Sample records for deep brain areas

  1. Computational analysis of transcranial magnetic stimulation in the presence of deep brain stimulation probes

    NASA Astrophysics Data System (ADS)

    Syeda, F.; Holloway, K.; El-Gendy, A. A.; Hadimani, R. L.

    2017-05-01

    Transcranial Magnetic Stimulation is an emerging non-invasive treatment for depression, Parkinson's disease, and a variety of other neurological disorders. Many Parkinson's patients receive the treatment known as Deep Brain Stimulation, but often require additional therapy for speech and swallowing impairment. Transcranial Magnetic Stimulation has been explored as a possible treatment by stimulating the mouth motor area of the brain. We have calculated induced electric field, magnetic field, and temperature distributions in the brain using finite element analysis and anatomically realistic heterogeneous head models fitted with Deep Brain Stimulation leads. A Figure of 8 coil, current of 5000 A, and frequency of 2.5 kHz are used as simulation parameters. Results suggest that Deep Brain Stimulation leads cause surrounding tissues to experience slightly increased E-field (Δ Emax =30 V/m), but not exceeding the nominal values induced in brain tissue by Transcranial Magnetic Stimulation without leads (215 V/m). The maximum temperature in the brain tissues surrounding leads did not change significantly from the normal human body temperature of 37 °C. Therefore, we ascertain that Transcranial Magnetic Stimulation in the mouth motor area may stimulate brain tissue surrounding Deep Brain Stimulation leads, but will not cause tissue damage.

  2. Stereotactically Standard Areas: Applied Mathematics in the Service of Brain Targeting in Deep Brain Stimulation.

    PubMed

    Mavridis, Ioannis N

    2017-12-11

    The concept of stereotactically standard areas (SSAs) within human brain nuclei belongs to the knowledge of the modern field of stereotactic brain microanatomy. These are areas resisting the individual variability of the nuclear location in stereotactic space. This paper summarizes the current knowledge regarding SSAs. A mathematical formula of SSAs was recently invented, allowing for their robust, reproducible, and accurate application to laboratory studies and clinical practice. Thus, SSAs open new doors for the application of stereotactic microanatomy to highly accurate brain targeting, which is mainly useful for minimally invasive neurosurgical procedures, such as deep brain stimulation.

  3. Brain networks modulated by subthalamic nucleus deep brain stimulation.

    PubMed

    Accolla, Ettore A; Herrojo Ruiz, Maria; Horn, Andreas; Schneider, Gerd-Helge; Schmitz-Hübsch, Tanja; Draganski, Bogdan; Kühn, Andrea A

    2016-09-01

    Deep brain stimulation of the subthalamic nucleus is an established treatment for the motor symptoms of Parkinson's disease. Given the frequent occurrence of stimulation-induced affective and cognitive adverse effects, a better understanding about the role of the subthalamic nucleus in non-motor functions is needed. The main goal of this study is to characterize anatomical circuits modulated by subthalamic deep brain stimulation, and infer about the inner organization of the nucleus in terms of motor and non-motor areas. Given its small size and anatomical intersubject variability, functional organization of the subthalamic nucleus is difficult to investigate in vivo with current methods. Here, we used local field potential recordings obtained from 10 patients with Parkinson's disease to identify a subthalamic area with an analogous electrophysiological signature, namely a predominant beta oscillatory activity. The spatial accuracy was improved by identifying a single contact per macroelectrode for its vicinity to the electrophysiological source of the beta oscillation. We then conducted whole brain probabilistic tractography seeding from the previously identified contacts, and further described connectivity modifications along the macroelectrode's main axis. The designated subthalamic 'beta' area projected predominantly to motor and premotor cortical regions additional to connections to limbic and associative areas. More ventral subthalamic areas showed predominant connectivity to medial temporal regions including amygdala and hippocampus. We interpret our findings as evidence for the convergence of different functional circuits within subthalamic nucleus' portions deemed to be appropriate as deep brain stimulation target to treat motor symptoms in Parkinson's disease. Potential clinical implications of our study are illustrated by an index case where deep brain stimulation of estimated predominant non-motor subthalamic nucleus induced hypomanic behaviour. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Functional correlates of the therapeutic and adverse effects evoked by thalamic stimulation for essential tremor

    PubMed Central

    Gibson, William S.; Jo, Hang Joon; Testini, Paola; Cho, Shinho; Felmlee, Joel P.; Welker, Kirk M.; Klassen, Bryan T.; Min, Hoon-Ki

    2016-01-01

    Deep brain stimulation is an established neurosurgical therapy for movement disorders including essential tremor and Parkinson’s disease. While typically highly effective, deep brain stimulation can sometimes yield suboptimal therapeutic benefit and can cause adverse effects. In this study, we tested the hypothesis that intraoperative functional magnetic resonance imaging could be used to detect deep brain stimulation-evoked changes in functional and effective connectivity that would correlate with the therapeutic and adverse effects of stimulation. Ten patients receiving deep brain stimulation of the ventralis intermedius thalamic nucleus for essential tremor underwent functional magnetic resonance imaging during stimulation applied at a series of stimulation localizations, followed by evaluation of deep brain stimulation-evoked therapeutic and adverse effects. Correlations between the therapeutic effectiveness of deep brain stimulation (3 months postoperatively) and deep brain stimulation-evoked changes in functional and effective connectivity were assessed using region of interest-based correlation analysis and dynamic causal modelling, respectively. Further, we investigated whether brain regions might exist in which activation resulting from deep brain stimulation might correlate with the presence of paraesthesias, the most common deep brain stimulation-evoked adverse effect. Thalamic deep brain stimulation resulted in activation within established nodes of the tremor circuit: sensorimotor cortex, thalamus, contralateral cerebellar cortex and deep cerebellar nuclei (FDR q < 0.05). Stimulation-evoked activation in all these regions of interest, as well as activation within the supplementary motor area, brainstem, and inferior frontal gyrus, exhibited significant correlations with the long-term therapeutic effectiveness of deep brain stimulation (P < 0.05), with the strongest correlation (P < 0.001) observed within the contralateral cerebellum. Dynamic causal modelling revealed a correlation between therapeutic effectiveness and attenuated within-region inhibitory connectivity in cerebellum. Finally, specific subregions of sensorimotor cortex were identified in which deep brain stimulation-evoked activation correlated with the presence of unwanted paraesthesias. These results suggest that thalamic deep brain stimulation in tremor likely exerts its effects through modulation of both olivocerebellar and thalamocortical circuits. In addition, our findings indicate that deep brain stimulation-evoked functional activation maps obtained intraoperatively may contain predictive information pertaining to the therapeutic and adverse effects induced by deep brain stimulation. PMID:27329768

  5. Brain organization and specialization in deep-sea chondrichthyans.

    PubMed

    Yopak, Kara E; Montgomery, John C

    2008-01-01

    Chondrichthyans occupy a basal place in vertebrate evolution and offer a relatively unexplored opportunity to study the evolution of vertebrate brains. This study examines the brain morphology of 22 species of deep-sea sharks and holocephalans, in relation to both phylogeny and ecology. Both relative brain size (expressed as residuals) and the relative development of the five major brain areas (telencephalon, diencephalon, mesencephalon, cerebellum, and medulla) were assessed. The cerebellar-like structures, which receive projections from the electroreceptive and lateral line organs, were also examined as a discrete part of the medulla. Although the species examined spanned three major chondrichthyan groupings (Squalomorphii, Galeomorphii, Holocephali), brain size and the relative development of the major brain areas did not track phylogenetic groupings. Rather, a hierarchical cluster analysis performed on the deep-sea sharks and holocephalans shows that these species all share the common characteristics of a relatively reduced telencephalon and smooth cerebellar corpus, as well as extreme relative enlargement of the medulla, specifically the cerebellar-like lobes. Although this study was not a functional analysis, it provides evidence that brain variation in deep-sea chondichthyans shows adaptive patterns in addition to underlying phylogenetic patterns, and that particular brain patterns might be interpreted as 'cerebrotypes'. (c) 2008 S. Karger AG, Basel

  6. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens

    PubMed Central

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-01-01

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse. PMID:27327255

  7. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease.

    PubMed

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-05-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the possibility that cortical connectivity with the subthalamic nucleus in the high and low beta bands may reflect coupling mediated predominantly by the hyperdirect and indirect pathways to subthalamic nucleus, respectively, and that subthalamic nucleus deep brain stimulation predominantly suppresses the former. Yet only the change in strength of local subthalamic nucleus oscillations correlates with the degree of improvement during deep brain stimulation, compatible with the current view that a strengthened hyperdirect pathway is a prerequisite for locally generated beta activity but that it is the severity of the latter that may determine or index motor impairment. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  8. Identification of autism spectrum disorder using deep learning and the ABIDE dataset.

    PubMed

    Heinsfeld, Anibal Sólon; Franco, Alexandre Rosa; Craddock, R Cameron; Buchweitz, Augusto; Meneguzzi, Felipe

    2018-01-01

    The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model.

  9. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease

    PubMed Central

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir

    2016-01-01

    Abstract Chronic dopamine depletion in Parkinson’s disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus–cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the possibility that cortical connectivity with the subthalamic nucleus in the high and low beta bands may reflect coupling mediated predominantly by the hyperdirect and indirect pathways to subthalamic nucleus, respectively, and that subthalamic nucleus deep brain stimulation predominantly suppresses the former. Yet only the change in strength of local subthalamic nucleus oscillations correlates with the degree of improvement during deep brain stimulation, compatible with the current view that a strengthened hyperdirect pathway is a prerequisite for locally generated beta activity but that it is the severity of the latter that may determine or index motor impairment. PMID:27017189

  10. Tractography patterns of subthalamic nucleus deep brain stimulation.

    PubMed

    Vanegas-Arroyave, Nora; Lauro, Peter M; Huang, Ling; Hallett, Mark; Horovitz, Silvina G; Zaghloul, Kareem A; Lungu, Codrin

    2016-04-01

    Deep brain stimulation therapy is an effective symptomatic treatment for Parkinson's disease, yet the precise mechanisms responsible for its therapeutic effects remain unclear. Although the targets of deep brain stimulation are grey matter structures, axonal modulation is known to play an important role in deep brain stimulation's therapeutic mechanism. Several white matter structures in proximity to the subthalamic nucleus have been implicated in the clinical benefits of deep brain stimulation for Parkinson's disease. We assessed the connectivity patterns that characterize clinically beneficial electrodes in Parkinson's disease patients, after deep brain stimulation of the subthalamic nucleus. We evaluated 22 patients with Parkinson's disease (11 females, age 57 ± 9.1 years, disease duration 13.3 ± 6.3 years) who received bilateral deep brain stimulation of the subthalamic nucleus at the National Institutes of Health. During an initial electrode screening session, one month after deep brain stimulation implantation, the clinical benefits of each contact were determined. The electrode was localized by coregistering preoperative magnetic resonance imaging and postoperative computer tomography images and the volume of tissue activated was estimated from stimulation voltage and impedance. Brain connectivity for the volume of tissue activated of deep brain stimulation contacts was assessed using probabilistic tractography with diffusion-tensor data. Areas most frequently connected to clinically effective contacts included the thalamus, substantia nigra, brainstem and superior frontal gyrus. A series of discriminant analyses demonstrated that the strength of connectivity to the superior frontal gyrus and the thalamus were positively associated with clinical effectiveness. The connectivity patterns observed in our study suggest that the modulation of white matter tracts directed to the superior frontal gyrus and the thalamus is associated with favourable clinical outcomes and may contribute to the therapeutic effects of deep brain stimulation. Our method can be further developed to reliably identify effective deep brain stimulation contacts and aid in the programming process. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Deep brain stimulation during early adolescence prevents microglial alterations in a model of maternal immune activation.

    PubMed

    Hadar, Ravit; Dong, Le; Del-Valle-Anton, Lucia; Guneykaya, Dilansu; Voget, Mareike; Edemann-Callesen, Henriette; Schweibold, Regina; Djodari-Irani, Anais; Goetz, Thomas; Ewing, Samuel; Kettenmann, Helmut; Wolf, Susanne A; Winter, Christine

    2017-07-01

    In recent years schizophrenia has been recognized as a neurodevelopmental disorder likely involving a perinatal insult progressively affecting brain development. The poly I:C maternal immune activation (MIA) rodent model is considered as a neurodevelopmental model of schizophrenia. Using this model we and others demonstrated the association between neuroinflammation in the form of altered microglia and a schizophrenia-like endophenotype. Therapeutic intervention using the anti-inflammatory drug minocycline affected altered microglia activation and was successful in the adult offspring. However, less is known about the effect of preventive therapeutic strategies on microglia properties. Previously we found that deep brain stimulation of the medial prefrontal cortex applied pre-symptomatically to adolescence MIA rats prevented the manifestation of behavioral and structural deficits in adult rats. We here studied the effects of deep brain stimulation during adolescence on microglia properties in adulthood. We found that in the hippocampus and nucleus accumbens, but not in the medial prefrontal cortex, microglial density and soma size were increased in MIA rats. Pro-inflammatory cytokine mRNA was unchanged in all brain areas before and after implantation and stimulation. Stimulation of either the medial prefrontal cortex or the nucleus accumbens normalized microglia density and soma size in main projection areas including the hippocampus and in the area around the electrode implantation. We conclude that in parallel to an alleviation of the symptoms in the rat MIA model, deep brain stimulation has the potential to prevent the neuroinflammatory component in this disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Encoding-related brain activity during deep processing of verbal materials: a PET study.

    PubMed

    Fujii, Toshikatsu; Okuda, Jiro; Tsukiura, Takashi; Ohtake, Hiroya; Suzuki, Maki; Kawashima, Ryuta; Itoh, Masatoshi; Fukuda, Hiroshi; Yamadori, Atsushi

    2002-12-01

    The recent advent of neuroimaging techniques provides an opportunity to examine brain regions related to a specific memory process such as episodic memory encoding. There is, however, a possibility that areas active during an assumed episodic memory encoding task, compared with a control task, involve not only areas directly relevant to episodic memory encoding processes but also areas associated with other cognitive processes for on-line information. We used positron emission tomography (PET) to differentiate these two kinds of regions. Normal volunteers were engaged in deep (semantic) or shallow (phonological) processing of new or repeated words during PET. Results showed that deep processing, compared with shallow processing, resulted in significantly better recognition performance and that this effect was associated with activation of various brain areas. Further analyses revealed that there were regions directly relevant to episodic memory encoding in the anterior part of the parahippocampal gyrus, inferior frontal gyrus, supramarginal gyrus, anterior cingulate gyrus, and medial frontal lobe in the left hemisphere. Our results demonstrated that several regions, including the medial temporal lobe, play a role in episodic memory encoding.

  13. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics

    NASA Astrophysics Data System (ADS)

    Chen, Shuo; Weitemier, Adam Z.; Zeng, Xiao; He, Linmeng; Wang, Xiyu; Tao, Yanqiu; Huang, Arthur J. Y.; Hashimotodani, Yuki; Kano, Masanobu; Iwasaki, Hirohide; Parajuli, Laxmi Kumar; Okabe, Shigeo; Teh, Daniel B. Loong; All, Angelo H.; Tsutsui-Kimura, Iku; Tanaka, Kenji F.; Liu, Xiaogang; McHugh, Thomas J.

    2018-02-01

    Optogenetics has revolutionized the experimental interrogation of neural circuits and holds promise for the treatment of neurological disorders. It is limited, however, because visible light cannot penetrate deep inside brain tissue. Upconversion nanoparticles (UCNPs) absorb tissue-penetrating near-infrared (NIR) light and emit wavelength-specific visible light. Here, we demonstrate that molecularly tailored UCNPs can serve as optogenetic actuators of transcranial NIR light to stimulate deep brain neurons. Transcranial NIR UCNP-mediated optogenetics evoked dopamine release from genetically tagged neurons in the ventral tegmental area, induced brain oscillations through activation of inhibitory neurons in the medial septum, silenced seizure by inhibition of hippocampal excitatory cells, and triggered memory recall. UCNP technology will enable less-invasive optical neuronal activity manipulation with the potential for remote therapy.

  14. Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN).

    PubMed

    Iqbal, Sajid; Ghani, M Usman; Saba, Tanzila; Rehman, Amjad

    2018-04-01

    A tumor could be found in any area of the brain and could be of any size, shape, and contrast. There may exist multiple tumors of different types in a human brain at the same time. Accurate tumor area segmentation is considered primary step for treatment of brain tumors. Deep Learning is a set of promising techniques that could provide better results as compared to nondeep learning techniques for segmenting timorous part inside a brain. This article presents a deep convolutional neural network (CNN) to segment brain tumors in MRIs. The proposed network uses BRATS segmentation challenge dataset which is composed of images obtained through four different modalities. Accordingly, we present an extended version of existing network to solve segmentation problem. The network architecture consists of multiple neural network layers connected in sequential order with the feeding of Convolutional feature maps at the peer level. Experimental results on BRATS 2015 benchmark data thus show the usability of the proposed approach and its superiority over the other approaches in this area of research. © 2018 Wiley Periodicals, Inc.

  15. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial.

    PubMed

    Weaver, Frances M; Follett, Kenneth; Stern, Matthew; Hur, Kwan; Harris, Crystal; Marks, William J; Rothlind, Johannes; Sagher, Oren; Reda, Domenic; Moy, Claudia S; Pahwa, Rajesh; Burchiel, Kim; Hogarth, Penelope; Lai, Eugene C; Duda, John E; Holloway, Kathryn; Samii, Ali; Horn, Stacy; Bronstein, Jeff; Stoner, Gatana; Heemskerk, Jill; Huang, Grant D

    2009-01-07

    Deep brain stimulation is an accepted treatment for advanced Parkinson disease (PD), although there are few randomized trials comparing treatments, and most studies exclude older patients. To compare 6-month outcomes for patients with PD who received deep brain stimulation or best medical therapy. Randomized controlled trial of patients who received either deep brain stimulation or best medical therapy, stratified by study site and patient age (< 70 years vs > or = 70 years) at 7 Veterans Affairs and 6 university hospitals between May 2002 and October 2005. A total of 255 patients with PD (Hoehn and Yahr stage > or = 2 while not taking medications) were enrolled; 25% were aged 70 years or older. The final 6-month follow-up visit occurred in May 2006. Bilateral deep brain stimulation of the subthalamic nucleus (n = 60) or globus pallidus (n = 61). Patients receiving best medical therapy (n = 134) were actively managed by movement disorder neurologists. The primary outcome was time spent in the "on" state (good motor control with unimpeded motor function) without troubling dyskinesia, using motor diaries. Other outcomes included motor function, quality of life, neurocognitive function, and adverse events. Patients who received deep brain stimulation gained a mean of 4.6 h/d of on time without troubling dyskinesia compared with 0 h/d for patients who received best medical therapy (between group mean difference, 4.5 h/d [95% CI, 3.7-5.4 h/d]; P < .001). Motor function improved significantly (P < .001) with deep brain stimulation vs best medical therapy, such that 71% of deep brain stimulation patients and 32% of best medical therapy patients experienced clinically meaningful motor function improvements (> or = 5 points). Compared with the best medical therapy group, the deep brain stimulation group experienced significant improvements in the summary measure of quality of life and on 7 of 8 PD quality-of-life scores (P < .001). Neurocognitive testing revealed small decrements in some areas of information processing for patients receiving deep brain stimulation vs best medical therapy. At least 1 serious adverse event occurred in 49 deep brain stimulation patients and 15 best medical therapy patients (P < .001), including 39 adverse events related to the surgical procedure and 1 death secondary to cerebral hemorrhage. In this randomized controlled trial of patients with advanced PD, deep brain stimulation was more effective than best medical therapy in improving on time without troubling dyskinesias, motor function, and quality of life at 6 months, but was associated with an increased risk of serious adverse events. clinicaltrials.gov Identifier: NCT00056563.

  16. Deep Brain Stimulation

    PubMed Central

    Lyketsos, Constantine G.; Pendergrass, Jo Cara; Lozano, Andres M.

    2012-01-01

    Recent studies have identified an association between memory deficits and defects of the integrated neuronal cortical areas known collectively as the default mode network. It is conceivable that the amyloid deposition or other molecular abnormalities seen in patients with Alzheimer’s disease may interfere with this network and disrupt neuronal circuits beyond the localized brain areas. Therefore, Alzheimer’s disease may be both a degenerative disease and a broader system-level disorder affecting integrated neuronal pathways involved in memory. In this paper, we describe the rationale and provide some evidence to support the study of deep brain stimulation of the hippocampal fornix as a novel treatment to improve neuronal circuitry within these integrated networks and thereby sustain memory function in early Alzheimer’s disease. PMID:23346514

  17. Novel Intrinsic Ignition Method Measuring Local-Global Integration Characterizes Wakefulness and Deep Sleep

    PubMed Central

    Tagliazucchi, Enzo; Sanjuán, Ana

    2017-01-01

    Abstract A precise definition of a brain state has proven elusive. Here, we introduce the novel local-global concept of intrinsic ignition characterizing the dynamical complexity of different brain states. Naturally occurring intrinsic ignition events reflect the capability of a given brain area to propagate neuronal activity to other regions, giving rise to different levels of integration. The ignitory capability of brain regions is computed by the elicited level of integration for each intrinsic ignition event in each brain region, averaged over all events. This intrinsic ignition method is shown to clearly distinguish human neuroimaging data of two fundamental brain states (wakefulness and deep sleep). Importantly, whole-brain computational modelling of this data shows that at the optimal working point is found where there is maximal variability of the intrinsic ignition across brain regions. Thus, combining whole brain models with intrinsic ignition can provide novel insights into underlying mechanisms of brain states. PMID:28966977

  18. Novel Intrinsic Ignition Method Measuring Local-Global Integration Characterizes Wakefulness and Deep Sleep.

    PubMed

    Deco, Gustavo; Tagliazucchi, Enzo; Laufs, Helmut; Sanjuán, Ana; Kringelbach, Morten L

    2017-01-01

    A precise definition of a brain state has proven elusive. Here, we introduce the novel local-global concept of intrinsic ignition characterizing the dynamical complexity of different brain states. Naturally occurring intrinsic ignition events reflect the capability of a given brain area to propagate neuronal activity to other regions, giving rise to different levels of integration. The ignitory capability of brain regions is computed by the elicited level of integration for each intrinsic ignition event in each brain region, averaged over all events. This intrinsic ignition method is shown to clearly distinguish human neuroimaging data of two fundamental brain states (wakefulness and deep sleep). Importantly, whole-brain computational modelling of this data shows that at the optimal working point is found where there is maximal variability of the intrinsic ignition across brain regions. Thus, combining whole brain models with intrinsic ignition can provide novel insights into underlying mechanisms of brain states.

  19. Fos expression in the rat brain and spinal cord evoked by noxious stimulation to low back muscle and skin.

    PubMed

    Ohtori, S; Takahashi, K; Chiba, T; Takahashi, Y; Yamagata, M; Sameda, H; Moriya, H

    2000-10-01

    Acute noxious stimulation delivered to lumbar muscles and skin of rats was used to study Fos expression patterns in the brain and spinal cord. The present study was conducted to determine the differences in Fos expression in the brain and spinal cord as evoked by stimuli delivered to lumbar muscles and skin in rats. Patients with low back pain sometimes show psychological symptoms, such as quiescence, loss of interest, decreased activities, appetite loss, and restlessness. The pathway of deep somatic pain to the brain has been reported to be different from that of cutaneous pain. However, Fos expression has not been studied in the central nervous systems after stimulation of low back muscles. Rats were injected with 100 L of 5% formalin into the multifidus muscle (deep pain group; n = 10) and into the back skin of the L5 dermatome (cutaneous pain group; n = 10). Two hours after injection, the distribution of Fos-immunoreactive neurons was studied in the brain and spinal cord. Fos-immunoreactive neurons were observed in laminae I-V in the spinal cord in the cutaneous pain group, but they were not seen in lamina II in the deep pain group. In the brain, Fos-immunoreactive neurons were significantly more numerous in the deep pain group than in the cutaneous pain group in the piriform cortex, the accumbens nucleus core, the basolateral nucleus of amygdala, the paraventricular hypothalamic nucleus, the ventral tegmental area, and the ventrolateral periaqueductal gray. The finding that Fos-immunoreactive neurons were absent from lamina II of the spinal cord in the deep pain group is similar to that of the projection pattern of the visceral pain pathway. Fos expression in the ventrolateral periaqueductal gray in the deep pain group may represent a reaction of quiescence and a loss of interest, activities, or appetite. Furthermore, the detection of large numbers of Fos-immunoreactive neurons in the core of accumbens nucleus, basolateral nucleus of amygdala, paraventricular hypothalamic nucleus, and ventral tegmental area in the deep pain group may suggest a dominant reaction of dopaminergic neurons to stress, and a different information processing pathway than from that of cutaneous pain.

  20. Red and NIR light dosimetry in the human deep brain

    NASA Astrophysics Data System (ADS)

    Pitzschke, A.; Lovisa, B.; Seydoux, O.; Zellweger, M.; Pfleiderer, M.; Tardy, Y.; Wagnières, G.

    2015-04-01

    Photobiomodulation (PBM) appears promising to treat the hallmarks of Parkinson’s Disease (PD) in cellular or animal models. We measured light propagation in different areas of PD-relevant deep brain tissue during transcranial, transsphenoidal illumination (at 671 and 808 nm) of a cadaver head and modeled optical parameters of human brain tissue using Monte-Carlo simulations. Gray matter, white matter, cerebrospinal fluid, ventricles, thalamus, pons, cerebellum and skull bone were processed into a mesh of the skull (158 × 201 × 211 voxels; voxel side length: 1 mm). Optical parameters were optimized from simulated and measured fluence rate distributions. The estimated μeff for the different tissues was in all cases larger at 671 than at 808 nm, making latter a better choice for light delivery in the deep brain. Absolute values were comparable to those found in the literature or slightly smaller. The effective attenuation in the ventricles was considerably larger than literature values. Optimization yields a new set of optical parameters better reproducing the experimental data. A combination of PBM via the sphenoid sinus and oral cavity could be beneficial. A 20-fold higher efficiency of light delivery to the deep brain was achieved with ventricular instead of transcranial illumination. Our study demonstrates that it is possible to illuminate deep brain tissues transcranially, transsphenoidally and via different application routes. This opens therapeutic options for sufferers of PD or other cerebral diseases necessitating light therapy.

  1. [Neurological and technical aspects of deep brain stimulation].

    PubMed

    Voges, J; Krauss, J K

    2010-06-01

    Deep brain stimulation (DBS) is an important component of the therapy of movement disorders and has almost completely replaced high-frequency coagulation of brain tissue in stereotactic neurosurgery. Despite the functional efficacy of DBS, which in parts is documented on the highest evidence level, the underlying mechanisms are still not completely understood. According to the current state of knowledge electrophysiological and functional data give evidence that high-frequency DBS has an inhibitory effect around the stimulation electrode whilst at the same time axons entering or leaving the stimulated brain area are excited leading to modulation of neuronal networks. The latter effect modifies pathological discharges of neurons in key structures of the basal ganglia network (e.g. irregular bursting activity, oscillations or synchronization) which are found in particular movement disorders such as Parkinson' s disease or dystonia. The introduction of technical standards, such as the integration of high resolution MRI into computer-assisted treatment planning, in combination with special treatment planning software have contributed significantly to the reduction of severe surgical complications (frequency of intracranial hemorrhaging 1-3%) in recent years. Future developments will address the modification of hardware components of the stimulation system, the evaluation of new brain target areas, the simultaneous stimulation of different brain areas and the assessment of different stimulation paradigms (high-frequency vs low-frequency DBS).

  2. Deep learning for neuroimaging: a validation study.

    PubMed

    Plis, Sergey M; Hjelm, Devon R; Salakhutdinov, Ruslan; Allen, Elena A; Bockholt, Henry J; Long, Jeffrey D; Johnson, Hans J; Paulsen, Jane S; Turner, Jessica A; Calhoun, Vince D

    2014-01-01

    Deep learning methods have recently made notable advances in the tasks of classification and representation learning. These tasks are important for brain imaging and neuroscience discovery, making the methods attractive for porting to a neuroimager's toolbox. Success of these methods is, in part, explained by the flexibility of deep learning models. However, this flexibility makes the process of porting to new areas a difficult parameter optimization problem. In this work we demonstrate our results (and feasible parameter ranges) in application of deep learning methods to structural and functional brain imaging data. These methods include deep belief networks and their building block the restricted Boltzmann machine. We also describe a novel constraint-based approach to visualizing high dimensional data. We use it to analyze the effect of parameter choices on data transformations. Our results show that deep learning methods are able to learn physiologically important representations and detect latent relations in neuroimaging data.

  3. Two-step tunneling technique of deep brain stimulation extension wires-a description.

    PubMed

    Fontaine, Denys; Vandersteen, Clair; Saleh, Christian; von Langsdorff, Daniel; Poissonnet, Gilles

    2013-12-01

    While a significant body of literature exists on the intracranial part of deep brain stimulation surgery, the equally important second part of the intervention related to the subcutaneous tunneling of deep brain stimulation extension wires is rarely described. The tunneling strategy can consist of a single passage of the extension wires from the frontal incision site to the subclavicular area, or of a two-step approach that adds a retro-auricular counter-incision. Each technique harbors the risk of intraoperative and postoperative complications. At our center, we perform a two-step tunneling procedure that we developed based on a cadaveric study. In 125 consecutive patients operated since 2002, we did not encounter any complication related to our tunneling method. Insufficient data exist to fully evaluate the advantages and disadvantages of each tunneling technique. It is of critical importance that authors detail their tunneling modus operandi and report the presence or absence of complications. This gathered data pool may help to formulate a definitive conclusions on the safest method for subcutaneous tunneling of extension wires in deep brain stimulation.

  4. Preoperative DTI and probabilistic tractography in an amputee with deep brain stimulation for lower limb stump pain.

    PubMed

    Owen, S L F; Heath, J; Kringelbach, M L; Stein, J F; Aziz, T Z

    2007-10-01

    This study aimed to find out whether preoperative diffusion tensor imaging (DTI) and probabilistic tractography could help with surgical planning for deep brain stimulation in the periaqueductal/periventricular grey area (PAG/PVG) in a patient with lower leg stump pain. A preoperative DTI was obtained from the patient, who then received DBS surgery in the PAG/PVG area with good pain relief. The postoperative MRI scan showing electrode placement was used to calculate four seed areas to represent the contacts on the Medtronic 3387 electrode. Probabilistic tractography was then performed from the pre-operative DTI image. Tracts were seen to connect to many areas within the pain network from the four different contacts. These initial findings suggest that preoperative DTI scanning and probabilistic tractography may be able to assist surgical planning in the future.

  5. External trial deep brain stimulation device for the application of desynchronizing stimulation techniques.

    PubMed

    Hauptmann, C; Roulet, J-C; Niederhauser, J J; Döll, W; Kirlangic, M E; Lysyansky, B; Krachkovskyi, V; Bhatti, M A; Barnikol, U B; Sasse, L; Bührle, C P; Speckmann, E-J; Götz, M; Sturm, V; Freund, H-J; Schnell, U; Tass, P A

    2009-12-01

    In the past decade deep brain stimulation (DBS)-the application of electrical stimulation to specific target structures via implanted depth electrodes-has become the standard treatment for medically refractory Parkinson's disease and essential tremor. These diseases are characterized by pathological synchronized neuronal activity in particular brain areas. We present an external trial DBS device capable of administering effectively desynchronizing stimulation techniques developed with methods from nonlinear dynamics and statistical physics according to a model-based approach. These techniques exploit either stochastic phase resetting principles or complex delayed-feedback mechanisms. We explain how these methods are implemented into a safe and user-friendly device.

  6. A silicon-based microelectrode array with a microdrive for monitoring brainstem regions of freely moving rats

    NASA Astrophysics Data System (ADS)

    Márton, G.; Baracskay, P.; Cseri, B.; Plósz, B.; Juhász, G.; Fekete, Z.; Pongrácz, A.

    2016-04-01

    Objective. Exploring neural activity behind synchronization and time locking in brain circuits is one of the most important tasks in neuroscience. Our goal was to design and characterize a microelectrode array (MEA) system specifically for obtaining in vivo extracellular recordings from three deep-brain areas of freely moving rats, simultaneously. The target areas, the deep mesencephalic reticular-, pedunculopontine tegmental- and pontine reticular nuclei are related to the regulation of sleep-wake cycles. Approach. The three targeted nuclei are collinear, therefore a single-shank MEA was designed in order to contact them. The silicon-based device was equipped with 3*4 recording sites, located according to the geometry of the brain regions. Furthermore, a microdrive was developed to allow fine actuation and post-implantation relocation of the probe. The probe was attached to a rigid printed circuit board, which was fastened to the microdrive. A flexible cable was designed in order to provide not only electronic connection between the probe and the amplifier system, but sufficient freedom for the movements of the probe as well. Main results. The microdrive was stable enough to allow precise electrode targeting into the tissue via a single track. The microelectrodes on the probe were suitable for recording neural activity from the three targeted brainstem areas. Significance. The system offers a robust solution to provide long-term interface between an array of precisely defined microelectrodes and deep-brain areas of a behaving rodent. The microdrive allowed us to fine-tune the probe location and easily scan through the regions of interest.

  7. Deep brain stimulation for the treatment of uncommon tremor syndromes

    PubMed Central

    Ramirez-Zamora, Adolfo; Okun, Michael S.

    2016-01-01

    ABSTRACT Introduction: Deep brain stimulation (DBS) has become a standard therapy for the treatment of select cases of medication refractory essential tremor and Parkinson’s disease however the effectiveness and long-term outcomes of DBS in other uncommon and complex tremor syndromes has not been well established. Traditionally, the ventralis intermedius nucleus (VIM) of the thalamus has been considered the main target for medically intractable tremors; however alternative brain regions and improvements in stereotactic techniques and hardware may soon change the horizon for treatment of complex tremors. Areas covered: In this article, we conducted a PubMed search using different combinations between the terms ‘Uncommon tremors’, ‘Dystonic tremor’, ‘Holmes tremor’ ‘Midbrain tremor’, ‘Rubral tremor’, ‘Cerebellar tremor’, ‘outflow tremor’, ‘Multiple Sclerosis tremor’, ‘Post-traumatic tremor’, ‘Neuropathic tremor’, and ‘Deep Brain Stimulation/DBS’. Additionally, we examined and summarized the current state of evolving interventions for treatment of complex tremor syndromes. Expert c ommentary: Recently reported interventions for rare tremors include stimulation of the posterior subthalamic area, globus pallidus internus, ventralis oralis anterior/posterior thalamic subnuclei, and the use of dual lead stimulation in one or more of these targets. Treatment should be individualized and dictated by tremor phenomenology and associated clinical features. PMID:27228280

  8. Clinical MRS studies of the brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubesch, B.; Marinier, D.S.; Hetherington, H.P.

    1989-12-01

    Image-guided {sup 31}P and 1H magnetic resonance localized spectroscopy was performed on patients with brain tumors, temporal lobe epilepsy, chronic brain stroke, and deep white matter lesions. Absolute molar concentrations of metabolites, peak area ratios, and pH were obtained. The important findings were that {sup 31}P metabolite concentrations were significantly reduced in tumors, infarcts, and deep white matter lesions. Similarly, {sup 1}H metabolite intensities were reduced in chronic stroke. In the seizure foci of epilepsy patients, in tumors, and in chronic stroke, the pH was more alkaline than the normal pH. Peak area ratios were altered in tumors (reduction ofmore » phosphocreatine/inorganic phosphate) and in chronic stroke (large increases in Cr/NAA and Cho/NAA). Finally, the spectroscopic imaging technique offers a versatile alternative to the single point techniques, producing spectra or images of the spatial distribution of individual {sup 31}P metabolites.« less

  9. Unilateral pedunculopontine stimulation improves falls in Parkinson's disease.

    PubMed

    Moro, Elena; Hamani, Clement; Poon, Yu-Yan; Al-Khairallah, Thamar; Dostrovsky, Jonathan O; Hutchison, William D; Lozano, Andres M

    2010-01-01

    Postural instability and falls are a major source of disability in patients with advanced Parkinson's disease. These problems are currently not well addressed by either pharmacotherapy nor by subthalamic nucleus deep-brain stimulation surgery. The neuroanatomical substrates of posture and gait are poorly understood but a number of important observations suggest a major role for the pedunculopontine nucleus and adjacent areas in the brainstem. We conducted a double-blinded evaluation of unilateral pedunculopontine nucleus deep-brain stimulation in a pilot study in six advanced Parkinson's disease patients with significant gait and postural abnormalities. There was no significant difference in the double-blinded on versus off stimulation Unified Parkinson's Disease Rating Scale motor scores after 3 or 12 months of continuous stimulation and no improvements in the Unified Parkinson's Disease Rating Scale part III scores compared to baseline. In contrast, patients reported a significant reduction in falls in the on and off medication states both at 3 and 12 months after pedunculopontine nucleus deep-brain stimulation as captured in the Unified Parkinson's Disease Rating Scale part II scores. Our results suggest that pedunculopontine nucleus deep-brain stimulation may be effective in preventing falls in patients with advanced Parkinson's disease but that further evaluation of this procedure is required.

  10. Performance on an episodic encoding task yields further insight into functional brain development.

    PubMed

    McAuley, Tara; Brahmbhatt, Shefali; Barch, Deanna M

    2007-01-15

    To further characterize changes in functional brain development that are associated with the emergence of cognitive control, participants 14 to 28 years of age were scanned while performing an episodic encoding task with a levels-of-processing manipulation. Using data from the 12 youngest and oldest participants (endpoint groups), 18 regions were identified that showed group differences in task-related activity as a function of processing depth. One region, located in left inferior frontal gyrus, showed enhanced activity in deep relative to shallow encoding that was larger in magnitude for the older group. Seventeen regions showed enhanced activity in shallow relative to deep encoding that was larger in magnitude for the youngest group. These regions were distributed across a broad network that included both cortical and subcortical areas. Regression analyses using the entire sample showed that age made a significant contribution to the difference in beta weights between deep and shallow encoding for 17 of the 18 identified regions in the direction predicted by the endpoint analysis. We conclude that the patterns of brain activation associated with deep and shallow encoding differ between adolescents and young adults in a manner that is consistent with the interactive specialization account of functional brain development.

  11. Reconfigurable visible nanophotonic switch for optogenetic applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mohanty, Aseema; Li, Qian; Tadayon, Mohammad Amin; Bhatt, Gaurang R.; Cardenas, Jaime; Miller, Steven A.; Kepecs, Adam; Lipson, Michal

    2017-02-01

    High spatiotemporal resolution deep-brain optical excitation for optogenetics would enable activation of specific neural populations and in-depth study of neural circuits. Conventionally, a single fiber is used to flood light into a large area of the brain with limited resolution. The scalability of silicon photonics could enable neural excitation over large areas with single-cell resolution similar to electrical probes. However, active control of these optical circuits has yet to be demonstrated for optogenetics. Here we demonstrate the first active integrated optical switch for neural excitation at 473 nm, enabling control of multiple beams for deep-brain neural stimulation. Using a silicon nitride waveguide platform, we develop a cascaded Mach-Zehnder interferometer (MZI) network located outside the brain to direct light to 8 different grating emitters located at the tip of the neural probe. We use integrated platinum microheaters to induce a local thermo-optic phase shift in the MZI to control the switch output. We measure an ON/OFF extinction ratio of >8dB for a single switch and a switching speed of 20 microseconds. We characterize the optical output of the switch by imaging its excitation of fluorescent dye. Finally, we demonstrate in vivo single-neuron optical activation from different grating emitters using a fully packaged device inserted into a mouse brain. Directly activated neurons showed robust spike firing activities with low first-spike latency and small jitter. Active switching on a nanophotonic platform is necessary for eventually controlling highly-multiplexed reconfigurable optical circuits, enabling high-resolution optical stimulation in deep-brain regions.

  12. Analyzing the dynamics of brain circuits with temperature: design and implementation of a miniature thermoelectric device.

    PubMed

    Aronov, Dmitriy; Fee, Michale S

    2011-04-15

    Traditional lesion or inactivation methods are useful for determining if a given brain area is involved in the generation of a behavior, but not for determining if circuit dynamics in that area control the timing of the behavior. In contrast, localized mild cooling or heating of a brain area alters the speed of neuronal and circuit dynamics and can reveal the role of that area in the control of timing. It has been shown that miniaturized solid-state heat pumps based on the Peltier effect can be useful for analyzing brain dynamics in small freely behaving animals (Long and Fee, 2008). Here we present a theoretical analysis of these devices and a procedure for optimizing their design. We describe the construction and implementation of one device for cooling surface brain areas, such as cortex, and another device for cooling deep brain regions. We also present measurements of the magnitude and localization of the brain temperature changes produced by these two devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Deep Brain Stimulation: A Paradigm Shifting Approach to Treat Parkinson's Disease.

    PubMed

    Hickey, Patrick; Stacy, Mark

    2016-01-01

    Parkinson disease (PD) is a chronic and progressive movement disorder classically characterized by slowed voluntary movements, resting tremor, muscle rigidity, and impaired gait and balance. Medical treatment is highly successful early on, though the majority of people experience significant complications in later stages. In advanced PD, when medications no longer adequately control motor symptoms, deep brain stimulation (DBS) offers a powerful therapeutic alternative. DBS involves the surgical implantation of one or more electrodes into specific areas of the brain, which modulate or disrupt abnormal patterns of neural signaling within the targeted region. Outcomes are often dramatic following DBS, with improvements in motor function and reductions motor complications having been repeatedly demonstrated. Given such robust responses, emerging indications for DBS are being investigated. In parallel with expansions of therapeutic scope, advancements within the areas of neurosurgical technique and the precision of stimulation delivery have recently broadened as well. This review focuses on the revolutionary addition of DBS to the therapeutic armamentarium for PD, and summarizes the technological advancements in the areas of neuroimaging and biomedical engineering intended to improve targeting, programming, and overall management.

  14. Fiber-based tissue identification for electrode placement in deep brain stimulation neurosurgery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    DePaoli, Damon T.; Lapointe, Nicolas; Goetz, Laurent; Parent, Martin; Prudhomme, Michel; Cantin, Léo.; Galstian, Tigran; Messaddeq, Younès.; Côté, Daniel C.

    2016-03-01

    Deep brain stimulation's effectiveness relies on the ability of the stimulating electrode to be properly placed within a specific target area of the brain. Optical guidance techniques that can increase the accuracy of the procedure, without causing any additional harm, are therefore of great interest. We have designed a cheap optical fiber-based device that is small enough to be placed within commercially available DBS stimulating electrodes' hollow cores and that is capable of sensing biological information from the surrounding tissue, using low power white light. With this probe we have shown the ability to distinguish white and grey matter as well as blood vessels, in vitro, in human brain samples and in vivo, in rats. We have also repeated the in vitro procedure with the probe inserted in a DBS stimulating electrode and found the results were in good agreement. We are currently validating a second fiber optic device, with micro-optical components, that will result in label free, molecular level sensing capabilities, using CARS spectroscopy. The final objective will be to use this data in real time, during deep brain stimulation neurosurgery, to increase the safety and accuracy of the procedure.

  15. Left temporal and temporoparietal brain activity depends on depth of word encoding: a magnetoencephalographic study in healthy young subjects.

    PubMed

    Walla, P; Hufnagl, B; Lindinger, G; Imhof, H; Deecke, L; Lang, W

    2001-03-01

    Using a 143-channel whole-head magnetoencephalograph (MEG) we recorded the temporal changes of brain activity from 26 healthy young subjects (14 females) related to shallow perceptual and deep semantic word encoding. During subsequent recognition tests, the subjects had to recognize the previously encoded words which were interspersed with new words. The resulting mean memory performances across all subjects clearly mirrored the different levels of encoding. The grand averaged event-related fields (ERFs) associated with perceptual and semantic word encoding differed significantly between 200 and 550 ms after stimulus onset mainly over left superior temporal and left superior parietal sensors. Semantic encoding elicited higher brain activity than perceptual encoding. Source localization procedures revealed that neural populations of the left temporal and temporoparietal brain areas showed different activity strengths across the whole group of subjects depending on depth of word encoding. We suggest that the higher brain activity associated with deep encoding as compared to shallow encoding was due to the involvement of more neural systems during the processing of visually presented words. Deep encoding required more energy than shallow encoding but for all that led to a better memory performance. Copyright 2001 Academic Press.

  16. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery.

    PubMed

    Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lau, Steven; Lu, Weiguo; Yan, Yulong; Jiang, Steve B; Zhen, Xin; Timmerman, Robert; Nedzi, Lucien; Gu, Xuejun

    2017-01-01

    Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI) datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS) data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs) of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases.

  17. Deep brain stimulation of nucleus accumbens region in alcoholism affects reward processing.

    PubMed

    Heldmann, Marcus; Berding, Georg; Voges, Jürgen; Bogerts, Bernhard; Galazky, Imke; Müller, Ulf; Baillot, Gunther; Heinze, Hans-Jochen; Münte, Thomas F

    2012-01-01

    The influence of bilateral deep brain stimulation (DBS) of the nucleus nucleus (NAcc) on the processing of reward in a gambling paradigm was investigated using H(2)[(15)O]-PET (positron emission tomography) in a 38-year-old man treated for severe alcohol addiction. Behavioral data analysis revealed a less risky, more careful choice behavior under active DBS compared to DBS switched off. PET showed win- and loss-related activations in the paracingulate cortex, temporal poles, precuneus and hippocampus under active DBS, brain areas that have been implicated in action monitoring and behavioral control. Except for the temporal pole these activations were not seen when DBS was deactivated. These findings suggest that DBS of the NAcc may act partially by improving behavioral control.

  18. Targeting the brain: considerations in 332 consecutive patients treated by deep brain stimulation (DBS) for severe neurological diseases.

    PubMed

    Franzini, Angelo; Cordella, Roberto; Messina, Giuseppe; Marras, Carlo Efisio; Romito, Luigi Michele; Albanese, Alberto; Rizzi, Michele; Nardocci, Nardo; Zorzi, Giovanna; Zekaj, Edvin; Villani, Flavio; Leone, Massimo; Gambini, Orsola; Broggi, Giovanni

    2012-12-01

    Deep brain stimulation (DBS) extends the treatment of some severe neurological diseases beyond pharmacological and conservative therapy. Our experience extends the field of DBS beyond the treatment of Parkinson disease and dystonia, including several other diseases such as cluster headache and disruptive behavior. Since 1993, at the Istituto Nazionale Neurologico "Carlo Besta" in Milan, 580 deep brain electrodes were implanted in 332 patients. The DBS targets include Stn, GPi, Voa, Vop, Vim, CM-pf, pHyp, cZi, Nacc, IC, PPN, and Brodmann areas 24 and 25. Three hundred patients are still available for follow-up and therapeutic considerations. DBS gave a new therapeutic chance to these patients affected by severe neurological diseases and in some cases controlled life-threatening pathological conditions, which would otherwise result in the death of the patient such as in status dystonicus, status epilepticus and post-stroke hemiballismus. The balance of DBS in severe neurological disease is strongly positive even if further investigations and studies are needed to search for new applications and refine the selection criteria for the actual indications.

  19. Deep brain stimulation mechanisms: beyond the concept of local functional inhibition.

    PubMed

    Deniau, Jean-Michel; Degos, Bertrand; Bosch, Clémentine; Maurice, Nicolas

    2010-10-01

    Deep brain electrical stimulation has become a recognized therapy in the treatment of a variety of motor disorders and has potentially promising applications in a wide range of neurological diseases including neuropsychiatry. Behavioural observation that electrical high-frequency stimulation of a given brain area induces an effect similar to a lesion suggested a mechanism of functional inhibition. In vitro and in vivo experiments as well as per operative recordings in patients have revealed a variety of effects involving local changes of neuronal excitability as well as widespread effects throughout the connected network resulting from activation of axons, including antidromic activation. Here we review current data regarding the local and network activity changes induced by high-frequency stimulation of the subthalamic nucleus and discuss this in the context of motor restoration in Parkinson's disease. Stressing the important functional consequences of axonal activation in deep brain stimulation mechanisms, we highlight the importance of developing anatomical knowledge concerning the fibre connections of the putative therapeutic targets. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease.

    PubMed

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M; Tan, Huiling; Brown, Peter

    2017-04-01

    Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson's disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson's disease, and helps inform how adaptive deep brain stimulation might best be delivered. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.

  1. Resting state cortical oscillations of patients with Parkinson disease and with and without subthalamic deep brain stimulation: a magnetoencephalography study.

    PubMed

    Cao, Chunyan; Li, Dianyou; Jiang, Tianxiao; Ince, Nuri Firat; Zhan, Shikun; Zhang, Jing; Sha, Zhiyi; Sun, Bomin

    2015-04-01

    In this study, we investigate the modification to cortical oscillations of patients with Parkinson disease (PD) by subthalamic deep brain stimulation (STN-DBS). Spontaneous cortical oscillations of patients with PD were recorded with magnetoencephalography during on and off subthalamic nucleus deep brain stimulation states. Several features such as average frequency, average power, and relative subband power in regions of interest were extracted in the frequency domain, and these features were correlated with Unified Parkinson Disease Rating Scale III evaluation. The same features were also investigated in patients with PD without surgery and healthy controls. Patients with Parkinson disease without surgery compared with healthy controls had a significantly lower average frequency and an increased average power in 1 to 48 Hz range in whole cortex. Higher relative power in theta and simultaneous decrease in beta and gamma over temporal and occipital were also observed in patients with PD. The Unified Parkinson Disease Rating Scale III rigidity score correlated with the average frequency and with the relative power of beta and gamma in frontal areas. During subthalamic nucleus deep brain stimulation, the average frequency increased significantly when stimulation was on compared with off state. In addition, the relative power dropped in delta, whereas it rose in beta over the whole cortex. Through the course of stimulation, the Unified Parkinson Disease Rating Scale III rigidity and tremor scores correlated with the relative power of alpha over left parietal. Subthalamic nucleus deep brain stimulation improves the symptoms of PD by suppressing the synchronization of alpha rhythm in somatomotor region.

  2. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease

    PubMed Central

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M.; Tan, Huiling

    2017-01-01

    Abstract Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson’s disease, elevations in beta activity (13–35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson’s disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson’s disease, and helps inform how adaptive deep brain stimulation might best be delivered. PMID:28334851

  3. Importance of extended spatial coverage for quantitative susceptibility mapping of iron-rich deep gray matter.

    PubMed

    Elkady, Ahmed M; Sun, Hongfu; Wilman, Alan H

    2016-05-01

    Quantitative Susceptibility Mapping (QSM) is an emerging area of brain research with clear application to brain iron studies in deep gray matter. However, acquisition of standard whole brain QSM can be time-consuming. One means to reduce scan time is to use a focal acquisition restricted only to the regions of interest such as deep gray matter. However, the non-local dipole field necessary for QSM reconstruction extends far beyond the structure of interest. We demonstrate the practical implications of these non-local fields on the choice of brain volume for QSM. In an illustrative numerical simulation and then in human brain experiments, we examine the effect on QSM of volume reduction in each dimension. For the globus pallidus, as an example of iron-rich deep gray matter, we demonstrate that substantial errors can arise even when the field-of-view far exceeds the physical structural boundaries. Thus, QSM reconstruction requires a non-local field-of-view prescription to ensure minimal errors. An axial QSM acquisition, centered on the globus pallidus, should encompass at least 76mm in the superior-inferior direction to conserve susceptibility values from the globus pallidus. This dimension exceeds the physical coronal extent of this structure by at least five-fold. As QSM sees wider use in the neuroscience community, its unique requirement for an extended field-of-view needs to be considered. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. MR Anatomy of Deep Brain Nuclei with Special Reference to Specific Diseases and Deep Brain Stimulation Localization

    PubMed Central

    Telford, Ryan; Vattoth, Surjith

    2014-01-01

    Summary Diseases affecting the basal ganglia and deep brain structures vary widely in etiology and include metabolic, infectious, ischemic, and neurodegenerative conditions. Some neurologic diseases, such as Wernicke encephalopathy or pseudohypoparathyroidism, require specific treatments, which if unrecognized could lead to further complications. Other pathologies, such as hypertrophic olivary degeneration, if not properly diagnosed may be mistaken for a primary medullary neoplasm and create unnecessary concern. The deep brain structures are complex and can be difficult to distinguish on routine imaging. It is imperative that radiologists first understand the intrinsic anatomic relationships between the different basal ganglia nuclei and deep brain structures with magnetic resonance (MR) imaging. It is important to understand the "normal" MR signal characteristics, locations, and appearances of these structures. This is essential to recognizing diseases affecting the basal ganglia and deep brain structures, especially since most of these diseases result in symmetrical, and therefore less noticeable, abnormalities. It is also crucial that neurosurgeons correctly identify the deep brain nuclei presurgically for positioning deep brain stimulator leads, the most important being the subthalamic nucleus for Parkinson syndromes and the thalamic ventral intermediate nucleus for essential tremor. Radiologists will be able to better assist clinicians in diagnosis and treatment once they are able to accurately localize specific deep brain structures. PMID:24571832

  5. Differential impact of thalamic versus subthalamic deep brain stimulation on lexical processing.

    PubMed

    Krugel, Lea K; Ehlen, Felicitas; Tiedt, Hannes O; Kühn, Andrea A; Klostermann, Fabian

    2014-10-01

    Roles of subcortical structures in language processing are vague, but, interestingly, basal ganglia and thalamic Deep Brain Stimulation can go along with reduced lexical capacities. To deepen the understanding of this impact, we assessed word processing as a function of thalamic versus subthalamic Deep Brain Stimulation. Ten essential tremor patients treated with thalamic and 14 Parkinson׳s disease patients with subthalamic Deep Brain Stimulation performed an acoustic Lexical Decision Task ON and OFF stimulation. Combined analysis of task performance and event-related potentials allowed the determination of processing speed, priming effects, and N400 as neurophysiological correlate of lexical stimulus processing. 12 age-matched healthy participants acted as control subjects. Thalamic Deep Brain Stimulation prolonged word decisions and reduced N400 potentials. No comparable ON-OFF effects were present in patients with subthalamic Deep Brain Stimulation. In the latter group of patients with Parkinson' disease, N400 amplitudes were, however, abnormally low, whether under active or inactive Deep Brain Stimulation. In conclusion, performance speed and N400 appear to be influenced by state functions, modulated by thalamic, but not subthalamic Deep Brain Stimulation, compatible with concepts of thalamo-cortical engagement in word processing. Clinically, these findings specify cognitive sequels of Deep Brain Stimulation in a target-specific way. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Segmentation of the Globus Pallidus Internus Using Probabilistic Diffusion Tractography for Deep Brain Stimulation Targeting in Parkinson Disease.

    PubMed

    Middlebrooks, E H; Tuna, I S; Grewal, S S; Almeida, L; Heckman, M G; Lesser, E R; Foote, K D; Okun, M S; Holanda, V M

    2018-06-01

    Although globus pallidus internus deep brain stimulation is a widely accepted treatment for Parkinson disease, there is persistent variability in outcomes that is not yet fully understood. In this pilot study, we aimed to investigate the potential role of globus pallidus internus segmentation using probabilistic tractography as a supplement to traditional targeting methods. Eleven patients undergoing globus pallidus internus deep brain stimulation were included in this retrospective analysis. Using multidirection diffusion-weighted MR imaging, we performed probabilistic tractography at all individual globus pallidus internus voxels. Each globus pallidus internus voxel was then assigned to the 1 ROI with the greatest number of propagated paths. On the basis of deep brain stimulation programming settings, the volume of tissue activated was generated for each patient using a finite element method solution. For each patient, the volume of tissue activated within each of the 10 segmented globus pallidus internus regions was calculated and examined for association with a change in the Unified Parkinson Disease Rating Scale, Part III score before and after treatment. Increasing volume of tissue activated was most strongly correlated with a change in the Unified Parkinson Disease Rating Scale, Part III score for the primary motor region (Spearman r = 0.74, P = .010), followed by the supplementary motor area/premotor cortex (Spearman r = 0.47, P = .15). In this pilot study, we assessed a novel method of segmentation of the globus pallidus internus based on probabilistic tractography as a supplement to traditional targeting methods. Our results suggest that our method may be an independent predictor of deep brain stimulation outcome, and evaluation of a larger cohort or prospective study is warranted to validate these findings. © 2018 by American Journal of Neuroradiology.

  7. The clinical outcomes of deep gray matter injury in children with cerebral palsy in relation with brain magnetic resonance imaging.

    PubMed

    Choi, Ja Young; Choi, Yoon Seong; Rha, Dong-Wook; Park, Eun Sook

    2016-08-01

    In the present study we investigated the nature and extent of clinical outcomes using various classifications and analyzed the relationship between brain magnetic resonance imaging (MRI) findings and the extent of clinical outcomes in children with cerebral palsy (CP) with deep gray matter injury. The deep gray matter injuries of 69 children were classified into hypoxic ischemic encephalopathy (HIE) and kernicterus patterns. HIE patterns were divided into four groups (I-IV) based on severity. Functional classification was investigated using the gross motor function classification system-expanded and revised, manual ability classification system, communication function classification system, and tests of cognitive function, and other associated problems. The severity of HIE pattern on brain MRI was strongly correlated with the severity of clinical outcomes in these various domains. Children with a kernicterus pattern showed a wide range of clinical outcomes in these areas. Children with severe HIE are at high risk of intellectual disability (ID) or epilepsy and children with a kernicterus pattern are at risk of hearing impairment and/or ID. Grading severity of HIE pattern on brain MRI is useful for predicting overall outcomes. The clinical outcomes of children with a kernicterus pattern range widely from mild to severe. Delineation of the clinical outcomes of children with deep gray matter injury, which are a common abnormal brain MRI finding in children with CP, is necessary. The present study provides clinical outcomes for various domains in children with deep gray matter injury on brain MRI. The deep gray matter injuries were divided into two major groups; HIE and kernicterus patterns. Our study showed that severity of HIE pattern on brain MRI was strongly associated with the severity of impairments in gross motor function, manual ability, communication function, and cognition. These findings suggest that severity of HIE pattern can be useful for predicting the severity of impairments. Conversely, children with a kernicterus pattern showed a wide range of clinical outcomes in various domains. Children with severe HIE pattern are at high risk of ID or epilepsy and children with kernicterus pattern are at risk of hearing impairment or ID. The strength of our study was the assessment of clinical outcomes after 3 years of age using standardized classification systems in various domains in children with deep gray matter injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Tourette syndrome and other chronic tic disorders: an update on clinical management.

    PubMed

    Martino, Davide; Pringsheim, Tamara M

    2018-02-01

    The management of Tourette syndrome (TS) and other chronic tic disorders occurs in multiple stages and begins with comprehensive assessment and complex psychoeducation. Behavioral and pharmacological interventions (second stage) are needed when tics cause physical or psychosocial impairment. Deep brain stimulation surgery or experimental therapies represent the third stage. Areas covered: Discussed are recent advances in assessment and therapy of chronic tic disorders, encompassing the three stages of intervention, with the addition of experimental, non-invasive brain stimulation strategies. A PubMed search was performed using as keywords: 'tic disorders', 'Tourette syndrome', 'assessment', 'rating scales', 'behavioral treatment', 'pharmacological treatment', 'deep brain stimulation', 'transcranial magnetic (or current) stimulation', and 'transcranial current stimulation'. More than 300 peer-reviewed articles were evaluated. The studies discussed have been selected on the basis of novelty and impact. Expert commentary: Comprehensive assessment of tic disorders and psychoeducation are crucial to a correct active management approach. Behavioral treatments represent first line of active interventions, with increasing potential offered by telehealth. Antipsychotics and alpha agonists remain first line pharmacological interventions for tics, although VMAT-2 inhibitors appear promising. Deep brain stimulation is a potential option for medically refractory, severely disabled patients with tics, but age and target selection require further investigation.

  9. Deep brain optical measurements of cell type-specific neural activity in behaving mice.

    PubMed

    Cui, Guohong; Jun, Sang Beom; Jin, Xin; Luo, Guoxiang; Pham, Michael D; Lovinger, David M; Vogel, Steven S; Costa, Rui M

    2014-01-01

    Recent advances in genetically encoded fluorescent sensors enable the monitoring of cellular events from genetically defined groups of neurons in vivo. In this protocol, we describe how to use a time-correlated single-photon counting (TCSPC)-based fiber optics system to measure the intensity, emission spectra and lifetime of fluorescent biosensors expressed in deep brain structures in freely moving mice. When combined with Cre-dependent selective expression of genetically encoded Ca(2+) indicators (GECIs), this system can be used to measure the average neural activity from a specific population of cells in mice performing complex behavioral tasks. As an example, we used viral expression of GCaMPs in striatal projection neurons (SPNs) and recorded the fluorescence changes associated with calcium spikes from mice performing a lever-pressing operant task. The whole procedure, consisting of virus injection, behavior training and optical recording, takes 3-4 weeks to complete. With minor adaptations, this protocol can also be applied to recording cellular events from other cell types in deep brain regions, such as dopaminergic neurons in the ventral tegmental area. The simultaneously recorded fluorescence signals and behavior events can be used to explore the relationship between the neural activity of specific brain circuits and behavior.

  10. Deep brain stimulation for the treatment of uncommon tremor syndromes.

    PubMed

    Ramirez-Zamora, Adolfo; Okun, Michael S

    2016-08-01

    Deep brain stimulation (DBS) has become a standard therapy for the treatment of select cases of medication refractory essential tremor and Parkinson's disease however the effectiveness and long-term outcomes of DBS in other uncommon and complex tremor syndromes has not been well established. Traditionally, the ventralis intermedius nucleus (VIM) of the thalamus has been considered the main target for medically intractable tremors; however alternative brain regions and improvements in stereotactic techniques and hardware may soon change the horizon for treatment of complex tremors. In this article, we conducted a PubMed search using different combinations between the terms 'Uncommon tremors', 'Dystonic tremor', 'Holmes tremor' 'Midbrain tremor', 'Rubral tremor', 'Cerebellar tremor', 'outflow tremor', 'Multiple Sclerosis tremor', 'Post-traumatic tremor', 'Neuropathic tremor', and 'Deep Brain Stimulation/DBS'. Additionally, we examined and summarized the current state of evolving interventions for treatment of complex tremor syndromes. Expert commentary: Recently reported interventions for rare tremors include stimulation of the posterior subthalamic area, globus pallidus internus, ventralis oralis anterior/posterior thalamic subnuclei, and the use of dual lead stimulation in one or more of these targets. Treatment should be individualized and dictated by tremor phenomenology and associated clinical features.

  11. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery

    PubMed Central

    Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lau, Steven; Lu, Weiguo; Yan, Yulong; Jiang, Steve B.; Zhen, Xin; Timmerman, Robert; Nedzi, Lucien

    2017-01-01

    Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI) datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS) data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs) of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases. PMID:28985229

  12. Deep-brain-stimulation does not impair deglutition in Parkinson's disease.

    PubMed

    Lengerer, Sabrina; Kipping, Judy; Rommel, Natalie; Weiss, Daniel; Breit, Sorin; Gasser, Thomas; Plewnia, Christian; Krüger, Rejko; Wächter, Tobias

    2012-08-01

    A large proportion of patients with Parkinson's disease develop dysphagia during the course of the disease. Dysphagia in Parkinson's disease affects different phases of deglutition, has a strong impact on quality of life and may cause severe complications, i.e., aspirational pneumonia. So far, little is known on how deep-brain-stimulation of the subthalamic nucleus influences deglutition in PD. Videofluoroscopic swallowing studies on 18 patients with Parkinson's disease, which had been performed preoperatively, and postoperatively with deep-brain-stimulation-on and deep-brain-stimulation-off, were analyzed retrospectively. The patients were examined in each condition with three consistencies (viscous, fluid and solid). The 'New Zealand index for multidisciplinary evaluation of swallowing (NZIMES) Subscale One' for qualitative and 'Logemann-MBS-Parameters' for quantitative evaluation were assessed. Preoperatively, none of the patients presented with clinically relevant signs of dysphagia. While postoperatively, the mean daily levodopa equivalent dosage was reduced by 50% and deep-brain-stimulation led to a 50% improvement in motor symptoms measured by the UPDRS III, no clinically relevant influence of deep-brain-stimulation-on swallowing was observed using qualitative parameters (NZIMES). However quantitative parameters (Logemann scale) found significant changes of pharyngeal parameters with deep-brain-stimulation-on as compared to preoperative condition and deep-brain-stimulation-off mostly with fluid consistency. In Parkinson patients without dysphagia deep-brain-stimulation of the subthalamic nucleus modulates the pharyngeal deglutition phase but has no clinically relevant influence on deglutition. Further studies are needed to test if deep-brain-stimulation is a therapeutic option for patients with swallowing disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Effects of deep brain stimulation of the peduncolopontine area on working memory tasks in patients with Parkinson's disease.

    PubMed

    Costa, Alberto; Carlesimo, Giovanni Augusto; Caltagirone, Carlo; Mazzone, Paolo; Pierantozzi, Mariangela; Stefani, Alessandro; Peppe, Antonella

    2010-01-01

    The present paper was aimed at investigating the effect of low-frequency electrical stimulation (25 Hz) of the peduncolopontine (PPN) area on working memory (WM) functioning in patients with Parkinson's disease (PD). Five PD patients who underwent simultaneous PPN area- and subthalamic nucleus-deep brain stimulation (DBS) implantation participated in the study. PD patients were evaluated in the morning at least 12 h after antiparkinsonian therapy withdrawal in two conditions: i) after continuous PPN area stimulation (Off Therapy/On PPN: "On" condition); ii) at least 120 min after PPN area had been switched "Off" (Off Ther/Off PPN: "Off" condition). The experimental WM task consisted of an n-back paradigm with verbal and visual-object stimuli. PD patients showed a consistent response time decrease on both the verbal and the visual-object tasks passing from the "Off" to the "On" condition (p < 0.05). However, the accuracy score did not significantly differ between the two experimental conditions. The present findings, although preliminary, suggest that PPN area stimulation facilitates the speed processing of information in the content of WM, possibly through the modulation of the attentional resources.

  14. Functional-anatomic study of episodic retrieval using fMRI. I. Retrieval effort versus retrieval success.

    PubMed

    Buckner, R L; Koutstaal, W; Schacter, D L; Wagner, A D; Rosen, B R

    1998-04-01

    A number of recent functional imaging studies have identified brain areas activated during tasks involving episodic memory retrieval. The identification of such areas provides a foundation for targeted hypotheses regarding the more specific contributions that these areas make to episodic retrieval. As a beginning effort toward such an endeavor, whole-brain functional magnetic resonance imaging (fMRI) was used to examine 14 subjects during episodic word recognition in a block-designed fMRI experiment. Study conditions were manipulated by presenting either shallow or deep encoding tasks. This manipulation yielded two recognition conditions that differed with regard to retrieval effort and retrieval success: shallow encoding yielded low levels of recognition success with high levels of retrieval effort, and deep encoding yielded high levels of recognition success with low levels of effort. Many brain areas were activated in common by these two recognition conditions compared to a low-level fixation condition, including left and right prefrontal regions often detected during PET episodic retrieval paradigms (e.g., R. L. Buckner et al., 1996, J. Neurosci. 16, 6219-6235) thereby generalizing these findings to fMRI. Characterization of the activated regions in relation to the separate recognition conditions showed (1) bilateral anterior insular regions and a left dorsal prefrontal region were more active after shallow encoding, when retrieval demanded greatest effort, and (2) right anterior prefrontal cortex, which has been implicated in episodic retrieval, was most active during successful retrieval after deep encoding. We discuss these findings in relation to component processes involved in episodic retrieval and in the context of a companion study using event-related fMRI.

  15. Bibliometric profile of deep brain stimulation.

    PubMed

    Hu, Kejia; Moses, Ziev B; Xu, Wendong; Williams, Ziv

    2017-10-01

    We aimed to identify and analyze the characteristics of the 100 most highly-cited papers in the research field of deep brain stimulation (DBS). The Web of Science was searched for highly-cited papers related to DBS research. The number of citations, countries, institutions of origin, year of publication, and research area were noted and analyzed. The 100 most highly-cited articles had a mean of 304.15 citations. These accrued an average of 25.39 citations a year. The most represented target by far was the subthalamic nucleus (STN). These articles were published in 46 high-impact journals, with Brain (n = 10) topping the list. These articles came from 11 countries, with the USA contributing the most highly-cited articles (n = 29); however, it was the University of Toronto (n = 13) in Canada that was the institution with the most highly-cited studies. This study identified the 100 most highly-cited studies and highlighted a historical perspective on the progress in the field of DBS. These findings allow for the recognition of the most influential reports and provide useful information that can indicate areas requiring further investigation.

  16. Treating Clinical Depression with Repetitive Deep Transcranial Magnetic Stimulation Using the Brainsway H1-coil.

    PubMed

    Feifel, David; Pappas, Katherine

    2016-10-04

    Repetitive transcranial magnetic stimulation (rTMS) is an emerging non-pharmacological approach to treating many brain-based disorders. rTMS uses electromagnetic coils to stimulate areas of the brain non-invasively. Deep transcranial magnetic stimulation (dTMS) with the Brainsway H1-coil system specifically is a type of rTMS indicated for treating patients with major depressive disorder (MDD) who are resistant to medication. The unique H1-coil design of this device is able to stimulate neuronal pathways that lie deeper in the targeted brain areas than those reached by conventional rTMS coils. dTMS is considered to be low-risk and well tolerated, making it a viable treatment option for people who have not responded to medication or psychotherapy trials for their depression. Randomized, sham-control studies have demonstrated that dTMS produces significantly greater improvement in depressive symptoms than sham dTMS treatment in patients with major depression that has not responded to antidepressant medication. In this paper, we will review the methodology for treating major depression with dTMS using an H1-coil.

  17. Comparison of imaging modalities and source-localization algorithms in locating the induced activity during deep brain stimulation of the STN.

    PubMed

    Mideksa, K G; Singh, A; Hoogenboom, N; Hellriegel, H; Krause, H; Schnitzler, A; Deuschl, G; Raethjen, J; Schmidt, G; Muthuraman, M

    2016-08-01

    One of the most commonly used therapy to treat patients with Parkinson's disease (PD) is deep brain stimulation (DBS) of the subthalamic nucleus (STN). Identifying the most optimal target area for the placement of the DBS electrodes have become one of the intensive research area. In this study, the first aim is to investigate the capabilities of different source-analysis techniques in detecting deep sources located at the sub-cortical level and validating it using the a-priori information about the location of the source, that is, the STN. Secondly, we aim at an investigation of whether EEG or MEG is best suited in mapping the DBS-induced brain activity. To do this, simultaneous EEG and MEG measurement were used to record the DBS-induced electromagnetic potentials and fields. The boundary-element method (BEM) have been used to solve the forward problem. The position of the DBS electrodes was then estimated using the dipole (moving, rotating, and fixed MUSIC), and current-density-reconstruction (CDR) (minimum-norm and sLORETA) approaches. The source-localization results from the dipole approaches demonstrated that the fixed MUSIC algorithm best localizes deep focal sources, whereas the moving dipole detects not only the region of interest but also neighboring regions that are affected by stimulating the STN. The results from the CDR approaches validated the capability of sLORETA in detecting the STN compared to minimum-norm. Moreover, the source-localization results using the EEG modality outperformed that of the MEG by locating the DBS-induced activity in the STN.

  18. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions.

    PubMed

    Akkus, Zeynettin; Galimzianova, Alfiia; Hoogi, Assaf; Rubin, Daniel L; Erickson, Bradley J

    2017-08-01

    Quantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms. This review aims to provide an overview of current deep learning-based segmentation approaches for quantitative brain MRI. First we review the current deep learning architectures used for segmentation of anatomical brain structures and brain lesions. Next, the performance, speed, and properties of deep learning approaches are summarized and discussed. Finally, we provide a critical assessment of the current state and identify likely future developments and trends.

  19. Acute and chronic changes in brain activity with deep brain stimulation for refractory depression.

    PubMed

    Conen, Silke; Matthews, Julian C; Patel, Nikunj K; Anton-Rodriguez, José; Talbot, Peter S

    2018-04-01

    Deep brain stimulation is a potential option for patients with treatment-refractory depression. Deep brain stimulation benefits have been reported when targeting either the subgenual cingulate or ventral anterior capsule/nucleus accumbens. However, not all patients respond and optimum stimulation-site is uncertain. We compared deep brain stimulation of the subgenual cingulate and ventral anterior capsule/nucleus accumbens separately and combined in the same seven treatment-refractory depression patients, and investigated regional cerebral blood flow changes associated with acute and chronic deep brain stimulation. Deep brain stimulation-response was defined as reduction in Montgomery-Asberg Depression Rating Scale score from baseline of ≥50%, and remission as a Montgomery-Asberg Depression Rating Scale score ≤8. Changes in regional cerebral blood flow were assessed using [ 15 O]water positron emission tomography. Remitters had higher relative regional cerebral blood flow in the prefrontal cortex at baseline and all subsequent time-points compared to non-remitters and non-responders, with prefrontal cortex regional cerebral blood flow generally increasing with chronic deep brain stimulation. These effects were consistent regardless of stimulation-site. Overall, no significant regional cerebral blood flow changes were apparent when deep brain stimulation was acutely interrupted. Deep brain stimulation improved treatment-refractory depression severity in the majority of patients, with consistent changes in local and distant brain regions regardless of target stimulation. Remission of depression was reached in patients with higher baseline prefrontal regional cerebral blood flow. Because of the small sample size these results are preliminary and further evaluation is necessary to determine whether prefrontal cortex regional cerebral blood flow could be a predictive biomarker of treatment response.

  20. Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers

    PubMed Central

    Thorbergsson, Palmi Thor; Ekstrand, Joakim; Friberg, Annika; Granmo, Marcus; Pettersson, Lina M. E.; Schouenborg, Jens

    2016-01-01

    Neural interfaces which allow long-term recordings in deep brain structures in awake freely moving animals have the potential of becoming highly valuable tools in neuroscience. However, the recording quality usually deteriorates over time, probably at least partly due to tissue reactions caused by injuries during implantation, and subsequently micro-forces due to a lack of mechanical compliance between the tissue and neural interface. To address this challenge, we developed a gelatin embedded neural interface comprising highly flexible electrodes and evaluated its long term recording properties. Bundles of ultrathin parylene C coated platinum electrodes (N = 29) were embedded in a hard gelatin based matrix shaped like a needle, and coated with Kollicoat™ to retard dissolution of gelatin during the implantation. The implantation parameters were established in an in vitro model of the brain (0.5% agarose). Following a craniotomy in the anesthetized rat, the gelatin embedded electrodes were stereotactically inserted to a pre-target position, and after gelatin dissolution the electrodes were further advanced and spread out in the area of the subthalamic nucleus (STN). The performance of the implanted electrodes was evaluated under anesthesia, during 8 weeks. Apart from an increase in the median-noise level during the first 4 weeks, the electrode impedance and signal-to-noise ratio of single-units remained stable throughout the experiment. Histological postmortem analysis confirmed implantation in the area of STN in most animals. In conclusion, by combining novel biocompatible implantation techniques and ultra-flexible electrodes, long-term neuronal recordings from deep brain structures with no significant deterioration of electrode function were achieved. PMID:27159159

  1. Deep Brain Electrical Stimulation in Epilepsy

    NASA Astrophysics Data System (ADS)

    Rocha, Luisa L.

    2008-11-01

    The deep brain electrical stimulation has been used for the treatment of neurological disorders such as Parkinson's disease, chronic pain, depression and epilepsy. Studies carried out in human brain indicate that the application of high frequency electrical stimulation (HFS) at 130 Hz in limbic structures of patients with intractable temporal lobe epilepsy abolished clinical seizures and significantly decreased the number of interictal spikes at focus. The anticonvulsant effects of HFS seem to be more effective in patients with less severe epilepsy, an effect associated with a high GABA tissue content and a low rate of cell loss. In addition, experiments using models of epilepsy indicate that HFS (pulses of 60 μs width at 130 Hz at subthreshold current intensity) of specific brain areas avoids the acquisition of generalized seizures and enhances the postictal seizure suppression. HFS is also able to modify the status epilepticus. It is concluded that the effects of HFS may be a good strategy to reduce or avoid the epileptic activity.

  2. Progressive gait ataxia following deep brain stimulation for essential tremor: adverse effect or lack of efficacy?

    PubMed

    Reich, Martin M; Brumberg, Joachim; Pozzi, Nicolò G; Marotta, Giorgio; Roothans, Jonas; Åström, Mattias; Musacchio, Thomas; Lopiano, Leonardo; Lanotte, Michele; Lehrke, Ralph; Buck, Andreas K; Volkmann, Jens; Isaias, Ioannis U

    2016-11-01

    Thalamic deep brain stimulation is a mainstay treatment for severe and drug-refractory essential tremor, but postoperative management may be complicated in some patients by a progressive cerebellar syndrome including gait ataxia, dysmetria, worsening of intention tremor and dysarthria. Typically, this syndrome manifests several months after an initially effective therapy and necessitates frequent adjustments in stimulation parameters. There is an ongoing debate as to whether progressive ataxia reflects a delayed therapeutic failure due to disease progression or an adverse effect related to repeated increases of stimulation intensity. In this study we used a multimodal approach comparing clinical stimulation responses, modelling of volume of tissue activated and metabolic brain maps in essential tremor patients with and without progressive ataxia to disentangle a disease-related from a stimulation-induced aetiology. Ten subjects with stable and effective bilateral thalamic stimulation were stratified according to the presence (five subjects) of severe chronic-progressive gait ataxia. We quantified stimulated brain areas and identified the stimulation-induced brain metabolic changes by multiple 18 F-fluorodeoxyglucose positron emission tomography performed with and without active neurostimulation. Three days after deactivating thalamic stimulation and following an initial rebound of symptom severity, gait ataxia had dramatically improved in all affected patients, while tremor had worsened to the presurgical severity, thus indicating a stimulation rather than disease-related phenomenon. Models of the volume of tissue activated revealed a more ventrocaudal stimulation in the (sub)thalamic area of patients with progressive gait ataxia. Metabolic maps of both patient groups differed by an increased glucose uptake in the cerebellar nodule of patients with gait ataxia. Our data suggest that chronic progressive gait ataxia in essential tremor is a reversible cerebellar syndrome caused by a maladaptive response to neurostimulation of the (sub)thalamic area. The metabolic signature of progressive gait ataxia is an activation of the cerebellar nodule, which may be caused by inadvertent current spread and antidromic stimulation of a cerebellar outflow pathway originating in the vermis. An anatomical candidate could be the ascending limb of the uncinate tract in the subthalamic area. Adjustments in programming and precise placement of the electrode may prevent this adverse effect and help fine-tuning deep brain stimulation to ameliorate tremor without negative cerebellar signs. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Language context modulates reading route: an electrical neuroimaging study

    PubMed Central

    Buetler, Karin A.; de León Rodríguez, Diego; Laganaro, Marina; Müri, René; Spierer, Lucas; Annoni, Jean-Marie

    2014-01-01

    Introduction: The orthographic depth hypothesis (Katz and Feldman, 1983) posits that different reading routes are engaged depending on the type of grapheme/phoneme correspondence of the language being read. Shallow orthographies with consistent grapheme/phoneme correspondences favor encoding via non-lexical pathways, where each grapheme is sequentially mapped to its corresponding phoneme. In contrast, deep orthographies with inconsistent grapheme/phoneme correspondences favor lexical pathways, where phonemes are retrieved from specialized memory structures. This hypothesis, however, lacks compelling empirical support. The aim of the present study was to investigate the impact of orthographic depth on reading route selection using a within-subject design. Method: We presented the same pseudowords (PWs) to highly proficient bilinguals and manipulated the orthographic depth of PW reading by embedding them among two separated German or French language contexts, implicating respectively, shallow or deep orthography. High density electroencephalography was recorded during the task. Results: The topography of the ERPs to identical PWs differed 300–360 ms post-stimulus onset when the PWs were read in different orthographic depth context, indicating distinct brain networks engaged in reading during this time window. The brain sources underlying these topographic effects were located within left inferior frontal (German > French), parietal (French > German) and cingular areas (German > French). Conclusion: Reading in a shallow context favors non-lexical pathways, reflected in a stronger engagement of frontal phonological areas in the shallow versus the deep orthographic context. In contrast, reading PW in a deep orthographic context recruits less routine non-lexical pathways, reflected in a stronger engagement of visuo-attentional parietal areas in the deep versus shallow orthographic context. These collective results support a modulation of reading route by orthographic depth. PMID:24600377

  4. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence

    PubMed Central

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-01-01

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108

  5. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.

    PubMed

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-06-10

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.

  6. MEG Can Map Short and Long-Term Changes in Brain Activity following Deep Brain Stimulation for Chronic Pain

    PubMed Central

    Mohseni, Hamid R.; Smith, Penny P.; Parsons, Christine E.; Young, Katherine S.; Hyam, Jonathan A.; Stein, Alan; Stein, John F.; Green, Alexander L.; Aziz, Tipu Z.; Kringelbach, Morten L.

    2012-01-01

    Deep brain stimulation (DBS) has been shown to be clinically effective for some forms of treatment-resistant chronic pain, but the precise mechanisms of action are not well understood. Here, we present an analysis of magnetoencephalography (MEG) data from a patient with whole-body chronic pain, in order to investigate changes in neural activity induced by DBS for pain relief over both short- and long-term. This patient is one of the few cases treated using DBS of the anterior cingulate cortex (ACC). We demonstrate that a novel method, null-beamforming, can be used to localise accurately brain activity despite the artefacts caused by the presence of DBS electrodes and stimulus pulses. The accuracy of our source localisation was verified by correlating the predicted DBS electrode positions with their actual positions. Using this beamforming method, we examined changes in whole-brain activity comparing pain relief achieved with deep brain stimulation (DBS ON) and compared with pain experienced with no stimulation (DBS OFF). We found significant changes in activity in pain-related regions including the pre-supplementary motor area, brainstem (periaqueductal gray) and dissociable parts of caudal and rostral ACC. In particular, when the patient reported experiencing pain, there was increased activity in different regions of ACC compared to when he experienced pain relief. We were also able to demonstrate long-term functional brain changes as a result of continuous DBS over one year, leading to specific changes in the activity in dissociable regions of caudal and rostral ACC. These results broaden our understanding of the underlying mechanisms of DBS in the human brain. PMID:22675503

  7. Statistical significance of task related deep brain EEG dynamic changes in the time-frequency domain.

    PubMed

    Chládek, J; Brázdil, M; Halámek, J; Plešinger, F; Jurák, P

    2013-01-01

    We present an off-line analysis procedure for exploring brain activity recorded from intra-cerebral electroencephalographic data (SEEG). The objective is to determine the statistical differences between different types of stimulations in the time-frequency domain. The procedure is based on computing relative signal power change and subsequent statistical analysis. An example of characteristic statistically significant event-related de/synchronization (ERD/ERS) detected across different frequency bands following different oddball stimuli is presented. The method is used for off-line functional classification of different brain areas.

  8. Material and physical model for evaluation of deep brain activity contribution to EEG recordings

    NASA Astrophysics Data System (ADS)

    Ye, Yan; Li, Xiaoping; Wu, Tiecheng; Li, Zhe; Xie, Wenwen

    2015-12-01

    Deep brain activity is conventionally recorded with surgical implantation of electrodes. During the neurosurgery, brain tissue damage and the consequent side effects to patients are inevitably incurred. In order to eliminate undesired risks, we propose that deep brain activity should be measured using the noninvasive scalp electroencephalography (EEG) technique. However, the deeper the neuronal activity is located, the noisier the corresponding scalp EEG signals are. Thus, the present study aims to evaluate whether deep brain activity could be observed from EEG recordings. In the experiment, a three-layer cylindrical head model was constructed to mimic a human head. A single dipole source (sine wave, 10 Hz, altering amplitudes) was embedded inside the model to simulate neuronal activity. When the dipole source was activated, surface potential was measured via electrodes attached on the top surface of the model and raw data were recorded for signal analysis. Results show that the dipole source activity positioned at 66 mm depth in the model, equivalent to the depth of deep brain structures, is clearly observed from surface potential recordings. Therefore, it is highly possible that deep brain activity could be observed from EEG recordings and deep brain activity could be measured using the noninvasive scalp EEG technique.

  9. New MR imaging assessment tool to define brain abnormalities in very preterm infants at term.

    PubMed

    Kidokoro, H; Neil, J J; Inder, T E

    2013-01-01

    WM injury is the dominant form of injury in preterm infants. However, other cerebral structures, including the deep gray matter and the cerebellum, can also be affected by injury and/or impaired growth. Current MR imaging injury assessment scales are subjective and are challenging to apply. Thus, we developed a new assessment tool and applied it to MR imaging studies obtained from very preterm infants at term age. MR imaging scans from 97 very preterm infants (< 30 weeks' gestation) and 22 healthy term-born infants were evaluated retrospectively. The severity of brain injury (defined by signal abnormalities) and impaired brain growth (defined with biometrics) was scored in the WM, cortical gray matter, deep gray matter, and cerebellum. Perinatal variables for clinical risks were collected. In very preterm infants, brain injury was observed in the WM (n=23), deep GM (n=5), and cerebellum (n=23). Combining measures of injury and impaired growth showed moderate to severe abnormalities most commonly in the WM (n=38) and cerebellum (n=32) but still notable in the cortical gray matter (n=16) and deep gray matter (n=11). WM signal abnormalities were associated with a reduced deep gray matter area but not with cerebellar abnormality. Intraventricular and/or parenchymal hemorrhage was associated with cerebellar signal abnormality and volume reduction. Multiple clinical risk factors, including prolonged intubation, prolonged parenteral nutrition, postnatal corticosteroid use, and postnatal sepsis, were associated with increased global abnormality on MR imaging. Very preterm infants demonstrate a high prevalence of injury and growth impairment in both the WM and gray matter. This MR imaging scoring system provides a more comprehensive and objective classification of the nature and extent of abnormalities than existing measures.

  10. Microfiberoptic fluorescence photobleaching reveals size-dependent macromolecule diffusion in extracellular space deep in brain.

    PubMed

    Zador, Zsolt; Magzoub, Mazin; Jin, Songwan; Manley, Geoffrey T; Papadopoulos, Marios C; Verkman, A S

    2008-03-01

    Diffusion in brain extracellular space (ECS) is important for nonsynaptic intercellular communication, extracellular ionic buffering, and delivery of drugs and metabolites. We measured macromolecular diffusion in normally light-inaccessible regions of mouse brain by microfiberoptic epifluorescence photobleaching, in which a fiberoptic with a micron-size tip is introduced deep in brain tissue. In brain cortex, the diffusion of a noninteracting molecule [fluorescein isothiocyanate (FITC)-dextran, 70 kDa] was slowed 4.5 +/- 0.5-fold compared with its diffusion in water (D(o)/D), and was depth-independent down to 800 microm from the brain surface. Diffusion was significantly accelerated (D(o)/D of 2.9+/-0.3) in mice lacking the glial water channel aquaporin-4. FITC-dextran diffusion varied greatly in different regions of brain, with D(o)/D of 3.5 +/- 0.3 in hippocampus and 7.4 +/- 0.3 in thalamus. Remarkably, D(o)/D in deep brain was strongly dependent on solute size, whereas diffusion in cortex changed little with solute size. Mathematical modeling of ECS diffusion required nonuniform ECS dimensions in deep brain, which we call "heterometricity," to account for the size-dependent diffusion. Our results provide the first data on molecular diffusion in ECS deep in brain in vivo and demonstrate previously unrecognized hindrance and heterometricity for diffusion of large macromolecules in deep brain.

  11. Brain-Derived Neurotrophic Factor (BDNF) and Traumatic Brain Injury (Head and Spinal)

    DTIC Science & Technology

    1999-01-01

    surface area. J Microscopy 150: 117-136. Osterman-Latif C, Mader M, Felgenhauer K (1993) An efficient sandwich-ELISA for the determination of choline ...anesthesia and surgery but were not injured (sham injury). After the appropriate survival times, the rats were deeply anesthetized with an overdose of...post-injury (Hicks et al., 1997b, 1998). Tissue Processing Following deep anesthesia with an overdose of sodium pentobarbital, the animals ".vere

  12. Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy

    PubMed Central

    Liu, Ning; Cui, Xu; Bryant, Daniel M.; Glover, Gary H.; Reiss, Allan L.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying brain function because it is non-invasive, non-irradiating and relatively inexpensive. Further, fNIRS potentially allows measurement of hemodynamic activity with high temporal resolution (milliseconds) and in naturalistic settings. However, in comparison with other imaging modalities, namely fMRI, fNIRS has a significant drawback: limited sensitivity to hemodynamic changes in deep-brain regions. To overcome this limitation, we developed a computational method to infer deep-brain activity using fNIRS measurements of cortical activity. Using simultaneous fNIRS and fMRI, we measured brain activity in 17 participants as they completed three cognitive tasks. A support vector regression (SVR) learning algorithm was used to predict activity in twelve deep-brain regions using information from surface fNIRS measurements. We compared these predictions against actual fMRI-measured activity using Pearson’s correlation to quantify prediction performance. To provide a benchmark for comparison, we also used fMRI measurements of cortical activity to infer deep-brain activity. When using fMRI-measured activity from the entire cortex, we were able to predict deep-brain activity in the fusiform cortex with an average correlation coefficient of 0.80 and in all deep-brain regions with an average correlation coefficient of 0.67. The top 15% of predictions using fNIRS signal achieved an accuracy of 0.7. To our knowledge, this study is the first to investigate the feasibility of using cortical activity to infer deep-brain activity. This new method has the potential to extend fNIRS applications in cognitive and clinical neuroscience research. PMID:25798327

  13. Lateral hypothalamic area deep brain stimulation for refractory obesity: a pilot study with preliminary data on safety, body weight, and energy metabolism

    PubMed Central

    Whiting, Donald M.; Tomycz, Nestor D.; Bailes, Julian; De Jonge, Lilian; Lecoultre, Virgile; Wilent, Bryan; Alcindor, Dunbar; Prostko, E. Richard; Cheng, Boyle C.; Angle, Cynthia; Cantella, Diane; Whiting, Benjamin B.; Mizes, J. Scott; Finnis, Kirk W.; Ravussin, Eric; Oh, Michael Y.

    2017-01-01

    Object Deep brain stimulation (DBS) of the lateral hypothalamic area (LHA) has been suggested as a potential treatment for intractable obesity. The authors present the 2-year safety results as well as early efficacy and metabolic effects in 3 patients undergoing bilateral LHA DBS in the first study of this approach in humans. Methods Three patients meeting strict criteria for intractable obesity, including failed bariatric surgery, under-went bilateral implantation of LHA DBS electrodes as part of an institutional review board– and FDA-approved pilot study. The primary focus of the study was safety; however, the authors also received approval to collect data on early efficacy including weight change and energy metabolism. Results No serious adverse effects, including detrimental psychological consequences, were observed with continuous LHA DBS after a mean follow-up of 35 months (range 30–39 months). Three-dimensional nonlinear transformation of postoperative imaging superimposed onto brain atlas anatomy was used to confirm and study DBS contact proximity to the LHA. No significant weight loss trends were seen when DBS was programmed using standard settings derived from movement disorder DBS surgery. However, promising weight loss trends have been observed when monopolar DBS stimulation has been applied via specific contacts found to increase the resting metabolic rate measured in a respiratory chamber. Conclusions Deep brain stimulation of the LHA may be applied safely to humans with intractable obesity. Early evidence for some weight loss under metabolically optimized settings provides the first “proof of principle” for this novel antiobesity strategy. A larger follow-up study focused on efficacy along with a more rigorous metabolic analysis is planned to further explore the benefits and therapeutic mechanism behind this investigational therapy. PMID:23560573

  14. The effect of encoding strategy on the neural correlates of memory for faces.

    PubMed

    Bernstein, Lori J; Beig, Sania; Siegenthaler, Amy L; Grady, Cheryl L

    2002-01-01

    Encoding and recognition of unfamiliar faces in young adults were examined using positron emission tomography to determine whether different encoding strategies would lead to encoding/retrieval differences in brain activity. Three types of encoding were compared: a 'deep' task (judging pleasantness/unpleasantness), a 'shallow' task (judging right/left orientation), and an intentional learning task in which subjects were instructed to learn the faces for a subsequent memory test but were not provided with a specific strategy. Memory for all faces was tested with an old/new recognition test. A modest behavioral effect was obtained, with deeply-encoded faces being recognized more accurately than shallowly-encoded or intentionally-learned faces. Regardless of encoding strategy, encoding activated a primarily ventral system including bilateral temporal and fusiform regions and left prefrontal cortices, whereas recognition activated a primarily dorsal set of regions including right prefrontal and parietal areas. Within encoding, the type of strategy produced different brain activity patterns, with deep encoding being characterized by left amygdala and left anterior cingulate activation. There was no effect of encoding strategy on brain activity during the recognition conditions. Posterior fusiform gyrus activation was related to better recognition accuracy in those conditions encouraging perceptual strategies, whereas activity in left frontal and temporal areas correlated with better performance during the 'deep' condition. Results highlight three important aspects of face memory: (1) the effect of encoding strategy was seen only at encoding and not at recognition; (2) left inferior prefrontal cortex was engaged during encoding of faces regardless of strategy; and (3) differential activity in fusiform gyrus was found, suggesting that activity in this area is not only a result of automatic face processing but is modulated by controlled processes.

  15. Deep brain stimulation of the ventral striatal area for poststroke pain syndrome: a magnetoencephalography study.

    PubMed

    Gopalakrishnan, Raghavan; Burgess, Richard C; Malone, Donald A; Lempka, Scott F; Gale, John T; Floden, Darlene P; Baker, Kenneth B; Machado, Andre G

    2018-06-01

    Poststroke pain syndrome (PSPS) is an often intractable disorder characterized by hemiparesis associated with unrelenting chronic pain. Although traditional analgesics have largely failed, integrative approaches targeting affective-cognitive spheres have started to show promise. Recently, we demonstrated that deep brain stimulation (DBS) of the ventral striatal area significantly improved the affective sphere of pain in patients with PSPS. In the present study, we examined whether electrophysiological correlates of pain anticipation were modulated by DBS that could serve as signatures of treatment effects. We recorded event-related fields (ERFs) of pain anticipation using magnetoencephalography (MEG) in 10 patients with PSPS preoperatively and postoperatively in DBS OFF and ON states. Simple visual cues evoked anticipation as patients awaited a painful (PS) or nonpainful stimulus (NPS) to the nonaffected or affected extremity. Preoperatively, ERFs showed no difference between PS and NPS anticipation to the affected extremity, possibly due to loss of salience in a network saturated by pain experience. DBS significantly modulated the early N1, consistent with improvements in affective networks involving restoration of salience and discrimination capacity. Additionally, DBS suppressed the posterior P2 (aberrant anticipatory anxiety) while enhancing the anterior N1 (cognitive and emotional regulation) in responders. DBS-induced changes in ERFs could potentially serve as signatures for clinical outcomes. NEW & NOTEWORTHY We examined the electrophysiological correlates of pain affect in poststroke pain patients who underwent deep brain stimulation (DBS) targeting the ventral striatal area under a randomized, controlled trial. DBS significantly modulated early event-related components, particularly N1 and P2, measured with magnetoencephalography during a pain anticipatory task, compared with baseline and the DBS-OFF condition, pointing to possible mechanisms of action. DBS-induced changes in event-related fields could potentially serve as biomarkers for clinical outcomes.

  16. Gradual emergence of spontaneous correlated brain activity during fading of general anesthesia in rats: Evidences from fMRI and local field potentials

    PubMed Central

    Bettinardi, Ruggero G.; Tort-Colet, Núria; Ruiz-Mejias, Marcel; Sanchez-Vives, Maria V.; Deco, Gustavo

    2015-01-01

    Intrinsic brain activity is characterized by the presence of highly structured networks of correlated fluctuations between different regions of the brain. Such networks encompass different functions, whose properties are known to be modulated by the ongoing global brain state and are altered in several neurobiological disorders. In the present study, we induced a deep state of anesthesia in rats by means of a ketamine/medetomidine peritoneal injection, and analyzed the time course of the correlation between the brain activity in different areas while anesthesia spontaneously decreased over time. We compared results separately obtained from fMRI and local field potentials (LFPs) under the same anesthesia protocol, finding that while most profound phases of anesthesia can be described by overall sparse connectivity, stereotypical activity and poor functional integration, during lighter states different frequency-specific functional networks emerge, endowing the gradual restoration of structured large-scale activity seen during rest. Noteworthy, our in vivo results show that those areas belonging to the same functional network (the default-mode) exhibited sustained correlated oscillations around 10 Hz throughout the protocol, suggesting the presence of a specific functional backbone that is preserved even during deeper phases of anesthesia. Finally, the overall pattern of results obtained from both imaging and in vivo-recordings suggests that the progressive emergence from deep anesthesia is reflected by a corresponding gradual increase of organized correlated oscillations across the cortex. PMID:25804643

  17. Resting state functional MRI in Parkinson’s disease: the impact of deep brain stimulation on ‘effective’ connectivity

    PubMed Central

    Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl

    2014-01-01

    Depleted of dopamine, the dynamics of the parkinsonian brain impact on both ‘action’ and ‘resting’ motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the ‘effective’ connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network—disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses. PMID:24566670

  18. Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity.

    PubMed

    Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl; Foltynie, Tom

    2014-04-01

    Depleted of dopamine, the dynamics of the parkinsonian brain impact on both 'action' and 'resting' motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the 'effective' connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network-disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses.

  19. False recognition depends on depth of prior word processing: a magnetoencephalographic (MEG) study.

    PubMed

    Walla, P; Hufnagl, B; Lindinger, G; Deecke, L; Imhof, H; Lang, W

    2001-04-01

    Brain activity was measured with a whole head magnetoencephalograph (MEG) during the test phases of word recognition experiments. Healthy young subjects had to discriminate between previously presented and new words. During prior study phases two different levels of word processing were provided according to two different kinds of instructions (shallow and deep encoding). Event-related fields (ERFs) associated with falsely recognized words (false alarms) were found to depend on the depth of processing during the prior study phase. False alarms elicited higher brain activity (as reflected by dipole strength) in case of prior deep encoding as compared to shallow encoding between 300 and 500 ms after stimulus onset at temporal brain areas. Between 500 and 700 ms we found evidence for differences in the involvement of neural structures related to both conditions of false alarms. Furthermore, the number of false alarms was found to depend on depth of processing. Shallow encoding led to a higher number of false alarms than deep encoding. All data are discussed as strong support for the ideas that a certain level of word processing is performed by a distinct set of neural systems and that the same neural systems which encode information are reactivated during the retrieval.

  20. Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream.

    PubMed

    Güçlü, Umut; van Gerven, Marcel A J

    2015-07-08

    Converging evidence suggests that the primate ventral visual pathway encodes increasingly complex stimulus features in downstream areas. We quantitatively show that there indeed exists an explicit gradient for feature complexity in the ventral pathway of the human brain. This was achieved by mapping thousands of stimulus features of increasing complexity across the cortical sheet using a deep neural network. Our approach also revealed a fine-grained functional specialization of downstream areas of the ventral stream. Furthermore, it allowed decoding of representations from human brain activity at an unsurpassed degree of accuracy, confirming the quality of the developed approach. Stimulus features that successfully explained neural responses indicate that population receptive fields were explicitly tuned for object categorization. This provides strong support for the hypothesis that object categorization is a guiding principle in the functional organization of the primate ventral stream. Copyright © 2015 the authors 0270-6474/15/3510005-10$15.00/0.

  1. Syringe Port: A Convenient, Safe, and Cost-Effective Tubular Retractor for Transportal Removal of Deep-Seated Lesions of the Brain.

    PubMed

    Singh, Harnarayan; Patir, Rana; Vaishya, Sandeep; Miglani, Rahul; Kaur, Amandeep

    2018-06-01

    Minimally invasive transportal resection of deep intracranial lesions has become a widely accepted surgical technique. Many disposable, mountable port systems are available in the market for this purpose, like the ViewSite Brain Access System. The objective of this study was to find a cost-effective substitute for these systems. Deep-seated brain lesions were treated with a port system made from disposable syringes. The syringe port could be inserted through minicraniotomies placed and planned with navigation. All deep-seated lesions like ventricular tumours, colloid cysts, deep-seated gliomas, and basal ganglia hemorrhages were treated with this syringe port system and evaluated for safety, operative site hematomas, and blood loss. 62 patients were operated on during the study period from January 2015 to July 2017, using this innovative syringe port system for deep-seated lesions of the brain. No operative site hematoma or contusions were seen along the port entry site and tract. Syringe port is a cost-effective and safe alternative to the costly disposable brain port systems, especially for neurosurgical setups in developing countries for minimally invasive transportal resection of deep brain lesions. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Reduction of susceptibility-induced signal losses in multi-gradient-echo images: application to improved visualization of the subthalamic nucleus.

    PubMed

    Volz, Steffen; Hattingen, Elke; Preibisch, Christine; Gasser, Thomas; Deichmann, Ralf

    2009-05-01

    T2-weighted gradient echo (GE) images yield good contrast of iron-rich structures like the subthalamic nuclei due to microscopic susceptibility induced field gradients, providing landmarks for the exact placement of deep brain stimulation electrodes in Parkinson's disease treatment. An additional advantage is the low radio frequency (RF) exposure of GE sequences. However, T2-weighted images are also sensitive to macroscopic field inhomogeneities, resulting in signal losses, in particular in orbitofrontal and temporal brain areas, limiting anatomical information from these areas. In this work, an image correction method for multi-echo GE data based on evaluation of phase information for field gradient mapping is presented and tested in vivo on a 3 Tesla whole body MR scanner. In a first step, theoretical signal losses are calculated from the gradient maps and a pixelwise image intensity correction is performed. In a second step, intensity corrected images acquired at different echo times TE are combined using optimized weighting factors: in areas not affected by macroscopic field inhomogeneities, data acquired at long TE are weighted more strongly to achieve the contrast required. For large field gradients, data acquired at short TE are favored to avoid signal losses. When compared to the original data sets acquired at different TE and the respective intensity corrected data sets, the resulting combined data sets feature reduced signal losses in areas with major field gradients, while intensity profiles and a contrast-to-noise (CNR) analysis between subthalamic nucleus, red nucleus and the surrounding white matter demonstrate good contrast in deep brain areas.

  3. From miracle to reconciliation: a hermeneutic phenomenological study exploring the experience of living with Parkinson's disease following deep brain stimulation.

    PubMed

    Haahr, Anita; Kirkevold, Marit; Hall, Elisabeth O C; Ostergaard, Karen

    2010-10-01

    Deep Brain Stimulation for Parkinson's disease is a promising treatment for patients who can no longer be treated satisfactorily with L-dopa. Deep Brain Stimulation is known to relieve motor symptoms of Parkinson's disease and improve quality of life. Focusing on how patients experience life when treated with Deep Brain Stimulation can provide essential information on the process patients go through when receiving a treatment that alters the body and changes the illness trajectory. The aim of this study was to explore and describe the experience of living with Parkinson's disease when treated with Deep Brain Stimulation. The study was designed as a longitudinal study and data were gathered through qualitative in-depth interviews three times during the first year of treatment. Nine patients participated in the study. They were included when they had accepted treatment with Deep Brain Stimulation for Parkinson's disease. Data collection and data analysis were inspired by the hermeneutic phenomenological methodology of Van Manen. The treatment had a major impact on the body. Participants experienced great bodily changes and went through a process of adjustment in three phases during the first year of treatment with Deep Brain Stimulation. These stages were; being liberated: a kind of miracle, changes as a challenge: decline or opportunity and reconciliation: re-defining life with Parkinson's disease. The course of the process was unique for each participant, but dominant was that difficulties during the adjustment of stimulation and medication did affect the re-defining process. Patients go through a dramatic process of change following Deep Brain Stimulation. A changing body affects their entire lifeworld. Some adjust smoothly to changes while others are affected by loss of control, uncertainty and loss of everyday life as they knew it. These experiences affect the process of adjusting to life with Deep Brain Stimulation and re-define life with Parkinson's disease. It is of significant importance that health care professionals are aware of these dramatic changes in the patients' life and offer support during the adjustment process following Deep Brain Stimulation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  4. Malignant neuroleptic syndrome following deep brain stimulation surgery: a case report.

    PubMed

    Themistocleous, Marios S; Boviatsis, Efstathios J; Stavrinou, Lampis C; Stathis, Pantelis; Sakas, Damianos E

    2011-06-29

    The neuroleptic malignant syndrome is an uncommon but dangerous complication characterized by hyperthermia, autonomic dysfunction, altered mental state, hemodynamic dysregulation, elevated serum creatine kinase, and rigor. It is most often caused by an adverse reaction to anti-psychotic drugs or abrupt discontinuation of neuroleptic or anti-parkinsonian agents. To the best of our knowledge, it has never been reported following the common practice of discontinuation of anti-parkinsonian drugs during the pre-operative preparation for deep brain stimulation surgery for Parkinson's disease. We present the first case of neuroleptic malignant syndrome associated with discontinuation of anti-parkinsonian medication prior to deep brain stimulation surgery in a 54-year-old Caucasian man. The characteristic neuroleptic malignant syndrome symptoms can be attributed to other, more common causes associated with deep brain stimulation treatment for Parkinson's disease, thus requiring a high index of clinical suspicion to timely establish the correct diagnosis. As more centers become eligible to perform deep brain stimulation, neurologists and neurosurgeons alike should be aware of this potentially fatal complication. Timely activation of the deep brain stimulation system may be important in accelerating the patient's recovery.

  5. Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy

    PubMed Central

    Barretto, Robert P. J.; Ko, Tony H.; Jung, Juergen C.; Wang, Tammy J.; Capps, George; Waters, Allison C.; Ziv, Yaniv; Attardo, Alessio; Recht, Lawrence; Schnitzer, Mark J.

    2013-01-01

    The combination of intravital microscopy and animal models of disease has propelled studies of disease mechanisms and treatments. However, many disorders afflict tissues inaccessible to light microscopy in live subjects. Here we introduce cellular-level time-lapse imaging deep within the live mammalian brain by one- and two-photon fluorescence microendoscopy over multiple weeks. Bilateral imaging sites allowed longitudinal comparisons within individual subjects, including of normal and diseased tissues. Using this approach we tracked CA1 hippocampal pyramidal neuron dendrites in adult mice, revealing these dendrites' extreme stability (>8,000 day mean lifetime) and rare examples of their structural alterations. To illustrate disease studies, we tracked deep lying gliomas by observing tumor growth, visualizing three-dimensional vasculature structure, and determining microcirculatory speeds. Average erythrocyte speeds in gliomas declined markedly as the disease advanced, notwithstanding significant increases in capillary diameters. Time-lapse microendoscopy will be applicable to studies of numerous disorders, including neurovascular, neurological, cancerous, and trauma-induced conditions. PMID:21240263

  6. Long-term detection of Parkinsonian tremor activity from subthalamic nucleus local field potentials.

    PubMed

    Houston, Brady; Blumenfeld, Zack; Quinn, Emma; Bronte-Stewart, Helen; Chizeck, Howard

    2015-01-01

    Current deep brain stimulation paradigms deliver continuous stimulation to deep brain structures to ameliorate the symptoms of Parkinson's disease. This continuous stimulation has undesirable side effects and decreases the lifespan of the unit's battery, necessitating earlier replacement. A closed-loop deep brain stimulator that uses brain signals to determine when to deliver stimulation based on the occurrence of symptoms could potentially address these drawbacks of current technology. Attempts to detect Parkinsonian tremor using brain signals recorded during the implantation procedure have been successful. However, the ability of these methods to accurately detect tremor over extended periods of time is unknown. Here we use local field potentials recorded during a deep brain stimulation clinical follow-up visit 1 month after initial programming to build a tremor detection algorithm and use this algorithm to detect tremor in subsequent visits up to 8 months later. Using this method, we detected the occurrence of tremor with accuracies between 68-93%. These results demonstrate the potential of tremor detection methods for efficacious closed-loop deep brain stimulation over extended periods of time.

  7. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders

    PubMed Central

    2014-01-01

    Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669

  8. Deep brain stimulation for people with Alzheimer's disease: Anticipating potential effects on the tripartite self.

    PubMed

    Viaña, John Noel M; Gilbert, Frederic

    2018-01-01

    Memory dysfunction and cognitive impairments due to Alzheimer's disease can affect the selfhood and identity of afflicted individuals, causing distress to both people with Alzheimer's disease and their caregivers. Recently, a number of case studies and clinical trials have been conducted to determine the potential of deep brain stimulation as a therapeutic modality for people with Alzheimer's disease. Some of these studies have shown that deep brain stimulation could induce flashbacks and stabilize or even improve memory. However, deep brain stimulation itself has also been attributed as a potential threat to identity and selfhood, especially when procedure-related adverse events arise. We anticipate potential effects of deep brain stimulation for people with Alzheimer's disease on selfhood, reconciling information from medical reports, psychological, and sociological investigations on the impacts of deep brain stimulation or Alzheimer's disease on selfhood. A tripartite model of the self that extends the scope of Rom Harré's and Steve Sabat's social constructionist framework was used. In this model, potential effects of deep brain stimulation for Alzheimer's disease on Self 1 or singularity through use of first-person indexicals, and gestures of self-reference, attribution, and recognition; Self 2 or past and present attributes, knowledge of these characteristics, and continuity of narrative identity; and Self 3 or the relational and social self are explored. The ethical implications of potential effects of deep brain stimulation for Alzheimer's disease on the tripartite self are then highlighted, focusing on adapting informed consent procedures and care provided throughout the trial to account for both positive and negative plausible effects on Self 1, Self 2, and Self 3.

  9. Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior

    PubMed Central

    Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I

    2018-01-01

    Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information. PMID:29513219

  10. Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior.

    PubMed

    Groen, Iris Ia; Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I

    2018-03-07

    Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information.

  11. Swept-source optical coherence tomography powered by a 1.3-μm vertical cavity surface emitting laser enables 2.3-mm-deep brain imaging in mice in vivo

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Wang, Ruikang K.

    2015-10-01

    We report noninvasive, in vivo optical imaging deep within a mouse brain by swept-source optical coherence tomography (SS-OCT), enabled by a 1.3-μm vertical cavity surface emitting laser (VCSEL). VCSEL SS-OCT offers a constant signal sensitivity of 105 dB throughout an entire depth of 4.25 mm in air, ensuring an extended usable imaging depth range of more than 2 mm in turbid biological tissue. Using this approach, we show deep brain imaging in mice with an open-skull cranial window preparation, revealing intact mouse brain anatomy from the superficial cerebral cortex to the deep hippocampus. VCSEL SS-OCT would be applicable to small animal studies for the investigation of deep tissue compartments in living brains where diseases such as dementia and tumor can take their toll.

  12. Frameless Stereotactic Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device for Resection of Deep Brain Lesions: Technical Report

    PubMed Central

    Chakraborty, Shamik; Lall, Rohan; Fanous, Andrew A; Boockvar, John; Langer, David J

    2017-01-01

    The surgical management of deep brain tumors is often challenging due to the limitations of stereotactic needle biopsies and the morbidity associated with transcortical approaches. We present a novel microscopic navigational technique utilizing the Viewsite Brain Access System (VBAS) (Vycor Medical, Boca Raton, FL, USA) for resection of a deep parietal periventricular high-grade glioma as well as another glioma and a cavernoma with no related morbidity. The approach utilized a navigational tracker mounted on a microscope, which was set to the desired trajectory and depth. It allowed gentle continuous insertion of the VBAS directly to a deep lesion under continuous microscopic visualization, increasing safety by obviating the need to look up from the microscope and thus avoiding loss of trajectory. This technique has broad value for the resection of a variety of deep brain lesions. PMID:28331774

  13. Frameless Stereotactic Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device for Resection of Deep Brain Lesions: Technical Report.

    PubMed

    White, Tim; Chakraborty, Shamik; Lall, Rohan; Fanous, Andrew A; Boockvar, John; Langer, David J

    2017-02-04

    The surgical management of deep brain tumors is often challenging due to the limitations of stereotactic needle biopsies and the morbidity associated with transcortical approaches. We present a novel microscopic navigational technique utilizing the Viewsite Brain Access System (VBAS) (Vycor Medical, Boca Raton, FL, USA) for resection of a deep parietal periventricular high-grade glioma as well as another glioma and a cavernoma with no related morbidity. The approach utilized a navigational tracker mounted on a microscope, which was set to the desired trajectory and depth. It allowed gentle continuous insertion of the VBAS directly to a deep lesion under continuous microscopic visualization, increasing safety by obviating the need to look up from the microscope and thus avoiding loss of trajectory. This technique has broad value for the resection of a variety of deep brain lesions.

  14. A Stepwise Approach: Decreasing Infection in Deep Brain Stimulation for Childhood Dystonic Cerebral Palsy.

    PubMed

    Johans, Stephen J; Swong, Kevin N; Hofler, Ryan C; Anderson, Douglas E

    2017-09-01

    Dystonia is a movement disorder characterized by involuntary muscle contractions, which cause twisting movements or abnormal postures. Deep brain stimulation has been used to improve the quality of life for secondary dystonia caused by cerebral palsy. Despite being a viable treatment option for childhood dystonic cerebral palsy, deep brain stimulation is associated with a high rate of infection in children. The authors present a small series of patients with dystonic cerebral palsy who underwent a stepwise approach for bilateral globus pallidus interna deep brain stimulation placement in order to decrease the rate of infection. Four children with dystonic cerebral palsy who underwent a total of 13 surgical procedures (electrode and battery placement) were identified via a retrospective review. There were zero postoperative infections. Using a multistaged surgical plan for pediatric patients with dystonic cerebral palsy undergoing deep brain stimulation may help to reduce the risk of infection.

  15. Innovations in deep brain stimulation methodology.

    PubMed

    Kühn, Andrea A; Volkmann, Jens

    2017-01-01

    Deep brain stimulation is a powerful clinical method for movement disorders that no longer respond satisfactorily to pharmacological management, but its progress has been hampered by stagnation in technological procedure solutions and device development. Recently, the combined research efforts of bioengineers, neuroscientists, and clinicians have helped to better understand the mechanisms of deep brain stimulation, and solutions for the translational roadblock are emerging. Here, we define the needs for methodological advances in deep brain stimulation from a neurophysiological perspective and describe technological solutions that are currently evaluated for near-term clinical application. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  16. The influence of encoding strategy on episodic memory and cortical activity in schizophrenia.

    PubMed

    Bonner-Jackson, Aaron; Haut, Kristen; Csernansky, John G; Barch, Deanna M

    2005-07-01

    Recent work suggests that episodic memory deficits in schizophrenia may be related to disturbances of encoding or retrieval. Schizophrenia patients appear to benefit from instruction in episodic memory strategies. We tested the hypothesis that providing effective encoding strategies to schizophrenia patients enhances encoding-related brain activity and recognition performance. Seventeen schizophrenia patients and 26 healthy comparison subjects underwent functional magnetic resonance imaging scans while performing incidental encoding tasks of words and faces. Subjects were required to make either deep (abstract/concrete) or shallow (alphabetization) judgments for words and deep (gender) judgments for faces, followed by subsequent recognition tests. Schizophrenia and comparison subjects recognized significantly more words encoded deeply than shallowly, activated regions in inferior frontal cortex (Brodmann area 45/47) typically associated with deep and successful encoding of words, and showed greater left frontal activation for the processing of words compared with faces. However, during deep encoding and material-specific processing (words vs. faces), participants with schizophrenia activated regions not activated by control subjects, including several in prefrontal cortex. Our findings suggest that a deficit in use of effective strategies influences episodic memory performance in schizophrenia and that abnormalities in functional brain activation persist even when such strategies are applied.

  17. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology.

    PubMed

    Rachmadi, Muhammad Febrian; Valdés-Hernández, Maria Del C; Agan, Maria Leonora Fatimah; Di Perri, Carol; Komura, Taku

    2018-06-01

    We propose an adaptation of a convolutional neural network (CNN) scheme proposed for segmenting brain lesions with considerable mass-effect, to segment white matter hyperintensities (WMH) characteristic of brains with none or mild vascular pathology in routine clinical brain magnetic resonance images (MRI). This is a rather difficult segmentation problem because of the small area (i.e., volume) of the WMH and their similarity to non-pathological brain tissue. We investigate the effectiveness of the 2D CNN scheme by comparing its performance against those obtained from another deep learning approach: Deep Boltzmann Machine (DBM), two conventional machine learning approaches: Support Vector Machine (SVM) and Random Forest (RF), and a public toolbox: Lesion Segmentation Tool (LST), all reported to be useful for segmenting WMH in MRI. We also introduce a way to incorporate spatial information in convolution level of CNN for WMH segmentation named global spatial information (GSI). Analysis of covariance corroborated known associations between WMH progression, as assessed by all methods evaluated, and demographic and clinical data. Deep learning algorithms outperform conventional machine learning algorithms by excluding MRI artefacts and pathologies that appear similar to WMH. Our proposed approach of incorporating GSI also successfully helped CNN to achieve better automatic WMH segmentation regardless of network's settings tested. The mean Dice Similarity Coefficient (DSC) values for LST-LGA, SVM, RF, DBM, CNN and CNN-GSI were 0.2963, 0.1194, 0.1633, 0.3264, 0.5359 and 5389 respectively. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  18. In vivo optoacoustic monitoring of calcium activity in the brain (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Deán-Ben, Xose Luís.; Gottschalk, Sven; Sela, Gali; Lauri, Antonella; Kneipp, Moritz; Ntziachristos, Vasilis; Westmeyer, Gil G.; Shoham, Shy; Razansky, Daniel

    2017-03-01

    Non-invasive observation of spatio-temporal neural activity of large neural populations distributed over the entire brain of complex organisms is a longstanding goal of neuroscience [1,2]. Recently, genetically encoded calcium indicators (GECIs) have revolutionized neuroimaging by enabling mapping the activity of entire neuronal populations in vivo [3]. Visualization of these powerful sensors with fluorescence microscopy has however been limited to superficial regions while deep brain areas have so far remained unreachable [4]. We have developed a volumetric multispectral optoacoustic tomography platform for imaging neural activation deep in scattering brains [5]. The developed methodology can render 100 volumetric frames per second across scalable fields of view ranging between 50-1000 mm3 with respective spatial resolution of 35-150µm. Experiments performed in immobilized and freely swimming larvae and in adult zebrafish brains expressing the genetically-encoded calcium indicator GCaMP5G demonstrated, for the first time, the fundamental ability to directly track neural dynamics using optoacoustics while overcoming the depth barrier of optical imaging in scattering brains [6]. It was further possible to monitor calcium transients in a scattering brain of a living adult transgenic zebrafish expressing GCaMP5G calcium indicator [7]. Fast changes in optoacoustic traces associated to GCaMP5G activity were detectable in the presence of other strongly absorbing endogenous chromophores, such as hemoglobin. The results indicate that the optoacoustic signal traces generally follow the GCaMP5G fluorescence dynamics and further enable overcoming the longstanding optical-diffusion penetration barrier associated to scattering in biological tissues [6]. The new functional optoacoustic neuroimaging method can visualize neural activity at penetration depths and spatio-temporal resolution scales not covered with the existing neuroimaging techniques. Thus, in addition to the well-established capacity of optoacoustics to resolve vascular anatomy and multiple hemodynamic parameters deep in scattering tissues, the newly developed methodology offers unprecedented capabilities for functional whole brain observations of fast calcium dynamics.

  19. Intraoperative MR-guided DBS implantation for treating PD and ET

    NASA Astrophysics Data System (ADS)

    Liu, Haiying; Maxwell, Robert E.; Truwit, Charles L.

    2001-05-01

    Deep brain stimulator (DBS) implantation is a promising treatment alternative for suppressing the motor tremor symptoms in Parkinson disease (PD) patient. The main objective is to develop a minimally invasive approach using high spatial resolution and soft-tissue contrast MR imaging techniques to guide the surgical placement of DBS. In the MR-guided procedure, the high spatial resolution MR images were obtained intra-operatively and used to target stereotactically a specific deep brain location. The neurosurgery for craniotomy was performed in the front of the magnet outside of the 10 Gauss line. Aided with positional registration assembly for the stereotactic head frame, the target location (VIM or GPi or STN) in deep brain areas was identified and measured from the MR images in reference to the markers in the calibration assembly of the head frame before the burrhole prep. In 20 patients, MR- guided DBS implantations have been performed according to the new methodology. MR-guided DBS implantation at high magnetic field strength has been shown to be feasible and desirable. In addition to the improved outcome, this offers a new surgical approach in which intra-operative visualization is possible during intervention, and any complications such as bleeding can be assessed in situ immediately prior to dural closure.

  20. Light up the "no-man's land" on the brain stem.

    PubMed

    Kawase, T

    1995-12-01

    The ventral surface of the brain stem is anatomically surrounded by the clivus anteriorly, brain stem posteriorly and by the petrous pyramid and cranial nerves from IIIrd to XIIth laterally in the deep posterior cranial fossa. Neurosurgical extra-axial pathologies arising from the area are aneurysms on the vertebro-basilar artery, benign tumors such as clival meningiomas, chordomas, chondromas, trigeminal neurinomas and prepontine epidermoid tumors. Surgical access to the area had been difficult for long years since the neurosurgery was established, because located deeply in such a surgical blindness, so-called "no-man's land". However, recent technical development of "skull base surgery" is opening new doors to light up the surgical darkness of the "no-man's land". This paper reviews the history, development, technique and future prospect of the skull base surgery to open the "no-man's land".

  1. Uncovering the mechanism(s) of deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Gang, Li; Chao, Yu; Ling, Lin; C-Y Lu, Stephen

    2005-01-01

    Deep brain stimulators, often called `pacemakers for the brain', are implantable devices which continuously deliver impulse stimulation to specific targeted nuclei of deep brain structure, namely deep brain stimulation (DBS). To date, deep brain stimulation (DBS) is the most effective clinical technique for the treatment of several medically refractory movement disorders (e.g., Parkinson's disease, essential tremor, and dystonia). In addition, new clinical applications of DBS for other neurologic and psychiatric disorders (e.g., epilepsy and obsessive-compulsive disorder) have been put forward. Although DBS has been effective in the treatment of movement disorders and is rapidly being explored for the treatment of other neurologic disorders, the scientific understanding of its mechanisms of action remains unclear and continues to be debated in the scientific community. Optimization of DBS technology for present and future therapeutic applications will depend on identification of the therapeutic mechanism(s) of action. The goal of this review is to address our present knowledge of the effects of high-frequency stimulation within the central nervous system and comment on the functional implications of this knowledge for uncovering the mechanism(s) of DBS.

  2. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.

    2003-01-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  3. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation.

    PubMed

    Andrews, Russell J

    2003-05-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  4. Anatomic Connections of the Subgenual Cingulate Region.

    PubMed

    Vergani, Francesco; Martino, Juan; Morris, Christopher; Attems, Johannes; Ashkan, Keyoumars; DellʼAcqua, Flavio

    2016-09-01

    The subgenual cingulate gyrus (SCG) has been proposed as a target for deep brain stimulation (DBS) in neuropsychiatric disorders, mainly major depression. Despite promising clinical results, the mechanism of action of DBS in this region is poorly understood. Knowledge of the connections of the SCG can elucidate the network involved by DBS in this area and can help refine the targeting for DBS electrode placement. To investigate the anatomic connections of the SCG region. An anatomic study of the connections of the SCG was performed on postmortem specimens and in vivo with MR diffusion imaging tractography. Postmortem dissections were performed according to the Klingler technique. Specimens were fixed in 10% formalin and frozen at -15°C for 2 weeks. After thawing, dissection was performed with blunt dissectors. Whole brain tractography was performed using spherical deconvolution tractography. Four main connections were found: (1) fibers of the cingulum, originating at the level of the SCG and terminating at the medial aspect of the temporal lobe (parahippocampal gyrus); (2) fibers running toward the base of the frontal lobe, connecting the SCG with frontopolar areas; (3) fibers running more laterally, converging onto the ventral striatum (nucleus accumbens); (4) fibers of the uncinate fasciculus, connecting the orbitofrontal with the anterior temporal region. The SCG shows a wide range of white matter connections with limbic, prefrontal, and mesiotemporal areas. These findings can help to explain the role of the SCG in DBS for psychiatric disorders. DBS, deep brain stimulationSCG, subgenual cingulate gyrus.

  5. Long-term implantation of deep brain stimulation electrodes in the pontine micturition centre of the Göttingen minipig.

    PubMed

    Jensen, Kristian N; Deding, Dorthe; Sørensen, Jens Christian; Bjarkam, Carsten R

    2009-07-01

    To implant deep brain stimulation (DBS) electrodes in the porcine pontine micturition centre (PMC) in order to establish a large animal model of PMC-DBS. Brain stems from four Göttingen minipigs were sectioned coronally into 40-mum-thick histological sections and stained with Nissl, auto-metallographic myelin stain, tyrosine hydroxylase and corticotrophin-releasing factor immunohistochemistry in order to identify the porcine PMC. DBS electrodes were then stereotaxically implanted on the right side into the PMC in four Göttingen minipigs, and the bladder response to electrical stimulation was evaluated by subsequent cystometry performed immediately after the operation and several weeks later. A paired CRF-dense area homologous to the PMC in other species was encountered in the rostral pontine tegmentum medial to the locus coeruleus and ventral to the floor of the fourth ventricle. Electrical stimulation of the CRF-dense area resulted in an increased detrusor pressure followed by visible voiding in some instances. The pigs were allowed to survive between 14 and 55 days, and electrical stimulation resulting in an increased detrusor pressure was performed on more than one occasion without affecting consciousness or general thriving. None of the pigs developed postoperative infections or died prematurely. DBS electrodes can be implanted for several weeks in the identified CRF-dense area resulting in a useful large animal model for basic research on micturition and the future clinical use of this treatment modality in neurogenic supra-pontine voiding disorders.

  6. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Wei, Xuefeng F.; Grill, Warren M.

    2005-12-01

    Deep brain stimulation (DBS) electrodes are designed to stimulate specific areas of the brain. The most widely used DBS electrode has a linear array of 4 cylindrical contacts that can be selectively turned on depending on the placement of the electrode and the specific area of the brain to be stimulated. The efficacy of DBS therapy can be improved by localizing the current delivery into specific populations of neurons and by increasing the power efficiency through a suitable choice of electrode geometrical characteristics. We investigated segmented electrode designs created by sectioning each cylindrical contact into multiple rings. Prototypes of these designs, made with different materials and larger dimensions than those of clinical DBS electrodes, were evaluated in vitro and in simulation. A finite element model was developed to study the effects of varying the electrode characteristics on the current density and field distributions in an idealized electrolytic medium and in vitro experiments were conducted to measure the electrode impedance. The current density over the electrode surface increased towards the edges of the electrode, and multiple edges increased the non-uniformity of the current density profile. The edge effects were more pronounced over the end segments than over the central segments. Segmented electrodes generated larger magnitudes of the second spatial difference of the extracellular potentials, and thus required lower stimulation intensities to achieve the same level of neuronal activation as solid electrodes. For a fixed electrode conductive area, increasing the number of segments (edges) decreased the impedance compared to a single solid electrode, because the average current density over the segments increased. Edge effects played a critical role in determining the current density distributions, neuronal excitation patterns, and impedance of cylindrical electrodes, and segmented electrodes provide a means to increase the efficiency of DBS.

  7. Deep brain stimulation for severe treatment-resistant obsessive-compulsive disorder: An open-label case series.

    PubMed

    Farrand, Sarah; Evans, Andrew H; Mangelsdorf, Simone; Loi, Samantha M; Mocellin, Ramon; Borham, Adam; Bevilacqua, JoAnne; Blair-West, Scott; Walterfang, Mark A; Bittar, Richard G; Velakoulis, Dennis

    2017-09-01

    Deep brain stimulation can be of benefit in carefully selected patients with severe intractable obsessive-compulsive disorder. The aim of this paper is to describe the outcomes of the first seven deep brain stimulation procedures for obsessive-compulsive disorder undertaken at the Neuropsychiatry Unit, Royal Melbourne Hospital. The primary objective was to assess the response to deep brain stimulation treatment utilising the Yale-Brown Obsessive Compulsive Scale as a measure of symptom severity. Secondary objectives include assessment of depression and anxiety, as well as socio-occupational functioning. Patients with severe obsessive-compulsive disorder were referred by their treating psychiatrist for assessment of their suitability for deep brain stimulation. Following successful application to the Psychosurgery Review Board, patients proceeded to have deep brain stimulation electrodes implanted in either bilateral nucleus accumbens or bed nucleus of stria terminalis. Clinical assessment and symptom rating scales were undertaken pre- and post-operatively at 6- to 8-week intervals. Rating scales used included the Yale-Brown Obsessive Compulsive Scale, Obsessive Compulsive Inventory, Depression Anxiety Stress Scale and Social and Occupational Functioning Assessment Scale. Seven patients referred from four states across Australia underwent deep brain stimulation surgery and were followed for a mean of 31 months (range, 8-54 months). The sample included four females and three males, with a mean age of 46 years (range, 37-59 years) and mean duration of obsessive-compulsive disorder of 25 years (range, 15-38 years) at the time of surgery. The time from first assessment to surgery was on average 18 months. All patients showed improvement on symptom severity rating scales. Three patients showed a full response, defined as greater than 35% improvement in Yale-Brown Obsessive Compulsive Scale score, with the remaining showing responses between 7% and 20%. Deep brain stimulation was an effective treatment for obsessive-compulsive disorder in these highly selected patients. The extent of the response to deep brain stimulation varied between patients, as well as during the course of treatment for each patient. The results of this series are comparable with the literature, as well as having similar efficacy to ablative psychosurgery techniques such as capsulotomy and cingulotomy. Deep brain stimulation provides advantages over lesional psychosurgery but is more expensive and requires significant multidisciplinary input at all stages, pre- and post-operatively, ideally within a specialised tertiary clinical and/or academic centre. Ongoing research is required to better understand the neurobiological basis for obsessive-compulsive disorder and how this can be manipulated with deep brain stimulation to further improve the efficacy of this emerging treatment.

  8. Neurophotonics: optical methods to study and control the brain

    NASA Astrophysics Data System (ADS)

    Doronina-Amitonova, L. V.; Fedotov, I. V.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.

    2015-04-01

    Methods of optical physics offer unique opportunities for the investigation of brain and higher nervous activity. The integration of cutting-edge laser technologies and advanced neurobiology opens a new cross-disciplinary area of natural sciences - neurophotonics - focusing on the development of a vast arsenal of tools for functional brain diagnostics, stimulation of individual neurons and neural networks, and the molecular engineering of brain cells aimed at the diagnosis and therapy of neurodegenerative and psychic diseases. Optical fibers help to confront the most challenging problems in brain research, including the analysis of molecular-cellular mechanisms of the formation of memory and behavior. New generation optical fibers provide new solutions for the development of fundamentally new, unique tools for neurophotonics and laser neuroengineering - fiber-optic neuroendoscopes and neurointerfaces. These instruments broaden research horizons when investigating the most complex brain functions, enabling a long-term multiplex detection of fluorescent protein markers, as well as photostimulation of neuronal activity in deep brain areas in living, freely moving animals with an unprecedented spatial resolution and minimal invasiveness. This emerging technology opens new horizons for understanding learning and long-term memory through experiments with living, freely moving mammals. Here, we present a brief review of this rapidly growing field of research.

  9. Centromedian-parafascicular deep brain stimulation induces differential functional inhibition of the motor, associative, and limbic circuits in large animals.

    PubMed

    Kim, Joo Pyung; Min, Hoon-Ki; Knight, Emily J; Duffy, Penelope S; Abulseoud, Osama A; Marsh, Michael P; Kelsey, Katherine; Blaha, Charles D; Bennet, Kevin E; Frye, Mark A; Lee, Kendall H

    2013-12-15

    Deep brain stimulation (DBS) of the centromedian-parafascicular (CM-Pf) thalamic nuclei has been considered an option for treating Tourette syndrome. Using a large animal DBS model, this study was designed to explore the network effects of CM-Pf DBS. The combination of DBS and functional magnetic resonance imaging is a powerful means of tracing brain circuitry and testing the modulatory effects of electrical stimulation on a neuronal network in vivo. With a within-subjects design, we tested the proportional effects of CM and Pf DBS by manipulating current spread and varying stimulation contacts in healthy pigs (n = 5). Our results suggests that CM-Pf DBS has an inhibitory modulating effect in areas that have been suggested as contributing to impaired sensory-motor and emotional processing. The results also help to define the differential neural circuitry effects of the CM and Pf with evidence of prominent sensorimotor/associative effects for CM DBS and prominent limbic/associative effects for Pf DBS. Our results support the notion that stimulation of deep brain structures, such as the CM-Pf, modulates multiple networks with cortical effects. The networks affected by CM-Pf stimulation in this study reinforce the conceptualization of Tourette syndrome as a condition with psychiatric and motor symptoms and of CM-Pf DBS as a potentially effective tool for treating both types of symptoms. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. A tripolar current-steering stimulator ASIC for field shaping in deep brain stimulation.

    PubMed

    Valente, Virgilio; Demosthenous, Andreas; Bayford, Richard

    2012-06-01

    A significant problem with clinical deep brain stimulation (DBS) is the high variability of its efficacy and the frequency of side effects, related to the spreading of current beyond the anatomical target area. This is the result of the lack of control that current DBS systems offer on the shaping of the electric potential distribution around the electrode. This paper presents a stimulator ASIC with a tripolar current-steering output stage, aiming at achieving more selectivity and field shaping than current DBS systems. The ASIC was fabricated in a 0.35-μ m CMOS technology occupying a core area of 0.71 mm(2). It consists of three current sourcing/sinking channels. It is capable of generating square and exponential-decay biphasic current pulses with five different time constants up to 28 ms and delivering up to 1.85 mA of cathodic current, in steps of 4 μA, from a 12 V power supply. Field shaping was validated by mapping the potential distribution when injecting current pulses through a multicontact DBS electrode in saline.

  11. Brain Neuromodulation Techniques: A Review.

    PubMed

    Lewis, Philip M; Thomson, Richard H; Rosenfeld, Jeffrey V; Fitzgerald, Paul B

    2016-08-01

    The modulation of brain function via the application of weak direct current was first observed directly in the early 19th century. In the past 3 decades, transcranial magnetic stimulation and deep brain stimulation have undergone clinical translation, offering alternatives to pharmacological treatment of neurological and neuropsychiatric disorders. Further development of novel neuromodulation techniques employing ultrasound, micro-scale magnetic fields and optogenetics is being propelled by a rapidly improving understanding of the clinical and experimental applications of artificially stimulating or depressing brain activity in human health and disease. With the current rapid growth in neuromodulation technologies and applications, it is timely to review the genesis of the field and the current state of the art in this area. © The Author(s) 2016.

  12. Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation

    PubMed Central

    Lysyansky, Borys; Rosenblum, Michael; Pikovsky, Arkady; Tass, Peter A.

    2017-01-01

    High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson’s disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS. PMID:28273176

  13. Pilot study assessing the feasibility of applying bilateral subthalamic nucleus deep brain stimulation in very early stage Parkinson's disease: study design and rationale.

    PubMed

    Charles, David; Tolleson, Christopher; Davis, Thomas L; Gill, Chandler E; Molinari, Anna L; Bliton, Mark J; Tramontana, Michael G; Salomon, Ronald M; Kao, Chris; Wang, Lily; Hedera, Peter; Phibbs, Fenna T; Neimat, Joseph S; Konrad, Peter E

    2012-01-01

    Deep brain stimulation provides significant symptomatic benefit for people with advanced Parkinson's disease whose symptoms are no longer adequately controlled with medication. Preliminary evidence suggests that subthalamic nucleus stimulation may also be efficacious in early Parkinson's disease, and results of animal studies suggest that it may spare dopaminergic neurons in the substantia nigra. We report the methodology and design of a novel Phase I clinical trial testing the safety and tolerability of deep brain stimulation in early Parkinson's disease and discuss previous failed attempts at neuroprotection. We recently conducted a prospective, randomized, parallel-group, single-blind pilot clinical trial of deep brain stimulation in early Parkinson's disease. Subjects were randomized to receive either optimal drug therapy or deep brain stimulation plus optimal drug therapy. Follow-up visits occurred every six months for a period of two years and included week-long therapy washouts. Thirty subjects with Hoehn & Yahr Stage II idiopathic Parkinson's disease were enrolled over a period of 32 months. Twenty-nine subjects completed all follow-up visits; one patient in the optimal drug therapy group withdrew from the study after baseline. Baseline characteristics for all thirty patients were not significantly different. This study demonstrates that it is possible to recruit and retain subjects in a clinical trial testing deep brain stimulation in early Parkinson's disease. The results of this trial will be used to support the design of a Phase III, multicenter trial investigating the efficacy of deep brain stimulation in early Parkinson's disease.

  14. Pilot Study Assessing the Feasibility of Applying Bilateral Subthalamic Nucleus Deep Brain Stimulation in Very Early Stage Parkinson's Disease: Study design and rationale

    PubMed Central

    Charles, David; Tolleson, Christopher; Davis, Thomas L.; Gill, Chandler E.; Molinari, Anna L.; Bliton, Mark J.; Tramontana, Michael G.; Salomon, Ronald M.; Kao, Chris; Wang, Lily; Hedera, Peter; Phibbs, Fenna T.; Neimat, Joseph S.; Konrad, Peter E.

    2014-01-01

    Background Deep brain stimulation provides significant symptomatic benefit for people with advanced Parkinson's disease whose symptoms are no longer adequately controlled with medication. Preliminary evidence suggests that subthalamic nucleus stimulation may also be efficacious in early Parkinson's disease, and results of animal studies suggest that it may spare dopaminergic neurons in the substantia nigra. Objective We report the methodology and design of a novel Phase I clinical trial testing the safety and tolerability of deep brain stimulation in early Parkinson's disease and discuss previous failed attempts at neuroprotection. Methods We recently conducted a prospective, randomized, parallel-group, single-blind pilot clinical trial of deep brain stimulation in early Parkinson's disease. Subjects were randomized to receive either optimal drug therapy or deep brain stimulation plus optimal drug therapy. Follow-up visits occurred every six months for a period of two years and included week-long therapy washouts. Results Thirty subjects with Hoehn & Yahr Stage II idiopathic Parkinson's disease were enrolled over a period of 32 months. Twenty-nine subjects completed all follow-up visits; one patient in the optimal drug therapy group withdrew from the study after baseline. Baseline characteristics for all thirty patients were not significantly different. Conclusions This study demonstrates that it is possible to recruit and retain subjects in a clinical trial testing deep brain stimulation in early Parkinson's disease. The results of this trial will be used to support the design of a Phase III, multicenter trial investigating the efficacy of deep brain stimulation in early Parkinson's disease. PMID:23938229

  15. Sensitivity analysis of brain morphometry based on MRI-derived surface models

    NASA Astrophysics Data System (ADS)

    Klein, Gregory J.; Teng, Xia; Schoenemann, P. T.; Budinger, Thomas F.

    1998-07-01

    Quantification of brain structure is important for evaluating changes in brain size with growth and aging and for characterizing neurodegeneration disorders. Previous quantification efforts using ex vivo techniques suffered considerable error due to shrinkage of the cerebrum after extraction from the skull, deformation of slices during sectioning, and numerous other factors. In vivo imaging studies of brain anatomy avoid these problems and allow repetitive studies following progression of brain structure changes due to disease or natural processes. We have developed a methodology for obtaining triangular mesh models of the cortical surface from MRI brain datasets. The cortex is segmented from nonbrain tissue using a 2D region-growing technique combined with occasional manual edits. Once segmented, thresholding and image morphological operations (erosions and openings) are used to expose the regions between adjacent surfaces in deep cortical folds. A 2D region- following procedure is then used to find a set of contours outlining the cortical boundary on each slice. The contours on all slices are tiled together to form a closed triangular mesh model approximating the cortical surface. This model can be used for calculation of cortical surface area and volume, as well as other parameters of interest. Except for the initial segmentation of the cortex from the skull, the technique is automatic and requires only modest computation time on modern workstations. Though the use of image data avoids many of the pitfalls of ex vivo and sectioning techniques, our MRI-based technique is still vulnerable to errors that may impact the accuracy of estimated brain structure parameters. Potential inaccuracies include segmentation errors due to incorrect thresholding, missed deep sulcal surfaces, falsely segmented holes due to image noise and surface tiling artifacts. The focus of this paper is the characterization of these errors and how they affect measurements of cortical surface area and volume.

  16. Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals.

    PubMed

    Bruner, Emiliano; Rangel de Lázaro, Gizéh; de la Cuétara, José Manuel; Martín-Loeches, Manuel; Colom, Roberto; Jacobs, Heidi I L

    2014-04-01

    Recent analyses indicate that the precuneus is one of the main centres of integration in terms of functional and structural processes within the human brain. This neuroanatomical element is formed by different subregions, involved in visuo-spatial integration, memory and self-awareness. We analysed the midsagittal brain shape in a sample of adult humans (n = 90) to evidence the patterns of variability and geometrical organization of this area. Interestingly, the major brain covariance pattern within adult humans is strictly associated with the relative proportions of the precuneus. Its morphology displays a marked individual variation, both in terms of geometry (mostly in its longitudinal dimensions) and anatomy (patterns of convolution). No patent differences are evident between males and females, and the allometric effect of size is minimal. However, in terms of morphology, the precuneus does not represent an individual module, being influenced by different neighbouring structures. Taking into consideration the apparent involvement of the precuneus in higher-order human brain functions and evolution, its wide variation further stresses the important role of these deep parietal areas in modern neuroanatomical organization. © 2014 Anatomical Society.

  17. The treatment of Parkinson's disease with deep brain stimulation: current issues.

    PubMed

    Moldovan, Alexia-Sabine; Groiss, Stefan Jun; Elben, Saskia; Südmeyer, Martin; Schnitzler, Alfons; Wojtecki, Lars

    2015-07-01

    Deep brain stimulation has become a well-established symptomatic treatment for Parkinson's disease during the last 25 years. Besides improving motor symptoms and long-term motor complications, positive effects on patients' mobility, activities of daily living, emotional well-being and health-related quality of life have been recognized. Apart from that, numerous clinical trials analyzed effects on non-motor symptoms and side effects of deep brain stimulation. Several technical issues and stimulation paradigms have been and are still being developed to optimize the therapeutic effects, minimize the side effects and facilitate handling. This review summarizes current therapeutic issues, i.e., patient and target selection, surgical procedure and programming paradigms. In addition it focuses on neuropsychological effects and side effects of deep brain stimulation.

  18. [Long-term care of Parkinson patients with deep brain stimulation].

    PubMed

    Allert, N; Barbe, M T; Timmermann, L; Coenen, V A

    2011-12-01

    For more than 15 years deep brain stimulation of the subthalamic nucleus and globus pallidus internus have become therapeutic options in advanced Parkinson's disease. The number of patients with long-term treatment is increasing steadily. This review focuses on issues of the long-term care of these Parkinson's patients, including differences of the available deep brain stimulation systems, recommendations for follow-up examinations, implications for medical diagnostics and therapies and an algorithm for symptom deterioration. Today, there is no profound evidence that deep brain stimulation prevents disease progression. However, symptomatic relief from motor symptoms is maintained during long-term follow-up and interruption of the therapy remains an exception. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Deep Sequencing to Identify the Causes of Viral Encephalitis

    PubMed Central

    Chan, Benjamin K.; Wilson, Theodore; Fischer, Kael F.; Kriesel, John D.

    2014-01-01

    Deep sequencing allows for a rapid, accurate characterization of microbial DNA and RNA sequences in many types of samples. Deep sequencing (also called next generation sequencing or NGS) is being developed to assist with the diagnosis of a wide variety of infectious diseases. In this study, seven frozen brain samples from deceased subjects with recent encephalitis were investigated. RNA from each sample was extracted, randomly reverse transcribed and sequenced. The sequence analysis was performed in a blinded fashion and confirmed with pathogen-specific PCR. This analysis successfully identified measles virus sequences in two brain samples and herpes simplex virus type-1 sequences in three brain samples. No pathogen was identified in the other two brain specimens. These results were concordant with pathogen-specific PCR and partially concordant with prior neuropathological examinations, demonstrating that deep sequencing can accurately identify viral infections in frozen brain tissue. PMID:24699691

  20. Deep brain stimulation effects in dystonia: time course of electrophysiological changes in early treatment.

    PubMed

    Ruge, Diane; Tisch, Stephen; Hariz, Marwan I; Zrinzo, Ludvic; Bhatia, Kailash P; Quinn, Niall P; Jahanshahi, Marjan; Limousin, Patricia; Rothwell, John C

    2011-08-15

    Deep brain stimulation to the internal globus pallidus is an effective treatment for primary dystonia. The optimal clinical effect often occurs only weeks to months after starting stimulation. To better understand the underlying electrophysiological changes in this period, we assessed longitudinally 2 pathophysiological markers of dystonia in patients prior to and in the early treatment period (1, 3, 6 months) after deep brain stimulation surgery. Transcranial magnetic stimulation was used to track changes in short-latency intracortical inhibition, a measure of excitability of GABA(A) -ergic corticocortical connections and long-term potentiation-like synaptic plasticity (as a response to paired associative stimulation). Deep brain stimulation remained on for the duration of the study. Prior to surgery, inhibition was reduced and plasticity increased in patients compared with healthy controls. Following surgery and commencement of deep brain stimulation, short-latency intracortical inhibition increased toward normal levels over the following months with the same monotonic time course as the patients' clinical benefit. In contrast, synaptic plasticity changed rapidly, following a nonmonotonic time course: it was absent early (1 month) after surgery, and then over the following months increased toward levels observed in healthy individuals. We postulate that before surgery preexisting high levels of plasticity form strong memories of dystonic movement patterns. When deep brain stimulation is turned on, it disrupts abnormal basal ganglia signals, resulting in the absent response to paired associative stimulation at 1 month. Clinical benefit is delayed because engrams of abnormal movement persist and take time to normalize. Our observations suggest that plasticity may be a driver of long-term therapeutic effects of deep brain stimulation in dystonia. Copyright © 2011 Movement Disorder Society.

  1. Long-Term Efficacy of Constant Current Deep Brain Stimulation in Essential Tremor.

    PubMed

    Rezaei Haddad, Ali; Samuel, Michael; Hulse, Natasha; Lin, Hsin-Ying; Ashkan, Keyoumars

    2017-07-01

    Ventralis intermedius deep brain stimulation is an established intervention for medication-refractory essential tremor. Newer constant current stimulation technology offers theoretical advantage over the traditional constant voltage systems in terms of delivering a more biologically stable therapy. There are no previous reports on the outcomes of constant current deep brain stimulation in the treatment of essential tremor. This study aimed to evaluate the long-term efficacy of ventralis intermedius constant current deep brain stimulation in patients diagnosed with essential tremor. Essential tremor patients implanted with constant current deep brain stimulation for a minimum of three years were evaluated. Clinical outcomes were assessed using the Fahn-Tolosa-Marin tremor rating scale at baseline and postoperatively at the time of evaluation. The quality of life in the patients was assessed using the Quality of Life in Essential Tremor questionnaire. Ten patients were evaluated with a median age at evaluation of 74 years (range 66-79) and a mean follow up time of 49.7 (range 36-78) months since starting stimulation. Constant current ventralis intermedius deep brain stimulation was well tolerated and effective in all patients with a mean score improvement from 50.7 ± 5.9 to 17.4 ± 5.7 (p = 0.0020) in the total Fahn-Tolosa-Marin rating scale score (65.6%). Furthermore, the total combined mean Quality of Life in Essential Tremor score was improved from 56.2 ± 4.9 to 16.8 ± 3.5 (p value = 0.0059) (70.1%). This report shows that long-term constant current ventralis intermedius deep brain stimulation is a safe and effective intervention for essential tremor patients. © 2017 International Neuromodulation Society.

  2. Subthalamic nucleus deep brain stimulation for Parkinson's disease: evidence for effectiveness and limitations from 12 years' experience.

    PubMed

    Chan, Anne Y Y; Yeung, Jonas H M; Mok, Vincent C T; Ip, Vincent H L; Wong, Adrian; Kuo, S H; Chan, Danny T M; Zhu, X L; Wong, Edith; Lau, Claire K Y; Wong, Rosanna K M; Tang, Venus; Lau, Christine; Poon, W S

    2014-12-01

    To present the result and experience of subthalamic nucleus deep brain stimulation for Parkinson's disease. Case series. Prince of Wales Hospital, Hong Kong. A cohort of patients with Parkinson's disease received subthalamic nucleus deep brain stimulation from September 1998 to January 2010. Patient assessment data before and after the operation were collected prospectively. Forty-one patients (21 male and 20 female) with Parkinson's disease underwent bilateral subthalamic nucleus deep brain stimulation and were followed up for a median interval of 12 months. For the whole group, the mean improvements of Unified Parkinson's Disease Rating Scale (UPDRS) parts II and III were 32.5% and 31.5%, respectively (P<0.001). Throughout the years, a multidisciplinary team was gradually built. The deep brain stimulation protocol evolved and was substantiated by updated patient selection criteria and outcome assessment, integrated imaging and neurophysiological targeting, refinement of surgical technique as well as the accumulation of experience in deep brain stimulation programming. Most of the structural improvement occurred before mid-2005. Patients receiving the operation before June 2005 (19 cases) and after (22 cases) were compared; the improvements in UPDRS part III were 13.2% and 55.2%, respectively (P<0.001). There were three operative complications (one lead migration, one cerebral haematoma, and one infection) in the group operated on before 2005. There was no operative mortality. The functional state of Parkinson's disease patients with motor disabilities refractory to best medical treatment improved significantly after subthalamic nucleus deep brain stimulation. A dedicated multidisciplinary team building, refined protocol for patient selection and assessment, improvement of targeting methods, meticulous surgical technique, and experience in programming are the key factors contributing to the improved outcome.

  3. Levels of word processing and incidental memory: dissociable mechanisms in the temporal lobe.

    PubMed

    Castillo, E M; Simos, P G; Davis, R N; Breier, J; Fitzgerald, M E; Papanicolaou, A C

    2001-11-16

    Word recall is facilitated when deep (e.g. semantic) processing is applied during encoding. This fact raises the question of the existence of specific brain mechanisms supporting different levels of information processing that can modulate incidental memory performance. In this study we obtained spatiotemporal brain activation profiles, using magnetic source imaging, from 10 adult volunteers as they performed a shallow (phonological) processing task and a deep (semantic) processing task. When phonological analysis of the word stimuli into their constituent phonemes was required, activation was largely restricted to the posterior portion of the left superior temporal gyrus (area 22). Conversely, when access to lexical/semantic representations was required, activation was found predominantly in the left middle temporal gyrus and medial temporal cortex. The differential engagement of each mechanism during word encoding was associated with dramatic changes in subsequent incidental memory performance.

  4. Deep brain stimulation does not change neurovascular coupling in non-motor visual cortex: an autonomic and visual evoked blood flow velocity response study.

    PubMed

    Azevedo, Elsa; Santos, Rosa; Freitas, João; Rosas, Maria-José; Gago, Miguel; Garrett, Carolina; Rosengarten, Bernhard

    2010-11-01

    In Parkinson's disease (PD) subthalamic nucleus deep brain stimulation (STN-DBS) improves motor function. Also an effect on the neurovascular coupling in motor cortex was reported due to a parallel activation of a subthalamic vasodilator area (SVA). To address this issue further we analysed neurovascular coupling in a non-motor area. Twenty PD patients selected for bilateral STN-DBS were investigated with functional transcranial Doppler (f-TCD) before and after surgery. Hemodynamic responses to visual stimulation were registered in left posterior cerebral artery (PCA) and analysed with a control-system approach (parameters gain, rate time, attenuation and natural frequency). To exclude autonomic effects of STN-DBS, we also addressed spectrum analysis of heart rate and of systolic arterial blood pressure variability, and baroreceptor gain. Findings in the PD group were compared with healthy age-matched controls. PD patients showed no neurovascular coupling changes in PCA territory, compared to controls, and STN-DBS changed neither blood flow regulatory parameters nor autonomic function. Improvement of vasoregulation in some motor cortical areas after STN-DBS might be related to an improved neuronal functional rather than indicating an effect on the neurovascular coupling or autonomic function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. The Influence of Encoding Strategy on Episodic Memory and Cortical Activity in Schizophrenia

    PubMed Central

    Haut, Kristen; Csernansky, John G.; Barch, Deanna M.

    2005-01-01

    Background: Recent work suggests that episodic memory deficits in schizophrenia may be related to disturbances of encoding or retrieval. Schizophrenia patients appear to benefit from instruction in episodic memory strategies. We tested the hypothesis that providing effective encoding strategies to schizophrenia patients enhances encoding-related brain activity and recognition performance. Methods: Seventeen schizophrenia patients and 26 healthy comparison subjects underwent functional magnetic resonance imaging scans while performing incidental encoding tasks of words and faces. Subjects were required to make either deep (abstract/concrete) or shallow (alphabetization) judgments for words and deep (gender) judgments for faces, followed by subsequent recognition tests. Results: Schizophrenia and comparison subjects recognized significantly more words encoded deeply than shallowly, activated regions in inferior frontal cortex (Brodmann area 45/47) typically associated with deep and successful encoding of words, and showed greater left frontal activation for the processing of words compared with faces. However, during deep encoding and material-specific processing (words vs. faces), participants with schizophrenia activated regions not activated by control subjects, including several in prefrontal cortex. Conclusions: Our findings suggest that a deficit in use of effective strategies influences episodic memory performance in schizophrenia and that abnormalities in functional brain activation persist even when such strategies are applied. PMID:15992522

  6. Transmission in near-infrared optical windows for deep brain imaging.

    PubMed

    Shi, Lingyan; Sordillo, Laura A; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    Near-infrared (NIR) radiation has been employed using one- and two-photon excitation of fluorescence imaging at wavelengths 650-950 nm (optical window I) for deep brain imaging; however, longer wavelengths in NIR have been overlooked due to a lack of suitable NIR-low band gap semiconductor imaging detectors and/or femtosecond laser sources. This research introduces three new optical windows in NIR and demonstrates their potential for deep brain tissue imaging. The transmittances are measured in rat brain tissue in the second (II, 1,100-1,350 nm), third (III, 1,600-1,870 nm), and fourth (IV, centered at 2,200 nm) NIR optical tissue windows. The relationship between transmission and tissue thickness is measured and compared with the theory. Due to a reduction in scattering and minimal absorption, window III is shown to be the best for deep brain imaging, and windows II and IV show similar but better potential for deep imaging than window I. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Essential Tremor

    MedlinePlus

    ... individuals. Deep brain stimulation uses a surgically implanted, battery-operated medical device called a neurostimulator to delivery ... individuals. Deep brain stimulation uses a surgically implanted, battery-operated medical device called a neurostimulator to delivery ...

  8. [Obsessive-compulsive disorder, a new model of basal ganglia dysfunction? Elements from deep brain stimulation studies].

    PubMed

    Haynes, W I A; Millet, B; Mallet, L

    2012-01-01

    Deep brain stimulation was first developed for movement disorders but is now being offered as a therapeutic alternative in severe psychiatric disorders after the failure of conventional therapies. One of such pathologies is obsessive-compulsive disorder. This disorder which associates intrusive thoughts (obsessions) and repetitive irrepressible rituals (compulsions) is characterized by a dysfunction of a cortico-subcortical loop. After having reviewed the pathophysiological evidence to show why deep brain stimulation was an interesting path to take for severe and resistant cases of obsessive-compulsive disorder, we will present the results of the different clinical trials. Finally, we will provide possible mechanisms for the effects of deep brain stimulation in this pathology. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  9. The treatment of Parkinson's disease with deep brain stimulation: current issues

    PubMed Central

    Moldovan, Alexia-Sabine; Groiss, Stefan Jun; Elben, Saskia; Südmeyer, Martin; Schnitzler, Alfons; Wojtecki, Lars

    2015-01-01

    Deep brain stimulation has become a well-established symptomatic treatment for Parkinson's disease during the last 25 years. Besides improving motor symptoms and long-term motor complications, positive effects on patients’ mobility, activities of daily living, emotional well-being and health-related quality of life have been recognized. Apart from that, numerous clinical trials analyzed effects on non-motor symptoms and side effects of deep brain stimulation. Several technical issues and stimulation paradigms have been and are still being developed to optimize the therapeutic effects, minimize the side effects and facilitate handling. This review summarizes current therapeutic issues, i.e., patient and target selection, surgical procedure and programming paradigms. In addition it focuses on neuropsychological effects and side effects of deep brain stimulation. PMID:26330809

  10. Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder.

    PubMed

    Zhao, Yu; Dong, Qinglin; Chen, Hanbo; Iraji, Armin; Li, Yujie; Makkie, Milad; Kou, Zhifeng; Liu, Tianming

    2017-12-01

    State-of-the-art functional brain network reconstruction methods such as independent component analysis (ICA) or sparse coding of whole-brain fMRI data can effectively infer many thousands of volumetric brain network maps from a large number of human brains. However, due to the variability of individual brain networks and the large scale of such networks needed for statistically meaningful group-level analysis, it is still a challenging and open problem to derive group-wise common networks as network atlases. Inspired by the superior spatial pattern description ability of the deep convolutional neural networks (CNNs), a novel deep 3D convolutional autoencoder (CAE) network is designed here to extract spatial brain network features effectively, based on which an Apache Spark enabled computational framework is developed for fast clustering of larger number of network maps into fine-granularity atlases. To evaluate this framework, 10 resting state networks (RSNs) were manually labeled from the sparsely decomposed networks of Human Connectome Project (HCP) fMRI data and 5275 network training samples were obtained, in total. Then the deep CAE models are trained by these functional networks' spatial maps, and the learned features are used to refine the original 10 RSNs into 17 network atlases that possess fine-granularity functional network patterns. Interestingly, it turned out that some manually mislabeled outliers in training networks can be corrected by the deep CAE derived features. More importantly, fine granularities of networks can be identified and they reveal unique network patterns specific to different brain task states. By further applying this method to a dataset of mild traumatic brain injury study, it shows that the technique can effectively identify abnormal small networks in brain injury patients in comparison with controls. In general, our work presents a promising deep learning and big data analysis solution for modeling functional connectomes, with fine granularities, based on fMRI data. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Advanced MR Imaging of the Human Nucleus Accumbens--Additional Guiding Tool for Deep Brain Stimulation.

    PubMed

    Lucas-Neto, Lia; Reimão, Sofia; Oliveira, Edson; Rainha-Campos, Alexandre; Sousa, João; Nunes, Rita G; Gonçalves-Ferreira, António; Campos, Jorge G

    2015-07-01

    The human nucleus accumbens (Acc) has become a target for deep brain stimulation (DBS) in some neuropsychiatric disorders. Nonetheless, even with the most recent advances in neuroimaging it remains difficult to accurately delineate the Acc and closely related subcortical structures, by conventional MRI sequences. It is our purpose to perform a MRI study of the human Acc and to determine whether there are reliable anatomical landmarks that enable the precise location and identification of the nucleus and its core/shell division. For the Acc identification and delineation, based on anatomical landmarks, T1WI, T1IR and STIR 3T-MR images were acquired in 10 healthy volunteers. Additionally, 32-direction DTI was obtained for Acc segmentation. Seed masks for the Acc were generated with FreeSurfer and probabilistic tractography was performed using FSL. The probability of connectivity between the seed voxels and distinct brain areas was determined and subjected to k-means clustering analysis, defining 2 different regions. With conventional T1WI, the Acc borders are better defined through its surrounding anatomical structures. The DTI color-coded vector maps and IR sequences add further detail in the Acc identification and delineation. Additionally, using probabilistic tractography it is possible to segment the Acc into a core and shell division and establish its structural connectivity with different brain areas. Advanced MRI techniques allow in vivo delineation and segmentation of the human Acc and represent an additional guiding tool in the precise and safe target definition for DBS. © 2015 International Neuromodulation Society.

  12. A comparative study of approaches to compute the field distribution of deep brain stimulation in the Hemiparkinson rat model.

    PubMed

    Bohme, Andrea; van Rienen, Ursula

    2016-08-01

    Computational modeling of the stimulating field distribution during Deep Brain Stimulation provides an opportunity to advance our knowledge of this neurosurgical therapy for Parkinson's disease. There exist several approaches to model the target region for Deep Brain Stimulation in Hemi-parkinson Rats with volume conductor models. We have described and compared the normalized mapping approach as well as the modeling with three-dimensional structures, which include curvilinear coordinates to assure an anatomically realistic conductivity tensor orientation.

  13. Neonatal Brain Pathology Predicts Adverse Attention and Processing Speed Outcomes in Very Preterm and/or Very Low Birth Weight Children

    PubMed Central

    Murray, Andrea L; Scratch, Shannon E; Thompson, Deanne K; Inder, Terrie E; Doyle, Lex W; Anderson, Jacqueline F. I.; Anderson, Peter J

    2014-01-01

    Objective This study aimed to examine attention and processing speed outcomes in very preterm (VPT; <32 weeks' gestational age) or very low birth weight (VLBW; <1500 g) children, and to assess the ability of brain abnormalities measured by neonatal magnetic resonance imaging (MRI) to predict outcome in these domains. Methods A cohort of 198 children born <30 weeks' gestational age and/or <1250 g and 70 term controls were examined. Neonatal MRI scans at term equivalent age were quantitatively assessed for white matter, cortical gray matter, deep gray matter, and cerebellar abnormalities. Attention and processing speed were assessed at 7 years using standardized neuropsychological tests. Group differences were tested in attention and processing speed, and the relationships between these cognitive domains and brain abnormalities at birth were investigated. Results At 7 years of age, the VPT/VLBW group performed significantly poorer than term controls on all attention and processing speed outcomes. Associations between adverse attention and processing speed performances at 7 years and higher neonatal brain abnormality scores were found; in particular, white matter and deep gray matter abnormalities were reasonable predictors of long-term cognitive outcomes. Conclusion Attention and processing speed are significant areas of concern in VPT/VLBW children. This is the first study to show that adverse attention and processing speed outcomes at 7 years are associated with neonatal brain pathology. PMID:24708047

  14. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation.

    PubMed

    Miocinovic, Svjetlana; Lempka, Scott F; Russo, Gary S; Maks, Christopher B; Butson, Christopher R; Sakaie, Ken E; Vitek, Jerrold L; McIntyre, Cameron C

    2009-03-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson's disease and shows great promise for numerous other disorders. While the fundamental purpose of DBS is to modulate neural activity with electric fields, little is known about the actual voltage distribution generated in the brain by DBS electrodes and as a result it is difficult to accurately predict which brain areas are directly affected by the stimulation. The goal of this study was to characterize the spatial and temporal characteristics of the voltage distribution generated by DBS electrodes. We experimentally recorded voltages around active DBS electrodes in either a saline bath or implanted in the brain of a non-human primate. Recordings were made during voltage-controlled and current-controlled stimulation. The experimental findings were compared to volume conductor electric field models of DBS parameterized to match the different experiments. Three factors directly affected the experimental and theoretical voltage measurements: 1) DBS electrode impedance, primarily dictated by a voltage drop at the electrode-electrolyte interface and the conductivity of the tissue medium, 2) capacitive modulation of the stimulus waveform, and 3) inhomogeneity and anisotropy of the tissue medium. While the voltage distribution does not directly predict the neural response to DBS, the results of this study do provide foundational building blocks for understanding the electrical parameters of DBS and characterizing its effects on the nervous system.

  15. Neonatal brain pathology predicts adverse attention and processing speed outcomes in very preterm and/or very low birth weight children.

    PubMed

    Murray, Andrea L; Scratch, Shannon E; Thompson, Deanne K; Inder, Terrie E; Doyle, Lex W; Anderson, Jacqueline F I; Anderson, Peter J

    2014-07-01

    This study aimed to examine attention and processing speed outcomes in very preterm (VPT; < 32 weeks' gestational age) or very low birth weight (VLBW; < 1,500 g) children, and to determine whether brain abnormality measured by neonatal MRI can be used to predict outcome in these domains. A cohort of 198 children born < 30 weeks' gestational age and/or < 1,250 g and 70 term controls were examined. Neonatal MRI scans at term equivalent age were quantitatively assessed for white matter, cortical gray matter, deep gray matter, and cerebellar abnormalities. Attention and processing speed were assessed at 7 years using standardized neuropsychological tests. Group differences were tested in attention and processing speed, and the relationships between these cognitive domains and brain abnormalities at birth were investigated. At 7 years of age, the VPT/VLBW group performed significantly poorer than term controls on all attention and processing speed outcomes. Associations between adverse attention and processing speed performances at 7 years and higher neonatal brain abnormality scores were found; in particular, white matter and deep gray matter abnormalities were reasonable predictors of long-term cognitive outcomes. Attention and processing speed are significant areas of concern in VPT/VLBW children. This is the first study to show that adverse attention and processing speed outcomes at 7 years are associated with neonatal brain pathology.

  16. Image-guided removal of supratentorial cavernomas in critical brain areas: application of neuronavigation and intraoperative magnetic resonance imaging.

    PubMed

    Gralla, J; Ganslandt, O; Kober, H; Buchfelder, M; Fahlbusch, R; Nimsky, C

    2003-04-01

    In a retrospective study the postoperative results of 26 patients operated on for supratentorial cavernous hemangiomas either deep-seated or near eloquent brain areas are summarized. An exact surgical approach to these lesions is essential to prevent neurological deterioration. Three different navigation systems were used and compared according to their clinical applicability. Complete removal of the lesion was obtained in all patients of this series. In six cases (23 %) functional data from magnetoencephalography or functional magnetic resonance imaging were integrated into the navigational setup. In 14 cases (54 %) intraoperative magnetic resonance imaging was performed. The follow-up time was 3 - 26 months (mean: 10 months). In the postoperative course one patient (3.8 %) developed a hemiparesis, another one developed quadrantopia. Nineteen patients presented with preoperative seizure history, 16 of these (84 %) had no further or rare seizures after surgery. The better results in seizure control were achieved in those patients with shorter duration of seizure history before surgery. The study indicates that the application of neuronavigation allows surgery on supratentorial cavernous hemangiomas in critical brain areas with low morbidity. The intraoperative visualization of eloquent cortex areas by integration of functional data allows a fast identification and exemption of eloquent brain areas, preventing neurological deterioration. Furthermore, the intraoperative MR resection control ensures a complete resection and illustrates the minimal invasive approach.

  17. 75 FR 51467 - ASK (Assess Specific Kinds of CHILDREN Challenges for Neurologic Devices) Study Children Workshop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ..., including cochlear implants, deep brain stimulators, hydrocephalus shunts, spinal cord stimulators, and... pediatric populations, including cochlear implants, deep brain stimulators, hydrocephalus shunts, spinal...

  18. Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice

    PubMed Central

    Zhang, Qian; Castellanos Rubio, Idoia; del Pino, Pablo

    2017-01-01

    Establishing how neurocircuit activation causes particular behaviors requires modulating the activity of specific neurons. Here, we demonstrate that magnetothermal genetic stimulation provides tetherless deep brain activation sufficient to evoke motor behavior in awake mice. The approach uses alternating magnetic fields to heat superparamagnetic nanoparticles on the neuronal membrane. Neurons, heat-sensitized by expressing TRPV1 are activated with magnetic field application. Magnetothermal genetic stimulation in the motor cortex evoked ambulation, deep brain stimulation in the striatum caused rotation around the body-axis, and stimulation near the ridge between ventral and dorsal striatum caused freezing-of-gait. The duration of the behavior correlated tightly with field application. This approach provides genetically and spatially targetable, repeatable and temporarily precise activation of deep-brain circuits without the need for surgical implantation of any device. PMID:28826470

  19. [Emotion and basal ganglia (II): what can we learn from subthalamic nucleus deep brain stimulation in Parkinson's disease?].

    PubMed

    Péron, J; Dondaine, T

    2012-01-01

    The subthalamic nucleus deep-brain stimulation Parkinson's disease patient model seems to represent a unique opportunity for studying the functional role of the basal ganglia and notably the subthalamic nucleus in human emotional processing. Indeed, in addition to constituting a therapeutic advance for severely disabled Parkinson's disease patients, deep brain stimulation is a technique, which selectively modulates the activity of focal structures targeted by surgery. There is growing evidence of a link between emotional impairments and deep-brain stimulation of the subthalamic nucleus. In this context, according to the definition of emotional processing exposed in the companion paper available in this issue, the aim of the present review will consist in providing a synopsis of the studies that investigated the emotional disturbances observed in subthalamic nucleus deep brain stimulation Parkinson's disease patients. This review leads to the conclusion that several emotional components would be disrupted after subthalamic nucleus deep brain stimulation in Parkinson's disease: subjective feeling, neurophysiological activation, and motor expression. Finally, after a description of the limitations of this study model, we discuss the functional role of the subthalamic nucleus (and the striato-thalamo-cortical circuits in which it is involved) in emotional processing. It seems reasonable to conclude that the striato-thalamo-cortical circuits are indeed involved in emotional processing and that the subthalamic nucleus plays a central in role the human emotional architecture. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Mood stability in Parkinson disease following deep brain stimulation: a 6-month prospective follow-up study.

    PubMed

    Chopra, Amit; Abulseoud, Osama A; Sampson, Shirlene; Lee, Kendall H; Klassen, Bryan T; Fields, Julie A; Matsumoto, Joseph Y; Adams, Andrea C; Stoppel, Cynthia J; Geske, Jennifer R; Frye, Mark A

    2014-01-01

    Deep brain stimulation for Parkinson disease has been associated with psychiatric adverse effects including anxiety, depression, mania, psychosis, and suicide. The purpose of this study was to evaluate the safety of deep brain stimulation in a large Parkinson disease clinical practice. Patients approved for surgery by the Mayo Clinic deep brain stimulation clinical committee participated in a 6-month prospective naturalistic follow-up study. In addition to the Unified Parkinson's Disease Rating Scale, stability and psychiatric safety were measured using the Beck Depression Inventory, Hamilton Depression Rating Scale, and Young Mania Rating scale. Outcomes were compared in patients with Parkinson disease who had a psychiatric history to those with no co-morbid psychiatric history. The study was completed by 49 of 54 patients. Statistically significant 6-month baseline to end-point improvement was found in motor and mood scales. No significant differences were found in psychiatric outcomes based on the presence or absence of psychiatric comorbidity. Our study suggests that patients with Parkinson disease who have a history of psychiatric co-morbidity can safely respond to deep brain stimulation with no greater risk of psychiatric adverse effect occurrence. A multidisciplinary team approach, including careful psychiatric screening ensuring mood stabilization and psychiatric follow-up, should be viewed as standard of care to optimize the psychiatric outcome in the course of deep brain stimulation treatment. © 2013 Published by The Academy of Psychosomatic Medicine on behalf of The Academy of Psychosomatic Medicine.

  1. High permeability cores to optimize the stimulation of deeply located brain regions using transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Salvador, R.; Miranda, P. C.; Roth, Y.; Zangen, A.

    2009-05-01

    Efficient stimulation of deeply located brain regions with transcranial magnetic stimulation (TMS) poses many challenges, arising from the fact that the induced field decays rapidly and becomes less focal with depth. We propose a new method to improve the efficiency of TMS of deep brain regions that combines high permeability cores, to increase focality and field intensity, with a coil specifically designed to induce a field that decays slowly with increasing depth. The performance of the proposed design was investigated using the finite element method to determine the total electric field induced by this coil/core arrangement on a realistically shaped homogeneous head model. The calculations show that the inclusion of the cores increases the field's magnitude by as much as 25% while also decreasing the field's decay with depth along specific directions. The focality, as measured by the area where the field's norm is greater than 1/\\sqrt 2 of its maximum value, is also improved by as much as 15% with some core arrangements. The coil's inductance is not significantly increased by the cores. These results show that the presence of the cores might make this specially designed coil even more suited for the effective stimulation of deep brain regions.

  2. Optimized beamforming for simultaneous MEG and intracranial local field potential recordings in deep brain stimulation patients.

    PubMed

    Litvak, Vladimir; Eusebio, Alexandre; Jha, Ashwani; Oostenveld, Robert; Barnes, Gareth R; Penny, William D; Zrinzo, Ludvic; Hariz, Marwan I; Limousin, Patricia; Friston, Karl J; Brown, Peter

    2010-05-01

    Insight into how brain structures interact is critical for understanding the principles of functional brain architectures and may lead to better diagnosis and therapy for neuropsychiatric disorders. We recorded, simultaneously, magnetoencephalographic (MEG) signals and subcortical local field potentials (LFP) in a Parkinson's disease (PD) patient with bilateral deep brain stimulation (DBS) electrodes in the subthalamic nucleus (STN). These recordings offer a unique opportunity to characterize interactions between the subcortical structures and the neocortex. However, high-amplitude artefacts appeared in the MEG. These artefacts originated from the percutaneous extension wire, rather than from the actual DBS electrode and were locked to the heart beat. In this work, we show that MEG beamforming is capable of suppressing these artefacts and quantify the optimal regularization required. We demonstrate how beamforming makes it possible to localize cortical regions whose activity is coherent with the STN-LFP, extract artefact-free virtual electrode time-series from regions of interest and localize cortical areas exhibiting specific task-related power changes. This furnishes results that are consistent with previously reported results using artefact-free MEG data. Our findings demonstrate that physiologically meaningful information can be extracted from heavily contaminated MEG signals and pave the way for further analysis of combined MEG-LFP recordings in DBS patients. 2009 Elsevier Inc. All rights reserved.

  3. Laser treatments of deep-seated brain lesions

    NASA Astrophysics Data System (ADS)

    Ward, Helen A.

    1997-06-01

    The five year survival rate of deep-seated malignant brain tumors after surgery/radiotherapy is virtually 100 percent mortality. Special problems include: (1) Lesions often present late. (2) Position: lesion overlies vital structures, so complete surgical/radiotherapy lesion destruction can damage vital brain-stem functions. (3) Difficulty in differentiating normal brain form malignant lesions. This study aimed to use the unique properties of the laser: (a) to minimize damage during surgical removal of deep-seated brain lesions by operating via fine optic fibers; and (b) to employ the propensity of certain lasers for absorption of dyes and absorption and induction of fluorescence in some brain substances, to differentiate borders of malignant and normal brain, for more complete tumor removal. In the method a fine laser endoscopic technique was devised for removal of brain lesions. The results of this technique, were found to minimize and accurately predict the extent of thermal damage and shock waves to within 1-2mm of the surgical laser beam. Thereby it eliminated the 'popcorn' effect.

  4. TuMore: generation of synthetic brain tumor MRI data for deep learning based segmentation approaches

    NASA Astrophysics Data System (ADS)

    Lindner, Lydia; Pfarrkirchner, Birgit; Gsaxner, Christina; Schmalstieg, Dieter; Egger, Jan

    2018-03-01

    Accurate segmentation and measurement of brain tumors plays an important role in clinical practice and research, as it is critical for treatment planning and monitoring of tumor growth. However, brain tumor segmentation is one of the most challenging tasks in medical image analysis. Since manual segmentations are subjective, time consuming and neither accurate nor reliable, there exists a need for objective, robust and fast automated segmentation methods that provide competitive performance. Therefore, deep learning based approaches are gaining interest in the field of medical image segmentation. When the training data set is large enough, deep learning approaches can be extremely effective, but in domains like medicine, only limited data is available in the majority of cases. Due to this reason, we propose a method that allows to create a large dataset of brain MRI (Magnetic Resonance Imaging) images containing synthetic brain tumors - glioblastomas more specifically - and the corresponding ground truth, that can be subsequently used to train deep neural networks.

  5. Deep brain stimulation macroelectrodes compared to multiple microelectrodes in rat hippocampus

    PubMed Central

    Arcot Desai, Sharanya; Gutekunst, Claire-Anne; Potter, Steve M.; Gross, Robert E.

    2014-01-01

    Microelectrode arrays (wire diameter <50 μm) were compared to traditional macroelectrodes for deep brain stimulation (DBS). Understanding the neuronal activation volume may help solve some of the mysteries associated with DBS, e.g., its mechanisms of action. We used c-fos immunohistochemistry to investigate neuronal activation in the rat hippocampus caused by multi-micro- and macroelectrode stimulation. At ± 1V stimulation at 25 Hz, microelectrodes (33 μm diameter) had a radius of activation of 100 μm, which is 50% of that seen with 150 μm diameter macroelectrode stimulation. Macroelectrodes activated about 5.8 times more neurons than a single microelectrode, but displaced ~20 times more neural tissue. The sphere of influence of stimulating electrodes can be significantly increased by reducing their impedance. By ultrasonic electroplating (sonicoplating) the microelectrodes with platinum to increase their surface area and reduce their impedance by an order of magnitude, the radius of activation increased by 50 μm and more than twice the number of neurons were activated within this increased radius compared to unplated microelectrodes. We suggest that a new approach to DBS, one that uses multiple high-surface area microelectrodes, may be more therapeutically effective due to increased neuronal activation. PMID:24971060

  6. Evolving Concepts in Posterior Subthalamic Area Deep Brain Stimulation for Treatment of Tremor: Surgical Neuroanatomy and Practical Considerations.

    PubMed

    Ramirez-Zamora, Adolfo; Smith, Heather; Kumar, Vignessh; Prusik, Julia; Phookan, Sujoy; Pilitsis, Julie G

    2016-01-01

    Although thalamic deep brain stimulation (DBS) has been established as an effective therapy for refractory tremor in Parkinson's disease and essential tremor, reports investigating the efficacy of posterior subthalamic area (PSA) DBS for severe, debilitating tremors continue to emerge. However, questions regarding the optimal anatomical target, surgical approach, programming paradigms and effectiveness compared to other targets remain. In this report, we aimed to review the current literature to assess different stereotactic techniques, anatomical considerations, adverse effects and stimulation settings in PSA DBS. A comprehensive literature review was performed searching for articles discussing tremors and PSA stimulation. We performed a quantitative analysis comparing different DBS tremor targets. Tremor improvement is consistently documented in most reports with an average reduction in tremor of 79% depending on the specific tremor syndrome. Tremor benefit in patients with multiple sclerosis (MS) tremor was significantly higher than for other stimulation targets. Transient paresthesias, imbalance, dizziness and dysarthria are the most common side effects with PSA DBS. PSA DBS is an effective and safe treatment for tremor control and should be considered in patients with refractory tremors with associated cerebellar or dystonic features, proximal tremors and MS tremor. © 2016 S. Karger AG, Basel.

  7. Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain.

    PubMed

    Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L; Aziz, Tipu Z; Wang, Shouyan

    2018-01-01

    In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep brain stimulation based on neural states integrating multiple neural oscillations.

  8. Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain

    PubMed Central

    Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L.; Aziz, Tipu Z.; Wang, Shouyan

    2018-01-01

    In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep brain stimulation based on neural states integrating multiple neural oscillations. PMID:29695951

  9. Parkinsonian gait improves with bilateral subthalamic nucleus deep brain stimulation during cognitive multi-tasking.

    PubMed

    Chenji, Gaurav; Wright, Melissa L; Chou, Kelvin L; Seidler, Rachael D; Patil, Parag G

    2017-05-01

    Gait impairment in Parkinson's disease reduces mobility and increases fall risk, particularly during cognitive multi-tasking. Studies suggest that bilateral subthalamic deep brain stimulation, a common surgical therapy, degrades motor performance under cognitive dual-task conditions, compared to unilateral stimulation. To measure the impact of bilateral versus unilateral subthalamic deep brain stimulation on walking kinematics with and without cognitive dual-tasking. Gait kinematics of seventeen patients with advanced Parkinson's disease who had undergone bilateral subthalamic deep brain stimulation were examined off medication under three stimulation states (bilateral, unilateral left, unilateral right) with and without a cognitive challenge, using an instrumented walkway system. Consistent with earlier studies, gait performance declined for all six measured parameters under cognitive dual-task conditions, independent of stimulation state. However, bilateral stimulation produced greater improvements in step length and double-limb support time than unilateral stimulation, and achieved similar performance for other gait parameters. Contrary to expectations from earlier studies of dual-task motor performance, bilateral subthalamic deep brain stimulation may assist in maintaining temporal and spatial gait performance under cognitive dual-task conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Novel fingerprinting method characterises the necessary and sufficient structural connectivity from deep brain stimulation electrodes for a successful outcome

    NASA Astrophysics Data System (ADS)

    Fernandes, Henrique M.; Van Hartevelt, Tim J.; Boccard, Sandra G. J.; Owen, Sarah L. F.; Cabral, Joana; Deco, Gustavo; Green, Alex L.; Fitzgerald, James J.; Aziz, Tipu Z.; Kringelbach, Morten L.

    2015-01-01

    Deep brain stimulation (DBS) is a remarkably effective clinical tool, used primarily for movement disorders. DBS relies on precise targeting of specific brain regions to rebalance the oscillatory behaviour of whole-brain neural networks. Traditionally, DBS targeting has been based upon animal models (such as MPTP for Parkinson’s disease) but has also been the result of serendipity during human lesional neurosurgery. There are, however, no good animal models of psychiatric disorders such as depression and schizophrenia, and progress in this area has been slow. In this paper, we use advanced tractography combined with whole-brain anatomical parcellation to provide a rational foundation for identifying the connectivity ‘fingerprint’ of existing, successful DBS targets. This knowledge can then be used pre-surgically and even potentially for the discovery of novel targets. First, using data from our recent case series of cingulate DBS for patients with treatment-resistant chronic pain, we demonstrate how to identify the structural ‘fingerprints’ of existing successful and unsuccessful DBS targets in terms of their connectivity to other brain regions, as defined by the whole-brain anatomical parcellation. Second, we use a number of different strategies to identify the successful fingerprints of structural connectivity across four patients with successful outcomes compared with two patients with unsuccessful outcomes. This fingerprinting method can potentially be used pre-surgically to account for a patient’s individual connectivity and identify the best DBS target. Ultimately, our novel fingerprinting method could be combined with advanced whole-brain computational modelling of the spontaneous dynamics arising from the structural changes in disease, to provide new insights and potentially new targets for hitherto impenetrable neuropsychiatric disorders.

  11. Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization.

    PubMed

    Zhao, Yu; Ge, Fangfei; Liu, Tianming

    2018-07-01

    fMRI data decomposition techniques have advanced significantly from shallow models such as Independent Component Analysis (ICA) and Sparse Coding and Dictionary Learning (SCDL) to deep learning models such Deep Belief Networks (DBN) and Convolutional Autoencoder (DCAE). However, interpretations of those decomposed networks are still open questions due to the lack of functional brain atlases, no correspondence across decomposed or reconstructed networks across different subjects, and significant individual variabilities. Recent studies showed that deep learning, especially deep convolutional neural networks (CNN), has extraordinary ability of accommodating spatial object patterns, e.g., our recent works using 3D CNN for fMRI-derived network classifications achieved high accuracy with a remarkable tolerance for mistakenly labelled training brain networks. However, the training data preparation is one of the biggest obstacles in these supervised deep learning models for functional brain network map recognitions, since manual labelling requires tedious and time-consuming labours which will sometimes even introduce label mistakes. Especially for mapping functional networks in large scale datasets such as hundreds of thousands of brain networks used in this paper, the manual labelling method will become almost infeasible. In response, in this work, we tackled both the network recognition and training data labelling tasks by proposing a new iteratively optimized deep learning CNN (IO-CNN) framework with an automatic weak label initialization, which enables the functional brain networks recognition task to a fully automatic large-scale classification procedure. Our extensive experiments based on ABIDE-II 1099 brains' fMRI data showed the great promise of our IO-CNN framework. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Fiber optic in vivo imaging in the mammalian nervous system

    PubMed Central

    Mehta, Amit D; Jung, Juergen C; Flusberg, Benjamin A; Schnitzer, Mark J

    2010-01-01

    The compact size, mechanical flexibility, and growing functionality of optical fiber and fiber optic devices are enabling several new modalities for imaging the mammalian nervous system in vivo. Fluorescence microendoscopy is a minimally invasive fiber modality that provides cellular resolution in deep brain areas. Diffuse optical tomography is a non-invasive modality that uses assemblies of fiber optic emitters and detectors on the cranium for volumetric imaging of brain activation. Optical coherence tomography is a sensitive interferometric imaging technique that can be implemented in a variety of fiber based formats and that might allow intrinsic optical detection of brain activity at a high resolution. Miniaturized fiber optic microscopy permits cellular level imaging in the brains of behaving animals. Together, these modalities will enable new uses of imaging in the intact nervous system for both research and clinical applications. PMID:15464896

  13. Thoracic surgery in patients with an implanted neurostimulator device.

    PubMed

    Meyring, Kristina; Zehnder, Adrian; Schmid, Ralph A; Kocher, Gregor J

    2017-10-01

    Movement disorders such as Parkinson's disease are increasingly treated with deep brain stimulators. Being implanted in a subcutaneous pocket in the chest region, thoracic surgical procedures can interfere with such devices, as they are sensible to external electromagnetic forces. Monopolar electrocautery can lead to dysfunction of the device or damage of the brain tissue caused by heat. We report a series of 3 patients with deep brain stimulators who underwent thoracic surgery. By turning off the deep brain stimulators before surgery and avoiding the use of monopolar cautery, electromagnetic interactions were avoided in all patients. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  14. Deep brain stimulation of the subthalamic nucleus enhances emotional processing in Parkinson disease.

    PubMed

    Schneider, Frank; Habel, Ute; Volkmann, Jens; Regel, Sabine; Kornischka, Jürgen; Sturm, Volker; Freund, Hans-Joachim

    2003-03-01

    High-frequency electrical stimulation of the subthalamic nucleus is a new and highly effective therapy for complications of long-term levodopa therapy and motor symptoms in advanced Parkinson disease (PD). Clinical observations indicate additional influence on emotional behavior. Electrical stimulation of deep brain nuclei with pulse rates above 100 Hz provokes a reversible, lesioning-like effect. Here, the effect of deep brain stimulation of the subthalamic nucleus on emotional, cognitive, and motor performance in patients with PD (n = 12) was examined. The results were compared with the effects of a suprathreshold dose of levodopa intended to transiently restore striatal dopamine deficiency. Patients were tested during medication off/stimulation off (STIM OFF), medication off/stimulation on (STIM ON), and during the best motor state after taking levodopa without deep brain stimulation (MED). More positive self-reported mood and an enhanced mood induction effect as well as improvement in emotional memory during STIM ON were observed, while during STIM OFF, patients revealed reduced emotional performance. Comparable effects were revealed by STIM ON and MED. Cognitive performance was not affected by the different conditions and treatments. Deep brain stimulation of the subthalamic nucleus selectively enhanced affective processing and subjective well-being and seemed to be antidepressive. Levodopa and deep brain stimulation had similar effects on emotion. This finding may provide new clues about the neurobiologic bases of emotion and mood disorders, and it illustrates the important role of the basal ganglia and the dopaminergic system in emotional processing in addition to the well-known motor and cognitive functions.

  15. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation.

    PubMed

    Walckiers, Grégoire; Fuchs, Benjamin; Thiran, Jean-Philippe; Mosig, Juan R; Pollo, Claudio

    2010-01-30

    Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%). (c) 2009 Elsevier B.V. All rights reserved.

  16. No Effect of Subthalamic Deep Brain Stimulation on Intertemporal Decision-Making in Parkinson Patients123

    PubMed Central

    Wojtecki, Lars; Storzer, Lena; Schnitzler, Alfons

    2016-01-01

    Abstract Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used treatment for the motor symptoms of Parkinson’s disease (PD). DBS or pharmacological treatment is believed to modulate the tendency to, or reverse, impulse control disorders. Several brain areas involved in impulsivity and reward valuation, such as the prefrontal cortex and striatum, are linked to the STN, and activity in these areas might be affected by STN-DBS. To investigate the effect of STN-DBS on one type of impulsive decision-making—delay discounting (i.e., the devaluation of reward with increasing delay until its receipt)—we tested 40 human PD patients receiving STN-DBS treatment and medication for at least 3 months. Patients were pseudo-randomly assigned to one of four groups to test the effects of DBS on/off states as well as medication on/off states on delay discounting. The delay-discounting task consisted of a series of choices among a smaller. sooner or a larger, later monetary reward. Despite considerable effects of DBS on motor performance, patients receiving STN-DBS did not choose more or less impulsively compared with those in the off-DBS group, as well as when controlling for risk attitude. Although null results have to be interpreted with caution, our findings are of significance to other researchers studying the effects of PD treatment on impulsive decision-making, and they are of clinical relevance for determining the therapeutic benefits of using STN-DBS. PMID:27257622

  17. Tractographical model of the cortico-basal ganglia and corticothalamic connections: Improving Our Understanding of Deep Brain Stimulation.

    PubMed

    Avecillas-Chasin, Josué M; Rascón-Ramírez, Fernando; Barcia, Juan A

    2016-05-01

    The cortico-basal ganglia and corticothalamic projections have been extensively studied in the context of neurological and psychiatric disorders. Deep brain stimulation (DBS) is known to modulate many of these pathways to produce the desired clinical effect. The aim of this work is to describe the anatomy of the main circuits of the basal ganglia using tractography in a surgical planning station. We used imaging studies of 20 patients who underwent DBS for movement and psychiatric disorders. We segmented the putamen, caudate nucleus (CN), thalamus, and subthalamic nucleus (STN), and we also segmented the cortical areas connected with these subcortical areas. We used tractography to define the subdivisions of the basal ganglia and thalamus through the generation of fibers from the cortical areas to the subcortical structures. We were able to generate the corticostriatal and corticothalamic connections involved in the motor, associative and limbic circuits. Furthermore, we were able to reconstruct the hyperdirect pathway through the corticosubthalamic connections and we found subregions in the STN. Finally, we reconstructed the cortico-subcortical connections of the ventral intermediate nucleus, the nucleus accumbens and the CN. We identified a feasible delineation of the basal ganglia and thalamus connections using tractography. These results could be potentially useful in DBS if the parcellations are used as targets during surgery. © 2016 Wiley Periodicals, Inc.

  18. Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network.

    PubMed

    Charron, Odelin; Lallement, Alex; Jarnet, Delphine; Noblet, Vincent; Clavier, Jean-Baptiste; Meyer, Philippe

    2018-04-01

    Stereotactic treatments are today the reference techniques for the irradiation of brain metastases in radiotherapy. The dose per fraction is very high, and delivered in small volumes (diameter <1 cm). As part of these treatments, effective detection and precise segmentation of lesions are imperative. Many methods based on deep-learning approaches have been developed for the automatic segmentation of gliomas, but very little for that of brain metastases. We adapted an existing 3D convolutional neural network (DeepMedic) to detect and segment brain metastases on MRI. At first, we sought to adapt the network parameters to brain metastases. We then explored the single or combined use of different MRI modalities, by evaluating network performance in terms of detection and segmentation. We also studied the interest of increasing the database with virtual patients or of using an additional database in which the active parts of the metastases are separated from the necrotic parts. Our results indicated that a deep network approach is promising for the detection and the segmentation of brain metastases on multimodal MRI. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A Low Power Micro Deep Brain Stimulation Device for Murine Preclinical Research.

    PubMed

    Kouzani, Abbas Z; Abulseoud, Osama A; Tye, Susannah J; Hosain, M D Kamal; Berk, Michael

    2013-01-01

    Deep brain stimulation has emerged as an effective medical procedure that has therapeutic efficacy in a number of neuropsychiatric disorders. Preclinical research involving laboratory animals is being conducted to study the principles, mechanisms, and therapeutic effects of deep brain stimulation. A bottleneck is, however, the lack of deep brain stimulation devices that enable long term brain stimulation in freely moving laboratory animals. Most of the existing devices employ complex circuitry, and are thus bulky. These devices are usually connected to the electrode that is implanted into the animal brain using long fixed wires. In long term behavioral trials, however, laboratory animals often need to continuously receive brain stimulation for days without interruption, which is difficult with existing technology. This paper presents a low power and lightweight portable microdeep brain stimulation device for laboratory animals. Three different configurations of the device are presented as follows: 1) single piece head mountable; 2) single piece back mountable; and 3) two piece back mountable. The device can be easily carried by the animal during the course of a clinical trial, and that it can produce non-stop stimulation current pulses of desired characteristics for over 12 days on a single battery. It employs passive charge balancing to minimize undesirable effects on the target tissue. The results of bench, in-vitro, and in-vivo tests to evaluate the performance of the device are presented.

  20. Deep transcranial magnetic stimulation (dTMS) - beyond depression.

    PubMed

    Tendler, Aron; Barnea Ygael, Noam; Roth, Yiftach; Zangen, Abraham

    2016-10-01

    Deep transcranial magnetic stimulation (dTMS) utilizes different H-coils to study and treat a variety of psychiatric and neurological conditions with identifiable brain targets. The availability of this technology is dramatically changing the practice of psychiatry and neurology as it provides a safe and effective way to treat even drug-resistant patients. However, up until now, no effort was made to summarize the different types of H-coils that are available, and the conditions for which they were tested. Areas covered: Here we assembled all peer reviewed publication that used one of the H-coils, together with illustrations of the effective field they generate within the brain. Currently, the technology has FDA clearance for depression and European clearance for additional disorders, and multi-center trials are exploring its safety and effectiveness for OCD, PTSD, bipolar depression and nicotine addiction. Expert commentary: Taken together with positive results in smaller scale experiments, dTMS coils represent a non-invasive way to manipulate pathological activity in different brain structures and circuits. Advances in stimulation and imaging methods can now lead to efficacious and logical treatments. This should reduce the stigma associated with mental disorders, and improve access to psychiatric treatment.

  1. In Vivo Mammalian Brain Imaging Using One- and Two-Photon Fluorescence Microendoscopy

    PubMed Central

    Jung, Juergen C.; Mehta, Amit D.; Aksay, Emre; Stepnoski, Raymond; Schnitzer, Mark J.

    2010-01-01

    One of the major limitations in the current set of techniques available to neuroscientists is a dearth of methods for imaging individual cells deep within the brains of live animals. To overcome this limitation, we developed two forms of minimally invasive fluorescence microendoscopy and tested their abilities to image cells in vivo. Both one- and two-photon fluorescence microendoscopy are based on compound gradient refractive index (GRIN) lenses that are 350–1,000 μm in diameter and provide micron-scale resolution. One-photon microendoscopy allows full-frame images to be viewed by eye or with a camera, and is well suited to fast frame-rate imaging. Two-photon microendoscopy is a laser-scanning modality that provides optical sectioning deep within tissue. Using in vivo microendoscopy we acquired video-rate movies of thalamic and CA1 hippocampal red blood cell dynamics and still-frame images of CA1 neurons and dendrites in anesthetized rats and mice. Microendoscopy will help meet the growing demand for in vivo cellular imaging created by the rapid emergence of new synthetic and genetically encoded fluorophores that can be used to label specific brain areas or cell classes. PMID:15128753

  2. Deep 3D convolution neural network for CT brain hemorrhage classification

    NASA Astrophysics Data System (ADS)

    Jnawali, Kamal; Arbabshirani, Mohammad R.; Rao, Navalgund; Patel, Alpen A.

    2018-02-01

    Intracranial hemorrhage is a critical conditional with the high mortality rate that is typically diagnosed based on head computer tomography (CT) images. Deep learning algorithms, in particular, convolution neural networks (CNN), are becoming the methodology of choice in medical image analysis for a variety of applications such as computer-aided diagnosis, and segmentation. In this study, we propose a fully automated deep learning framework which learns to detect brain hemorrhage based on cross sectional CT images. The dataset for this work consists of 40,367 3D head CT studies (over 1.5 million 2D images) acquired retrospectively over a decade from multiple radiology facilities at Geisinger Health System. The proposed algorithm first extracts features using 3D CNN and then detects brain hemorrhage using the logistic function as the last layer of the network. Finally, we created an ensemble of three different 3D CNN architectures to improve the classification accuracy. The area under the curve (AUC) of the receiver operator characteristic (ROC) curve of the ensemble of three architectures was 0.87. Their results are very promising considering the fact that the head CT studies were not controlled for slice thickness, scanner type, study protocol or any other settings. Moreover, the proposed algorithm reliably detected various types of hemorrhage within the skull. This work is one of the first applications of 3D CNN trained on a large dataset of cross sectional medical images for detection of a critical radiological condition

  3. Plasticity of brain wave network interactions and evolution across physiologic states

    PubMed Central

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of network connectivity and link strength, while at the same time each frequency-specific network is characterized by a different signature pattern of sleep-stage stratification, reflecting a remarkable flexibility in response to change in physiologic state. These new aspects of neural plasticity demonstrate that in addition to dominant brain waves, the network of brain wave interactions is a previously unrecognized hallmark of physiologic state and function. PMID:26578891

  4. [Abscess at the implant site following apical parodontitis. Hardware-related complications of deep brain stimulation].

    PubMed

    Sixel-Döring, F; Trenkwalder, C; Kappus, C; Hellwig, D

    2006-08-01

    Deep brain stimulation of the subthalamic nucleus is an important treatment option for advanced stages of idiopathic Parkinson's disease, leading to significant improvement of motor symptoms in suited patients. Hardware-related complications such as technical malfunction, skin erosion, and infections however cause patient discomfort and additional expense. The patient presented here suffered a putrid infection of the impulse generator site following only local dental treatment of apical parodontitis. Therefore, prophylactic systemic antibiotic treatment is recommended for patients with implanted deep brain stimulation devices in case of operations, dental procedures, or infectious disease.

  5. Linear-array based full-view high-resolution photoacoustic computed tomography of whole mouse brain functions in vivo

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Pengfei; Wang, Lihong V.

    2018-02-01

    Photoacoustic computed tomography (PACT) is a non-invasive imaging technique offering high contrast, high resolution, and deep penetration in biological tissues. We report a photoacoustic computed tomography (PACT) system equipped with a high frequency linear array for anatomical and functional imaging of the mouse whole brain. The linear array was rotationally scanned in the coronal plane to achieve the full-view coverage. We investigated spontaneous neural activities in the deep brain by monitoring the hemodynamics and observed strong interhemispherical correlations between contralateral regions, both in the cortical layer and in the deep regions.

  6. Regional entropy of functional imaging signals varies differently in sensory and cognitive systems during propofol-modulated loss and return of behavioral responsiveness.

    PubMed

    Liu, Xiaolin; Lauer, Kathryn K; Ward, B Douglas; Roberts, Christopher J; Liu, Suyan; Gollapudy, Suneeta; Rohloff, Robert; Gross, William; Xu, Zhan; Chen, Shanshan; Wang, Lubin; Yang, Zheng; Li, Shi-Jiang; Binder, Jeffrey R; Hudetz, Anthony G

    2018-05-08

    The level and richness of consciousness depend on information integration in the brain. Altered interregional functional interactions may indicate disrupted information integration during anesthetic-induced unconsciousness. How anesthetics modulate the amount of information in various brain regions has received less attention. Here, we propose a novel approach to quantify regional information content in the brain by the entropy of the principal components of regional blood oxygen-dependent imaging signals during graded propofol sedation. Fifteen healthy individuals underwent resting-state scans in wakeful baseline, light sedation (conscious), deep sedation (unconscious), and recovery (conscious). Light sedation characterized by lethargic behavioral responses was associated with global reduction of entropy in the brain. Deep sedation with completely suppressed overt responsiveness was associated with further reductions of entropy in sensory (primary and higher sensory plus orbital prefrontal cortices) but not high-order cognitive (dorsal and medial prefrontal, cingulate, parietotemporal cortices and hippocampal areas) systems. Upon recovery of responsiveness, entropy was restored in the sensory but not in high-order cognitive systems. These findings provide novel evidence for a reduction of information content of the brain as a potential systems-level mechanism of reduced consciousness during propofol anesthesia. The differential changes of entropy in the sensory and high-order cognitive systems associated with losing and regaining overt responsiveness are consistent with the notion of "disconnected consciousness", in which a complete sensory-motor disconnection from the environment occurs with preserved internal mentation.

  7. Deep brain stimulation for trigeminal autonomic cephalalgias.

    PubMed

    Messina, Giuseppe; Broggi, Giovanni; Levi, Vincenzo; Franzini, Angelo

    2018-04-19

    Deep brain stimulation (DBS) of the posterior hypothalamic region (pHyr) has been shown to be efficacious for more than a half of patients suffering from trigeminal autonomic cephalalgias (TACs); nonetheless, controversies about the mechanisms of action and the actual site of stimulation have arisen in recent years. Areas covered: Firstly, a review of the most recent literature on the subject is presented, stressing the critical points that could, in the future, make a difference for optimal management of patients afflicted by these life-threating diseases. Hypothalamic functional anatomy, experimental data and pathophysiological hypotheses are reported. Expert commentary: About 32% of patients who underwent DBS for TACs are pain-free. The determination of the pHyr region seems to be crucial for the generation of pain attack in these pathologies, although other structures are involved in complex mechanisms and circuits that interact with each other. Neurophysiological data, combined with more advanced experimental models, are of primary importance regarding our understanding of what the real target is, and how to overcome the issue of refractory patients.

  8. State of the Art: Novel Applications for Deep Brain Stimulation.

    PubMed

    Roy, Holly A; Green, Alexander L; Aziz, Tipu Z

    2018-02-01

    Deep brain stimulation (DBS) is a rapidly developing field of neurosurgery with potential therapeutic applications that are relevant to conditions traditionally viewed as beyond the limits of neurosurgery. Our objective, in this review, is to highlight some of the emerging applications of DBS within three distinct but overlapping spheres, namely trauma, neuropsychiatry, and autonomic physiology. An extensive literature review was carried out in MEDLINE, to identify relevant studies and review articles describing applications of DBS in the areas of trauma, neuropsychiatry and autonomic neuroscience. A wide range of applications of DBS in these spheres was identified, some having only been tested in one or two cases, others much better studied. We have identified various avenues for DBS to be applied for patient benefit in cases relevant to trauma, neuropsychiatry and autonomic neuroscience. Further developments in DBS technology and clinical trial design will enable these novel applications to be effectively and rigorously assessed and utilized most effectively. © 2017 International Neuromodulation Society.

  9. The habenula in neurosurgery for depression: A convergence of functional neuroanatomy, psychiatry and imaging.

    PubMed

    Skandalakis, Georgios P; Koutsarnakis, Christos; Kalyvas, Aristotelis V; Skandalakis, Panagiotis; Johnson, Elizabeth O; Stranjalis, George

    2018-05-05

    The habenula is a small, mostly underrated structure in the pineal region. Multidisciplinary findings demonstrate an underlying complex connectivity of the habenula with the rest of the brain, subserving its major role in normal behavior and the pathophysiology of depression. These findings suggest the potential application of "habenular psychosurgery" in the treatment of mental disorders. The remission of two patients with treatment-resistant major depression treated with deep brain stimulation of the habenula supported the hypothesis that the habenula is an effective target for deep brain stimulation and initiated a surge of basic science research. This review aims to assess the viability of the deep brain stimulation of the habenula as a treatment option for treatment resistant depression. PubMed and the Cochrane Library databases were searched with no chronological restrictions for the identification of relevant articles. The results of this review are presented in a narrative form describing the functional neuroanatomy of the human habenula, its implications in major depression, findings of electrode implantation of this region and findings of deep brain stimulation of the habenula for the treatment of depression. Data assessing the hypothesis are scarce. Nonetheless, findings highlight the major role of the habenula in normal, as well as in pathological brain function, particularly in depression disorders. Moreover, findings of studies utilizing electrode implantation in the region of the habenula underscore our growing realization that research in neuroscience and deep brain stimulation complement each other in a reciprocal relationship; they are as self-reliant, as much as they depend on each other. Copyright © 2018. Published by Elsevier B.V.

  10. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    PubMed

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  11. Brain and sense organ anatomy and histology of the Falkland Islands mullet, Eleginops maclovinus (Eleginopidae), the sister group of the Antarctic notothenioid fishes (Perciformes: Notothenioidei).

    PubMed

    Eastman, Joseph T; Lannoo, Michael J

    2008-01-01

    The perciform notothenioid fish Eleginops maclovinus, representing the monotypic family Eleginopidae, has a non-Antarctic distribution in the Falkland Islands and southern South America. It is the sister group of the five families and 103 species of Antarctic notothenioids that dominate the cold shelf waters of Antarctica. Eleginops is the ideal subject for documenting the ancestral morphology of nervous and sensory systems that have not had historical exposure to the unusual Antarctic thermal and light regimes, and for comparing these systems with those of the phyletically derived Antarctic species. We present a detailed description of the brain and cranial nerves of Eleginops and ask how does the neural and sensory morphology of this non-Antarctic notothenioid differ from that seen in the phyletically derived Antarctic notothenioids? The brain of Eleginops is similar to those of visually oriented temperate and tropical perciforms. The tectum is smaller but it has well-developed olfactory and mechanoreceptive lateral line areas and a large, caudally projecting corpus cerebellum. Eye diameter is about twofold smaller in Eleginops than in many Antarctic species. Eleginops has a duplex (rod and cone) retina with single and occasional twin cones conspicuous centrally. Ocular vascular structures include a large choroid rete mirabile and a small lentiform body; a falciform process and hyaloid arteries are absent. The olfactory rosette is oval with 50-55 lamellae, a large number for notothenioids. The inconspicuous bony canals of the cephalic lateral line system are simple with membranous secondary branches that lack neuromasts. In Antarctic species, the corpus cerebellum is the most variable brain region, ranging in size from large and caudally projecting to small and round. "Stalked" brains showing reduction in the size of the telencephalon, tectum, and corpus cerebellum are present in the deep-living artedidraconid Dolloidraco longedorsalis and in most of the deep-living members of the Bathydraconini. Eye diameter is generally larger in Antarctic species but there is a phylogenetic loss of cellularity in the retina, including cone photoreceptors. Some deep-living Antarctic species have lost most of their cones. Mechanosensation is expanded in some species, most notably the nototheniid Pleuragramma antarcticum, the artedidraconid genera Dolloidraco and Pogonophryne, and the deep living members of the bathydraconid tribe Bathydraconini. Reduction in retinal cellularity, expansion of mechanoreception, and stalking are the most noteworthy departures from the morphology seen in Eleginops. These features reflect a modest depth or deep-sea effect, and they are not uniquely "Antarctic" attributes. Thus, at the level of organ system morphology, perciform brain and sensory systems are suitable for conditions on the Antarctic shelf, with only minor alterations in structure in directions exhibited by other fish groups inhabiting deep water. Notothenioids retain a relative balance among their array of senses that reflects their heritage as inshore perciforms. (c) 2007 Wiley-Liss, Inc.

  12. 'Being in it together': living with a partner receiving deep brain stimulation for advanced Parkinson's disease--a hermeneutic phenomenological study.

    PubMed

    Haahr, Anita; Kirkevold, Marit; Hall, Elisabeth O C; Østergaard, Karen

    2013-02-01

    This article is a report of an exploration of the lived experience of being a spouse to a person living with advanced Parkinson's disease, before and during the first year of deep brain stimulation. Parkinson's disease is a chronic progressive neurodegenerative disease. It has a profound impact on the everyday life for patients and spouses. Deep brain stimulation is offered with the aim of reducing symptoms of Parkinson's disease. The treatment is known to improve quality of life for patients, but little is known of how spouses experience life following their partners' treatment. A longitudinal interview study with a hermeneutic phenomenological approach. Ten spouses were included in the study. Data were gathered in 2007-2008, through qualitative in-depth interviews with spouses once before and three times during the first year of their partners' treatment with Deep Brain Stimulation. Data collection and data analysis were influenced by the hermeneutic phenomenological methodology of van Manen. The uniting theme 'Solidarity - the base for joined responsibility and concern' was the foundation for the relationship between spouses and their partners. Before treatment, the theme 'Living in partnership' was dominant. After treatment two dichotomous courses were described 'A sense of freedom embracing life' and 'The challenge of changes and constraint'. Spouses are deeply involved in their partners' illness and their experience of life is highly affected by their partners' illness, both before and after deep brain stimulation. The relationship is founded on solidarity and responsibility, which emphasizes spouses' need to be informed and involved in the process following Deep Brain Stimulation. © 2012 Blackwell Publishing Ltd.

  13. Effects of deep brain stimulation in dyskinetic cerebral palsy: a meta-analysis.

    PubMed

    Koy, Anne; Hellmich, Martin; Pauls, K Amande M; Marks, Warren; Lin, Jean-Pierre; Fricke, Oliver; Timmermann, Lars

    2013-05-01

    Secondary dystonia encompasses a heterogeneous group with different etiologies. Cerebral palsy is the most common cause. Pharmacological treatment is often unsatisfactory. There are only limited data on the therapeutic outcomes of deep brain stimulation in dyskinetic cerebral palsy. The published literature regarding deep brain stimulation and secondary dystonia was reviewed in a meta-analysis to reevaluate the effect on cerebral palsy. The Burke-Fahn-Marsden Dystonia Rating Scale movement score was chosen as the primary outcome measure. Outcome over time was evaluated and summarized by mixed-model repeated-measures analysis, paired Student t test, and Pearson's correlation coefficient. Twenty articles comprising 68 patients with cerebral palsy undergoing deep brain stimulation assessed by the Burke-Fahn-Marsden Dystonia Rating Scale were identified. Most articles were case reports reflecting great variability in the score and duration of follow-up. The mean Burke-Fahn-Marsden Dystonia Rating Scale movement score was 64.94 ± 25.40 preoperatively and dropped to 50.5 ± 26.77 postoperatively, with a mean improvement of 23.6% (P < .001) at a median follow-up of 12 months. The mean Burke-Fahn-Marsden Dystonia Rating Scale disability score was 18.54 ± 6.15 preoperatively and 16.83 ± 6.42 postoperatively, with a mean improvement of 9.2% (P < .001). There was a significant negative correlation between severity of dystonia and clinical outcome (P < .05). Deep brain stimulation can be an effective treatment option for dyskinetic cerebral palsy. In view of the heterogeneous data, a prospective study with a large cohort of patients in a standardized setting with a multidisciplinary approach would be helpful in further evaluating the role of deep brain stimulation in cerebral palsy. © 2013 Movement Disorder Society. Copyright © 2013 Movement Disorder Society.

  14. EKG-based detection of deep brain stimulation in fMRI studies.

    PubMed

    Fiveland, Eric; Madhavan, Radhika; Prusik, Julia; Linton, Renee; Dimarzio, Marisa; Ashe, Jeffrey; Pilitsis, Julie; Hancu, Ileana

    2018-04-01

    To assess the impact of synchronization errors between the assumed functional MRI paradigm timing and the deep brain stimulation (DBS) on/off cycling using a custom electrocardiogram-based triggering system METHODS: A detector for measuring and predicting the on/off state of cycling deep brain stimulation was developed and tested in six patients in office visits. Three-electrode electrocardiogram measurements, amplified by a commercial bio-amplifier, were used as input for a custom electronics box (e-box). The e-box transformed the deep brain stimulation waveforms into transistor-transistor logic pulses, recorded their timing, and propagated it in time. The e-box was used to trigger task-based deep brain stimulation functional MRI scans in 5 additional subjects; the impact of timing accuracy on t-test values was investigated in a simulation study using the functional MRI data. Following locking to each patient's individual waveform, the e-box was shown to predict stimulation onset with an average absolute error of 112 ± 148 ms, 30 min after disconnecting from the patients. The subsecond accuracy of the e-box in predicting timing onset is more than adequate for our slow varying, 30-/30-s on/off stimulation paradigm. Conversely, the experimental deep brain stimulation onset prediction accuracy in the absence of the e-box, which could be off by as much as 4 to 6 s, could significantly decrease activation strength. Using this detector, stimulation can be accurately synchronized to functional MRI acquisitions, without adding any additional hardware in the MRI environment. Magn Reson Med 79:2432-2439, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Theory of feedback controlled brain stimulations for Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.

    2016-01-01

    Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.

  16. Flexible deep brain neural probes based on a parylene tube structure

    NASA Astrophysics Data System (ADS)

    Zhao, Zhiguo; Kim, Eric; Luo, Hao; Zhang, Jinsheng; Xu, Yong

    2018-01-01

    Most microfabricated neural probes have limited shank length, which prevents them from reaching many deep brain structures. This paper reports deep brain neural probes with ultra-long penetrating shanks based on a simple but novel parylene tube structure. The mechanical strength of the parylene tube shank is temporarily enhanced during implantation by inserting a metal wire. The metal wire can be removed after implantation, making the implanted probe very flexible and thus minimizing the stress caused by micromotions of brain tissues. Optogenetic stimulation and chemical delivery capabilities can be potentially integrated by taking advantage of the tube structure. Single-shank prototypes with a shank length of 18.2 mm have been developed. The microfabrication process comprises of deep reactive ion etching (DRIE) of silicon, parylene conformal coating/refilling, and XeF2 isotropic silicon etching. In addition to bench-top insertion characterization, the functionality of developed probes has been preliminarily demonstrated by implanting into the amygdala of a rat and recording neural signals.

  17. Scientific and ethical issues related to deep brain stimulation for disorders of mood, behavior, and thought.

    PubMed

    Rabins, Peter; Appleby, Brian S; Brandt, Jason; DeLong, Mahlon R; Dunn, Laura B; Gabriëls, Loes; Greenberg, Benjamin D; Haber, Suzanne N; Holtzheimer, Paul E; Mari, Zoltan; Mayberg, Helen S; McCann, Evelyn; Mink, Sallie P; Rasmussen, Steven; Schlaepfer, Thomas E; Vawter, Dorothy E; Vitek, Jerrold L; Walkup, John; Mathews, Debra J H

    2009-09-01

    A 2-day consensus conference was held to examine scientific and ethical issues in the application of deep brain stimulation for treating mood and behavioral disorders, such as major depression, obsessive-compulsive disorder, and Tourette syndrome. The primary objectives of the conference were to (1) establish consensus among participants about the design of future clinical trials of deep brain stimulation for disorders of mood, behavior, and thought and (2) develop standards for the protection of human subjects participating in such studies. Conference participants identified 16 key points for guiding research in this growing field. The adoption of the described guidelines would help to protect the safety and rights of research subjects who participate in clinical trials of deep brain stimulation for disorders of mood, behavior, and thought and have further potential to benefit other stakeholders in the research process, including clinical researchers and device manufactures. That said, the adoption of the guidelines will require broad and substantial commitment from many of these same stakeholders.

  18. Primary experimental study on safety of deep brain stimulation in RF electromagnetic field.

    PubMed

    Jun, Xu; Luming, Li; Hongwei, Hao

    2009-01-01

    With the rapid growth of clinical application of Deep Brain Stimulation, its safety and functional concern in the electromagnetic field, another pollution becoming much more serious, has become more and more significant. Meanwhile, the measuring standards on Electromagnetic Compatibility (EMC) for DBS are still incomplete. Particularly, the knowledge of the electromagnetic field induced signals on the implanted lead is ignorant while some informal reports some side effects. This paper briefly surmised the status of EMC standards on implantable medical devices. Based on the EMC experiments of DBS device we developed, two experiments for measuring the induced voltage of the deep brain stimulator in RF electromagnetic field were reported. The measured data showed that the induced voltage in some frequency was prominent, for example over 2V. As a primary research, we think these results would be significant to cause researcher to pay more attention to the EMC safety problem and biological effects of the induced voltage in deep brain stimulation and other implantable devices.

  19. Body and brain temperature coupling: the critical role of cerebral blood flow

    PubMed Central

    Ackerman, Joseph J. H.; Yablonskiy, Dmitriy A.

    2010-01-01

    Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; α-chloralose, αCS; and isoflurane, IF) with αCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO2 in 40% O2 and 55% N2). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under αCS anesthesia (ca. 2°C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials—αCS anesthesia resulted in the largest brain temperature increase (0.32 ± 0.08°C), while CH and IF anesthesia lead to smaller increases (0.12 ± 0.03 and 0.16 ± 0.05°C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2–3 min under CH and IF anesthesia and ~4 min under αCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures. PMID:19277681

  20. Body and brain temperature coupling: the critical role of cerebral blood flow.

    PubMed

    Zhu, Mingming; Ackerman, Joseph J H; Yablonskiy, Dmitriy A

    2009-08-01

    Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; alpha-chloralose, alphaCS; and isoflurane, IF) with alphaCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO(2) in 40% O(2) and 55% N(2)). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under alphaCS anesthesia (ca. 2 degrees C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials--alphaCS anesthesia resulted in the largest brain temperature increase (0.32 +/- 0.08 degrees C), while CH and IF anesthesia lead to smaller increases (0.12 +/- 0.03 and 0.16 +/- 0.05 degrees C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2-3 min under CH and IF anesthesia and approximately 4 min under alphaCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures.

  1. Neurosurgery of the future: Deep brain stimulations and manipulations.

    PubMed

    Nicolaidis, Stylianos

    2017-04-01

    Important advances are afoot in the field of neurosurgery-particularly in the realms of deep brain stimulation (DBS), deep brain manipulation (DBM), and the newly introduced refinement "closed-loop" deep brain stimulation (CLDBS). Use of closed-loop technology will make both DBS and DBM more precise as procedures and will broaden their indications. CLDBS utilizes as feedback a variety of sources of electrophysiological and neurochemical afferent information about the function of the brain structures to be treated or studied. The efferent actions will be either electric, i.e. the classic excitatory or inhibitory ones, or micro-injection of such things as neural proteins and transmitters, neural grafts, implants of pluripotent stem cells or mesenchymal stem cells, and some variants of gene therapy. The pathologies to be treated, beside Parkinson's disease and movement disorders, include repair of neural tissues, neurodegenerative pathologies, psychiatric and behavioral dysfunctions, i.e. schizophrenia in its various guises, bipolar disorders, obesity, anorexia, drug addiction, and alcoholism. The possibility of using these new modalities to treat a number of cognitive dysfunctions is also under consideration. Because the DBS-CLDBS technology brings about a cross-fertilization between scientific investigation and surgical practice, it will also contribute to an enhanced understanding of brain function. Copyright © 2017. Published by Elsevier Inc.

  2. Using deep learning for content-based medical image retrieval

    NASA Astrophysics Data System (ADS)

    Sun, Qinpei; Yang, Yuanyuan; Sun, Jianyong; Yang, Zhiming; Zhang, Jianguo

    2017-03-01

    Content-Based medical image retrieval (CBMIR) is been highly active research area from past few years. The retrieval performance of a CBMIR system crucially depends on the feature representation, which have been extensively studied by researchers for decades. Although a variety of techniques have been proposed, it remains one of the most challenging problems in current CBMIR research, which is mainly due to the well-known "semantic gap" issue that exists between low-level image pixels captured by machines and high-level semantic concepts perceived by human[1]. Recent years have witnessed some important advances of new techniques in machine learning. One important breakthrough technique is known as "deep learning". Unlike conventional machine learning methods that are often using "shallow" architectures, deep learning mimics the human brain that is organized in a deep architecture and processes information through multiple stages of transformation and representation. This means that we do not need to spend enormous energy to extract features manually. In this presentation, we propose a novel framework which uses deep learning to retrieval the medical image to improve the accuracy and speed of a CBIR in integrated RIS/PACS.

  3. Regional anatomy of the pedunculopontine nucleus: relevance for deep brain stimulation.

    PubMed

    Fournier-Gosselin, Marie-Pierre; Lipsman, Nir; Saint-Cyr, Jean A; Hamani, Clement; Lozano, Andres M

    2013-09-01

    The pedunculopontine nucleus (PPN) is currently being investigated as a potential deep brain stimulation target to improve gait and posture in Parkinson's disease. This review examines the complex anatomy of the PPN region and suggests a functional mapping of the surrounding nuclei and fiber tracts that may serve as a guide to a more accurate placement of electrodes while avoiding potentially adverse effects. The relationships of the PPN were examined in different human brain atlases. Schematic representations of those structures in the vicinity of the PPN were generated and correlated with their potential stimulation effects. By providing a functional map and representative schematics of the PPN region, we hope to optimize the placement of deep brain stimulation electrodes, thereby maximizing safety and clinical efficacy. © 2013 International Parkinson and Movement Disorder Society.

  4. Applications of Deep Learning and Reinforcement Learning to Biological Data.

    PubMed

    Mahmud, Mufti; Kaiser, Mohammed Shamim; Hussain, Amir; Vassanelli, Stefano

    2018-06-01

    Rapid advances in hardware-based technologies during the past decades have opened up new possibilities for life scientists to gather multimodal data in various application domains, such as omics, bioimaging, medical imaging, and (brain/body)-machine interfaces. These have generated novel opportunities for development of dedicated data-intensive machine learning techniques. In particular, recent research in deep learning (DL), reinforcement learning (RL), and their combination (deep RL) promise to revolutionize the future of artificial intelligence. The growth in computational power accompanied by faster and increased data storage, and declining computing costs have already allowed scientists in various fields to apply these techniques on data sets that were previously intractable owing to their size and complexity. This paper provides a comprehensive survey on the application of DL, RL, and deep RL techniques in mining biological data. In addition, we compare the performances of DL techniques when applied to different data sets across various application domains. Finally, we outline open issues in this challenging research area and discuss future development perspectives.

  5. Camptocormia and deep brain stimulation: The interesting overlapping etiologies and the therapeutic role of subthalamic nucleus-deep brain stimulation in Parkinson disease with camptocormia.

    PubMed

    Ekmekci, Hakan; Kaptan, Hulagu

    2016-01-01

    Camptocormia is known as "bent spine syndrome" and defined as a forward hyperflexion. The most common etiologic factor is related with the movement disorders, mainly in Parkinson's disease (PD). We present the case of a 51-year-old woman who has been followed with PD for the last 10 years, and also under the therapy for PD. An unappreciated correlation low back pain with camptocormia developed. She underwent deep brain stimulation (DBS) in the subthalamic nucleus bilaterally and improved her bending posture. The relationship between the DBS and camptocormia is discussed in this unique condition.

  6. Deep Brain Stimulation for Essential Vocal Tremor: A Technical Report.

    PubMed

    Ho, Allen L; Choudhri, Omar; Sung, C Kwang; DiRenzo, Elizabeth E; Halpern, Casey H

    2015-03-01

    Essential vocal tremor (EVT) is the presence of a tremulous voice that is commonly associated with essential tremor. Patients with EVT often report a necessary increase in vocal effort that significantly worsens with stress and anxiety and can significantly impact quality of life despite optimal medical and behavioral treatment options. Deep brain stimulation (DBS) has been proposed as an effective therapy for vocal tremor, but very few studies exist in the literature that comprehensively evaluate the efficacy of DBS for specifically addressing EVT. We present a technical report on our multidisciplinary, comprehensive operative methodology for treatment of EVT with frameless, awake deep brain stimulation (DBS).

  7. Deep Brain Stimulation for Essential Vocal Tremor: A Technical Report

    PubMed Central

    Choudhri, Omar; Sung, C. Kwang; DiRenzo, Elizabeth E; Halpern, Casey H

    2015-01-01

    Essential vocal tremor (EVT) is the presence of a tremulous voice that is commonly associated with essential tremor. Patients with EVT often report a necessary increase in vocal effort that significantly worsens with stress and anxiety and can significantly impact quality of life despite optimal medical and behavioral treatment options. Deep brain stimulation (DBS) has been proposed as an effective therapy for vocal tremor, but very few studies exist in the literature that comprehensively evaluate the efficacy of DBS for specifically addressing EVT. We present a technical report on our multidisciplinary, comprehensive operative methodology for treatment of EVT with frameless, awake deep brain stimulation (DBS). PMID:26180680

  8. Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice

    DOE PAGES

    Fan, Quli; Cheng, Kai; Yang, Zhen; ...

    2014-11-06

    In order to promote preclinical and clinical applications of photoacoustic imaging, novel photoacoustic contrast agents are highly desired for molecular imaging of diseases, especially for deep tumor imaging. In this paper, perylene-3,4,9,10-tetracarboxylic diiimide-based near-infrared-absorptive organic nanoparticles are reported as an efficient agent for photoacoustic imaging of deep brain tumors in living mice with enhanced permeability and retention effect

  9. Stimulation of the pedunculopontine nucleus area in Parkinson's disease: effects on speech and intelligibility.

    PubMed

    Pinto, Serge; Ferraye, Murielle; Espesser, Robert; Fraix, Valérie; Maillet, Audrey; Guirchoum, Jennifer; Layani-Zemour, Deborah; Ghio, Alain; Chabardès, Stéphan; Pollak, Pierre; Debû, Bettina

    2014-10-01

    Improvement of gait disorders following pedunculopontine nucleus area stimulation in patients with Parkinson's disease has previously been reported and led us to propose this surgical treatment to patients who progressively developed severe gait disorders and freezing despite optimal dopaminergic drug treatment and subthalamic nucleus stimulation. The outcome of our prospective study on the first six patients was somewhat mitigated, as freezing of gait and falls related to freezing were improved by low frequency electrical stimulation of the pedunculopontine nucleus area in some, but not all, patients. Here, we report the speech data prospectively collected in these patients with Parkinson's disease. Indeed, because subthalamic nucleus surgery may lead to speech impairment and a worsening of dysarthria in some patients with Parkinson's disease, we felt it was important to precisely examine any possible modulations of speech for a novel target for deep brain stimulation. Our results suggested a trend towards speech degradation related to the pedunculopontine nucleus area surgery (off stimulation) for aero-phonatory control (maximum phonation time), phono-articulatory coordination (oral diadochokinesis) and speech intelligibility. Possibly, the observed speech degradation may also be linked to the clinical characteristics of the group of patients. The influence of pedunculopontine nucleus area stimulation per se was more complex, depending on the nature of the task: it had a deleterious effect on maximum phonation time and oral diadochokinesis, and mixed effects on speech intelligibility. Whereas levodopa intake and subthalamic nucleus stimulation alone had no and positive effects on speech dimensions, respectively, a negative interaction between the two treatments was observed both before and after pedunculopontine nucleus area surgery. This combination effect did not seem to be modulated by pedunculopontine nucleus area stimulation. Although limited in our group of patients, speech impairment following pedunculopontine nucleus area stimulation is a possible outcome that should be considered before undertaking such surgery. Deleterious effects could be dependent on electrode insertion in this brainstem structure, more than on current spread to nearby structures involved in speech control. The effect of deep brain stimulation on speech in patients with Parkinson's disease remains a challenging and exploratory research area. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Roadmap on neurophotonics

    NASA Astrophysics Data System (ADS)

    Cho, Yong Ku; Zheng, Guoan; Augustine, George J.; Hochbaum, Daniel; Cohen, Adam; Knöpfel, Thomas; Pisanello, Ferruccio; Pavone, Francesco S.; Vellekoop, Ivo M.; Booth, Martin J.; Hu, Song; Zhu, Jiang; Chen, Zhongping; Hoshi, Yoko

    2016-09-01

    Mechanistic understanding of how the brain gives rise to complex behavioral and cognitive functions is one of science’s grand challenges. The technical challenges that we face as we attempt to gain a systems-level understanding of the brain are manifold. The brain’s structural complexity requires us to push the limit of imaging resolution and depth, while being able to cover large areas, resulting in enormous data acquisition and processing needs. Furthermore, it is necessary to detect functional activities and ‘map’ them onto the structural features. The functional activity occurs at multiple levels, using electrical and chemical signals. Certain electrical signals are only decipherable with sub-millisecond timescale resolution, while other modes of signals occur in minutes to hours. For these reasons, there is a wide consensus that new tools are necessary to undertake this daunting task. Optical techniques, due to their versatile and scalable nature, have great potentials to answer these challenges. Optical microscopy can now image beyond the diffraction limit, record multiple types of brain activity, and trace structural features across large areas of tissue. Genetically encoded molecular tools opened doors to controlling and detecting neural activity using light in specific cell types within the intact brain. Novel sample preparation methods that reduce light scattering have been developed, allowing whole brain imaging in rodent models. Adaptive optical methods have the potential to resolve images from deep brain regions. In this roadmap article, we showcase a few major advances in this area, survey the current challenges, and identify potential future needs that may be used as a guideline for the next steps to be taken.

  11. Roadmap on neurophotonics

    PubMed Central

    Cho, Yong Ku; Zheng, Guoan; Augustine, George J; Hochbaum, Daniel; Cohen, Adam; Knöpfel, Thomas; Pisanello, Ferruccio; Pavone, Francesco S; Vellekoop, Ivo M; Booth, Martin J; Hu, Song; Zhu, Jiang; Chen, Zhongping; Hoshi, Yoko

    2017-01-01

    Mechanistic understanding of how the brain gives rise to complex behavioral and cognitive functions is one of science’s grand challenges. The technical challenges that we face as we attempt to gain a systems-level understanding of the brain are manifold. The brain’s structural complexity requires us to push the limit of imaging resolution and depth, while being able to cover large areas, resulting in enormous data acquisition and processing needs. Furthermore, it is necessary to detect functional activities and ‘map’ them onto the structural features. The functional activity occurs at multiple levels, using electrical and chemical signals. Certain electrical signals are only decipherable with sub-millisecond timescale resolution, while other modes of signals occur in minutes to hours. For these reasons, there is a wide consensus that new tools are necessary to undertake this daunting task. Optical techniques, due to their versatile and scalable nature, have great potentials to answer these challenges. Optical microscopy can now image beyond the diffraction limit, record multiple types of brain activity, and trace structural features across large areas of tissue. Genetically encoded molecular tools opened doors to controlling and detecting neural activity using light in specific cell types within the intact brain. Novel sample preparation methods that reduce light scattering have been developed, allowing whole brain imaging in rodent models. Adaptive optical methods have the potential to resolve images from deep brain regions. In this roadmap article, we showcase a few major advances in this area, survey the current challenges, and identify potential future needs that may be used as a guideline for the next steps to be taken. PMID:28386392

  12. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization

    PubMed Central

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P.; Johnson, G. Allan

    2015-01-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved 3D reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate accurate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. PMID:26043869

  13. Task-dependent activity and connectivity predict episodic memory network-based responses to brain stimulation in healthy aging

    PubMed Central

    Vidal-Piñeiro, Dídac; Martin-Trias, Pablo; Arenaza-Urquijo, Eider M.; Sala-Llonch, Roser; Mena-Sánchez, Isaias; Bargalló, Núria; Falcón, Carles; Pascual-Leone, Álvaro; Bartrés-Faz, David

    2015-01-01

    Background Transcranial Magnetic Stimulation (TMS) can affect episodic memory, one of the main cognitive hallmarks of aging, but the mechanisms of action remain unclear. Objectives To evaluate the behavioral and functional impact of excitatory TMS in a group of healthy elders. Methods We applied a paradigm of repetitive TMS -intermittent theta-burst stimulation- over left inferior frontal gyrus in healthy elders (n=24) and evaluated its impact on the performance of an episodic memory task with two levels of processing and the associated brain activity as captured by a pre and post fMRI scans. Results In the post-TMS fMRI we found TMS-related activity increases in left prefrontal and cerebellum-occipital areas specifically during deep encoding but not during shallow encoding or at rest. Furthermore, we found a task-dependent change in connectivity during the encoding task between cerebellum-occipital areas and the TMS-targeted left inferior frontal region. This connectivity change correlated with the TMS effects over brain networks. Conclusions The results suggest that the aged brain responds to brain stimulation in a state-dependent manner as engaged by different tasks components and that TMS effect is related to inter-individual connectivity changes measures. These findings reveal fundamental insights into brain network dynamics in aging and the capacity to probe them with combined behavioral and stimulation approaches. PMID:24485466

  14. Task-dependent activity and connectivity predict episodic memory network-based responses to brain stimulation in healthy aging.

    PubMed

    Vidal-Piñeiro, Dídac; Martin-Trias, Pablo; Arenaza-Urquijo, Eider M; Sala-Llonch, Roser; Clemente, Imma C; Mena-Sánchez, Isaias; Bargalló, Núria; Falcón, Carles; Pascual-Leone, Álvaro; Bartrés-Faz, David

    2014-01-01

    Transcranial magnetic stimulation (TMS) can affect episodic memory, one of the main cognitive hallmarks of aging, but the mechanisms of action remain unclear. To evaluate the behavioral and functional impact of excitatory TMS in a group of healthy elders. We applied a paradigm of repetitive TMS - intermittent theta-burst stimulation - over left inferior frontal gyrus in healthy elders (n = 24) and evaluated its impact on the performance of an episodic memory task with two levels of processing and the associated brain activity as captured by a pre and post fMRI scans. In the post-TMS fMRI we found TMS-related activity increases in left prefrontal and cerebellum-occipital areas specifically during deep encoding but not during shallow encoding or at rest. Furthermore, we found a task-dependent change in connectivity during the encoding task between cerebellum-occipital areas and the TMS-targeted left inferior frontal region. This connectivity change correlated with the TMS effects over brain networks. The results suggest that the aged brain responds to brain stimulation in a state-dependent manner as engaged by different tasks components and that TMS effect is related to inter-individual connectivity changes measures. These findings reveal fundamental insights into brain network dynamics in aging and the capacity to probe them with combined behavioral and stimulation approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Exploring avian deep-brain photoreceptors and their role in activating the neuroendocrine regulation of gonadal development.

    PubMed

    Kuenzel, Wayne J; Kang, Seong W; Zhou, Z Jimmy

    2015-04-01

    In the eyes of mammals, specialized photoreceptors called intrinsically photosensitive retinal ganglion cells (ipRGC) have been identified that sense photoperiodic or daylight exposure, providing them over time with seasonal information. Detectors of photoperiods are critical in vertebrates, particularly for timing the onset of reproduction each year. In birds, the eyes do not appear to monitor photoperiodic information; rather, neurons within at least 4 different brain structures have been proposed to function in this capacity. Specialized neurons, called deep brain photoreceptors (DBP), have been found in the septum and 3 hypothalamic areas. Within each of the 4 brain loci, one or more of 3 unique photopigments, including melanopsin, neuropsin, and vertebrate ancient opsin, have been identified. An experiment was designed to characterize electrophysiological responses of neurons proposed to be avian DBP following light stimulation. A second study used immature chicks raised under short-day photoperiods and transferred to long day lengths. Gene expression of photopigments was then determined in 3 septal-hypothalamic regions. Preliminary electrophysiological data obtained from patch-clamping neurons in brain slices have shown that bipolar neurons in the lateral septal organ responded to photostimulation comparable with mammalian ipRGC, particularly by showing depolarization and a delayed, slow response to directed light stimulation. Utilizing real-time reverse-transcription PCR, it was found that all 3 photopigments showed significantly increased gene expression in the septal-hypothalamic regions in chicks on the third day after being transferred to long-day photoperiods. Each dissected region contained structures previously proposed to have DBP. The highly significant increased gene expression for all 3 photopigments on the third, long-day photoperiod in brain regions proposed to contain 4 structures with DBP suggests that all 3 types of DBP (melanopsin, neuropsin, and vertebrate ancient opsin) in more than one neural site in the septal-hypothalamic area are involved in reproductive function. The neural response to light of at least 2 of the proposed DBP in the septal/hypothalamic region resembles the primitive, functional, sensory ipRGC well characterized in mammals. ©2015 Poultry Science Association Inc.

  16. High-resolution anatomy of the human brain stem using 7-T MRI: improved detection of inner structures and nerves?

    PubMed

    Gizewski, Elke R; Maderwald, Stefan; Linn, Jennifer; Dassinger, Benjamin; Bochmann, Katja; Forsting, Michael; Ladd, Mark E

    2014-03-01

    The purpose of this paper is to assess the value of 7 Tesla (7 T) MRI for the depiction of brain stem and cranial nerve (CN) anatomy. Six volunteers were examined at 7 T using high-resolution SWI, MPRAGE, MP2RAGE, 3D SPACE T2, T2, and PD images to establish scanning parameters targeted at optimizing spatial resolution. Direct comparisons between 3 and 7 T were performed in two additional subjects using the finalized sequences (3 T: T2, PD, MPRAGE, SWAN; 7 T: 3D T2, MPRAGE, SWI, MP2RAGE). Artifacts and the depiction of structures were evaluated by two neuroradiologists using a standardized score sheet. Sequences could be established for high-resolution 7 T imaging even in caudal cranial areas. High in-plane resolution T2, PD, and SWI images provided depiction of inner brain stem structures such as pons fibers, raphe, reticular formation, nerve roots, and periaqueductal gray. MPRAGE and MP2RAGE provided clear depiction of the CNs. 3D T2 images improved depiction of inner brain structure in comparison to T2 images at 3 T. Although the 7-T SWI sequence provided improved contrast to some inner structures, extended areas were influenced by artifacts due to image disturbances from susceptibility differences. Seven-tesla imaging of basal brain areas is feasible and might have significant impact on detection and diagnosis in patients with specific diseases, e.g., trigeminal pain related to affection of the nerve root. Some inner brain stem structures can be depicted at 3 T, but certain sequences at 7 T, in particular 3D SPACE T2, are superior in producing anatomical in vivo images of deep brain stem structures.

  17. Subthalamic Nucleus Deep Brain Stimulation Changes Velopharyngeal Control in Parkinson's Disease

    ERIC Educational Resources Information Center

    Hammer, Michael J.; Barlow, Steven M.; Lyons, Kelly E.; Pahwa, Rajesh

    2011-01-01

    Purpose: Adequate velopharyngeal control is essential for speech, but may be impaired in Parkinson's disease (PD). Bilateral subthalamic nucleus deep brain stimulation (STN DBS) improves limb function in PD, but the effects on velopharyngeal control remain unknown. We tested whether STN DBS would change aerodynamic measures of velopharyngeal…

  18. Cognitive Functioning in Children with Pantothenate-Kinase-Associated Neurodegeneration Undergoing Deep Brain Stimulation

    ERIC Educational Resources Information Center

    Mahoney, Rachel; Selway, Richard; Lin, Jean-Pierre

    2011-01-01

    Aim: To examine the cognitive functioning of young people with pantothenate-kinase-associated neurodegeneration (PKAN) after pallidal deep brain stimulation (DBS). PKAN is characterized by progressive generalized dystonia and has historically been associated with cognitive decline. With growing evidence that DBS can improve motor function in…

  19. The Effect of Deep Brain Stimulation on the Speech Motor System

    ERIC Educational Resources Information Center

    Mücke, Doris; Becker, Johannes; Barbe, Michael T.; Meister, Ingo; Liebhart, Lena; Roettger, Timo B.; Dembek, Till; Timmermann, Lars; Grice, Martine

    2014-01-01

    Purpose: Chronic deep brain stimulation of the nucleus ventralis intermedius is an effective treatment for individuals with medication-resistant essential tremor. However, these individuals report that stimulation has a deleterious effect on their speech. The present study investigates one important factor leading to these effects: the…

  20. Affect of deep brain stimulation on limb paresis after stroke.

    PubMed

    Phillips, N I; Bhakta, B B

    2000-07-15

    A deep brain stimulator was implanted in the periventricular grey matter of the third ventricle for pain after stroke in a man aged 48 years. As well as a beneficial analgesic effect, the patient reported improved function in the contralateral paretic arm, which was confirmed on formal testing.

  1. Common and unique responses to dopamine agonist therapy and deep brain stimulation in Parkinson's disease: an H(2)(15)O PET study.

    PubMed

    Bradberry, Trent J; Metman, Leonard Verhagen; Contreras-Vidal, José L; van den Munckhof, Pepijn; Hosey, Lara A; Thompson, Jennifer L W; Schulz, Geralyn M; Lenz, Fredrick; Pahwa, Rajesh; Lyons, Kelly E; Braun, Allen R

    2012-10-01

    Dopamine agonist therapy and deep brain stimulation (DBS) of the subthalamic nucleus (STN) are antiparkinsonian treatments that act on a different part of the basal ganglia-thalamocortical motor circuitry, yet produce similar symptomatic improvements. The purpose of this study was to identify common and unique brain network features of these standard treatments. We analyzed images produced by H(2)(15)O positron emission tomography (PET) of patients with Parkinson's disease (PD) at rest. Nine patients were scanned before and after injection of apomorphine, and 11 patients were scanned while bilateral stimulators were off and while they were on. Both treatments produced common deactivations of the neocortical sensorimotor areas, including the supplementary motor area, precentral gyrus, and postcentral gyrus, and in subcortical structures, including the putamen and cerebellum. We observed concomitant activations of the superior parietal lobule and the midbrain in the region of the substantia nigra/STN. We also detected unique, treatment-specific changes with possible motor-related consequences in the basal ganglia, thalamus, neocortical sensorimotor cortex, and posterolateral cerebellum. Unique changes in nonmotor regions may reflect treatment-specific effects on verbal fluency and limbic functions. Many of the common effects of these treatments are consistent with the standard pathophysiologic model of PD. However, the common effects in the cerebellum are not readily explained by the model. Consistent deactivation of the cerebellum is interesting in light of recent reports of synaptic pathways directly connecting the cerebellum and basal ganglia, and may warrant further consideration for incorporation into the model. Published by Elsevier Inc.

  2. Forthergillian Lecture. Imaging human brain function.

    PubMed

    Frackowiak, R S

    The non-invasive brain scanning techniques introduced a quarter of a century ago have become crucial for diagnosis in clinical neurology. They have also been used to investigate brain function and have provided information about normal activity and pathogenesis. They have been used to investigate functional specialization in the brain and how specialized areas communicate to generate complex integrated functions such as speech, memory, the emotions and so on. The phenomenon of brain plasticity is poorly understood and yet clinical neurologists are aware, from everyday observations, that spontaneous recovery from brain lesions is common. An improved understanding of the mechanisms of recovery may generate new therapeutic strategies and indicate ways of modulating mechanisms that promote plastic compensation for loss of function. The main methods used to investigate these issues are positron emission tomography and magnetic resonance imaging (M.R.I.). M.R.I. is also used to map brain structure. The techniques of functional brain mapping and computational morphometrics depend on high performance scanners and a validated set of analytic statistical procedures that generate reproducible data and meaningful inferences from brain scanning data. The motor system presents a good paradigm to illustrate advances made by scanning towards an understanding of plasticity at the level of brain areas. The normal motor system is organized in a nested hierarchy. Recovery from paralysis caused by internal capsule strokes involves functional reorganization manifesting itself as changed patterns of activity in the component brain areas of the normal motor system. The pattern of plastic modification depends in part on patterns of residual or disturbed connectivity after brain injury. Therapeutic manipulations in patients with Parkinson's disease using deep brain stimulation, dopaminergic agents or fetal mesencephalic transplantation provide a means to examine mechanisms underpinning plastic change. Other models of plastic change, such as normal visuospatial learning or re-establishing speech comprehension after cochlear implantation in the deaf illustrate how patterns of brain function adapt over time. Limitations of the scanning techniques and prospects for the future are discussed in relation to new developments in the neuroimaging field.

  3. Concussion classification via deep learning using whole-brain white matter fiber strains

    PubMed Central

    Cai, Yunliang; Wu, Shaoju; Zhao, Wei; Li, Zhigang; Wu, Zheyang

    2018-01-01

    Developing an accurate and reliable injury predictor is central to the biomechanical studies of traumatic brain injury. State-of-the-art efforts continue to rely on empirical, scalar metrics based on kinematics or model-estimated tissue responses explicitly pre-defined in a specific brain region of interest. They could suffer from loss of information. A single training dataset has also been used to evaluate performance but without cross-validation. In this study, we developed a deep learning approach for concussion classification using implicit features of the entire voxel-wise white matter fiber strains. Using reconstructed American National Football League (NFL) injury cases, leave-one-out cross-validation was employed to objectively compare injury prediction performances against two baseline machine learning classifiers (support vector machine (SVM) and random forest (RF)) and four scalar metrics via univariate logistic regression (Brain Injury Criterion (BrIC), cumulative strain damage measure of the whole brain (CSDM-WB) and the corpus callosum (CSDM-CC), and peak fiber strain in the CC). Feature-based machine learning classifiers including deep learning, SVM, and RF consistently outperformed all scalar injury metrics across all performance categories (e.g., leave-one-out accuracy of 0.828–0.862 vs. 0.690–0.776, and .632+ error of 0.148–0.176 vs. 0.207–0.292). Further, deep learning achieved the best cross-validation accuracy, sensitivity, AUC, and .632+ error. These findings demonstrate the superior performances of deep learning in concussion prediction and suggest its promise for future applications in biomechanical investigations of traumatic brain injury. PMID:29795640

  4. Concussion classification via deep learning using whole-brain white matter fiber strains.

    PubMed

    Cai, Yunliang; Wu, Shaoju; Zhao, Wei; Li, Zhigang; Wu, Zheyang; Ji, Songbai

    2018-01-01

    Developing an accurate and reliable injury predictor is central to the biomechanical studies of traumatic brain injury. State-of-the-art efforts continue to rely on empirical, scalar metrics based on kinematics or model-estimated tissue responses explicitly pre-defined in a specific brain region of interest. They could suffer from loss of information. A single training dataset has also been used to evaluate performance but without cross-validation. In this study, we developed a deep learning approach for concussion classification using implicit features of the entire voxel-wise white matter fiber strains. Using reconstructed American National Football League (NFL) injury cases, leave-one-out cross-validation was employed to objectively compare injury prediction performances against two baseline machine learning classifiers (support vector machine (SVM) and random forest (RF)) and four scalar metrics via univariate logistic regression (Brain Injury Criterion (BrIC), cumulative strain damage measure of the whole brain (CSDM-WB) and the corpus callosum (CSDM-CC), and peak fiber strain in the CC). Feature-based machine learning classifiers including deep learning, SVM, and RF consistently outperformed all scalar injury metrics across all performance categories (e.g., leave-one-out accuracy of 0.828-0.862 vs. 0.690-0.776, and .632+ error of 0.148-0.176 vs. 0.207-0.292). Further, deep learning achieved the best cross-validation accuracy, sensitivity, AUC, and .632+ error. These findings demonstrate the superior performances of deep learning in concussion prediction and suggest its promise for future applications in biomechanical investigations of traumatic brain injury.

  5. Accurate CT-MR image registration for deep brain stimulation: a multi-observer evaluation study

    NASA Astrophysics Data System (ADS)

    Rühaak, Jan; Derksen, Alexander; Heldmann, Stefan; Hallmann, Marc; Meine, Hans

    2015-03-01

    Since the first clinical interventions in the late 1980s, Deep Brain Stimulation (DBS) of the subthalamic nucleus has evolved into a very effective treatment option for patients with severe Parkinson's disease. DBS entails the implantation of an electrode that performs high frequency stimulations to a target area deep inside the brain. A very accurate placement of the electrode is a prerequisite for positive therapy outcome. The assessment of the intervention result is of central importance in DBS treatment and involves the registration of pre- and postinterventional scans. In this paper, we present an image processing pipeline for highly accurate registration of postoperative CT to preoperative MR. Our method consists of two steps: a fully automatic pre-alignment using a detection of the skull tip in the CT based on fuzzy connectedness, and an intensity-based rigid registration. The registration uses the Normalized Gradient Fields distance measure in a multilevel Gauss-Newton optimization framework and focuses on a region around the subthalamic nucleus in the MR. The accuracy of our method was extensively evaluated on 20 DBS datasets from clinical routine and compared with manual expert registrations. For each dataset, three independent registrations were available, thus allowing to relate algorithmic with expert performance. Our method achieved an average registration error of 0.95mm in the target region around the subthalamic nucleus as compared to an inter-observer variability of 1.12 mm. Together with the short registration time of about five seconds on average, our method forms a very attractive package that can be considered ready for clinical use.

  6. Deep sleep divides the cortex into opposite modes of anatomical-functional coupling.

    PubMed

    Tagliazucchi, Enzo; Crossley, Nicolas; Bullmore, Edward T; Laufs, Helmut

    2016-11-01

    The coupling of anatomical and functional connectivity at rest suggests that anatomy is essential for wake-typical activity patterns. Here, we study the development of this coupling from wakefulness to deep sleep. Globally, similarity between whole-brain anatomical and functional connectivity networks increased during deep sleep. Regionally, we found differential coupling: during sleep, functional connectivity of primary cortices resembled more the underlying anatomical connectivity, while we observed the opposite in associative cortices. Increased anatomical-functional similarity in sensory areas is consistent with their stereotypical, cross-modal response to the environment during sleep. In distinction, looser coupling-relative to wakeful rest-in higher order integrative cortices suggests that sleep actively disrupts default patterns of functional connectivity in regions essential for the conscious access of information and that anatomical connectivity acts as an anchor for the restoration of their functionality upon awakening.

  7. Pure Motor Stroke Secondary to Cerebral Infarction of Recurrent Artery of Heubner after Mild Head Trauma: A Case Report.

    PubMed

    Yilmaz, Ali; Kizilay, Zahir; Ozkul, Ayca; Çirak, Bayram

    2016-03-15

    The recurrent Heubner's artery is the distal part of the medial striate artery. Occlusion of the recurrent artery of Heubner, classically contralateral hemiparesis with fasciobrachiocrural predominance, is attributed to the occlusion of the recurrent artery of Heubner and is widely known as a stroke syndrome in adults. However, isolated occlusion of the deep perforating arteries following mild head trauma also occurs extremely rarely in childhood. Here we report the case of an 11-year-old boy with pure motor stroke. The brain MRI showed an acute ischemia in the recurrent artery of Heubner supply area following mild head trauma. His fasciobrachial hemiparesis and dysarthria were thought to be secondary to the stretching of deep perforating arteries leading to occlusion of the recurrent artery of Heubner. Post-traumatic pure motor ischemic stroke can be secondary to stretching of the deep perforating arteries especially in childhood.

  8. Deep brain stimulation as a functional scalpel.

    PubMed

    Broggi, G; Franzini, A; Tringali, G; Ferroli, P; Marras, C; Romito, L; Maccagnano, E

    2006-01-01

    Since 1995, at the Istituto Nazionale Neurologico "Carlo Besta" in Milan (INNCB,) 401 deep brain electrodes were implanted to treat several drug-resistant neurological syndromes (Fig. 1). More than 200 patients are still available for follow-up and therapeutical considerations. In this paper our experience is reviewed and pioneered fields are highlighted. The reported series of patients extends the use of deep brain stimulation beyond the field of Parkinson's disease to new fields such as cluster headache, disruptive behaviour, SUNCt, epilepsy and tardive dystonia. The low complication rate, the reversibility of the procedure and the available image guided surgery tools will further increase the therapeutic applications of DBS. New therapeutical applications are expected for this functional scalpel.

  9. Deep brain stimulation of the internal pallidum in multiple system atrophy.

    PubMed

    Santens, Patrick; Patrick, Santens; Vonck, Kristl; Kristl, Vonck; De Letter, Miet; Miet, De Letter; Van Driessche, Katya; Katya, Van Driessche; Sieben, Anne; Anne, Sieben; De Reuck, Jacques; Jacques, De Reuck; Van Roost, Dirk; Dirk, Van Roost; Boon, Paul; Paul, Boon

    2006-04-01

    We describe the outcome of deep brain stimulation of the internal pallidum in a 57-year old patient with multiple system atrophy. Although the prominent dystonic features of this patient were markedly attenuated post-operatively, the outcome was to be considered unfavourable. There was a severe increase in akinesia resulting in overall decrease of mobility in limbs as well as in the face. As a result, the patient was anarthric and displayed dysphagia. A laterality effect of stimulation on oro-facial movements was demonstrated. The patient died 7 months post-operatively. This report adds to the growing consensus that multiple system atrophy patients are unsuitable candidates for deep brain stimulation.

  10. Chinese expert consensus on programming deep brain stimulation for patients with Parkinson's disease.

    PubMed

    Chen, Shengdi; Gao, Guodong; Feng, Tao; Zhang, Jianguo

    2018-01-01

    Deep Brain Stimulation (DBS) therapy for the treatment of Parkinson's Disease (PD) is now a well-established option for some patients. Postoperative standardized programming processes can improve the level of postoperative management and programming, relieve symptoms and improve quality of life. In order to improve the quality of the programming, the experts on DBS and PD in neurology and neurosurgery in China reviewed the relevant literatures and combined their own experiences and developed this expert consensus on the programming of deep brain stimulation in patients with PD in China. This Chinese expert consensus on postoperative programming can standardize and improve postoperative management and programming of DBS for PD.

  11. Electric Field Comparison between Microelectrode Recording and Deep Brain Stimulation Systems—A Simulation Study

    PubMed Central

    Johansson, Johannes; Wårdell, Karin; Hemm, Simone

    2018-01-01

    The success of deep brain stimulation (DBS) relies primarily on the localization of the implanted electrode. Its final position can be chosen based on the results of intraoperative microelectrode recording (MER) and stimulation tests. The optimal position often differs from the final one selected for chronic stimulation with the DBS electrode. The aim of the study was to investigate, using finite element method (FEM) modeling and simulations, whether lead design, electrical setup, and operating modes induce differences in electric field (EF) distribution and in consequence, the clinical outcome. Finite element models of a MER system and a chronic DBS lead were developed. Simulations of the EF were performed for homogenous and patient-specific brain models to evaluate the influence of grounding (guide tube vs. stimulator case), parallel MER leads, and non-active DBS contacts. Results showed that the EF is deformed depending on the distance between the guide tube and stimulating contact. Several parallel MER leads and the presence of the non-active DBS contacts influence the EF distribution. The DBS EF volume can cover the intraoperatively produced EF, but can also extend to other anatomical areas. In conclusion, EF deformations between stimulation tests and DBS should be taken into consideration as they can alter the clinical outcome. PMID:29415442

  12. Mapping the Cortical Network Arising From Up-Regulated Amygdaloidal Activation Using -Louvain Algorithm.

    PubMed

    Liu, Ning; Yu, Xueli; Yao, Li; Zhao, Xiaojie

    2018-06-01

    The amygdala plays an important role in emotion processing. Several studies have proved that its activation can be regulated by real-time functional magnetic resonance imaging (rtfMRI)-based neurofeedback training. However, although studies have found brain regions that are functionally closely connected to the amygdala in the cortex, it is not clear whether these brain regions and the amygdala are structurally closely connected, and if they show the same training effect as the amygdala in the process of emotional regulation. In this paper, we instructed subjects to up-regulate the activation of the left amygdala (LA) through rtfMRI-based neurofeedback training. In order to fuse multimodal imaging data, we introduced a network analysis method called the -Louvain clustering algorithm. This method was used to integrate multimodal data from the training experiment and construct an LA-cortical network. Correlation analysis and main-effect analysis were conducted to determine the signal covariance associated with the activation of the target area; ultimately, we identified the left temporal pole superior as the amygdaloidal-cortical network region. As a deep nucleus in the brain, the treatment and stimulation of the amygdala remains challenging. Our results provide new insights for the regulation of activation in a deep nucleus using more neurofeedback techniques.

  13. Analysis of evoked deep brain connectivity.

    PubMed

    Klimeš, Petr; Janeček, Jiři; Jurák, Pavel; Halámek, Josef; Chládek, Han; Brázdil, Milan

    2013-01-01

    Establishing dependencies and connectivity among different structures in the human brain is an extremely complex issue. Methods that are often used for connectivity analysis are based on correlation mechanisms. Correlation methods can analyze changes in signal shape or instantaneous power level. Although recent studies imply that observation of results from both groups of methods together can disclose some of the basic functions and behavior of the human brain during mental activity and decision-making, there is no technique covering changes in the shape of signals along with changes in their power levels. We present a method using a time evaluation of the correlation along with a comparison of power levels in every available contact pair from intracranial electrodes placed in deep brain structures. Observing shape changes in signals after stimulation together with their power levels provides us with new information about signal character between different structures in the brain during task-related events - visual stimulation with motor response. The results for a subject with 95 intracerebral contacts used in this paper demonstrate a clear methodology capable of spatially analyzing connectivity among deep brain structures.

  14. Focal epidural cooling reduces the infarction volume of permanent middle cerebral artery occlusion in swine.

    PubMed

    Zhang, Lihua; Cheng, Huilin; Shi, Jixin; Chen, Jun

    2007-02-01

    The protective effect against ischemic stroke by systemic hypothermia is limited by the cooling rate and it has severe complications. This study was designed to evaluate the effect of SBH induced by epidural cooling on infarction volume in a swine model of PMCAO. Permanent middle cerebral artery occlusion was performed in 12 domestic swine assigned to groups A and B. In group A, the cranial and rectal temperatures were maintained at normal range (37 degrees C-39 degrees C) for 6 hours after PMCAO. In group B, cranial temperature was reduced to moderate (deep brain, <30 degrees C) and deep (brain surface, <20 degrees C) temperature and maintained at that level for 5 hours after 1 hour after PMCAO, by the epidural cooling method. All animals were euthanized 6 hours after MCAO; their brains were sectioned and stained with 2,3,5-triphenyltetrazolium chloride and their infarct volumes were calculated. The moderate and deep brain temperature (at deep brain and brain surface) can be induced by rapid epidural cooling, whereas the rectal temperature was maintained within normal range. The infarction volume after PMCAO was significantly reduced by epidural cooling compared with controls (13.73% +/- 1.82% vs 5.62% +/- 2.57%, P < .05). The present study has demonstrated, with histologic confirmation, that epidural cooling may be a useful strategy for reducing infarct volume after the onset of ischemia.

  15. Closed loop deep brain stimulation: an evolving technology.

    PubMed

    Hosain, Md Kamal; Kouzani, Abbas; Tye, Susannah

    2014-12-01

    Deep brain stimulation is an effective and safe medical treatment for a variety of neurological and psychiatric disorders including Parkinson's disease, essential tremor, dystonia, and treatment resistant obsessive compulsive disorder. A closed loop deep brain stimulation (CLDBS) system automatically adjusts stimulation parameters by the brain response in real time. The CLDBS continues to evolve due to the advancement in the brain stimulation technologies. This paper provides a study on the existing systems developed for CLDBS. It highlights the issues associated with CLDBS systems including feedback signal recording and processing, stimulation parameters setting, control algorithm, wireless telemetry, size, and power consumption. The benefits and limitations of the existing CLDBS systems are also presented. Whilst robust clinical proof of the benefits of the technology remains to be achieved, it has the potential to offer several advantages over open loop DBS. The CLDBS can improve efficiency and efficacy of therapy, eliminate lengthy start-up period for programming and adjustment, provide a personalized treatment, and make parameters setting automatic and adaptive.

  16. Improvement of both dystonia and tics with 60 Hz pallidal deep brain stimulation.

    PubMed

    Hwynn, Nelson; Tagliati, Michele; Alterman, Ron L; Limotai, Natlada; Zeilman, Pamela; Malaty, Irene A; Foote, Kelly D; Morishita, Takashi; Okun, Michael S

    2012-09-01

    Deep brain stimulation has been utilized in both dystonia and in medication refractory Tourette syndrome. We present an interesting case of a patient with a mixture of disabling dystonia and Tourette syndrome whose coexistent dystonia and tics were successfully treated with 60 Hz-stimulation of the globus pallidus region.

  17. Early brain development in infants at high risk for autism spectrum disorder

    PubMed Central

    Hazlett, Heather Cody; Gu, Hongbin; Munsell, Brent C.; Kim, Sun Hyung; Styner, Martin; Wolff, Jason J.; Elison, Jed T.; Swanson, Meghan R.; Zhu, Hongtu; Botteron, Kelly N.; Collins, D. Louis; Constantino, John N.; Dager, Stephen R.; Estes, Annette M.; Evans, Alan C.; Fonov, Vladimir S.; Gerig, Guido; Kostopoulos, Penelope; McKinstry, Robert C.; Pandey, Juhi; Paterson, Sarah; Pruett, John R.; Schultz, Robert T.; Shaw, Dennis W.; Zwaigenbaum, Lonnie; Piven, Joseph

    2017-01-01

    Summary Brain enlargement has been observed in children with Autism Spectrum Disorder (ASD), but the timing of this phenomenon and its relationship to the appearance of behavioral symptoms is unknown. Retrospective head circumference and longitudinal brain volume studies of 2 year olds followed up at age 4 years, have provided evidence that increased brain volume may emerge early in development.1, 2 Studies of infants at high familial risk for autism can provide insight into the early development of autism and have found that characteristic social deficits in ASD emerge during the latter part of the first and in the second year of life3,4. These observations suggest that prospective brain imaging studies of infants at high familial risk for ASD might identify early post-natal changes in brain volume occurring before the emergence of an ASD diagnosis. In this prospective neuroimaging study of 106 infants at high familial risk of ASD and 42 low-risk infants, we show that cortical surface area hyper-expansion between 6-12 months of age precedes brain volume overgrowth observed between 12-24 months in the 15 high-risk infants diagnosed with autism at 24 months. Brain volume overgrowth was linked to the emergence and severity of autistic social deficits. A deep learning algorithm primarily using surface area information from brain MRI at 6 and 12 months of age predicted the diagnosis of autism in individual high-risk children at 24 months (with a positive predictive value of 81%, sensitivity of 88%). These findings demonstrate that early brain changes unfold during the period in which autistic behaviors are first emerging. PMID:28202961

  18. Early brain development in infants at high risk for autism spectrum disorder.

    PubMed

    Hazlett, Heather Cody; Gu, Hongbin; Munsell, Brent C; Kim, Sun Hyung; Styner, Martin; Wolff, Jason J; Elison, Jed T; Swanson, Meghan R; Zhu, Hongtu; Botteron, Kelly N; Collins, D Louis; Constantino, John N; Dager, Stephen R; Estes, Annette M; Evans, Alan C; Fonov, Vladimir S; Gerig, Guido; Kostopoulos, Penelope; McKinstry, Robert C; Pandey, Juhi; Paterson, Sarah; Pruett, John R; Schultz, Robert T; Shaw, Dennis W; Zwaigenbaum, Lonnie; Piven, Joseph

    2017-02-15

    Brain enlargement has been observed in children with autism spectrum disorder (ASD), but the timing of this phenomenon, and the relationship between ASD and the appearance of behavioural symptoms, are unknown. Retrospective head circumference and longitudinal brain volume studies of two-year olds followed up at four years of age have provided evidence that increased brain volume may emerge early in development. Studies of infants at high familial risk of autism can provide insight into the early development of autism and have shown that characteristic social deficits in ASD emerge during the latter part of the first and in the second year of life. These observations suggest that prospective brain-imaging studies of infants at high familial risk of ASD might identify early postnatal changes in brain volume that occur before an ASD diagnosis. In this prospective neuroimaging study of 106 infants at high familial risk of ASD and 42 low-risk infants, we show that hyperexpansion of the cortical surface area between 6 and 12 months of age precedes brain volume overgrowth observed between 12 and 24 months in 15 high-risk infants who were diagnosed with autism at 24 months. Brain volume overgrowth was linked to the emergence and severity of autistic social deficits. A deep-learning algorithm that primarily uses surface area information from magnetic resonance imaging of the brain of 6-12-month-old individuals predicted the diagnosis of autism in individual high-risk children at 24 months (with a positive predictive value of 81% and a sensitivity of 88%). These findings demonstrate that early brain changes occur during the period in which autistic behaviours are first emerging.

  19. Neuronal inhibition and synaptic plasticity of basal ganglia neurons in Parkinson's disease

    PubMed Central

    Milosevic, Luka; Kalia, Suneil K; Hodaie, Mojgan; Lozano, Andres M; Fasano, Alfonso; Popovic, Milos R; Hutchison, William D

    2018-01-01

    Abstract Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease symptoms. The therapeutic benefits of deep brain stimulation are frequency-dependent, but the underlying physiological mechanisms remain unclear. To advance deep brain stimulation therapy an understanding of fundamental mechanisms is critical. The objectives of this study were to (i) compare the frequency-dependent effects on cell firing in subthalamic nucleus and substantia nigra pars reticulata; (ii) quantify frequency-dependent effects on short-term plasticity in substantia nigra pars reticulata; and (iii) investigate effects of continuous long-train high frequency stimulation (comparable to conventional deep brain stimulation) on synaptic plasticity. Two closely spaced (600 µm) microelectrodes were advanced into the subthalamic nucleus (n = 27) and substantia nigra pars reticulata (n = 14) of 22 patients undergoing deep brain stimulation surgery for Parkinson’s disease. Cell firing and evoked field potentials were recorded with one microelectrode during stimulation trains from the adjacent microelectrode across a range of frequencies (1–100 Hz, 100 µA, 0.3 ms, 50–60 pulses). Subthalamic firing attenuated with ≥20 Hz (P < 0.01) stimulation (silenced at 100 Hz), while substantia nigra pars reticulata decreased with ≥3 Hz (P < 0.05) (silenced at 50 Hz). Substantia nigra pars reticulata also exhibited a more prominent increase in transient silent period following stimulation. Patients with longer silent periods after 100 Hz stimulation in the subthalamic nucleus tended to have better clinical outcome after deep brain stimulation. At ≥30 Hz the first evoked field potential of the stimulation train in substantia nigra pars reticulata was potentiated (P < 0.05); however, the average amplitude of the subsequent potentials was rapidly attenuated (P < 0.01). This is suggestive of synaptic facilitation followed by rapid depression. Paired pulse ratios calculated at the beginning of the train revealed that 20 Hz (P < 0.05) was the minimum frequency required to induce synaptic depression. Lastly, the average amplitude of evoked field potentials during 1 Hz pulses showed significant inhibitory synaptic potentiation after long-train high frequency stimulation (P < 0.001) and these increases were coupled with increased durations of neuronal inhibition (P < 0.01). The subthalamic nucleus exhibited a higher frequency threshold for stimulation-induced inhibition than the substantia nigra pars reticulata likely due to differing ratios of GABA:glutamate terminals on the soma and/or the nature of their GABAergic inputs (pallidal versus striatal). We suggest that enhancement of inhibitory synaptic plasticity, and frequency-dependent potentiation and depression are putative mechanisms of deep brain stimulation. Furthermore, we foresee that future closed-loop deep brain stimulation systems (with more frequent off stimulation periods) may benefit from inhibitory synaptic potentiation that occurs after high frequency stimulation. PMID:29236966

  20. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization.

    PubMed

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P; Johnson, G Allan

    2015-08-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved three-dimensional (3D) reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. © 2015 Wiley Periodicals, Inc.

  1. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications.

    PubMed

    Vieira, Sandra; Pinaya, Walter H L; Mechelli, Andrea

    2017-03-01

    Deep learning (DL) is a family of machine learning methods that has gained considerable attention in the scientific community, breaking benchmark records in areas such as speech and visual recognition. DL differs from conventional machine learning methods by virtue of its ability to learn the optimal representation from the raw data through consecutive nonlinear transformations, achieving increasingly higher levels of abstraction and complexity. Given its ability to detect abstract and complex patterns, DL has been applied in neuroimaging studies of psychiatric and neurological disorders, which are characterised by subtle and diffuse alterations. Here we introduce the underlying concepts of DL and review studies that have used this approach to classify brain-based disorders. The results of these studies indicate that DL could be a powerful tool in the current search for biomarkers of psychiatric and neurologic disease. We conclude our review by discussing the main promises and challenges of using DL to elucidate brain-based disorders, as well as possible directions for future research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Technical Case Report of Deep Brain Stimulation: Is it Possible Single Electrode Reach to Both of Subthalamic Nucleus and Ventral Intermediate Nucleus in One Stage?

    PubMed

    Kaptan, Hülagu; Çakmur, Raif

    2018-04-15

    The primary target of this operation is Ventral Intermediate Nucleus (VIM); however VIM - Subthalamic Nucleus (STN) were tried to be reached with one electrode, adjusting the angle well, the coronal section; medial of VIM can partially reach the STN. Using the properties of the electrode; we believe we could act on a wide area. An analysis was performed on one patient who underwent VIM Deep Brain Stimulation (DBS) in 3 periods (pre - peri - post-operation). A 53 - year - old woman diagnosed with Parkinson's disease 8 years earlier including symptoms of severe tremor on the right than left underwent bilateral DBS VIM. Obtaining a satisfactory improvement of tremor, the patient did well, and postoperative complications were not observed. The patient was discharged from hospital on postoperative thirty day. It is certain that more research and experience are needed. However, we believe that the two targets can reach the same point and the second operations for another target can be avoided.We believe that this initiative is advantageous and promising regarding patient and cost.

  3. Brain tumor classification of microscopy images using deep residual learning

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yota; Washiya, Kiyotada; Aoki, Kota; Nagahashi, Hiroshi

    2016-12-01

    The crisis rate of brain tumor is about one point four in ten thousands. In general, cytotechnologists take charge of cytologic diagnosis. However, the number of cytotechnologists who can diagnose brain tumors is not sufficient, because of the necessity of highly specialized skill. Computer-Aided Diagnosis by computational image analysis may dissolve the shortage of experts and support objective pathological examinations. Our purpose is to support a diagnosis from a microscopy image of brain cortex and to identify brain tumor by medical image processing. In this study, we analyze Astrocytes that is a type of glia cell of central nerve system. It is not easy for an expert to discriminate brain tumor correctly since the difference between astrocytes and low grade astrocytoma (tumors formed from Astrocyte) is very slight. In this study, we present a novel method to segment cell regions robustly using BING objectness estimation and to classify brain tumors using deep convolutional neural networks (CNNs) constructed by deep residual learning. BING is a fast object detection method and we use pretrained BING model to detect brain cells. After that, we apply a sequence of post-processing like Voronoi diagram, binarization, watershed transform to obtain fine segmentation. For classification using CNNs, a usual way of data argumentation is applied to brain cells database. Experimental results showed 98.5% accuracy of classification and 98.2% accuracy of segmentation.

  4. Perturbation and Nonlinear Dynamic Analysis of Acoustic Phonatory Signal in Parkinsonian Patients Receiving Deep Brain Stimulation

    ERIC Educational Resources Information Center

    Lee, Victoria S.; Zhou, Xiao Ping; Rahn, Douglas A., III; Wang, Emily Q.; Jiang, Jack J.

    2008-01-01

    Nineteen PD patients who received deep brain stimulation (DBS), 10 non-surgical (control) PD patients, and 11 non-pathologic age- and gender-matched subjects performed sustained vowel phonations. The following acoustic measures were obtained on the sustained vowel phonations: correlation dimension (D[subscript 2]), percent jitter, percent shimmer,…

  5. Practical considerations and nuances in anesthesia for patients undergoing deep brain stimulation implantation surgery.

    PubMed

    Scharpf, Danielle Teresa; Sharma, Mayur; Deogaonkar, Milind; Rezai, Ali; Bergese, Sergio D

    2015-08-01

    The field of functional neurosurgery has expanded in last decade to include newer indications, new devices, and new methods. This advancement has challenged anesthesia providers to adapt to these new requirements. This review aims to discuss the nuances and practical issues that are faced while administering anesthesia for deep brain stimulation surgery.

  6. Designing a deep brain stimulator to suppress pathological neuronal synchrony.

    PubMed

    Montaseri, Ghazal; Yazdanpanah, Mohammad Javad; Bahrami, Fariba

    2015-03-01

    Some of neuropathologies are believed to be related to abnormal synchronization of neurons. In the line of therapy, designing effective deep brain stimulators to suppress the pathological synchrony among neuronal ensembles is a challenge of high clinical relevance. The stimulation should be able to disrupt the synchrony in the presence of latencies due to imperfect knowledge about parameters of a neuronal ensemble and stimulation impacts on the ensemble. We propose an adaptive desynchronizing deep brain stimulator capable of dealing with these uncertainties. We analyze the collective behavior of the stimulated neuronal ensemble and show that, using the designed stimulator, the resulting asynchronous state is stable. Simulation results reveal the efficiency of the proposed technique. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Evaluation of high-perimeter electrode designs for deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Howell, Bryan; Grill, Warren M.

    2014-08-01

    Objective. Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, complications including infections and mis-programing following surgical replacement of the battery-powered implantable pulse generator adversely impact the safety profile of this therapy. We sought to decrease power consumption and extend battery life by modifying the electrode geometry to increase stimulation efficiency. The specific goal of this study was to determine whether electrode contact perimeter or area had a greater effect on increasing stimulation efficiency. Approach. Finite-element method (FEM) models of eight prototype electrode designs were used to calculate the electrode access resistance, and the FEM models were coupled with cable models of passing axons to quantify stimulation efficiency. We also measured in vitro the electrical properties of the prototype electrode designs and measured in vivo the stimulation efficiency following acute implantation in anesthetized cats. Main results. Area had a greater effect than perimeter on altering the electrode access resistance; electrode (access or dynamic) resistance alone did not predict stimulation efficiency because efficiency was dependent on the shape of the potential distribution in the tissue; and, quantitative assessment of stimulation efficiency required consideration of the effects of the electrode-tissue interface impedance. Significance. These results advance understanding of the features of electrode geometry that are important for designing the next generation of efficient DBS electrodes.

  8. Sleep, consciousness and the spontaneous and evoked electrical activity of the brain. Is there a cortical integrating mechanism?

    PubMed

    Evans, B M

    2003-02-01

    The physiological mechanisms that underlie consciousness and unconsciousness are the sleep/wake mechanisms. Deep sleep is a state of physiological reversible unconsciousness. The change from that state to wakefulness is mediated by the reticular activating mechanism. The reverse change from wakefulness to sleep is also an active process effected by an arousal inhibitory mechanism based on a partial blockade of the thalamus and upper brain stem, associated with thalamic sleep spindles and also with cortical sub-delta activity (<1 Hz). The deactivation of the thalamus has been demonstrated both electrically and by positron emission tomography during deep sleep. Normally, wakefulness is associated with instant awareness (defined as the ability to integrate all sensory information from the external environment and the internal environment of the body). Awareness may be a function of the thalamo-cortical network in the cerebral hemispheres, which forms the final path of the sleep/wake mechanism. Anatomical and physiological studies suggest that there may be a double thalamo-cortical network; one relating to cortical and thalamic areas with specific functions and the other global, involving all cortical areas and so-called 'non-specific' thalamic nuclei. The global system might function as a cortical integrating mechanism permitting the spread of information between the specific cortical areas and thus underlying awareness. The global system may also be responsible for much of the spontaneous and evoked electrical activity of the brain. The cognitive change between sleep and wakefulness is accompanied by changes in the autonomic system, the cerebral blood flow and cerebral metabolism. Awareness is an essential component of total consciousness (defined as continuous awareness of the external and internal environment, both past and present, together with the emotions arising from it). In addition to awareness, full consciousness requires short-term and explicit memory and intact emotional responses.

  9. What is special about the adolescent (JME) brain?

    PubMed

    Craiu, Dana

    2013-07-01

    Juvenile myoclonic epilepsy (JME) involves cortico-thalamo-cortical networks. Thalamic, frontal gray matter, connectivity, and neurotransmitter disturbances have been demonstrated by structural/functional imaging studies. Few patients with JME show mutations in genes coding ion channels or GABAA (gamma-aminobutyric acid) receptor subunits. Recent research points to EFHC1 gene mutations leading to microdysgenesis and possible aberrant circuitry. Imaging studies have shown massive structural/functional changes of normally developing adolescent brain structures maturing at strikingly different rates and times. Gray matter (GM) volume diminishes in cortical areas (frontal and parietal) and deep structures (anterior thalamus, putamen, and caudate). Diffusion tensor imaging (DTI) findings support continued microstructural change in WM (white matter) during late adolescence with robust developmental changes in thalamocortical connectivity. The GABAA receptor distribution and specific receptor subunits' expression patterns change with age from neonate to adolescent/adult, contributing to age-related changes in brain excitability. Hormonal influence on brain structure development during adolescence is presented. Possible implications of brain changes during adolescence on the course of JME are discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Basal Ganglia Circuits as Targets for Neuromodulation in Parkinson Disease.

    PubMed

    DeLong, Mahlon R; Wichmann, Thomas

    2015-11-01

    The revival of stereotactic surgery for Parkinson disease (PD) in the 1990s, with pallidotomy and then with high-frequency deep brain stimulation (DBS), has led to a renaissance in functional surgery for movement and other neuropsychiatric disorders. To examine the scientific foundations and rationale for the use of ablation and DBS for treatment of neurologic and psychiatric diseases, using PD as the primary example. A summary of the large body of relevant literature is presented on anatomy, physiology, pathophysiology, and functional surgery for PD and other basal ganglia disorders. The signs and symptoms of movement disorders appear to result largely from signature abnormalities in one of several parallel and largely segregated basal ganglia thalamocortical circuits (ie, the motor circuit). The available evidence suggests that the varied movement disorders resulting from dysfunction of this circuit result from propagated disruption of downstream network activity in the thalamus, cortex, and brainstem. Ablation and DBS act to free downstream networks to function more normally. The basal ganglia thalamocortical circuit may play a key role in the expression of disordered movement, and the basal ganglia-brainstem projections may play roles in akinesia and disturbances of gait. Efforts are under way to target circuit dysfunction in brain areas outside of the traditionally implicated basal ganglia thalamocortical system, in particular, the pedunculopontine nucleus, to address gait disorders that respond poorly to levodopa and conventional DBS targets. Deep brain stimulation is now the treatment of choice for many patients with advanced PD and other movement disorders. The success of DBS and other forms of neuromodulation for neuropsychiatric disorders is the result of the ability to modulate circuit activity in discrete functional domains within the basal ganglia circuitry with highly focused interventions, which spare uninvolved areas that are often disrupted with drugs.

  11. Using ventricular modeling to robustly probe significant deep gray matter pathologies: Application to cerebral palsy.

    PubMed

    Pagnozzi, Alex M; Shen, Kaikai; Doecke, James D; Boyd, Roslyn N; Bradley, Andrew P; Rose, Stephen; Dowson, Nicholas

    2016-11-01

    Understanding the relationships between the structure and function of the brain largely relies on the qualitative assessment of Magnetic Resonance Images (MRIs) by expert clinicians. Automated analysis systems can support these assessments by providing quantitative measures of brain injury. However, the assessment of deep gray matter structures, which are critical to motor and executive function, remains difficult as a result of large anatomical injuries commonly observed in children with Cerebral Palsy (CP). Hence, this article proposes a robust surrogate marker of the extent of deep gray matter injury based on impingement due to local ventricular enlargement on surrounding anatomy. Local enlargement was computed using a statistical shape model of the lateral ventricles constructed from 44 healthy subjects. Measures of injury on 95 age-matched CP patients were used to train a regression model to predict six clinical measures of function. The robustness of identifying ventricular enlargement was demonstrated by an area under the curve of 0.91 when tested against a dichotomised expert clinical assessment. The measures also showed strong and significant relationships for multiple clinical scores, including: motor function (r 2  = 0.62, P < 0.005), executive function (r 2  = 0.55, P < 0.005), and communication (r 2  = 0.50, P < 0.005), especially compared to using volumes obtained from standard anatomical segmentation approaches. The lack of reliance on accurate anatomical segmentations and its resulting robustness to large anatomical variations is a key feature of the proposed automated approach. This coupled with its strong correlation with clinically meaningful scores, signifies the potential utility to repeatedly assess MRIs for clinicians diagnosing children with CP. Hum Brain Mapp 37:3795-3809, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Deep brain stimulation of the pedunculopontine nucleus for treatment of gait and balance disorder in progressive supranuclear palsy: Effects of frequency modulations and clinical outcome.

    PubMed

    Galazky, Imke; Kaufmann, Jörn; Lorenzl, Stefan; Ebersbach, Georg; Gandor, Florin; Zaehle, Tino; Specht, Sylke; Stallforth, Sabine; Sobieray, Uwe; Wirkus, Edyta; Casjens, Franziska; Heinze, Hans-Jochen; Kupsch, Andreas; Voges, Jürgen

    2018-05-01

    The pedunculopontine nucleus has been suggested as a potential deep brain stimulation target for axial symptoms such as gait and balance impairment in idiopathic Parkinson's disease as well as atypical Parkinsonian disorders. Seven consecutive patients with progressive supranuclear palsy received bilateral pedunculopontine nucleus deep brain stimulation. Inclusion criteria comprised of the clinical diagnosis of progressive supranuclear palsy, a levodopa-resistant gait and balance disorder, age <75 years, and absence of dementia or major psychiatric co-morbidities. Effects of stimulation frequencies at 8, 20, 60 and 130 Hz on motor scores and gait were assessed. Motor scores were followed up for two years postoperatively. Activities of daily living, frequency of falls, health-related quality of life, cognition and mood at 12 months were compared to baseline parameters. Surgical and stimulation related adverse events were assessed. Bilateral pedunculopontine nucleus deep brain stimulation at 8 Hz significantly improved axial motor symptoms and cyclic gait parameters, while high frequency stimulation did not ameliorate gait and balance but improved hypokinesia. This improvement however did not translate into clinically relevant benefits. Frequency of falls was not reduced. Activities of daily living, quality of life and frontal cognitive functions declined, while mood remained unchanged. Bilateral pedunculopontine nucleus deep brain stimulation in progressive supranuclear palsy generates frequency-dependent effects with improvement of cyclic gait parameters at low frequency and amelioration of hypokinesia at high frequency stimulation. However, these effects do not translate into a clinically important improvement. Copyright © 2018. Published by Elsevier Ltd.

  13. The MDS-UPDRS tracks motor and non-motor improvement due to subthalamic nucleus deep brain stimulation in Parkinson disease.

    PubMed

    Chou, Kelvin L; Taylor, Jennifer L; Patil, Parag G

    2013-11-01

    The Movement Disorders Society revision of the Unified Parkinson Disease Rating Scale (MDS-UPDRS) improves upon the original UPDRS by adding more non-motor items, making it a more robust tool to evaluate the severity of motor and non-motor symptoms of Parkinson disease. Previous studies on deep brain stimulation have not used the MDS-UPDRS. To determine if the MDS-UPDRS could detect improvement in both motor and non-motor symptoms after bilateral subthalamic nucleus deep brain stimulation for Parkinson disease. We compared scores on the entire MDS-UPDRS prior to surgery (baseline) and approximately six months following the initial programming visit in twenty subjects (12M/8F) with Parkinson disease undergoing bilateral subthalamic nucleus deep brain stimulation. STN DBS significantly improved the scores for every section of the MDS-UPDRS at the 6 month follow-up. Part I improved by 3.1 points (22%), Part II by 5.3 points (29%), Part III by 13.1 points (29%) with stimulation alone, and Part IV by 7.1 points (74%). Individual non-motor items in Part I that improved significantly were constipation, light-headedness, and fatigue. Both motor and non-motor symptoms, as assessed by the MDS-UPDRS, improve with bilateral subthalamic nucleus stimulation six months after the stimulator is turned on. We recommend that the MDS-UPDRS be utilized in future deep brain stimulation studies because of the advantage of detecting change in non-motor symptoms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Integrative biological analysis for neuropsychopharmacology.

    PubMed

    Emmett, Mark R; Kroes, Roger A; Moskal, Joseph R; Conrad, Charles A; Priebe, Waldemar; Laezza, Fernanda; Meyer-Baese, Anke; Nilsson, Carol L

    2014-01-01

    Although advances in psychotherapy have been made in recent years, drug discovery for brain diseases such as schizophrenia and mood disorders has stagnated. The need for new biomarkers and validated therapeutic targets in the field of neuropsychopharmacology is widely unmet. The brain is the most complex part of human anatomy from the standpoint of number and types of cells, their interconnections, and circuitry. To better meet patient needs, improved methods to approach brain studies by understanding functional networks that interact with the genome are being developed. The integrated biological approaches--proteomics, transcriptomics, metabolomics, and glycomics--have a strong record in several areas of biomedicine, including neurochemistry and neuro-oncology. Published applications of an integrated approach to projects of neurological, psychiatric, and pharmacological natures are still few but show promise to provide deep biological knowledge derived from cells, animal models, and clinical materials. Future studies that yield insights based on integrated analyses promise to deliver new therapeutic targets and biomarkers for personalized medicine.

  15. Increased dopamine receptor expression and anti-depressant response following deep brain stimulation of the medial forebrain bundle.

    PubMed

    Dandekar, Manoj P; Luse, Dustin; Hoffmann, Carson; Cotton, Patrick; Peery, Travis; Ruiz, Christian; Hussey, Caroline; Giridharan, Vijayasree V; Soares, Jair C; Quevedo, Joao; Fenoy, Albert J

    2017-08-01

    Among several potential neuroanatomical targets pursued for deep brain stimulation (DBS) for treating those with treatment-resistant depression (TRD), the superolateral-branch of the medial forebrain bundle (MFB) is emerging as a privileged location. We investigated the antidepressant-like phenotypic and chemical changes associated with reward-processing dopaminergic systems in rat brains after MFB-DBS. Male Wistar rats were divided into three groups: sham-operated, DBS-Off, and DBS-On. For DBS, a concentric bipolar electrode was stereotactically implanted into the right MFB. Exploratory activity and depression-like behavior were evaluated using the open-field and forced-swimming test (FST), respectively. MFB-DBS effects on the dopaminergic system were evaluated using immunoblotting for tyrosine hydroxylase (TH), dopamine transporter (DAT), and dopamine receptors (D1-D5), and high-performance liquid chromatography for quantifying dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in brain homogenates of prefrontal cortex (PFC), hippocampus, amygdala, and nucleus accumbens (NAc). Animals receiving MFB-DBS showed a significant increase in swimming time without alterations in locomotor activity, relative to the DBS-Off (p<0.039) and sham-operated groups (p<0.014), indicating an antidepressant-like response. MFB-DBS led to a striking increase in protein levels of dopamine D2 receptors and DAT in the PFC and hippocampus, respectively. However, we did not observe appreciable differences in the expression of other dopamine receptors, TH, or in the concentrations of dopamine, DOPAC, and HVA in PFC, hippocampus, amygdala, and NAc. This study was not performed on an animal model of TRD. MFB-DBS rescues the depression-like phenotypes and selectively activates expression of dopamine receptors in brain regions distant from the target area of stimulation. Copyright © 2017. Published by Elsevier B.V.

  16. Intensive Voice Treatment (LSVT[R]LOUD) for Parkinson's Disease Following Deep Brain Stimulation of the Subthalamic Nucleus

    ERIC Educational Resources Information Center

    Spielman, Jennifer; Mahler, Leslie; Halpern, Angela; Gilley, Phllip; Klepitskaya, Olga; Ramig, Lorraine

    2011-01-01

    Purpose: Intensive voice therapy (LSVT[R]LOUD) can effectively manage voice and speech symptoms associated with idiopathic Parkinson disease (PD). This small-group study evaluated voice and speech in individuals with and without deep brain stimulation of the subthalamic nucleus (STN-DBS) before and after LSVT LOUD, to determine whether outcomes…

  17. Update on Deep Brain Stimulation for Dyskinesia and Dystonia: A Literature Review

    PubMed Central

    TODA, Hiroki; SAIKI, Hidemoto; NISHIDA, Namiko; IWASAKI, Koichi

    2016-01-01

    Deep brain stimulation (DBS) has been an established surgical treatment option for dyskinesia from Parkinson disease and for dystonia. The present article deals with the timing of surgical intervention, selecting an appropriate target, and minimizing adverse effects. We provide an overview of current evidences and issues for dyskinesia and dystonia as well as emerging DBS technology. PMID:27053331

  18. Implementation of a smartphone wireless accelerometer platform for establishing deep brain stimulation treatment efficacy of essential tremor with machine learning.

    PubMed

    LeMoyne, Robert; Tomycz, Nestor; Mastroianni, Timothy; McCandless, Cyrus; Cozza, Michael; Peduto, David

    2015-01-01

    Essential tremor (ET) is a highly prevalent movement disorder. Patients with ET exhibit a complex progressive and disabling tremor, and medical management often fails. Deep brain stimulation (DBS) has been successfully applied to this disorder, however there has been no quantifiable way to measure tremor severity or treatment efficacy in this patient population. The quantified amelioration of kinetic tremor via DBS is herein demonstrated through the application of a smartphone (iPhone) as a wireless accelerometer platform. The recorded acceleration signal can be obtained at a setting of the subject's convenience and conveyed by wireless transmission through the Internet for post-processing anywhere in the world. Further post-processing of the acceleration signal can be classified through a machine learning application, such as the support vector machine. Preliminary application of deep brain stimulation with a smartphone for acquisition of a feature set and machine learning for classification has been successfully applied. The support vector machine achieved 100% classification between deep brain stimulation in `on' and `off' mode based on the recording of an accelerometer signal through a smartphone as a wireless accelerometer platform.

  19. Real-Time Ultrasound-Guided Catheter Navigation for Approaching Deep-Seated Brain Lesions: Role of Intraoperative Neurosonography with and without Fusion with Magnetic Resonance Imaging.

    PubMed

    Manjila, Sunil; Karhade, Aditya; Phi, Ji Hoon; Scott, R Michael; Smith, Edward R

    2017-01-01

    Brain shift during the exposure of cranial lesions may reduce the accuracy of frameless stereotaxy. We describe a rapid, safe, and effective method to approach deep-seated brain lesions using real-time intraoperative ultrasound placement of a catheter to mark the dissection trajectory to the lesion. With Institutional Review Board approval, we retrospectively reviewed the radiographic, pathologic, and intraoperative data of 11 pediatric patients who underwent excision of 12 lesions by means of this technique. Full data sets were available for 12 lesions in 11 patients. Ten lesions were tumors and 2 were cavernous malformations. Lesion locations included the thalamus (n = 4), trigone (n = 3), mesial temporal lobe (n = 3), and deep white matter (n = 2). Catheter placement was successful in all patients, and the median time required for the procedure was 3 min (range 2-5 min). There were no complications related to catheter placement. The median diameter of surgical corridors on postresection magnetic resonance imaging was 6.6 mm (range 3.0-12.1 mm). Use of real-time ultrasound guidance to place a catheter to aid in the dissection to reach a deep-seated brain lesion provides advantages complementary to existing techniques, such as frameless stereotaxy. The catheter insertion technique described here provides a quick, accurate, and safe method for reaching deep-seated lesions. © 2017 S. Karger AG, Basel.

  20. Deep learning and texture-based semantic label fusion for brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Vidyaratne, L.; Alam, M.; Shboul, Z.; Iftekharuddin, K. M.

    2018-02-01

    Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.

  1. Violence, mental illness, and the brain – A brief history of psychosurgery: Part 2 – From the limbic system and cingulotomy to deep brain stimulation

    PubMed Central

    Faria, Miguel A.

    2013-01-01

    Knowledge of neuroscience flourished during and in the wake of the era of frontal lobotomy, as a byproduct of psychosurgery in the late 1930s and 1940s, revealing fascinating neural pathways and neurophysiologic mechanisms of the limbic system for the formulation of emotions, memory, and human behavior. The creation of the Klüver-Bucy syndrome in monkeys opened new horizons in the pursuit of knowledge in human behavior and neuropathology. In the 1950s specialized functional neurosurgery was developed in association with stereotactic neurosurgery; deep brain electrodes were implanted for more precise recording of brain electrical activity in the evaluation and treatment of intractable mental disorders, including schizophrenia, “pathologic aggression,” and psychomotor seizures in temporal lobe epilepsy. Psychosurgical procedures involved deep brain stimulation of the limbic system, as well as ablative procedures, such as cingulotomy and thalamotomy. The history of these developments up to the 21st century will continue in this three-part essay-editorial, exclusively researched and written for the readers of Surgical Neurology International. PMID:23776761

  2. Deep Learning and Texture-Based Semantic Label Fusion for Brain Tumor Segmentation.

    PubMed

    Vidyaratne, L; Alam, M; Shboul, Z; Iftekharuddin, K M

    2018-01-01

    Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.

  3. Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks.

    PubMed

    Hallett, Mark; Di Iorio, Riccardo; Rossini, Paolo Maria; Park, Jung E; Chen, Robert; Celnik, Pablo; Strafella, Antonio P; Matsumoto, Hideyuki; Ugawa, Yoshikazu

    2017-11-01

    The goal of this review is to show how transcranial magnetic stimulation (TMS) techniques can make a contribution to the study of brain networks. Brain networks are fundamental in understanding how the brain operates. Effects on remote areas can be directly observed or identified after a period of stimulation, and each section of this review will discuss one method. EEG analyzed following TMS is called TMS-evoked potentials (TEPs). A conditioning TMS can influence the effect of a test TMS given over the motor cortex. A disynaptic connection can be tested also by assessing the effect of a pre-conditioning stimulus on the conditioning-test pair. Basal ganglia-cortical relationships can be assessed using electrodes placed in the process of deep brain stimulation therapy. Cerebellar-cortical relationships can be determined using TMS over the cerebellum. Remote effects of TMS on the brain can be found as well using neuroimaging, including both positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). The methods complement each other since they give different views of brain networks, and it is often valuable to use more than one technique to achieve converging evidence. The final product of this type of work is to show how information is processed and transmitted in the brain. Published by Elsevier B.V.

  4. Resection of a Pediatric Thalamic Juvenile Pilocytic Astrocytoma with Whole Brain Tractography

    PubMed Central

    Weiner, Howard L

    2017-01-01

    The resection of deep-seated brain tumors has been associated with morbidity due to injury to critical neural structures during the approach. Recent technological advancements in navigation and stereotaxy, surgical planning, brain tractography and minimal-access brain ports present the opportunity to overcome such limitations. Here, we present the case of a pediatric patient with a left thalamic/midbrain juvenile pilocytic astrocytoma (JPA). The tumor displaced the corticospinal fibers posteriorly and resulted in hemiparesis. Using whole brain tractography to plan a corridor for the approach, neuronavigation, a tubular retractor and an exoscope for visualization, we obtained gross total resection of the tumor, while minimizing injury to white matter bundles, including the corticospinal fibers. We propose that surgical planning with whole brain tractography is essential for reducing morbidity while accessing deep-lying brain lesions via retractor tubes, by means of sparing critical fiber tracts. PMID:29234572

  5. Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging.

    PubMed

    Liu, Fang; Jang, Hyungseok; Kijowski, Richard; Bradshaw, Tyler; McMillan, Alan B

    2018-02-01

    Purpose To develop and evaluate the feasibility of deep learning approaches for magnetic resonance (MR) imaging-based attenuation correction (AC) (termed deep MRAC) in brain positron emission tomography (PET)/MR imaging. Materials and Methods A PET/MR imaging AC pipeline was built by using a deep learning approach to generate pseudo computed tomographic (CT) scans from MR images. A deep convolutional auto-encoder network was trained to identify air, bone, and soft tissue in volumetric head MR images coregistered to CT data for training. A set of 30 retrospective three-dimensional T1-weighted head images was used to train the model, which was then evaluated in 10 patients by comparing the generated pseudo CT scan to an acquired CT scan. A prospective study was carried out for utilizing simultaneous PET/MR imaging for five subjects by using the proposed approach. Analysis of covariance and paired-sample t tests were used for statistical analysis to compare PET reconstruction error with deep MRAC and two existing MR imaging-based AC approaches with CT-based AC. Results Deep MRAC provides an accurate pseudo CT scan with a mean Dice coefficient of 0.971 ± 0.005 for air, 0.936 ± 0.011 for soft tissue, and 0.803 ± 0.021 for bone. Furthermore, deep MRAC provides good PET results, with average errors of less than 1% in most brain regions. Significantly lower PET reconstruction errors were realized with deep MRAC (-0.7% ± 1.1) compared with Dixon-based soft-tissue and air segmentation (-5.8% ± 3.1) and anatomic CT-based template registration (-4.8% ± 2.2). Conclusion The authors developed an automated approach that allows generation of discrete-valued pseudo CT scans (soft tissue, bone, and air) from a single high-spatial-resolution diagnostic-quality three-dimensional MR image and evaluated it in brain PET/MR imaging. This deep learning approach for MR imaging-based AC provided reduced PET reconstruction error relative to a CT-based standard within the brain compared with current MR imaging-based AC approaches. © RSNA, 2017 Online supplemental material is available for this article.

  6. Neural stimulation for Parkinson's disease: current therapies and future directions.

    PubMed

    Neimat, Joseph S; Hamani, Clement; Lozano, Andres M

    2006-01-01

    Neural stimulation has rapidly become an integral tool in the treatment of Parkinson's disease and other movement disorders. Today it serves as an important adjunct to medical therapy that continues to gain applicability to patients in whom the disease has progressed significantly. Studies have demonstrated efficacy in several deep-brain targets, with prolonged benefit exceeding 5-year follow-up times. Continuing study is teaching us more about the mechanism of deep-brain stimulation effect. New targets, which may treat the disease more successfully, are being examined. In this review, the history of deep-brain stimulation, the rationale for the known targets of stimulation; the clinical evidence demonstrating their benefit and, finally, future perspectives on new treatments that are being investigated and may have an impact on the field are discussed.

  7. Neurophysiological Changes Measured Using Somatosensory Evoked Potentials.

    PubMed

    Macerollo, Antonella; Brown, Matt J N; Kilner, James M; Chen, Robert

    2018-05-01

    Measurements of somatosensory evoked potentials (SEPs), recorded using electroencephalography during different phases of movement, have been fundamental in understanding the neurophysiological changes related to motor control. SEP recordings have also been used to investigate adaptive plasticity changes in somatosensory processing related to active and observational motor learning tasks. Combining noninvasive brain stimulation with SEP recordings and intracranial SEP depth recordings, including recordings from deep brain stimulation electrodes, has been critical in identifying neural areas involved in specific temporal stages of somatosensory processing. Consequently, this fundamental information has furthered our understanding of the maladaptive plasticity changes related to pathophysiology of diseases characterized by abnormal movements, such as Parkinson's disease, dystonia, and functional movement disorders. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  8. Human Brain Modeling with Its Anatomical Structure and Realistic Material Properties for Brain Injury Prediction.

    PubMed

    Atsumi, Noritoshi; Nakahira, Yuko; Tanaka, Eiichi; Iwamoto, Masami

    2018-05-01

    Impairments of executive brain function after traumatic brain injury (TBI) due to head impacts in traffic accidents need to be obviated. Finite element (FE) analyses with a human brain model facilitate understanding of the TBI mechanisms. However, conventional brain FE models do not suitably describe the anatomical structure in the deep brain, which is a critical region for executive brain function, and the material properties of brain parenchyma. In this study, for better TBI prediction, a novel brain FE model with anatomical structure in the deep brain was developed. The developed model comprises a constitutive model of brain parenchyma considering anisotropy and strain rate dependency. Validation was performed against postmortem human subject test data associated with brain deformation during head impact. Brain injury analyses were performed using head acceleration curves obtained from reconstruction analysis of rear-end collision with a human whole-body FE model. The difference in structure was found to affect the regions of strain concentration, while the difference in material model contributed to the peak strain value. The injury prediction result by the proposed model was consistent with the characteristics in the neuroimaging data of TBI patients due to traffic accidents.

  9. Parafascicular thalamic nucleus deep brain stimulation decreases NMDA receptor GluN1 subunit gene expression in the prefrontal cortex.

    PubMed

    Fernández-Cabrera, Mónica R; Selvas, Abraham; Miguéns, Miguel; Higuera-Matas, Alejandro; Vale-Martínez, Anna; Ambrosio, Emilio; Martí-Nicolovius, Margarita; Guillazo-Blanch, Gemma

    2017-04-21

    The rodent parafascicular nucleus (PFn) or the centromedian-parafascicular complex of primates is a posterior intralaminar nucleus of the thalamus related to cortical activation and maintenance of states of consciousness underlying attention, learning and memory. Deep brain stimulation (DBS) of the PFn has been proved to restore arousal and consciousness in humans and to enhance performance in learning and memory tasks in rats. The primary expected effect of PFn DBS is to induce plastic changes in target neurons of brain areas associated with cognitive function. In this study, Wistar rats were stimulated for 20mins in the PFn following a DBS protocol that had previously facilitated memory in rats. NMDA and GABA B receptor binding, and gene expression of the GluN1subunit of the NMDA receptor (NMDAR) were assessed in regions related to cognitive functions, such as the prefrontal cortex and hippocampus. The results showed that PFn DBS induced a decrease in NMDAR GluN1 subunit gene expression in the cingulate and prelimbic cortices, but no significant statistical differences were found in the density of NMDA or GABA B receptors in any of the analyzed regions. Taken together, our findings suggest a possible role for the NMDAR GluN1 subunit in the prefrontal cortex in the procognitive actions of the PFn DBS. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. In vivo three-photon imaging of deep cerebellum

    NASA Astrophysics Data System (ADS)

    Wang, Mengran; Wang, Tianyu; Wu, Chunyan; Li, Bo; Ouzounov, Dimitre G.; Sinefeld, David; Guru, Akash; Nam, Hyung-Song; Capecchi, Mario R.; Warden, Melissa R.; Xu, Chris

    2018-02-01

    We demonstrate three-photon microscopy (3PM) of mouse cerebellum at 1 mm depth by imaging both blood vessels and neurons. We compared 3PM and 2PM in the mouse cerebellum for imaging green (using excitation sources at 1300 nm and 920 nm, respectively) and red fluorescence (using excitation sources at 1680 nm and 1064 nm, respectively). 3PM enabled deeper imaging than 2PM because the use of longer excitation wavelength reduces the scattering in biological tissue and the higher order nonlinear excitation provides better 3D localization. To illustrate these two advantages quantitatively, we measured the signal decay as well as the signal-to-background ratio (SBR) as a function of depth. We performed 2-photon imaging from the brain surface all the way down to the area where the SBR reaches 1, while at the same depth, 3PM still has SBR above 30. The segmented decay curve shows that the mouse cerebellum has different effective attenuation lengths at different depths, indicating heterogeneous tissue property for this brain region. We compared the third harmonic generation (THG) signal, which is used to visualize myelinated fibers, with the decay curve. We found that the regions with shorter effective attenuation lengths correspond to the regions with more fibers. Our results indicate that the widespread, non-uniformly distributed myelinated fibers adds heterogeneity to mouse cerebellum, which poses additional challenges in deep imaging of this brain region.

  11. Post-Traumatic Tremor and Thalamic Deep Brain Stimulation: Evidence for Use of Diffusion Tensor Imaging.

    PubMed

    Boccard, Sandra G J; Rebelo, Pedro; Cheeran, Binith; Green, Alexander; FitzGerald, James J; Aziz, Tipu Z

    2016-12-01

    Deep brain stimulation (DBS) is a well-established treatment to reduce tremor, notably in Parkinson disease. DBS may also be effective in post-traumatic tremor, one of the most common movement disorders caused by head injury. However, the cohorts of patients often have multiple lesions that may impact the outcome depending on which fiber tracts are affected. A 20-year-old man presented after road traffic accident with severe closed head injury and polytrauma. Computed tomography scan showed left frontal and basal ganglia hemorrhagic contusions and intraventricular hemorrhage. A disabling tremor evolved in step with motor recovery. Despite high-intensity signals in the intended thalamic target, a visual analysis of the preoperative diffusion tensor imaging revealed preservation of connectivity of the intended target, ventralis oralis posterior thalamic nucleus (VOP). This was confirmed by the postoperative tractography study presented here. DBS of the VOP/zona incerta was performed. Six months postimplant, marked improvement of action (postural, kinetic, and intention) tremor was achieved. We demonstrated a strong connectivity between the VOP and the superior frontal gyrus containing the premotor cortex and other central brain areas responsible for movement control. In spite of an existing lesion in the target, the preservation of these tracts may be relevant to the improvement of the patient's symptoms by DBS. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Brain MRI analysis for Alzheimer's disease diagnosis using an ensemble system of deep convolutional neural networks.

    PubMed

    Islam, Jyoti; Zhang, Yanqing

    2018-05-31

    Alzheimer's disease is an incurable, progressive neurological brain disorder. Earlier detection of Alzheimer's disease can help with proper treatment and prevent brain tissue damage. Several statistical and machine learning models have been exploited by researchers for Alzheimer's disease diagnosis. Analyzing magnetic resonance imaging (MRI) is a common practice for Alzheimer's disease diagnosis in clinical research. Detection of Alzheimer's disease is exacting due to the similarity in Alzheimer's disease MRI data and standard healthy MRI data of older people. Recently, advanced deep learning techniques have successfully demonstrated human-level performance in numerous fields including medical image analysis. We propose a deep convolutional neural network for Alzheimer's disease diagnosis using brain MRI data analysis. While most of the existing approaches perform binary classification, our model can identify different stages of Alzheimer's disease and obtains superior performance for early-stage diagnosis. We conducted ample experiments to demonstrate that our proposed model outperformed comparative baselines on the Open Access Series of Imaging Studies dataset.

  13. [A case of glioblastoma multiforme which indicated the early stage on brain MRI].

    PubMed

    Ono, K; Tohma, Y; Yoshida, M; Takamori, M

    2000-04-01

    A 57-year-old male was urgently carried to our hospital because of sudden loss of consciousness, lasting about 10 minutes. He had resumed consciousness before he arrived at our hospital. Neurologically, he had mild muscle weakness of the right arm. Deep tendon reflexes in the right upper extremity were reduced. In high level functions, speech disturbance, dysgraphia (disturbed ability to write Hiragana), and constructive apraxia were noted. A brain MRI upon admission showed a poorly demarcated, high signal intensity area in the cortical and subcortical layers of the left temporal and parietal lobes. This was visible on T 2 weighted images(T 2 WI), although no abnormalities were visible on T 1 weighted images(T 1 WI). No contrast enhancement was effected by Gd-DTPA. The patient was therefore suspected of having a tumor or degenerative disease and was monitored closely. About 4 months later after onset, his symptoms became aggravated, and brain MRI disclosed a marked low signal intensity area on T 1 WI and a heterogeneous high signal intensity area on T 2 WI. The abnormal signal intensity area was surrounded by extensive edema and mass effect. Ring-shaped, irregular, contrast enhanced areas were also visible. Cerebral angiography revealed a poorly demarcated tumor stain in the area supplied by the middle cerebral artery. The tumor was removed surgically and was histopathologically rated as glioblastoma multiforme(GBM). Because this case represents a valuable example of early stage of GBM, it will be discussed in this paper, along with differential diagnoses.

  14. Effects of Medication and Subthalamic Nucleus Deep Brain Stimulation on Tongue Movements in Speakers with Parkinson's Disease Using Electropalatography: A Pilot Study

    ERIC Educational Resources Information Center

    Hartinger, Mariam; Tripoliti, Elina; Hardcastle, William J.; Limousin, Patricia

    2011-01-01

    Parkinson's disease (PD) affects speech in the majority of patients. Subthalamic nucleus deep brain stimulation (STN-DBS) is particularly effective in reducing tremor and rigidity. However, its effect on speech is variable. The aim of this pilot study was to quantify the effects of bilateral STN-DBS and medication on articulation, using…

  15. Deep Brain Stimulation of the Subthalamic Nucleus Parameter Optimization for Vowel Acoustics and Speech Intelligibility in Parkinson's Disease

    ERIC Educational Resources Information Center

    Knowles, Thea; Adams, Scott; Abeyesekera, Anita; Mancinelli, Cynthia; Gilmore, Greydon; Jog, Mandar

    2018-01-01

    Purpose: The settings of 3 electrical stimulation parameters were adjusted in 12 speakers with Parkinson's disease (PD) with deep brain stimulation of the subthalamic nucleus (STN-DBS) to examine their effects on vowel acoustics and speech intelligibility. Method: Participants were tested under permutations of low, mid, and high STN-DBS frequency,…

  16. Pitch Variability in Patients with Parkinson's Disease: Effects of Deep Brain Stimulation of Caudal Zona Incerta and Subthalamic Nucleus

    ERIC Educational Resources Information Center

    Karlsson, Fredrik; Olofsson, Katarina; Blomstedt, Patric; Linder, Jan; van Doorn, Jan

    2013-01-01

    Purpose: The purpose of the present study was to examine the effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN) and the caudal zona incerta (cZi) pitch characteristics of connected speech in patients with Parkinson's disease (PD). Method: The authors evaluated 16 patients preoperatively and 12 months after DBS surgery. Eight…

  17. Articulatory Closure Proficiency in Patients with Parkinson's Disease Following Deep Brain Stimulation of the Subthalamic Nucleus and Caudal Zona Incerta

    ERIC Educational Resources Information Center

    Karlsson, Fredrik; Olofsson, Katarina; Blomstedt, Patric; Linder, Jan; Nordh, Erik; van Doorn, Jan

    2014-01-01

    Purpose: The present study aimed at comparing the effects of deep brain stimulation (DBS) treatment of the subthalamic nucleus (STN) and the caudal zona incerta (cZi) on the proficiency in achieving oral closure and release during plosive production of people with Parkinson's disease. Method: Nineteen patients participated preoperatively and…

  18. Connectivity Predicts Deep Brain Stimulation Outcome in Parkinson Disease

    PubMed Central

    Horn, Andreas; Reich, Martin; Vorwerk, Johannes; Li, Ningfei; Wenzel, Gregor; Fang, Qianqian; Schmitz-Hübsch, Tanja; Nickl, Robert; Kupsch, Andreas; Volkmann, Jens; Kühn, Andrea A.; Fox, Michael D.

    2018-01-01

    Objective The benefit of deep brain stimulation (DBS) for Parkinson disease (PD) may depend on connectivity between the stimulation site and other brain regions, but which regions and whether connectivity can predict outcome in patients remain unknown. Here, we identify the structural and functional connectivity profile of effective DBS to the subthalamic nucleus (STN) and test its ability to predict outcome in an independent cohort. Methods A training dataset of 51 PD patients with STN DBS was combined with publicly available human connectome data (diffusion tractography and resting state functional connectivity) to identify connections reliably associated with clinical improvement (motor score of the Unified Parkinson Disease Rating Scale [UPDRS]). This connectivity profile was then used to predict outcome in an independent cohort of 44 patients from a different center. Results In the training dataset, connectivity between the DBS electrode and a distributed network of brain regions correlated with clinical response including structural connectivity to supplementary motor area and functional anticorrelation to primary motor cortex (p<0.001). This same connectivity profile predicted response in an independent patient cohort (p<0.01). Structural and functional connectivity were independent predictors of clinical improvement (p<0.001) and estimated response in individual patients with an average error of 15% UPDRS improvement. Results were similar using connectome data from normal subjects or a connectome age, sex, and disease matched to our DBS patients. Interpretation Effective STN DBS for PD is associated with a specific connectivity profile that can predict clinical outcome across independent cohorts. This prediction does not require specialized imaging in PD patients themselves. PMID:28586141

  19. Characterization of oscillatory changes in hippocampus and amygdala after deep brain stimulation of the infralimbic prefrontal cortex.

    PubMed

    Cervera-Ferri, Ana; Teruel-Martí, Vicent; Barceló-Molina, Moises; Martínez-Ricós, Joana; Luque-García, Aina; Martínez-Bellver, Sergio; Adell, Albert

    2016-07-01

    Deep brain stimulation (DBS) is a new investigational therapy that has generated positive results in refractory depression. Although the neurochemical and behavioral effects of DBS have been examined, less attention has been paid to the influence of DBS on the network dynamics between different brain areas, which could contribute to its therapeutic effects. Herein, we set out to identify the effects of 1 h DBS in the infralimbic cortex (IL) on the oscillatory network dynamics between hippocampus and basolateral amygdala (BLA), two regions implicated in depression and its treatment. Urethane-anesthetized rats with bilaterally implanted electrodes in the IL were exposed to 1 h constant stimulation of 130 Hz of frequency, 60 μA of constant current intensity and biphasic pulse width of 80 μsec. After a period of baseline recording, local field potentials (LFP) were recorded with formvar-insulated stainless steel electrodes. DBS of the IL increased the power of slow wave (SW, <1.5 Hz) and theta (3-12 Hz) frequencies in the hippocampus and BLA Furthermore, IL DBS caused a precise coupling in different frequency bands between both brain structures. The increases in SW band synchronization in hippocampus and BLA after DBS suggest that these changes may be important for the improvement of depressive behavior. In addition, the augmentation in theta synchrony might contribute to improvement in emotional and cognitive processes. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  20. Longitudinal relaxographic imaging of white matter hyperintensities in the elderly

    PubMed Central

    2014-01-01

    Background Incidental white matter hyperintensities (WMHs) are common findings on T2-weighted magnetic resonance images of the aged brain and have been associated with cognitive decline. While a variety of pathogenic mechanisms have been proposed, the origin of WMHs and the extent to which lesions in the deep and periventricular white matter reflect distinct etiologies remains unclear. Our aim was to quantify the fractional blood volume (vb) of small WMHs in vivo using a novel magnetic resonance imaging (MRI) approach and examine the contribution of blood–brain barrier disturbances to WMH formation in the deep and periventricular white matter. Methods Twenty-three elderly volunteers (aged 59–82 years) underwent 7 Tesla relaxographic imaging and fluid-attenuated inversion recovery (FLAIR) MRI. Maps of longitudinal relaxation rate constant (R1) were prepared before contrast reagent (CR) injection and throughout CR washout. Voxelwise estimates of vb were determined by fitting temporal changes in R1 values to a two-site model that incorporates the effects of transendothelial water exchange. Average vb values in deep and periventricular WMHs were determined after semi-automated segmentation of FLAIR images. Ventricular permeability was estimated from the change in CSF R1 values during CR washout. Results In the absence of CR, the total water fraction in both deep and periventricular WMHs was increased compared to normal appearing white matter (NAWM). The vb of deep WMHs was 1.8 ± 0.6 mL/100 g and was significantly reduced compared to NAWM (2.4 ± 0.8 mL/100 g). In contrast, the vb of periventricular WMHs was unchanged compared to NAWM, decreased with ventricular volume and showed a positive association with ventricular permeability. Conclusions Hyperintensities in the deep WM appear to be driven by vascular compromise, while those in the periventricular WM are most likely the result of a compromised ependyma in which the small vessels remain relatively intact. These findings support varying contributions of blood–brain barrier and brain-CSF interface disturbances in the pathophysiology of deep and periventricular WMHs in the aged human brain. PMID:25379172

  1. Internal benchmarking of a human blood-brain barrier cell model for screening of nanoparticle uptake and transcytosis.

    PubMed

    Ragnaill, Michelle Nic; Brown, Meredith; Ye, Dong; Bramini, Mattia; Callanan, Sean; Lynch, Iseult; Dawson, Kenneth A

    2011-04-01

    Transport of drugs across the blood-brain barrier, which protects the brain from harmful agents, is considered the holy grail of targeted delivery, due to the extreme effectiveness of this barrier at preventing passage of non-essential molecules through to the brain. This has caused severe limitations for therapeutics for many brain-associated diseases, such as HIV and neurodegenerative diseases. Nanomaterials, as a result of their small size (in the order of many protein-lipid clusters routinely transported by cells) and their large surface area (which acts as a scaffold for proteins thereby rendering nanoparticles as biological entities) offer great promise for neuro-therapeutics. However, in parallel with developing neuro-therapeutic applications based on nanotechnology, it is essential to ensure their safety and long-term consequences upon reaching the brain. One approach to determining safe application of nanomaterials in biology is to obtain a deep mechanistic understanding of the interactions between nanomaterials and living systems (bionanointeractions). To this end, we report here on the establishment and internal round robin validation of a human cell model of the blood-brain barrier for use as a tool for screening nanoparticles interactions, and assessing the critical nanoscale parameters that determine transcytosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Face-Name Association Learning and Brain Structural Substrates in Alcoholism

    PubMed Central

    Pitel, Anne-Lise; Chanraud, Sandra; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V.

    2011-01-01

    Background Associative learning is required for face-name association and is impaired in alcoholism, but the cognitive processes and brain structural components underlying this deficit remain unclear. It is also unknown whether prompting alcoholics to implement a deep level of processing during face-name encoding would enhance performance. Methods Abstinent alcoholics and controls performed a levels-of-processing face-name learning task. Participants indicated whether the face was that of an honest person (deep encoding) or that of a man (shallow encoding). Retrieval was examined using an associative (face-name) recognition task and a single-item (face or name only) recognition task. Participants also underwent a 3T structural MRI. Results Compared with controls, alcoholics had poorer associative and single-item recognition, each impaired to the same extent. Level of processing at encoding had little effect on recognition performance but affected reaction time. Correlations with brain volumes were generally modest and based primarily on reaction time in alcoholics, where the deeper the processing at encoding, the more restricted the correlations with brain volumes. In alcoholics, longer control task reaction times correlated modestly with volumes across several anterior to posterior brain regions; shallow encoding correlated with calcarine and striatal volumes; deep encoding correlated with precuneus and parietal volumes; associative recognition RT correlated with cerebellar volumes. In controls, poorer associative recognition with deep encoding correlated significantly with smaller volumes of frontal and striatal structures. Conclusions Despite prompting, alcoholics did not take advantage of encoding memoranda at a deep level to enhance face-name recognition accuracy. Nonetheless, conditions of deeper encoding resulted in faster reaction times and more specific relations with regional brain volumes than did shallow encoding. The normal relation between associative recognition and corticostriatal volumes was not present in alcoholics. Rather, their speeded reaction time occurred at the expense of accuracy and was related most robustly to cerebellar volumes. PMID:22509954

  3. Face-name association learning and brain structural substrates in alcoholism.

    PubMed

    Pitel, Anne-Lise; Chanraud, Sandra; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V

    2012-07-01

    Associative learning is required for face-name association and is impaired in alcoholism, but the cognitive processes and brain structural components underlying this deficit remain unclear. It is also unknown whether prompting alcoholics to implement a deep level of processing during face-name encoding would enhance performance. Abstinent alcoholics and controls performed a levels-of-processing face-name learning task. Participants indicated whether the face was that of an honest person (deep encoding) or that of a man (shallow encoding). Retrieval was examined using an associative (face-name) recognition task and a single-item (face or name only) recognition task. Participants also underwent 3T structural MRI. Compared with controls, alcoholics had poorer associative and single-item learning and performed at similar levels. Level of processing at encoding had little effect on recognition performance but affected reaction time (RT). Correlations with brain volumes were generally modest and based primarily on RT in alcoholics, where the deeper the processing at encoding, the more restricted the correlations with brain volumes. In alcoholics, longer control task RTs correlated modestly with smaller tissue volumes across several anterior to posterior brain regions; shallow encoding correlated with calcarine and striatal volumes; deep encoding correlated with precuneus and parietal volumes; and associative recognition RT correlated with cerebellar volumes. In controls, poorer associative recognition with deep encoding correlated significantly with smaller volumes of frontal and striatal structures. Despite prompting, alcoholics did not take advantage of encoding memoranda at a deep level to enhance face-name recognition accuracy. Nonetheless, conditions of deeper encoding resulted in faster RTs and more specific relations with regional brain volumes than did shallow encoding. The normal relation between associative recognition and corticostriatal volumes was not present in alcoholics. Rather, their speeded RTs occurred at the expense of accuracy and were related most robustly to cerebellar volumes. Copyright © 2012 by the Research Society on Alcoholism.

  4. Transcranial direct current stimulation in obsessive-compulsive disorder: emerging clinical evidence and considerations for optimal montage of electrodes.

    PubMed

    Senço, Natasha M; Huang, Yu; D'Urso, Giordano; Parra, Lucas C; Bikson, Marom; Mantovani, Antonio; Shavitt, Roseli G; Hoexter, Marcelo Q; Miguel, Eurípedes C; Brunoni, André R

    2015-07-01

    Neuromodulation techniques for obsessive-compulsive disorder (OCD) treatment have expanded with greater understanding of the brain circuits involved. Transcranial direct current stimulation (tDCS) might be a potential new treatment for OCD, although the optimal montage is unclear. To perform a systematic review on meta-analyses of repetitive transcranianal magnetic stimulation (rTMS) and deep brain stimulation (DBS) trials for OCD, aiming to identify brain stimulation targets for future tDCS trials and to support the empirical evidence with computer head modeling analysis. Systematic reviews of rTMS and DBS trials on OCD in Pubmed/MEDLINE were searched. For the tDCS computational analysis, we employed head models with the goal of optimally targeting current delivery to structures of interest. Only three references matched our eligibility criteria. We simulated four different electrodes montages and analyzed current direction and intensity. Although DBS, rTMS and tDCS are not directly comparable and our theoretical model, based on DBS and rTMS targets, needs empirical validation, we found that the tDCS montage with the cathode over the pre-supplementary motor area and extra-cephalic anode seems to activate most of the areas related to OCD.

  5. Central nervous system vasculitis after starting methimazole in a woman with Graves' disease.

    PubMed

    Tripodi, Pier Francesco; Ruggeri, Rosaria M; Campennì, Alfredo; Cucinotta, Mariapaola; Mirto, Angela; Lo Gullo, Renato; Baldari, Sergio; Trimarchi, Francesco; Cucinotta, Domenico; Russo, Giuseppina T

    2008-09-01

    Graves' disease (GD), a prototypical autoimmune disorder, is associated with other autoimmune diseases, including vasculitis. Antithyroid drugs, despite their postulated immunosuppressive effects, may cause several autoimmune disorders. Here we describe the first patient with central nervous system (CNS) vasculitis that developed shortly after the start of methimazole (MMI) treatment for GD. CNS vasculitis was suspected on the basis of the clinical features and neurologic examination, showing a reinforcement of deep reflexes, especially of the left knee and Achilles reflexes. The diagnosis was confirmed by a brain magnetic resonance imaging (MRI), which showed some hyperintensive spots in the subcortical substantia alba and in the parietal area bilaterally, and by a single-photon emission computed tomography (SPECT) imaging, which showed a nonhomogenous distribution of the blood flow in the brain, with a reduced perfusion on the left side of the frontotemporal and parietal regions, and on the right side of the frontotemporal area. MMI was stopped before total thyroidectomy, and symptoms resolved in the next 5 weeks. Six months after MMI was stopped, the brain MRI and SPECT had become normal. To our knowledge, this is the first report of CNS vasculitis related to MMI therapy.

  6. [Deep brain stimulation in movement disorders: evidence and therapy standards].

    PubMed

    Parpaley, Yaroslav; Skodda, Sabine

    2017-07-01

    The deep brain stimulation (DBS) in movement disorders is well established and in many aspects evidence-based procedure. The treatment indications are very heterogeneous and very specific in their course and therapy. The deep brain stimulation plays very important, but usually not the central role in this conditions. The success in the application of DBS is essentially associated with the correct, appropriate and timely indication of the therapy in the course of these diseases. Thanks to the good standardization of the DBS procedure and sufficient published data, the recommendations for indication, diagnosis and operative procedures can be generated. The following article attempts to summarize the most important decision-making criteria and current therapy standards in this fairly comprehensive subject and to present them in close proximity to practice. Georg Thieme Verlag KG Stuttgart · New York.

  7. Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation.

    PubMed

    Lu, Mai; Ueno, Shoogo

    2017-01-01

    Stimulation of deeper brain structures by transcranial magnetic stimulation (TMS) plays a role in the study of reward and motivation mechanisms, which may be beneficial in the treatment of several neurological and psychiatric disorders. However, electric field distributions induced in the brain by deep transcranial magnetic stimulation (dTMS) are still unknown. In this paper, the double cone coil, H-coil and Halo-circular assembly (HCA) coil which have been proposed for dTMS have been numerically designed. The distributions of magnetic flux density, induced electric field in an anatomically based realistic head model by applying the dTMS coils were numerically calculated by the impedance method. Results were compared with that of standard figure-of-eight (Fo8) coil. Simulation results show that double cone, H- and HCA coils have significantly deep field penetration compared to the conventional Fo8 coil, at the expense of induced higher and wider spread electrical fields in superficial cortical regions. Double cone and HCA coils have better ability to stimulate deep brain subregions compared to that of the H-coil. In the mean time, both double cone and HCA coils increase risk for optical nerve excitation. Our results suggest although the dTMS coils offer new tool with potential for both research and clinical applications for psychiatric and neurological disorders associated with dysfunctions of deep brain regions, the selection of the most suitable coil settings for a specific clinical application should be based on a balanced evaluation between stimulation depth and focality.

  8. Optimization of immunolabeling and clearing techniques for indelibly-labeled memory traces.

    PubMed

    Pavlova, Ina P; Shipley, Shannon C; Lanio, Marcos; Hen, René; Denny, Christine A

    2018-04-16

    Recent genetic tools have allowed researchers to visualize and manipulate memory traces (i.e. engrams) in small brain regions. However, the ultimate goal is to visualize memory traces across the entire brain in order to better understand how memories are stored in neural networks and how multiple memories may coexist. Intact tissue clearing and imaging is a new and rapidly growing area of focus that could accomplish this task. Here, we utilized the leading protocols for whole-brain clearing and applied them to the ArcCreER T2 mice, a murine line that allows for the indelible labeling of memory traces. We found that CLARITY and PACT greatly distorted the tissue, and iDISCO quenched enhanced yellow fluorescent protein (EYFP) fluorescence and hindered immunolabeling. Alternative clearing solutions, such as tert-Butanol, circumvented these harmful effects, but still did not permit whole-brain immunolabeling. CUBIC and CUBIC with Reagent 1A produced improved antibody penetration and preserved EYFP fluorescence, but also did not allow for whole-brain memory trace visualization. Modification of CUBIC with Reagent-1A resulted in EYFP fluorescence preservation and immunolabeling of the immediate early gene (IEG) Arc in deep brain areas; however, optimized memory trace labeling still required tissue slicing into mm-thick tissue sections. In summary, our data show that CUBIC with Reagent-1A* is the ideal method for reproducible clearing and immunolabeling for the visualization of memory traces in mm-thick tissue sections from ArcCreER T2 mice. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  9. Characterizing Deep Brain Stimulation effects in computationally efficient neural network models.

    PubMed

    Latteri, Alberta; Arena, Paolo; Mazzone, Paolo

    2011-04-15

    Recent studies on the medical treatment of Parkinson's disease (PD) led to the introduction of the so called Deep Brain Stimulation (DBS) technique. This particular therapy allows to contrast actively the pathological activity of various Deep Brain structures, responsible for the well known PD symptoms. This technique, frequently joined to dopaminergic drugs administration, replaces the surgical interventions implemented to contrast the activity of specific brain nuclei, called Basal Ganglia (BG). This clinical protocol gave the possibility to analyse and inspect signals measured from the electrodes implanted into the deep brain regions. The analysis of these signals led to the possibility to study the PD as a specific case of dynamical synchronization in biological neural networks, with the advantage to apply the theoretical analysis developed in such scientific field to find efficient treatments to face with this important disease. Experimental results in fact show that the PD neurological diseases are characterized by a pathological signal synchronization in BG. Parkinsonian tremor, for example, is ascribed to be caused by neuron populations of the Thalamic and Striatal structures that undergo an abnormal synchronization. On the contrary, in normal conditions, the activity of the same neuron populations do not appear to be correlated and synchronized. To study in details the effect of the stimulation signal on a pathological neural medium, efficient models of these neural structures were built, which are able to show, without any external input, the intrinsic properties of a pathological neural tissue, mimicking the BG synchronized dynamics.We start considering a model already introduced in the literature to investigate the effects of electrical stimulation on pathologically synchronized clusters of neurons. This model used Morris Lecar type neurons. This neuron model, although having a high level of biological plausibility, requires a large computational effort to simulate large scale networks. For this reason we considered a reduced order model, the Izhikevich one, which is computationally much lighter. The comparison between neural lattices built using both neuron models provided comparable results, both without traditional stimulation and in presence of all the stimulation protocols. This was a first result toward the study and simulation of the large scale neural networks involved in pathological dynamics.Using the reduced order model an inspection on the activity of two neural lattices was also carried out at the aim to analyze how the stimulation in one area could affect the dynamics in another area, like the usual medical treatment protocols require.The study of population dynamics that was carried out allowed us to investigate, through simulations, the positive effects of the stimulation signals in terms of desynchronization of the neural dynamics. The results obtained constitute a significant added value to the analysis of synchronization and desynchronization effects due to neural stimulation. This work gives the opportunity to more efficiently study the effect of stimulation in large scale yet computationally efficient neural networks. Results were compared both with the other mathematical models, using Morris Lecar and Izhikevich neurons, and with simulated Local Field Potentials (LFP).

  10. Deep brain stimulation in the bed nucleus of the stria terminalis and medial forebrain bundle in a patient with major depressive disorder and anorexia nervosa.

    PubMed

    Blomstedt, Patric; Naesström, Matilda; Bodlund, Owe

    2017-05-01

    Deep brain stimulation (DBS) may be considered in severe cases of therapy-refractory major depressive disorder (MDD). However, DBS for MDD is still an experimental therapy. Therefore, it should only be administered in clinical studies driven by multidisciplinary teams, including surgeons with substantial experience of DBS in the treatment of other conditions.

  11. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution.

    PubMed

    Smaers, J B; Soligo, C

    2013-05-22

    Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species, (ii) which mosaic changes contribute most to explaining diversity, and (iii) what the temporal origin, rates and processes are that underlie evolutionary shifts in mosaic reorganization for individual branches of the primate tree of life. We address these questions by combining novel comparative methods that allow assessing the temporal origin, rate and process of evolutionary changes on individual branches of the tree of life, with newly available data on volumes of key brain structures (prefrontal cortex, frontal motor areas and cerebrocerebellum) for a sample of 17 species (including humans). We identify patterns of mosaic change in brain evolution that mirror brain systems previously identified by electrophysiological and anatomical tract-tracing studies in non-human primates and functional connectivity MRI studies in humans. Across more than 40 Myr of anthropoid primate evolution, mosaic changes contribute more to explaining neural diversity than changes in relative brain size, and different mosaic patterns are differentially selected for when brains increase or decrease in size. We identify lineage-specific evolutionary specializations for all branches of the tree of life covered by our sample and demonstrate deep evolutionary roots for mosaic patterns associated with motor control and learning.

  12. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution

    PubMed Central

    Smaers, J. B.; Soligo, C.

    2013-01-01

    Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species, (ii) which mosaic changes contribute most to explaining diversity, and (iii) what the temporal origin, rates and processes are that underlie evolutionary shifts in mosaic reorganization for individual branches of the primate tree of life. We address these questions by combining novel comparative methods that allow assessing the temporal origin, rate and process of evolutionary changes on individual branches of the tree of life, with newly available data on volumes of key brain structures (prefrontal cortex, frontal motor areas and cerebrocerebellum) for a sample of 17 species (including humans). We identify patterns of mosaic change in brain evolution that mirror brain systems previously identified by electrophysiological and anatomical tract-tracing studies in non-human primates and functional connectivity MRI studies in humans. Across more than 40 Myr of anthropoid primate evolution, mosaic changes contribute more to explaining neural diversity than changes in relative brain size, and different mosaic patterns are differentially selected for when brains increase or decrease in size. We identify lineage-specific evolutionary specializations for all branches of the tree of life covered by our sample and demonstrate deep evolutionary roots for mosaic patterns associated with motor control and learning. PMID:23536600

  13. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy.

    PubMed

    Wachinger, Christian; Reuter, Martin; Klein, Tassilo

    2018-04-15

    We introduce DeepNAT, a 3D Deep convolutional neural network for the automatic segmentation of NeuroAnaTomy in T1-weighted magnetic resonance images. DeepNAT is an end-to-end learning-based approach to brain segmentation that jointly learns an abstract feature representation and a multi-class classification. We propose a 3D patch-based approach, where we do not only predict the center voxel of the patch but also neighbors, which is formulated as multi-task learning. To address a class imbalance problem, we arrange two networks hierarchically, where the first one separates foreground from background, and the second one identifies 25 brain structures on the foreground. Since patches lack spatial context, we augment them with coordinates. To this end, we introduce a novel intrinsic parameterization of the brain volume, formed by eigenfunctions of the Laplace-Beltrami operator. As network architecture, we use three convolutional layers with pooling, batch normalization, and non-linearities, followed by fully connected layers with dropout. The final segmentation is inferred from the probabilistic output of the network with a 3D fully connected conditional random field, which ensures label agreement between close voxels. The roughly 2.7million parameters in the network are learned with stochastic gradient descent. Our results show that DeepNAT compares favorably to state-of-the-art methods. Finally, the purely learning-based method may have a high potential for the adaptation to young, old, or diseased brains by fine-tuning the pre-trained network with a small training sample on the target application, where the availability of larger datasets with manual annotations may boost the overall segmentation accuracy in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Reliability of temperatures measured at standard monitoring sites as an index of brain temperature during deep hypothermic cardiopulmonary bypass conducted for thoracic aortic reconstruction.

    PubMed

    Akata, Takashi; Setoguchi, Hidekazu; Shirozu, Kazuhiro; Yoshino, Jun

    2007-06-01

    It is essential to estimate the brain temperature of patients during deliberate deep hypothermia. Using jugular bulb temperature as a standard for brain temperature, we evaluated the accuracy and precision of 5 standard temperature monitoring sites (ie, pulmonary artery, nasopharynx, forehead deep-tissue, urinary bladder, and fingertip skin-surface tissue) during deep hypothermic cardiopulmonary bypass conducted for thoracic aortic reconstruction. In 20 adult patients with thoracic aortic aneurysms, the 5 temperature monitoring sites were recorded every 1 minute during deep hypothermic (<20 degrees C) cardiopulmonary bypass. The accuracy was evaluated by the difference from jugular bulb temperature, and the precision was evaluated by its standard deviation, as well as by the correlation with jugular bulb temperature. Pulmonary artery temperature and jugular bulb temperature began to change immediately after the start of cooling or rewarming, closely matching each other, and the other temperatures lagged behind these two temperatures. During either situation, the accuracy of pulmonary artery temperature measurement (0.3 degrees C-0.5 degrees C) was much superior to the other measurements, and its precision (standard deviation of the difference from jugular bulb temperature = 1.5 degrees C-1.8 degrees C; correlation coefficient = 0.94-0.95) was also best among the measurements, with its rank order being pulmonary artery > or = nasopharynx > forehead > bladder > fingertip. However, the accuracy and precision of pulmonary artery temperature measurement was significantly impaired during and for several minutes after infusion of cold cardioplegic solution. Pulmonary artery temperature measurement is recommended to estimate brain temperature during deep hypothermic cardiopulmonary bypass, even if it is conducted with the sternum opened; however, caution needs to be exercised in interpreting its measurements during periods of the cardioplegic solution infusion.

  15. Hyperhidrosis associated with subthalamic deep brain stimulation in Parkinson's disease: Insights into central autonomic functional anatomy.

    PubMed

    Ramirez-Zamora, Adolfo; Smith, Heather; Youn, Youngwon; Durphy, Jennifer; Shin, Damian S; Pilitsis, Julie G

    2016-07-15

    There is limited evidence regarding the precise location and connections of thermoregulatory centers in humans. We present two patients managed with subthalamic nucleus (STN) Deep Brain Stimulation (DBS) for motor fluctuations in PD that developed reproducible hyperhidrosis with high frequency DBS. To describe the clinical features and analyze the location of the electrodes leading to autonomic activation in both patients. We retrospectively assessed the anatomical localization, electrode programming settings and effects of unilateral STN DBS leading to hyperhidrosis. Unilateral stimulation of anterior and medially located contacts within the STN and zona incerta (Zi) caused bilateral, consistent, reproducible, and reversible sweating in our patients. Adequate control of motor symptoms without autonomic side effects was accomplished with alternative programming settings. Stimulation of the medial Zi and medial and anterior STN causes hyperhidrosis in a pattern similar to that described in primates and rats. We speculate that central autonomic fibers originating in the lateral hypothalamic area project laterally to the ventral/medial Zi and then to brainstem nuclei following an medial and posterior trajectory in relationship to STN. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Deep brain stimulation of the ventral striatum enhances extinction of conditioned fear

    PubMed Central

    Rodriguez-Romaguera, Jose; Do Monte, Fabricio H. M.; Quirk, Gregory J.

    2012-01-01

    Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) reduces symptoms of intractable obsessive-compulsive disorder (OCD), but the mechanism of action is unknown. OCD is characterized by avoidance behaviors that fail to extinguish, and DBS could act, in part, by facilitating extinction of fear. We investigated this possibility by using auditory fear conditioning in rats, for which the circuits of fear extinction are well characterized. We found that DBS of the VS (the VC/VS homolog in rats) during extinction training reduced fear expression and strengthened extinction memory. Facilitation of extinction was observed for a specific zone of dorsomedial VS, just above the anterior commissure; stimulation of more ventrolateral sites in VS impaired extinction. DBS effects could not be obtained with pharmacological inactivation of either dorsomedial VS or ventrolateral VS, suggesting an extrastriatal mechanism. Accordingly, DBS of dorsomedial VS (but not ventrolateral VS) increased expression of a plasticity marker in the prelimbic and infralimbic prefrontal cortices, the orbitofrontal cortex, the amygdala central nucleus (lateral division), and intercalated cells, areas known to learn and express extinction. Facilitation of fear extinction suggests that, in accord with clinical observations, DBS could augment the effectiveness of cognitive behavioral therapies for OCD. PMID:22586125

  17. Complex analysis of neuronal spike trains of deep brain nuclei in patients with Parkinson's disease.

    PubMed

    Chan, Hsiao-Lung; Lin, Ming-An; Lee, Shih-Tseng; Tsai, Yu-Tai; Chao, Pei-Kuang; Wu, Tony

    2010-04-05

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been used to alleviate symptoms of Parkinson's disease. During image-guided stereotactic surgery, signals from microelectrode recordings are used to distinguish the STN from adjacent areas, particularly from the substantia nigra pars reticulata (SNr). Neuronal firing patterns based on interspike intervals (ISI) are commonly used. In the present study, arrival time-based measures, including Lempel-Ziv complexity and deviation-from-Poisson index were employed. Our results revealed significant differences in the arrival time-based measures among non-motor STN, motor STN and SNr and better discrimination than the ISI-based measures. The larger deviations from the Poisson process in the SNr implied less complex dynamics of neuronal discharges. If spike classification was not used, the arrival time-based measures still produced statistical differences among STN subdivisions and SNr, but the ISI-based measures only showed significant differences between motor and non-motor STN. Arrival time-based measures are less affected by spike misclassifications, and may be used as an adjunct for the identification of the STN during microelectrode targeting. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Voxel-based measurement sensitivity of spatially resolved near-infrared spectroscopy in layered tissues

    NASA Astrophysics Data System (ADS)

    Niwayama, Masatsugu

    2018-03-01

    We quantitatively investigated the measurement sensitivity of spatially resolved spectroscopy (SRS) across six tissue models: cerebral tissue, a small animal brain, the forehead of a fetus, an adult brain, forearm muscle, and thigh muscle. The optical path length in the voxel of the model was analyzed using Monte Carlo simulations. It was found that the measurement sensitivity can be represented as the product of the change in the absorption coefficient and the difference in optical path length in two states with different source-detector distances. The results clarified the sensitivity ratio between the surface layer and the deep layer at each source-detector distance for each model and identified changes in the deep measurement area when one of the detectors was close to the light source. A comparison was made with the results from continuous-wave spectroscopy. The study also identified measurement challenges that arise when the surface layer is inhomogeneous. Findings on the measurement sensitivity of SRS at each voxel and in each layer can support the correct interpretation of measured values when near-infrared oximetry or functional near-infrared spectroscopy is used to investigate different tissue structures.

  19. Normalizing motor-related brain activity: subthalamic nucleus stimulation in Parkinson disease.

    PubMed

    Grafton, S T; Turner, R S; Desmurget, M; Bakay, R; Delong, M; Vitek, J; Crutcher, M

    2006-04-25

    To test whether therapeutic unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson disease (PD) leads to normalization in the pattern of brain activation during movement execution and control of movement extent. Six patients with PD were imaged off medication by PET during performance of a visually guided tracking task with the DBS voltage programmed for therapeutic (effective) or subtherapeutic (ineffective) stimulation. Data from patients with PD during ineffective stimulation were compared with a group of 13 age-matched control subjects to identify sites with abnormal patterns of activation. Conjunction analysis was used to identify those areas in patients with PD where activity normalized when they were treated with effective stimulation. For movement execution, effective DBS caused an increase of activation in the supplementary motor area (SMA), superior parietal cortex, and cerebellum toward a more normal pattern. At rest, effective stimulation reduced overactivity of SMA. Therapeutic stimulation also induced reductions of movement related "overactivity" compared with healthy subjects in prefrontal, temporal lobe, and basal ganglia circuits, consistent with the notion that many areas are recruited to compensate for ineffective motor initiation. Normalization of activity related to the control of movement extent was associated with reductions of activity in primary motor cortex, SMA, and basal ganglia. Effective subthalamic nucleus stimulation leads to task-specific modifications with appropriate recruitment of motor areas as well as widespread, nonspecific reductions of compensatory or competing cortical activity.

  20. Deep learning for EEG-Based preference classification

    NASA Astrophysics Data System (ADS)

    Teo, Jason; Hou, Chew Lin; Mountstephens, James

    2017-10-01

    Electroencephalogram (EEG)-based emotion classification is rapidly becoming one of the most intensely studied areas of brain-computer interfacing (BCI). The ability to passively identify yet accurately correlate brainwaves with our immediate emotions opens up truly meaningful and previously unattainable human-computer interactions such as in forensic neuroscience, rehabilitative medicine, affective entertainment and neuro-marketing. One particularly useful yet rarely explored areas of EEG-based emotion classification is preference recognition [1], which is simply the detection of like versus dislike. Within the limited investigations into preference classification, all reported studies were based on musically-induced stimuli except for a single study which used 2D images. The main objective of this study is to apply deep learning, which has been shown to produce state-of-the-art results in diverse hard problems such as in computer vision, natural language processing and audio recognition, to 3D object preference classification over a larger group of test subjects. A cohort of 16 users was shown 60 bracelet-like objects as rotating visual stimuli on a computer display while their preferences and EEGs were recorded. After training a variety of machine learning approaches which included deep neural networks, we then attempted to classify the users' preferences for the 3D visual stimuli based on their EEGs. Here, we show that that deep learning outperforms a variety of other machine learning classifiers for this EEG-based preference classification task particularly in a highly challenging dataset with large inter- and intra-subject variability.

  1. Gadolinium Accumulation in the Deep Cerebellar Nuclei and Globus Pallidus After Exposure to Linear but Not Macrocyclic Gadolinium-Based Contrast Agents in a Retrospective Pig Study With High Similarity to Clinical Conditions.

    PubMed

    Boyken, Janina; Frenzel, Thomas; Lohrke, Jessica; Jost, Gregor; Pietsch, Hubertus

    2018-05-01

    The aim of this retrospective study was to determine the gadolinium (Gd) concentration in different brain areas in a pig cohort that received repeated administration of Gd-based contrast agents (GBCAs) at standard doses over several years, comparable with a clinical setting. Brain tissue was collected from 13 Göttingen mini pigs that had received repeated intravenous injections of gadopentetate dimeglumine (Gd-DTPA; Magnevist) and/or gadobutrol (Gadovist). The animals have been included in several preclinical imaging studies since 2008 and received cumulative Gd doses ranging from 7 to 129 mmol per animal over an extended period. Two animals with no history of administration of GBCA were included as controls. Brain autopsies were performed not earlier than 8 and not later than 38 months after the last GBCA application. Tissues from multiple brain areas including cerebellar and cerebral deep nuclei, cerebellar and cerebral cortex, and pons were analyzed for Gd using inductively coupled plasma mass spectrometry. Of the 13 animals, 8 received up to 48 injections of gadobutrol and Gd-DTPA and 5 received up to 29 injections of gadobutrol only. In animals that had received both Gd-DTPA and gadobutrol, a median (interquartile range) Gd concentration of 1.0 nmol/g tissue (0.44-1.42) was measured in the cerebellar nuclei and 0.53 nmol/g (0.29-0.62) in the globus pallidus. The Gd concentration in these areas in gadobutrol-only animals was 50-fold lower with median concentrations of 0.02 nmol/g (0.01-0.02) for cerebellar nuclei and 0.01 nmol/g (0.01-0.01) for globus pallidus and was comparable with control animals with no GBCA history. Accordingly, in animals that received both GBCAs, the amount of residual Gd correlated with the administered dose of Gd-DTPA (P ≤ 0.002) but not with the total Gd dose, consisting of Gd-DTPA and gadobutrol. The Gd concentration in cortical tissue and in the pons was very low (≤0.07 nmol/g tissue) in all animals analyzed. Multiple exposure to macrocyclic gadobutrol is not associated with Gd deposition in brain tissue of healthy pigs. A single additional administration of linear Gd-DTPA is sufficient for Gd accumulation in the nucleus dentatus and globus pallidus, underlining the importance of obtaining a complete GBCA history in clinical studies.

  2. MRI-induced heating of deep brain stimulation leads

    NASA Astrophysics Data System (ADS)

    Mohsin, Syed A.; Sheikh, Noor M.; Saeed, Usman

    2008-10-01

    The radiofrequency (RF) field used in magnetic resonance imaging is scattered by medical implants. The scattered field of a deep brain stimulation lead can be very intense near the electrodes stimulating the brain. The effect is more pronounced if the lead behaves as a resonant antenna. In this paper, we examine the resonant length effect. We also use the finite element method to compute the near field for (i) the lead immersed in inhomogeneous tissue (fat, muscle, and brain tissues) and (ii) the lead connected to an implantable pulse generator. Electric field, specific absorption rate and induced temperature rise distributions have been obtained in the brain tissue surrounding the electrodes. The worst-case scenario has been evaluated by neglecting the effect of blood perfusion. The computed values are in good agreement with in vitro measurements made in the laboratory.

  3. Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature.

    PubMed

    Rodrigues, Dario B; Maccarini, Paolo F; Salahi, Sara; Oliveira, Tiago R; Pereira, Pedro J S; Limao-Vieira, Paulo; Snow, Brent W; Reudink, Doug; Stauffer, Paul R

    2014-07-01

    We present the modeling efforts on antenna design and frequency selection to monitor brain temperature during prolonged surgery using noninvasive microwave radiometry. A tapered log-spiral antenna design is chosen for its wideband characteristics that allow higher power collection from deep brain. Parametric analysis with the software HFSS is used to optimize antenna performance for deep brain temperature sensing. Radiometric antenna efficiency (η) is evaluated in terms of the ratio of power collected from brain to total power received by the antenna. Anatomical information extracted from several adult computed tomography scans is used to establish design parameters for constructing an accurate layered 3-D tissue phantom. This head phantom includes separate brain and scalp regions, with tissue equivalent liquids circulating at independent temperatures on either side of an intact skull. The optimized frequency band is 1.1-1.6 GHz producing an average antenna efficiency of 50.3% from a two turn log-spiral antenna. The entire sensor package is contained in a lightweight and low-profile 2.8 cm diameter by 1.5 cm high assembly that can be held in place over the skin with an electromagnetic interference shielding adhesive patch. The calculated radiometric equivalent brain temperature tracks within 0.4 °C of the measured brain phantom temperature when the brain phantom is lowered 10 °C and then returned to the original temperature (37 °C) over a 4.6-h experiment. The numerical and experimental results demonstrate that the optimized 2.5-cm log-spiral antenna is well suited for the noninvasive radiometric sensing of deep brain temperature.

  4. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  5. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf.

    PubMed

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  6. Permeability Surface of Deep Middle Cerebral Artery Territory on Computed Tomographic Perfusion Predicts Hemorrhagic Transformation After Stroke.

    PubMed

    Li, Qiao; Gao, Xinyi; Yao, Zhenwei; Feng, Xiaoyuan; He, Huijin; Xue, Jing; Gao, Peiyi; Yang, Lumeng; Cheng, Xin; Chen, Weijian; Yang, Yunjun

    2017-09-01

    Permeability surface (PS) on computed tomographic perfusion reflects blood-brain barrier permeability and is related to hemorrhagic transformation (HT). HT of deep middle cerebral artery (MCA) territory can occur after recanalization of proximal large-vessel occlusion. We aimed to determine the relationship between HT and PS of deep MCA territory. We retrospectively reviewed 70 consecutive acute ischemic stroke patients presenting with occlusion of the distal internal carotid artery or M1 segment of the MCA. All patients underwent computed tomographic perfusion within 6 hours after symptom onset. Computed tomographic perfusion data were postprocessed to generate maps of different perfusion parameters. Risk factors were identified for increased deep MCA territory PS. Receiver operating characteristic curve analysis was performed to calculate the optimal PS threshold to predict HT of deep MCA territory. Increased PS was associated with HT of deep MCA territory. After adjustments for age, sex, onset time to computed tomographic perfusion, and baseline National Institutes of Health Stroke Scale, poor collateral status (odds ratio, 7.8; 95% confidence interval, 1.67-37.14; P =0.009) and proximal MCA-M1 occlusion (odds ratio, 4.12; 95% confidence interval, 1.03-16.52; P =0.045) were independently associated with increased deep MCA territory PS. Relative PS most accurately predicted HT of deep MCA territory (area under curve, 0.94; optimal threshold, 2.89). Increased PS can predict HT of deep MCA territory after recanalization therapy for cerebral proximal large-vessel occlusion. Proximal MCA-M1 complete occlusion and distal internal carotid artery occlusion in conjunction with poor collaterals elevate deep MCA territory PS. © 2017 American Heart Association, Inc.

  7. Volumetric Radiosurgery for 1 to 10 Brain Metastases: A Multicenter, Single-Arm, Phase 2 Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichol, Alan, E-mail: anichol@bccancer.bc.ca; University of British Columbia, Vancouver, British Columbia; Ma, Roy

    Purpose: Interest is growing in treating multiple brain metastases with radiosurgery. We report on the effectiveness and tolerability of volumetric radiosurgery (VRS). Methods and Materials: We enrolled patients with a ≥6-month estimated life expectancy and 1 to 10 brain metastases with a diameter of ≤3 cm at 5 cancer centers. Volumetric radiosurgery was delivered in 5 fractions with 98% target coverage, prescribed as 95% of 50 Gy (47.5 Gy in 5 fractions) to the metastases with no margin and 95% of 40 Gy (38 Gy in 5 fractions) to their 2-mm planning target volumes, concurrent with 20 Gy to the whole brain planning target volume. The treatmentmore » was delivered with daily image guidance using conventional linear accelerators and volumetric modulated arc therapy. A magnetic resonance imaging scan was obtained every 3 months. The primary endpoint was the 3-month objective response in the brain according to the Response Evaluation Criteria in Solid Tumors, version 1.1. The principal secondary endpoint was 1-year actuarial control of treated metastases. Toxicities were graded using the Common Terminology Criteria for Adverse Events, version 4.0. The present study is registered with (ClinicalTrials.gov) ( (clinicaltrials.gov) identifier (NCT01046123)). Results: From July 2010 to May 2013, 60 patients underwent VRS with 47.5 Gy in 5 fractions for 12 metastases in the thalamus and basal ganglia (deep metastases) and 207 non-deep metastases. The median follow-up period was 30.5 months, and the median survival was 10.1 months. For the 43 patients assessable at 3 months, the objective response in the brain was 56%. The treated metastases were controlled in 88% of patients at 1 year and 84% at 3 years. Overall survival did not differ for patients with 4 to 10 versus 1 to 3 metastases (hazard ratio 1.18, P=.6). The crude incidence of severe radionecrosis (grade 3-5) was 25% (3 of 12) per deep metastasis, 1.9% (4 of 219) per non-deep metastasis, and 10% (6 of 60) per patient. Conclusions: For non-deep brain metastases, 47.5 Gy in 5 fractions was tolerable. Volumetric radiosurgery was effective for long-term control of treated brain metastases.« less

  8. Processing of emotional stimuli is reflected by modulations of beta band activity in the subgenual anterior cingulate cortex in patients with treatment resistant depression

    PubMed Central

    Huebl, Julius; Brücke, Christof; Merkl, Angela; Bajbouj, Malek; Schneider, Gerd-Helge

    2016-01-01

    Deep brain stimulation (DBS) of the subgenual anterior cingulate cortex (sgACC) has emerged as a new therapeutic option in patients with treatment resistant depression (TRD). At the same time, DBS offers a unique opportunity as an innovative research tool to study brain function in vivo. Indirect measures of brain function such as positron-emission-tomography imaging findings have revealed a hypermetabolism in the sgACC area in patients with TRD that normalizes in parallel with treatment response to DBS. We used direct intracranial recordings via implanted DBS electrodes to study the neuronal oscillatory activity in the sgACC area during a picture viewing task including emotional and neutral stimuli in eight patients with TRD who underwent DBS. We found a stimulus-induced decrease in beta-band and increase in gamma-band activity, with a main effect of valence for event-related desynchronisation in the beta-frequency range (14–30 Hz). Unpleasant stimuli induced the strongest and most sustained beta-power decrease. The degree of beta-band modulation upon emotional stimuli correlated with the patients’ rating of stimulus valence. Our findings confirm the involvement of the sgACC area in emotional processing that was more enhanced for unpleasant stimuli. Moreover, stimulus evaluation may be encoded by modulations of beta-band activity. PMID:27013105

  9. Glioblastoma recurrence correlates with NLGN3 levels.

    PubMed

    Liu, Rui; Qin, Xing-Ping; Zhuang, Yang; Zhang, Ya; Liao, Hua-Bao; Tang, Jun-Chun; Pan, Meng-Xian; Zeng, Fei-Fei; Lei, Yang; Lei, Rui-Xue; Wang, Shu; Liu, An-Chun; Chen, Juan; Zhang, Zhi-Feng; Zhao, Dan; Wu, Song-Lin; Liu, Ren-Zhong; Wang, Ze-Fen; Wan, Qi

    2018-05-18

    Glioblastoma (GBM) is the most aggressive glioma in the brain. Recurrence of GBM is almost inevitable within a short term after tumor resection. In a retrospective study of 386 cases of GBM collected between 2013 and 2016, we found that recurrence of GBM mainly occurs in the deep brain regions, including the basal ganglia, thalamus, and corpus callosum. But the mechanism underlying this phenomenon is not clear. Previous studies suggest that neuroligin-3 (NLGN3) is necessary for GBM growth. Our results show that the levels of NLGN3 in the cortex are higher than those in the deep regions in a normal human brain, and similar patterns are also found in a normal mouse brain. In contrast, NLGN3 levels in the deep brain regions of GBM patients are high. We also show that an increase in NLGN3 concentration promotes the growth of U251 cells and U87-MG cells. Respective use of the cortex neuron culture medium (C-NCM) and basal ganglia neuron culture medium (BG-NCM) with DMEM to cultivate U251, U87-MG and GBM cells isolated from patients, we found that these cells grew faster after treatment with C-NCM and BG-NCM in which the cells treated with C-NCM grew faster than the ones treated with BG-NCM group. Inhibition of NLGN3 release by ADAM10i prevents NCM-induced cell growth. Together, this study suggests that increased levels of NLGN3 in the deep brain region under the GBM pathological circumstances may contribute to GBM recurrence in the basal ganglia, thalamus, and corpus callosum. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  10. Depth of processing effects on neural correlates of memory encoding: relationship between findings from across- and within-task comparisons.

    PubMed

    Otten, L J; Henson, R N; Rugg, M D

    2001-02-01

    Neuroimaging studies have implicated the prefrontal cortex and medial temporal areas in the successful encoding of verbal material into episodic memory. The present study used event-related functional MRI to investigate whether the brain areas associated with successful episodic encoding of words in a semantic study task are a subset of those demonstrating depth of processing effects. In addition, we tested whether the brain areas associated with successful episodic encoding differ depending on the nature of the study task. At study, 15 volunteers were cued to make either animacy or alphabetical decisions about words. A recognition memory test including confidence judgements followed after a delay of 15 min. Prefrontal and medial temporal regions showed greater functional MRI activations for semantically encoded words relative to alphabetically encoded words. Two of these regions (left anterior hippocampus and left ventral inferior frontal gyrus) showed greater activation for semantically encoded words that were subsequently recognized confidently. However, other regions (left posterior hippocampus and right inferior frontal cortex) demonstrated subsequent memory effects, but not effects of depth of processing. Successful memory for alphabetically encoded words was also associated with greater activation in the left anterior hippocampus and left ventral inferior frontal gyrus. The findings suggest that episodic encoding for words in a semantic study task involves a subset of the regions activated by deep relative to shallow processing. The data provide little evidence that successful episodic encoding during a shallow study task depends upon regions different from those that support the encoding of deeply studied words. Instead, the findings suggest that successful episodic encoding during a shallow study task relies on a subset of the regions engaged during successful encoding in a deep task.

  11. Technical nuances to minimize common complications of deep brain stimulation.

    PubMed

    House, Paul

    2017-04-01

    The implantation of deep brain stimulator electrodes is associated with infrequent complications. These complications are consistent across prospective trials and include infection, skin erosion, hemorrhage, and lead misplacement. Nuances of surgical technique can be used to minimize the risk of these commonly noted complications. Several of these technical nuances are highlighted in this video submission. The video can be found here: https://youtu.be/GL09W9p013g .

  12. Confocal multispot microscope for fast and deep imaging in semicleared tissues

    NASA Astrophysics Data System (ADS)

    Adam, Marie-Pierre; Müllenbroich, Marie Caroline; Di Giovanna, Antonino Paolo; Alfieri, Domenico; Silvestri, Ludovico; Sacconi, Leonardo; Pavone, Francesco Saverio

    2018-02-01

    Although perfectly transparent specimens are imaged faster with light-sheet microscopy, less transparent samples are often imaged with two-photon microscopy leveraging its robustness to scattering; however, at the price of increased acquisition times. Clearing methods that are capable of rendering strongly scattering samples such as brain tissue perfectly transparent specimens are often complex, costly, and time intensive, even though for many applications a slightly lower level of tissue transparency is sufficient and easily achieved with simpler and faster methods. Here, we present a microscope type that has been geared toward the imaging of semicleared tissue by combining multispot two-photon excitation with rolling shutter wide-field detection to image deep and fast inside semicleared mouse brain. We present a theoretical and experimental evaluation of the point spread function and contrast as a function of shutter size. Finally, we demonstrate microscope performance in fixed brain slices by imaging dendritic spines up to 400-μm deep.

  13. Brain Tumor Segmentation Using Deep Belief Networks and Pathological Knowledge.

    PubMed

    Zhan, Tianming; Chen, Yi; Hong, Xunning; Lu, Zhenyu; Chen, Yunjie

    2017-01-01

    In this paper, we propose an automatic brain tumor segmentation method based on Deep Belief Networks (DBNs) and pathological knowledge. The proposed method is targeted against gliomas (both low and high grade) obtained in multi-sequence magnetic resonance images (MRIs). Firstly, a novel deep architecture is proposed to combine the multi-sequences intensities feature extraction with classification to get the classification probabilities of each voxel. Then, graph cut based optimization is executed on the classification probabilities to strengthen the spatial relationships of voxels. At last, pathological knowledge of gliomas is applied to remove some false positives. Our method was validated in the Brain Tumor Segmentation Challenge 2012 and 2013 databases (BRATS 2012, 2013). The performance of segmentation results demonstrates our proposal providing a competitive solution with stateof- the-art methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Cognitive assessment instruments in Parkinson's disease patients undergoing deep brain stimulation

    PubMed Central

    Romann, Aline Juliane; Dornelles, Silvia; Maineri, Nicole de Liz; Rieder, Carlos Roberto de Mello; Olchik, Maira Rozenfeld

    2012-01-01

    Deep Brain Stimulation (DBS) is a widely used surgical technique in individuals with Parkinson's disease (PD) that can lead to significant reductions in motor symptoms. Objectives To determine, from publications, the most commonly used instruments for cognitive evaluation of individuals with PD undergoing DBS. Methods A systematic review of the databases: PubMed, Medline, EBECS, Scielo and LILACS was conducted, using the descriptors "Deep Brain Stimulation", "Verbal Fluency", "Parkinson Disease", "Executive Function", "Cognition" and "Cognitive Assessment" in combination. Results The Verbal Fluency test was found to be the most used instrument for this investigation in the studies, followed by the Boston Naming Test. References to the Stroop Test, Trail Making Test, and Rey's Auditory Verbal Learning Test were also found. Conclusions The validation of instruments for this population is needed as is the use of batteries offering greater specificity and sensitivity for the detection of cognitive impairment. PMID:29213766

  15. A PC-based system for predicting movement from deep brain signals in Parkinson's disease.

    PubMed

    Loukas, Constantinos; Brown, Peter

    2012-07-01

    There is much current interest in deep brain stimulation (DBS) of the subthalamic nucleus (STN) for the treatment of Parkinson's disease (PD). This type of surgery has enabled unprecedented access to deep brain signals in the awake human. In this paper we present an easy-to-use computer based system for recording, displaying, archiving, and processing electrophysiological signals from the STN. The system was developed for predicting self-paced hand-movements in real-time via the online processing of the electrophysiological activity of the STN. It is hoped that such a computerised system might have clinical and experimental applications. For example, those sites within the STN most relevant to the processing of voluntary movement could be identified through the predictive value of their activities with respect to the timing of future movement. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Automated deep-phenotyping of the vertebrate brain

    PubMed Central

    Allalou, Amin; Wu, Yuelong; Ghannad-Rezaie, Mostafa; Eimon, Peter M; Yanik, Mehmet Fatih

    2017-01-01

    Here, we describe an automated platform suitable for large-scale deep-phenotyping of zebrafish mutant lines, which uses optical projection tomography to rapidly image brain-specific gene expression patterns in 3D at cellular resolution. Registration algorithms and correlation analysis are then used to compare 3D expression patterns, to automatically detect all statistically significant alterations in mutants, and to map them onto a brain atlas. Automated deep-phenotyping of a mutation in the master transcriptional regulator fezf2 not only detects all known phenotypes but also uncovers important novel neural deficits that were overlooked in previous studies. In the telencephalon, we show for the first time that fezf2 mutant zebrafish have significant patterning deficits, particularly in glutamatergic populations. Our findings reveal unexpected parallels between fezf2 function in zebrafish and mice, where mutations cause deficits in glutamatergic neurons of the telencephalon-derived neocortex. DOI: http://dx.doi.org/10.7554/eLife.23379.001 PMID:28406399

  17. Shielded battery syndrome: a new hardware complication of deep brain stimulation.

    PubMed

    Chelvarajah, Ramesh; Lumsden, Daniel; Kaminska, Margaret; Samuel, Michael; Hulse, Natasha; Selway, Richard P; Lin, Jean-Pierre; Ashkan, Keyoumars

    2012-01-01

    Deep brain stimulation hardware is constantly advancing. The last few years have seen the introduction of rechargeable cell technology into the implanted pulse generator design, allowing for longer battery life and fewer replacement operations. The Medtronic® system requires an additional pocket adaptor when revising a non-rechargeable battery such as their Kinetra® to their rechargeable Activa® RC. This additional hardware item can, if it migrates superficially, become an impediment to the recharging of the battery and negate the intended technological advance. To report the emergence of the 'shielded battery syndrome', which has not been previously described. We reviewed our deep brain stimulation database to identify cases of recharging difficulties reported by patients with Activa RC implanted pulse generators. Two cases of shielded battery syndrome were identified. The first required surgery to reposition the adaptor to the deep aspect of the subcutaneous pocket. In the second case, it was possible to perform external manual manipulation to restore the adaptor to its original position deep to the battery. We describe strategies to minimise the occurrence of the shielded battery syndrome and advise vigilance in all patients who experience difficulty with recharging after replacement surgery of this type for the implanted pulse generator. Copyright © 2012 S. Karger AG, Basel.

  18. Deep learning with convolutional neural networks for EEG decoding and visualization.

    PubMed

    Schirrmeister, Robin Tibor; Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio

    2017-11-01

    Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end-to-end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end-to-end EEG analysis, but a better understanding of how to design and train ConvNets for end-to-end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task-related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG-based brain mapping. Hum Brain Mapp 38:5391-5420, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  19. Multimodal Approaches to Define Network Oscillations in Depression

    PubMed Central

    Smart, Otis Lkuwamy; Tiruvadi, Vineet Ravi; Mayberg, Helen S.

    2018-01-01

    The renaissance in the use of encephalography-based research methods to probe the pathophysiology of neuropsychiatric disorders is well afoot and continues to advance. Building on the platform of neuroimaging evidence on brain circuit models, magnetoencephalography, scalp electroencephalography, and even invasive electroencephalography are now being used to characterize brain network dysfunctions that underlie major depressive disorder using brain oscillation measurements and associated treatment responses. Such multiple encephalography modalities provide avenues to study pathologic network dynamics with high temporal resolution and over long time courses, opportunities to complement neuroimaging methods and findings, and new approaches to identify quantitative biomarkers that indicate critical targets for brain therapy. Such goals have been facilitated by the ongoing testing of novel invasive neuromodulation therapies, notably, deep brain stimulation, where clinically relevant treatment effects can be monitored at multiple brain sites in a time-locked causal manner. We review key brain rhythms identified in major depressive disorder as foundation for development of putative biomarkers for objectively evaluating neuromodulation success and for guiding deep brain stimulation or other target-based neuromodulation strategies for treatment-resistant depression patients. PMID:25681871

  20. Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation

    PubMed Central

    Ueno, Shoogo

    2017-01-01

    Stimulation of deeper brain structures by transcranial magnetic stimulation (TMS) plays a role in the study of reward and motivation mechanisms, which may be beneficial in the treatment of several neurological and psychiatric disorders. However, electric field distributions induced in the brain by deep transcranial magnetic stimulation (dTMS) are still unknown. In this paper, the double cone coil, H-coil and Halo-circular assembly (HCA) coil which have been proposed for dTMS have been numerically designed. The distributions of magnetic flux density, induced electric field in an anatomically based realistic head model by applying the dTMS coils were numerically calculated by the impedance method. Results were compared with that of standard figure-of-eight (Fo8) coil. Simulation results show that double cone, H- and HCA coils have significantly deep field penetration compared to the conventional Fo8 coil, at the expense of induced higher and wider spread electrical fields in superficial cortical regions. Double cone and HCA coils have better ability to stimulate deep brain subregions compared to that of the H-coil. In the mean time, both double cone and HCA coils increase risk for optical nerve excitation. Our results suggest although the dTMS coils offer new tool with potential for both research and clinical applications for psychiatric and neurological disorders associated with dysfunctions of deep brain regions, the selection of the most suitable coil settings for a specific clinical application should be based on a balanced evaluation between stimulation depth and focality. PMID:28586349

  1. Local vs. volume conductance activity of field potentials in the human subthalamic nucleus

    PubMed Central

    Marmor, Odeya; Valsky, Dan; Joshua, Mati; Bick, Atira S; Arkadir, David; Tamir, Idit; Bergman, Hagai; Israel, Zvi

    2017-01-01

    Subthalamic nucleus field potentials have attracted growing research and clinical interest over the last few decades. However, it is unclear whether subthalamic field potentials represent locally generated neuronal subthreshold activity or volume conductance of the organized neuronal activity generated in the cortex. This study aimed at understanding of the physiological origin of subthalamic field potentials and determining the most accurate method for recording them. We compared different methods of recordings in the human subthalamic nucleus: spikes (300–9,000 Hz) and field potentials (3–100 Hz) recorded by monopolar micro- and macroelectrodes, as well as by differential-bipolar macroelectrodes. The recordings were done outside and inside the subthalamic nucleus during electrophysiological navigation for deep brain stimulation procedures (150 electrode trajectories) in 41 Parkinson’s disease patients. We modeled the signal and estimated the contribution of nearby/independent vs. remote/common activity in each recording configuration and area. Monopolar micro- and macroelectrode recordings detect field potentials that are considerably affected by common (probably cortical) activity. However, bipolar macroelectrode recordings inside the subthalamic nucleus can detect locally generated potentials. These results are confirmed by high correspondence between the model predictions and actual correlation of neuronal activity recorded by electrode pairs. Differential bipolar macroelectrode subthalamic field potentials can overcome volume conductance effects and reflect locally generated neuronal activity. Bipolar macroelectrode local field potential recordings might be used as a biological marker of normal and pathological brain functions for future electrophysiological studies and navigation systems as well as for closed-loop deep brain stimulation paradigms. NEW & NOTEWORTHY Our results integrate a new method for human subthalamic recordings with a development of an advanced mathematical model. We found that while monopolar microelectrode and macroelectrode recordings detect field potentials that are considerably affected by common (probably cortical) activity, bipolar macroelectrode recordings inside the subthalamic nucleus (STN) detect locally generated potentials that are significantly different than those recorded outside the STN. Differential bipolar subthalamic field potentials can be used in navigation and closed-loop deep brain stimulation paradigms. PMID:28202569

  2. Deep brain stimulation surgery for alcohol addiction.

    PubMed

    Voges, Juergen; Müller, Ulf; Bogerts, Bernhard; Münte, Thomas; Heinze, Hans-Jochen

    2013-01-01

    The consequences of chronic alcohol dependence cause important health and economic burdens worldwide. Relapse rates after standard treatment (medication and psychotherapy) are high. There is evidence from in vivo investigations and from studies in patients that the brain's reward system is critically involved in the development and maintenance of addictive behavior, suggesting that modification of this system could significantly improve the prognosis of addictive patients. Motivated by an accidental observation, we used the nucleus accumbens (NAc), which has a central position in the dopaminergic reward system for deep brain stimulation (DBS) of alcohol addiction. We report our first experiences with NAc DBS for alcohol dependence and review the literature addressing the mechanisms leading to addiction. Five patients were treated off-label with bilateral NAc DBS for severe alcohol addiction (average follow-up 38 months). All patients experienced significant and ongoing improvement of craving. Two patients remained completely abstinent for more than 4 years. NAc stimulation was tolerated without permanent side effects. Simultaneous recording of local field potentials from the target area and surface electroencephalography while patients performed neuropsychological tasks gave a hint on the pivotal role of the NAc in processing alcohol-related cues. To our knowledge, the data presented here reflect the first attempt to treat alcohol-addicted patients with NAc DBS. Electrical NAc stimulation probably counterbalances the effect of drug-related stimuli triggering involuntarily drug-seeking behavior. Meanwhile, two prospective clinical studies using randomized, double-blind, and crossover stimulation protocols for DBS are underway to corroborate these preliminary results. Published by Elsevier Inc.

  3. Ethical safety of deep brain stimulation: A study on moral decision-making in Parkinson's disease.

    PubMed

    Fumagalli, Manuela; Marceglia, Sara; Cogiamanian, Filippo; Ardolino, Gianluca; Picascia, Marta; Barbieri, Sergio; Pravettoni, Gabriella; Pacchetti, Claudio; Priori, Alberto

    2015-07-01

    The possibility that deep brain stimulation (DBS) in Parkinson's disease (PD) alters patients' decisions and actions, even temporarily, raises important clinical, ethical and legal questions. Abnormal moral decision-making can lead to ethical rules violations. Previous experiments demonstrated the subthalamic (STN) activation during moral decision-making. Here we aim to study whether STN DBS can affect moral decision-making in PD patients. Eleven patients with PD and bilateral STN DBS implant performed a computerized moral task in ON and OFF stimulation conditions. A control group of PD patients without DBS implant performed the same experimental protocol. All patients underwent motor, cognitive and psychological assessments. STN stimulation was not able to modify neither reaction times nor responses to moral task both when we compared the ON and the OFF state in the same patient (reaction times, p = .416) and when we compared DBS patients with those treated only with the best medical treatment (reaction times: p = .408, responses: p = .776). Moral judgment is the result of a complex process, requiring cognitive executive functions, problem-solving, anticipations of consequences of an action, conflict processing, emotional evaluation of context and of possible outcomes, and involving different brain areas and neural circuits. Our data show that STN DBS leaves unaffected moral decisions thus implying relevant clinical and ethical implications for DBS consequences on patients' behavior, on decision-making and on judgment ability. In conclusion, the technique can be considered safe on moral behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Intraoperative Ultrasonography during Drainage for Chronic Subdural Hematomas: A Technique to Release Isolated Deep-seated Hematomas—Technical Note

    PubMed Central

    SHIMIZU, Satoru; MOCHIZUKI, Takahiro; OSAWA, Shigeyuki; KUMABE, Toshihiro

    2015-01-01

    After the drainage of chronic subdural hematomas (CSDHs), residual isolated deep-seated hematomas (IDHs) may recur. We introduce intraoperative ultrasonography to detect and remove such IDHs. Intra-operative ultrasonography is performed with fine transducers introduced via burr holes. Images obtained before dural opening show the CSDHs, hyper- and/or hypoechoic content, and mono- or multilayers. Images are also acquired after irrigation of the hematoma under the dura. Floating hyperechoic spots (cavitations) on the brain cortex created by irrigation confirm the release of all hematoma layers; areas without spots represent IDHs. Their overlying thin membranes are fenestrated with a dural hook for irrigation. Ultrasonographs were evaluated in 43 CSDHs (37 patients); 9 (21%) required IDH fenestration. On computed tomography scans, 17 were homogeneous-, 6 were laminar-, 16 were separated-, and 4 were trabecular type lesions. Of these, 2 (11.8%), 3 (50%), 4 (25%), and 0, respectively, manifested IDHs requiring fenestration. There were no technique-related complications. Patients subjected to IDH fenestration had lower recurrence rates (11.1% vs. 50%, p = 0.095) and required significantly less time for brain re-expansion (mean 3.78 ± 1.62 vs. 18 ± 5.54 weeks, p = 0.0009) than did 6 patients whose IDHs remained after 48 conventional irrigation and drainage procedures. Intraoperative ultrasonography in patients with CSDHs facilitates the safe release of hidden IDHs. It can be expected to reduce the risk of postoperative hematoma recurrence and to shorten the brain re-expansion time. PMID:26345671

  5. [Stereotactic biopsy in the accurate diagnosis of lesions in the brain stem and deep brain].

    PubMed

    Qin, F; Huang, Z C; Cai, M Q; Xu, X F; Lu, T T; Dong, Q; Wu, A M; Lu, Z Z; Zhao, C; Guo, Y

    2018-06-12

    Objective: To investigate the value of stereotactic biopsy in the accurate diagnosis of lesions in the brain stem and deep brain. Methods: A total of 29 consecutive patients who underwent stereotactic biopsy of brainstem and deep brain lesions between May 2012 and January 2018 were retrospectively reviewed. The Cosman-Roberts-Wells (CRW) stereotactic frame was installed under local anesthesia. Thin-layer CT and MRI scanning were performed. Target coordinates were calculated by inputting CT-MRI data into the radionics surgical planning system. The individualized puncture path was designed according to the location of the lesions and the characteristics of the image. Target distributions were as follows: 12 cases of midbrain or pons, 2 cases of internal capsule, 3 cases of thalamus, 12 cases of basal ganglia. The biopsy samples were used for further pathological and/or genetic diagnosis. Results: Twenty-eight of the 29 cases (96.6%) were diagnosed accurately by histopathology and genomic examination following stereotactic biopsy. Pathological results were as follows: 8 cases of lymphoma, 7 cases of glioma, 4 cases of demyelination, 2 cases of germ cell tumor, 2 cases of metastatic tumor, 1 cases of cerebral sparganosis, 1 case of tuberculous granuloma, 1 case of hereditary prion disease, 1 case of glial hyperplasia, 1 case of leukemia. The accurate diagnosis of one case required a combination of histopathology and genomic examination. Undefined diagnosis was still made in 1 cases (3.45%) after biopsy. After biopsy, there were 2 cases (6.9%) with symptomatic slight hemorrhage, 1 case (3.45%) with symptomatic severe hemorrhage, and 1 cass (3.45%) with permanent neurological dysfunction. No one died because of surgery or surgical complications. Conclusions: Stereotactic biopsy is fast, safe and minimally invasive. It is an ideal strategy for accurate diagnosis of lesions in brain stem and deep brain.

  6. Propofol disrupts functional interactions between sensory and high-order processing of auditory verbal memory.

    PubMed

    Liu, Xiaolin; Lauer, Kathryn K; Ward, Barney D; Rao, Stephen M; Li, Shi-Jiang; Hudetz, Anthony G

    2012-10-01

    Current theories suggest that disrupting cortical information integration may account for the mechanism of general anesthesia in suppressing consciousness. Human cognitive operations take place in hierarchically structured neural organizations in the brain. The process of low-order neural representation of sensory stimuli becoming integrated in high-order cortices is also known as cognitive binding. Combining neuroimaging, cognitive neuroscience, and anesthetic manipulation, we examined how cognitive networks involved in auditory verbal memory are maintained in wakefulness, disrupted in propofol-induced deep sedation, and re-established in recovery. Inspired by the notion of cognitive binding, an functional magnetic resonance imaging-guided connectivity analysis was utilized to assess the integrity of functional interactions within and between different levels of the task-defined brain regions. Task-related responses persisted in the primary auditory cortex (PAC), but vanished in the inferior frontal gyrus (IFG) and premotor areas in deep sedation. For connectivity analysis, seed regions representing sensory and high-order processing of the memory task were identified in the PAC and IFG. Propofol disrupted connections from the PAC seed to the frontal regions and thalamus, but not the connections from the IFG seed to a set of widely distributed brain regions in the temporal, frontal, and parietal lobes (with exception of the PAC). These later regions have been implicated in mediating verbal comprehension and memory. These results suggest that propofol disrupts cognition by blocking the projection of sensory information to high-order processing networks and thus preventing information integration. Such findings contribute to our understanding of anesthetic mechanisms as related to information and integration in the brain. Copyright © 2011 Wiley Periodicals, Inc.

  7. A network analysis of ¹⁵O-H₂O PET reveals deep brain stimulation effects on brain network of Parkinson's disease.

    PubMed

    Park, Hae-Jeong; Park, Bumhee; Kim, Hae Yu; Oh, Maeng-Keun; Kim, Joong Il; Yoon, Misun; Lee, Jong Doo; Chang, Jin Woo

    2015-05-01

    As Parkinson's disease (PD) can be considered a network abnormality, the effects of deep brain stimulation (DBS) need to be investigated in the aspect of networks. This study aimed to examine how DBS of the bilateral subthalamic nucleus (STN) affects the motor networks of patients with idiopathic PD during motor performance and to show the feasibility of the network analysis using cross-sectional positron emission tomography (PET) images in DBS studies. We obtained [¹⁵O]H₂O PET images from ten patients with PD during a sequential finger-to-thumb opposition task and during the resting state, with DBS-On and DBS-Off at STN. To identify the alteration of motor networks in PD and their changes due to STN-DBS, we applied independent component analysis (ICA) to all the cross-sectional PET images. We analysed the strength of each component according to DBS effects, task effects and interaction effects. ICA blindly decomposed components of functionally associated distributed clusters, which were comparable to the results of univariate statistical parametric mapping. ICA further revealed that STN-DBS modifies usage-strengths of components corresponding to the basal ganglia-thalamo-cortical circuits in PD patients by increasing the hypoactive basal ganglia and by suppressing the hyperactive cortical motor areas, ventrolateral thalamus and cerebellum. Our results suggest that STN-DBS may affect not only the abnormal local activity, but also alter brain networks in patients with PD. This study also demonstrated the usefulness of ICA for cross-sectional PET data to reveal network modifications due to DBS, which was not observable using the subtraction method.

  8. Effects of repeated deep brain stimulation on depressive- and anxiety-like behavior in rats: comparing entopeduncular and subthalamic nuclei.

    PubMed

    Creed, Meaghan C; Hamani, Clement; Nobrega, José N

    2013-07-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or internal globus pallidus (GPi) has been routinely used for the treatment of some movement disorders. However, DBS may be associated with adverse psychiatric effects, such as depression, anxiety and impulsivity. To compare DBS applied to the entopeduncular nucleus (EPN; the rodent homolog of the GPi) and STN in terms of their effects on depressive- and anxiety-like behavior in rats. DBS was applied for 21 days (4 h a day) to either the STN or EPN. Rats then underwent behavioral testing on learned helplessness and elevated plus maze tasks before being sacrificed for brain analyses of zif268, BDNF and trkB mRNA as well as BDNF protein levels. Repeated DBS of the STN, but not of the EPN, led to impaired performance in the learned helplessness task, suggesting that STN-DBS induces or potentiates depressive-like behavior. There was no effect of DBS on elevated plus maze or on open field behavior. Repeated STN-DBS, but not EPN-DBS, led to decreased levels of BDNF and trkB mRNA in hippocampus. Acute stimulation of the STN or EPN resulted in similar changes in zif268 levels in several brain areas, except for the raphe where decreases were seen only after STB-DBS. Together these results indicate that the effects of STN- and EPN-DBS differ in behavioral and neurochemical respects. Results further suggest that the EPN may be a preferable target for clinical DBS when psychiatric side effects are considered insofar as it may be associated with a lower incidence of depressive-like behavior than the STN. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Dyslexic brain activation abnormalities in deep and shallow orthographies: A meta‐analysis of 28 functional neuroimaging studies

    PubMed Central

    Martin, Anna; Kronbichler, Martin

    2016-01-01

    Abstract We used coordinate‐based meta‐analysis to objectively quantify commonalities and differences of dyslexic functional brain abnormalities between alphabetic languages differing in orthographic depth. Specifically, we compared foci of under‐ and overactivation in dyslexic readers relative to nonimpaired readers reported in 14 studies in deep orthographies (DO: English) and in 14 studies in shallow orthographies (SO: Dutch, German, Italian, Swedish). The separate meta‐analyses of the two sets of studies showed universal reading‐related dyslexic underactivation in the left occipitotemporal cortex (including the visual word form area (VWFA)). The direct statistical comparison revealed higher convergence of underactivation for DO compared with SO in bilateral inferior parietal regions, but this abnormality disappeared when foci resulting from stronger dyslexic task‐negative activation (i.e., deactivation relative to baseline) were excluded. Higher convergence of underactivation for DO compared with SO was further identified in the left inferior frontal gyrus (IFG) pars triangularis, left precuneus, and right superior temporal gyrus, together with higher convergence of overactivation in the left anterior insula. Higher convergence of underactivation for SO compared with DO was found in the left fusiform gyrus, left temporoparietal cortex, left IFG pars orbitalis, and left frontal operculum, together with higher convergence of overactivation in the left precentral gyrus. Taken together, the findings support the notion of a biological unity of dyslexia, with additional orthography‐specific abnormalities and presumably different compensatory mechanisms. The results are discussed in relation to current functional neuroanatomical models of developmental dyslexia. Hum Brain Mapp 37:2676–2699, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27061464

  10. Magnetic resonance diffusion tensor imaging for the pedunculopontine nucleus: proof of concept and histological correlation.

    PubMed

    Alho, A T D L; Hamani, C; Alho, E J L; da Silva, R E; Santos, G A B; Neves, R C; Carreira, L L; Araújo, C M M; Magalhães, G; Coelho, D B; Alegro, M C; Martin, M G M; Grinberg, L T; Pasqualucci, C A; Heinsen, H; Fonoff, E T; Amaro, E

    2017-08-01

    The pedunculopontine nucleus (PPN) has been proposed as target for deep brain stimulation (DBS) in patients with postural instability and gait disorders due to its involvement in muscle tonus adjustments and control of locomotion. However, it is a deep-seated brainstem nucleus without clear imaging or electrophysiological markers. Some studies suggested that diffusion tensor imaging (DTI) may help guiding electrode placement in the PPN by showing the surrounding fiber bundles, but none have provided a direct histological correlation. We investigated DTI fractional anisotropy (FA) maps from in vivo and in situ post-mortem magnetic resonance images (MRI) compared to histological evaluations for improving PPN targeting in humans. A post-mortem brain was scanned in a clinical 3T MR system in situ. Thereafter, the brain was processed with a special method ideally suited for cytoarchitectonic analyses. Also, nine volunteers had in vivo brain scanning using the same MRI protocol. Images from volunteers were compared to those obtained in the post-mortem study. FA values of the volunteers were obtained from PPN, inferior colliculus, cerebellar crossing fibers and medial lemniscus using histological data and atlas information. FA values in the PPN were significantly lower than in the surrounding white matter region and higher than in areas with predominantly gray matter. In Nissl-stained histologic sections, the PPN extended for more than 10 mm in the rostro-caudal axis being closely attached to the lateral parabrachial nucleus. Our DTI analyses and the spatial correlation with histological findings proposed a location for PPN that matched the position assigned to this nucleus in the literature. Coregistration of neuroimaging and cytoarchitectonic features can add value to help establishing functional architectonics of the PPN and facilitate neurosurgical targeting of this extended nucleus.

  11. Topological self-organization and prediction learning support both action and lexical chains in the brain.

    PubMed

    Chersi, Fabian; Ferro, Marcello; Pezzulo, Giovanni; Pirrelli, Vito

    2014-07-01

    A growing body of evidence in cognitive psychology and neuroscience suggests a deep interconnection between sensory-motor and language systems in the brain. Based on recent neurophysiological findings on the anatomo-functional organization of the fronto-parietal network, we present a computational model showing that language processing may have reused or co-developed organizing principles, functionality, and learning mechanisms typical of premotor circuit. The proposed model combines principles of Hebbian topological self-organization and prediction learning. Trained on sequences of either motor or linguistic units, the network develops independent neuronal chains, formed by dedicated nodes encoding only context-specific stimuli. Moreover, neurons responding to the same stimulus or class of stimuli tend to cluster together to form topologically connected areas similar to those observed in the brain cortex. Simulations support a unitary explanatory framework reconciling neurophysiological motor data with established behavioral evidence on lexical acquisition, access, and recall. Copyright © 2014 Cognitive Science Society, Inc.

  12. Integrative Biological Analysis For Neuropsychopharmacology

    PubMed Central

    Emmett, Mark R; Kroes, Roger A; Moskal, Joseph R; Conrad, Charles A; Priebe, Waldemar; Laezza, Fernanda; Meyer-Baese, Anke; Nilsson, Carol L

    2014-01-01

    Although advances in psychotherapy have been made in recent years, drug discovery for brain diseases such as schizophrenia and mood disorders has stagnated. The need for new biomarkers and validated therapeutic targets in the field of neuropsychopharmacology is widely unmet. The brain is the most complex part of human anatomy from the standpoint of number and types of cells, their interconnections, and circuitry. To better meet patient needs, improved methods to approach brain studies by understanding functional networks that interact with the genome are being developed. The integrated biological approaches—proteomics, transcriptomics, metabolomics, and glycomics—have a strong record in several areas of biomedicine, including neurochemistry and neuro-oncology. Published applications of an integrated approach to projects of neurological, psychiatric, and pharmacological natures are still few but show promise to provide deep biological knowledge derived from cells, animal models, and clinical materials. Future studes that yield insights based on integrated analyses promise to deliver new therapeutic targets and biomarkers for personalized medicine. PMID:23800968

  13. Risk of brain herniation after craniotomy with lumbar spinal drainage: a propensity score analysis.

    PubMed

    Motoyama, Yasushi; Nakajima, Tsukasa; Takamura, Yoshiaki; Nakazawa, Tsutomu; Wajima, Daisuke; Takeshima, Yasuhiro; Matsuda, Ryosuke; Tamura, Kentaro; Yamada, Shuichi; Yokota, Hiroshi; Nakagawa, Ichiro; Nishimura, Fumihiko; Park, Young-Su; Nakamura, Mitsutoshi; Nakase, Hiroyuki

    2018-06-08

    OBJECTIVE Lumbar spinal drainage (LSD) during neurosurgery can have an important effect by facilitating a smooth procedure when needed. However, LSD is quite invasive, and the pathology of brain herniation associated with LSD has become known recently. The objective of this study was to determine the risk of postoperative brain herniation after craniotomy with LSD in neurosurgery overall. METHODS Included were 239 patients who underwent craniotomy with LSD for various types of neurological diseases between January 2007 and December 2016. The authors performed propensity score matching to establish a proper control group taken from among 1424 patients who underwent craniotomy and met the inclusion criteria during the same period. The incidences of postoperative brain herniation between the patients who underwent craniotomy with LSD (group A, n = 239) and the matched patients who underwent craniotomy without LSD (group B, n = 239) were compared. RESULTS Brain herniation was observed in 24 patients in group A and 8 patients in group B (OR 3.21, 95% CI 1.36-8.46, p = 0.005), but the rate of favorable outcomes was higher in group A (OR 1.79, 95% CI 1.18-2.76, p = 0.005). Of the 24 patients, 18 had uncal herniation, 5 had central herniation, and 1 had uncal and subfalcine herniation; 8 patients with other than subarachnoid hemorrhage were included. Significant differences in the rates of deep approach (OR 5.12, 95% CI 1.8-14.5, p = 0.002) and temporal craniotomy (OR 10.2, 95% CI 2.3-44.8, p = 0.002) were found between the 2 subgroups (those with and those without herniation) in group A. In 5 patients, brain herniation proceeded even after external decompression (ED). Cox regression analysis revealed that the risk of brain herniation related to LSD increased with ED (hazard ratio 3.326, 95% CI 1.491-7.422, p < 0.001). Among all 1424 patients, ED resulted in progression or deterioration of brain herniation more frequently in those who underwent LSD than it did in those who did not undergo LSD (OR 9.127, 95% CI 1.82-62.1, p = 0.004). CONCLUSIONS Brain herniation downward to the tentorial hiatus is more likely to occur after craniotomy with LSD than after craniotomy without LSD. Using a deep approach and craniotomy involving the temporal areas are risk factors for brain herniation related to LSD. Additional ED would aggravate brain herniation after LSD. The risk of brain herniation after placement of a lumbar spinal drain during neurosurgery must be considered even when LSD is essential.

  14. Treatment of Pain and Autonomic Dysreflexia in Spinal Cord Injury with Deep Brain Stimulation

    DTIC Science & Technology

    2015-10-01

    currently investigating the effects of CG stimulation in subjects with debilitating pain due to cervical or thoracic SCI. This study stemmed from...had a low thoracic injury and pain in lumbar dermatomes, whereas Subject 1 had mainly mid- cervical pain that responded minimally to DBS and matched...AWARD NUMBER: W81XWH-12-1-0559 TITLE: Treatment of Pain and Autonomic Dysreflexia in Spinal Cord Injury with Deep Brain Stimulation PRINCIPAL

  15. Analysis of EEG activity during sleep - brain hemisphere symmetry of two classes of sleep spindles

    NASA Astrophysics Data System (ADS)

    Smolen, Magdalena M.

    2009-01-01

    This paper presents automatic analysis of some selected human electroencephalographic patterns during deep sleep using the Matching Pursuit (MP) algorithm. The periodicity of deep sleep EEG patterns was observed by calculating autocorrelation functions of their percentage contributions. The study confirmed the increasing trend of amplitude-weighted average frequency of sleep spindles from frontal to posterior derivations. The dominant frequencies from the left and the right brain hemisphere were strongly correlated.

  16. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.

    PubMed

    Chiarelli, Antonio Maria; Croce, Pierpaolo; Merla, Arcangelo; Zappasodi, Filippo

    2018-06-01

    Brain-computer interface (BCI) refers to procedures that link the central nervous system to a device. BCI was historically performed using electroencephalography (EEG). In the last years, encouraging results were obtained by combining EEG with other neuroimaging technologies, such as functional near infrared spectroscopy (fNIRS). A crucial step of BCI is brain state classification from recorded signal features. Deep artificial neural networks (DNNs) recently reached unprecedented complex classification outcomes. These performances were achieved through increased computational power, efficient learning algorithms, valuable activation functions, and restricted or back-fed neurons connections. By expecting significant overall BCI performances, we investigated the capabilities of combining EEG and fNIRS recordings with state-of-the-art deep learning procedures. We performed a guided left and right hand motor imagery task on 15 subjects with a fixed classification response time of 1 s and overall experiment length of 10 min. Left versus right classification accuracy of a DNN in the multi-modal recording modality was estimated and it was compared to standalone EEG and fNIRS and other classifiers. At a group level we obtained significant increase in performance when considering multi-modal recordings and DNN classifier with synergistic effect. BCI performances can be significantly improved by employing multi-modal recordings that provide electrical and hemodynamic brain activity information, in combination with advanced non-linear deep learning classification procedures.

  17. Determination of subthalamic nucleus location by quantitative analysis of despiked background neural activity from microelectrode recordings obtained during deep brain stimulation surgery.

    PubMed

    Danish, Shabbar F; Baltuch, Gordon H; Jaggi, Jurg L; Wong, Stephen

    2008-04-01

    Microelectrode recording during deep brain stimulation surgery is a useful adjunct for subthalamic nucleus (STN) localization. We hypothesize that information in the nonspike background activity can help identify STN boundaries. We present results from a novel quantitative analysis that accomplishes this goal. Thirteen consecutive microelectrode recordings were retrospectively analyzed. Spikes were removed from the recordings with an automated algorithm. The remaining "despiked" signals were converted via root mean square amplitude and curve length calculations into "feature profile" time series. Subthalamic nucleus boundaries determined by inspection, based on sustained deviations from baseline for each feature profile, were compared against those determined intraoperatively by the clinical neurophysiologist. Feature profile activity within STN exhibited a sustained rise in 10 of 13 tracks (77%). The sensitivity of STN entry was 60% and 90% for curve length and root mean square amplitude, respectively, when agreement within 0.5 mm of the neurophysiologist's prediction was used. Sensitivities were 70% and 100% for 1 mm accuracy. Exit point sensitivities were 80% and 90% for both features within 0.5 mm and 1.0 mm, respectively. Reproducible activity patterns in deep brain stimulation microelectrode recordings can allow accurate identification of STN boundaries. Quantitative analyses of this type may provide useful adjunctive information for electrode placement in deep brain stimulation surgery.

  18. Bimanual Force Coordination in Parkinson’s Disease Patients with Bilateral Subthalamic Deep Brain Stimulation

    PubMed Central

    Gorniak, Stacey L.; McIntyre, Cameron C.; Alberts, Jay L.

    2013-01-01

    Objective Studies of bimanual actions similar to activities of daily living (ADLs) are currently lacking in evaluating fine motor control in Parkinson’s disease patients implanted with bilateral subthalamic deep brain stimulators. We investigated basic time and force characteristics of a bimanual task that resembles performance of ADLs in a group of bilateral subthalamic deep brain stimulation (DBS) patients. Methods Patients were evaluated in three different DBS parameter conditions off stimulation, on clinically derived stimulation parameters, and on settings derived from a patient-specific computational model. Model-based parameters were computed as a means to minimize spread of current to non-motor regions of the subthalamic nucleus via Cicerone Deep Brain Stimulation software. Patients were evaluated off parkinsonian medications in each stimulation condition. Results The data indicate that DBS parameter state does not affect most aspects of fine motor control in ADL-like tasks; however, features such as increased grip force and grip symmetry varied with the stimulation state. In the absence of DBS parameters, patients exhibited significant grip force asymmetry. Overall UPDRS-III and UPDRS-III scores associated with hand function were lower while patients were experiencing clinically-derived or model-based parameters, as compared to the off-stimulation condition. Conclusion While bilateral subthalamic DBS has been shown to alleviate gross motor dysfunction, our results indicate that DBS may not provide the same magnitude of benefit to fine motor coordination. PMID:24244388

  19. Neuroprotection for the new millennium. Matchmaking pharmacology and technology

    NASA Technical Reports Server (NTRS)

    Andrews, R. J.

    2001-01-01

    A major theme of the 1990s in the pathophysiology of nervous system injury has been the multifactorial etiology of irreversible injury. Multiple causes imply multiple opportunities for therapeutic intervention--hence the abandonment of the "magic bullet" single pharmacologic agent for neuroprotection in favor of pharmacologic "cocktails". A second theme of the 1990s has been the progress in technology for neuroprotection, minimally- or non-invasive monitoring as well as treatment. Cardiac stenting has eliminated the need, in many cases, for open heart surgery; deep brain stimulation for Parkinson's disease has offered significant improvement in quality of life for many who had exhausted cocktail drug treatment for their disease. Deep brain stimulation of the subthalamic nucleus offers a novel treatment for Parkinson's disease where a technological advance may actually be an intervention with effects that are normally expected from pharmacologic agents. Rather than merely "jamming" the nervous system circuits involved in Parkinson's disease, deep brain stimulation of the subthalamic nucleus appears to improve the neurotransmitter imbalance that lies at the heart of Parkinson's disease. It may also slow the progression of the disease. Given the example of deep brain stimulation of the subthalamic nucleus for Parkinson's disease, in future one may expect other technological or "hardware" interventions to influence the programming or "software" of the nervous system's physiologic response in certain disease states.

  20. [High-Definition Exoscope System for Microneurosurgery:Use of an Exoscope in Combination with Tubular Retraction and Frameless Neuronavigation for Microsurgical Resection of Deep Brain Lesions].

    PubMed

    Nagatani, Kimihiro; Takeuchi, Satoru; Feng, Dongxia; Mori, Kentaro; Day, J Diaz

    2015-07-01

    The high-definition exoscope (VITOM®, Karl Storz GmbH & Co., Tuttlingen, Germany) is a new equipment that can be used as an alternative to the operating microscope in neurosurgery. Several neurosurgeons have recently reported that the exoscope allows for long working distances and great depth of field. Herein, we review reported cases of exoscope use in neurosurgery. We also describe the advantages of the exoscope compared to the operating microscope and endoscope. Furthermore, we introduce a novel technique for microsurgical resection of deep brain lesions, in which the exoscope is used along with tubular retraction and frameless neuronavigation. Before the operation, neuronavigation is registered and the surgical trajectory is planned to avoid damaging the functional cortex and eloquent white matter tracts. By using intraoperative neuronavigation, the tubular retractor (NICO BrainPath®, NICO Corporation, Indianapolis, US), which is designed to split the white matter when gently inserted, is inserted transcortically into the brain to reach the lesion, along the preplanned trajectory. After insertion, the tubular retractor is fixed in place using a self-retaining arm. This creates a narrow corridor that enables the use of the exoscope (for optimum visualization), bimanual dissection technique, and long bayoneted surgical instruments. The large focal distance of the exoscope allows it to be placed sufficiently further away from the surgical site, permitting the passage of long surgical instruments under the scope. Although obtaining surgical access to deep-seated brain lesions is challenging, we consider that this technique facilitates a safe surgical approach for lesions in deep locations.

  1. Volumetric multimodality neural network for brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Silvana Castillo, Laura; Alexandra Daza, Laura; Carlos Rivera, Luis; Arbeláez, Pablo

    2017-11-01

    Brain lesion segmentation is one of the hardest tasks to be solved in computer vision with an emphasis on the medical field. We present a convolutional neural network that produces a semantic segmentation of brain tumors, capable of processing volumetric data along with information from multiple MRI modalities at the same time. This results in the ability to learn from small training datasets and highly imbalanced data. Our method is based on DeepMedic, the state of the art in brain lesion segmentation. We develop a new architecture with more convolutional layers, organized in three parallel pathways with different input resolution, and additional fully connected layers. We tested our method over the 2015 BraTS Challenge dataset, reaching an average dice coefficient of 84%, while the standard DeepMedic implementation reached 74%.

  2. Electrical engram: how deep brain stimulation affects memory.

    PubMed

    Lee, Hweeling; Fell, Jürgen; Axmacher, Nikolai

    2013-11-01

    Deep brain stimulation (DBS) is a surgical procedure involving implantation of a pacemaker that sends electric impulses to specific brain regions. DBS has been applied in patients with Parkinson's disease, depression, and obsessive-compulsive disorder (among others), and more recently in patients with Alzheimer's disease to improve memory functions. Current DBS approaches are based on the concept that high-frequency stimulation inhibits or excites specific brain regions. However, because DBS entails the application of repetitive electrical stimuli, it primarily exerts an effect on extracellular field-potential oscillations similar to those recorded with electroencephalography. Here, we suggest a new perspective on how DBS may ameliorate memory dysfunction: it may enhance normal electrophysiological patterns underlying long-term memory processes within the medial temporal lobe. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Network effects of deep brain stimulation

    PubMed Central

    Alhourani, Ahmad; McDowell, Michael M.; Randazzo, Michael J.; Wozny, Thomas A.; Kondylis, Efstathios D.; Lipski, Witold J.; Beck, Sarah; Karp, Jordan F.; Ghuman, Avniel S.

    2015-01-01

    The ability to differentially alter specific brain functions via deep brain stimulation (DBS) represents a monumental advance in clinical neuroscience, as well as within medicine as a whole. Despite the efficacy of DBS in the treatment of movement disorders, for which it is often the gold-standard therapy when medical management becomes inadequate, the mechanisms through which DBS in various brain targets produces therapeutic effects is still not well understood. This limited knowledge is a barrier to improving efficacy and reducing side effects in clinical brain stimulation. A field of study related to assessing the network effects of DBS is gradually emerging that promises to reveal aspects of the underlying pathophysiology of various brain disorders and their response to DBS that will be critical to advancing the field. This review summarizes the nascent literature related to network effects of DBS measured by cerebral blood flow and metabolic imaging, functional imaging, and electrophysiology (scalp and intracranial electroencephalography and magnetoencephalography) in order to establish a framework for future studies. PMID:26269552

  4. Towards deep brain monitoring with superficial EEG sensors plus neuromodulatory focused ultrasound

    PubMed Central

    Darvas, F; Mehić, E; Caler, CJ; Ojemann, JG; Mourad, PD

    2017-01-01

    Noninvasive recordings of electrophysiological activity have limited anatomical specificity and depth. We hypothesized that spatially tagging a small volume of brain with a unique electroencephalogram (EEG) signal induced by pulsed focused ultrasound (pFU) could overcome those limitations. As a first step towards testing this hypothesis, we applied transcranial ultrasound (2 MHz, 200 microsecond-long pulses applied at 1050 Hz for one second at a spatial peak temporal average intensity of 1.4 W/cm2) to the brains of anesthetized rats while simultaneously recording EEG signals. We observed a significant 1050 Hz electrophysiological signal only when ultrasound was applied to living brain. Moreover, amplitude demodulation of the EEG signal at 1050 Hz yielded measurement of gamma band (>30 Hz) brain activity consistent with direct measurements of that activity. These results represent preliminary support for use of pFU as a spatial tagging mechanism for non-invasive EEG-based mapping of deep brain activity with high spatial resolution. PMID:27181686

  5. Sing the mind electric - principles of deep brain stimulation.

    PubMed

    Kringelbach, Morten L; Green, Alexander L; Owen, Sarah L F; Schweder, Patrick M; Aziz, Tipu Z

    2010-10-01

    The remarkable efficacy of deep brain stimulation (DBS) for a range of treatment-resistant disorders is still not matched by a comparable understanding of the underlying neural mechanisms. Some progress has been made using translational research with a range of neuroscientific techniques, and here we review the most promising emerging principles. On balance, DBS appears to work by restoring normal oscillatory activity between a network of key brain regions. Further research using this causal neuromodulatory tool may provide vital insights into fundamental brain function, as well as guide targets for future treatments. In particular, DBS could have an important role in restoring the balance of the brain's default network and thus repairing the malignant brain states associated with affective disorders, which give rise to serious disabling problems such as anhedonia, the lack of pleasure. At the same time, it is important to proceed with caution and not repeat the errors from the era of psychosurgery. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  6. Help With Depression

    MedlinePlus

    ... techniques that focus on neuromodulation, which incorporates electrical, magnetic or other forms of energy to stimulate brain ... electroconvulsive therapy (ECT), vagus-nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and the experimental deep-brain stimulation ( ...

  7. Does processing a shallow and a deep orthography produce different brain activity patterns? An ERP study conducted in Hebrew.

    PubMed

    Bar-Kochva, Irit

    2011-01-01

    Orthographies range from shallow orthographies with transparent grapheme-phoneme relations, to deep orthographies, in which these relations are opaque. Two forms of script transcribe the Hebrew language: the shallow pointed script (with diacritics) and the deep unpointed script (without diacritics). This study was set out to examine whether the reading of these scripts evokes distinct brain activity. Preliminary results indicate distinct Event-related-potentials (ERPs). As an equivalent finding was absent when ERPs of non-orthographic stimuli with and without meaningless diacritics were compared, the results imply that print-specific aspects of processing account for the distinct activity elicited by the pointed and unpointed scripts.

  8. VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.

    PubMed

    Chen, Hao; Dou, Qi; Yu, Lequan; Qin, Jing; Heng, Pheng-Ann

    2018-04-15

    Segmentation of key brain tissues from 3D medical images is of great significance for brain disease diagnosis, progression assessment and monitoring of neurologic conditions. While manual segmentation is time-consuming, laborious, and subjective, automated segmentation is quite challenging due to the complicated anatomical environment of brain and the large variations of brain tissues. We propose a novel voxelwise residual network (VoxResNet) with a set of effective training schemes to cope with this challenging problem. The main merit of residual learning is that it can alleviate the degradation problem when training a deep network so that the performance gains achieved by increasing the network depth can be fully leveraged. With this technique, our VoxResNet is built with 25 layers, and hence can generate more representative features to deal with the large variations of brain tissues than its rivals using hand-crafted features or shallower networks. In order to effectively train such a deep network with limited training data for brain segmentation, we seamlessly integrate multi-modality and multi-level contextual information into our network, so that the complementary information of different modalities can be harnessed and features of different scales can be exploited. Furthermore, an auto-context version of the VoxResNet is proposed by combining the low-level image appearance features, implicit shape information, and high-level context together for further improving the segmentation performance. Extensive experiments on the well-known benchmark (i.e., MRBrainS) of brain segmentation from 3D magnetic resonance (MR) images corroborated the efficacy of the proposed VoxResNet. Our method achieved the first place in the challenge out of 37 competitors including several state-of-the-art brain segmentation methods. Our method is inherently general and can be readily applied as a powerful tool to many brain-related studies, where accurate segmentation of brain structures is critical. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Bayesian convolutional neural network based MRI brain extraction on nonhuman primates.

    PubMed

    Zhao, Gengyan; Liu, Fang; Oler, Jonathan A; Meyerand, Mary E; Kalin, Ned H; Birn, Rasmus M

    2018-07-15

    Brain extraction or skull stripping of magnetic resonance images (MRI) is an essential step in neuroimaging studies, the accuracy of which can severely affect subsequent image processing procedures. Current automatic brain extraction methods demonstrate good results on human brains, but are often far from satisfactory on nonhuman primates, which are a necessary part of neuroscience research. To overcome the challenges of brain extraction in nonhuman primates, we propose a fully-automated brain extraction pipeline combining deep Bayesian convolutional neural network (CNN) and fully connected three-dimensional (3D) conditional random field (CRF). The deep Bayesian CNN, Bayesian SegNet, is used as the core segmentation engine. As a probabilistic network, it is not only able to perform accurate high-resolution pixel-wise brain segmentation, but also capable of measuring the model uncertainty by Monte Carlo sampling with dropout in the testing stage. Then, fully connected 3D CRF is used to refine the probability result from Bayesian SegNet in the whole 3D context of the brain volume. The proposed method was evaluated with a manually brain-extracted dataset comprising T1w images of 100 nonhuman primates. Our method outperforms six popular publicly available brain extraction packages and three well-established deep learning based methods with a mean Dice coefficient of 0.985 and a mean average symmetric surface distance of 0.220 mm. A better performance against all the compared methods was verified by statistical tests (all p-values < 10 -4 , two-sided, Bonferroni corrected). The maximum uncertainty of the model on nonhuman primate brain extraction has a mean value of 0.116 across all the 100 subjects. The behavior of the uncertainty was also studied, which shows the uncertainty increases as the training set size decreases, the number of inconsistent labels in the training set increases, or the inconsistency between the training set and the testing set increases. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. High-throughput isotropic mapping of whole mouse brain using multi-view light-sheet microscopy

    NASA Astrophysics Data System (ADS)

    Nie, Jun; Li, Yusha; Zhao, Fang; Ping, Junyu; Liu, Sa; Yu, Tingting; Zhu, Dan; Fei, Peng

    2018-02-01

    Light-sheet fluorescence microscopy (LSFM) uses an additional laser-sheet to illuminate selective planes of the sample, thereby enabling three-dimensional imaging at high spatial-temporal resolution. These advantages make LSFM a promising tool for high-quality brain visualization. However, even by the use of LSFM, the spatial resolution remains insufficient to resolve the neural structures across a mesoscale whole mouse brain in three dimensions. At the same time, the thick-tissue scattering prevents a clear observation from the deep of brain. Here we use multi-view LSFM strategy to solve this challenge, surpassing the resolution limit of standard light-sheet microscope under a large field-of-view (FOV). As demonstrated by the imaging of optically-cleared mouse brain labelled with thy1-GFP, we achieve a brain-wide, isotropic cellular resolution of 3μm. Besides the resolution enhancement, multi-view braining imaging can also recover complete signals from deep tissue scattering and attenuation. The identification of long distance neural projections across encephalic regions can be identified and annotated as a result.

  11. DeepNeuron: an open deep learning toolbox for neuron tracing.

    PubMed

    Zhou, Zhi; Kuo, Hsien-Chi; Peng, Hanchuan; Long, Fuhui

    2018-06-06

    Reconstructing three-dimensional (3D) morphology of neurons is essential for understanding brain structures and functions. Over the past decades, a number of neuron tracing tools including manual, semiautomatic, and fully automatic approaches have been developed to extract and analyze 3D neuronal structures. Nevertheless, most of them were developed based on coding certain rules to extract and connect structural components of a neuron, showing limited performance on complicated neuron morphology. Recently, deep learning outperforms many other machine learning methods in a wide range of image analysis and computer vision tasks. Here we developed a new Open Source toolbox, DeepNeuron, which uses deep learning networks to learn features and rules from data and trace neuron morphology in light microscopy images. DeepNeuron provides a family of modules to solve basic yet challenging problems in neuron tracing. These problems include but not limited to: (1) detecting neuron signal under different image conditions, (2) connecting neuronal signals into tree(s), (3) pruning and refining tree morphology, (4) quantifying the quality of morphology, and (5) classifying dendrites and axons in real time. We have tested DeepNeuron using light microscopy images including bright-field and confocal images of human and mouse brain, on which DeepNeuron demonstrates robustness and accuracy in neuron tracing.

  12. Endoventricular Deep Brain Stimulation of the Third Ventricle: Proof of Concept and Application to Cluster Headache.

    PubMed

    Chabardès, Stéphan; Carron, Romain; Seigneuret, Eric; Torres, Napoleon; Goetz, Laurent; Krainik, Alexandre; Piallat, Brigitte; Pham, Pascale; David, Olivier; Giraud, Pierrick; Benabid, Alim Louis

    2016-12-01

    The third ventricle (3rd V) is surrounded by centers related to satiety, homeostasis, hormones, sleep, memory, and pain. Stimulation of the wall of the 3rd V could be useful to treat disorders related to dysfunction of the hypothalamus. To assess safety and efficacy of endoventricular electrical stimulation of the hypothalamus using a floating deep brain stimulation (DBS) lead laid on the floor of the 3rd V to treat refractory cluster headaches (CH). Seven patients, aged 24 to 60 years, experiencing chronic CH (mean chronic duration 5.8 ± 2.5 years) were enrolled in this pilot, prospective, open study assessing the safety and potential efficacy of chronic DBS of the 3rd V. Number of attacks was collected during baseline and was compared with those occurring at 3, 6, and 12 months postoperation. Any side effects that occurred during or after surgery were reported. Effect on mood was assessed using the Hospital Anxiety and Depression scale during baseline and at 6 and 12 months postoperation. Insertion of the lead into the posterior 3rd V and chronic stimulation was feasible and safe in all patients. The voltage ranged from 0.9 to 2.3 volts. The most common side effect was transient trembling vision during stimulation. At 12 months, 3 of 7 patients were pain free, 2 had 90% improvement, 1 of 7 had 75% improvement, and 1 of 7 was not significantly improved. This proof of concept demonstrates the feasibility, safety, and potential efficacy of 3rd V DBS using an endoventricular road that could be applied to treat various diseases involving hypothalamic areas. CCH, chronic cluster headacheCH, cluster headacheDBS, deep brain stimulationHAD, hospital anxiety depressionONS, occipital nerve stimulationPAG, periaqueductal gray matterPH, posterior hypothalamusPVG, periventricular gray matter3rd V, third ventricle.

  13. Excessive variability in systolic blood pressure that is self-measured at home exacerbates the progression of brain white matter lesions and cognitive impairment in the oldest old.

    PubMed

    Liu, Zhendong; Zhao, Yingxin; Zhang, Hua; Chai, Qiang; Cui, Yi; Diao, Yutao; Xiu, Jianchao; Sun, Xiaolin; Jiang, Guosheng

    2016-04-01

    To investigate the effects of variability in self-measured systolic blood pressure at home on the progression of cognitive impairment and white matter lesions in the oldest old. Between April 2009 and October 2009, 248 oldest old aged 80 years or older were eligibly enrolled from geriatric practices and community-dwelling areas of Shandong, China. Self-measured blood pressure at home (HBP) was measured for 7 consecutive days at the baseline, and the Mini-Mental State Examination (MMSE) score and brain white matter hyperintensities (WMH) were assessed at the baseline and during the final follow-up visit. Variability in systolic HBP was evaluated using coefficient of variation (CV) in serial daily systolic HBP measurements of the last 6 consecutive days. After an average of 2.3 years of follow-up visits, 232 oldest old were included in and 16 were excluded from the analysis. The MMSE score declined -4.76 (interquartile ranges: -10.71, -0.83) %, the periventricular WMH, deep WMH, total WMH and WMH fraction increased 16.46 (s.d.: 6.72)%, 10.05 (s.d.: 6.40)%, 14.69 (s.d.: 6.07)% and 15.95 (s.d.: 6.32)%, respectively, in the total oldest old. A declined percentage of the MMSE score and increased percentages of the periventricular WMH, deep WMH, total WMH and WMH fraction in the high group divided by tertile of the CV of the systolic HBP at baseline were greater than those in the low group (P<0.05). The significant differences were retained after adjusting for covariates, including the MMSE score, periventricular WMH, deep WMH and WMH fraction at the baseline (P<0.05). Excessive variability in self-measured systolic HBP exacerbates the progression of cognitive impairment and brain white matter lesions in the oldest old.

  14. The contribution of small vessel disease to subtypes of Alzheimer's disease: a study on cerebrospinal fluid and imaging biomarkers.

    PubMed

    Ferreira, Daniel; Shams, Sara; Cavallin, Lena; Viitanen, Matti; Martola, Juha; Granberg, Tobias; Shams, Mana; Aspelin, Peter; Kristoffersen-Wiberg, Maria; Nordberg, Agneta; Wahlund, Lars-Olof; Westman, Eric

    2018-05-30

    We investigated whether subtypes of Alzheimer's disease (AD), that is, typical, limbic-predominant, hippocampal-sparing, and minimal atrophy AD, had a specific signature of small vessel disease and neurodegeneration. Four hundred twenty-three clinically diagnosed AD patients were included (161 typical, 121 limbic-predominant, 70 hippocampal-sparing, 71 minimal atrophy). One hundred fifty-six fulfilled a biomarkers-based AD diagnosis. White matter hyperintensities and cerebral microbleeds (CMB) had the highest prevalence in limbic-predominant AD, and the lowest prevalence in minimal atrophy AD. CMB existed evenly in lobar and deep brain areas in limbic-predominant, typical, and hippocampal-sparing AD. In minimal atrophy AD, CMB were mainly located in brain lobar areas. Perivascular spaces in the centrum semiovale were more prevalent in typical AD. Small vessel disease contributed to the prediction of Mini-Mental State Examination. Minimal atrophy AD showed highly pathological levels of cerebrospinal fluid Aß 1-42 , total tau, and phosphorylated tau, in the absence of overt brain atrophy. Cerebral amyloid angiopathy seems to have a stronger contribution to hippocampal-sparing and minimal atrophy AD, whereas hypertensive arteriopathy may have a stronger contribution to typical and limbic-predominant AD. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. A Deep Learning Approach to Neuroanatomical Characterisation of Alzheimer's Disease.

    PubMed

    Ambastha, Abhinit Kumar; Leong, Tze-Yun

    2017-01-01

    Alzheimer's disease (AD) is a neurological degenerative disorder that leads to progressive mental deterioration. This work introduces a computational approach to improve our understanding of the progression of AD. We use ensemble learning methods and deep neural networks to identify salient structural correlations among brain regions that degenerate together in AD; this provides an understanding of how AD progresses in the brain. The proposed technique has a classification accuracy of 81.79% for AD against healthy subjects using a single modality imaging dataset.

  16. The Role of a Neuropsychologist on a Movement Disorders Deep Brain Stimulation Team.

    PubMed

    Kubu, Cynthia S

    2018-05-01

    The term movement disorders is misleading in the implication that the symptoms are limited to motor problems. Most movement disorders include a variety of neurobehavioral and neurocognitive symptoms that require neuropsychological expertise. The goal of this paper is to provide a rationale and practical roadmap for neuropsychologists' involvement in a Movement Disorders team with a specific focus on pre-operative deep brain stimulation (DBS) evaluations. Pragmatic recommendations regarding requisite skills, clinical practice, recommendations, communication, and benefits are outlined.

  17. Deep learning for brain tumor classification

    NASA Astrophysics Data System (ADS)

    Paul, Justin S.; Plassard, Andrew J.; Landman, Bennett A.; Fabbri, Daniel

    2017-03-01

    Recent research has shown that deep learning methods have performed well on supervised machine learning, image classification tasks. The purpose of this study is to apply deep learning methods to classify brain images with different tumor types: meningioma, glioma, and pituitary. A dataset was publicly released containing 3,064 T1-weighted contrast enhanced MRI (CE-MRI) brain images from 233 patients with either meningioma, glioma, or pituitary tumors split across axial, coronal, or sagittal planes. This research focuses on the 989 axial images from 191 patients in order to avoid confusing the neural networks with three different planes containing the same diagnosis. Two types of neural networks were used in classification: fully connected and convolutional neural networks. Within these two categories, further tests were computed via the augmentation of the original 512×512 axial images. Training neural networks over the axial data has proven to be accurate in its classifications with an average five-fold cross validation of 91.43% on the best trained neural network. This result demonstrates that a more general method (i.e. deep learning) can outperform specialized methods that require image dilation and ring-forming subregions on tumors.

  18. Afferent projections to the deep mesencephalic nucleus in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veazey, R.B.; Severin, C.M.

    1982-01-10

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medialmore » and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist.« less

  19. Human hippocampus associates information in memory

    PubMed Central

    Henke, Katharina; Weber, Bruno; Kneifel, Stefan; Wieser, Heinz Gregor; Buck, Alfred

    1999-01-01

    The hippocampal formation, one of the most complex and vulnerable brain structures, is recognized as a crucial brain area subserving human long-term memory. Yet, its specific functions in memory are controversial. Recent experimental results suggest that the hippocampal contribution to human memory is limited to episodic memory, novelty detection, semantic (deep) processing of information, and spatial memory. We measured the regional cerebral blood flow by positron-emission tomography while healthy volunteers learned pairs of words with different learning strategies. These led to different forms of learning, allowing us to test the degree to which they challenge hippocampal function. Neither novelty detection nor depth of processing activated the hippocampal formation as much as semantically associating the primarily unrelated words in memory. This is compelling evidence for another function of the human hippocampal formation in memory: establishing semantic associations. PMID:10318979

  20. Computer modeling of Epilepsy

    PubMed Central

    Lytton, William W.

    2009-01-01

    Preface Epilepsy is a complex set of disorders that can involve many areas of cortex as well as underlying deep brain systems. The myriad manifestations of seizures, as varied as déjà vu and olfactory hallucination, can thereby give researchers insights into regional functions and relations. Epilepsy is also complex genetically and pathophysiologically, involving microscopic (ion channels, synaptic proteins), macroscopic (brain trauma and rewiring) and intermediate changes in a complex interplay of causality. It has long been recognized that computer modeling will be required to disentangle causality, to better understand seizure spread and to understand and eventually predict treatment efficacy. Over the past few years, substantial progress has been made modeling epilepsy at levels ranging from the molecular to the socioeconomic. We review these efforts and connect them to the medical goals of understanding and treating this disorder. PMID:18594562

  1. White Matter Hyperintensities Are Under Strong Genetic Influence.

    PubMed

    Sachdev, Perminder S; Thalamuthu, Anbupalam; Mather, Karen A; Ames, David; Wright, Margaret J; Wen, Wei

    2016-06-01

    The genetic basis of white matter hyperintensities (WMH) is still unknown. This study examines the heritability of WMH in both sexes and in different brain regions, and the influence of age. Participants from the Older Australian Twins Study were recruited (n=320; 92 monozygotic and 68 dizygotic pairs) who volunteered for magnetic resonance imaging scans and medical assessments. Heritability, that is, the ratio of the additive genetic variance to the total phenotypic variance, was estimated using the twin design. Heritability was high for total WMH volume (0.76), and for periventricular WMH (0.64) and deep WMH (0.77), and varied from 0.18 for the cerebellum to 0.76 for the occipital lobe. The genetic correlation between deep and periventricular WMH regions was 0.85, with one additive genetics factor accounting for most of the shared variance. Heritability was consistently higher in women in the cerebral regions. Heritability in deep but not periventricular WMH declined with age, in particular after the age of 75. WMH have a strong genetic influence but this is not uniform through the brain, being higher for deep than periventricular WMH and in the cerebral regions. The genetic influence is higher in women, and there is an age-related decline, most markedly for deep WMH. The data suggest some heterogeneity in the pathogenesis of WMH for different brain regions and for men and women. © 2016 American Heart Association, Inc.

  2. The Brain Rotation and Brain Diffusion Strategies of Small Islanders: Considering "Movement" in Lieu of "Place"

    ERIC Educational Resources Information Center

    Baldacchino, Godfrey

    2006-01-01

    The "brain drain" phenomenon is typically seen as a zero-sum game, where one party's gain is presumed to be another's drain. This corresponds to deep-seated assumptions about what is "home" and what is "away". This article challenges the view, driven by much "brain drain" literature, that the dynamic is an…

  3. Deep Brain Stimulation for Parkinson's Disease

    MedlinePlus

    ... Strategy Current Research Research Funded by NINDS Basic Neuroscience Clinical Research Translational Research Research at NINDS Focus ... Diversity Resources Jobs at NINDS Director, Division of Neuroscience Director, NIH BRAIN Initiative® Health Scientist Administrator Channels ...

  4. Pathways of translation: deep brain stimulation.

    PubMed

    Gionfriddo, Michael R; Greenberg, Alexandra J; Wahegaonkar, Abhijeet L; Lee, Kendall H

    2013-12-01

    Electrical stimulation of the brain has a 2000 year history. Deep brain stimulation (DBS), one form of neurostimulation, is a functional neurosurgical approach in which a high-frequency electrical current stimulates targeted brain structures for therapeutic benefit. It is an effective treatment for certain neuropathologic movement disorders and an emerging therapy for psychiatric conditions and epilepsy. Its translational journey did not follow the typical bench-to-bedside path, but rather reversed the process. The shift from ancient and medieval folkloric remedy to accepted medical practice began with independent discoveries about electricity during the 19th century and was fostered by technological advances of the 20th. In this paper, we review that journey and discuss how the quest to expand its applications and improve outcomes is taking DBS from the bedside back to the bench. © 2013 Wiley Periodicals, Inc.

  5. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease

    PubMed Central

    de Hemptinne, Coralie; Swann, Nicole; Ostrem, Jill L.; Ryapolova-Webb, Elena S.; Luciano, Marta San; Galifianakis, Nicholas; Starr, Philip A.

    2015-01-01

    Deep brain stimulation (DBS) is increasingly applied to the treatment of brain disorders, but its mechanism of action remains unknown. Here, we evaluate the effect of basal ganglia DBS on cortical function using invasive cortical recordings in Parkinson's disease (PD) patients undergoing DBS implantation surgery. In the primary motor cortex of PD patients neuronal population spiking is excessively synchronized to the phase of network oscillations. This manifests in brain surface recordings as exaggerated coupling between the phase of the β rhythm and the amplitude of broadband activity. We show that acute therapeutic DBS reversibly reduces phase-amplitude interactions over a similar time course as reduction in parkinsonian motor signs. We propose that DBS of the basal ganglia improves cortical function by alleviating excessive β phase locking of motor cortex neurons. PMID:25867121

  6. A three-dimensional histological atlas of the human basal ganglia. II. Atlas deformation strategy and evaluation in deep brain stimulation for Parkinson disease.

    PubMed

    Bardinet, Eric; Bhattacharjee, Manik; Dormont, Didier; Pidoux, Bernard; Malandain, Grégoire; Schüpbach, Michael; Ayache, Nicholas; Cornu, Philippe; Agid, Yves; Yelnik, Jérôme

    2009-02-01

    The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.

  7. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation.

    PubMed

    Zhao, Xiaomei; Wu, Yihong; Song, Guidong; Li, Zhenye; Zhang, Yazhuo; Fan, Yong

    2018-01-01

    Accurate and reliable brain tumor segmentation is a critical component in cancer diagnosis, treatment planning, and treatment outcome evaluation. Build upon successful deep learning techniques, a novel brain tumor segmentation method is developed by integrating fully convolutional neural networks (FCNNs) and Conditional Random Fields (CRFs) in a unified framework to obtain segmentation results with appearance and spatial consistency. We train a deep learning based segmentation model using 2D image patches and image slices in following steps: 1) training FCNNs using image patches; 2) training CRFs as Recurrent Neural Networks (CRF-RNN) using image slices with parameters of FCNNs fixed; and 3) fine-tuning the FCNNs and the CRF-RNN using image slices. Particularly, we train 3 segmentation models using 2D image patches and slices obtained in axial, coronal and sagittal views respectively, and combine them to segment brain tumors using a voting based fusion strategy. Our method could segment brain images slice-by-slice, much faster than those based on image patches. We have evaluated our method based on imaging data provided by the Multimodal Brain Tumor Image Segmentation Challenge (BRATS) 2013, BRATS 2015 and BRATS 2016. The experimental results have demonstrated that our method could build a segmentation model with Flair, T1c, and T2 scans and achieve competitive performance as those built with Flair, T1, T1c, and T2 scans. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Deep Brain Stimulation for Essential Tremor: Aligning Thalamic and Posterior Subthalamic Targets in 1 Surgical Trajectory.

    PubMed

    Bot, Maarten; van Rootselaar, Fleur; Contarino, Maria Fiorella; Odekerken, Vincent; Dijk, Joke; de Bie, Rob; Schuurman, Richard; van den Munckhof, Pepijn

    2017-12-21

    Ventral intermediate nucleus (VIM) deep brain stimulation (DBS) and posterior subthalamic area (PSA) DBS suppress tremor in essential tremor (ET) patients, but it is not clear which target is optimal. Aligning both targets in 1 surgical trajectory would facilitate exploring stimulation of either target in a single patient. To evaluate aligning VIM and PSA in 1 surgical trajectory for DBS in ET. Technical aspects of trajectories, intraoperative stimulation findings, final electrode placement, target used for chronic stimulation, and adverse and beneficial effects were evaluated. In 17 patients representing 33 trajectories, we successfully aligned VIM and PSA targets in 26 trajectories. Trajectory distance between targets averaged 7.2 (range 6-10) mm. In all but 4 aligned trajectories, optimal intraoperative tremor suppression was obtained in the PSA. During follow-up, active electrode contacts were located in PSA in the majority of cases. Overall, successful tremor control was achieved in 69% of patients. Stimulation-induced dysarthria or gait ataxia occurred in, respectively, 56% and 44% of patients. Neither difference in tremor suppression or side effects was noted between aligned and nonaligned leads nor between the different locations of chronic stimulation. Alignment of VIM and PSA for DBS in ET is feasible and enables intraoperative exploration of both targets in 1 trajectory. This facilitates positioning of electrode contacts in both areas, where multiple effective points of stimulation can be found. In the majority of aligned leads, optimal intraoperative and chronic stimulation were located in the PSA. Copyright © 2017 by the Congress of Neurological Surgeons

  9. Association of Deep Gray Matter Damage With Cortical and Spinal Cord Degeneration in Primary Progressive Multiple Sclerosis.

    PubMed

    Ruggieri, Serena; Petracca, Maria; Miller, Aaron; Krieger, Stephen; Ghassemi, Rezwan; Bencosme, Yadira; Riley, Claire; Howard, Jonathan; Lublin, Fred; Inglese, Matilde

    2015-12-01

    The investigation of cortical gray matter (GM), deep GM nuclei, and spinal cord damage in patients with primary progressive multiple sclerosis (PP-MS) provides insights into the neurodegenerative process responsible for clinical progression of MS. To investigate the association of magnetic resonance imaging measures of cortical, deep GM, and spinal cord damage and their effect on clinical disability. Cross-sectional analysis of 26 patients with PP-MS (mean age, 50.9 years; range, 31-65 years; including 14 women) and 20 healthy control participants (mean age, 51.1 years; range, 34-63 years; including 11 women) enrolled at a single US institution. Clinical disability was measured with the Expanded Disability Status Scale, 9-Hole Peg Test, and 25-Foot Walking Test. We collected data from January 1, 2012, through December 31, 2013. Data analysis was performed from January 21 to April 10, 2015. Cortical lesion burden, brain and deep GM volumes, spinal cord area and volume, and scores on the Expanded Disability Status Scale (score range, 0 to 10; higher scores indicate greater disability), 9-Hole Peg Test (measured in seconds; longer performance time indicates greater disability), and 25-Foot Walking Test (test covers 7.5 m; measured in seconds; longer performance time indicates greater disability). The 26 patients with PP-MS showed significantly smaller mean (SD) brain and spinal cord volumes than the 20 control group patients (normalized brain volume, 1377.81 [65.48] vs 1434.06 [53.67] cm3 [P = .003]; normalized white matter volume, 650.61 [46.38] vs 676.75 [37.02] cm3 [P = .045]; normalized gray matter volume, 727.20 [40.74] vs 757.31 [38.95] cm3 [P = .02]; normalized neocortical volume, 567.88 [85.55] vs 645.00 [42.84] cm3 [P = .001]; normalized spinal cord volume for C2-C5, 72.71 [7.89] vs 82.70 [7.83] mm3 [P < .001]; and normalized spinal cord volume for C2-C3, 64.86 [7.78] vs 72.26 [7.79] mm3 [P =.002]). The amount of damage in deep GM structures, especially with respect to the thalamus, was correlated with the number and volume of cortical lesions (mean [SD] thalamus volume, 8.89 [1.10] cm3; cortical lesion number, 12.6 [11.7]; cortical lesion volume, 0.65 [0.58] cm3; r = -0.52; P < .01). Thalamic atrophy also showed an association with cortical lesion count in the frontal cortex (mean [SD] thalamus volume, 8.89 [1.1] cm3; cortical lesion count in the frontal lobe, 5.0 [5.7]; r = -0.60; P < .01). No association was identified between magnetic resonance imaging measures of the brain and spinal cord damage. In this study, the neurodegenerative process occurring in PP-MS appeared to spread across connected structures in the brain while proceeding independently in the spinal cord. These results support the relevance of anatomical connectivity for the propagation of MS damage in the PP phenotype.

  10. Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks

    PubMed Central

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude

    2017-01-01

    Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100 ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250 ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. PMID:27039703

  11. Deep Brain Stimulation of the Memory Circuit: Improving Cognition in Alzheimer's Disease.

    PubMed

    Posporelis, Sotirios; David, Anthony S; Ashkan, Keyoumars; Shotbolt, Paul

    2018-05-26

    Deep brain stimulation (DBS) is an effective invasive treatment for a wide range of neurological and psychiatric disorders. Neurosurgically implanted electrodes deliver stimulation of pre-programmed amplitude, frequency, and pulse width within deep brain structures; those settings can be adjusted at a later stage according to individual needs for optimal response. This results in variable effects dependent on the targeted region. An established treatment for movement disorders, the effectiveness of DBS in dementia remains under investigation. Translational studies have uncovered a pro-cognitive effect mediated by changes on cellular as well as network level. Several groups have attempted to examine the benefits of DBS in Alzheimer's disease; differences in inclusion criteria and methodology make generalization of results difficult. This review aims to summarize all completed and ongoing human studies of DBS in Alzheimer's disease. The results are classified by targeted anatomical structure. Future directions, as well as economical and ethical arguments, are explored in the final section.

  12. Generation and evaluation of an ultra-high-field atlas with applications in DBS planning

    NASA Astrophysics Data System (ADS)

    Wang, Brian T.; Poirier, Stefan; Guo, Ting; Parrent, Andrew G.; Peters, Terry M.; Khan, Ali R.

    2016-03-01

    Purpose Deep brain stimulation (DBS) is a common treatment for Parkinson's disease (PD) and involves the use of brain atlases or intrinsic landmarks to estimate the location of target deep brain structures, such as the subthalamic nucleus (STN) and the globus pallidus pars interna (GPi). However, these structures can be difficult to localize with conventional clinical magnetic resonance imaging (MRI), and thus targeting can be prone to error. Ultra-high-field imaging at 7T has the ability to clearly resolve these structures and thus atlases built with these data have the potential to improve targeting accuracy. Methods T1 and T2-weighted images of 12 healthy control subjects were acquired using a 7T MR scanner. These images were then used with groupwise registration to generate an unbiased average template with T1w and T2w contrast. Deep brain structures were manually labelled in each subject by two raters and rater reliability was assessed. We compared the use of this unbiased atlas with two other methods of atlas-based segmentation (single-template and multi-template) for subthalamic nucleus (STN) segmentation on 7T MRI data. We also applied this atlas to clinical DBS data acquired at 1.5T to evaluate its efficacy for DBS target localization as compared to using a standard atlas. Results The unbiased templates provide superb detail of subcortical structures. Through one-way ANOVA tests, the unbiased template is significantly (p <0.05) more accurate than a single-template in atlas-based segmentation and DBS target localization tasks. Conclusion The generated unbiased averaged templates provide better visualization of deep brain nuclei and an increase in accuracy over single-template and lower field strength atlases.

  13. Electromagnetic interference of GSM mobile phones with the implantable deep brain stimulator, ITREL-III

    PubMed Central

    Kainz, Wolfgang; Alesch, François; Chan, Dulciana Dias

    2003-01-01

    Background The purpose was to investigate mobile phone interference with implantable deep brain stimulators by means of 10 different 900 Mega Hertz (MHz) and 10 different 1800 MHz GSM (Global System for Mobile Communications) mobile phones. Methods All tests were performed in vitro using a phantom especially developed for testing with deep brain stimulators. The phantom was filled with liquid phantom materials simulating brain and muscle tissue. All examinations were carried out inside an anechoic chamber on two implants of the same type of deep brain stimulator: ITREL-III from Medtronic Inc., USA. Results Despite a maximum transmitted peak power of mobile phones of 1 Watt (W) at 1800 MHz and 2 W at 900 MHz respectively, no influence on the ITREL-III was found. Neither the shape of the pulse form changed nor did single pulses fail. Tests with increased transmitted power using CW signals and broadband dipoles have shown that inhibition of the ITREL-III occurs at frequency dependent power levels which are below the emissions of GSM mobile phones. The ITREL-III is essentially more sensitive at 1800 MHz than at 900 MHz. Particularly the frequency range around 1500 MHz shows a very low interference threshold. Conclusion These investigations do not indicate a direct risk for ITREL-III patients using the tested GSM phones. Based on the interference levels found with CW signals, which are below the mobile phone emissions, we recommend similar precautions as for patients with cardiac pacemakers: 1. The phone should be used at the ear at the opposite side of the implant and 2. The patient should avoid carrying the phone close to the implant. PMID:12773204

  14. Role of deep brain stimulation in modulating memory formation and recall

    PubMed Central

    Hu, Rollin; Eskandar, Emad; Williams, Ziv

    2010-01-01

    Deep brain stimulation (DBS) has become an increasingly popular tool for treating a variety of medically refractory neurological and psychiatric disorders such as Parkinson disease, essential tremor, depression, and obsessive-compulsive disorder. Several targets have been identified for ablation or stimulation based on their anatomical location and presumed function. Areas such as the subthalamic nucleus, globus pallidus, and thalamus, for example, are believed to play a key role in motor control and execution, and they are commonly used in the treatment of motor disorders. Limbic structures such as the cingulate cortex and ventral striatum, believed to be important in motivation, emotion, and higher cognition, have also been targeted for treatment of a number of psychiatric disorders. In all of these settings, DBS is largely aimed at addressing the deleterious aspects of these diseases. In Parkinson disease, for example, DBS has been used to reduce rigidity and tremor, whereas in obsessive-compulsive disorder it has been used to limit compulsive behavior. More recently, however, attention has also turned to the potential use of DBS for enhancing or improving otherwise nonpathological aspects of cognitive function. This review explores the potential role of DBS in augmenting memory formation and recall, and the authors discuss recent studies and future trends in this emerging field. PMID:19569891

  15. Effects of deep brain stimulation of the subthalamic nucleus on inhibitory and executive control over prepotent responses in Parkinson's disease

    PubMed Central

    Jahanshahi, Marjan

    2013-01-01

    Inhibition of inappropriate, habitual or prepotent responses is an essential component of executive control and a cornerstone of self-control. Via the hyperdirect pathway, the subthalamic nucleus (STN) receives inputs from frontal areas involved in inhibition and executive control. Evidence is reviewed from our own work and the literature suggesting that in Parkinson's disease (PD), deep brain stimulation (DBS) of the STN has an impact on executive control during attention-demanding tasks or in situations of conflict when habitual or prepotent responses have to be inhibited. These results support a role for the STN in an inter-related set of processes: switching from automatic to controlled processing, inhibitory and executive control, adjusting response thresholds and influencing speed-accuracy trade-offs. Such STN DBS-induced deficits in inhibitory and executive control may contribute to some of the psychiatric problems experienced by a proportion of operated cases after STN DBS surgery in PD. However, as no direct evidence for such a link is currently available, there is a need to provide direct evidence for such a link between STN DBS-induced deficits in inhibitory and executive control and post-surgical psychiatric complications experienced by operated patients. PMID:24399941

  16. Effects of propofol anesthesia on the processing of noxious stimuli in the spinal cord and the brain.

    PubMed

    Lichtner, Gregor; Auksztulewicz, Ryszard; Kirilina, Evgeniya; Velten, Helena; Mavrodis, Dionysios; Scheel, Michael; Blankenburg, Felix; von Dincklage, Falk

    2018-05-15

    Drug-induced unconsciousness is an essential component of general anesthesia, commonly attributed to attenuation of higher-order processing of external stimuli and a resulting loss of information integration capabilities of the brain. In this study, we investigated how the hypnotic drug propofol at doses comparable to those in clinical practice influences the processing of somatosensory stimuli in the spinal cord and in primary and higher-order cortices. Using nociceptive reflexes, somatosensory evoked potentials and functional magnet resonance imaging (fMRI), we found that propofol abolishes the processing of innocuous and moderate noxious stimuli at low to medium concentration levels, but that intense noxious stimuli evoked spinal and cerebral responses even during deep propofol anesthesia that caused profound electroencephalogram (EEG) burst suppression. While nociceptive reflexes and somatosensory potentials were affected only in a minor way by further increasing doses of propofol after the loss of consciousness, fMRI showed that increasing propofol concentration abolished processing of intense noxious stimuli in the insula and secondary somatosensory cortex and vastly increased processing in the frontal cortex. As the fMRI functional connectivity showed congruent changes with increasing doses of propofol - namely the temporal brain areas decreasing their connectivity with the bilateral pre-/postcentral gyri and the supplementary motor area, while connectivity of the latter with frontal areas is increased - we conclude that the changes in processing of noxious stimuli during propofol anesthesia might be related to changes in functional connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Processing of emotional stimuli is reflected by modulations of beta band activity in the subgenual anterior cingulate cortex in patients with treatment resistant depression.

    PubMed

    Huebl, Julius; Brücke, Christof; Merkl, Angela; Bajbouj, Malek; Schneider, Gerd-Helge; Kühn, Andrea A

    2016-08-01

    Deep brain stimulation (DBS) of the subgenual anterior cingulate cortex (sgACC) has emerged as a new therapeutic option in patients with treatment resistant depression (TRD). At the same time, DBS offers a unique opportunity as an innovative research tool to study brain function in vivo Indirect measures of brain function such as positron-emission-tomography imaging findings have revealed a hypermetabolism in the sgACC area in patients with TRD that normalizes in parallel with treatment response to DBS. We used direct intracranial recordings via implanted DBS electrodes to study the neuronal oscillatory activity in the sgACC area during a picture viewing task including emotional and neutral stimuli in eight patients with TRD who underwent DBS.We found a stimulus-induced decrease in beta-band and increase in gamma-band activity, with a main effect of valence for event-related desynchronisation in the beta-frequency range (14-30 Hz). Unpleasant stimuli induced the strongest and most sustained beta-power decrease. The degree of beta-band modulation upon emotional stimuli correlated with the patients' rating of stimulus valence. Our findings confirm the involvement of the sgACC area in emotional processing that was more enhanced for unpleasant stimuli. Moreover, stimulus evaluation may be encoded by modulations of beta-band activity. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. Deep ensemble learning of sparse regression models for brain disease diagnosis.

    PubMed

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2017-04-01

    Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer's disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call 'Deep Ensemble Sparse Regression Network.' To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Deep ensemble learning of sparse regression models for brain disease diagnosis

    PubMed Central

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2018-01-01

    Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer’s disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call ‘ Deep Ensemble Sparse Regression Network.’ To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature. PMID:28167394

  20. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex

    PubMed Central

    van Kerkoerle, Timo; Self, Matthew W.; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R.

    2014-01-01

    Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition. PMID:25205811

  1. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex.

    PubMed

    van Kerkoerle, Timo; Self, Matthew W; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R

    2014-10-07

    Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition.

  2. Just a Gut Feeling: Central Nervous Effects of Peripheral Gastrointestinal Hormones.

    PubMed

    Roth, Christian L; Doyle, Robert Patrick

    2017-01-01

    Despite greater health education, obesity remains one of the greatest health challenges currently facing the world. The prevalence of obesity among children and adolescents and the rising rates of prediabetes and diabetes are of particular concern. A deep understanding of regulatory pathways and development of new anti-obesity drugs with increased efficacy and safety are of utmost necessity. The 2 major biological players in the regulation of food intake are the gut and the brain as peptides released from the gut in response to meals convey information about the energy needs to brain centers of energy homeostasis. There is evidence that gut hormones not only pass the blood-brain barrier and bind to receptors located in different brain areas relevant for body weight regulation, but some are also expressed in the brain as part of hedonic and homeostatic pathways. Regarding obesity interventions, the only truly effective treatment for obesity is bariatric surgery, the long-term benefits of which may actually involve increased activity of gut hormones including peptide YY3-36 and glucagon-like peptide 1. This review discusses critical gut-hormones involved in the regulation of food intake and energy homeostasis and their effects on peripheral tissues versus central nervous system actions. © 2017 S. Karger AG, Basel.

  3. A novel tetrode microdrive for simultaneous multi-neuron recording from different regions of primate brain.

    PubMed

    Santos, Lucas; Opris, Ioan; Fuqua, Joshua; Hampson, Robert E; Deadwyler, Sam A

    2012-04-15

    A unique custom-made tetrode microdrive for recording from large numbers of neurons in several areas of primate brain is described as a means for assessing simultaneous neural activity in cortical and subcortical structures in nonhuman primates (NHPs) performing behavioral tasks. The microdrive device utilizes tetrode technology with up to six ultra-thin microprobe guide tubes (0.1mm) that can be independently positioned, each containing reduced diameter tetrode and/or hexatrode microwires (0.02 mm) for recording and isolating single neuron activity. The microdrive device is mounted within the standard NHP cranial well and allows traversal of brain depths up to 40.0 mm. The advantages of this technology are demonstrated via simultaneously recorded large populations of neurons with tetrode type probes during task performance from a) primary motor cortex and deep brain structures (caudate-putamen and hippocampus) and b) multiple layers within the prefrontal cortex. The means to characterize interactions of well-isolated ensembles of neurons recorded simultaneously from different regions, as shown with this device, has not been previously available for application in primate brain. The device has extensive application to primate models for the detection and study of inoperative or maladaptive neural circuits related to human neurological disorders. Published by Elsevier B.V.

  4. Deep brain stimulation and treatment-resistant obsessive-compulsive disorder: A systematic review.

    PubMed

    Vázquez-Bourgon, Javier; Martino, Juan; Sierra Peña, María; Infante Ceberio, Jon; Martínez Martínez, M Ángeles; Ocón, Roberto; Menchón, José Manuel; Crespo Facorro, Benedicto; Vázquez-Barquero, Alfonso

    2017-07-01

    At least 10% of patients with Obsessive-compulsive Disorder (OCD) are refractory to psychopharmacological treatment. The emergence of new technologies for the modulation of altered neuronal activity in Neurosurgery, deep brain stimulation (DBS), has enabled its use in severe and refractory OCD cases. The objective of this article is to review the current scientific evidence on the effectiveness and applicability of this technique to refractory OCD. We systematically reviewed the literature to identify the main characteristics of deep brain stimulation, its use and applicability as treatment for obsessive-compulsive disorder. Therefore, we reviewed PubMed/Medline, Embase and PsycINFO databases, combining the key-words 'Deep brain stimulation', 'DBS' and 'Obsessive-compulsive disorder' 'OCS'. The articles were selected by two of the authors independently, based on the abstracts, and if they described any of the main characteristics of the therapy referring to OCD: applicability; mechanism of action; brain therapeutic targets; efficacy; side-effects; co-therapies. All the information was subsequently extracted and analysed. The critical analysis of the evidence shows that the use of DBS in treatment-resistant OCD is providing satisfactory results regarding efficacy, with assumable side-effects. However, there is insufficient evidence to support the use of any single brain target over another. Patient selection has to be done following analyses of risks/benefits, being advisable to individualize the decision of continuing with concomitant psychopharmacological and psychological treatments. The use of DBS is still considered to be in the field of research, although it is increasingly used in refractory-OCD, producing in the majority of studies significant improvements in symptomatology, and in functionality and quality of life. It is essential to implement random and controlled studies regarding its long-term efficacy, cost-risk analyses and cost/benefit. Copyright © 2017 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Longitudinal atlas for normative human brain development and aging over the lifespan using quantitative susceptibility mapping.

    PubMed

    Zhang, Yuyao; Wei, Hongjiang; Cronin, Matthew J; He, Naying; Yan, Fuhua; Liu, Chunlei

    2018-05-01

    Longitudinal brain atlases play an important role in the study of human brain development and cognition. Existing atlases are mainly based on anatomical features derived from T1-and T2-weighted MRI. A 4D developmental quantitative susceptibility mapping (QSM) atlas may facilitate the estimation of age-related iron changes in deep gray matter nuclei and myelin changes in white matter. To this end, group-wise co-registered QSM templates were generated over various age intervals from age 1-83 years old. Registration was achieved by combining both T1-weighted and QSM images. Based on the proposed template, we created an accurate deep gray matter nuclei parcellation map (DGM map). Notably, we segmented thalamus into 5 sub-regions, i.e. the anterior nuclei, the median nuclei, the lateral nuclei, the pulvinar and the internal medullary lamina. Furthermore, we built a "whole brain QSM parcellation map" by combining existing cortical parcellation and white-matter atlases with the proposed DGM map. Based on the proposed QSM atlas, the segmentation accuracy of iron-rich nuclei using QSM is significantly improved, especially for children and adolescent subjects. The age-related progression of magnetic susceptibility in each of the deep gray matter nuclei, the hippocampus, and the amygdala was estimated. Our automated atlas-based analysis provided a systematic confirmation of previous findings on susceptibility progression with age resulting from manual ROI drawings in deep gray matter nuclei. The susceptibility development in the hippocampus and the amygdala follow an iron accumulation model; while in the thalamus sub-regions, the susceptibility development exhibits a variety of trends. It is envisioned that the newly developed 4D QSM atlas will serve as a template for studying brain iron deposition and myelination/demyelination in both normal aging and various brain diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Monitoring brain temperature by time-resolved near-infrared spectroscopy: pilot study

    NASA Astrophysics Data System (ADS)

    Bakhsheshi, Mohammad Fazel; Diop, Mamadou; St. Lawrence, Keith; Lee, Ting-Yim

    2014-05-01

    Mild hypothermia (HT) is an effective neuroprotective strategy for a variety of acute brain injuries. However, the wide clinical adaptation of HT has been hampered by the lack of a reliable noninvasive method for measuring brain temperature, since core measurements have been shown to not always reflect brain temperature. The goal of this work was to develop a noninvasive optical technique for measuring brain temperature that exploits both the temperature dependency of water absorption and the high concentration of water in brain (80%-90%). Specifically, we demonstrate the potential of time-resolved near-infrared spectroscopy (TR-NIRS) to measure temperature in tissue-mimicking phantoms (in vitro) and deep brain tissue (in vivo) during heating and cooling, respectively. For deep brain tissue temperature monitoring, experiments were conducted on newborn piglets wherein hypothermia was induced by gradual whole body cooling. Brain temperature was concomitantly measured by TR-NIRS and a thermocouple probe implanted in the brain. Our proposed TR-NIRS method was able to measure the temperature of tissue-mimicking phantoms and brain tissues with a correlation of 0.82 and 0.66 to temperature measured with a thermometer, respectively. The mean difference between the TR-NIRS and thermometer measurements was 0.15°C±1.1°C for the in vitro experiments and 0.5°C±1.6°C for the in vivo measurements.

  7. Brain activity monitoring by compressed spectral array during deep hypothermic circulatory arrest in acute aortic dissection surgery.

    PubMed

    Urbanowicz, Tomasz K; Budniak, Wiktor; Buczkowski, Piotr; Perek, Bartłomiej; Walczak, Maciej; Tomczyk, Jadwiga; Katarzyński, Sławomir; Jemielity, Marek

    2014-12-01

    Monitoring the central nervous system during aortic dissection repair may improve the understanding of the intraoperative changes related to its bioactivity. The aim of the study was to evaluate the influence of deep hypothermia on intraoperative brain bioactivity measured by the compressed spectral array (CSA) method and to assess the influence of the operations on postoperative cognitive function. The study enrolled 40 patients (31 men and 9 women) at the mean age of 60.2 ± 8.6 years, diagnosed with acute aortic dissection. They underwent emergency operations in deep hypothermic circulatory arrest (DHCA). During the operations, brain bioactivity was monitored with the compressed spectral array method. There were no intraoperative deaths. Electrocerebral silence during DHCA was observed in 31 patients (74%). The lowest activity was observed during DHCA: it was 0.01 ± 0.05 nW in the left hemisphere and 0.01 ± 0.03 nW in the right hemisphere. The postoperative results of neurological tests deteriorated statistically significantly (26.9 ± 1.7 points vs. 22.0 ± 1.7 points; p < 0.001), especially among patients who exhibited brain activity during DHCA. The compressed spectral array method is clinically useful in monitoring brain bioactivity during emergency operations of acute aortic dissections. Electrocerebral silence occurs in 75% of patients during DHCA. The cognitive function of patients deteriorates significantly after operations with DHCA.

  8. [An automatic system for anatomophysiological correlation in three planes simultaneously during functional neurosurgery].

    PubMed

    Teijeiro, E J; Macías, R J; Morales, J M; Guerra, E; López, G; Alvarez, L M; Fernández, F; Maragoto, C; Seijo, F; Alvarez, E

    The Neurosurgical Deep Recording System (NDRS) using a personal computer takes the place of complex electronic equipment for recording and processing deep cerebral electrical activity, as a guide in stereotaxic functional neurosurgery. It also permits increased possibilities of presenting information in direct graphic form with automatic management and sufficient flexibility to implement different analyses. This paper describes the possibilities of automatic simultaneous graphic representation in three almost orthogonal planes, available with the new 5.1 version of NDRS so as to facilitate the analysis of anatomophysiological correlation in the localization of deep structures of the brain during minimal access surgery. This new version can automatically show the spatial behaviour of signals registered throughout the path of the electrode inside the brain, superimposed simultaneously on sagittal, coronal and axial sections of an anatomical atlas of the brain, after adjusting the scale automatically according to the dimensions of the brain of each individual patient. This may also be shown in a tridimensional representation of the different planes themselves intercepting. The NDRS system has been successfully used in Spain and Cuba in over 300 functional neurosurgery operations. The new version further facilitates analysis of spatial anatomophysiological correlation for the localization of brain structures. This system has contributed to increase the precision and safety in selecting surgical targets in the control of Parkinson s disease and other disorders of movement.

  9. Deep brain stimulation reveals emotional impact processing in ventromedial prefrontal cortex.

    PubMed

    Gjedde, Albert; Geday, Jacob

    2009-12-07

    We tested the hypothesis that modulation of monoaminergic tone with deep-brain stimulation (DBS) of subthalamic nucleus would reveal a site of reactivity in the ventromedial prefrontal cortex that we previously identified by modulating serotonergic and noradrenergic mechanisms by blocking serotonin-noradrenaline reuptake sites. We tested the hypothesis in patients with Parkinson's disease in whom we had measured the changes of blood flow everywhere in the brain associated with the deep brain stimulation of the subthalamic nucleus. We determined the emotional reactivity of the patients as the average impact of emotive images rated by the patients off the DBS. We then searched for sites in the brain that had significant correlation of the changes of blood flow with the emotional impact rated by the patients. The results indicate a significant link between the emotional impact when patients are not stimulated and the change of blood flow associated with the DBS. In subjects with a low emotional impact, activity measured as blood flow rose when the electrode was turned on, while in subjects of high impact, the activity at this site in the ventromedial prefrontal cortex declined when the electrode was turned on. We conclude that changes of neurotransmission in the ventromedial prefrontal cortex had an effect on the tissue that depends on changes of monoamine concentration interacting with specific combinations of inhibitory and excitatory monoamine receptors.

  10. Deep brain stimulation for psychiatric disorders: where we are now.

    PubMed

    Cleary, Daniel R; Ozpinar, Alp; Raslan, Ahmed M; Ko, Andrew L

    2015-06-01

    Fossil records showing trephination in the Stone Age provide evidence that humans have sought to influence the mind through physical means since before the historical record. Attempts to treat psychiatric disease via neurosurgical means in the 20th century provided some intriguing initial results. However, the indiscriminate application of these treatments, lack of rigorous evaluation of the results, and the side effects of ablative, irreversible procedures resulted in a backlash against brain surgery for psychiatric disorders that continues to this day. With the advent of psychotropic medications, interest in invasive procedures for organic brain disease waned. Diagnosis and classification of psychiatric diseases has improved, due to a better understanding of psychiatric patho-physiology and the development of disease and treatment biomarkers. Meanwhile, a significant percentage of patients remain refractory to multiple modes of treatment, and psychiatric disease remains the number one cause of disability in the world. These data, along with the safe and efficacious application of deep brain stimulation (DBS) for movement disorders, in principle a reversible process, is rekindling interest in the surgical treatment of psychiatric disorders with stimulation of deep brain sites involved in emotional and behavioral circuitry. This review presents a brief history of psychosurgery and summarizes the development of DBS for psychiatric disease, reviewing the available evidence for the current application of DBS for disorders of the mind.

  11. 5'-adenosine monophosphate-induced hypothermia attenuates brain ischemia/reperfusion injury in a rat model by inhibiting the inflammatory response.

    PubMed

    Miao, Yi-Feng; Wu, Hui; Yang, Shao-Feng; Dai, Jiong; Qiu, Yong-Ming; Tao, Zhen-Yi; Zhang, Xiao-Hua

    2015-01-01

    Hypothermia treatment is a promising therapeutic strategy for brain injury. We previously demonstrated that 5'-adenosine monophosphate (5'-AMP), a ribonucleic acid nucleotide, produces reversible deep hypothermia in rats when the ambient temperature is appropriately controlled. Thus, we hypothesized that 5'-AMP-induced hypothermia (AIH) may attenuate brain ischemia/reperfusion injury. Transient cerebral ischemia was induced by using the middle cerebral artery occlusion (MCAO) model in rats. Rats that underwent AIH treatment exhibited a significant reduction in neutrophil elastase infiltration into neuronal cells and matrix metalloproteinase 9 (MMP-9), interleukin-1 receptor (IL-1R), tumor necrosis factor receptor (TNFR), and Toll-like receptor (TLR) protein expression in the infarcted area compared to euthermic controls. AIH treatment also decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling- (TUNEL-) positive neuronal cells. The overall infarct volume was significantly smaller in AIH-treated rats, and neurological function was improved. By contrast, rats with ischemic brain injury that were administered 5'-AMP without inducing hypothermia had ischemia/reperfusion injuries similar to those in euthermic controls. Thus, the neuroprotective effects of AIH were primarily related to hypothermia.

  12. Literature-Related Discovery (LRD)

    DTIC Science & Technology

    2007-11-01

    accepted) water purification literature. The annular region between the inner and outer circles represents literatures related directly and...procedures (thalamotomy and pallidotomy) destroy regions of the brain that produce the uncontrolled spasmodic movements in PD patients [11]. A...more recent procedure, deep brain stimulation, sends electricity through a probe to normalize electrical activity in the brain region , reversing the

  13. 75 FR 4407 - The Neurological Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... premarket approval application for the Deep Brain Stimulation System for Epilepsy sponsored by Medtronic...-onset seizures (affecting only a part of the brain when they begin), with or without secondary... a partial-onset seizure that later spreads to the whole brain. ``Refractory'' to antiepileptic...

  14. Visualization of cortical, subcortical, and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses

    PubMed Central

    Resendez, Shanna L.; Jennings, Josh H.; Ung, Randall L.; Namboodiri, Vijay Mohan K.; Zhou, Zhe Charles; Otis, James M.; Nomura, Hiroshi; McHenry, Jenna A.; Kosyk, Oksana; Stuber, Garret D.

    2016-01-01

    Genetically encoded calcium indicators for visualizing dynamic cellular activity have greatly expanded our understanding of the brain. However, due to light scattering properties of the brain as well as the size and rigidity of traditional imaging technology, in vivo calcium imaging has been limited to superficial brain structures during head fixed behavioral tasks. This limitation can now be circumvented by utilizing miniature, integrated microscopes in conjunction with an implantable microendoscopic lens to guide light into and out of the brain, thus permitting optical access to deep brain (or superficial) neural ensembles during naturalistic behaviors. Here, we describe procedural steps to conduct such imaging studies using mice. However, we anticipate the protocol can be easily adapted for use in other small vertebrates. Successful completion of this protocol will permit cellular imaging of neuronal activity and the generation of data sets with sufficient statistical power to correlate neural activity with stimulus presentation, physiological state, and other aspects of complex behavioral tasks. This protocol takes 6–11 weeks to complete. PMID:26914316

  15. Cross-frequency coupling in deep brain structures upon processing the painful sensory inputs.

    PubMed

    Liu, C C; Chien, J H; Kim, J H; Chuang, Y F; Cheng, D T; Anderson, W S; Lenz, F A

    2015-09-10

    Cross-frequency coupling has been shown to be functionally significant in cortical information processing, potentially serving as a mechanism for integrating functionally relevant regions in the brain. In this study, we evaluate the hypothesis that pain-related gamma oscillatory responses are coupled with low-frequency oscillations in the frontal lobe, amygdala and hippocampus, areas known to have roles in pain processing. We delivered painful laser pulses to random locations on the dorsal hand of five patients with uncontrolled epilepsy requiring depth electrode implantation for seizure monitoring. Two blocks of 40 laser stimulations were delivered to each subject and the pain-intensity was controlled at five in a 0-10 scale by adjusting the energy level of the laser pulses. Local-field-potentials (LFPs) were recorded through bilaterally implanted depth electrode contacts to study the oscillatory responses upon processing the painful laser stimulations. Our results show that painful laser stimulations enhanced low-gamma (LH, 40-70 Hz) and high-gamma (HG, 70-110 Hz) oscillatory responses in the amygdala and hippocampal regions on the right hemisphere and these gamma responses were significantly coupled with the phases of theta (4-7 Hz) and alpha (8-1 2 Hz) rhythms during pain processing. Given the roles of these deep brain structures in emotion, these findings suggest that the oscillatory responses in these regions may play a role in integrating the affective component of pain, which may contribute to our understanding of the mechanisms underlying the affective information processing in humans. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Rapid Modulation of Protein Expression in the Rat Hippocampus Following Deep Brain Stimulation of the Fornix.

    PubMed

    Gondard, Elise; Chau, Hien N; Mann, Amandeep; Tierney, Travis S; Hamani, Clement; Kalia, Suneil K; Lozano, Andres M

    2015-01-01

    The forniceal area is currently being evaluated as a target for deep brain stimulation (DBS) to improve cognitive function in patients with Alzheimer's disease. The molecular changes at downstream targets within the stimulated circuit are unknown. To analyze the modulation of hippocampal protein expression following 1 h of fornix DBS in the rat. Animals underwent bilateral forniceal DBS for 1 h and sacrificed at different time-points after the initiation of the stimulation (1 h, 2.5 h, 5 h, 25 h). Bilateral hippocampi were isolated for western blot analyses. Forniceal DBS led to a dramatic elevation of cFos post-stimulation, suggesting that forniceal DBS activates the hippocampus. There was also a significant increase in candidate proteins including several trophic factors, such as brain derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) but not glial cell-derived neurotrophic factor (GDNF). There was in addition, increased expression of the synaptic markers growth associated protein 43 (GAP-43), synaptophysin and α-synuclein. No changes were observed at the studied time-points in Alzheimer's-related proteins including amyloid precursor protein (APP), tau, phosphorylated tau (ptau), or selected chaperone proteins (HSP40, HSP70 and CHIP). Forniceal DBS triggers hippocampal activity and rapidly modulate the expression of neurotrophic factors and markers of synaptic plasticity known to play key roles in memory processing. The clinical effects of DBS of the fornix may, in part, be mediated by producing changes in the expression of these proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Design of robust adaptive controller and feedback error learning for rehabilitation in Parkinson's disease: a simulation study.

    PubMed

    Rouhollahi, Korosh; Emadi Andani, Mehran; Karbassi, Seyed Mahdi; Izadi, Iman

    2017-02-01

    Deep brain stimulation (DBS) is an efficient therapy to control movement disorders of Parkinson's tremor. Stimulation of one area of basal ganglia (BG) by DBS with no feedback is the prevalent opinion. Reduction of additional stimulatory signal delivered to the brain is the advantage of using feedback. This results in reduction of side effects caused by the excessive stimulation intensity. In fact, the stimulatory intensity of controllers is decreased proportional to reduction of hand tremor. The objective of this study is to design a new controller structure to decrease three indicators: (i) the hand tremor; (ii) the level of delivered stimulation in disease condition; and (iii) the ratio of the level of delivered stimulation in health condition to disease condition. For this purpose, the authors offer a new closed-loop control structure to stimulate two areas of BG simultaneously. One area (STN: subthalamic nucleus) is stimulated by an adaptive controller with feedback error learning. The other area (GPi: globus pallidus internal) is stimulated by a partial state feedback (PSF) controller. Considering the three indicators, the results show that, stimulating two areas simultaneously leads to better performance compared with stimulating one area only. It is shown that both PSF and adaptive controllers are robust regarding system parameter uncertainties. In addition, a method is proposed to update the parameters of the BG model in real time. As a result, the parameters of the controllers can be updated based on the new parameters of the BG model.

  18. In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)

    NASA Astrophysics Data System (ADS)

    Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-01-01

    New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.

  19. Symptoms and Treatment | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn JavaScript on. Feature: Parkinson's Disease Symptoms and Treatment Past Issues / Winter 2016 Table ... study to identify abnormal brain rhythms associated with Parkinson's disease. Photo courtesy of Coralie de Hemptinne Deep Brain ...

  20. Recurrent, Delayed Hemorrhage Associated with Edoxaban after Deep Brain Stimulation Lead Placement

    PubMed Central

    Garber, Sarah T.; Schrock, Lauren E.; House, Paul A.

    2013-01-01

    Factor-Xa inhibitors like edoxaban have been shown to have comparable or superior rates of stroke and systemic embolization prevention to warfarin while exhibiting lower clinically significant bleeding rates. The authors report a case of a man who presented with delayed, recurrent intracranial hemorrhage months after successful deep brain stimulator placement for Parkinson disease while on edoxaban for atrial fibrillation. Further reports on the use of novel anticoagulants after intracranial surgery are acutely needed to help assess the true relative risk they pose. PMID:23365773

  1. Current Topics in Deep Brain Stimulation for Parkinson Disease

    PubMed Central

    UMEMURA, Atsushi; OYAMA, Genko; SHIMO, Yasushi; NAKAJIMA, Madoka; NAKAJIMA, Asuka; JO, Takayuki; SEKIMOTO, Satoko; ITO, Masanobu; MITSUHASHI, Takumi; HATTORI, Nobutaka; ARAI, Hajime

    2016-01-01

    There is a long history of surgical treatment for Parkinson disease (PD). After pioneering trials and errors, the current primary surgical treatment for PD is deep brain stimulation (DBS). DBS is a promising treatment option for patients with medically refractory PD. However, there are still many problems and controversies associated with DBS. In this review, we discuss current issues in DBS for PD, including patient selection, clinical outcomes, complications, target selection, long-term outcomes, management of axial symptoms, timing of surgery, surgical procedures, cost-effectiveness, and new technology. PMID:27349658

  2. Stridor and dysphagia associated with subthalamic nucleus stimulation in Parkinson disease.

    PubMed

    Fagbami, Oluwakemi Y; Donato, Anthony A

    2011-11-01

    Refractory symptoms in Parkinson disease show good response to deep brain stimulation (DBS). This procedure improves United Parkinson's Disease Rating Scale scores and reduces dyskinesias, whereas speech and swallowing dysfunction typically do not improve and may even worsen. Rarely, DBS can cause idiosyncratic dystonias of muscle groups, including those of the neck and throat. The authors describe a patient experiencing stridor and dysphagia with confirmed pulmonary restriction and aspiration following subthalamic nucleus deep brain stimulator adjustment, with a resolution of symptoms and signs when the stimulator was switched off.

  3. Deep Brain Stimulation using Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Jiles, David; Williams, Paul; Crowther, Lawrence; Iowa State University Team; Wolfson CentreMagnetics Team

    2011-03-01

    New applications for transcranial magnetic stimulation are developing rapidly for both diagnostic and therapeutic purposes. Therefore so is the demand for improved performance, particularly in terms of their ability to stimulate deeper regions of the brain and to do so selectively. The coil designs that are used presently are limited in their ability to stimulate the brain at depth and with high spatial focality. Consequently, any improvement in coil performance would have a significant impact in extending the usefulness of TMS in both clinical applications and academic research studies. New and improved coil designs have then been developed, modeled and tested as a result of this work. A large magnetizing coil, 300mm in diameter and compatible with a commercial TMS system has been constructed to determine its feasibility for use as a deep brain stimulator. The results of this work have suggested directions that could be pursued in order to further improve the coil designs.

  4. Deep sequencing reveals persistence of cell-associated mumps vaccine virus in chronic encephalitis.

    PubMed

    Morfopoulou, Sofia; Mee, Edward T; Connaughton, Sarah M; Brown, Julianne R; Gilmour, Kimberly; Chong, W K 'Kling'; Duprex, W Paul; Ferguson, Deborah; Hubank, Mike; Hutchinson, Ciaran; Kaliakatsos, Marios; McQuaid, Stephen; Paine, Simon; Plagnol, Vincent; Ruis, Christopher; Virasami, Alex; Zhan, Hong; Jacques, Thomas S; Schepelmann, Silke; Qasim, Waseem; Breuer, Judith

    2017-01-01

    Routine childhood vaccination against measles, mumps and rubella has virtually abolished virus-related morbidity and mortality. Notwithstanding this, we describe here devastating neurological complications associated with the detection of live-attenuated mumps virus Jeryl Lynn (MuV JL5 ) in the brain of a child who had undergone successful allogeneic transplantation for severe combined immunodeficiency (SCID). This is the first confirmed report of MuV JL5 associated with chronic encephalitis and highlights the need to exclude immunodeficient individuals from immunisation with live-attenuated vaccines. The diagnosis was only possible by deep sequencing of the brain biopsy. Sequence comparison of the vaccine batch to the MuV JL5 isolated from brain identified biased hypermutation, particularly in the matrix gene, similar to those found in measles from cases of SSPE. The findings provide unique insights into the pathogenesis of paramyxovirus brain infections.

  5. Temporally Coordinated Deep Brain Stimulation in the Dorsal and Ventral Striatum Synergistically Enhances Associative Learning.

    PubMed

    Katnani, Husam A; Patel, Shaun R; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T; Eskandar, Emad N

    2016-01-04

    The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect.

  6. Sapphire implant based neuro-complex for deep-lying brain tumors phototheranostics

    NASA Astrophysics Data System (ADS)

    Sharova, A. S.; Maklygina, YU S.; Yusubalieva, G. M.; Shikunova, I. A.; Kurlov, V. N.; Loschenov, V. B.

    2018-01-01

    The neuro-complex as a combination of sapphire implant optical port and osteoplastic biomaterial "Collapan" as an Aluminum phthalocyanine nanoform photosensitizer (PS) depot was developed within the framework of this study. The main goals of such neuro-complex are to provide direct access of laser radiation to the brain tissue depth and to transfer PS directly to the pathological tissue location that will allow multiple optical phototheranostics of the deep-lying tumor region without repeated surgical intervention. The developed complex spectral-optical properties research was carried out by photodiagnostics method using the model sample: a brain tissue phantom. The optical transparency of sapphire implant allows obtaining a fluorescent signal with high accuracy, comparable to direct measurement "in contact" with the tissue.

  7. Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus

    NASA Astrophysics Data System (ADS)

    Fujino, Kiyohiro; Oertel, Donata

    2003-01-01

    The dorsal cochlear nucleus integrates acoustic with multimodal sensory inputs from widespread areas of the brain. Multimodal inputs are brought to spiny dendrites of fusiform and cartwheel cells in the molecular layer by parallel fibers through synapses that are subject to long-term potentiation and long-term depression. Acoustic cues are brought to smooth dendrites of fusiform cells in the deep layer by auditory nerve fibers through synapses that do not show plasticity. Plasticity requires Ca2+-induced Ca2+ release; its sensitivity to antagonists of N-methyl-D-aspartate and metabotropic glutamate receptors differs in fusiform and cartwheel cells.

  8. Deep intracerebral (basal ganglia) haematomas in fatal non-missile head injury in man.

    PubMed Central

    Adams, J H; Doyle, D; Graham, D I; Lawrence, A E; McLellan, D R

    1986-01-01

    Deep intracerebral (basal ganglia) haematomas were found post mortem in 63 of 635 fatal non-missile head injuries. In patients with a basal ganglia haematoma, contusions were more severe, there was a reduced incidence of a lucid interval, and there was an increased incidence of road traffic accidents, gliding contusions and diffuse axonal injury than in patients without this type of haematoma. Intracranial haematoma is usually thought to be a secondary event, that is a complication of the original injury, but these results suggest that a deep intracerebral haematoma is a primary event. If a deep intracerebral haematoma is identified on an early CT scan it is likely that the patient has sustained severe diffuse brain damage at the time of injury. In the majority of head injuries damage to blood vessels or axons predominates. In patients with a traumatic deep intracerebral haematoma, it would appear that the deceleration/acceleration forces are such that both axons and blood vessels within the brain are damaged at the time of injury. Images PMID:3760892

  9. Perioperative Brain Shift and Deep Brain Stimulating Electrode Deformation Analysis: Implications for rigid and non-rigid devices

    PubMed Central

    Sillay, Karl A.; Kumbier, L. M.; Ross, C.; Brady, M.; Alexander, A.; Gupta, A.; Adluru, N.; Miranpuri, G. S.; Williams, J. C.

    2016-01-01

    Deep brain stimulation (DBS) efficacy is related to optimal electrode placement. Several authors have quantified brain shift related to surgical targeting; yet, few reports document and discuss the effects of brain shift after insertion. Objective: To quantify brain shift and electrode displacement after device insertion. Twelve patients were retrospectively reviewed, and one post-operative MRI and one time-delayed CT were obtained for each patient and their implanted electrodes modeled in 3D. Two competing methods were employed to measure the electrode tip location and deviation from the prototypical linear implant after the resolution of acute surgical changes, such as brain shift and pneumocephalus. In the interim between surgery and a pneumocephalus free postoperative scan, electrode deviation was documented in all patients and all electrodes. Significant shift of the electrode tip was identified in rostral, anterior, and medial directions (p < 0.05). Shift was greatest in the rostral direction, measuring an average of 1.41 mm. Brain shift and subsequent electrode displacement occurs in patients after DBS surgery with the reversal of intraoperative brain shift. Rostral displacement is on the order of the height of one DBS contact. Further investigation into the time course of intraoperative brain shift and its potential effects on procedures performed with rigid and non-rigid devices in supine and semi-sitting surgical positions is needed. PMID:23010803

  10. Cavitation of deep lacunar infarcts in patients with first-ever lacunar stroke: a 2-year follow-up study with MR.

    PubMed

    Loos, Caroline M J; Staals, Julie; Wardlaw, Joanna M; van Oostenbrugge, Robert J

    2012-08-01

    Studies in patients with lacunar stroke often assess the number of lacunes. However, data on how many symptomatic lacunar infarcts cavitate into a lacune are limited. We assessed the evolution of symptomatic lacunar infarcts over 2-year follow-up. In 82 patients with first-ever lacunar stroke with a lacunar infarct in the deep brain regions (excluding the centrum semiovale), we performed a brain MR at presentation and 2 years later. We classified cavitation of lacunar infarcts at baseline and on follow-up MR as absent, incomplete, or complete. We recorded time to imaging, infarct size, and vascular risk factors. On baseline MR, 38 (46%) index infarcts showed complete or incomplete cavitation. Median time to imaging was 8 (0-73) days in noncavitated and 63 (1-184) days in cavitated lesions (P<0.05). On follow-up imaging, 94% of the lacunar infarcts were completely or incompletely cavitated, most had reduced in diameter, and 5 (6%) had disappeared. Vascular risk factors were not associated with cavitation. Cavitation and lesion shrinkage were seen in almost all symptomatic lacunar infarcts in the deep brain regions over 2-year follow-up. Counting lacunes in these specific regions at a random moment might slightly, however not substantially, underestimate the burden of deep lacunar infarction.

  11. Early Detection of Ventilation-Induced Brain Injury Using Magnetic Resonance Spectroscopy and Diffusion Tensor Imaging: An In Vivo Study in Preterm Lambs

    PubMed Central

    Skiöld, Béatrice; Wu, Qizhu; Hooper, Stuart B.; Davis, Peter G.; McIntyre, Richard; Tolcos, Mary; Pearson, James; Vreys, Ruth; Egan, Gary F.; Barton, Samantha K.; Cheong, Jeanie L. Y.; Polglase, Graeme R.

    2014-01-01

    Background and Aim High tidal volume (VT) ventilation during resuscitation of preterm lambs results in brain injury evident histologically within hours after birth. We aimed to investigate whether magnetic resonance spectroscopy (MRS) and/or diffusion tensor imaging (DTI) can be used for early in vivo detection of ventilation-induced brain injury in preterm lambs. Methods Newborn lambs (0.85 gestation) were stabilized with a “protective ventilation” strategy (PROT, n = 7: prophylactic Curosurf, sustained inflation, VT 7 mL/kg, positive end expiratory pressure (PEEP) 5 cmH2O) or an initial 15 minutes of “injurious ventilation” (INJ, n = 10: VT 12 mL/kg, no PEEP, late Curosurf) followed by PROT ventilation for the remainder of the experiment. At 1 hour, lambs underwent structural magnetic resonance imaging (Siemens, 3 Tesla). For measures of mean/axial/radial diffusivity (MD, AD, RD) and fractional anisotropy (FA), 30 direction DTI was performed. Regions of interests encompassed the thalamus, internal capsule, periventricular white matter and the cerebellar vermis. MRS was performed using a localized single-voxel (15×15×20 mm3, echo time 270 ms) encompassing suptratentorial deep nuclear grey matter and central white matter. Peak-area ratios for lactate (Lac) relative to N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) were calculated. Groups were compared using 2-way RM-ANOVA, Mann-Whitney U-test and Spearman's correlations. Results No cerebral injury was seen on structural MR images. Lambs in the INJ group had higher mean FA and lower mean RD in the thalamus compared to PROT lambs, but not in the other regions of interest. Peak-area lactate ratios >1.0 was only seen in INJ lambs. A trend of higher mean peak-area ratios for Lac/Cr and Lac/Cho was seen, which correlated with lower pH in both groups. Conclusion Acute changes in brain diffusion measures and metabolite peak-area ratios were observed after injurious ventilation. Early MRS/DTI is able to detect the initiation of ventilation-induced brain injury. PMID:24759765

  12. Increased Sleep Depth in Developing Neural Networks: New Insights from Sleep Restriction in Children

    PubMed Central

    Kurth, Salome; Dean, Douglas C.; Achermann, Peter; O’Muircheartaigh, Jonathan; Huber, Reto; Deoni, Sean C. L.; LeBourgeois, Monique K.

    2016-01-01

    Brain networks respond to sleep deprivation or restriction with increased sleep depth, which is quantified as slow-wave activity (SWA) in the sleep electroencephalogram (EEG). When adults are sleep deprived, this homeostatic response is most pronounced over prefrontal brain regions. However, it is unknown how children’s developing brain networks respond to acute sleep restriction, and whether this response is linked to myelination, an ongoing process in childhood that is critical for brain development and cortical integration. We implemented a bedtime delay protocol in 5- to 12-year-old children to obtain partial sleep restriction (1-night; 50% of their habitual sleep). High-density sleep EEG was assessed during habitual and restricted sleep and brain myelin content was obtained using mcDESPOT magnetic resonance imaging. The effect of sleep restriction was analyzed using statistical non-parametric mapping with supra-threshold cluster analysis. We observed a localized homeostatic SWA response following sleep restriction in a specific parieto-occipital region. The restricted/habitual SWA ratio was negatively associated with myelin water fraction in the optic radiation, a developing fiber bundle. This relationship occurred bilaterally over parieto-temporal areas and was adjacent to, but did not overlap with the parieto-occipital region showing the most pronounced homeostatic SWA response. These results provide evidence for increased sleep need in posterior neural networks in children. Sleep need in parieto-temporal areas is related to myelin content, yet it remains speculative whether age-related myelin growth drives the fading of the posterior homeostatic SWA response during the transition to adulthood. Whether chronic insufficient sleep in the sensitive period of early life alters the anatomical generators of deep sleep slow-waves is an important unanswered question. PMID:27708567

  13. [Anesthesiological management of awake craniotomy : Asleep-awake-asleep technique or without sedation].

    PubMed

    Seemann, M; Zech, N; Graf, B; Hansen, E

    2015-02-01

    Awake craniotomy is indicated in deep brain stimulation (DBS) for treatment of certain movement disorders, such as in Parkinson disease patients or in the surgery of brain tumors in close vicinity to the language area. The standard procedure is the asleep-awake-asleep technique where general anesthesia or analgosedation is intermittently interrupted for neurological testing. In DBS the intraoperative improvement of symptoms, stereotactic navigation and microelectrode reading guide to the optimal position. In brain tumor resection, reversible functional impairments during electrical stimulation on the brain surface (brain mapping) show the exact individual position of eloquent or motoric areas that should be protected.The anesthesiology procedures used are very variable. It is a balancing act between overdosing of anesthetics with impairment of respiration and alertness and underdosing with pain, strain and stress for the patient. For the asleep-awake-asleep technique high acceptance but also frequent and partly severe complications have been reported. The psychological stress for the patient can be immense. Obviously, a feeling of being left alone and being at someone's mercy is not adequately treated by drugs and performance of the neurological tests is undoubtedly better and more reliable with less pharmacological impairment. Cranial nerve blocks can reduce the amount of anesthetics as they provide analgesia of the scalp more efficiently than local infiltration. With these nerve blocks, a strong therapeutic relationship and a specific communication, sedatives can be avoided and the need for opioids markedly reduced or abolished. The suggestive communication promotes for instance dissociation to an inner safe refuge, as well as reframing of disturbing noises and sensations. Each of the methods applied for awake craniotomy can profit from the principles of this awake-awake-awake technique.

  14. Deep Convolutional Neural Networks for Multi-Modality Isointense Infant Brain Image Segmentation

    PubMed Central

    Zhang, Wenlu; Li, Rongjian; Deng, Houtao; Wang, Li; Lin, Weili; Ji, Shuiwang; Shen, Dinggang

    2015-01-01

    The segmentation of infant brain tissue images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) plays an important role in studying early brain development in health and disease. In the isointense stage (approximately 6–8 months of age), WM and GM exhibit similar levels of intensity in both T1 and T2 MR images, making the tissue segmentation very challenging. Only a small number of existing methods have been designed for tissue segmentation in this isointense stage; however, they only used a single T1 or T2 images, or the combination of T1 and T2 images. In this paper, we propose to use deep convolutional neural networks (CNNs) for segmenting isointense stage brain tissues using multi-modality MR images. CNNs are a type of deep models in which trainable filters and local neighborhood pooling operations are applied alternatingly on the raw input images, resulting in a hierarchy of increasingly complex features. Specifically, we used multimodality information from T1, T2, and fractional anisotropy (FA) images as inputs and then generated the segmentation maps as outputs. The multiple intermediate layers applied convolution, pooling, normalization, and other operations to capture the highly nonlinear mappings between inputs and outputs. We compared the performance of our approach with that of the commonly used segmentation methods on a set of manually segmented isointense stage brain images. Results showed that our proposed model significantly outperformed prior methods on infant brain tissue segmentation. In addition, our results indicated that integration of multi-modality images led to significant performance improvement. PMID:25562829

  15. Mediodorsal thalamus and cognition in non-human primates

    PubMed Central

    Baxter, Mark G.

    2013-01-01

    Several recent studies in non-human primates have provided new insights into the role of the medial thalamus in different aspects of cognitive function. The mediodorsal nucleus of the thalamus (MD), by virtue of its connectivity with the frontal cortex, has been implicated in an array of cognitive functions. Rather than serving as an engine or relay for the prefrontal cortex, this area seems to be more specifically involved in regulating plasticity and flexibility of prefrontal-dependent cognitive functions. Focal damage to MD may also exacerbate the effects of damage to other subcortical relays. Thus, a wide range of distributed circuits and cognitive functions may be disrupted from focal damage within the medial thalamus (for example as a consequence of stroke or brain injury). Conversely, this region may make an interesting target for neuromodulation of cognitive function via deep brain stimulation or related methods, in conditions associated with dysfunction of these neural circuits. PMID:23964206

  16. Mediodorsal thalamus and cognition in non-human primates.

    PubMed

    Baxter, Mark G

    2013-01-01

    Several recent studies in non-human primates have provided new insights into the role of the medial thalamus in different aspects of cognitive function. The mediodorsal nucleus of the thalamus (MD), by virtue of its connectivity with the frontal cortex, has been implicated in an array of cognitive functions. Rather than serving as an engine or relay for the prefrontal cortex, this area seems to be more specifically involved in regulating plasticity and flexibility of prefrontal-dependent cognitive functions. Focal damage to MD may also exacerbate the effects of damage to other subcortical relays. Thus, a wide range of distributed circuits and cognitive functions may be disrupted from focal damage within the medial thalamus (for example as a consequence of stroke or brain injury). Conversely, this region may make an interesting target for neuromodulation of cognitive function via deep brain stimulation or related methods, in conditions associated with dysfunction of these neural circuits.

  17. Computer modelling of epilepsy.

    PubMed

    Lytton, William W

    2008-08-01

    Epilepsy is a complex set of disorders that can involve many areas of the cortex, as well as underlying deep-brain systems. The myriad manifestations of seizures, which can be as varied as déjà vu and olfactory hallucination, can therefore give researchers insights into regional functions and relations. Epilepsy is also complex genetically and pathophysiologically: it involves microscopic (on the scale of ion channels and synaptic proteins), macroscopic (on the scale of brain trauma and rewiring) and intermediate changes in a complex interplay of causality. It has long been recognized that computer modelling will be required to disentangle causality, to better understand seizure spread and to understand and eventually predict treatment efficacy. Over the past few years, substantial progress has been made in modelling epilepsy at levels ranging from the molecular to the socioeconomic. We review these efforts and connect them to the medical goals of understanding and treating the disorder.

  18. Generic decoding of seen and imagined objects using hierarchical visual features.

    PubMed

    Horikawa, Tomoyasu; Kamitani, Yukiyasu

    2017-05-22

    Object recognition is a key function in both human and machine vision. While brain decoding of seen and imagined objects has been achieved, the prediction is limited to training examples. We present a decoding approach for arbitrary objects using the machine vision principle that an object category is represented by a set of features rendered invariant through hierarchical processing. We show that visual features, including those derived from a deep convolutional neural network, can be predicted from fMRI patterns, and that greater accuracy is achieved for low-/high-level features with lower-/higher-level visual areas, respectively. Predicted features are used to identify seen/imagined object categories (extending beyond decoder training) from a set of computed features for numerous object images. Furthermore, decoding of imagined objects reveals progressive recruitment of higher-to-lower visual representations. Our results demonstrate a homology between human and machine vision and its utility for brain-based information retrieval.

  19. Asleep Deep Brain Stimulation Reduces Incidence of Intracranial Air during Electrode Implantation.

    PubMed

    Ko, Andrew L; Magown, Philippe; Ozpinar, Alp; Hamzaoglu, Vural; Burchiel, Kim J

    2018-05-30

    Asleep deep brain stimulation (aDBS) implantation replaces microelectrode recording for image-guided implantation, shortening the operative time and reducing cerebrospinal fluid egress. This may decrease pneumocephalus, thus decreasing brain shift during implantation. To compare the incidence and volume of pneumocephalus during awake (wkDBS) and aDBS procedures. A retrospective review of bilateral DBS cases performed at Oregon Health & Science University from 2009 to 2017 was undertaken. Postimplantation imaging was reviewed to determine the presence and volume of intracranial air and measure cortical brain shift. Among 371 patients, pneumocephalus was noted in 66% of wkDBS and 15.6% of aDBS. The average volume of air was significantly higher in wkDBS than aDBS (8.0 vs. 1.8 mL). Volumes of air greater than 7 mL, which have previously been linked to brain shift, occurred significantly more frequently in wkDBS than aDBS (34 vs 5.6%). wkDBS resulted in significantly larger cortical brain shifts (5.8 vs. 1.2 mm). We show that aDBS reduces the incidence of intracranial air, larger air volumes, and cortical brain shift. Large volumes of intracranial air have been correlated to shifting of brain structures during DBS procedures, a variable that could impact accuracy of electrode placement. © 2018 S. Karger AG, Basel.

  20. Functional and clinical neuroanatomy of morality.

    PubMed

    Fumagalli, Manuela; Priori, Alberto

    2012-07-01

    Morality is among the most sophisticated features of human judgement, behaviour and, ultimately, mind. An individual who behaves immorally may violate ethical rules and civil rights, and may threaten others' individual liberty, sometimes becoming violent and aggressive. In recent years, neuroscience has shown a growing interest in human morality, and has advanced our understanding of the cognitive and emotional processes involved in moral decisions, their anatomical substrates and the neurology of abnormal moral behaviour. In this article, we review research findings that have provided a key insight into the functional and clinical neuroanatomy of the brain areas involved in normal and abnormal moral behaviour. The 'moral brain' consists of a large functional network including both cortical and subcortical anatomical structures. Because morality is a complex process, some of these brain structures share their neural circuits with those controlling other behavioural processes, such as emotions and theory of mind. Among the anatomical structures implicated in morality are the frontal, temporal and cingulate cortices. The prefrontal cortex regulates activity in subcortical emotional centres, planning and supervising moral decisions, and when its functionality is altered may lead to impulsive aggression. The temporal lobe is involved in theory of mind and its dysfunction is often implicated in violent psychopathy. The cingulate cortex mediates the conflict between the emotional and the rational components of moral reasoning. Other important structures contributing to moral behaviour include the subcortical nuclei such as the amygdala, hippocampus and basal ganglia. Brain areas participating in moral processing can be influenced also by genetic, endocrine and environmental factors. Hormones can modulate moral behaviour through their effects on the brain. Finally, genetic polymorphisms can predispose to aggressivity and violence, arguing for a genetic-based predisposition to morality. Because abnormal moral behaviour can arise from both functional and structural brain abnormalities that should be diagnosed and treated, the neurology of moral behaviour has potential implications for clinical practice and raises ethical concerns. Last, since research has developed several neuromodulation techniques to improve brain dysfunction (deep brain stimulation, transcranial magnetic stimulation and transcranial direct current stimulation), knowing more about the 'moral brain' might help to develop novel therapeutic strategies for neurologically based abnormal moral behaviour.

  1. A computational framework for the detection of subcortical brain dysmaturation in neonatal MRI using 3D Convolutional Neural Networks.

    PubMed

    Ceschin, Rafael; Zahner, Alexandria; Reynolds, William; Gaesser, Jenna; Zuccoli, Giulio; Lo, Cecilia W; Gopalakrishnan, Vanathi; Panigrahy, Ashok

    2018-05-21

    Deep neural networks are increasingly being used in both supervised learning for classification tasks and unsupervised learning to derive complex patterns from the input data. However, the successful implementation of deep neural networks using neuroimaging datasets requires adequate sample size for training and well-defined signal intensity based structural differentiation. There is a lack of effective automated diagnostic tools for the reliable detection of brain dysmaturation in the neonatal period, related to small sample size and complex undifferentiated brain structures, despite both translational research and clinical importance. Volumetric information alone is insufficient for diagnosis. In this study, we developed a computational framework for the automated classification of brain dysmaturation from neonatal MRI, by combining a specific deep neural network implementation with neonatal structural brain segmentation as a method for both clinical pattern recognition and data-driven inference into the underlying structural morphology. We implemented three-dimensional convolution neural networks (3D-CNNs) to specifically classify dysplastic cerebelli, a subset of surface-based subcortical brain dysmaturation, in term infants born with congenital heart disease. We obtained a 0.985 ± 0. 0241-classification accuracy of subtle cerebellar dysplasia in CHD using 10-fold cross-validation. Furthermore, the hidden layer activations and class activation maps depicted regional vulnerability of the superior surface of the cerebellum, (composed of mostly the posterior lobe and the midline vermis), in regards to differentiating the dysplastic process from normal tissue. The posterior lobe and the midline vermis provide regional differentiation that is relevant to not only to the clinical diagnosis of cerebellar dysplasia, but also genetic mechanisms and neurodevelopmental outcome correlates. These findings not only contribute to the detection and classification of a subset of neonatal brain dysmaturation, but also provide insight to the pathogenesis of cerebellar dysplasia in CHD. In addition, this is one of the first examples of the application of deep learning to a neuroimaging dataset, in which the hidden layer activation revealed diagnostically and biologically relevant features about the clinical pathogenesis. The code developed for this project is open source, published under the BSD License, and designed to be generalizable to applications both within and beyond neonatal brain imaging. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Deep and Structured Robust Information Theoretic Learning for Image Analysis.

    PubMed

    Deng, Yue; Bao, Feng; Deng, Xuesong; Wang, Ruiping; Kong, Youyong; Dai, Qionghai

    2016-07-07

    This paper presents a robust information theoretic (RIT) model to reduce the uncertainties, i.e. missing and noisy labels, in general discriminative data representation tasks. The fundamental pursuit of our model is to simultaneously learn a transformation function and a discriminative classifier that maximize the mutual information of data and their labels in the latent space. In this general paradigm, we respectively discuss three types of the RIT implementations with linear subspace embedding, deep transformation and structured sparse learning. In practice, the RIT and deep RIT are exploited to solve the image categorization task whose performances will be verified on various benchmark datasets. The structured sparse RIT is further applied to a medical image analysis task for brain MRI segmentation that allows group-level feature selections on the brain tissues.

  3. Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy.

    PubMed

    Charan, Kriti; Li, Bo; Wang, Mengran; Lin, Charles P; Xu, Chris

    2018-05-01

    Deep tissue multiphoton imaging requires high peak power to enhance signal and low average power to prevent thermal damage. Both goals can be advantageously achieved through laser repetition rate tuning instead of simply adjusting the average power. We show that the ideal repetition rate for deep two-photon imaging in the mouse brain is between 1 and 10 MHz, and we present a fiber-based source with an arbitrarily tunable repetition rate within this range. The performance of the new source is compared to a mode-locked Ti:Sapphire (Ti:S) laser for in vivo imaging of mouse brain vasculature. At 2.5 MHz, the fiber source requires 5.1 times less average power to obtain the same signal as a standard Ti:S laser operating at 80 MHz.

  4. An electrophysiological investigation of memory encoding, depth of processing, and word frequency in humans.

    PubMed

    Guo, Chunyan; Zhu, Ying; Ding, Jinhong; Fan, Silu; Paller, Ken A

    2004-02-12

    Memory encoding can be studied by monitoring brain activity correlated with subsequent remembering. To understand brain potentials associated with encoding, we compared multiple factors known to affect encoding. Depth of processing was manipulated by requiring subjects to detect animal names (deep encoding) or boldface (shallow encoding) in a series of Chinese words. Recognition was more accurate with deep than shallow encoding, and for low- compared to high-frequency words. Potentials were generally more positive for subsequently recognized versus forgotten words; for deep compared to shallow processing; and, for remembered words only, for low- than for high-frequency words. Latency and topographic differences between these potentials suggested that several factors influence the effectiveness of encoding and can be distinguished using these methods, even with Chinese logographic symbols.

  5. Mapping the "Depression Switch" During Intraoperative Testing of Subcallosal Cingulate Deep Brain Stimulation.

    PubMed

    Choi, Ki Sueng; Riva-Posse, Patricio; Gross, Robert E; Mayberg, Helen S

    2015-11-01

    The clinical utility of monitoring behavioral changes during intraoperative testing of subcallosal cingulate deep brain stimulation is unknown. To characterize the structural connectivity correlates of deep brain stimulation-evoked behavioral effects using probabilistic tractography in depression. Categorization of acute behavioral effects was conducted in 9 adults undergoing deep brain stimulation implantation surgery for chronic treatment-resistant depression in a randomized and blinded testing session at Emory University. Patients were studied from September 1, 2011, through June 30, 2013. Post hoc analyses of the structural tractography patterns mediating distinct categories of evoked behavioral effects were defined, including the best response overall. Data analyses were performed from May 1 through July 1, 2015. Categorization of stimulation-induced transient behavioral effects and delineation of the shared white matter tracts mediating response subtypes. Among the 9 patients, 72 active and 36 sham trials were recorded. The following stereotypical behavior patterns were identified: changes in interoceptive (noted changes in body state in 30 of 72 active and 4 of 36 sham trials) and in exteroceptive (shift in attention from patient to others in 9 of 72 active and 0 sham trials) awareness. The best response was a combination of exteroceptive and interoceptive changes at a single left contact for all 9 patients. Structural connectivity showed that the best response contacts had a pattern of connections to the bilateral ventromedial frontal cortex (via forceps minor and left uncinate fasciculus) and to the cingulate cortex (via left cingulum bundle), whereas behaviorally salient but nonbest contacts had only cingulate involvement. The involvement of the 3 white matter bundles during stimulation of the best contacts suggests a mechanism for the observed transient "depression switch." This analysis of transient behavior changes during intraoperative deep brain stimulation of the subcallosal cingulate and the subsequent identification of unique connectivity patterns may provide a biomarker of a rapid-onset depression switch to guide surgical implantation and to refine and optimize algorithms for the selection of contacts in long-term stimulation for treatment-resistant depression.

  6. Brain changes due to hypoxia during light anaesthesia can be prevented by deepening anaesthesia; a study in rats

    PubMed Central

    Kalmar, Alain F.; Doorduin, Janine; Struys, Michel M. R. F.; Schoemaker, Regien G.; Absalom, Anthony R.

    2018-01-01

    In anaesthetic practice the risk of cerebral ischemic/hypoxic damage is thought to be attenuated by deep anaesthesia. The rationale is that deeper anaesthesia reduces cerebral oxygen demand more than light anaesthesia, thereby increasing the tolerance to ischemia or hypoxia. However, evidence to support this is scarce. We thus investigated the influence of light versus deep anaesthesia on the responses of rat brains to a period of hypoxia. In the first experiment we exposed adult male Wistar rats to deep or light propofol anaesthesia and then performed [18F]- Fludeoxyglucose (FDG) Positron Emission Tomography (PET) scans to verify the extent of cerebral metabolic suppression. In subsequent experiments, rats were subjected to light/deep propofol anaesthesia and then exposed to a period of hypoxia or ongoing normoxia (n = 9–11 per group). A further 5 rats, not exposed to anaesthesia or hypoxia, served as controls. Four days later a Novel Object Recognition (NOR) test was performed to assess mood and cognition. After another 4 days, the animals were sacrificed for later immunohistochemical analyses of neurogenesis/neuroplasticity (Doublecortin; DCX), Brain Derived Neurotrophic Factor (BDNF) expression and neuroinflammation (Ionized calcium-binding adaptor protein-1; Iba-1) in hippocampal and piriform cortex slices. The hippocampi of rats subjected to hypoxia during light anaesthesia showed lower DCX positivity, and therefore lower neurogenesis, but higher BDNF levels and microglia hyper-ramification. Exploration was reduced, but no significant effect on NOR was observed. In the piriform cortex, higher DCX positivity was observed, associated with neuroplasticity. All these effects were attenuated by deep anaesthesia. Deepening anaesthesia attenuated the brain changes associated with hypoxia. Hypoxia during light anaesthesia had a prolonged effect on the brain, but no impairment in cognitive function was observed. Although reduced hippocampal neurogenesis may be considered unfavourable, higher BDNF expression, associated with microglia hyper-ramification may suggest activation of repair mechanisms. Increased neuroplasticity observed in the piriform cortex supports this, and might reflect a prolonged state of alertness rather than damage. PMID:29451906

  7. Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making.

    PubMed

    Coulthard, Elizabeth J; Bogacz, Rafal; Javed, Shazia; Mooney, Lucy K; Murphy, Gillian; Keeley, Sophie; Whone, Alan L

    2012-12-01

    Even simple behaviour requires us to make decisions based on combining multiple pieces of learned and new information. Making such decisions requires both learning the optimal response to each given stimulus as well as combining probabilistic information from multiple stimuli before selecting a response. Computational theories of decision making predict that learning individual stimulus-response associations and rapid combination of information from multiple stimuli are dependent on different components of basal ganglia circuitry. In particular, learning and retention of memory, required for optimal response choice, are significantly reliant on dopamine, whereas integrating information probabilistically is critically dependent upon functioning of the glutamatergic subthalamic nucleus (computing the 'normalization term' in Bayes' theorem). Here, we test these theories by investigating 22 patients with Parkinson's disease either treated with deep brain stimulation to the subthalamic nucleus and dopaminergic therapy or managed with dopaminergic therapy alone. We use computerized tasks that probe three cognitive functions-information acquisition (learning), memory over a delay and information integration when multiple pieces of sequentially presented information have to be combined. Patients performed the tasks ON or OFF deep brain stimulation and/or ON or OFF dopaminergic therapy. Consistent with the computational theories, we show that stopping dopaminergic therapy impairs memory for probabilistic information over a delay, whereas deep brain stimulation to the region of the subthalamic nucleus disrupts decision making when multiple pieces of acquired information must be combined. Furthermore, we found that when participants needed to update their decision on the basis of the last piece of information presented in the decision-making task, patients with deep brain stimulation of the subthalamic nucleus region did not slow down appropriately to revise their plan, a pattern of behaviour that mirrors the impulsivity described clinically in some patients with subthalamic nucleus deep brain stimulation. Thus, we demonstrate distinct mechanisms for two important facets of human decision making: first, a role for dopamine in memory consolidation, and second, the critical importance of the subthalamic nucleus in successful decision making when multiple pieces of information must be combined.

  8. A NEW METHOD FOR THE GENERATION AND USE OF FOCUSED ULTRASOUND IN EXPERIMENTAL BIOLOGY

    PubMed Central

    Lynn, John G.; Zwemer, Raymund L.; Chick, Arthur J.; Miller, August E.

    1942-01-01

    1. An efficient generator of focused ultrasound has been designed, built, and successfully operated. 2. The generator has been used to produce focal heating in the centers of paraffin blocks, and in a similar manner, focal areas of destruction were obtained deep in fresh liver tissue with minimal effects at the surface and no effects on the intervening tissue. 3. In animals, focused ultrasound of high intensity produced local cerebral changes as inferred from behavior disabilities and as demonstrated at autopsy. This local brain effect was achieved through intervening scalp, skull, and meninges. The resulting behavior disabilities disappeared in from 2 to 16 hours. 4. To date, it has not been possible to produce such brain changes without incidental injury to the skin and subcutaneous tissue lying at the base of the cone of radiation. 5. Improvements in generation and application of the focused supersonic beam are suggested whereby it should be possible to increase still further the focal effects in the brain, with a corresponding decrease or elimination of complicating surface injury. PMID:19873337

  9. Decoding of Human Movements Based on Deep Brain Local Field Potentials Using Ensemble Neural Networks

    PubMed Central

    2017-01-01

    Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs) for robust movement decoding of Parkinson's disease (PD) and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value) at about 0.729 ± 0.16 for decoding movement from the resting state and about 0.671 ± 0.14 for decoding left and right visually cued movements. PMID:29201041

  10. [Intervening in the neural basis of one's personality: a practice-oriented ethical analysis of neuropharmacology and deep-brain stimulation].

    PubMed

    Synofzik, M

    2007-12-01

    Through the rapid progress in neuropharmacology it seems to become possible to effectively improve our cognitive capacities and emotional states by easily applicable means. Moreover, deep-brain stimulation may allow an effective therapeutic option for those neurological and psychiatric diseases which still can not be sufficiently treated by pharmacological measures. So far, however, both the benefit and the harm of these techniques are only insufficiently understood by neuroscience and detailed ethical analyses are still missing. In this article ethical criteria and most recent empirical evidence are systematically brought together for the first time. This analysis shows that it is irrelevant for an ethical evaluation whether a drug or a brain-machine interface is categorized as "enhancement" or "treatment" or whether it changes "human nature". The only decisive criteria are whether the intervention (1.) benefits the patient, (2.) does not harm the patient and (3.) is desired by the patient. However, current empirical data in both fields, neuropharmacology and deep-brain stimulation are still too sparse to adequately evaluate these criteria. Moreover, the focus in both fields has been strongly misled by neglecting the distinction between "benefit" and "efficacy": In past years research and clinical practice have only focused on physiological effects, but not on the actual benefit to the patient.

  11. Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling.

    PubMed

    Han, J W; Van Leeuwen, G M; Mizushina, S; Van de Kamer, J B; Maruyama, K; Sugiura, T; Azzopardi, D V; Edwards, A D

    2001-07-01

    In this study we present a design for a multi-frequency microwave radiometer aimed at prolonged monitoring of deep brain temperature in newborn infants and suitable for use during hypothermic neural rescue therapy. We identify appropriate hardware to measure brightness temperature and evaluate the accuracy of the measurements. We describe a method to estimate the tissue temperature distribution from measured brightness temperatures which uses the results of numerical simulations of the tissue temperature as well as the propagation of the microwaves in a realistic detailed three-dimensional infant head model. The temperature retrieval method is then used to evaluate how the statistical fluctuations in the measured brightness temperatures limit the confidence interval for the estimated temperature: for an 18 degrees C temperature differential between cooled surface and deep brain we found a standard error in the estimated central brain temperature of 0.75 degrees C. Evaluation of the systematic errors arising from inaccuracies in model parameters showed that realistic deviations in tissue parameters have little impact compared to uncertainty in the thickness of the bolus between the receiving antenna and the infant's head or in the skull thickness. This highlights the need to pay particular attention to these latter parameters in future practical implementation of the technique.

  12. Reduced thalamic N-acetylaspartate in idiopathic normal pressure hydrocephalus: a controlled 1H-magnetic resonance spectroscopy study of frontal deep white matter and the thalamus using absolute quantification.

    PubMed

    Lundin, F; Tisell, A; Dahlqvist Leinhard, O; Tullberg, M; Wikkelsö, C; Lundberg, P; Leijon, G

    2011-07-01

    Patients with idiopathic normal pressure hydrocephalus (INPH) frequently have a reduction in cerebral blood flow in the subcortical frontal lobe/basal ganglia/thalamic areas. With magnetic resonance spectroscopy, the metabolism in the brain can be examined. The aim of this study was to investigate if there was a compromised metabolism in the thalamus and in the subcortical frontal areas in INPH patients. This was done by measuring total creatine, myo-inositol, total choline, N-acetylaspartate (NAA), total N-acetylaspartate (tNA), glutamate and lactate levels. A comparison was made with healthy individuals (HI). 16 patients (nine males, seven females, mean age 74 years, range 49-83) diagnosed as INPH and 15 HI (nine males, six females, mean age 74 years, range 62-89) were examined. (1)H magnetic resonance spectroscopy (1.5 T, point-resolved spectroscopy, echo time/relaxation time 30/3000 ms, volume of interest 2.5-3 ml) was performed in frontal deep white matter and in the thalamus. Absolute quantification with internal water as a reference was used. INPH patients had lower NAA (p=0.02) and lower tNA (p=0.05) concentrations in the thalamus compared with HI. NAA and tNA in the frontal deep white matter did not differ between patients and HI. The absolute metabolic concentrations of total creatine, myo-inositol total choline, tNA, lactate and Cr ratios in frontal deep white matter and in the thalamus were similar in INPH patients and HI. Reduced thalamic NAA and tNA in INPH patients suggest a compromised metabolic neuronal function in these regions. Thus, the thalamus might have an important role in the pathogenesis of INPH.

  13. Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson's disease

    PubMed Central

    Swann, Nicole; Poizner, Howard; Houser, Melissa; Gould, Sherrie; Greenhouse, Ian; Cai, Weidong; Strunk, Jon; George, Jobi; Aron, Adam R

    2011-01-01

    Stopping an initiated response could be implemented by a fronto-basal-ganglia circuit, including the right inferior frontal cortex (rIFC) and the subthalamic nucleus (STN). Intracranial recording studies in humans reveal an increase in beta-band power (~16-20 Hz) within the rIFC and STN when a response is stopped. This suggests that the beta-band could be important for communication in this network. If this is the case, then altering one region should affect the electrophysiological response at the other. We addressed this hypothesis by recording scalp EEG during a stop task while modulating STN activity with deep brain stimulation. We studied 15 human patients with Parkinson's Disease and 15 matched healthy control subjects. Behaviorally, patients OFF stimulation were slower than controls to stop their response. Moreover, stopping speed was improved for ON compared to OFF stimulation. For scalp EEG, there was greater beta power, around the time of stopping, for patients ON compared to OFF stimulation. This effect was stronger over the right compared to left frontal cortex, consistent with the putative right-lateralization of the stopping network. Thus, deep brain stimulation of the STN improved behavioral stopping performance and increased the beta-band response over the right frontal cortex. These results complement other evidence for a structurally-connected, functional, circuit between right frontal cortex and the basal ganglia. The results also suggest that deep brain stimulation of the STN may improve task performance by increasing the fidelity of information transfer within a fronto-basal ganglia circuit. PMID:21490213

  14. Potential subjects' responses to an ethics questionnaire in a phase I study of deep brain stimulation in early Parkinson's disease.

    PubMed

    Finder, Stuart G; Bliton, Mark J; Gill, Chandler E; Davis, Thomas L; Konrad, Peter E; Charles, P David

    2012-01-01

    Central to ethically justified clinical trial design is the need for an informed consent process responsive to how potential subjects actually comprehend study participation, especially study goals, risks, and potential benefits. This will be particularly challenging when studying deep brain stimulation and whether it impedes symptom progression in Parkinson's disease, since potential subjects will be Parkinson's patients for whom deep brain stimulation will likely have therapeutic value in the future as their disease progresses. As part of an expanded informed consent process for a pilot Phase I study of deep brain stimulation in early stage Parkinson's disease, an ethics questionnaire composed of 13 open-ended questions was distributed to potential subjects. The questionnaire was designed to guide potential subjects in thinking about their potential participation. While the purpose of the study (safety and tolerability) was extensively presented during the informed consent process, in returned responses 70 percent focused on effectiveness and 91 percent included personal benefit as poten- tial benefit from enrolling. However, 91 percent also indicated helping other Parkinson's patients as motivation when considering whether or not to enroll. This combination of responses highlights two issues to which investigators need to pay close attention in future trial designs: (1) how, and in what ways, informed consent processes reinforce potential subjects' preconceived understandings of benefit, and (2) that potential subjects see themselves as part of a community of Parkinson's sufferers with responsibilities extending beyond self-interest. More importantly, it invites speculation that a different paradigm for informed consent may be needed.

  15. The role of body image and self-perception in anorexia nervosa: the neuroimaging perspective.

    PubMed

    Esposito, Roberto; Cieri, Filippo; di Giannantonio, Massimo; Tartaro, Armando

    2018-03-01

    Anorexia nervosa is a severe psychiatric illness characterized by intense fear of gaining weight, relentless pursuit of thinness, deep concerns about food and a pervasive disturbance of body image. Functional magnetic resonance imaging tries to shed light on the neurobiological underpinnings of anorexia nervosa. This review aims to evaluate the empirical neuroimaging literature about self-perception in anorexia nervosa. This narrative review summarizes a number of task-based and resting-state functional magnetic resonance imaging studies in anorexia nervosa about body image and self-perception. The articles listed in references were searched using electronic databases (PubMed and Google Scholar) from 1990 to February 2016 using specific key words. All studies were reviewed with regard to their quality and eligibility for the review. Differences in brain activity were observed using body image perception and body size estimation tasks showing significant modifications in activity of specific brain areas (extrastriate body area, fusiform body area, inferior parietal lobule). Recent studies highlighted the role of emotions and self-perception in anorexia nervosa and their neural substrate involving resting-state networks and particularly frontal and posterior midline cortical structures within default mode network and insula. These findings open new horizons to understand the neural substrate of anorexia nervosa. © 2016 The British Psychological Society.

  16. Men versus women on sexual brain function: prominent differences during tactile genital stimulation, but not during orgasm.

    PubMed

    Georgiadis, Janniko R; Reinders, A A T Simone; Paans, Anne M J; Renken, Remco; Kortekaas, Rudie

    2009-10-01

    Biological differences in male and female sexuality are obvious in the behavioral domain, but the central mechanisms that might explain these behavioral gender differences remain unclear. In this study, we merged two earlier positron emission tomography data sets to enable systematic comparison of the brain responses in heterosexual men and women during sexual tactile genital (penile and clitoral) stimulation and during orgasm. Gender commonalities were most evident during orgasm, a phase which demonstrated activations in the anterior lobe of the cerebellar vermis and deep cerebellar nuclei, and deactivations in the left ventromedial and orbitofrontal cortex in both men and women. During tactile genital stimulation, deactivations in the right amygdala and left fusiform gyrus were found for both genders. Marked gender differences were seen during this phase: left fronto-parietal areas (motor cortices, somatosensory area 2 and posterior parietal cortex) were activated more in women, whereas in men, the right claustrum and ventral occipitotemporal cortex showed larger activation. The only prominent gender difference during orgasm was male-biased activation of the periaqueductal gray matter. From these results, we conclude that during the sexual act, differential brain responses across genders are principally related to the stimulatory (plateau) phase and not to the orgasmic phase itself. These results add to a better understanding of the neural underpinnings of human sexuality, which might benefit treatment of psychosexual disorders.

  17. Representational Distance Learning for Deep Neural Networks

    PubMed Central

    McClure, Patrick; Kriegeskorte, Nikolaus

    2016-01-01

    Deep neural networks (DNNs) provide useful models of visual representational transformations. We present a method that enables a DNN (student) to learn from the internal representational spaces of a reference model (teacher), which could be another DNN or, in the future, a biological brain. Representational spaces of the student and the teacher are characterized by representational distance matrices (RDMs). We propose representational distance learning (RDL), a stochastic gradient descent method that drives the RDMs of the student to approximate the RDMs of the teacher. We demonstrate that RDL is competitive with other transfer learning techniques for two publicly available benchmark computer vision datasets (MNIST and CIFAR-100), while allowing for architectural differences between student and teacher. By pulling the student's RDMs toward those of the teacher, RDL significantly improved visual classification performance when compared to baseline networks that did not use transfer learning. In the future, RDL may enable combined supervised training of deep neural networks using task constraints (e.g., images and category labels) and constraints from brain-activity measurements, so as to build models that replicate the internal representational spaces of biological brains. PMID:28082889

  18. Stimulation of the bilateral anterior nuclei of the thalamus in the treatment of refractory epilepsy: two cases of subcortical band heterotopia.

    PubMed

    Franco, Ana; Pimentel, José; Campos, Alexandre Rainha; Morgado, Carlos; Pinelo, Sara; Ferreira, António Gonçalves; Bentes, Carla

    2016-12-01

    Subcortical band heterotopia is a neuronal migration disorder that may cause refractory epilepsy. In these patients, resective surgery has yielded inadequate results. Deep brain stimulation of the anterior nuclei of the thalamus has been used for the treatment of refractory epilepsy with good results. We describe the first two patients with subcortical band heterotopia who were submitted to deep brain stimulation of the anterior nuclei of the thalamus, with evaluation of seizure outcome after 12 and 18 months of follow-up. At these times, both showed a >50% decrease in seizure frequency and an increase in seizure freedom. Both patients had a depressive syndrome after surgery that responded fully to anti-depressive medication in one patient and partly in the other. In both, deep brain stimulation of the anterior nuclei of the thalamus was associated with good seizure outcome. This procedure can therefore be considered in the treatment of patients with subcortical band heterotopia and refractory epilepsy. Depression may be a transient adverse event of the surgery or stimulation, however, its aetiology is probably multifactorial.

  19. Representational Distance Learning for Deep Neural Networks.

    PubMed

    McClure, Patrick; Kriegeskorte, Nikolaus

    2016-01-01

    Deep neural networks (DNNs) provide useful models of visual representational transformations. We present a method that enables a DNN (student) to learn from the internal representational spaces of a reference model (teacher), which could be another DNN or, in the future, a biological brain. Representational spaces of the student and the teacher are characterized by representational distance matrices (RDMs). We propose representational distance learning (RDL), a stochastic gradient descent method that drives the RDMs of the student to approximate the RDMs of the teacher. We demonstrate that RDL is competitive with other transfer learning techniques for two publicly available benchmark computer vision datasets (MNIST and CIFAR-100), while allowing for architectural differences between student and teacher. By pulling the student's RDMs toward those of the teacher, RDL significantly improved visual classification performance when compared to baseline networks that did not use transfer learning. In the future, RDL may enable combined supervised training of deep neural networks using task constraints (e.g., images and category labels) and constraints from brain-activity measurements, so as to build models that replicate the internal representational spaces of biological brains.

  20. Neurostimulation for Drug-Resistant Epilepsy

    PubMed Central

    DeGiorgio, Christopher M.; Krahl, Scott E.

    2013-01-01

    Purpose of Review: The purpose of this review is to provide an evidence-based update on the neurostimulation options available for patients with drug-resistant epilepsy in the United States and in European countries. Recent Findings: The field of neurostimulation for epilepsy has grown dramatically since 1997, when vagus nerve stimulation became the first device to be approved for epilepsy by the US Food and Drug Administration (FDA). New data from recently completed randomized controlled trials are available for deep brain stimulation of the anterior thalamus, responsive neurostimulation, and trigeminal nerve stimulation. Although vagus nerve stimulation is the only device currently approved in the United States, deep brain stimulation and responsive neurostimulation devices are awaiting FDA approval. Deep brain stimulation, trigeminal nerve stimulation, and transcutaneous vagus nerve stimulation are now approved for epilepsy in the European Union. In this article, the mechanisms of action, safety, and efficacy of new neurostimulation devices are reviewed, and the key advantages and disadvantages of each are discussed. Summary: The exponential growth of the field of neuromodulation for epilepsy is an exciting development; these new devices provide physicians with new options for patients with drug-resistant epilepsy. PMID:23739108

  1. Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks.

    PubMed

    Martin Cichy, Radoslaw; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude

    2017-06-01

    Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Three-Category Classification of Magnetic Resonance Hearing Loss Images Based on Deep Autoencoder.

    PubMed

    Jia, Wenjuan; Yang, Ming; Wang, Shui-Hua

    2017-09-11

    Hearing loss, a partial or total inability to hear, is known as hearing impairment. Untreated hearing loss can have a bad effect on normal social communication, and it can cause psychological problems in patients. Therefore, we design a three-category classification system to detect the specific category of hearing loss, which is beneficial to be treated in time for patients. Before the training and test stages, we use the technology of data augmentation to produce a balanced dataset. Then we use deep autoencoder neural network to classify the magnetic resonance brain images. In the stage of deep autoencoder, we use stacked sparse autoencoder to generate visual features, and softmax layer to classify the different brain images into three categories of hearing loss. Our method can obtain good experimental results. The overall accuracy of our method is 99.5%, and the time consuming is 0.078 s per brain image. Our proposed method based on stacked sparse autoencoder works well in classification of hearing loss images. The overall accuracy of our method is 4% higher than the best of state-of-the-art approaches.

  3. Deep-tissue two-photon imaging in brain and peripheral nerve with a compact high-pulse energy ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Fontaine, Arjun K.; Kirchner, Matthew S.; Caldwell, John H.; Weir, Richard F.; Gibson, Emily A.

    2018-02-01

    Two-photon microscopy is a powerful tool of current scientific research, allowing optical visualization of structures below the surface of tissues. This is of particular value in neuroscience, where optically accessing regions within the brain is critical for the continued advancement in understanding of neural circuits. However, two-photon imaging at significant depths have typically used Ti:Sapphire based amplifiers that are prohibitively expensive and bulky. In this study, we demonstrate deep tissue two-photon imaging using a compact, inexpensive, turnkey operated Ytterbium fiber laser (Y-Fi, KM Labs). The laser is based on all-normal dispersion (ANDi) that provides short pulse durations and high pulse energies. Depth measurements obtained in ex vivo mouse cortex exceed those obtainable with standard two-photon microscopes using Ti:Sapphire lasers. In addition to demonstrating the capability of deep-tissue imaging in the brain, we investigated imaging depth in highly-scattering white matter with measurements in sciatic nerve showing limited optical penetration of heavily myelinated nerve tissue relative to grey matter.

  4. Cavitation-enhanced nonthermal ablation in deep brain targets: feasibility in a large animal model.

    PubMed

    Arvanitis, Costas D; Vykhodtseva, Natalia; Jolesz, Ferenc; Livingstone, Margaret; McDannold, Nathan

    2016-05-01

    OBJECT Transcranial MRI-guided focused ultrasound (TcMRgFUS) is an emerging noninvasive alternative to surgery and radiosurgery that is undergoing testing for tumor ablation and functional neurosurgery. The method is currently limited to central brain targets due to skull heating and other factors. An alternative ablative approach combines very low intensity ultrasound bursts and an intravenously administered microbubble agent to locally destroy the vasculature. The objective of this work was to investigate whether it is feasible to use this approach at deep brain targets near the skull base in nonhuman primates. METHODS In 4 rhesus macaques, targets near the skull base were ablated using a clinical TcMRgFUS system operating at 220 kHz. Low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes in conjunction with the ultrasound contrast agent Definity, which was administered as a bolus injection or continuous infusion. The acoustic power level was set to be near the inertial cavitation threshold, which was measured using passive monitoring of the acoustic emissions. The resulting tissue effects were investigated with MRI and with histological analysis performed 3 hours to 1 week after sonication. RESULTS Thirteen targets were sonicated in regions next to the optic tract in the 4 animals. Inertial cavitation, indicated by broadband acoustic emissions, occurred at acoustic pressure amplitudes ranging from 340 to 540 kPa. MRI analysis suggested that the lesions had a central region containing red blood cell extravasations that was surrounded by edema. Blood-brain barrier disruption was observed on contrast-enhanced MRI in the lesions and in a surrounding region corresponding to the prefocal area of the FUS system. In histology, lesions consisting of tissue undergoing ischemic necrosis were found in all regions that were sonicated above the inertial cavitation threshold. Tissue damage in prefocal areas was found in several cases, suggesting that in those cases the sonication exceeded the inertial cavitation threshold in the beam path. CONCLUSIONS It is feasible to use a clinical TcMRgFUS system to ablate skull base targets in nonhuman primates at time-averaged acoustic power levels at least 2 orders of magnitude below what is needed for thermal ablation with this device. The results point to the risks associated with the method if the exposure levels are not carefully controlled to avoid inertial cavitation in the acoustic beam path. If methods can be developed to provide this control, this nonthermal approach could greatly expand the use of TcMRgFUS for precisely targeted ablation to locations across the entire brain.

  5. A double-blind, randomized trial of deep repetitive transcranial magnetic stimulation (rTMS) for autism spectrum disorder.

    PubMed

    Enticott, Peter G; Fitzgibbon, Bernadette M; Kennedy, Hayley A; Arnold, Sara L; Elliot, David; Peachey, Amy; Zangen, Abraham; Fitzgerald, Paul B

    2014-01-01

    Biomedical treatment options for autism spectrum disorder (ASD) are extremely limited. Repetitive transcranial magnetic stimulation (rTMS) is a safe and efficacious technique when targeting specific areas of cortical dysfunction in major depressive disorder, and a similar approach could yield therapeutic benefits in ASD, if applied to relevant cortical regions. The aim of this study was to examine whether deep rTMS to bilateral dorsomedial prefrontal cortex improves social relating in ASD. 28 adults diagnosed with either autistic disorder (high-functioning) or Asperger's disorder completed a prospective, double-blind, randomized, placebo-controlled design with 2 weeks of daily weekday treatment. This involved deep rTMS to bilateral dorsomedial prefrontal cortex (5 Hz, 10-s train duration, 20-s inter-train interval) for 15 min (1500 pulses per session) using a HAUT-Coil. The sham rTMS coil was encased in the same helmet of the active deep rTMS coil, but no effective field was delivered into the brain. Assessments were conducted before, after, and one month following treatment. Participants in the active condition showed a near significant reduction in self-reported social relating symptoms from pre-treatment to one month follow-up, and a significant reduction in social relating symptoms (relative to sham participants) for both post-treatment assessments. Those in the active condition also showed a reduction in self-oriented anxiety during difficult and emotional social situations from pre-treatment to one month follow-up. There were no changes for those in the sham condition. Deep rTMS to bilateral dorsomedial prefrontal cortex yielded a reduction in social relating impairment and socially-related anxiety. Further research in this area should employ extended rTMS protocols that approximate those used in depression in an attempt to replicate and amplify the clinical response. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Regional Patterns of Elevated Alpha and High-Frequency Electroencephalographic Activity during Nonrapid Eye Movement Sleep in Chronic Insomnia: A Pilot Study.

    PubMed

    Riedner, Brady A; Goldstein, Michael R; Plante, David T; Rumble, Meredith E; Ferrarelli, Fabio; Tononi, Giulio; Benca, Ruth M

    2016-04-01

    To examine nonrapid eye movement (NREM) sleep in insomnia using high-density electroencephalography (EEG). All-night sleep recordings with 256 channel high-density EEG were analyzed for 8 insomnia subjects (5 females) and 8 sex and age-matched controls without sleep complaints. Spectral analyses were conducted using unpaired t-tests and topographical differences between groups were assessed using statistical non-parametric mapping. Five minute segments of deep NREM sleep were further analyzed using sLORETA cortical source imaging. The initial topographic analysis of all-night NREM sleep EEG revealed that insomnia subjects had more high-frequency EEG activity (> 16 Hz) compared to good sleeping controls and that the difference between groups was widespread across the scalp. In addition, the analysis also showed that there was a more circumscribed difference in theta (4-8 Hz) and alpha (8-12 Hz) power bands between groups. When deep NREM sleep (N3) was examined separately, the high-frequency difference between groups diminished, whereas the higher regional alpha activity in insomnia subjects persisted. Source imaging analysis demonstrated that sensory and sensorimotor cortical areas consistently exhibited elevated levels of alpha activity during deep NREM sleep in insomnia subjects relative to good sleeping controls. These results suggest that even during the deepest stage of sleep, sensory and sensorimotor areas in insomnia subjects may still be relatively active compared to control subjects and to the rest of the sleeping brain. © 2016 Associated Professional Sleep Societies, LLC.

  7. Our first decade of experience in deep brain stimulation of the brainstem: elucidating the mechanism of action of stimulation of the ventrolateral pontine tegmentum.

    PubMed

    Mazzone, Paolo; Vilela Filho, Osvaldo; Viselli, Fabio; Insola, Angelo; Sposato, Stefano; Vitale, Flora; Scarnati, Eugenio

    2016-07-01

    The region of the pedunculopontine tegmental nucleus (PPTg) has been proposed as a novel target for deep brain stimulation (DBS) to treat levodopa resistant symptoms in motor disorders. Recently, the anatomical organization of the brainstem has been revised and four new distinct structures have been represented in the ventrolateral pontine tegmentum area in which the PPTg was previously identified. Given this anatomical reassessment, and considering the increasing of our experience, in this paper we revisit the value of DBS applied to that area. The reappraisal of clinical outcomes in the light of this revisitation may also help to understand the consequences of DBS applied to structures located in the ventrolateral pontine tegmentum, apart from the PPTg. The implantation of 39 leads in 32 patients suffering from Parkinson's disease (PD, 27 patients) and progressive supranuclear palsy (PSP, four patients) allowed us to reach two major conclusions. The first is that the results of the advancement of our technique in brainstem DBS matches the revision of brainstem anatomy. The second is that anatomical and functional aspects of our findings may help to explain how DBS acts when applied in the brainstem and to identify the differences when it is applied either in the brainstem or in the subthalamic nucleus. Finally, in this paper we discuss how the loss of neurons in brainstem nuclei occurring in both PD and PSP, the results of intraoperative recording of somatosensory evoked potentials, and the improvement of postural control during DBS point toward the potential role of ascending sensory pathways and/or other structures in mediating the effects of DBS applied in the ventrolateral pontine tegmentum region.

  8. A comparative study of two prediction models for brain tumor progression

    NASA Astrophysics Data System (ADS)

    Zhou, Deqi; Tran, Loc; Wang, Jihong; Li, Jiang

    2015-03-01

    MR diffusion tensor imaging (DTI) technique together with traditional T1 or T2 weighted MRI scans supplies rich information sources for brain cancer diagnoses. These images form large-scale, high-dimensional data sets. Due to the fact that significant correlations exist among these images, we assume low-dimensional geometry data structures (manifolds) are embedded in the high-dimensional space. Those manifolds might be hidden from radiologists because it is challenging for human experts to interpret high-dimensional data. Identification of the manifold is a critical step for successfully analyzing multimodal MR images. We have developed various manifold learning algorithms (Tran et al. 2011; Tran et al. 2013) for medical image analysis. This paper presents a comparative study of an incremental manifold learning scheme (Tran. et al. 2013) versus the deep learning model (Hinton et al. 2006) in the application of brain tumor progression prediction. The incremental manifold learning is a variant of manifold learning algorithm to handle large-scale datasets in which a representative subset of original data is sampled first to construct a manifold skeleton and remaining data points are then inserted into the skeleton by following their local geometry. The incremental manifold learning algorithm aims at mitigating the computational burden associated with traditional manifold learning methods for large-scale datasets. Deep learning is a recently developed multilayer perceptron model that has achieved start-of-the-art performances in many applications. A recent technique named "Dropout" can further boost the deep model by preventing weight coadaptation to avoid over-fitting (Hinton et al. 2012). We applied the two models on multiple MRI scans from four brain tumor patients to predict tumor progression and compared the performances of the two models in terms of average prediction accuracy, sensitivity, specificity and precision. The quantitative performance metrics were calculated as average over the four patients. Experimental results show that both the manifold learning and deep neural network models produced better results compared to using raw data and principle component analysis (PCA), and the deep learning model is a better method than manifold learning on this data set. The averaged sensitivity and specificity by deep learning are comparable with these by the manifold learning approach while its precision is considerably higher. This means that the predicted abnormal points by deep learning are more likely to correspond to the actual progression region.

  9. Motor associations of iron accumulation in deep grey matter nuclei in Parkinson's disease: a cross-sectional study of iron-related magnetic resonance imaging susceptibility.

    PubMed

    Martin-Bastida, A; Lao-Kaim, N P; Loane, C; Politis, M; Roussakis, A A; Valle-Guzman, N; Kefalopoulou, Z; Paul-Visse, G; Widner, H; Xing, Y; Schwarz, S T; Auer, D P; Foltynie, T; Barker, R A; Piccini, P

    2017-02-01

    To determine whether iron deposition in deep brain nuclei assessed using high-pass filtered phase imaging plays a role in motor disease severity in Parkinson's disease (PD). Seventy patients with mild to moderate PD and 20 age- and gender-matched healthy volunteers (HVs) underwent susceptibility-weighted imaging on a 3 T magnetic resonance imaging scanner. Phase shifts (radians) in deep brain nuclei were derived from high-pass filtered phase images and compared between groups. Analysis of clinical laterality and correlations with motor severity (Unified Parkinson's Disease Rating Scale, Part III, UPDRS-III) were performed. Phase shifts (in radians) were compared between HVs and three PD subgroups divided according to UPDRS-III scores using analysis of covariance, adjusting for age and regional area. Parkinson's disease patients had significantly (P < 0.001) higher radians than HVs bilaterally in the putamen, globus pallidus and substantia nigra (SN). The SN contralateral to the most affected side showed higher radians (P < 0.001) compared to the less affected side. SN radians positively correlated with UPDRS-III and bradykinesia-rigidity subscores, but not with tremor subscores. ancova followed by post hoc Bonferroni-adjusted pairwise comparisons revealed that SN radians were significantly greater in the PD subgroup with higher UPDRS-III scores compared to both lowest UPDRS-III PD and HV groups (P < 0.001). Increased nigral iron accumulation in PD appears to be stratified according to disease motor severity and correlates with symptoms related to dopaminergic neurodegeneration. This semi-quantitative in vivo iron assessment could prove useful for objectively monitoring PD progression, especially in clinical trials concerning iron chelation therapies. © 2016 EAN.

  10. Beamspace dual signal space projection (bDSSP): a method for selective detection of deep sources in MEG measurements.

    PubMed

    Sekihara, Kensuke; Adachi, Yoshiaki; Kubota, Hiroshi K; Cai, Chang; Nagarajan, Srikantan S

    2018-06-01

    Magnetoencephalography (MEG) has a well-recognized weakness at detecting deeper brain activities. This paper proposes a novel algorithm for selective detection of deep sources by suppressing interference signals from superficial sources in MEG measurements. The proposed algorithm combines the beamspace preprocessing method with the dual signal space projection (DSSP) interference suppression method. A prerequisite of the proposed algorithm is prior knowledge of the location of the deep sources. The proposed algorithm first derives the basis vectors that span a local region just covering the locations of the deep sources. It then estimates the time-domain signal subspace of the superficial sources by using the projector composed of these basis vectors. Signals from the deep sources are extracted by projecting the row space of the data matrix onto the direction orthogonal to the signal subspace of the superficial sources. Compared with the previously proposed beamspace signal space separation (SSS) method, the proposed algorithm is capable of suppressing much stronger interference from superficial sources. This capability is demonstrated in our computer simulation as well as experiments using phantom data. The proposed bDSSP algorithm can be a powerful tool in studies of physiological functions of midbrain and deep brain structures.

  11. Beamspace dual signal space projection (bDSSP): a method for selective detection of deep sources in MEG measurements

    NASA Astrophysics Data System (ADS)

    Sekihara, Kensuke; Adachi, Yoshiaki; Kubota, Hiroshi K.; Cai, Chang; Nagarajan, Srikantan S.

    2018-06-01

    Objective. Magnetoencephalography (MEG) has a well-recognized weakness at detecting deeper brain activities. This paper proposes a novel algorithm for selective detection of deep sources by suppressing interference signals from superficial sources in MEG measurements. Approach. The proposed algorithm combines the beamspace preprocessing method with the dual signal space projection (DSSP) interference suppression method. A prerequisite of the proposed algorithm is prior knowledge of the location of the deep sources. The proposed algorithm first derives the basis vectors that span a local region just covering the locations of the deep sources. It then estimates the time-domain signal subspace of the superficial sources by using the projector composed of these basis vectors. Signals from the deep sources are extracted by projecting the row space of the data matrix onto the direction orthogonal to the signal subspace of the superficial sources. Main results. Compared with the previously proposed beamspace signal space separation (SSS) method, the proposed algorithm is capable of suppressing much stronger interference from superficial sources. This capability is demonstrated in our computer simulation as well as experiments using phantom data. Significance. The proposed bDSSP algorithm can be a powerful tool in studies of physiological functions of midbrain and deep brain structures.

  12. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder

    PubMed Central

    Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain. PMID:27057543

  13. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder.

    PubMed

    Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.

  14. Proceedings of the Second Annual Deep Brain Stimulation Think Tank: What's in the Pipeline.

    PubMed

    Gunduz, Aysegul; Morita, Hokuto; Rossi, P Justin; Allen, William L; Alterman, Ron L; Bronte-Stewart, Helen; Butson, Christopher R; Charles, David; Deckers, Sjaak; de Hemptinne, Coralie; DeLong, Mahlon; Dougherty, Darin; Ellrich, Jens; Foote, Kelly D; Giordano, James; Goodman, Wayne; Greenberg, Benjamin D; Greene, David; Gross, Robert; Judy, Jack W; Karst, Edward; Kent, Alexander; Kopell, Brian; Lang, Anthony; Lozano, Andres; Lungu, Codrin; Lyons, Kelly E; Machado, Andre; Martens, Hubert; McIntyre, Cameron; Min, Hoon-Ki; Neimat, Joseph; Ostrem, Jill; Pannu, Sat; Ponce, Francisco; Pouratian, Nader; Reymers, Donnie; Schrock, Lauren; Sheth, Sameer; Shih, Ludy; Stanslaski, Scott; Steinke, G Karl; Stypulkowski, Paul; Tröster, Alexander I; Verhagen, Leo; Walker, Harrison; Okun, Michael S

    2015-01-01

    The proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers and members of industry. Presentations and discussions covered a broad range of topics, including advocacy for DBS, improving clinical outcomes, innovations in computational models of DBS, understanding of the neurophysiology of Parkinson's disease (PD) and Tourette syndrome (TS) and evolving sensor and device technologies.

  15. Deep brain stimulation for movement disorders.

    PubMed

    Thevathasan, Wesley; Gregory, Ralph

    2010-02-01

    Deep brain stimulation is now considered a routine treatment option for selected patients with advanced Parkinson's disease, primary segmental and generalised dystonia, and essential tremor. The neurosurgeon is responsible for the accurate and safe placement of the electrodes and the neurologist for the careful selection of patients and titration of medication against the effects of stimulation. A multidisciplinary team approach involving specialist nurses, neuropsychologists and neurophysiologists is required for a successful outcome. In this article we will summarise the key points in patient selection, provide an overview of the surgical technique, and discuss the beneficial and adverse outcomes that can occur.

  16. Proceedings of the Second Annual Deep Brain Stimulation Think Tank: What's in the Pipeline

    PubMed Central

    Gunduz, Aysegul; Morita, Hokuto; Rossi, P. Justin; Allen, William L.; Alterman, Ron L.; Bronte-Stewart, Helen; Butson, Christopher R.; Charles, David; Deckers, Sjaak; de Hemptinne, Coralie; DeLong, Mahlon; Dougherty, Darin; Ellrich, Jens; Foote, Kelly D.; Giordano, James; Goodman, Wayne; Greenberg, Benjamin D.; Greene, David; Gross, Robert; Judy, Jack W.; Karst, Edward; Kent, Alexander; Kopell, Brian; Lang, Anthony; Lozano, Andres; Lungu, Codrin; Lyons, Kelly E.; Machado, Andre; Martens, Hubert; McIntyre, Cameron; Min, Hoon-Ki; Neimat, Joseph; Ostrem, Jill; Pannu, Sat; Ponce, Francisco; Pouratian, Nader; Reymers, Donnie; Schrock, Lauren; Sheth, Sameer; Shih, Ludy; Stanslaski, Scott; Steinke, G. Karl; Stypulkowski, Paul; Tröster, Alexander I.; Verhagen, Leo; Walker, Harrison; Okun, Michael S.

    2015-01-01

    The proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers and members of industry. Presentations and discussions covered a broad range of topics, including advocacy for DBS, improving clinical outcomes, innovations in computational models of DBS, understanding of the neurophysiology of Parkinson's disease (PD) and Tourette syndrome (TS) and evolving sensor and device technologies. PMID:25526555

  17. Positive clinical effects of gamma knife capsulotomy in a patient with deep brain stimulation-refractory Tourette Syndrome and Obsessive Compulsive Disorder.

    PubMed

    Richieri, Raphaëlle; Blackman, Graham; Musil, Richard; Spatola, Giorgio; Cavanna, Andrea E; Lançon, Christophe; Régis, Jean

    2018-04-26

    We report the first case of a patient with severe, intractable Tourette Syndrome with comorbid Obsessive Compulsive disorder, who recovered from both disorders with gamma-knife (GK) stereotactic radiosurgery following deep brain stimulation (DBS). This case highlights the possible role of the internal capsule within the neural circuitries underlying both TS and OCD, and suggests that in cases of treatment-refractory TS and comorbid OCD, bilateral anterior capsulotomy using stereotactic radiosurgery may be a viable treatment option. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Clinical efficacy of deep brain stimulation for the treatment of medically refractory epilepsy.

    PubMed

    Klinger, Neil V; Mittal, Sandeep

    2016-01-01

    Epilepsy affects 50 million people worldwide and about 30% of these patients will not be adequately controlled with antiepileptic drugs (AEDs) alone. For patients where resective surgery is not indicated, deep brain stimulation (DBS) may be an effective alternative. The majority of available literature targets the thalamic nuclei (anterior; centromedian), subthalamic nucleus, hippocampus, and cerebellum. Here, we review patient outcomes and adverse events related to DBS to these various targets. Data show DBS may be a safe and effective treatment option for refractory epilepsy. Copyright © 2015. Published by Elsevier B.V.

  19. Proceedings of the second annual deep brain stimulation think tank: What's in the pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunduz, Aysegul; Morita, Hokuto; Rossi, P. Justin

    Here the proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers and members of industry. Presentations and discussions covered a broad range of topics, including advocacy for DBS, improving clinical outcomes, innovations in computational models of DBS, understanding of the neurophysiology of Parkinson's disease (PD) and Tourette syndrome (TS) and evolving sensor and device technologies.

  20. Proceedings of the second annual deep brain stimulation think tank: What's in the pipeline

    DOE PAGES

    Gunduz, Aysegul; Morita, Hokuto; Rossi, P. Justin; ...

    2015-05-25

    Here the proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers and members of industry. Presentations and discussions covered a broad range of topics, including advocacy for DBS, improving clinical outcomes, innovations in computational models of DBS, understanding of the neurophysiology of Parkinson's disease (PD) and Tourette syndrome (TS) and evolving sensor and device technologies.

  1. Thalamic Ventral Intermediate Nucleus Deep Brain Stimulation for Orthostatic Tremor.

    PubMed

    Lehn, Alexander C; O'Gorman, Cullen; Olson, Sarah; Salari, Mehri

    2017-01-01

    Orthostatic tremor (OT) was first described in 1977. It is characterized by rapid tremor of 13-18 Hz and can be recorded in the lower limbs and trunk muscles. OT remains difficult to treat, although some success has been reported with deep brain stimulation (DBS). We report a 68-year-old male with OT who did not improve significantly after bilateral thalamic stimulation. Although some patients were described who improved after DBS surgery, more information is needed about the effect of these treatment modalities on OT, ideally in the form of randomized trial data.

  2. Deep brain transcranial magnetic stimulation using variable "Halo coil" system

    NASA Astrophysics Data System (ADS)

    Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.

    2015-05-01

    Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.

  3. Blood-brain barrier dysfunction and cerebral small vessel disease (arteriolosclerosis) in brains of older people.

    PubMed

    Bridges, Leslie R; Andoh, Joycelyn; Lawrence, Andrew J; Khoong, Cheryl H L; Poon, Wayne; Esiri, Margaret M; Markus, Hugh S; Hainsworth, Atticus H

    2014-11-01

    The blood-brain barrier protects brain tissue from potentially harmful plasma components. Small vessel disease (SVD; also termed arteriolosclerosis) is common in the brains of older people and is associated with lacunar infarcts, leukoaraiosis, and vascular dementia. To determine whether plasma extravasation is associated with SVD, we immunolabeled the plasma proteins fibrinogen and immunoglobulin G, which are assumed to reflect blood-brain barrier dysfunction, in deep gray matter (DGM; anterior caudate-putamen) and deep subcortical white matter (DWM) in the brains of a well-characterized cohort of donated brains with minimal Alzheimer disease pathology (Braak Stages 0-II) (n = 84; aged 65 years or older). Morphometric measures of fibrinogen labeling were compared between people with neuropathologically defined SVD and aged control subjects. Parenchymal cellular labeling with fibrinogen and immunoglobulin G was detectable in DGM and DWM in many subjects (>70%). Quantitative measures of fibrinogen were not associated with SVD in DGM or DWM; SVD severity was correlated between DGM and DWM (p < 0.0001). Fibrinogen in DGM showed a modest association with a history of hypertension; DWM fibrinogen was associated with dementia and cerebral amyloid angiopathy (all p < 0.05). In DWM, SVD was associated with leukoaraiosis identified in life (p < 0.05), but fibrinogen was not. Our data suggest that, in aged brains, plasma extravasation and hence local blood-brain barrier dysfunction are common but do not support an association with SVD.

  4. The phenomenology of deep brain stimulation-induced changes in OCD: an enactive affordance-based model

    PubMed Central

    de Haan, Sanneke; Rietveld, Erik; Stokhof, Martin; Denys, Damiaan

    2013-01-01

    People suffering from Obsessive-Compulsive Disorder (OCD) do things they do not want to do, and/or they think things they do not want to think. In about 10% of OCD patients, none of the available treatment options is effective. A small group of these patients is currently being treated with deep brain stimulation (DBS). DBS involves the implantation of electrodes in the brain. These electrodes give a continuous electrical pulse to the brain area in which they are implanted. It turns out that patients may experience profound changes as a result of DBS treatment. It is not just the symptoms that change; patients rather seem to experience a different way of being in the world. These global effects are insufficiently captured by traditional psychiatric scales, which mainly consist of behavioral measures of the severity of the symptoms. In this article we aim to capture the changes in the patients' phenomenology and make sense of the broad range of changes they report. For that we introduce an enactive, affordance-based model that fleshes out the dynamic interactions between person and world in four aspects. The first aspect is the patients' experience of the world. We propose to specify the patients' world in terms of a field of affordances, with the three dimensions of broadness of scope (“width” of the field), temporal horizon (“depth”), and relevance of the perceived affordances (“height”). The second aspect is the person-side of the interaction, that is, the patients' self-experience, notably their moods and feelings. Thirdly, we point to the different characteristics of the way in which patients relate to the world. And lastly, the existential stance refers to the stance that patients take toward the changes they experience: the second-order evaluative relation to their interactions and themselves. With our model we intend to specify the notion of being in the world in order to do justice to the phenomenological effects of DBS treatment. PMID:24133438

  5. Are there adaptive changes in the human brain of patients with Parkinson's disease treated with long-term deep brain stimulation of the subthalamic nucleus? A 4-year follow-up study with regional cerebral blood flow SPECT.

    PubMed

    Sestini, Stelvio; Pupi, Alberto; Ammannati, Franco; Silvia, Ramat; Sorbi, Sandro; Castagnoli, Antonio

    2007-10-01

    The aim of this follow-up study was to assess persistent motor and regional cerebral blood flow (rCBF) changes in patients with Parkinson's disease (PD) treated with high-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN). Ten PD patients with STN-DBS underwent three rCBF SPECT studies at rest, once preoperatively in the off-drug condition (T(0)), and twice postoperatively in the off-drug/off-stimulation conditions at 5 +/- 2 (T(1)) and 42 +/- 7 months (T(2)). Patients were assessed using the UPDRS, H&Y and S&E scales. SPM was used to investigate baseline rCBF changes from the preoperative condition to the postoperative conditions and the relationship between rCBF and UPDRS scores used as covariate of interest. Parkinsonian patients showed a clinical improvement which was significant only on follow-up at 42 months. The main effect of treatment from T(0) to T(1) was to produce baseline rCBF increases in the pre-supplementary motor area (pre-SMA), premotor cortex and somatosensory association cortex. From T(1) to T(2) a further baseline rCBF increase was detected in the pre-SMA (p < 0.0001). A correlation was detected between the slight improvement in motor scores and the rCBF increase in the pre-SMA (p < 0.0001), which is known to play a crucial role in clinical progression. Our study suggests the presence of adaptive functional changes in the human brain of PD patients treated with long-term STN-DBS. Such adaptive processes seem to occur in the pre-SMA and to play only a slightly beneficial role in terms of functional compensation of motor impairment.

  6. Interleukin-6 -174 and -572 genotypes and the volume of deep gray matter in preterm infants.

    PubMed

    Reiman, Milla; Parkkola, Riitta; Lapinleimu, Helena; Lehtonen, Liisa; Haataja, Leena

    2009-01-01

    Preterm infants have smaller cerebral and cerebellar volumes at term compared with term born infants. Perinatal factors leading to the reduction in volumes are not well known. IL-6 -174 and -572 genotypes partly regulate individual immunologic responses and have also been connected with deviant neurologic development in preterm infants. Our hypothesis was that IL-6 -174 and -572 genetic polymorphisms are associated with brain lesions and regional brain volumes in very low birth weight or in very preterm infants. DNA was genotyped for IL-6 -174 and -572 polymorphisms (GG/GC/CC). Study infants (n = 175) were categorized into three groups according to the most pathologic brain finding in ultrasound examinations until term. The brain MRI performed at term was analyzed for regional brain volumes. Analyzed IL-6 genotypes did not show statistically significant association with structural brain lesions. However, IL-6 -174 CC and -572 GG genotypes associated with reduced volume of one brain region, the combined volume of basal ganglia and thalami, both in univariate and in multivariate analyses (p = 0.009, 0.009, respectively). The association of IL-6 -174 and -572 genetic polymorphisms with smaller volumes in deep gray matter provides us new ways to understand the processes leading to neurologic impairments in preterm infants.

  7. Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy

    PubMed Central

    Charan, Kriti; Li, Bo; Wang, Mengran; Lin, Charles P.; Xu, Chris

    2018-01-01

    Deep tissue multiphoton imaging requires high peak power to enhance signal and low average power to prevent thermal damage. Both goals can be advantageously achieved through laser repetition rate tuning instead of simply adjusting the average power. We show that the ideal repetition rate for deep two-photon imaging in the mouse brain is between 1 and 10 MHz, and we present a fiber-based source with an arbitrarily tunable repetition rate within this range. The performance of the new source is compared to a mode-locked Ti:Sapphire (Ti:S) laser for in vivo imaging of mouse brain vasculature. At 2.5 MHz, the fiber source requires 5.1 times less average power to obtain the same signal as a standard Ti:S laser operating at 80 MHz. PMID:29760989

  8. Regional Brain Biometrics at Term-Equivalent Age and Developmental Outcome in Extremely Low-Birth-Weight Infants.

    PubMed

    Melbourne, Launice; Murnick, Jonathan; Chang, Taeun; Glass, Penny; Massaro, An N

    2015-10-01

    This study aims to evaluate individual regional brain biometrics and their association with developmental outcome in extremely low-birth-weight (ELBW) infants. This is a retrospective study evaluating term-equivalent magnetic resonance imaging (TE-MRI) from 27 ELBW infants with known developmental outcomes beyond 12 months corrected age. Regional biometric measurements were performed by a pediatric neuroradiologist blinded to outcome data. Measures included biparietal width, transcerebellar diameter (TCD), deep gray matter area (DGMA), ventricular dilatation, corpus callosum, and interhemispheric distance. The relationship between regional biometrics and Bayley-II developmental scores were evaluated with linear regression models. The study cohort had an average±standard deviation birth weight of 684±150 g, gestational age of 24.6±2 weeks and 48% males. DGMA was significantly associated with both cognitive and motor outcomes. Significant associations were also observed between TCD and corpus callosum splenium with cognitive and motor outcomes, respectively. Other biometric measures were not associated with outcome (p>0.05). DGMA<10.26 cm2 was highly specific for poor motor and cognitive outcome. TE-MRI biometrics reflecting impaired deep gray matter, callosal, and cerebellar size is associated with worse early childhood cognitive and motor outcomes. DGMA may be the most robust single biometric measure to predict adverse developmental outcome in preterm survivors. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Deep brain stimulation: a return journey from psychiatry to neurology.

    PubMed

    Ashkan, Keyoumars; Shotbolt, Paul; David, Anthony S; Samuel, Michael

    2013-06-01

    Deep brain stimulation (DBS) has emerged as an effective neurosurgical tool to treat a range of conditions. Its use in movement disorders such as Parkinson's disease, tremor and dystonia is now well established and has been approved by the National Institute of Clinical Excellence (NICE). The NICE does, however, emphasise the need for a multidisciplinary team to manage these patients. Such a team is traditionally composed of neurologists, neurosurgeons and neuropsychologists. Neuropsychiatrists, however, are increasingly recognised as essential members given many psychiatric considerations that may arise in patients undergoing DBS. Patient selection, assessment of competence to consent and treatment of postoperative psychiatric disease are just a few areas where neuropsychiatric input is invaluable. Partly driven by this close team working and partly based on the early history of DBS for psychiatric disorders, there is increasing interest in re-exploring the potential of neurosurgery to treat patients with psychiatric disease, such as depression and obsessive-compulsive disorder. Although the clinical experience and evidence with DBS in this group of patients are steadily increasing, many questions remain unanswered. Yet, the characteristics of optimal surgical candidates, the best choice of DBS target, the most effective stimulating parameters and the extent of postoperative improvement are not clear for most psychiatric conditions. Further research is therefore required to define how DBS can be best utilised to improve the quality of life of patients with psychiatric disease.

  10. Convection-enhanced delivery of AAV2 in white matter--a novel method for gene delivery to cerebral cortex.

    PubMed

    Barua, N U; Woolley, M; Bienemann, A S; Johnson, D; Wyatt, M J; Irving, C; Lewis, O; Castrique, E; Gill, S S

    2013-10-30

    Convection-enhanced delivery (CED) is currently under investigation for delivering therapeutic agents to subcortical targets in the brain. Direct delivery of therapies to the cerebral cortex, however, remains a significant challenge. We describe a novel method of targeting adeno-associated viral vector (AAV) mediated gene therapies to specific cerebral cortical regions by performing high volume, high flow rate infusions into underlying white matter in a large animal (porcine) model. Infusion volumes of up to 700 μl at flow rates as high as 10 μl/min were successfully performed in white matter without adverse neurological sequelae. Co-infusion of AAV2/5-GFP with 0.2% Gadolinium in artificial CSF confirmed transgene expression in the deep layers of cerebral cortex overlying the infused areas of white matter. AAV-mediated gene therapies have been previously targeted to the cerebral cortex by performing intrathalamic CED and exploiting axonal transport. The novel method described in this study facilitates delivery of gene therapies to specific regions of the cerebral cortex without targeting deep brain structures. AAV-mediated gene therapies can be targeted to specific cortical regions by performing CED into underlying white matter. This technique could be applied to the treatment of neurological disorders characterised by cerebral cortical degeneration. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Carbon Nanofiber Nanoelectrodes for Neural Stimulation and Chemical Detection: The Era of "Smart" Deep Brain Stimulation

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica E.

    2016-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  12. Barriers to investigator-initiated deep brain stimulation and device research

    PubMed Central

    Malone, Donald; Okun, Michael S.; Booth, Joan; Machado, Andre G.

    2014-01-01

    The success of device-based research in the clinical neurosciences has overshadowed a critical and emerging problem in the biomedical research environment in the United States. Neuroprosthetic devices, such as deep brain stimulation (DBS), have been shown in humans to be promising technologies for scientific exploration of neural pathways and as powerful treatments. Large device companies have, over the past several decades, funded and developed major research programs. However, both the structure of clinical trial funding and the current regulation of device research threaten investigator-initiated efforts in neurologic disorders. The current atmosphere dissuades clinical investigators from pursuing formal and prospective research with novel devices or novel indications. We review our experience in conducting a federally funded, investigator-initiated, device-based clinical trial that utilized DBS for thalamic pain syndrome. We also explore barriers that clinical investigators face in conducting device-based clinical trials, particularly in early-stage studies or small disease populations. We discuss 5 specific areas for potential reform and integration: (1) alternative pathways for device approval; (2) eliminating right of reference requirements; (3) combining federal grant awards with regulatory approval; (4) consolidation of oversight for human subjects research; and (5) private insurance coverage for clinical trials. Careful reformulation of regulatory policy and funding mechanisms is critical for expanding investigator-initiated device research, which has great potential to benefit science, industry, and, most importantly, patients. PMID:24670888

  13. Carbon Nanofiber Nanoelectrodes for Neural Stimulation and Chemical Detection: The Era of Smart Deep Brain Stimulation

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica E.

    2016-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable "smart" therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  14. Parkinsonian rest tremor can be detected accurately based on neuronal oscillations recorded from the subthalamic nucleus.

    PubMed

    Hirschmann, J; Schoffelen, J M; Schnitzler, A; van Gerven, M A J

    2017-10-01

    To investigate the possibility of tremor detection based on deep brain activity. We re-analyzed recordings of local field potentials (LFPs) from the subthalamic nucleus in 10 PD patients (12 body sides) with spontaneously fluctuating rest tremor. Power in several frequency bands was estimated and used as input to Hidden Markov Models (HMMs) which classified short data segments as either tremor-free rest or rest tremor. HMMs were compared to direct threshold application to individual power features. Applying a threshold directly to band-limited power was insufficient for tremor detection (mean area under the curve [AUC] of receiver operating characteristic: 0.64, STD: 0.19). Multi-feature HMMs, in contrast, allowed for accurate detection (mean AUC: 0.82, STD: 0.15), using four power features obtained from a single contact pair. Within-patient training yielded better accuracy than across-patient training (0.84vs. 0.78, p=0.03), yet tremor could often be detected accurately with either approach. High frequency oscillations (>200Hz) were the best performing individual feature. LFP-based markers of tremor are robust enough to allow for accurate tremor detection in short data segments, provided that appropriate statistical models are used. LFP-based markers of tremor could be useful control signals for closed-loop deep brain stimulation. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  15. Deep brain stimulation of the rostromedial tegmental nucleus: An unanticipated, selective effect on food intake.

    PubMed

    Melse, Maartje; Temel, Yasin; Tan, Sonny K; Jahanshahi, Ali

    2016-10-01

    The rostromedial tegmental nucleus (RMTg) is a relatively newly described brainstem structure. The RMTg is extensively connected to both dopaminergic (DA) and serotoninergic key areas and it fulfills a pivotal role in the regulation of mesolimbic and nigrostriatal DA release. The RMTg may directly influence DA- and 5-HT associated motor and possibly also mood related behavior, the latter of which has not yet been well described. The current study explored the consequences of RMTg manipulation on DA- and 5-HT related behavior through the application of RMTg deep brain stimulation (DBS) with both high and low frequency stimulation (LFS and HFS). We used a wide array of motor and mood tests to assess changes in behavior. RMTg DBS did not change behavioral outcomes in the Skinner box task, nor in the Catwalk, the sucrose intake test, the open field test, the elevated zero maze, or the place preference test, but LFS did induce a significant decrease in food intake. This seems to be a selective effect as no motor or anxiety changes were observed that could lead to attenuated food intake. This finding not only underlines the RMTg's braking effect on the VTA, but possibly also on the forebrain, where GABA-ergic RMTg efferent may cause suppression of feeding in the lateral hypothalamus. Copyright © 2016. Published by Elsevier Inc.

  16. Retrograde Cerebral Perfusion Results in Better Perfusion to the Striatum Than the Cerebral Cortex During Deep Hypothermic Circulatory Arrest: A Microdialysis Study.

    PubMed

    Liang, Meng-Ya; Chen, Guang-Xian; Tang, Zhi-Xian; Rong, Jian; Yao, Jian-ping; Wu, Zhong-Kai

    2016-03-01

    It remains controversial whether contemporary cerebral perfusion techniques, utilized during deep hypothermic circulatory arrest (DHCA), establish adequate perfusion to deep structures in the brain. This study aimed to investigate whether selective antegrade cerebral perfusion (SACP) or retrograde cerebral perfusion (RCP) can provide perfusion equally to various anatomical positions in the brain using metabolic evidence obtained from microdialysis. Eighteen piglets were randomly assigned to 40 min of circulatory arrest (CA) at 18°C without cerebral perfusion (DHCA group, n = 6) or with SACP (SACP group, n = 6) or RCP (RCP group, n = 6). Microdialysis parameters (glucose, lactate, pyruvate, and glutamate) were measured every 30 min in cortex and striatum. After 3 h of reperfusion, brain tissue was harvested for Western blot measurement of α-spectrin. After 40 min of CA, the DHCA group showed marked elevations of lactate and glycerol and a reduction in glucose in the microdialysis perfusate (all P < 0.05). The changes in glucose, lactate, and glycerol in the perfusate and α-spectrin expression in brain tissue were similar between cortex and striatum in the SACP group (all P > 0.05). In the RCP group, the cortex exhibited lower glucose, higher lactate, and higher glycerol in the perfusate and higher α-spectrin expression in brain tissue compared with the striatum (all P < 0.05). Glutamate showed no difference between cortex and striatum in all groups (all P > 0.05). In summary, SACP provided uniform and continuous cerebral perfusion to most anatomical sites in the brain, whereas RCP resulted in less sufficient perfusion to the cortex but better perfusion to the striatum. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  17. Use of Tubular Retractor for Resection of Deep-Seated Cerebral Tumors and Colloid Cysts: Single Surgeon Experience and Review of the Literature.

    PubMed

    Eichberg, Daniel G; Buttrick, Simon; Brusko, G Damian; Ivan, Michael; Starke, Robert M; Komotar, Ricardo J

    2018-04-01

    Brain retraction is often required to develop a surgical corridor during the resection of deep-seated intracranial lesions. Traditional blade retractors distribute pressure asymmetrically and may case local tissue damage. Tubular retractors minimize this pitfall by distributing pressure evenly, which has been shown to translate to significant safety and efficacy data. Further qualified reports regarding the use of tubular retractors are of interest. We performed a retrospective analysis of 1 surgeon's experience with 20 cases of minimally invasive resection with the ViewSite Brain Access System (n = 7) and BrainPath (n = 13) systems. In addition, a comprehensive review of all published cases of tubular retractor systems used for resection of subcortical neoplastic, cystic, infectious, vascular, and hemorrhagic lesions was conducted. Of the 20 cases analyzed, gross total resection was achieved in 18, with an associated 10% immediate postoperative complication rate and 5% long-term complication rate. A comprehensive review of the literature showed 30 articles describing 536 cases of resection of deep neoplastic or colloid cysts with an overall complication rate of 9.1%. Tubular retractor systems have a favorable safety profile and are an important tool in the armamentarium of a neurosurgeon for the resection of deep intracranial lesions. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Single-shot T2 mapping using overlapping-echo detachment planar imaging and a deep convolutional neural network.

    PubMed

    Cai, Congbo; Wang, Chao; Zeng, Yiqing; Cai, Shuhui; Liang, Dong; Wu, Yawen; Chen, Zhong; Ding, Xinghao; Zhong, Jianhui

    2018-04-24

    An end-to-end deep convolutional neural network (CNN) based on deep residual network (ResNet) was proposed to efficiently reconstruct reliable T 2 mapping from single-shot overlapping-echo detachment (OLED) planar imaging. The training dataset was obtained from simulations that were carried out on SPROM (Simulation with PRoduct Operator Matrix) software developed by our group. The relationship between the original OLED image containing two echo signals and the corresponding T 2 mapping was learned by ResNet training. After the ResNet was trained, it was applied to reconstruct the T 2 mapping from simulation and in vivo human brain data. Although the ResNet was trained entirely on simulated data, the trained network was generalized well to real human brain data. The results from simulation and in vivo human brain experiments show that the proposed method significantly outperforms the echo-detachment-based method. Reliable T 2 mapping with higher accuracy is achieved within 30 ms after the network has been trained, while the echo-detachment-based OLED reconstruction method took approximately 2 min. The proposed method will facilitate real-time dynamic and quantitative MR imaging via OLED sequence, and deep convolutional neural network has the potential to reconstruct maps from complex MRI sequences efficiently. © 2018 International Society for Magnetic Resonance in Medicine.

  19. Deep neural networks for modeling visual perceptual learning.

    PubMed

    Wenliang, Li; Seitz, Aaron R

    2018-05-23

    Understanding visual perceptual learning (VPL) has become increasingly more challenging as new phenomena are discovered with novel stimuli and training paradigms. While existing models aid our knowledge of critical aspects of VPL, the connections shown by these models between behavioral learning and plasticity across different brain areas are typically superficial. Most models explain VPL as readout from simple perceptual representations to decision areas and are not easily adaptable to explain new findings. Here, we show that a well-known instance of deep neural network (DNN), while not designed specifically for VPL, provides a computational model of VPL with enough complexity to be studied at many levels of analyses. After learning a Gabor orientation discrimination task, the DNN model reproduced key behavioral results, including increasing specificity with higher task precision, and also suggested that learning precise discriminations could asymmetrically transfer to coarse discriminations when the stimulus conditions varied. In line with the behavioral findings, the distribution of plasticity moved towards lower layers when task precision increased, and this distribution was also modulated by tasks with different stimulus types. Furthermore, learning in the network units demonstrated close resemblance to extant electrophysiological recordings in monkey visual areas. Altogether, the DNN fulfilled predictions of existing theories regarding specificity and plasticity, and reproduced findings of tuning changes in neurons of the primate visual areas. Although the comparisons were mostly qualitative, the DNN provides a new method of studying VPL and can serve as a testbed for theories and assist in generating predictions for physiological investigations. SIGNIFICANCE STATEMENT Visual perceptual learning (VPL) has been found to cause changes at multiple stages of the visual hierarchy. We found that training a deep neural network (DNN) on an orientation discrimination task produced similar behavioral and physiological patterns found in human and monkey experiments. Unlike existing VPL models, the DNN was pre-trained on natural images to reach high performance in object recognition but was not designed specifically for VPL, and yet it fulfilled predictions of existing theories regarding specificity and plasticity, and reproduced findings of tuning changes in neurons of the primate visual areas. When used with care, this unbiased and deep-hierarchical model can provide new ways of studying VPL from behavior to physiology. Copyright © 2018 the authors.

  20. Conductive nanogel-interfaced neural microelectrode arrays with electrically controlled in-situ delivery of manganese ions enabling high-resolution MEMRI for synchronous neural tracing with deep brain stimulation.

    PubMed

    Huang, Wei-Chen; Lo, Yu-Chih; Chu, Chao-Yi; Lai, Hsin-Yi; Chen, You-Yin; Chen, San-Yuan

    2017-04-01

    Chronic brain stimulation has become a promising physical therapy with increased efficacy and efficiency in the treatment of neurodegenerative diseases. The application of deep brain electrical stimulation (DBS) combined with manganese-enhanced magnetic resonance imaging (MEMRI) provides an unbiased representation of the functional anatomy, which shows the communication between areas of the brain responding to the therapy. However, it is challenging for the current system to provide a real-time high-resolution image because the incorporated MnCl 2 solution through microinjection usually results in image blurring or toxicity due to the uncontrollable diffusion of Mn 2+ . In this study, we developed a new type of conductive nanogel-based neural interface composed of amphiphilic chitosan-modified poly(3,4 -ethylenedioxythiophene) (PMSDT) that can exhibit biomimic structural/mechanical properties and ionic/electrical conductivity comparable to that of Au. More importantly, the PMSDT enables metal-ligand bonding with Mn 2+ ions, so that the system can release Mn 2+ ions rather than MnCl 2 solution directly and precisely controlled by electrical stimulation (ES) to achieve real-time high-resolution MEMRI. With the integration of PMSDT nanogel-based coating in polyimide-based microelectrode arrays, the post-implantation DBS enables frequency-dependent MR imaging in vivo, as well as small focal imaging in response to channel site-specific stimulation on the implant. The MR imaging of the implanted brain treated with 5-min electrical stimulation showed a thalamocortical neuronal pathway after 36 h, confirming the effective activation of a downstream neuronal circuit following DBS. By eliminating the susceptibility to artifact and toxicity, this system, in combination with a MR-compatible implant and a bio-compliant neural interface, provides a harmless and synchronic functional anatomy for DBS. The study demonstrates a model of MEMRI-functionalized DBS based on functional neural interface engineering and controllable delivery technology, which can be utilized in more detailed exploration of the functional anatomy in the treatment of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Development of the human lateral geniculate nucleus: A morphometric and computerized 3D-reconstruction study.

    PubMed

    Yamaguchi, Katsuyuki

    2018-04-04

    The lateral geniculate nucleus (LGN) is the major relay center of the visual pathway in humans. There are few quantitative data on the morphology of LGN in prenatal infants. In this study, using serial brain sections, the author investigated the morphology of this nucleus during the second half of fetal period. Eleven human brains were obtained at routine autopsy from preterm infants aged 20-39 postmenstrual weeks. After fixation, the brain was embedded en bloc in celloidin and cut serially at 30 μm in the horizontal plane. The sections were stained at regular intervals using the Klüver-Barrera method. At 20-21 weeks, the long axis of LGN declined obliquely from the vertical to horizontal plane, while a deep groove was noted on the ventro-lateral surface of the superior half. At this time, an arcuate cell-sparse zone appeared in the dorso-medial region, indicating the beginning of lamination. From 25 weeks onwards, the magnocellular and parvocellular layers were distinguishable, and the characteristic six-layered structure was recognized. The magnocellular layer covered most of the dorsal surface, and parts of the medial, lateral, and inferior surfaces but not the ventral and superior surfaces. Nuclear volume increased exponentially with age during 20-39 weeks, while the mean neuronal profile area increased linearly during 25-39 weeks. Human LGN develops a deep groove on the ventro-lateral surface at around mid-gestation, when the initial lamination is recognized in the prospective magnocellular layer. Thereafter, the nuclear volume increases with age in an exponential function. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Deep Brain Stimulation to Alleviate Freezing of Gait and Cognitive Dysfunction in Parkinson's Disease: Update on Current Research and Future Perspectives.

    PubMed

    Huang, Chuyi; Chu, Heling; Zhang, Yan; Wang, Xiaoping

    2018-01-01

    Freezing of gait (FOG) is a gait disorder featured by recurrent episodes of temporary gait halting and mainly found in advanced Parkinson's disease (PD). FOG has a severe impact on the quality of life of patients with PD. The pathogenesis of FOG is unclear and considered to be related to several brain areas and neural circuits. Its close connection with cognitive disorder has been proposed and some researchers explain the pathogenesis using the cognitive model theory. FOG occurs concurrently with cognitive disorder in some PD patients, who are poorly responsive to medication therapy. Deep brain stimulation (DBS) proves effective for FOG in PD patients. Cognitive impairment plays a role in the formation of FOG. Therefore, if DBS works by improving the cognitive function, both two challenging conditions can be ameliorated by DBS. We reviewed the clinical studies related to DBS for FOG in PD patients over the past decade. In spite of the varying stimulation parameters used in different studies, DBS of either subthalamic nucleus (STN) or pedunculopontine nucleus (PPN) alone or in combination can improve the symptoms of FOG. Moreover, the treatment efficacy can last for 1-2 years and DBS is generally safe. Although few studies have been conducted concerning the use of DBS for cognitive disorder in FOG patients, the existing studies seem to indicate that PPN is a potential therapeutic target to both FOG and cognitive disorder. However, most of the studies have a small sample size and involve sporadic cases, so it remains uncertain which nucleus is the optimal target of stimulation. Prospective clinical trials with a larger sample size are needed to systematically assess the efficacy of DBS for FOG and cognitive disorder.

  3. A reduced astrocyte response to β-amyloid plaques in the ageing brain associates with cognitive impairment.

    PubMed

    Mathur, Ryan; Ince, Paul G; Minett, Thais; Garwood, Claire J; Shaw, Pamela J; Matthews, Fiona E; Brayne, Carol; Simpson, Julie E; Wharton, Stephen B

    2015-01-01

    β-amyloid (Aβ) plaques are a key feature of Alzheimer's disease pathology but correlate poorly with dementia. They are associated with astrocytes which may modulate the effect of Aβ-deposition on the neuropil. This study characterised the astrocyte response to Aβ plaque subtypes, and investigated their association with cognitive impairment. Aβ plaque subtypes were identified in the cingulate gyrus using dual labelling immunohistochemistry to Aβ and GFAP+ astrocytes, and quantitated in two cortical areas: the area of densest plaque burden and the deep cortex near the white matter border (layer VI). Three subtypes were defined for both diffuse and compact plaques (also known as classical or core-plaques): Aβ plaque with (1) no associated astrocytes, (2) focal astrogliosis or (3) circumferential astrogliosis. In the area of densest burden, diffuse plaques with no astrogliosis (β = -0.05, p = 0.001) and with focal astrogliosis (β = -0.27, p = 0.009) significantly associated with lower MMSE scores when controlling for sex and age at death. In the deep cortex (layer VI), both diffuse and compact plaques without astrogliosis associated with lower MMSE scores (β = -0.15, p = 0.017 and β = -0.81, p = 0.03, respectively). Diffuse plaques with no astrogliosis in layer VI related to dementia status (OR = 1.05, p = 0.025). In the area of densest burden, diffuse plaques with no astrogliosis or with focal astrogliosis associated with increasing Braak stage (β = 0.01, p<0.001 and β = 0.07, p<0.001, respectively), and ApoEε4 genotype (OR = 1.02, p = 0.001 and OR = 1.10, p = 0.016, respectively). In layer VI all plaque subtypes associated with Braak stage, and compact amyloid plaques with little and no associated astrogliosis associated with ApoEε4 genotype (OR = 1.50, p = 0.014 and OR = 0.10, p = 0.003, respectively). Reactive astrocytes in close proximity to either diffuse or compact plaques may have a neuroprotective role in the ageing brain, and possession of at least one copy of the ApoEε4 allele impacts the astroglial response to Aβ plaques.

  4. Complexity Level Analysis Revisited: What Can 30 Years of Hindsight Tell Us about How the Brain Might Represent Visual Information?

    PubMed Central

    Tsotsos, John K.

    2017-01-01

    Much has been written about how the biological brain might represent and process visual information, and how this might inspire and inform machine vision systems. Indeed, tremendous progress has been made, and especially during the last decade in the latter area. However, a key question seems too often, if not mostly, be ignored. This question is simply: do proposed solutions scale with the reality of the brain's resources? This scaling question applies equally to brain and to machine solutions. A number of papers have examined the inherent computational difficulty of visual information processing using theoretical and empirical methods. The main goal of this activity had three components: to understand the deep nature of the computational problem of visual information processing; to discover how well the computational difficulty of vision matches to the fixed resources of biological seeing systems; and, to abstract from the matching exercise the key principles that lead to the observed characteristics of biological visual performance. This set of components was termed complexity level analysis in Tsotsos (1987) and was proposed as an important complement to Marr's three levels of analysis. This paper revisits that work with the advantage that decades of hindsight can provide. PMID:28848458

  5. Complexity Level Analysis Revisited: What Can 30 Years of Hindsight Tell Us about How the Brain Might Represent Visual Information?

    PubMed

    Tsotsos, John K

    2017-01-01

    Much has been written about how the biological brain might represent and process visual information, and how this might inspire and inform machine vision systems. Indeed, tremendous progress has been made, and especially during the last decade in the latter area. However, a key question seems too often, if not mostly, be ignored. This question is simply: do proposed solutions scale with the reality of the brain's resources? This scaling question applies equally to brain and to machine solutions. A number of papers have examined the inherent computational difficulty of visual information processing using theoretical and empirical methods. The main goal of this activity had three components: to understand the deep nature of the computational problem of visual information processing; to discover how well the computational difficulty of vision matches to the fixed resources of biological seeing systems; and, to abstract from the matching exercise the key principles that lead to the observed characteristics of biological visual performance. This set of components was termed complexity level analysis in Tsotsos (1987) and was proposed as an important complement to Marr's three levels of analysis. This paper revisits that work with the advantage that decades of hindsight can provide.

  6. Brain-machine interfaces: electrophysiological challenges and limitations.

    PubMed

    Lega, Bradley C; Serruya, Mijail D; Zaghloul, Kareem A

    2011-01-01

    Brain-machine interfaces (BMI) seek to directly communicate with the human nervous system in order to diagnose and treat intrinsic neurological disorders. While the first generation of these devices has realized significant clinical successes, they often rely on gross electrical stimulation using empirically derived parameters through open-loop mechanisms of action that are not yet fully understood. Their limitations reflect the inherent challenge in developing the next generation of these devices. This review identifies lessons learned from the first generation of BMI devices (chiefly deep brain stimulation), identifying key problems for which the solutions will aid the development of the next generation of technologies. Our analysis examines four hypotheses for the mechanism by which brain stimulation alters surrounding neurophysiologic activity. We then focus on motor prosthetics, describing various approaches to overcoming the problems of decoding neural signals. We next turn to visual prosthetics, an area for which the challenges of signal coding to match neural architecture has been partially overcome. Finally, we close with a review of cortical stimulation, examining basic principles that will be incorporated into the design of future devices. Throughout the review, we relate the issues of each specific topic to the common thread of BMI research: translating new knowledge of network neuroscience into improved devices for neuromodulation.

  7. SZGR 2.0: a one-stop shop of schizophrenia candidate genes

    PubMed Central

    Jia, Peilin; Han, Guangchun; Zhao, Junfei; Lu, Pinyi; Zhao, Zhongming

    2017-01-01

    SZGR 2.0 is a comprehensive resource of candidate variants and genes for schizophrenia, covering genetic, epigenetic, transcriptomic, translational and many other types of evidence. By systematic review and curation of multiple lines of evidence, we included almost all variants and genes that have ever been reported to be associated with schizophrenia. In particular, we collected ∼4200 common variants reported in genome-wide association studies, ∼1000 de novo mutations discovered by large-scale sequencing of family samples, 215 genes spanning rare and replication copy number variations, 99 genes overlapping with linkage regions, 240 differentially expressed genes, 4651 differentially methylated genes and 49 genes as antipsychotic drug targets. To facilitate interpretation, we included various functional annotation data, especially brain eQTL, methylation QTL, brain expression featured in deep categorization of brain areas and developmental stages and brain-specific promoter and enhancer annotations. Furthermore, we conducted cross-study, cross-data type and integrative analyses of the multidimensional data deposited in SZGR 2.0, and made the data and results available through a user-friendly interface. In summary, SZGR 2.0 provides a one-stop shop of schizophrenia variants and genes and their function and regulation, providing an important resource in the schizophrenia and other mental disease community. SZGR 2.0 is available at https://bioinfo.uth.edu/SZGR/. PMID:27733502

  8. Application of radiosurgical techniques to produce a primate model of brain lesions

    PubMed Central

    Kunimatsu, Jun; Miyamoto, Naoki; Ishikawa, Masayori; Shirato, Hiroki; Tanaka, Masaki

    2015-01-01

    Behavioral analysis of subjects with discrete brain lesions provides important information about the mechanisms of various brain functions. However, it is generally difficult to experimentally produce discrete lesions in deep brain structures. Here we show that a radiosurgical technique, which is used as an alternative treatment for brain tumors and vascular malformations, is applicable to create non-invasive lesions in experimental animals for the research in systems neuroscience. We delivered highly focused radiation (130–150 Gy at ISO center) to the frontal eye field (FEF) of macaque monkeys using a clinical linear accelerator (LINAC). The effects of irradiation were assessed by analyzing oculomotor performance along with magnetic resonance (MR) images before and up to 8 months following irradiation. In parallel with tissue edema indicated by MR images, deficits in saccadic and smooth pursuit eye movements were observed during several days following irradiation. Although initial signs of oculomotor deficits disappeared within a month, damage to the tissue and impaired eye movements gradually developed during the course of the subsequent 6 months. Postmortem histological examinations showed necrosis and hemorrhages within a large area of the white matter and, to a lesser extent, in the adjacent gray matter, which was centered at the irradiated target. These results indicated that the LINAC system was useful for making brain lesions in experimental animals, while the suitable radiation parameters to generate more focused lesions need to be further explored. We propose the use of a radiosurgical technique for establishing animal models of brain lesions, and discuss the possible uses of this technique for functional neurosurgical treatments in humans. PMID:25964746

  9. Comparison of endoscope- versus microscope-assisted resection of deep-seated intracranial lesions using a minimally invasive port retractor system.

    PubMed

    Hong, Christopher S; Prevedello, Daniel M; Elder, J Bradley

    2016-03-01

    Tubular brain retractors may improve access to deep-seated brain lesions while potentially reducing the risks of collateral neurological injury associated with standard microsurgical approaches. Here, microscope-assisted resection of lesions using tubular retractors is assessed to determine if it is superior to endoscope-assisted surgery due to the technological advancements associated with modern tubular ports and surgical microscopes. Following institutional approval of the tubular port, data obtained from the initial 20 patients to undergo transportal resection of deep-seated brain lesions were analyzed in this study. The pathological entities of the resected tissues included metastatic tumors (8 patients), glioma (7), meningioma (1), neurocytoma (1), radiation necrosis (1), primitive neuroectodermal tumor (1), and hemangioblastoma (1). Surgery incorporated endoscopic (5 patients) or microscopic (15) assistance. The locations included the basal ganglia (11 patients), cerebellum (4), frontal lobe (2), temporal lobe (2), and parietal lobe (1). Cases were reviewed for neurological outcomes, extent of resection (EOR), and complications. Technical data for the port, surgical microscope, and endoscope were analyzed. EOR was considered total in 14 (70%), near total (> 95%) in 4 (20%), and subtotal (< 90%) in 2 (10%) of 20 patients. Incomplete resection was associated with the basal ganglia location (p < 0.05) and use of the endoscope (p < 0.002). Four of 5 (80%) endoscope-assisted cases were near-total (2) or subtotal (2) resection. Histopathological diagnosis, presenting neurological symptoms, and demographics were not associated with EOR. Complication rates were low and similar between groups. Initial experience with tubular retractors favors use of the microscope rather than the endoscope due to a wider and 3D field of view. Improved microscope optics and tubular retractor design allows for binocular vision with improved lighting for the resection of deep-seated brain lesions.

  10. Neuromodulation and neurofeedback treatments in eating disorders and obesity.

    PubMed

    Dalton, Bethan; Campbell, Iain C; Schmidt, Ulrike

    2017-11-01

    Psychological interventions are the treatment of choice for most eating disorders; however, significant proportions of patients do not recover with these. Advances in understanding of the neurobiology of eating disorders have led to the development of targeted treatments, such as deep brain stimulation (DBS), noninvasive brain stimulation (NIBS), and neurofeedback. We review the emerging clinical evidence for the use of these interventions in eating disorders and obesity, together with their theoretical rationale. Finally, we reflect on future developments. During the last 20 months, seven case studies/series and seven randomized controlled trials (RCTs) of NIBS or neurofeedback in different eating disorders, obesity, or food craving have appeared. These have largely had promising results. One NIBS trial, using a multisession protocol, was negative. A case series of subcallosal DBS in anorexia nervosa has also shown promise. A search of trial registries identified a further 21 neuromodulation/feedback studies in progress, indicating that neuromodulation/feedback is an area of growing interest. At present, neuromodulation and neurofeedback are largely experimental interventions; however, growing understanding of the mechanisms involved, together with the rising number of studies in this area, means that the clinical utility of these interventions is likely to become clearer soon.

  11. Neurostimulation in the treatment of primary headaches

    PubMed Central

    Miller, Sarah; Sinclair, Alex J; Davies, Brendan; Matharu, Manjit

    2016-01-01

    There is increasing interest in using neurostimulation to treat headache disorders. There are now several non-invasive and invasive stimulation devices available with some open-label series and small controlled trial studies that support their use. Non-invasive stimulation options include supraorbital stimulation (Cefaly), vagus nerve stimulation (gammaCore) and single-pulse transcranial magnetic stimulation (SpringTMS). Invasive procedures include occipital nerve stimulation, sphenopalatine ganglion stimulation and ventral tegmental area deep brain stimulation. These stimulation devices may find a place in the treatment pathway of headache disorders. Here, we explore the basic principles of neurostimulation for headache and overview the available methods of neurostimulation. PMID:27152027

  12. Does navigated transcranial stimulation increase the accuracy of tractography? A prospective clinical trial based on intraoperative motor evoked potential monitoring during deep brain stimulation.

    PubMed

    Forster, Marie-Therese; Hoecker, Alexander Claudius; Kang, Jun-Suk; Quick, Johanna; Seifert, Volker; Hattingen, Elke; Hilker, Rüdiger; Weise, Lutz Martin

    2015-06-01

    Tractography based on diffusion tensor imaging has become a popular tool for delineating white matter tracts for neurosurgical procedures. To explore whether navigated transcranial magnetic stimulation (nTMS) might increase the accuracy of fiber tracking. Tractography was performed according to both anatomic delineation of the motor cortex (n = 14) and nTMS results (n = 9). After implantation of the definitive electrode, stimulation via the electrode was performed, defining a stimulation threshold for eliciting motor evoked potentials recorded during deep brain stimulation surgery. Others have shown that of arm and leg muscles. This threshold was correlated with the shortest distance between the active electrode contact and both fiber tracks. Results were evaluated by correlation to motor evoked potential monitoring during deep brain stimulation, a surgical procedure causing hardly any brain shift. Distances to fiber tracks clearly correlated with motor evoked potential thresholds. Tracks based on nTMS had a higher predictive value than tracks based on anatomic motor cortex definition (P < .001 and P = .005, respectively). However, target site, hemisphere, and active electrode contact did not influence this correlation. The implementation of tractography based on nTMS increases the accuracy of fiber tracking. Moreover, this combination of methods has the potential to become a supplemental tool for guiding electrode implantation.

  13. Deep learning of symmetrical discrepancies for computer-aided detection of mammographic masses

    NASA Astrophysics Data System (ADS)

    Kooi, Thijs; Karssemeijer, Nico

    2017-03-01

    When humans identify objects in images, context is an important cue; a cheetah is more likely to be a domestic cat when a television set is recognised in the background. Similar principles apply to the analysis of medical images. The detection of diseases that manifest unilaterally in symmetrical organs or organ pairs can in part be facilitated by a search for symmetrical discrepancies in or between the organs in question. During a mammographic exam, images are recorded of each breast and absence of a certain structure around the same location in the contralateral image will render the area under scrutiny more suspicious and conversely, the presence of similar tissue less so. In this paper, we present a fusion scheme for a deep Convolutional Neural Network (CNN) architecture with the goal to optimally capture such asymmetries. The method is applied to the domain of mammography CAD, but can be relevant to other medical image analysis tasks where symmetry is important such as lung, prostate or brain images.

  14. Click beetle luciferase mutant and near infrared naphthyl-luciferins for improved bioluminescence imaging.

    PubMed

    Hall, Mary P; Woodroofe, Carolyn C; Wood, Monika G; Que, Ivo; Van't Root, Moniek; Ridwan, Yanto; Shi, Ce; Kirkland, Thomas A; Encell, Lance P; Wood, Keith V; Löwik, Clemens; Mezzanotte, Laura

    2018-01-09

    The sensitivity of bioluminescence imaging in animals is primarily dependent on the amount of photons emitted by the luciferase enzyme at wavelengths greater than 620 nm where tissue penetration is high. This area of work has been dominated by firefly luciferase and its substrate, D-luciferin, due to the system's peak emission (~ 600 nm), high signal to noise ratio, and generally favorable biodistribution of D-luciferin in mice. Here we report on the development of a codon optimized mutant of click beetle red luciferase that produces substantially more light output than firefly luciferase when the two enzymes are compared in transplanted cells within the skin of black fur mice or in deep brain. The mutant enzyme utilizes two new naphthyl-luciferin substrates to produce near infrared emission (730 nm and 743 nm). The stable luminescence signal and near infrared emission enable unprecedented sensitivity and accuracy for performing deep tissue multispectral tomography in mice.

  15. Deep-Brain Stimulation for Basal Ganglia Disorders.

    PubMed

    Wichmann, Thomas; Delong, Mahlon R

    2011-07-01

    The realization that medications used to treat movement disorders and psychiatric conditions of basal ganglia origin have significant shortcomings, as well as advances in the understanding of the functional organization of the brain, has led to a renaissance in functional neurosurgery, and particularly the use of deep brain stimulation (DBS). Movement disorders are now routinely being treated with DBS of 'motor' portions of the basal ganglia output nuclei, specifically the subthalamic nucleus and the internal pallidal segment. These procedures are highly effective and generally safe. Use of DBS is also being explored in the treatment of neuropsychiatric disorders, with targeting of the 'limbic' basal ganglia-thalamocortical circuitry. The results of these procedures are also encouraging, but many unanswered questions remain in this emerging field. This review summarizes the scientific rationale and practical aspects of using DBS for neurologic and neuropsychiatric disorders.

  16. Processes for design, construction and utilisation of arrays of light-emitting diodes and light-emitting diode-coupled optical fibres for multi-site brain light delivery

    PubMed Central

    Bernstein, Jacob G.; Allen, Brian D.; Guerra, Alexander A.; Boyden, Edward S.

    2016-01-01

    Optogenetics enables light to be used to control the activity of genetically targeted cells in the living brain. Optical fibers can be used to deliver light to deep targets, and LEDs can be spatially arranged to enable patterned light delivery. In combination, arrays of LED-coupled optical fibers can enable patterned light delivery to deep targets in the brain. Here we describe the process flow for making LED arrays and LED-coupled optical fiber arrays, explaining key optical, electrical, thermal, and mechanical design principles to enable the manufacturing, assembly, and testing of such multi-site targetable optical devices. We also explore accessory strategies such as surgical automation approaches as well as innovations to enable low-noise concurrent electrophysiology. PMID:26798482

  17. Model-Based Comparison of Deep Brain Stimulation Array Functionality with Varying Number of Radial Electrodes and Machine Learning Feature Sets.

    PubMed

    Teplitzky, Benjamin A; Zitella, Laura M; Xiao, YiZi; Johnson, Matthew D

    2016-01-01

    Deep brain stimulation (DBS) leads with radially distributed electrodes have potential to improve clinical outcomes through more selective targeting of pathways and networks within the brain. However, increasing the number of electrodes on clinical DBS leads by replacing conventional cylindrical shell electrodes with radially distributed electrodes raises practical design and stimulation programming challenges. We used computational modeling to investigate: (1) how the number of radial electrodes impact the ability to steer, shift, and sculpt a region of neural activation (RoA), and (2) which RoA features are best used in combination with machine learning classifiers to predict programming settings to target a particular area near the lead. Stimulation configurations were modeled using 27 lead designs with one to nine radially distributed electrodes. The computational modeling framework consisted of a three-dimensional finite element tissue conductance model in combination with a multi-compartment biophysical axon model. For each lead design, two-dimensional threshold-dependent RoAs were calculated from the computational modeling results. The models showed more radial electrodes enabled finer resolution RoA steering; however, stimulation amplitude, and therefore spatial extent of the RoA, was limited by charge injection and charge storage capacity constraints due to the small electrode surface area for leads with more than four radially distributed electrodes. RoA shifting resolution was improved by the addition of radial electrodes when using uniform multi-cathode stimulation, but non-uniform multi-cathode stimulation produced equivalent or better resolution shifting without increasing the number of radial electrodes. Robust machine learning classification of 15 monopolar stimulation configurations was achieved using as few as three geometric features describing a RoA. The results of this study indicate that, for a clinical-scale DBS lead, more than four radial electrodes minimally improved in the ability to steer, shift, and sculpt axonal activation around a DBS lead and a simple feature set consisting of the RoA center of mass and orientation enabled robust machine learning classification. These results provide important design constraints for future development of high-density DBS arrays.

  18. Model-Based Comparison of Deep Brain Stimulation Array Functionality with Varying Number of Radial Electrodes and Machine Learning Feature Sets

    PubMed Central

    Teplitzky, Benjamin A.; Zitella, Laura M.; Xiao, YiZi; Johnson, Matthew D.

    2016-01-01

    Deep brain stimulation (DBS) leads with radially distributed electrodes have potential to improve clinical outcomes through more selective targeting of pathways and networks within the brain. However, increasing the number of electrodes on clinical DBS leads by replacing conventional cylindrical shell electrodes with radially distributed electrodes raises practical design and stimulation programming challenges. We used computational modeling to investigate: (1) how the number of radial electrodes impact the ability to steer, shift, and sculpt a region of neural activation (RoA), and (2) which RoA features are best used in combination with machine learning classifiers to predict programming settings to target a particular area near the lead. Stimulation configurations were modeled using 27 lead designs with one to nine radially distributed electrodes. The computational modeling framework consisted of a three-dimensional finite element tissue conductance model in combination with a multi-compartment biophysical axon model. For each lead design, two-dimensional threshold-dependent RoAs were calculated from the computational modeling results. The models showed more radial electrodes enabled finer resolution RoA steering; however, stimulation amplitude, and therefore spatial extent of the RoA, was limited by charge injection and charge storage capacity constraints due to the small electrode surface area for leads with more than four radially distributed electrodes. RoA shifting resolution was improved by the addition of radial electrodes when using uniform multi-cathode stimulation, but non-uniform multi-cathode stimulation produced equivalent or better resolution shifting without increasing the number of radial electrodes. Robust machine learning classification of 15 monopolar stimulation configurations was achieved using as few as three geometric features describing a RoA. The results of this study indicate that, for a clinical-scale DBS lead, more than four radial electrodes minimally improved in the ability to steer, shift, and sculpt axonal activation around a DBS lead and a simple feature set consisting of the RoA center of mass and orientation enabled robust machine learning classification. These results provide important design constraints for future development of high-density DBS arrays. PMID:27375470

  19. Deep processing activates the medial temporal lobe in young but not in old adults.

    PubMed

    Daselaar, Sander M; Veltman, Dick J; Rombouts, Serge A R B; Raaijmakers, Jeroen G W; Jonker, Cees

    2003-11-01

    Age-related impairments in episodic memory have been related to a deficiency in semantic processing, based on the finding that elderly adults typically benefit less than young adults from deep, semantic as opposed to shallow, nonsemantic processing of study items. In the present study, we tested the hypothesis that elderly adults are not able to perform certain cognitive operations under deep processing conditions. We further hypothesised that this inability does not involve regions commonly associated with lexical/semantic retrieval processes, but rather involves a dysfunction of the medial temporal lobe (MTL) memory system. To this end, we used functional MRI on rather extensive groups of young and elderly adults to compare brain activity patterns obtained during a deep (living/nonliving) and a shallow (uppercase/lowercase) classification task. Common activity in relation to semantic classification was observed in regions that have been previously related to semantic retrieval, including mainly left-lateralised activity in the inferior prefrontal, middle temporal, and middle frontal/anterior cingulate gyrus. Although the young adults showed more activity in some of these areas, the finding of mainly overlapping activation patterns during semantic classification supports the idea that lexical/semantic retrieval processes are still intact in elderly adults. This received further support by the finding that both groups showed similar behavioural performances as well on the deep and shallow classification tasks. Importantly, though, the young revealed significantly more activity than the elderly adults in the left anterior hippocampus during deep relative to shallow classification. This finding is in line with the idea that age-related impairments in episodic encoding are, at least partly, due to an under-recruitment of the medial temporal lobe memory system.

  20. Relationship between brain lesion characteristics and communication in preschool children with cerebral palsy.

    PubMed

    Coleman, Andrea; Fiori, Simona; Weir, Kelly A; Ware, Robert S; Boyd, Roslyn N

    2016-11-01

    MRI shows promise as a prognostic tool for clinical findings such as gross motor function in children with cerebral palsy(CP), however the relationship with communication skills requires exploration. To examine the relationship between the type and severity of brain lesion on MRI and communication skills in children with CP. 131 children with CP (73 males(56%)), mean corrected age(SD) 28(5) months, Gross Motor Functional Classification System distribution: I=57(44%), II=14(11%), III=19(14%), IV=17(13%), V=24(18%). Children were assessed on the Communication and Symbolic Behavioral Scales Developmental Profile (CSBS-DP) Infant-Toddler Checklist. Structural MRI was analysed with reference to type and semi-quantitative assessment of the severity of brain lesion. Children were classified for motor type, distribution and GMFCS. The relationships between type/severity of brain lesion and communication ability were analysed using multivariable tobit regression. Children with periventricular white matter lesions had better speech than children with cortical/deep grey matter lesions (β=-2.6, 95%CI=-5.0, -0.2, p=0.04). Brain lesion severity on the semi-quantitative scale was related to overall communication skills (β=-0.9, 95%CI=-1.4, -0.5, p<0.001). Motor impairment better accounted for impairment in overall communication skills than brain lesion severity. Structural MRI has potential prognostic value for communication impairment in children with CP. WHAT THIS PAPER ADDS?: This is the first paper to explore important aspects of communication in relation to the type and severity of brain lesion on MRI in a representative cohort of preschool-aged children with CP. We found a relationship between the type of brain lesion and communication skills, children who had cortical and deep grey matter lesions had overall communication skills>1 SD below children with periventricular white matter lesions. Children with more severe brain lesions on MRI had poorer overall communication skills. Children with CP born at term had poorer communication than those born prematurely and were more likely to have cortical and deep grey matter lesions. Gross motor function better accounted for overall communication skills than the type of brain lesion or brain lesion severity. Copyright © 2016. Published by Elsevier Ltd.

  1. Circadian rhythmicity and light sensitivity of the zebrafish brain.

    PubMed

    Moore, Helen A; Whitmore, David

    2014-01-01

    Traditionally, circadian clocks have been thought of as a neurobiological phenomenon. This view changed somewhat over recent years with the discovery of peripheral tissue circadian oscillators. In mammals, however, the suprachiasmatic nucleus (SCN) in the hypothalamus still retains the critical role of a central synchronizer of biological timing. Zebrafish, in contrast, have always reflected a more highly decentralized level of clock organization, as individual cells and tissues contain directly light responsive circadian pacemakers. As a consequence, clock function in the zebrafish brain has remained largely unexplored, and the precise organization of rhythmic and light-sensitive neurons within the brain is unknown. To address this issue, we used the period3 (per3)-luciferase transgenic zebrafish to confirm that multiple brain regions contain endogenous circadian oscillators that are directly light responsive. In addition, in situ hybridization revealed localised neural expression of several rhythmic and light responsive clock genes, including per3, cryptochrome1a (cry1a) and per2. Adult brain nuclei showing significant clock gene expression include the teleost equivalent of the SCN, as well as numerous hypothalamic nuclei, the periventricular grey zone (PGZ) of the optic tectum, and granular cells of the rhombencephalon. To further investigate the light sensitive properties of neurons, expression of c-fos, a marker for neuronal activity, was examined. c-fos mRNA was upregulated in response to changing light conditions in different nuclei within the zebrafish brain. Furthermore, under constant dark (DD) conditions, c-fos shows a significant circadian oscillation. Taken together, these results show that there are numerous areas of the zebrafish central nervous system, which contain deep brain photoreceptors and directly light-entrainable circadian pacemakers. However, there are also multiple brain nuclei, which possess neither, demonstrating a degree of pacemaker complexity that was not previously appreciated.

  2. Circadian Rhythmicity and Light Sensitivity of the Zebrafish Brain

    PubMed Central

    Moore, Helen A.; Whitmore, David

    2014-01-01

    Traditionally, circadian clocks have been thought of as a neurobiological phenomenon. This view changed somewhat over recent years with the discovery of peripheral tissue circadian oscillators. In mammals, however, the suprachiasmatic nucleus (SCN) in the hypothalamus still retains the critical role of a central synchronizer of biological timing. Zebrafish, in contrast, have always reflected a more highly decentralized level of clock organization, as individual cells and tissues contain directly light responsive circadian pacemakers. As a consequence, clock function in the zebrafish brain has remained largely unexplored, and the precise organization of rhythmic and light-sensitive neurons within the brain is unknown. To address this issue, we used the period3 (per3)-luciferase transgenic zebrafish to confirm that multiple brain regions contain endogenous circadian oscillators that are directly light responsive. In addition, in situ hybridization revealed localised neural expression of several rhythmic and light responsive clock genes, including per3, cryptochrome1a (cry1a) and per2. Adult brain nuclei showing significant clock gene expression include the teleost equivalent of the SCN, as well as numerous hypothalamic nuclei, the periventricular grey zone (PGZ) of the optic tectum, and granular cells of the rhombencephalon. To further investigate the light sensitive properties of neurons, expression of c-fos, a marker for neuronal activity, was examined. c-fos mRNA was upregulated in response to changing light conditions in different nuclei within the zebrafish brain. Furthermore, under constant dark (DD) conditions, c-fos shows a significant circadian oscillation. Taken together, these results show that there are numerous areas of the zebrafish central nervous system, which contain deep brain photoreceptors and directly light-entrainable circadian pacemakers. However, there are also multiple brain nuclei, which possess neither, demonstrating a degree of pacemaker complexity that was not previously appreciated. PMID:24465943

  3. Physical Therapy for a Patient with Essential Tremor and Prolonged Deep Brain Stimulation: A Case Report.

    PubMed

    Ulanowski, Elizabeth A; Danzl, Megan M; Sims, Kara M

    2017-01-01

    There is a lack of evidence examining the role of physical therapy (PT) to address movement dysfunction for individuals with essential tremor (ET). A 61-year-old male with ET and prolonged bilateral deep brain stimulation (DBS) completed 14 sessions of outpatient PT that emphasized balance, functional movements, and proximal stability training with an integration of principles of body awareness training and visual motor coordination. Improvements were noted in all outcome measures. This report describes a novel PT approach that offers a promising means of improving functional mobility and balance while decreasing falls risk in patients with ET.

  4. Mechanisms of deep brain stimulation

    PubMed Central

    Cheng, Jennifer J.; Eskandar, Emad N.

    2015-01-01

    Deep brain stimulation (DBS) is widely used for the treatment of movement disorders including Parkinson's disease, essential tremor, and dystonia and, to a lesser extent, certain treatment-resistant neuropsychiatric disorders including obsessive-compulsive disorder. Rather than a single unifying mechanism, DBS likely acts via several, nonexclusive mechanisms including local and network-wide electrical and neurochemical effects of stimulation, modulation of oscillatory activity, synaptic plasticity, and, potentially, neuroprotection and neurogenesis. These different mechanisms vary in importance depending on the condition being treated and the target being stimulated. Here we review each of these in turn and illustrate how an understanding of these mechanisms is inspiring next-generation approaches to DBS. PMID:26510756

  5. Effect of deep brain stimulation on different speech subsystems in patients with multiple sclerosis.

    PubMed

    Pützer, Manfred; Barry, William John; Moringlane, Jean Richard

    2007-11-01

    The effect of deep brain stimulation on articulation and phonation subsystems in seven patients with multiple sclerosis (MS) was examined. Production parameters in fast syllable-repetitions were defined and measured, and the phonation quality during vowel productions was analyzed. Speech material was recorded for patients (with and without stimulation) and for a group of healthy control speakers. With stimulation, the precision of glottal and supraglottal articulatory gestures is reduced, whereas phonation has a greater tendency to be hyperfunctional in comparison with the healthy control data. Different effects on the two speech subsystems are induced by electrical stimulation of the thalamus in patients with MS.

  6. Efficacy and Safety of Pedunculopontine Nuclei (PPN) Deep Brain Stimulation in the Treatment of Gait Disorders: A Meta-Analysis of Clinical Studies.

    PubMed

    Golestanirad, Laleh; Elahi, Behzad; Graham, Simon J; Das, Sunit; Wald, Lawrence L

    2016-01-01

    Pedunculopontine nucleus (PPN) has complex reciprocal connections with basal ganglia, especially with internal globus pallidus and substantia nigra, and it has been postulated that PPN stimulation may improve gait instability and freezing of gait. In this meta-analysis, we will assess the evidence for PPN deep brain stimulation in treatment of gait and motor abnormalities especially focusing on Parkinson disease patients. PubMed and Scopus electronic databases were searched for related studies published before February 2014. Medline (1966-2014), Embase (1974-2010), CINAHL, Web of Science, Scopus bibliographic, and Google Scholar databases (1960-2014) were also searched for studies investigating effect of PPN deep brain stimulation in treatment of postural and postural instability and total of ten studies met the inclusion criteria for this analysis. Our findings showed a significant improvement in postural instability (p<0.001) and motor symptoms of Parkinson disease on and off medications (p<0.05), but failed to show improvement in freezing of gait. Despite significant improvement in postural instability observed in included studies, evidence from current literature is not sufficient to generalize these findings to the majority of patients.

  7. Unexpected Complications of Novel Deep Brain Stimulation Treatments: Ethical Issues and Clinical Recommendations

    PubMed Central

    Cheeran, Binith; Pugh, Jonathan; Pycroft, Laurie; Boccard, Sandra; Prangnell, Simon; Green, Alexander L.; FitzGerald, James; Savulescu, Julian; Aziz, Tipu

    2017-01-01

    Background Innovative neurosurgical treatments present a number of known risks, the natures and probabilities of which can be adequately communicated to patients via the standard procedures governing obtaining informed consent. However, due to their novelty, these treatments also come with unknown risks, which require an augmented approach to obtaining informed consent. Objective This paper aims to discuss and provide concrete procedural guidance on the ethical issues raised by serious unexpected complications of novel deep brain stimulation treatments. Approach We illustrate our analysis using a case study of the unexpected development of recurrent stereotyped events in patients following the use of deep brain stimulation (DBS) to treat severe chronic pain. Examining these unexpected complications in light of medical ethical principles, we argue that serious complications of novel DBS treatments do not necessarily make it unethical to offer the intervention to eligible patients. However, the difficulty the clinician faces in determining whether the intervention is in the patient's best interests generates reasons to take extra steps to promote the autonomous decision making of these patients. Conclusion and recommendations We conclude with clinical recommendations, including details of an augmented consent process for novel DBS treatment. PMID:28557242

  8. Manifold learning of brain MRIs by deep learning.

    PubMed

    Brosch, Tom; Tam, Roger

    2013-01-01

    Manifold learning of medical images plays a potentially important role for modeling anatomical variability within a population with pplications that include segmentation, registration, and prediction of clinical parameters. This paper describes a novel method for learning the manifold of 3D brain images that, unlike most existing manifold learning methods, does not require the manifold space to be locally linear, and does not require a predefined similarity measure or a prebuilt proximity graph. Our manifold learning method is based on deep learning, a machine learning approach that uses layered networks (called deep belief networks, or DBNs) and has received much attention recently in the computer vision field due to their success in object recognition tasks. DBNs have traditionally been too computationally expensive for application to 3D images due to the large number of trainable parameters. Our primary contributions are (1) a much more computationally efficient training method for DBNs that makes training on 3D medical images with a resolution of up to 128 x 128 x 128 practical, and (2) the demonstration that DBNs can learn a low-dimensional manifold of brain volumes that detects modes of variations that correlate to demographic and disease parameters.

  9. Currents of memory: recent progress, translational challenges, and ethical considerations in fornix deep brain stimulation trials for Alzheimer's disease.

    PubMed

    Viaña, John Noel M; Vickers, James C; Cook, Mark J; Gilbert, Frederic

    2017-08-01

    The serendipitous discovery of triggered autobiographical memories and eventual memory improvement in an obese patient who received fornix deep brain stimulation in 2008 paved the way for several phase I and phase II clinical trials focused on the safety and efficacy of this potential intervention for people with Alzheimer's disease. In this article, we summarize clinical trials and case reports on fornix deep brain stimulation for Alzheimer's disease and review experiments on animal models evaluating the physiological or behavioral effects of this intervention. Based on information from these reports and studies, we identify potential translational challenges of this approach and determine practical and ethical considerations for clinical trials, focusing on issues regarding selection criteria, trial design, and outcome evaluation. Based on initial results suggesting greater benefit for those with milder disease stage, we find it essential that participant expectations are carefully managed to avoid treatment disenchantment and/or frustration from participants and caregivers. Finally, we urge for collaboration between centers to establish proper clinical standards and to promote better trial results comparison. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Language Development and Brain Magnetic Resonance Imaging Characteristics in Preschool Children With Cerebral Palsy.

    PubMed

    Choi, Ja Young; Choi, Yoon Seong; Park, Eun Sook

    2017-05-24

    The purpose of this study was to investigate characteristics of language development in relation to brain magnetic resonance imaging (MRI) characteristics and the other contributing factors to language development in children with cerebral palsy (CP). The study included 172 children with CP who underwent brain MRI and language assessments between 3 and 7 years of age. The MRI characteristics were categorized as normal, malformation, periventricular white matter lesion (PVWL), deep gray matter lesion, focal infarct, cortical/subcortical lesion, and others. Neurodevelopmental outcomes such as ambulatory status, manual ability, cognitive function, and accompanying impairments were assessed. Both receptive and expressive language development quotients (DQs) were significantly related to PVWL or deep gray matter lesion severity. In multivariable analysis, only cognitive function was significantly related to receptive language development, whereas ambulatory status and cognitive function were significantly associated with expressive language development. More than one third of the children had a language developmental discrepancy between receptive and expressive DQs. Children with cortical/subcortical lesions were at high risk for this discrepancy. Cognitive function is a key factor for both receptive and expressive language development. In children with PVWL or deep gray matter lesion, lesion severity seems to be useful to predict language development.

  11. The effect of deep brain stimulation on the speech motor system.

    PubMed

    Mücke, Doris; Becker, Johannes; Barbe, Michael T; Meister, Ingo; Liebhart, Lena; Roettger, Timo B; Dembek, Till; Timmermann, Lars; Grice, Martine

    2014-08-01

    Chronic deep brain stimulation of the nucleus ventralis intermedius is an effective treatment for individuals with medication-resistant essential tremor. However, these individuals report that stimulation has a deleterious effect on their speech. The present study investigates one important factor leading to these effects: the coordination of oral and glottal articulation. Sixteen native-speaking German adults with essential tremor, between 26 and 86 years old, with and without chronic deep brain stimulation of the nucleus ventralis intermedius and 12 healthy, age-matched subjects were recorded performing a fast syllable repetition task (/papapa/, /tatata/, /kakaka/). Syllable duration and voicing-to-syllable ratio as well as parameters related directly to consonant production, voicing during constriction, and frication during constriction were measured. Voicing during constriction was greater in subjects with essential tremor than in controls, indicating a perseveration of voicing into the voiceless consonant. Stimulation led to fewer voiceless intervals (voicing-to-syllable ratio), indicating a reduced degree of glottal abduction during the entire syllable cycle. Stimulation also induced incomplete oral closures (frication during constriction), indicating imprecise oral articulation. The detrimental effect of stimulation on the speech motor system can be quantified using acoustic measures at the subsyllabic level.

  12. Exploring DeepMedic for the purpose of segmenting white matter hyperintensity lesions

    NASA Astrophysics Data System (ADS)

    Lippert, Fiona; Cheng, Bastian; Golsari, Amir; Weiler, Florian; Gregori, Johannes; Thomalla, Götz; Klein, Jan

    2018-02-01

    DeepMedic, an open source software library based on a multi-channel multi-resolution 3D convolutional neural network, has recently been made publicly available for brain lesion segmentations. It has already been shown that segmentation tasks on MRI data of patients having traumatic brain injuries, brain tumors, and ischemic stroke lesions can be performed very well. In this paper we describe how it can efficiently be used for the purpose of detecting and segmenting white matter hyperintensity lesions. We examined if it can be applied to single-channel routine 2D FLAIR data. For evaluation, we annotated 197 datasets with different numbers and sizes of white matter hyperintensity lesions. Our experiments have shown that substantial results with respect to the segmentation quality can be achieved. Compared to the original parametrization of the DeepMedic neural network, the timings for training can be drastically reduced if adjusting corresponding training parameters, while at the same time the Dice coefficients remain nearly unchanged. This enables for performing a whole training process within a single day utilizing a NVIDIA GeForce GTX 580 graphics board which makes this library also very interesting for research purposes on low-end GPU hardware.

  13. Stable microwave radiometry system for long term monitoring of deep tissue temperature

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.; Rodriques, Dario B.; Salahi, Sara; Topsakal, Erdem; Oliveira, Tiago R.; Prakash, Aniruddh; D'Isidoro, Fabio; Reudink, Douglas; Snow, Brent W.; Maccarini, Paolo F.

    2013-02-01

    Background: There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. Methods: We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain onaxis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3-5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. Results: We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of +0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. Conclusions: A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface tissues for clinical applications like the detection of vesicoureteral reflux, and long term monitoring of brown fat metabolism or brain core temperature during extended surgery.

  14. Stable Microwave Radiometry System for Long Term Monitoring of Deep Tissue Temperature.

    PubMed

    Stauffer, Paul R; Rodriques, Dario B; Salahi, Sara; Topsakal, Erdem; Oliveira, Tiago R; Prakash, Aniruddh; D'Isidoro, Fabio; Reudink, Douglas; Snow, Brent W; Maccarini, Paolo F

    2013-02-26

    There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain on-axis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3-5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of ∓0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface tissues for clinical applications like the detection of vesicoureteral reflux, and long term monitoring of brown fat metabolism or brain core temperature during extended surgery.

  15. Connectivity derived thalamic segmentation in deep brain stimulation for tremor.

    PubMed

    Akram, Harith; Dayal, Viswas; Mahlknecht, Philipp; Georgiev, Dejan; Hyam, Jonathan; Foltynie, Thomas; Limousin, Patricia; De Vita, Enrico; Jahanshahi, Marjan; Ashburner, John; Behrens, Tim; Hariz, Marwan; Zrinzo, Ludvic

    2018-01-01

    The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing.

  16. Stimulating at the right time: phase-specific deep brain stimulation.

    PubMed

    Cagnan, Hayriye; Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J; Denison, Timothy; Brown, Peter

    2017-01-01

    SEE MOLL AND ENGEL DOI101093/AWW308 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson's disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient's tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  17. Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers.

    PubMed

    Cole, James H; Franke, Katja

    2017-12-01

    The brain changes as we age and these changes are associated with functional deterioration and neurodegenerative disease. It is vital that we better understand individual differences in the brain ageing process; hence, techniques for making individualised predictions of brain ageing have been developed. We present evidence supporting the use of neuroimaging-based 'brain age' as a biomarker of an individual's brain health. Increasingly, research is showing how brain disease or poor physical health negatively impacts brain age. Importantly, recent evidence shows that having an 'older'-appearing brain relates to advanced physiological and cognitive ageing and the risk of mortality. We discuss controversies surrounding brain age and highlight emerging trends such as the use of multimodality neuroimaging and the employment of 'deep learning' methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Rewarding brain stimulation reverses the disruptive effect of amygdala damage on emotional learning.

    PubMed

    Kádár, Elisabet; Ramoneda, Marc; Aldavert-Vera, Laura; Huguet, Gemma; Morgado-Bernal, Ignacio; Segura-Torres, Pilar

    2014-11-01

    Intracranial self-stimulation (SS) in the lateral hypothalamus, a rewarding deep-brain stimulation, is able to improve acquisition and retention of implicit and explicit memory tasks in rats. SS treatment is also able to reverse cognitive deficits associated with aging or with experimental brain injuries and evaluated in a two-way active avoidance (2wAA) task. The main objective of the present study was to explore the potential of the SS treatment to reverse the complete learning and memory impairment caused by bilateral lesion in the lateral amygdala (LA). The effects of post-training SS, administered after each acquisition session, were evaluated on distributed 2wAA acquisition and 10-day retention in rats with electrolytic bilateral LA lesions. SS effect in acetylcholinestaresase (AchE) activity was evaluated by immunohistochemistry in LA-preserved and Central nuclei (Ce) of the amygdala of LA-damaged rats. Results showed that LA lesion over 40% completely impeded 2wAA acquisition and retention. Post-training SS in the LA-lesioned rats improved conditioning and retention compared with both the lesioned but non-SS treated and the non-lesioned control rats. SS treatment also seemed to induce a decrease in AchE activity in the LA-preserved area of the lesioned rats, but no effects were observed in the Ce. This empirical evidence supports the idea that self-administered rewarding stimulation is able to completely counteract the 2wAA acquisition and retention deficits induced by LA lesion. Cholinergic mechanisms in preserved LA and the contribution of other brain memory-related areas activated by SS could mediate the compensatory effect observed. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Effect of brain shift on the creation of functional atlases for deep brain stimulation surgery

    PubMed Central

    Pallavaram, Srivatsan; Remple, Michael S.; Neimat, Joseph S.; Kao, Chris; Konrad, Peter E.; D’Haese, Pierre-François

    2011-01-01

    Purpose In the recent past many groups have tried to build functional atlases of the deep brain using intra-operatively acquired information such as stimulation responses or micro-electrode recordings. An underlying assumption in building such atlases is that anatomical structures do not move between pre-operative imaging and intra-operative recording. In this study, we present evidences that this assumption is not valid. We quantify the effect of brain shift between pre-operative imaging and intra-operative recording on the creation of functional atlases using intra-operative somatotopy recordings and stimulation response data. Methods A total of 73 somatotopy points from 24 bilateral subthalamic nucleus (STN) implantations and 52 eye deviation stimulation response points from 17 bilateral STN implantations were used. These points were spatially normalized on a magnetic resonance imaging (MRI) atlas using a fully automatic non-rigid registration algorithm. Each implantation was categorized as having low, medium or large brain shift based on the amount of pneumocephalus visible on post-operative CT. The locations of somatotopy clusters and stimulation maps were analyzed for each category. Results The centroid of the large brain shift cluster of the somatotopy data (posterior, lateral, inferior: 3.06, 11.27, 5.36 mm) was found posterior, medial and inferior to that of the medium cluster (2.90, 13.57, 4.53 mm) which was posterior, medial and inferior to that of the low shift cluster (1.94, 13.92, 3.20 mm). The coordinates are referenced with respect to the mid-commissural point. Euclidean distances between the centroids were 1.68, 2.44 and 3.59 mm, respectively for low-medium, medium-large and low-large shift clusters. We found similar trends for the positions of the stimulation maps. The Euclidian distance between the highest probability locations on the low and medium-large shift maps was 4.06 mm. Conclusion The effect of brain shift in deep brain stimulation (DBS) surgery has been demonstrated using intra-operative somatotopy recordings as well as stimulation response data. The results not only indicate that considerable brain shift happens before micro-electrode recordings in DBS but also that brain shift affects the creation of accurate functional atlases. Therefore, care must be taken when building and using such atlases of intra-operative data and also when using intra-operative data to validate anatomical atlases. PMID:20033503

  20. Measuring the effects of aging and sex on regional brain stiffness with MR elastography in healthy older adults

    PubMed Central

    Arani, Arvin; Murphy, Matthew C; Glaser, Kevin J; Manduca, Armando; Lake, David S; Kruse, Scott; Jack, Clifford R; Ehman, Richard; Huston, John

    2015-01-01

    Changes in tissue composition and cellular architecture have been associated with neurological disease, and these in turn can affect biomechanical properties. Natural biological factors such as aging and an individual’s sex also affect underlying tissue biomechanics in different brain regions. Understanding the normal changes is necessary before determining the efficacy of stiffness imaging for neurological disease diagnosis and therapy monitoring. The objective of this study was to evaluate global and regional changes in brain stiffness as a function of age and sex, using improved MRE acquisition and processing that has been shown to provide median stiffness values that are typically reproducible to within 1% in global measurements and within 2% for regional measurements. Furthermore, this is the first study to report the effects of age and sex over the entire cerebrum volume and over the full frontal, occipital, parietal, temporal, deep gray matter/white matter (insula, deep gray nuclei and white matter tracts), and cerebellum volumes. In 45 volunteers, we observed a significant linear correlation between age and brain stiffness in the cerebrum (P<.0001), frontal lobes (P<.0001), occipital lobes (P=.0005), parietal lobes (P=.0002), and the temporal lobes (P<.0001) of the brain. No significant linear correlation between brain stiffness and age was observed in the cerebellum (P=.74), and the sensory-motor regions (P=.32) of the brain, and a weak linear trend was observed in the deep gray matter/white matter (P=.075). A multiple linear regression model predicted an annual decline of 0.011±0.002 kPa in cerebrum stiffness with a theoretical median age value (76 years old) of 2.56±0.08 kPa. Sexual dimorphism was observed in the temporal (P=.03) and occipital (P=.001) lobes of the brain, but no significant difference was observed in any of the other brain regions (P>.20 for all other regions). The model predicted female occipital and temporal lobes to be 0.23 kPa and 0.09 kPa stiffer than males of the same age, respectively. This study confirms that as the brain ages, there is softening; however, the changes are dependent on region. In addition, stiffness effects due to sex exist in the occipital and temporal lobes. PMID:25698157

Top