 1997, at the Former Naval Air Warfare Center, Warminster, Bucks County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.

    1998-01-01

    Between February 1997 and September 1997, 10 monitor wells were drilled near the site of the former Naval Air Warfare Center, Warminster, Bucks County, Pa., to monitor water levels and sample ground-water contaminants in the shallow, intermediate, and deep water-bearing zones. The sampling will determine the horizontal and vertical distribution of contaminated ground water migrating from known or suspected contaminant sources. Four wells were drilled north of the property adjacent to Area A, three wells along strike located on Lewis Drive, and three wells directly down dip on Ivyland Road. Well depths range from 69 feet to 300 feet below land surface. Borehole-geophysical logging and television surveys were used to identify water-bearing zones so that appropriate intervals could be screened in each monitor well. Geophysical logs were obtained at the 10 monitor wells. Borehole television surveys were obtained at the four monitor wells adjacent to Area A. Caliper and borehole television surveys were used to locate fractures, inflections on fluidtemperature and fluid-resistivity logs were used to locate possible water-bearing fractures, and heatpulse- flowmeter measurements verified these locations. Natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, borehole television surveys, and driller?s logs, all wells were screened such that water-level fluctuations could be monitored and water samples collected from discrete water-bearing zones in each borehole.

  3. Sandia Borehole Plugging Program for the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect

    Christensen, C. L.

    1980-01-01

    This paper presents the current Borehole Plugging Program (BHP) at Sandia National Laboratories and addresses the four major functional tasks considered necessary for a successful program: (1) project management, including methods to identify, design, and control needed experimentation; (2) identification of candidate materials, emphasizing cement-based products as the most advanced alternatives due to the extensive existing technology base, but recognizing the potential application of alternate materials; (3) development of test instrumentation based on utilization of existing techniques, evaluation of their adequacy, and identifying modifications necessary to improve effectiveness; (4) field test program, which includes testing and verification of plug performance. The scope of the current program on wellbores, cementitious grouts, and available technology is compared to planned extension to shafts and drifts, alternate materials, and improved instrumentation. The relationship of this program with assessments of long-term suitability performed in the geochemical program is presented. A brief presentation of current and planned field tests is given along with projections for future activities and results.

  4. Quantification of large vertical tree roots with borehole radar

    NASA Astrophysics Data System (ADS)

    Butnor, J. R.; Johnsen, K. H.; Wikström, P.; Lundmark, T.; Linder, S.

    2004-12-01

    Ground-penetrating radar can be used to detect tree roots provided there is sufficient electromagnetic contrast to separate roots from soil. Forest researchers need root biomass, distribution and architecture data to assess the effects of forest management practices on productivity and resource allocation in trees. Ground-penetrating radar is a non-destructive alternative to laborious excavations that are commonly employed. Tree roots are not ideal subjects for radar studies; clutter from non-target materials can degrade the utility of GPR profiles. On amenable soils, rapid root biomass surveys provide valuable information in a short period time, though some destructive ground-truthing may be required. Surface-based GPR can provide excellent resolution of lateral roots. However, some forest trees have significant allocation to large vertical taproots roots (i.e. loblolly pine, Pinus taeda L., longleaf pine, Pinus palustris Mill.), which cannot be accurately assessed by surface measures. A collaborative project between the USDA Forest Service, Southern Research Station, Radarteam AB and the Swedish Experimental Forest system was undertaken in 2003 to assess the potential of high-frequency borehole radar to detect vertical near surface reflectors (0-2 m). A variety of borehole methods were assessed to identify the most promising technique to image large vertical roots. We used a 1000 mhz transducer (Radarteam tubewave-1000) along with a GSSI ground-penetrating radar unit (Sir-20) to collect reflective data in boreholes adjacent to trees as well as cross-hole travel time measurements. This research was conducted near Vindeln in northern Sweden in August 2003. Six trees (Pinus sylvestris) whose DBH ranged from approximately 20-60 cm were intensively measured to provide information on a variety of size classes. On either side of each tree a 5 cm diameter hole was excavated to a depth of 2 m with a soil auger. One antenna was configured as a transmitter (Tx), the other

  5. The case study of drillbit and borehole frozen water of the subglacial Lake Vostok, East Antarctica for microbial content

    NASA Astrophysics Data System (ADS)

    Bulat, Sergey; Doronin, Maxim; Dominique, Marie; Lipenkov, Vladimir; Lukin, Valery; Karlov, Denis; Demchenko, Leonid; Khilchenko, Margarita

    The objective was to estimate microbial content and diversity in the subglacial Lake Vostok (buried beneath 4-km thick East Antarctic ice sheet) by studying the uppermost water layer which entered the borehole upon lake entry (February 5, 2012) and then shortly frozen within. The samples of so-called drillbit water frozen on a drill bit upon lake enter (RAE57) along with re-drilled so-called borehole-frozen water (RAE58) were provided for the study with the ultimate goal to discover the life in this extreme icy environment. The comprehensive analyses (constrained by Ancient DNA research criteria) of the first lake water samples - drillbit- (one sample) and borehole-frozen (3 different depths 5G-2N-3425, 3429 et 3450m), are nearly got finished. If the drillbit water sample was heavily polluted with drill fluid (at ratio 1:1), re-drilled borehole-frozen samples were proved to be rather clean but still strongly smelling kerosene and containing numerous micro-droplets of drill fluid making the ice non-transparent. The cell concentrations measured by flow cytofluorometry showed 167 cells per ml in the drillbit water sample while in borehole-frozen samples ranged from 5.5 (full-cylinder 3429m deep frozen water ice core) to 38 cells per ml (freeze-centre of 3450m deep moon-shape ice core). DNA analyses came up with total 44 bacterial phylotypes discovered by sequencing of different regions (v3-v5, v4-v8, v4-v6 et full-gene) of 16S rRNA genes. Amongst them all but two were considered to be contaminants (were present in our contaminant library, including drill fluid findings). The 1st remaining phylotype successfully passing all contamination criteria proved to be hitherto-unknown type of bacterium (group of clones, 3 allelic variants) showing less than 86% similarity with known taxa. Its phylogenetic assignment to bacterial divisions or lineages was also unsuccessful despite of the RDP has classified it belonging to OD1 uncultured Candidate Division. The 2nd phylotype was

  6. On the feasibility of borehole-to-surface electromagnetics for monitoring CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Wilson, G. A.; Zhdanov, M. S.; Hibbs, A. D.; Black, N.; Gribenko, A. V.; Cuma, M.; Agundes, A.; Eiskamp, G.

    2012-12-01

    Carbon capture and storage (CCS) projects rely on storing supercritical CO2 in deep saline reservoirs where buoyancy forces drive the injected CO2 upward into the aquifer until a seal is reached. The permanence of the sequestration depends entirely on the long-term geological integrity of the seal. Active geophysical monitoring of the sequestration is critical for informing CO2 monitoring, account