Science.gov

Sample records for deep brain areas

  1. Eyelid apraxia associated with deep brain stimulation of the periaqueductal gray area.

    PubMed

    Langevin, Jean-Philippe; Srikandarajah, Nisaharan; Krahl, Scott E; Gorgulho, Alessandra; Behnke, Eric; Malkasian, Dennis; DeSalles, Antonio A F

    2014-09-01

    We report a patient with eyelid apraxia following deep brain stimulation of the periaqueductal gray area. Based on the position of our electrode, we argue that the phenomenon is linked to inhibition of the nearby central caudal nucleus of the oculomotor nucleus by high frequency stimulation.

  2. Ventral tegmental area deep brain stimulation in refractory short-lasting unilateral neuralgiform headache attacks.

    PubMed

    Miller, Sarah; Akram, Harith; Lagrata, Susie; Hariz, Marwan; Zrinzo, Ludvic; Matharu, Manjit

    2016-10-01

    SEE LEONE AND PROIETTI CECCHINI DOI101093/AWW233 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Short-lasting unilateral neuralgiform headache attacks are primary headache disorders characterized by short-lasting attacks of unilateral pain accompanied by autonomic features. A small minority are refractory to medical treatment. Neuroimaging studies have suggested a role of the posterior hypothalamic region in their pathogenesis. Previous case reports on deep brain stimulation of this region, now understood to be the ventral tegmental area, for this disorder are limited to a total of three patients. We present a case series of 11 new patients treated with ventral tegmental area deep brain stimulation in an uncontrolled, open-label prospective observational study. Eleven patients with refractory short-lasting unilateral neuralgiform headache attacks underwent ipsilateral ventral tegmental area deep brain stimulation in a specialist unit. All patients had failed, or been denied access to, occipital nerve stimulation within the UK's National Health Service. Primary endpoint was change in mean daily attack frequency at final follow-up. Secondary outcomes included attack severity, attack duration, headache load (a composite score of attack frequency, severity and duration), quality of life measures, disability and affective scores. Information was also collected on adverse events. Eleven patients (six male) with a median age of 50 years (range 26-67) were implanted between 2009 and 2014. Median follow-up was 29 months (range 7-63). At final follow-up the median improvement in daily attack frequency was 78% (interquartile range 33%). Response rate (defined as at least a 50% improvement in daily attack frequency) was 82% and four patients were rendered pain-free for prolonged periods of time. Headache load improved by 99% (interquartile range 52%). Improvements were observed in a number of quality of life, disability and affect measures. Adverse events included mild incision

  3. Deep Brain Stimulation

    PubMed Central

    Chen, X.L.; Xiong, Y.Y.; Xu, G.L.; Liu, X.F.

    2013-01-01

    Deep brain stimulation (DBS) has provided remarkable therapeutic benefits for people with a variety of neurological disorders. Despite the uncertainty of the precise mechanisms underlying its efficacy, DBS is clinically effective in improving motor function of essential tremor, Parkinson's disease and primary dystonia and in relieving obsessive-compulsive disorder. Recently, this surgical technique has continued to expand to other numerous neurological diseases with encouraging results. This review highlighted the current and potential future clinical applications of DBS. PMID:25187779

  4. The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation.

    PubMed

    Alam, Mesbah; Schwabe, Kerstin; Krauss, Joachim K

    2011-01-01

    Recently, the pedunculopontine nucleus has been highlighted as a target for deep brain stimulation for the treatment of freezing of postural instability and gait disorders in Parkinson's disease and progressive supranuclear palsy. There is great controversy, however, as to the exact location of the optimal site for stimulation. In this review, we give an overview of anatomy and connectivity of the pedunculopontine nucleus area in rats, cats, non-human primates and humans. Additionally, we report on the behavioural changes after chemical or electrical manipulation of the pedunculopontine nucleus. We discuss the relation to adjacent regions of the pedunculopontine nucleus, such as the cuneiform nucleus and the subcuneiform nucleus, which together with the pedunculopontine nucleus are the main areas of the mesencephalic locomotor region and play a major role in the initiation of gait. This information is discussed with respect to the experimental designs used for research purposes directed to a better understanding of the circuitry pathway of the pedunculopontine nucleus in association with basal ganglia pathology, and with respect to deep brain stimulation of the pedunculopontine nucleus area in humans.

  5. Functional Circuitry Effect of Ventral Tegmental Area Deep Brain Stimulation: Imaging and Neurochemical Evidence of Mesocortical and Mesolimbic Pathway Modulation

    PubMed Central

    Settell, Megan L.; Testini, Paola; Cho, Shinho; Lee, Jannifer H.; Blaha, Charles D.; Jo, Hang J.; Lee, Kendall H.; Min, Hoon-Ki

    2017-01-01

    Background: The ventral tegmental area (VTA), containing mesolimbic and mesocortical dopaminergic neurons, is implicated in processes involving reward, addiction, reinforcement, and learning, which are associated with a variety of neuropsychiatric disorders. Electrical stimulation of the VTA or the medial forebrain bundle and its projection target the nucleus accumbens (NAc) is reported to improve depressive symptoms in patients affected by severe, treatment-resistant major depressive disorder (MDD) and depressive-like symptoms in animal models of depression. Here we sought to determine the neuromodulatory effects of VTA deep brain stimulation (DBS) in a normal large animal model (swine) by combining neurochemical measurements with functional magnetic resonance imaging (fMRI). Methods: Animals (n = 8 swine) were implanted with a unilateral DBS electrode targeting the VTA. During stimulation (130 Hz frequency, 0.25 ms pulse width, and 3 V amplitude), fMRI was performed. Following fMRI, fast-scan cyclic voltammetry in combination with carbon fiber microelectrodes was performed to quantify VTA-DBS-evoked dopamine release in the ipsilateral NAc. In a subset of swine, the blood oxygen level-dependent (BOLD) percent change evoked by stimulation was performed at increasing voltages (1, 2, and 3 V). Results: A significant increase in VTA-DBS-evoked BOLD signal was found in the following regions: the ipsilateral dorsolateral prefrontal cortex, anterior and posterior cingulate, insula, premotor cortex, primary somatosensory cortex, and striatum. A decrease in the BOLD signal was also observed in the contralateral parahippocampal cortex, dorsolateral and anterior prefrontal cortex, insula, inferior temporal gyrus, and primary somatosensory cortex (Bonferroni-corrected < 0.001). During neurochemical measurements, stimulation time-locked changes in dopamine release were recorded in the NAc, confirming that mesolimbic dopaminergic neurons were stimulated by DBS. In the

  6. Deep Brain Stimulation: Expanding Applications

    PubMed Central

    TEKRIWAL, Anand; BALTUCH, Gordon

    2015-01-01

    For over two decades, deep brain stimulation (DBS) has shown significant efficacy in treatment for refractory cases of dyskinesia, specifically in cases of Parkinson's disease and dystonia. DBS offers potential alleviation from symptoms through a well-tolerated procedure that allows personalized modulation of targeted neuroanatomical regions and related circuitries. For clinicians contending with how to provide patients with meaningful alleviation from often debilitating intractable disorders, DBSs titratability and reversibility make it an attractive treatment option for indications ranging from traumatic brain injury to progressive epileptic supra-synchrony. The expansion of our collective knowledge of pathologic brain circuitries, as well as advances in imaging capabilities, electrophysiology techniques, and material sciences have contributed to the expanding application of DBS. This review will examine the potential efficacy of DBS for neurologic and psychiatric disorders currently under clinical investigation and will summarize findings from recent animal models. PMID:26466888

  7. Behavioral effects of deep brain stimulation of different areas of the Papez circuit on memory- and anxiety-related functions.

    PubMed

    Hescham, Sarah; Jahanshahi, Ali; Meriaux, Céline; Lim, Lee Wei; Blokland, Arjan; Temel, Yasin

    2015-10-01

    Deep brain stimulation (DBS) has gained interest as a potential therapy for advanced treatment-resistant dementia. However, possible targets for DBS and the optimal stimulation parameters are not yet clear. Here, we compared the effects of DBS of the CA1 sub-region of the hippocampus, mammillothalamic tract, anterior thalamic nucleus, and entorhinal cortex in an experimental rat model of dementia. Rats with scopolamine-induced amnesia were assessed in the object location task with different DBS parameters. Moreover, anxiety-related side effects were evaluated in the elevated zero maze and open field. After sacrifice, we applied c-Fos immunohistochemistry to assess which memory-related regions were affected by DBS. When comparing all structures, DBS of the entorhinal cortex and CA1 sub-region was able to restore memory loss when a specific set of stimulation parameters was used. No anxiety-related side effects were found following DBS. The beneficial behavioral performance of CA1 DBS rats was accompanied with an activation of cells in the anterior cingulate gyrus. Therefore, we conclude that acute CA1 DBS restores memory loss possibly through improved attentional and cognitive processes in the limbic cortex.

  8. Deep Brain Stimulation for Obesity

    PubMed Central

    Sussman, Eric S; Zhang, Michael; Pendharkar, Arjun V; Azagury, Dan E; Bohon, Cara; Halpern, Casey H

    2015-01-01

    Obesity is now the third leading cause of preventable death in the US, accounting for 216,000 deaths annually and nearly 100 billion dollars in health care costs. Despite advancements in bariatric surgery, substantial weight regain and recurrence of the associated metabolic syndrome still occurs in almost 20-35% of patients over the long-term, necessitating the development of novel therapies. Our continually expanding knowledge of the neuroanatomic and neuropsychiatric underpinnings of obesity has led to increased interest in neuromodulation as a new treatment for obesity refractory to current medical, behavioral, and surgical therapies. Recent clinical trials of deep brain stimulation (DBS) in chronic cluster headache, Alzheimer’s disease, and depression and obsessive-compulsive disorder have demonstrated the safety and efficacy of targeting the hypothalamus and reward circuitry of the brain with electrical stimulation, and thus provide the basis for a neuromodulatory approach to treatment-refractory obesity. In this study, we review the literature implicating these targets for DBS in the neural circuitry of obesity. We will also briefly review ethical considerations for such an intervention, and discuss genetic secondary-obesity syndromes that may also benefit from DBS. In short, we hope to provide the scientific foundation to justify trials of DBS for the treatment of obesity targeting these specific regions of the brain. PMID:26180683

  9. Tractography patterns of subthalamic nucleus deep brain stimulation.

    PubMed

    Vanegas-Arroyave, Nora; Lauro, Peter M; Huang, Ling; Hallett, Mark; Horovitz, Silvina G; Zaghloul, Kareem A; Lungu, Codrin

    2016-04-01

    Deep brain stimulation therapy is an effective symptomatic treatment for Parkinson's disease, yet the precise mechanisms responsible for its therapeutic effects remain unclear. Although the targets of deep brain stimulation are grey matter structures, axonal modulation is known to play an important role in deep brain stimulation's therapeutic mechanism. Several white matter structures in proximity to the subthalamic nucleus have been implicated in the clinical benefits of deep brain stimulation for Parkinson's disease. We assessed the connectivity patterns that characterize clinically beneficial electrodes in Parkinson's disease patients, after deep brain stimulation of the subthalamic nucleus. We evaluated 22 patients with Parkinson's disease (11 females, age 57 ± 9.1 years, disease duration 13.3 ± 6.3 years) who received bilateral deep brain stimulation of the subthalamic nucleus at the National Institutes of Health. During an initial electrode screening session, one month after deep brain stimulation implantation, the clinical benefits of each contact were determined. The electrode was localized by coregistering preoperative magnetic resonance imaging and postoperative computer tomography images and the volume of tissue activated was estimated from stimulation voltage and impedance. Brain connectivity for the volume of tissue activated of deep brain stimulation contacts was assessed using probabilistic tractography with diffusion-tensor data. Areas most frequently connected to clinically effective contacts included the thalamus, substantia nigra, brainstem and superior frontal gyrus. A series of discriminant analyses demonstrated that the strength of connectivity to the superior frontal gyrus and the thalamus were positively associated with clinical effectiveness. The connectivity patterns observed in our study suggest that the modulation of white matter tracts directed to the superior frontal gyrus and the thalamus is associated with favourable clinical

  10. Mechanisms of deep brain stimulation

    PubMed Central

    Cheng, Jennifer J.; Eskandar, Emad N.

    2015-01-01

    Deep brain stimulation (DBS) is widely used for the treatment of movement disorders including Parkinson's disease, essential tremor, and dystonia and, to a lesser extent, certain treatment-resistant neuropsychiatric disorders including obsessive-compulsive disorder. Rather than a single unifying mechanism, DBS likely acts via several, nonexclusive mechanisms including local and network-wide electrical and neurochemical effects of stimulation, modulation of oscillatory activity, synaptic plasticity, and, potentially, neuroprotection and neurogenesis. These different mechanisms vary in importance depending on the condition being treated and the target being stimulated. Here we review each of these in turn and illustrate how an understanding of these mechanisms is inspiring next-generation approaches to DBS. PMID:26510756

  11. Deep brain stimulation: postoperative issues.

    PubMed

    Deuschl, Günther; Herzog, Jan; Kleiner-Fisman, Galit; Kubu, Cynthia; Lozano, Andres M; Lyons, Kelly E; Rodriguez-Oroz, Maria C; Tamma, Filippo; Tröster, Alexander I; Vitek, Jerrold L; Volkmann, Jens; Voon, Valerie

    2006-06-01

    Numerous factors need to be taken into account when managing a patient with Parkinson's disease (PD) after deep brain stimulation (DBS). Questions such as when to begin programming, how to conduct a programming screen, how to assess the effects of programming, and how to titrate stimulation and medication for each of the targeted sites need to be addressed. Follow-up care should be determined, including patient adjustments of stimulation, timing of follow-up visits and telephone contact with the patient, and stimulation and medication conditions during the follow-up assessments. A management plan for problems that can arise after DBS such as weight gain, dyskinesia, axial symptoms, speech dysfunction, muscle contractions, paresthesia, eyelid, ocular and visual disturbances, and behavioral and cognitive problems should be developed. Long-term complications such as infection or erosion, loss of effect, intermittent stimulation, tolerance, and pain or discomfort can develop and need to be managed. Other factors that need consideration are social and job-related factors, development of dementia, general medical issues, and lifestyle changes. This report from the Consensus on Deep Brain Stimulation for Parkinson's Disease, a project commissioned by the Congress of Neurological Surgeons and the Movement Disorder Society, outlines answers to a series of questions developed to address all aspects of DBS postoperative management and decision-making with a systematic overview of the literature (until mid-2004) and by the expert opinion of the authors. The report has been endorsed by the Scientific Issues Committee of the Movement Disorder Society and the American Society of Stereotactic and Functional Neurosurgery.

  12. Orientation selective deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Lehto, Lauri J.; Slopsema, Julia P.; Johnson, Matthew D.; Shatillo, Artem; Teplitzky, Benjamin A.; Utecht, Lynn; Adriany, Gregor; Mangia, Silvia; Sierra, Alejandra; Low, Walter C.; Gröhn, Olli; Michaeli, Shalom

    2017-02-01

    Objective. Target selectivity of deep brain stimulation (DBS) therapy is critical, as the precise locus and pattern of the stimulation dictates the degree to which desired treatment responses are achieved and adverse side effects are avoided. There is a clear clinical need to improve DBS technology beyond currently available stimulation steering and shaping approaches. We introduce orientation selective neural stimulation as a concept to increase the specificity of target selection in DBS. Approach. This concept, which involves orienting the electric field along an axonal pathway, was tested in the corpus callosum of the rat brain by freely controlling the direction of the electric field on a plane using a three-electrode bundle, and monitoring the response of the neurons using functional magnetic resonance imaging (fMRI). Computational models were developed to further analyze axonal excitability for varied electric field orientation. Main results. Our results demonstrated that the strongest fMRI response was observed when the electric field was oriented parallel to the axons, while almost no response was detected with the perpendicular orientation of the electric field relative to the primary fiber tract. These results were confirmed by computational models of the experimental paradigm quantifying the activation of radially distributed axons while varying the primary direction of the electric field. Significance. The described strategies identify a new course for selective neuromodulation paradigms in DBS based on axonal fiber orientation.

  13. Deep brain stimulation for dystonia.

    PubMed

    Vidailhet, Marie; Jutras, Marie-France; Grabli, David; Roze, Emmanuel

    2013-09-01

    The few controlled studies that have been carried out have shown that bilateral internal globus pallidum stimulation is a safe and long-term effective treatment for hyperkinetic disorders. However, most recent published data on deep brain stimulation (DBS) for dystonia, applied to different targets and patients, are still mainly from uncontrolled case reports (especially for secondary dystonia). This precludes clear determination of the efficacy of this procedure and the choice of the 'good' target for the 'good' patient. We performed a literature analysis on DBS for dystonia according to the expected outcome. We separated those with good evidence of favourable outcome from those with less predictable outcome. In the former group, we review the main results for primary dystonia (generalised/focal) and highlight recent data on myoclonus-dystonia and tardive dystonia (as they share, with primary dystonia, a marked beneficial effect from pallidal stimulation with good risk/benefit ratio). In the latter group, poor or variable results have been obtained for secondary dystonia (with a focus on heredodegenerative and metabolic disorders). From this overview, the main results and limits for each subgroup of patients that may help in the selection of dystonic patients who will benefit from DBS are discussed.

  14. [Deep brain stimulation and neuroethics].

    PubMed

    Katayama, Yoichi; Fukaya, Chikashi

    2009-01-01

    The use of deep brain stimulation (DBS) for mental disorders has been discussed in Japan from the viewpoint of ethical problems. Trials of experimental therapies require a basis of sound scientific rationale. New standard therapy emerges from such trials through detailed analysis of the outcome and side effects. Long-suffering patients with intractable symptoms may desperately seek an experimental therapy even though it has not yet been accepted as standard therapy. The ethical committee of each institution evaluates the level of scientific rationale and the expected level of benefits on the bias of the reported data, and decides whether the patients can receive the experimental therapy. However, the use of DBS for mental disorders is not based on sound scientific rational, since the disease mechanisms involved are far from understood. The data reported from the previous trials are insufficient for assuring the satisfactory results for mental disoder patients. Most institutions in Japan do not accept such levels of scientific rationale and expected benefits. Furthermore, from the cultural perspective, strong skepticism exists in Japan with regard to surgical interventions for mental disorders. Such an attitude is unexpectedly in harmony with many of the subjects currently discussed in the field of neuroethics. For example, who has the right to control DBS? How does someone decide the level of control of mental function by DBS? These questions are related to the discussion on how human society is formed and how the ethics are decided by considering both scientific rationale and human society.

  15. Deep Brain Electrical Stimulation in Epilepsy

    NASA Astrophysics Data System (ADS)

    Rocha, Luisa L.

    2008-11-01

    The deep brain electrical stimulation has been used for the treatment of neurological disorders such as Parkinson's disease, chronic pain, depression and epilepsy. Studies carried out in human brain indicate that the application of high frequency electrical stimulation (HFS) at 130 Hz in limbic structures of patients with intractable temporal lobe epilepsy abolished clinical seizures and significantly decreased the number of interictal spikes at focus. The anticonvulsant effects of HFS seem to be more effective in patients with less severe epilepsy, an effect associated with a high GABA tissue content and a low rate of cell loss. In addition, experiments using models of epilepsy indicate that HFS (pulses of 60 μs width at 130 Hz at subthreshold current intensity) of specific brain areas avoids the acquisition of generalized seizures and enhances the postictal seizure suppression. HFS is also able to modify the status epilepticus. It is concluded that the effects of HFS may be a good strategy to reduce or avoid the epileptic activity.

  16. Identification of target areas for deep brain stimulation in human basal ganglia substructures based on median nerve sensory evoked potential criteria

    PubMed Central

    Klostermann, F; Vesper, J; Curio, G

    2003-01-01

    Objective: In the interventional treatment of movement disorders, the thalamic ventral intermediate nucleus (VIM) and the subthalamic nucleus (STN) are the most relevant electrode targets for deep brain stimulation (DBS). This study tested the value of somatosensory evoked potentials (SEP) for the functional identification of VIM and STN. Methods: Median nerve SEP were recorded from the final stimulation electrodes targeted at STN and VIM. Throughout the stereotactic procedure SEP were recorded during short electrode stops above STN/VIM and within the presumed target areas. After digital filtering, high and low frequency SEP components were analysed separately to parameterise both the 1000 Hz SEP burst and low frequency (<100 Hz) components. Results: SEP recorded in the VIM target region could unequivocally be distinguished from SEP recorded in STN. The 1000 Hz burst signal was significantly larger in VIM than in STN without any overlap of amplitude values. In the low frequency band, a primary high amplitude negativity was obtained in VIM, contrasting with a low amplitude positivity in STN. SEP waveshapes in recordings above target positions resembled SEP obtained in STN. When entering VIM, a sharp amplitude increase was observed over a few millimetres only. Conclusions: Based on SEP criteria, the VIM target but not the STN region can be identified by typical SEP configuration changes, when penetrating the target zone. The approach is independent of the patient's cooperation and vigilance and therefore feasible in general anaesthesia. It provides an easy, reliable, and robust tool for the final assessment of electrode positions at the last instance during electrode implantation when eventual electrode revisions can easily be performed. PMID:12876229

  17. Deep brain stimulation for chronic pain.

    PubMed

    Boccard, Sandra G J; Pereira, Erlick A C; Aziz, Tipu Z

    2015-10-01

    Deep brain stimulation (DBS) is a neurosurgical intervention popularised in movement disorders such as Parkinson's disease, and also reported to improve symptoms of epilepsy, Tourette's syndrome, obsessive compulsive disorders and cluster headache. Since the 1950s, DBS has been used as a treatment to relieve intractable pain of several aetiologies including post stroke pain, phantom limb pain, facial pain and brachial plexus avulsion. Several patient series have shown benefits in stimulating various brain areas, including the sensory thalamus (ventral posterior lateral and medial), the periaqueductal and periventricular grey, or, more recently, the anterior cingulate cortex. However, this technique remains "off label" in the USA as it does not have Federal Drug Administration approval. Consequently, only a small number of surgeons report DBS for pain using current technology and techniques and few regions approve it. Randomised, blinded and controlled clinical trials that may use novel trial methodologies are desirable to evaluate the efficacy of DBS in patients who are refractory to other therapies. New imaging techniques, including tractography, may help optimise electrode placement and clinical outcome.

  18. Pallidotomy after chronic deep brain stimulation.

    PubMed

    Bulluss, Kristian J; Pereira, Erlick A; Joint, Carole; Aziz, Tipu Z

    2013-11-01

    Recent publications have demonstrated that deep brain stimulation for Parkinson's disease still exerts beneficial effects on tremor, rigidity, and bradykinesia for up to 10 years after implantation of the stimulator. However with the progression of Parkinson's disease, features such as cognitive decline or "freezing" become prominent, and the presence of an implanted and functioning deep brain stimulator can impose a profound burden of care on the clinical team and family. The authors describe their experience in treating 4 patients who underwent removal of the implanted device due to either progressive dementia requiring full-time nursing or due to infection, and who subsequently underwent a unilateral pallidotomy.

  19. Red and NIR light dosimetry in the human deep brain

    NASA Astrophysics Data System (ADS)

    Pitzschke, A.; Lovisa, B.; Seydoux, O.; Zellweger, M.; Pfleiderer, M.; Tardy, Y.; Wagnières, G.

    2015-04-01

    Photobiomodulation (PBM) appears promising to treat the hallmarks of Parkinson’s Disease (PD) in cellular or animal models. We measured light propagation in different areas of PD-relevant deep brain tissue during transcranial, transsphenoidal illumination (at 671 and 808 nm) of a cadaver head and modeled optical parameters of human brain tissue using Monte-Carlo simulations. Gray matter, white matter, cerebrospinal fluid, ventricles, thalamus, pons, cerebellum and skull bone were processed into a mesh of the skull (158 × 201 × 211 voxels; voxel side length: 1 mm). Optical parameters were optimized from simulated and measured fluence rate distributions. The estimated μeff for the different tissues was in all cases larger at 671 than at 808 nm, making latter a better choice for light delivery in the deep brain. Absolute values were comparable to those found in the literature or slightly smaller. The effective attenuation in the ventricles was considerably larger than literature values. Optimization yields a new set of optical parameters better reproducing the experimental data. A combination of PBM via the sphenoid sinus and oral cavity could be beneficial. A 20-fold higher efficiency of light delivery to the deep brain was achieved with ventricular instead of transcranial illumination. Our study demonstrates that it is possible to illuminate deep brain tissues transcranially, transsphenoidally and via different application routes. This opens therapeutic options for sufferers of PD or other cerebral diseases necessitating light therapy.

  20. Optogenetics and deep brain stimulation neurotechnologies.

    PubMed

    Kondabolu, Krishnakanth; Kowalski, Marek Mateusz; Roberts, Erik Andrew; Han, Xue

    2015-01-01

    Brain neural network is composed of densely packed, intricately wired neurons whose activity patterns ultimately give rise to every behavior, thought, or emotion that we experience. Over the past decade, a novel neurotechnique, optogenetics that combines light and genetic methods to control or monitor neural activity patterns, has proven to be revolutionary in understanding the functional role of specific neural circuits. We here briefly describe recent advance in optogenetics and compare optogenetics with deep brain stimulation technology that holds the promise for treating many neurological and psychiatric disorders.

  1. Deep Brain Stimulation for Parkinson Disease

    PubMed Central

    Bronstein, Jeff M.; Tagliati, Michele; Alterman, Ron L.; Lozano, Andres M.; Volkmann, Jens; Stefani, Alessandro; Horak, Fay B.; Okun, Michael S.; Foote, Kelly D.; Krack, Paul; Pahwa, Rajesh; Henderson, Jaimie M.; Hariz, Marwan I.; Bakay, Roy A.; Rezai, Ali; Marks, William J.; Moro, Elena; Vitek, Jerrold L.; Weaver, Frances M.; Gross, Robert E.; DeLong, Mahlon R.

    2015-01-01

    Objective To provide recommendations to patients, physicians, and other health care providers on several issues involving deep brain stimulation (DBS) for Parkinson disease (PD). Data Sources and Study Selection An international consortium of experts organized, reviewed the literature, and attended the workshop. Topics were introduced at the workshop, followed by group discussion. Data Extraction and Synthesis A draft of a consensus statement was presented and further edited after plenary debate. The final statements were agreed on by all members. Conclusions (1) Patients with PD without significant active cognitive or psychiatric problems who have medically intractable motor fluctuations, intractable tremor, or intolerance of medication adverse effects are good candidates for DBS. (2) Deep brain stimulation surgery is best performed by an experienced neurosurgeon with expertise in stereotactic neurosurgery who is working as part of a interprofessional team. (3) Surgical complication rates are extremely variable, with infection being the most commonly reported complication of DBS. (4) Deep brain stimulation programming is best accomplished by a highly trained clinician and can take 3 to 6 months to obtain optimal results. (5) Deep brain stimulation improves levodopa-responsive symptoms, dyskinesia, and tremor; benefits seem to be long-lasting in many motor domains. (6) Subthalamic nuclei DBS may be complicated by increased depression, apathy, impulsivity, worsened verbal fluency, and executive dysfunction in a subset of patients. (7) Both globus pallidus pars interna and subthalamic nuclei DBS have been shown to be effective in addressing the motor symptoms of PD. (8) Ablative therapy is still an effective alternative and should be considered in a select group of appropriate patients. PMID:20937936

  2. Movement disorders induced by deep brain stimulation.

    PubMed

    Baizabal-Carvallo, José Fidel; Jankovic, Joseph

    2016-04-01

    Deep brain stimulation represents a major advance in the treatment of several types of movement disorders. However, during stimulation new movement disorders may emerge, thus limiting the positive effects of this therapy. These movement disorders may be induced by: 1) stimulation of the targeted nucleus, 2) stimulation of surrounding tracts and nuclei, and 3) as a result of dose adjustment of accompanying medications, such as reduction of dopaminergic drugs in patients with Parkinson's disease. Various dyskinesias, blepharospasm, and apraxia of eyelid opening have been described mainly with subthalamic nucleus stimulation, whereas hypokinesia and freezing of gait have been observed with stimulation of the globus pallidus internus. Other deep brain stimulation-related movement disorders include dyskinesias associated with stimulation of the globus pallidus externus and ataxic gait as a side effect of chronic bilateral stimulation of the ventral intermediate nucleus of thalamus. These movement disorders are generally reversible and usually resolved once the stimulation is reduced or turned off. This, however, typically leads to loss of benefit of the underlying movement disorder which can be re-gained by using different contacts, changing targets or stimulation parameters, and adjusting pharmacological therapy. New and innovative emerging technologies and stimulation techniques may help to prevent or overcome the various deep brain stimulation-induced movement disorders. In this review we aim to describe the clinical features, frequency, pathophysiology, and strategies for treatment of these iatrogenic movement disorders.

  3. Balancing the Brain: Resting State Networks and Deep Brain Stimulation

    PubMed Central

    Kringelbach, Morten L.; Green, Alexander L.; Aziz, Tipu Z.

    2011-01-01

    Over the last three decades, large numbers of patients with otherwise treatment-resistant disorders have been helped by deep brain stimulation (DBS), yet a full scientific understanding of the underlying neural mechanisms is still missing. We have previously proposed that efficacious DBS works by restoring the balance of the brain's resting state networks. Here, we extend this proposal by reviewing how detailed investigations of the highly coherent functional and structural brain networks in health and disease (such as Parkinson's) have the potential not only to increase our understanding of fundamental brain function but of how best to modulate the balance. In particular, some of the newly identified hubs and connectors within and between resting state networks could become important new targets for DBS, including potentially in neuropsychiatric disorders. At the same time, it is of essence to consider the ethical implications of this perspective. PMID:21577250

  4. Network effects of deep brain stimulation

    PubMed Central

    Alhourani, Ahmad; McDowell, Michael M.; Randazzo, Michael J.; Wozny, Thomas A.; Kondylis, Efstathios D.; Lipski, Witold J.; Beck, Sarah; Karp, Jordan F.; Ghuman, Avniel S.

    2015-01-01

    The ability to differentially alter specific brain functions via deep brain stimulation (DBS) represents a monumental advance in clinical neuroscience, as well as within medicine as a whole. Despite the efficacy of DBS in the treatment of movement disorders, for which it is often the gold-standard therapy when medical management becomes inadequate, the mechanisms through which DBS in various brain targets produces therapeutic effects is still not well understood. This limited knowledge is a barrier to improving efficacy and reducing side effects in clinical brain stimulation. A field of study related to assessing the network effects of DBS is gradually emerging that promises to reveal aspects of the underlying pathophysiology of various brain disorders and their response to DBS that will be critical to advancing the field. This review summarizes the nascent literature related to network effects of DBS measured by cerebral blood flow and metabolic imaging, functional imaging, and electrophysiology (scalp and intracranial electroencephalography and magnetoencephalography) in order to establish a framework for future studies. PMID:26269552

  5. Deep brain stimulation for movement disorders.

    PubMed

    Larson, Paul S

    2014-07-01

    Deep brain stimulation (DBS) is an implanted electrical device that modulates specific targets in the brain resulting in symptomatic improvement in a particular neurologic disease, most commonly a movement disorder. It is preferred over previously used lesioning procedures due to its reversibility, adjustability, and ability to be used bilaterally with a good safety profile. Risks of DBS include intracranial bleeding, infection, malposition, and hardware issues, such migration, disconnection, or malfunction, but the risk of each of these complications is low--generally ≤ 5% at experienced, large-volume centers. It has been used widely in essential tremor, Parkinson's disease, and dystonia when medical treatment becomes ineffective, intolerable owing to side effects, or causes motor complications. Brain targets implanted include the thalamus (most commonly for essential tremor), subthalamic nucleus (most commonly for Parkinson's disease), and globus pallidus (Parkinson's disease and dystonia), although new targets are currently being explored. Future developments include brain electrodes that can steer current directionally and systems capable of "closed loop" stimulation, with systems that can record and interpret regional brain activity and modify stimulation parameters in a clinically meaningful way. New, image-guided implantation techniques may have advantages over traditional DBS surgery.

  6. [Functional imaging of deep brain stimulation in idiopathic Parkinson's disease].

    PubMed

    Hilker, R

    2010-10-01

    Functional brain imaging allows the effects of deep brain stimulation (DBS) on the living human brain to be investigated. In patients with advanced Parkinson's disease (PD), positron emission tomography (PET) studies were undertaken at rest as well as under motor, cognitive or behavioral activation. DBS leads to a reduction of abnormal PD-related network activity in the motor system, which partly correlates with the improvement of motor symptoms. The local increase of energy consumption within the direct target area suggests a predominant excitatory influence of the stimulation current on neuronal tissue. Remote effects of DBS of the subthalamic nucleus (STN) on frontal association cortices indicate an interference of stimulation energy with associative and limbic basal ganglia loops. Taken together, functional brain imaging provides very valuable data for advancement of the DBS technique in PD therapy.

  7. Use of brain MRI after deep brain stimulation hardware implantation.

    PubMed

    Nazzaro, Jules M; Lyons, Kelly E; Wetzel, Louis H; Pahwa, Rajesh

    2010-03-01

    The objective of this study was to examine the experience with and safety of brain 1.5 Tesla (T) magnetic resonance imaging (MRI) in deep brain stimulation (DBS) patients. This was a retrospective review of brain MRI scanning performed on DBS patients at the University of Kansas Medical Center between January 1995 and December 2007. A total of 249 DBS patients underwent 445 brain 1.5 T MRI scan sessions encompassing 1,092 individual scans using a transmit-receive head coil, representing the cumulative scanning of 1,649 DBS leads. Patients with complete implanted DBS systems as well as those with externalized leads underwent brain imaging. For the majority of scans, specific absorption rates localized to the head (SAR(H)) were estimated and in all cases SAR(H) were higher than that specified in the present product labeling. There were no clinical or hardware related adverse events secondary to brain MRI scanning. Our data should not be extrapolated to encourage MRI scanning beyond the present labeling. Rather, our data may contribute to further defining safe MRI scanning parameters that might ultimately be adopted in future product labeling as more centers report in detail their experiences.

  8. [Deep brain stimulation in psychiatry: ethical aspects].

    PubMed

    Müller, Ulf J; Bogerts, Bernhard; Voges, Jürgen; Galazky, Imke; Kohl, Sina; Heinze, Hans-Jochen; Kuhn, Jens; Steiner, Johann

    2014-07-01

    Deep brain stimulation (DBS) has been shown to be an efficacious treatment for many neurological conditions and has thus been expanded to psychiatric diseases as well. Following an introduction on the history of DBS in psychiatry, this review summarizes commonly raised ethical concerns and questions on clinical trial design, selection of patients, informed consent and concerns about the possible impact of DBS on an individual's personality. Finally, it highlights the fact that critique on DBS in psychiatry is probably not selectively based on scientific concerns about potential risks; instead, the neurobiological origin of specific psychiatric disorders has been questioned.

  9. Deep Brain Stimulation for Movement Disorders.

    PubMed

    Revell, Maria A

    2015-12-01

    Disruption in the interaction between the central nervous system, nerves, and muscles cause movement disorders. These disorders can negatively affect quality of life. Deep brain stimulation (DBS) has been identified as a therapy for Parkinson disease and essential tremor that has significant advantages compared with medicinal therapies. Surgical intervention for these disorders before DBS included ablative therapies such as thalamotomy and pallidotomy. These procedures were not reversible and did not allow for treatment adjustments. The advent of DBS progressed therapies for significant movement disorders into the realm of being reversible and adjustable based on patient symptoms.

  10. Deep brain stimulation for movement disorders.

    PubMed

    Thevathasan, Wesley; Gregory, Ralph

    2010-02-01

    Deep brain stimulation is now considered a routine treatment option for selected patients with advanced Parkinson's disease, primary segmental and generalised dystonia, and essential tremor. The neurosurgeon is responsible for the accurate and safe placement of the electrodes and the neurologist for the careful selection of patients and titration of medication against the effects of stimulation. A multidisciplinary team approach involving specialist nurses, neuropsychologists and neurophysiologists is required for a successful outcome. In this article we will summarise the key points in patient selection, provide an overview of the surgical technique, and discuss the beneficial and adverse outcomes that can occur.

  11. Origin and Evolution of Deep Brain Stimulation

    PubMed Central

    Sironi, Vittorio A.

    2011-01-01

    This paper briefly describes how the electrical stimulation, used since antiquity to modulate the nervous system, has been a fundamental tool of neurophysiologic investigation in the second half of the eighteenth century and was subsequently used by the early twentieth century, even for therapeutic purposes. In mid-twentieth century the advent of stereotactic procedures has allowed the drift from lesional to stimulating technique of deep nuclei of the brain for therapeutic purposes. In this way, deep brain stimulation (DBS) was born, that, over the last two decades, has led to positive results for the treatment of medically refractory Parkinson’s disease, essential tremor, and dystonia. In recent years, the indications for therapeutic use of DBS have been extended to epilepsy, Tourette’s syndrome, psychiatric diseases (depression, obsessive–compulsive disorder), some kinds of headache, eating disorders, and the minimally conscious state. The potentials of the DBS for therapeutic use are fascinating, but there are still many unresolved technical and ethical problems, concerning the identification of the targets for each disease, the selection of the patients and the evaluation of the results. PMID:21887135

  12. Deep brain light stimulation effects on glutamate and dopamine concentration.

    PubMed

    Kuo, Jinn-Rung; Lin, Shih-Shian; Liu, Janelle; Chen, Shih-How; Chio, Chung-Chin; Wang, Jhi-Joung; Liu, Jia-Ming

    2015-01-01

    Compared to deep brain electrical stimulation, which has been applied to treating pathological brain diseases, little work has been done on the effect of deep brain light stimulation. A fiber-coupled laser stimulator at 840 nm wavelength and 130 Hz pulse repetition rate is developed in this work for deep brain light stimulation in a rat model. Concentration changes in glutamate and dopamine in the striatum are observed using a microdialysis probe when the subthalamic nucleus (STN) is stimulated at various optical power levels. Experimental results show that light stimulation causes the concentration of glutamate to decrease while that of dopamine is increased. This suggests that deep brain light stimulation of the STN is a promising therapeutic strategy for dopamine-related diseases such as Parkinson's disease. The stimulator developed for this work is useful for deep brain light stimulation in biomedical research.

  13. Deep brain stimulation to reduce sexual drive

    PubMed Central

    Fuss, Johannes; Auer, Matthias K.; Biedermann, Sarah V.; Briken, Peer; Hacke, Werner

    2015-01-01

    To date there are few treatment options to reduce high sexual drive or sexual urges in paraphilic patients with a risk for sexual offending. Pharmacological therapy aims to reduce sexual drive by lowering testosterone at the cost of severe side effects. We hypothesize that high sexual drive could also be reduced with deep brain stimulation (DBS) of circuits that generate sexual drive. This approach would help to avoid systemic side effects of antiandrogenic drug therapies. So far the best investigated target to reduce sexual drive is the ventromedial hypothalamus, which was lesioned unilaterally and bilaterally by stereotaxic interventions in paraphilic patients in the 1970s. Here, we discuss DBS as a treatment strategy in patients with severe paraphilic disorders with a serious risk of sexual offending. There are profound ethical and practical issues associated with DBS treatment of paraphilic patients that must be solved before considering such a treatment approach. PMID:26057198

  14. Deep Brain Stimulation for Psychiatric Disorders

    PubMed Central

    Holtzheimer, Paul E.; Mayberg, Helen S.

    2015-01-01

    Medications, psychotherapy, and other treatments are effective for many patients with psychiatric disorders. However, with currently available interventions, a substantial number of patients experience incomplete resolution of symptoms, and relapse rates are high. In the search for better treatments, increasing interest has focused on focal neuromodulation. This focus has been driven by improved neuroanatomical models of mood, thought, and behavior regulation, as well as by more advanced strategies for directly and focally altering neural activity. Deep brain stimulation (DBS) is one of the most invasive focal neuromodulation techniques available; data have supported its safety and efficacy in a number of movement disorders. Investigators have produced preliminary data on the safety and efficacy of DBS for several psychiatric disorders, as well. In this review, we describe the development and justification for testing DBS for various psychiatric disorders, carefully consider the available clinical data, and briefly discuss potential mechanisms of action. PMID:21692660

  15. Deep brain stimulation for refractory epilepsy

    PubMed Central

    Mandat, Tomasz; Kornakiewicz, Anna; Koziara, Henryk; Nauman, Paweł

    2012-01-01

    Deep brain stimulation (DBS) is a method of treatment utilized to control medically refractory epilepsy (RE). Patients with medically refractory epilepsy who do not achieve satisfactory control of seizures with pharmacological treatment or surgical resection of the epileptic focus and those who do not qualify for surgery could benefit from DBS. The most frequently used stereotactic targets for DBS are the anterior thalamic nucleus, subthalamic nucleus, central-medial thalamic nucleus, hippocampus, amygdala and cerebellum. The DBS is believed to be an effective method of treatment for various types of epilepsy among adults and adolescents. Side effects may be associated with implantation of electrodes and with the stimulation itself. An increasing number of publications and growing interest in DBS application for RE may result in standardization of the qualification and treatment protocol for RE with DBS. PMID:23185188

  16. Deep brain stimulation for the treatment of uncommon tremor syndromes

    PubMed Central

    Ramirez-Zamora, Adolfo; Okun, Michael S.

    2016-01-01

    ABSTRACT Introduction: Deep brain stimulation (DBS) has become a standard therapy for the treatment of select cases of medication refractory essential tremor and Parkinson’s disease however the effectiveness and long-term outcomes of DBS in other uncommon and complex tremor syndromes has not been well established. Traditionally, the ventralis intermedius nucleus (VIM) of the thalamus has been considered the main target for medically intractable tremors; however alternative brain regions and improvements in stereotactic techniques and hardware may soon change the horizon for treatment of complex tremors. Areas covered: In this article, we conducted a PubMed search using different combinations between the terms ‘Uncommon tremors’, ‘Dystonic tremor’, ‘Holmes tremor’ ‘Midbrain tremor’, ‘Rubral tremor’, ‘Cerebellar tremor’, ‘outflow tremor’, ‘Multiple Sclerosis tremor’, ‘Post-traumatic tremor’, ‘Neuropathic tremor’, and ‘Deep Brain Stimulation/DBS’. Additionally, we examined and summarized the current state of evolving interventions for treatment of complex tremor syndromes. Expert c ommentary: Recently reported interventions for rare tremors include stimulation of the posterior subthalamic area, globus pallidus internus, ventralis oralis anterior/posterior thalamic subnuclei, and the use of dual lead stimulation in one or more of these targets. Treatment should be individualized and dictated by tremor phenomenology and associated clinical features. PMID:27228280

  17. Brain tumor segmentation with Deep Neural Networks.

    PubMed

    Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo

    2017-01-01

    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster.

  18. Computational analysis of deep brain stimulation.

    PubMed

    McIntyre, Cameron C; Miocinovic, Svjetlana; Butson, Christopher R

    2007-09-01

    Chronic, high-frequency electrical stimulation of subcortical brain structures (deep brain stimulation [DBS]) is an effective clinical treatment for several medically refractory neurological disorders. However, the clinical successes of DBS are tempered by the limited understanding of the response of neurons to applied electric fields and scientific definition of the therapeutic mechanisms of DBS remains elusive. In addition, it is presently unclear which electrode designs and stimulation parameters are optimal for maximum therapeutic benefit and minimal side effects. Detailed computer modeling of DBS has recently emerged as a powerful technique to enhance our understanding of the effects of DBS and to create a virtual testing ground for new stimulation paradigms. This review summarizes the fundamentals of neurostimulation modeling and provides an overview of some of the scientific contributions of computer models to the field of DBS. We then provide a prospective view on the application of DBS-modeling tools to augment the clinical utility of DBS and to design the next generation of DBS technology.

  19. Deep brain photoreceptors control light seeking behavior in zebrafish larvae

    PubMed Central

    Fernandes, António M.; Fero, Kandice; Arrenberg, Aristides B.; Bergeron, Sadie A.; Driever, Wolfgang; Burgess, Harold A.

    2012-01-01

    Summary Most vertebrates process visual information using elaborately structured photosensory tissues including the eyes and pineal. However there is strong evidence that other tissues can detect and respond to photic stimuli [1, 2, 3]. Many reports suggest that photosensitive elements exist within the brain itself and influence physiology and behavior, however a long standing puzzle has been the identity of the neurons and photoreceptor molecules involved [4, 5]. We tested whether light cues influence behavior in zebrafish larvae through deep brain photosensors. We found that larvae lacking eyes and pineal perform a simple light-seeking behavior triggered by loss of illumination (`dark photokinesis'). Neuroanatomical considerations prompted us to test orthopedia (otpa) deficient fish which showed a profound reduction in dark photokinesis. Using targeted genetic ablations, we narrowed the photosensitive region to neurons in the preoptic area. Neurons in this region express several photoreceptive molecules, but expression of the melanopsin opn4a is selectively lost in otpa mutants, suggesting that opn4a mediates dark photokinesis. Our findings shed light on the identity and function of deep brain photoreceptors and suggest that otpa specifies an ancient population of sensory neurons that mediate behavioral responses to light. PMID:23000151

  20. Deep brain stimulation for obesity: past, present, and future targets.

    PubMed

    Dupré, Derrick A; Tomycz, Nestor; Oh, Michael Y; Whiting, Donald

    2015-06-01

    The authors review the history of deep brain stimulation (DBS) in patients for treating obesity, describe current DBS targets in the brain, and discuss potential DBS targets and nontraditional stimulation parameters that may improve the effectiveness of DBS for ameliorating obesity. Deep brain stimulation for treating obesity has been performed both in animals and in humans with intriguing preliminary results. The brain is an attractive target for addressing obesity because modulating brain activity may permit influencing both sides of the energy equation--caloric intake and energy expenditure.

  1. Closing the loop of deep brain stimulation

    PubMed Central

    Carron, Romain; Chaillet, Antoine; Filipchuk, Anton; Pasillas-Lépine, William; Hammond, Constance

    2013-01-01

    High-frequency deep brain stimulation is used to treat a wide range of brain disorders, like Parkinson's disease. The stimulated networks usually share common electrophysiological signatures, including hyperactivity and/or dysrhythmia. From a clinical perspective, HFS is expected to alleviate clinical signs without generating adverse effects. Here, we consider whether the classical open-loop HFS fulfills these criteria and outline current experimental or theoretical research on the different types of closed-loop DBS that could provide better clinical outcomes. In the first part of the review, the two routes followed by HFS-evoked axonal spikes are explored. In one direction, orthodromic spikes functionally de-afferent the stimulated nucleus from its downstream target networks. In the opposite direction, antidromic spikes prevent this nucleus from being influenced by its afferent networks. As a result, the pathological synchronized activity no longer propagates from the cortical networks to the stimulated nucleus. The overall result can be described as a reversible functional de-afferentation of the stimulated nucleus from its upstream and downstream nuclei. In the second part of the review, the latest advances in closed-loop DBS are considered. Some of the proposed approaches are based on mathematical models, which emphasize different aspects of the parkinsonian basal ganglia: excessive synchronization, abnormal firing-rate rhythms, and a deficient thalamo-cortical relay. The stimulation strategies are classified depending on the control-theory techniques on which they are based: adaptive and on-demand stimulation schemes, delayed and multi-site approaches, stimulations based on proportional and/or derivative control actions, optimal control strategies. Some of these strategies have been validated experimentally, but there is still a large reservoir of theoretical work that may point to ways of improving practical treatment. PMID:24391555

  2. Body weight gain and deep brain stimulation.

    PubMed

    Rieu, Isabelle; Derost, Philippe; Ulla, Miguel; Marques, Ana; Debilly, Bérangère; De Chazeron, Ingrid; Chéreau, Isabelle; Lemaire, Jean Jacques; Boirie, Yves; Llorca, Pierre Michel; Durif, Franck

    2011-11-15

    Deep brain stimulation (DBS) is a neurosurgical technique that has now been available for some 25 years. It is used in the treatment of various motor disorders, e.g. Parkinson's disease (PD), essential tremor and dystonia, and neuropsychiatric illnesses, e.g. obsessive-compulsive disorder and Tourette syndrome. The surgical targets of DBS include the thalamic ventralis intermedius nucleus (Vim), the globus pallidus internus (GPi) and more recently the subthalamic nucleus (STN), currently considered as the reference target in the treatment of PD. In the last ten years, most studies in PD patients have described a rapid and marked weight gain in the months following DBS of the STN. This weight gain sometimes induces obesity and can have metabolic repercussions. The physiopathological mechanisms responsible for the weight gain are multifactorial (changes in energy metabolism and eating behaviour, reduction of motor complications, etc.). This review reports current knowledge concerning weight changes in patients treated by DBS with different surgical targets. It also describes the mechanisms responsible for weight gain and the health outcome for the patients.

  3. Deep Brain Stimulation in Parkinson's Disease

    PubMed Central

    Groiss, S. J.; Wojtecki, L.; Südmeyer, M.

    2009-01-01

    During the last 15 years deep brain stimulation (DBS) has been established as a highly-effective therapy for advanced Parkinson's disease (PD). Patient selection, stereotactic implantation, postoperative stimulator programming and patient care requires a multi-disciplinary team including movement disorders specialists in neurology and functional neurosurgery. To treat medically refractory levodopa-induced motor complications or resistant tremor the preferred target for high-frequency DBS is the subthalamic nucleus (STN). STN-DBS results in significant reduction of dyskinesias and dopaminergic medication, improvement of all cardinal motor symptoms with sustained long-term benefits, and significant improvement of quality of life when compared with best medical treatment. These benefits have to be weighed against potential surgery-related adverse events, device-related complications, and stimulus-induced side effects. The mean disease duration before initiating DBS in PD is currently about 13 years. It is presently investigated whether the optimal timing for implantation may be at an earlier disease-stage to prevent psychosocial decline and to maintain quality of life for a longer period of time. PMID:21180627

  4. Weight Gain following Pallidal Deep Brain Stimulation: A PET Study.

    PubMed

    Sauleau, Paul; Drapier, Sophie; Duprez, Joan; Houvenaghel, Jean-François; Dondaine, Thibaut; Haegelen, Claire; Drapier, Dominique; Jannin, Pierre; Robert, Gabriel; Le Jeune, Florence; Vérin, Marc

    2016-01-01

    The mechanisms behind weight gain following deep brain stimulation (DBS) surgery seem to be multifactorial and suspected depending on the target, either the subthalamic nucleus (STN) or the globus pallidus internus (GPi). Decreased energy expenditure following motor improvement and behavioral and/or metabolic changes are possible explanations. Focusing on GPi target, our objective was to analyze correlations between changes in brain metabolism (measured with PET) and weight gain following GPi-DBS in patients with Parkinson's disease (PD). Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose PET four months before and four months after the start of GPi-DBS in 19 PD patients. Dopaminergic medication was included in the analysis to control for its possible influence on brain metabolism. Body mass index increased significantly by 0.66 ± 1.3 kg/m2 (p = 0.040). There were correlations between weight gain and changes in brain metabolism in premotor areas, including the left and right superior gyri (Brodmann area, BA 6), left superior gyrus (BA 8), the dorsolateral prefrontal cortex (right middle gyrus, BAs 9 and 46), and the left and right somatosensory association cortices (BA 7). However, we found no correlation between weight gain and metabolic changes in limbic and associative areas. Additionally, there was a trend toward a correlation between reduced dyskinesia and weight gain (r = 0.428, p = 0.067). These findings suggest that, unlike STN-DBS, motor improvement is the major contributing factor for weight gain following GPi-DBS PD, confirming the motor selectivity of this target.

  5. Weight Gain following Pallidal Deep Brain Stimulation: A PET Study

    PubMed Central

    Sauleau, Paul; Drapier, Sophie; Duprez, Joan; Houvenaghel, Jean-François; Dondaine, Thibaut; Haegelen, Claire; Drapier, Dominique; Jannin, Pierre; Robert, Gabriel; Le Jeune, Florence; Vérin, Marc

    2016-01-01

    The mechanisms behind weight gain following deep brain stimulation (DBS) surgery seem to be multifactorial and suspected depending on the target, either the subthalamic nucleus (STN) or the globus pallidus internus (GPi). Decreased energy expenditure following motor improvement and behavioral and/or metabolic changes are possible explanations. Focusing on GPi target, our objective was to analyze correlations between changes in brain metabolism (measured with PET) and weight gain following GPi-DBS in patients with Parkinson’s disease (PD). Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose PET four months before and four months after the start of GPi-DBS in 19 PD patients. Dopaminergic medication was included in the analysis to control for its possible influence on brain metabolism. Body mass index increased significantly by 0.66 ± 1.3 kg/m2 (p = 0.040). There were correlations between weight gain and changes in brain metabolism in premotor areas, including the left and right superior gyri (Brodmann area, BA 6), left superior gyrus (BA 8), the dorsolateral prefrontal cortex (right middle gyrus, BAs 9 and 46), and the left and right somatosensory association cortices (BA 7). However, we found no correlation between weight gain and metabolic changes in limbic and associative areas. Additionally, there was a trend toward a correlation between reduced dyskinesia and weight gain (r = 0.428, p = 0.067). These findings suggest that, unlike STN-DBS, motor improvement is the major contributing factor for weight gain following GPi-DBS PD, confirming the motor selectivity of this target. PMID:27070317

  6. Stochastic Phase Resetting: a Theory for Deep Brain Stimulation

    NASA Astrophysics Data System (ADS)

    Tass, Peter A.

    2000-03-01

    A stochastic approach to phase resetting in clusters of interacting oscillators is presented. This theory explains how a stimulus, especially a single pulse, induces synchronization and desynchronization processes. The theory is used to design a new technique for deep brain stimulation in patients suffering from Parkinson's disease or essential tremor that do no longer respond to drug therapy. This stimulation mode is a feedback controlled single pulse stimulation. The feedback signal is registered with the deep brain electrode, and the desynchronizing pulses are administered via the same electrode. The stochastic phase resetting theory is used as a starting point of a model based design of intelligent and gentle deep brain stimulation techniques.

  7. Anesthetic Challenges for Deep Brain Stimulation: A Systematic Approach

    PubMed Central

    Chakrabarti, Rajkalyan; Ghazanwy, Mahmood; Tewari, Anurag

    2014-01-01

    Ablative intracranial surgery for Parkinson's disease has advanced to embedding electrodes into precise areas of the basal ganglia. Electrode implantation surgery, referred to as deep brain stimulation (DBS), is preferred in view of its reversibility, adjustability, and capability to be safely performed bilaterally. DBS is been increasingly used for other movement disorders, intractable tremors epilepsy, and sometimes chronic pain. Anesthesiologists need to amalgamate the knowledge of neuroanatomical structures and surgical techniques involved in placement of microelectrodes in defined cerebral target areas. Perioperative verbal communication with the patient during the procedure is quintessential and may attenuate the need for pharmacological agents. This review will endeavor to assimilate the present knowledge regarding the patient selection, available/practiced anesthesia regimens, and perioperative complications after our thorough search for literature published between 1991 and 2013. PMID:25210668

  8. "Asleep" deep brain stimulation for essential tremor.

    PubMed

    Chen, Tsinsue; Mirzadeh, Zaman; Chapple, Kristina; Lambert, Margaret; Dhall, Rohit; Ponce, Francisco A

    2016-06-01

    OBJECT Deep brain stimulation (DBS) performed under general anesthesia ("asleep" DBS) has not been previously reported for essential tremor. This is in part due to the inability to visualize the target (the ventral intermediate nucleus [VIM]) on MRI. The authors evaluate the efficacy of this asleep technique in treating essential tremor by indirect VIM targeting. METHODS The authors retrospectively reviewed consecutive cases of initial DBS for essential tremor performed by a single surgeon. DBS was performed with patients awake (n = 40, intraoperative test stimulation without microelectrode recording) or asleep (n = 17, under general anesthesia). Targeting proceeded with standardized anatomical coordinates on preoperative MRI. Intraoperative CT was used for stereotactic registration and lead position confirmation. Functional outcomes were evaluated with pre- and postoperative Bain and Findley Tremor Activities of Daily Living scores. RESULTS A total of 29 leads were placed in asleep patients, and 60 were placed in awake patients. Bain and Findley Tremor Activities of Daily Living Questionnaire scores were not significantly different preoperatively for awake versus asleep cohorts (p = 0.2). The percentage of postoperative improvement was not significantly different between asleep (48.6%) and awake (45.5%) cohorts (p = 0.35). Euclidean error (mm) was higher for awake versus asleep patients (1.7 ± 0.8 vs 1.2 ± 0.4, p = 0.01), and radial error (mm) trended higherfor awake versus asleep patients (1.3 ± 0.8 vs 0.9 ± 0.5, p = 0.06). There were no perioperative complications. CONCLUSIONS In the authors' initial experience, asleep VIM DBS for essential tremor without intraoperative test stimulation can be performed safely and effectively.

  9. Bilateral Deep Brain Stimulation vs Best Medical Therapy for Patients With Advanced Parkinson Disease

    PubMed Central

    Weaver, Frances M.; Follett, Kenneth; Stern, Matthew; Hur, Kwan; Harris, Crystal; Marks, William J.; Rothlind, Johannes; Sagher, Oren; Reda, Domenic; Moy, Claudia S.; Pahwa, Rajesh; Burchiel, Kim; Hogarth, Penelope; Lai, Eugene C.; Duda, John E.; Holloway, Kathryn; Samii, Ali; Horn, Stacy; Bronstein, Jeff; Stoner, Gatana; Heemskerk, Jill; Huang, Grant D.

    2010-01-01

    quality-of-life scores (P<.001). Neurocognitive testing revealed small decrements in some areas of information processing for patients receiving deep brain stimulation vs best medical therapy. At least 1 serious adverse event occurred in 49 deep brain stimulation patients and 15 best medical therapy patients (P<.001), including 39 adverse events related to the surgical procedure and 1 death secondary to cerebral hemorrhage. Conclusion In this randomized controlled trial of patients with advanced PD, deep brain stimulation was more effective than best medical therapy in improving on time without troubling dyskinesias, motor function, and quality of life at 6 months, but was associated with an increased risk of serious adverse events. Trial Registration clinicaltrials.gov Identifier: NCT00056563 PMID:19126811

  10. Deep brain stimulation modulates effects of motivation in Parkinson's disease.

    PubMed

    Sauleau, Paul; Eusebio, Alexandre; Vandenberghe, Wim; Nuttin, Bart; Brown, Peter

    2009-04-22

    It is unclear how motivation leads to improved motor performance. Here we test the hypothesis that motivation interacts with behavioural performance in the basal ganglia. We recorded trial-to-trial performance in a bimanual motor task in 10 patients with Parkinson's disease with electrodes chronically implanted in the subthalamic nucleus for deep brain stimulation. Motivation-associated improvements in trial-to-trial performance were contrasted with and without stimulation at high frequency. Motivation and stimulation improved trial-to-trial performance, but the effect of motivation was halved during stimulation. We conclude that the subthalamic area is mechanistically important in those processes linking motivation to improvement in motor performance. This finding may be relevant to some of the cognitive and emotional changes associated with bilateral subthalamic stimulation.

  11. Deep brain stimulation for movement and other neurologic disorders.

    PubMed

    DeLong, Mahlon; Wichmann, Thomas

    2012-08-01

    Deep brain stimulation (DBS) was introduced as a treatment for patients with parkinsonism and other movement disorders in the early 1990s. The technique rapidly became the treatment of choice for these conditions, and is now also being explored for other diseases, including Tourette syndrome, gait disorders, epilepsy, obsessive-compulsive disorder, and depression. Although the mechanism of action of DBS remains unclear, it is recognized that DBS works through focal modulation of functionally specific circuits. The fact that the same DBS parameters and targets can be used in multiple diseases suggests that DBS does not counteract the pathophysiology of any specific disorder, but acts to replace pathologic activities in disease-affected brain circuits with activity that is more easily tolerated. Despite the progress made in the use of DBS, much remains to be done to fully realize the potential of this therapy. We describe some of the most active areas of research in this field, both in terms of exploration of new targets and stimulation parameters, and in terms of new electrode or stimulator designs.

  12. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease.

    PubMed

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-05-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the

  13. Stochastic Phase Resetting: A Theory for Deep Brain Stimulation

    NASA Astrophysics Data System (ADS)

    Tass, P. A.

    The basic principles of a stochastic approach to phase resetting in populations of interacting phase oscillators are presented in this article. This theory explains how synchronization and desynchronization processes are caused by a pulsatile stimulus. It is a central goal of this approach to establish a theoretical basis for the design of efficient and intelligent new deep brain stimulation techniques. Accordingly, the theory is used to design a new deep brain stimulation technique with feedback control in patients suffering from Parkinson's disease or essential tremor.

  14. Pedunculopontine arousal system physiology - Deep brain stimulation (DBS).

    PubMed

    Garcia-Rill, Edgar; Luster, Brennon; D'Onofrio, Stasia; Mahaffey, Susan; Bisagno, Veronica; Urbano, Francisco J

    2015-11-01

    This review describes the wake/sleep symptoms present in Parkinson׳s disease, and the role of the pedunculopontine nucleus in these symptoms. The physiology of PPN cells is important not only because it is a major element of the reticular activating system, but also because it is a novel target for deep brain stimulation in the treatment of gait and postural deficits in Parkinson׳s disease. A greater understanding of the physiology of the target nuclei within the brainstem and basal ganglia, amassed over the past decades, has enabled increasingly better patient outcomes from deep brain stimulation for movement disorders.

  15. Deep Brain Stimulation for Essential Vocal Tremor: A Technical Report.

    PubMed

    Ho, Allen L; Choudhri, Omar; Sung, C Kwang; DiRenzo, Elizabeth E; Halpern, Casey H

    2015-03-01

    Essential vocal tremor (EVT) is the presence of a tremulous voice that is commonly associated with essential tremor. Patients with EVT often report a necessary increase in vocal effort that significantly worsens with stress and anxiety and can significantly impact quality of life despite optimal medical and behavioral treatment options. Deep brain stimulation (DBS) has been proposed as an effective therapy for vocal tremor, but very few studies exist in the literature that comprehensively evaluate the efficacy of DBS for specifically addressing EVT. We present a technical report on our multidisciplinary, comprehensive operative methodology for treatment of EVT with frameless, awake deep brain stimulation (DBS).

  16. Pedunculopontine arousal system physiology – Deep brain stimulation (DBS)

    PubMed Central

    Garcia-Rill, Edgar; Luster, Brennon; D’Onofrio, Stasia; Mahaffey, Susan; Bisagno, Veronica; Urbano, Francisco J.

    2015-01-01

    This review describes the wake/sleep symptoms present in Parkinson׳s disease, and the role of the pedunculopontine nucleus in these symptoms. The physiology of PPN cells is important not only because it is a major element of the reticular activating system, but also because it is a novel target for deep brain stimulation in the treatment of gait and postural deficits in Parkinson׳s disease. A greater understanding of the physiology of the target nuclei within the brainstem and basal ganglia, amassed over the past decades, has enabled increasingly better patient outcomes from deep brain stimulation for movement disorders. PMID:26779322

  17. Uncovering the mechanism(s) of deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Gang, Li; Chao, Yu; Ling, Lin; C-Y Lu, Stephen

    2005-01-01

    Deep brain stimulators, often called `pacemakers for the brain', are implantable devices which continuously deliver impulse stimulation to specific targeted nuclei of deep brain structure, namely deep brain stimulation (DBS). To date, deep brain stimulation (DBS) is the most effective clinical technique for the treatment of several medically refractory movement disorders (e.g., Parkinson's disease, essential tremor, and dystonia). In addition, new clinical applications of DBS for other neurologic and psychiatric disorders (e.g., epilepsy and obsessive-compulsive disorder) have been put forward. Although DBS has been effective in the treatment of movement disorders and is rapidly being explored for the treatment of other neurologic disorders, the scientific understanding of its mechanisms of action remains unclear and continues to be debated in the scientific community. Optimization of DBS technology for present and future therapeutic applications will depend on identification of the therapeutic mechanism(s) of action. The goal of this review is to address our present knowledge of the effects of high-frequency stimulation within the central nervous system and comment on the functional implications of this knowledge for uncovering the mechanism(s) of DBS.

  18. Brain tumor classification of microscopy images using deep residual learning

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yota; Washiya, Kiyotada; Aoki, Kota; Nagahashi, Hiroshi

    2016-12-01

    The crisis rate of brain tumor is about one point four in ten thousands. In general, cytotechnologists take charge of cytologic diagnosis. However, the number of cytotechnologists who can diagnose brain tumors is not sufficient, because of the necessity of highly specialized skill. Computer-Aided Diagnosis by computational image analysis may dissolve the shortage of experts and support objective pathological examinations. Our purpose is to support a diagnosis from a microscopy image of brain cortex and to identify brain tumor by medical image processing. In this study, we analyze Astrocytes that is a type of glia cell of central nerve system. It is not easy for an expert to discriminate brain tumor correctly since the difference between astrocytes and low grade astrocytoma (tumors formed from Astrocyte) is very slight. In this study, we present a novel method to segment cell regions robustly using BING objectness estimation and to classify brain tumors using deep convolutional neural networks (CNNs) constructed by deep residual learning. BING is a fast object detection method and we use pretrained BING model to detect brain cells. After that, we apply a sequence of post-processing like Voronoi diagram, binarization, watershed transform to obtain fine segmentation. For classification using CNNs, a usual way of data argumentation is applied to brain cells database. Experimental results showed 98.5% accuracy of classification and 98.2% accuracy of segmentation.

  19. Deep brain stimulation: a new treatment in mood and anxiety disorders.

    PubMed

    Velasques, Bruna; Diniz, Claudia; Teixeira, Silmar; Cartier, Consuelo; Peressutti, Caroline; Silva, Farmy; de Carvalho, Marcele; Novaes, Aline; Bittencourt, Juliana; Nardi, Antonio Egidio; Cheniaux, Elie; Basile, Luis; Cagy, Mauricio; Piedade, Roberto; Ribeiro, Pedro

    2014-01-01

    This article considered already existing studies about Deep Brain Stimulation in Mood and Anxiety Disorders. In particular, articles regarding Obsessive-Compulsive Disorder and Major Depression were mostly analyzed, due to the lack of researches about other types of Mood and Anxiety Disorders. We have concentrated on the target areas where Deep Brain Stimulation was most commonly applied, and on the effects this measure had on treatment-refractory patients. The obtained results showed that the stimulation of the: nucleus accumbens, subgenual cingulate cortex and ventral capsule/ventral striatum, has a positive influence on the development of the disorders investigated, sometimes showing the complete remission of the symptoms. Although Deep Brain Stimulation was overall found to be a promising and safe treatment for Mood and Anxiety Disorders, there are not enough studies proving its efficacy in wide samples and in the presence of more complex variables.

  20. Neuroethics of deep brain stimulation for mental disorders: brain stimulation reward in humans.

    PubMed

    Oshima, Hideki; Katayama, Yoichi

    2010-01-01

    The theoretical basis of some deep brain stimulation (DBS) trials undertaken in the early years was the phenomenon of "brain stimulation reward (BSR)," which was first identified in rats. The animals appeared to be rewarded by pleasure caused by the stimulation of certain brain regions (reward system), such as the septal area. "Self-stimulation" experiments, in which rats were allowed to stimulate their own brain by pressing a freely accessible lever, they quickly learned lever pressing and sometimes continued to stimulate until they exhausted themselves. BSR was also observed with DBS of the septal area in humans. DBS trials in later years were undertaken on other theoretical bases, but unexpected BSR was sometimes induced by stimulation of some areas, such as the locus coeruleus complex. When BSR was induced, the subjects experienced feelings that were described as "cheerful," "alert," "good," "well-being," "comfort," "relaxation," "joy," or "satisfaction." Since the DBS procedure is equivalent to a "self-stimulation" experiment, they could become "addicted to the stimulation itself" or "compulsive about the stimulation," and stimulate themselves "for the entire day," "at maximum amplitude" and, in some instances, "into convulsions." DBS of the reward system has recently been applied to alleviate anhedonia in patients with refractory major depression. Although this approach appears promising, there remains a difficult problem: who can adjust their feelings and reward-oriented behavior within the normal range? With a self-stimulation procedure, the BSR may become uncontrollable. To develop DBS to the level of a standard therapy for mental disorders, we need to discuss "Who has the right to control the mental condition?" and "Who makes decisions" on "How much control is appropriate?" in daily life.

  1. Neurosurgery of the future: Deep brain stimulations and manipulations.

    PubMed

    Nicolaidis, Stylianos

    2017-04-01

    Important advances are afoot in the field of neurosurgery-particularly in the realms of deep brain stimulation (DBS), deep brain manipulation (DBM), and the newly introduced refinement "closed-loop" deep brain stimulation (CLDBS). Use of closed-loop technology will make both DBS and DBM more precise as procedures and will broaden their indications. CLDBS utilizes as feedback a variety of sources of electrophysiological and neurochemical afferent information about the function of the brain structures to be treated or studied. The efferent actions will be either electric, i.e. the classic excitatory or inhibitory ones, or micro-injection of such things as neural proteins and transmitters, neural grafts, implants of pluripotent stem cells or mesenchymal stem cells, and some variants of gene therapy. The pathologies to be treated, beside Parkinson's disease and movement disorders, include repair of neural tissues, neurodegenerative pathologies, psychiatric and behavioral dysfunctions, i.e. schizophrenia in its various guises, bipolar disorders, obesity, anorexia, drug addiction, and alcoholism. The possibility of using these new modalities to treat a number of cognitive dysfunctions is also under consideration. Because the DBS-CLDBS technology brings about a cross-fertilization between scientific investigation and surgical practice, it will also contribute to an enhanced understanding of brain function.

  2. Deep brain stimulation during early adolescence prevents microglial alterations in a model of maternal immune activation.

    PubMed

    Hadar, Ravit; Dong, Le; Del-Valle-Anton, Lucia; Guneykaya, Dilansu; Voget, Mareike; Edemann-Callesen, Henriette; Schweibold, Regina; Djodari-Irani, Anais; Goetz, Thomas; Ewing, Samuel; Kettenmann, Helmut; Wolf, Susanne A; Winter, Christine

    2016-12-07

    In recent years schizophrenia has been recognized as a neurodevelopmental disorder likely involving a perinatal insult progressively affecting brain development. The poly I:C maternal immune activation (MIA) rodent model is considered as a neurodevelopmental model of schizophrenia. Using this model we and others demonstrated the association between neuroinflammation in the form of altered microglia and a schizophrenia-like endophenotype. Therapeutic intervention using the anti-inflammatory drug minocycline affected altered microglia activation and was successful in the adult offspring. However, less is known about the effect of preventive therapeutic strategies on microglia properties. Previously we found that deep brain stimulation of the medial prefrontal cortex applied pre-symptomatically to adolescence MIA rats prevented the manifestation of behavioral and structural deficits in adult rats. We here studied the effects of deep brain stimulation during adolescence on microglia properties in adulthood. We found that in the hippocampus and nucleus accumbens, but not in the medial prefrontal cortex, microglial density and soma size were increased in MIA rats. Pro-inflammatory cytokine mRNA was unchanged in all brain areas before and after implantation and stimulation. Stimulation of either the medial prefrontal cortex or the nucleus accumbens normalized microglia density and soma size in main projection areas including the hippocampus and in the area around the electrode implantation. We conclude that in parallel to an alleviation of the symptoms in the rat MIA model, deep brain stimulation has the potential to prevent the neuroinflammatory component in this disease.

  3. Pre-operative DTI and probabilisitic tractography in four patients with deep brain stimulation for chronic pain.

    PubMed

    Owen, S L F; Heath, J; Kringelbach, M; Green, A L; Pereira, E A C; Jenkinson, N; Jegan, T; Stein, J F; Aziz, T Z

    2008-07-01

    This study aimed to examine, using diffusion tensor imaging (DTI), differences in electrode placement in four patients undergoing deep brain stimulation for chronic neuropathic pain of varying aetiology. A pre-operative DTI was obtained for each patient, who was then implanted with deep brain stimulation electrodes in the periventricular/periaqueductal grey area with good pain relief. Using seeds from the postoperative MRI scan, probabilistic tractography was performed from the pre-operative DTI.

  4. A history of deep brain stimulation: Technological innovation and the role of clinical assessment tools

    PubMed Central

    2013-01-01

    Deep brain stimulation involves using a pacemaker-like device to deliver constant electrical stimulation to problematic areas within the brain. It has been used to treat over 40,000 people with Parkinson’s disease and essential tremor worldwide and is currently undergoing clinical trials as a treatment for depression and obsessive–compulsive disorder. This article will provide an historical account of deep brain stimulation in order to illustrate the plurality of interests involved in the development and stabilization of deep brain stimulation technology. Using Latour’s notion of immutable mobiles, this article will illustrate the importance of clinical assessment tools in shaping technological development in the era of medical device regulation. Given that such tools can serve commercial and professional interests, this article suggests that it is necessary to scrutinise their application in research contexts to ensure that they capture clinical changes that are meaningful for patients and their families. This is particularly important in relation to potentially ethically problematic therapies such as deep brain stimulation for psychiatric disorders.

  5. Customizing Deep Brain Stimulation to the Patient Using Computational Models

    PubMed Central

    McIntyre, Cameron C.; Frankenmolle, Anneke; Wu, Jennifer; Noecker, Angela M.; Alberts, Jay L.

    2011-01-01

    Bilateral subthalamic (STN) deep brain stimulation (DBS) is effective in improving the cardinal motor signs of advanced Parkinson's disease (PD); however declines in cognitive function have been associated with this procedure. The aim of this study was to assess cognitive-motor performance of 10 PD patients implanted with STN DBS systems during either clinically determined stimulation settings or settings derived from a computational model. Cicerone DBS software was used to define the model parameters such that current spread to non-motor areas of the STN was minimized. Clinically determined and model defined parameters were equally effective in improving motor scores on the traditional clinical rating scale (UPDRS-III). Under modest dual-task conditions, cognitive-motor performance was worse with clinically determined compared to model derived parameters. In addition, the model parameters provided a 33% reduction in power consumption. These results indicate that the cognitivemotor declines associated with bilateral STN can be mitigated, without compromising motor benefits, utilizing stimulation parameters that minimize current spread into non-motor regions of the STN. PMID:19965023

  6. Deep brain stimulation: a return journey from psychiatry to neurology.

    PubMed

    Ashkan, Keyoumars; Shotbolt, Paul; David, Anthony S; Samuel, Michael

    2013-06-01

    Deep brain stimulation (DBS) has emerged as an effective neurosurgical tool to treat a range of conditions. Its use in movement disorders such as Parkinson's disease, tremor and dystonia is now well established and has been approved by the National Institute of Clinical Excellence (NICE). The NICE does, however, emphasise the need for a multidisciplinary team to manage these patients. Such a team is traditionally composed of neurologists, neurosurgeons and neuropsychologists. Neuropsychiatrists, however, are increasingly recognised as essential members given many psychiatric considerations that may arise in patients undergoing DBS. Patient selection, assessment of competence to consent and treatment of postoperative psychiatric disease are just a few areas where neuropsychiatric input is invaluable. Partly driven by this close team working and partly based on the early history of DBS for psychiatric disorders, there is increasing interest in re-exploring the potential of neurosurgery to treat patients with psychiatric disease, such as depression and obsessive-compulsive disorder. Although the clinical experience and evidence with DBS in this group of patients are steadily increasing, many questions remain unanswered. Yet, the characteristics of optimal surgical candidates, the best choice of DBS target, the most effective stimulating parameters and the extent of postoperative improvement are not clear for most psychiatric conditions. Further research is therefore required to define how DBS can be best utilised to improve the quality of life of patients with psychiatric disease.

  7. Weight gain following subthalamic nucleus deep brain stimulation: a PET study.

    PubMed

    Sauleau, Paul; Le Jeune, Florence; Drapier, Sophie; Houvenaghel, Jean-François; Dondaine, Thibaut; Haegelen, Claire; Lalys, Florent; Robert, Gabriel; Drapier, Dominique; Vérin, Marc

    2014-12-01

    Several hypotheses have been put forward to explain weight gain after deep brain stimulation (DBS), but none provides a fully satisfactory account of this adverse effect. We analyzed the correlation between changes in brain metabolism (using positron emission tomography [PET] imaging) and weight gain after bilateral subthalamic nucleus DBS in patients with Parkinson's disease. Body mass index was calculated and brain activity prospectively measured using 2-deoxy-2[18F]fluoro-D-glucose 3 months before and 4 months after the start of subthalamic nucleus deep brain stimulation in 23 patients with Parkinson's disease. Motor complications (United Parkinson's Disease Rating Scale [UPDRS]-IV scores) and dopaminergic medication were included in the analysis to control for their possible influence on brain metabolism. Mean ± standard deviation (SD) body mass index increased significantly by 0.8 ± 1.5 kg/m(2) (P = 0.03). Correlations were found between weight gain and changes in brain metabolism in limbic and associative areas, including the orbitofrontal cortex (Brodmann areas [BAs] 10 and 11), lateral and medial parts of the temporal lobe (BAs 20, 21, 22,39 and 42), anterior cingulate cortex (BA 32), and retrosplenial cortex (BA 30). However, we found no correlation between weight gain and metabolic changes in sensorimotor areas. These findings suggest that changes in associative and limbic processes contribute to weight gain after subthalamic nucleus DBS in Parkinson's disease.

  8. MRI-induced heating of deep brain stimulation leads.

    PubMed

    Mohsin, Syed A; Sheikh, Noor M; Saeed, Usman

    2008-10-21

    The radiofrequency (RF) field used in magnetic resonance imaging is scattered by medical implants. The scattered field of a deep brain stimulation lead can be very intense near the electrodes stimulating the brain. The effect is more pronounced if the lead behaves as a resonant antenna. In this paper, we examine the resonant length effect. We also use the finite element method to compute the near field for (i) the lead immersed in inhomogeneous tissue (fat, muscle, and brain tissues) and (ii) the lead connected to an implantable pulse generator. Electric field, specific absorption rate and induced temperature rise distributions have been obtained in the brain tissue surrounding the electrodes. The worst-case scenario has been evaluated by neglecting the effect of blood perfusion. The computed values are in good agreement with in vitro measurements made in the laboratory.

  9. Successful thalamic deep brain stimulation for orthostatic tremor.

    PubMed

    Guridi, Jorge; Rodriguez-Oroz, Maria C; Arbizu, Javier; Alegre, Manuel; Prieto, Elena; Landecho, Ignacio; Manrique, Miguel; Artieda, Julio; Obeso, Jose A

    2008-10-15

    We report a patient with severe orthostatic tremor (OT) unresponsive to pharmacological treatments that was successfully controlled with thalamic (Vim, ventralis intermedius nucleus) deep brain stimulation (DBS) over a 4-year period. Cortical activity associated with the OT revealed by EEG back-averaging and fluoro-deoxi-glucose PET were also suppressed in parallel with tremor arrest. This case suggests that Vim-DBS may be a useful therapeutic approach for patients highly disabled by OT.

  10. Slurry wall construction in deep mined area

    SciTech Connect

    Woodcock, J.C.; Miller, K.R.

    1997-12-31

    The Osborne Landfill Superfund site was a 72,850 square meter (18-acre) abandoned strip mining excavation pit located in northwestern Pennsylvania that was used for disposal of waste for more than 20 years until the mid-1970`s. The landfill was used for the disposal of approximately 191,000 cubic meters (250,000 cubic yards) of municipal and industrial wastes. The wastes in the landfill became saturated after placement because the waste pit was connected to an extensive flooded deep mine system. In 1984 the site was placed on the National Priority List, primarily as a result of the presence of drums on the surface of the site. Following completion of a remedial investigation and feasibility study, the United States Environmental Protection Agency proposed a remedy for the site that included removal of all materials from the mine pit, backfilling the pit with clean material, and constructing a RCRA landfill above the clean backfill for disposal of the waste. The agency did not believe that an in-place closure/containment option would work for the site because of the deep mine void system in contact with the landfill. The estimated cost of the EPA`s alternative was about $26 million.

  11. Deep brain stimulation for psychiatric disorders: where we are now.

    PubMed

    Cleary, Daniel R; Ozpinar, Alp; Raslan, Ahmed M; Ko, Andrew L

    2015-06-01

    Fossil records showing trephination in the Stone Age provide evidence that humans have sought to influence the mind through physical means since before the historical record. Attempts to treat psychiatric disease via neurosurgical means in the 20th century provided some intriguing initial results. However, the indiscriminate application of these treatments, lack of rigorous evaluation of the results, and the side effects of ablative, irreversible procedures resulted in a backlash against brain surgery for psychiatric disorders that continues to this day. With the advent of psychotropic medications, interest in invasive procedures for organic brain disease waned. Diagnosis and classification of psychiatric diseases has improved, due to a better understanding of psychiatric patho-physiology and the development of disease and treatment biomarkers. Meanwhile, a significant percentage of patients remain refractory to multiple modes of treatment, and psychiatric disease remains the number one cause of disability in the world. These data, along with the safe and efficacious application of deep brain stimulation (DBS) for movement disorders, in principle a reversible process, is rekindling interest in the surgical treatment of psychiatric disorders with stimulation of deep brain sites involved in emotional and behavioral circuitry. This review presents a brief history of psychosurgery and summarizes the development of DBS for psychiatric disease, reviewing the available evidence for the current application of DBS for disorders of the mind.

  12. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens

    PubMed Central

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-01-01

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse. PMID:27327255

  13. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens.

    PubMed

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-06-21

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse.

  14. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    PubMed

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  15. Is deep brain stimulation a treatment option for anorexia nervosa?

    PubMed Central

    2013-01-01

    Anorexia nervosa (AN) is a severe psychiatric disorder with high rates of morbidity, comorbidity and mortality, which in a subset of patients (21%) takes on a chronic course. Since an evidence based treatment for AN is scarce, it is crucial to investigate new treatment options, preferably focused on influencing the underlying neurobiological mechanisms of AN. The objective of the present paper was to review the evidence for possible neurobiological correlates of AN, and to hypothesize about potential targets for Deep brain stimulation (DBS) as a treatment for chronic, therapy-refractory AN. One avenue for exploring new treatment options based on the neurobiological correlates of AN, is the search for symptomatologic and neurobiologic parallels between AN and other compulsivity- or reward-related disorders. As in other compulsive disorders, the fronto-striatal circuitry, in particular the insula, the ventral striatum (VS) and the prefrontal, orbitofrontal, temporal, parietal and anterior cingulate cortices, are likely to be implicated in the neuropathogenesis of AN. In this paper we will review the few available cases in which DBS has been performed in patients with AN (either as primary diagnosis or as comorbid condition). Given the overlap in symptomatology and neurocircuitry between reward-related disorders such as obsessive compulsive disorder (OCD) and AN, and the established efficacy of accumbal DBS in OCD, we hypothesize that DBS of the nucleus accumbens (NAc) and other areas associated with reward, e.g. the anterior cingulated cortex (ACC), might be an effective treatment for patients with chronic, treatment refractory AN, providing not only weight restoration, but also significant and sustained improvement in AN core symptoms and associated comorbidities and complications. Possible targets for DBS in AN are the ACC, the ventral anterior limb of the capsula interna (vALIC) and the VS. We suggest conducting larger efficacy studies that also explore the

  16. Sustained deep-tissue pain alters functional brain connectivity.

    PubMed

    Kim, Jieun; Loggia, Marco L; Edwards, Robert R; Wasan, Ajay D; Gollub, Randy L; Napadow, Vitaly

    2013-08-01

    Recent functional brain connectivity studies have contributed to our understanding of the neurocircuitry supporting pain perception. However, evoked-pain connectivity studies have employed cutaneous and/or brief stimuli, which induce sensations that differ appreciably from the clinical pain experience. Sustained myofascial pain evoked by pressure cuff affords an excellent opportunity to evaluate functional connectivity change to more clinically relevant sustained deep-tissue pain. Connectivity in specific networks known to be modulated by evoked pain (sensorimotor, salience, dorsal attention, frontoparietal control, and default mode networks: SMN, SLN, DAN, FCN, and DMN) was evaluated with functional-connectivity magnetic resonance imaging, both at rest and during a sustained (6-minute) pain state in healthy adults. We found that pain was stable, with no significant changes of subjects' pain ratings over the stimulation period. Sustained pain reduced connectivity between the SMN and the contralateral leg primary sensorimotor (S1/M1) representation. Such SMN-S1/M1 connectivity decreases were also accompanied by and correlated with increased SLN-S1/M1 connectivity, suggesting recruitment of activated S1/M1 from SMN to SLN. Sustained pain also increased DAN connectivity to pain processing regions such as mid-cingulate cortex, posterior insula, and putamen. Moreover, greater connectivity during pain between contralateral S1/M1 and posterior insula, thalamus, putamen, and amygdala was associated with lower cuff pressures needed to reach the targeted pain sensation. These results demonstrate that sustained pain disrupts resting S1/M1 connectivity by shifting it to a network known to process stimulus salience. Furthermore, increased connectivity between S1/M1 and both sensory and affective processing areas may be an important contribution to interindividual differences in pain sensitivity.

  17. Perspective on the Economic Evaluation of Deep Brain Stimulation

    PubMed Central

    McIntosh, Emma Sarah

    2011-01-01

    Parkinson's disease (PD) is an example of a disease area experiencing increasing use of deep brain stimulation (DBS) to treat symptoms. PD is a major cause of morbidity and has a substantial economic impact on the patients, their caregivers, the health service, and broader social and community services. The PDSURG Collaborators Group reported that DBS surgery for patients with advanced PD improves motor function and quality of life that medical therapy alone at 1 year but there are surgery related side effects in a minority (Williams et al., 2010). The aim of this paper however is to build upon the knowledge generated from evaluating DBS in PD and to provide a detailed perspective on the economic evaluation of DBS more generally with a view to providing a framework for informative design of DBS economic evaluations. This perspective will outline the key categories of resource use pertinent to DBS beyond the surgical scenario and into the broader aspects of follow-up care, adverse events, repeat procedures, social and community care, patient and carer costs, and will explore the importance of handling capital costs of DBS equipment appropriately as well as including costs occurring in the future. In addition, this perspective article will outline the importance of capturing broader aspects of “outcome” or benefits as compared to those traditional clinical measures used. The key message is the importance of employing a broad “perspective” on the measurement and valuation of costs and benefits as well as the importance of adopting the appropriate time horizon for evaluating the costs and benefits of DBS. In order to do this effectively it may be that alternative methods of economic evaluation in health care to the commonly used cost-effectiveness analysis may have to be used, such as cost-benefit analysis (McIntosh et al., 2010). PMID:21779238

  18. Uncommon Applications of Deep Brain Stimulation in Hyperkinetic Movement Disorders

    PubMed Central

    Smith, Kara M.; Spindler, Meredith A.

    2015-01-01

    Background In addition to the established indications of tremor and dystonia, deep brain stimulation (DBS) has been utilized less commonly for several hyperkinetic movement disorders, including medication-refractory myoclonus, ballism, chorea, and Gilles de la Tourette (GTS) and tardive syndromes. Given the lack of adequate controlled trials, it is difficult to translate published reports into clinical use. We summarize the literature, draw conclusions regarding efficacy when possible, and highlight concerns and areas for future study. Methods A Pubmed search was performed for English-language articles between January 1980 and June 2014. Studies were selected if they focused primarily on DBS to treat the conditions of focus. Results We identified 49 cases of DBS for myoclonus-dystonia, 21 for Huntington's disease, 15 for choreacanthocytosis, 129 for GTS, and 73 for tardive syndromes. Bilateral globus pallidus interna (GPi) DBS was the most frequently utilized procedure for all conditions except GTS, in which medial thalamic DBS was more common. While the majority of cases demonstrate some improvement, there are also reports of no improvement or even worsening of symptoms in each condition. The few studies including functional or quality of life outcomes suggest benefit. A limited number of studies included blinded on/off testing. There have been two double-blind controlled trials performed in GTS and a single prospective double-blind, uncontrolled trial in tardive syndromes. Patient characteristics, surgical target, stimulation parameters, and duration of follow-up varied among studies. Discussion Despite these extensive limitations, the literature overall supports the efficacy of DBS in these conditions, in particular GTS and tardive syndromes. For other conditions, the preliminary evidence from small studies is promising and encourages further study. PMID:25713746

  19. Particle swarm optimization for programming deep brain stimulation arrays

    NASA Astrophysics Data System (ADS)

    Peña, Edgar; Zhang, Simeng; Deyo, Steve; Xiao, YiZi; Johnson, Matthew D.

    2017-02-01

    Objective. Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes segmented both along and around the DBS lead. However, increasing the number of independent electrodes creates the logistical challenge of optimizing stimulation parameters efficiently. Approach. Solving such complex problems with multiple solutions and objectives is well known to occur in biology, in which complex collective behaviors emerge out of swarms of individual organisms engaged in learning through social interactions. Here, we developed a particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual particles representing electrode configurations and stimulation amplitudes. Using a finite element model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a multi-objective function that maximizes predictions of axonal activation in regions of interest (ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption. Main results. The algorithm solved the multi-objective problem by producing a Pareto front. ROI and ROA activation predictions were consistent across swarms (<1% median discrepancy in axon activation). The algorithm was able to accommodate for (1) lead displacement (1 mm) with relatively small ROI (⩽9.2%) and ROA (⩽1%) activation changes, irrespective of shift direction; (2) reduction in maximum per-electrode current (by 50% and 80%) with ROI activation decreasing by 5.6% and 16%, respectively; and (3) disabling electrodes (n  =  3 and 12) with ROI activation reduction by 1.8% and 14%, respectively. Additionally, comparison between PSO predictions and multi-compartment axon

  20. External trial deep brain stimulation device for the application of desynchronizing stimulation techniques

    NASA Astrophysics Data System (ADS)

    Hauptmann, C.; Roulet, J.-C.; Niederhauser, J. J.; Döll, W.; Kirlangic, M. E.; Lysyansky, B.; Krachkovskyi, V.; Bhatti, M. A.; Barnikol, U. B.; Sasse, L.; Bührle, C. P.; Speckmann, E.-J.; Götz, M.; Sturm, V.; Freund, H.-J.; Schnell, U.; Tass, P. A.

    2009-12-01

    In the past decade deep brain stimulation (DBS)—the application of electrical stimulation to specific target structures via implanted depth electrodes—has become the standard treatment for medically refractory Parkinson's disease and essential tremor. These diseases are characterized by pathological synchronized neuronal activity in particular brain areas. We present an external trial DBS device capable of administering effectively desynchronizing stimulation techniques developed with methods from nonlinear dynamics and statistical physics according to a model-based approach. These techniques exploit either stochastic phase resetting principles or complex delayed-feedback mechanisms. We explain how these methods are implemented into a safe and user-friendly device.

  1. Anesthesia for deep brain stimulation in traumatic brain injury-induced hemidystonia.

    PubMed

    Jani, Jill M; Oluigbo, Chima O; Reddy, Srijaya K

    2015-06-01

    Deep brain stimulation in an awake patient presents several unique challenges to the anesthesiologist. It is important to understand the various stages of the procedure and the complexities of anesthetic management in order to have a successful surgical outcome and provide a safe environment for the patient.

  2. Current Topics in Deep Brain Stimulation for Parkinson Disease

    PubMed Central

    UMEMURA, Atsushi; OYAMA, Genko; SHIMO, Yasushi; NAKAJIMA, Madoka; NAKAJIMA, Asuka; JO, Takayuki; SEKIMOTO, Satoko; ITO, Masanobu; MITSUHASHI, Takumi; HATTORI, Nobutaka; ARAI, Hajime

    2016-01-01

    There is a long history of surgical treatment for Parkinson disease (PD). After pioneering trials and errors, the current primary surgical treatment for PD is deep brain stimulation (DBS). DBS is a promising treatment option for patients with medically refractory PD. However, there are still many problems and controversies associated with DBS. In this review, we discuss current issues in DBS for PD, including patient selection, clinical outcomes, complications, target selection, long-term outcomes, management of axial symptoms, timing of surgery, surgical procedures, cost-effectiveness, and new technology. PMID:27349658

  3. The Use of Deep Brain Stimulation in Tourette Syndrome

    PubMed Central

    Akbarian-Tefaghi, Ladan; Zrinzo, Ludvic; Foltynie, Thomas

    2016-01-01

    Tourette syndrome (TS) is a childhood neurobehavioural disorder, characterised by the presence of motor and vocal tics, typically starting in childhood but persisting in around 20% of patients into adulthood. In those patients who do not respond to pharmacological or behavioural therapy, deep brain stimulation (DBS) may be a suitable option for potential symptom improvement. This manuscript attempts to summarise the outcomes of DBS at different targets, explore the possible mechanisms of action of DBS in TS, as well as the potential of adaptive DBS. There will also be a focus on the future challenges faced in designing optimized trials. PMID:27548235

  4. Intraoperative neurophysiology in deep brain surgery for psychogenic dystonia

    PubMed Central

    Ramos, Vesper Fe Marie L; Pillai, Ajay S; Lungu, Codrin; Ostrem, Jill; Starr, Philip; Hallett, Mark

    2015-01-01

    Psychogenic dystonia is a challenging entity to diagnose and treat because little is known about its pathophysiology. We describe two cases of psychogenic dystonia who underwent deep brain stimulation when thought to have organic dystonia. The intraoperative microelectrode recordings in globus pallidus internus were retrospectively compared with those of five patients with known DYT1 dystonia using spontaneous discharge parameters of rate and bursting, as well as movement-related discharges. Our data suggest that simple intraoperative neurophysiology measures in single subjects do not differentiate psychogenic dystonia from DYT1 dystonia. PMID:26125045

  5. Effects of Deep Brain Stimulation on Autonomic Function

    PubMed Central

    Basiago, Adam; Binder, Devin K.

    2016-01-01

    Over the course of the development of deep brain stimulation (DBS) into a well-established therapy for Parkinson’s disease, essential tremor, and dystonia, its utility as a potential treatment for autonomic dysfunction has emerged. Dysfunction of autonomic processes is common in neurological diseases. Depending on the specific target in the brain, DBS has been shown to raise or lower blood pressure, normalize the baroreflex, to alter the caliber of bronchioles, and eliminate hyperhidrosis, all through modulation of the sympathetic nervous system. It has also been shown to improve cortical control of the bladder, directly induce or inhibit the micturition reflex, and to improve deglutition and gastric emptying. In this review, we will attempt to summarize the relevant available studies describing these effects of DBS on autonomic function, which vary greatly in character and magnitude with respect to stimulation target. PMID:27537920

  6. Cortical effects of deep brain stimulation: implications for pathogenesis and treatment of Parkinson disease.

    PubMed

    Li, Qian; Qian, Zhong-Ming; Arbuthnott, Gordon W; Ke, Ya; Yung, Wing-Ho

    2014-01-01

    High-frequency electrical stimulation that targets the subthalamic nucleus has proved to be beneficial in alleviating the motor symptoms in many patients with Parkinson disease. The mechanism of action for this paradigm of deep brain stimulation is still not fully understood, and this is, in part, attributed to the fact that there are diverse cellular elements at the stimulation site that could bring about local and distal effects. Recent studies in both human and animal models strongly suggest that the activity in the cortex, especially in the motor cortical areas, is directly altered by deep brain stimulation by signals traveling in an antidromic fashion from the subthalamic nucleus. Herein, we discuss the evidence for this proposition, as well as the mechanism by which antidromic activation desynchronizes motor cortical activity. The implications of these new findings for the pathogenesis and treatment of Parkinson disease are highlighted.

  7. Diffusion Tractography in Deep Brain Stimulation Surgery: A Review

    PubMed Central

    Calabrese, Evan

    2016-01-01

    Deep brain stimulation (DBS) is believed to exert its therapeutic effects through modulation of brain circuitry, yet conventional preoperative planning does not allow direct targeting or visualization of white matter pathways. Diffusion MRI tractography (DT) is virtually the only non-invasive method of visualizing structural connectivity in the brain, leading many to suggest its use to guide DBS targeting. DT-guided DBS not only has the potential to allow direct white matter targeting for established applications [e.g., Parkinson’s disease (PD), essential tremor (ET), dystonia], but may also aid in the discovery of new therapeutic targets for a variety of other neurologic and psychiatric diseases. Despite these exciting opportunities, DT lacks standardization and rigorous anatomic validation, raising significant concern for the use of such data in stereotactic brain surgery. This review covers the technical details, proposed methods, and initial clinical data for the use of DT in DBS surgery. Rather than focusing on specific disease applications, this review focuses on methods that can be applied to virtually any DBS target. PMID:27199677

  8. Computational modeling of an endovascular approach to deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Teplitzky, Benjamin A.; Connolly, Allison T.; Bajwa, Jawad A.; Johnson, Matthew D.

    2014-04-01

    Objective. Deep brain stimulation (DBS) therapy currently relies on a transcranial neurosurgical technique to implant one or more electrode leads into the brain parenchyma. In this study, we used computational modeling to investigate the feasibility of using an endovascular approach to target DBS therapy. Approach. Image-based anatomical reconstructions of the human brain and vasculature were used to identify 17 established and hypothesized anatomical targets of DBS, of which five were found adjacent to a vein or artery with intraluminal diameter ≥1 mm. Two of these targets, the fornix and subgenual cingulate white matter (SgCwm) tracts, were further investigated using a computational modeling framework that combined segmented volumes of the vascularized brain, finite element models of the tissue voltage during DBS, and multi-compartment axon models to predict the direct electrophysiological effects of endovascular DBS. Main results. The models showed that: (1) a ring-electrode conforming to the vessel wall was more efficient at neural activation than a guidewire design, (2) increasing the length of a ring-electrode had minimal effect on neural activation thresholds, (3) large variability in neural activation occurred with suboptimal placement of a ring-electrode along the targeted vessel, and (4) activation thresholds for the fornix and SgCwm tracts were comparable for endovascular and stereotactic DBS, though endovascular DBS was able to produce significantly larger contralateral activation for a unilateral implantation. Significance. Together, these results suggest that endovascular DBS can serve as a complementary approach to stereotactic DBS in select cases.

  9. Brain areas involved in synaesthesia: a review.

    PubMed

    Rouw, Romke; Scholte, H Steven; Colizoli, Olympia

    2011-09-01

    Despite a recent upsurge of research, much remains unknown about the neurobiological mechanisms underlying synaesthesia. By integrating results obtained so far in Magnetic Resonance Imaging (MRI) studies, this contribution sheds light on the role of particular brain regions in synaesthetic experiences. First, in accordance with its sensory nature, it seems that the sensory brain areas corresponding to the type of synaesthetic experience are activated. Synaesthetic colour experiences can activate colour regions in occipito-temporal cortex, but this is not necessarily restricted to V4. Furthermore, sensory and motor brain regions have been obtained that extend beyond the particular type of synaesthesia studied. Second, differences in experimental setup, number and type of synaesthetes tested, and method to delineate regions of interest may help explain inconsistent results obtained in the BOLD-MRI (Blood Oxygen Level Dependent functional MRI) studies. Third, an overview of obtained results shows that a network of brain areas rather than a single brain region underlies synaesthesia. Six brain regions of overlapping results emerge, these regions are in sensory and motor regions as well as 'higher level' regions in parietal and frontal lobe. We propose that these regions are related to three different cognitive processes inherently part of synaesthesia; the sensory processes, the (attentional) 'binding' processes, and cognitive control processes. Finally, we discuss how these functional and structural brain properties might relate to the development of synaesthesia. In particular, we believe this relationship is better understood by separating the question what underlies the presence of synaesthesia ('trait') from what determines particular synaesthetic associations ('type').

  10. Manifold learning of brain MRIs by deep learning.

    PubMed

    Brosch, Tom; Tam, Roger

    2013-01-01

    Manifold learning of medical images plays a potentially important role for modeling anatomical variability within a population with pplications that include segmentation, registration, and prediction of clinical parameters. This paper describes a novel method for learning the manifold of 3D brain images that, unlike most existing manifold learning methods, does not require the manifold space to be locally linear, and does not require a predefined similarity measure or a prebuilt proximity graph. Our manifold learning method is based on deep learning, a machine learning approach that uses layered networks (called deep belief networks, or DBNs) and has received much attention recently in the computer vision field due to their success in object recognition tasks. DBNs have traditionally been too computationally expensive for application to 3D images due to the large number of trainable parameters. Our primary contributions are (1) a much more computationally efficient training method for DBNs that makes training on 3D medical images with a resolution of up to 128 x 128 x 128 practical, and (2) the demonstration that DBNs can learn a low-dimensional manifold of brain volumes that detects modes of variations that correlate to demographic and disease parameters.

  11. Pallidal deep brain stimulation relieves camptocormia in primary dystonia.

    PubMed

    Hagenacker, Tim; Gerwig, Marcus; Gasser, Thomas; Miller, Dorothea; Kastrup, Oliver; Jokisch, Daniel; Sure, Ulrich; Frings, Markus

    2013-07-01

    Camptocormia, characterised by a forward flexion of the thoracolumbar spine may occur in various movement disorders, mainly in Parkinson's disease or in primary dystonia. In severe cases, patients with camptocormia are unable to walk. While treatment options are limited, deep brain stimulation (DBS) with bilateral stimulation of the subthalamic nucleus or globus pallidus internus (GPi) has been proposed as a therapeutic option in refractory cases of Parkinson's disease. Here we present two patients with severe camptocormia as an isolated form of dystonia and as part of generalised dystonia, respectively, which were both treated with bilateral stimulation of the GPi. Symptoms of dystonia were assessed using the Burke-Fahn-Marsden dystonia rating scale (BFM) before and during deep brain stimulation. In both patients there was a significant functional improvement following long-term bilateral GPi stimulation and both patients gained ability to walk. In the first patient with an isolated dystonic camptocormia the BFM motor subscore for the truncal flexion improved by 75 %. The total BFM motor score in the second patient with a camptocormia in generalised dystonia improved by 45 %, while the BFM score for truncal flexion improved by 87 %. In both patients the effect of the bilateral GPi stimulation on camptocormia was substantial, independent of generalisation of dystonia. Therefore, GPi DBS is a possible treatment option for this rare disease.

  12. Dynamics of Parkinsonian tremor during deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Titcombe, Michèle S.; Glass, Leon; Guehl, Dominique; Beuter, Anne

    2001-12-01

    The mechanism by which chronic, high frequency, electrical deep brain stimulation (HF-DBS) suppresses tremor in Parkinson's disease is unknown. Rest tremor in subjects with Parkinson's disease receiving HF-DBS was recorded continuously throughout switching the deep brain stimulator on (at an effective frequency) and off. These data suggest that the stimulation induces a qualitative change in the dynamics, called a Hopf bifurcation, so that the stable oscillations are destabilized. We hypothesize that the periodic stimulation modifies a parameter affecting the oscillation in a time dependent way and thereby induces a Hopf bifurcation. We explore this hypothesis using a schematic network model of an oscillator interacting with periodic stimulation. The mechanism of time-dependent change of a control parameter in the model captures two aspects of the dynamics observed in the data: (1) a gradual increase in tremor amplitude when the stimulation is switched off and a gradual decrease in tremor amplitude when the stimulation is switched on and (2) a time delay in the onset and offset of the oscillations. This mechanism is consistent with these rest tremor transition data and with the idea that HF-DBS acts via the gradual change of a network property.

  13. Deep Brain Stimulation: Current and Future Clinical Applications

    PubMed Central

    Lyons, Mark K.

    2011-01-01

    Deep brain stimulation (DBS) has developed during the past 20 years as a remarkable treatment option for several different disorders. Advances in technology and surgical techniques have essentially replaced ablative procedures for most of these conditions. Stimulation of the ventralis intermedius nucleus of the thalamus has clearly been shown to markedly improve tremor control in patients with essential tremor and tremor related to Parkinson disease. Symptoms of bradykinesia, tremor, gait disturbance, and rigidity can be significantly improved in patients with Parkinson disease. Because of these improvements, a decrease in medication can be instrumental in reducing the disabling features of dyskinesias in such patients. Primary dystonia has been shown to respond well to DBS of the globus pallidus internus. The success of these procedures has led to application of these techniques to multiple other debilitating conditions such as neuropsychiatric disorders, intractable pain, epilepsy, camptocormia, headache, restless legs syndrome, and Alzheimer disease. The literature analysis was performed using a MEDLINE search from 1980 through 2010 with the term deep brain stimulation, and several double-blind and larger case series were chosen for inclusion in this review. The exact mechanism of DBS is not fully understood. This review summarizes many of the current and potential future clinical applications of this technology. PMID:21646303

  14. Chaotic Desynchronization as the Therapeutic Mechanism of Deep Brain Stimulation

    PubMed Central

    Wilson, Charles J.; Beverlin, Bryce; Netoff, Theoden

    2011-01-01

    High frequency deep-brain stimulation of the subthalamic nucleus (deep brain stimulation, DBS) relieves many of the symptoms of Parkinson's disease in humans and animal models. Although the treatment has seen widespread use, its therapeutic mechanism remains paradoxical. The subthalamic nucleus is excitatory, so its stimulation at rates higher than its normal firing rate should worsen the disease by increasing subthalamic excitation of the globus pallidus. The therapeutic effectiveness of DBS is also frequency and intensity sensitive, and the stimulation must be periodic; aperiodic stimulation at the same mean rate is ineffective. These requirements are not adequately explained by existing models, whether based on firing rate changes or on reduced bursting. Here we report modeling studies suggesting that high frequency periodic excitation of the subthalamic nucleus may act by desynchronizing the firing of neurons in the globus pallidus, rather than by changing the firing rate or pattern of individual cells. Globus pallidus neurons are normally desynchronized, but their activity becomes correlated in Parkinson's disease. Periodic stimulation may induce chaotic desynchronization by interacting with the intrinsic oscillatory mechanism of globus pallidus neurons. Our modeling results suggest a mechanism of action of DBS and a pathophysiology of Parkinsonism in which synchrony, rather than firing rate, is the critical pathological feature. PMID:21734868

  15. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease

    PubMed Central

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M.; Tan, Huiling

    2017-01-01

    Abstract Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson’s disease, elevations in beta activity (13–35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson’s disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this

  16. Treatment of Pain and Autonomic Dysreflexia in Spinal Cord Injury with Deep Brain Stimulation

    DTIC Science & Technology

    2013-10-01

    Dysreflexia in Spinal Cord Injury with Deep Brain Stimulation PRINCIPAL INVESTIGATOR: Jonathan R. Jagid, M.D. CONTRACTING ORGANIZATION...in Spinal Cord Injury with Deep Brain Stimulation 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0559 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This project aims to study electrical deep brain

  17. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease.

    PubMed

    Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M; Tan, Huiling; Brown, Peter

    2017-02-13

    Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson's disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could

  18. Reversing cognitive-motor impairments in Parkinson's disease patients using a computational modelling approach to deep brain stimulation programming.

    PubMed

    Frankemolle, Anneke M M; Wu, Jennifer; Noecker, Angela M; Voelcker-Rehage, Claudia; Ho, Jason C; Vitek, Jerrold L; McIntyre, Cameron C; Alberts, Jay L

    2010-03-01

    Deep brain stimulation in the subthalamic nucleus is an effective and safe surgical procedure that has been shown to reduce the motor dysfunction of patients with advanced Parkinson's disease. Bilateral subthalamic nucleus deep brain stimulation, however, has been associated with declines in cognitive and cognitive-motor functioning. It has been hypothesized that spread of current to nonmotor areas of the subthalamic nucleus may be responsible for declines in cognitive and cognitive-motor functioning. The aim of this study was to assess the cognitive-motor performance in advanced Parkinson's disease patients with subthalamic nucleus deep brain stimulation parameters determined clinically (Clinical) to settings derived from a patient-specific computational model (Model). Data were collected from 10 patients with advanced Parkinson's disease bilaterally implanted with subthalamic nucleus deep brain stimulation systems. These patients were assessed off medication and under three deep brain stimulation conditions: Off, Clinical or Model based stimulation. Clinical stimulation parameters had been determined based on clinical evaluations and were stable for at least 6 months prior to study participation. Model-based parameters were selected to minimize the spread of current to nonmotor portions of the subthalamic nucleus using Cicerone Deep Brain Stimulation software. For each stimulation condition, participants performed a working memory (n-back task) and motor task (force tracking) under single- and dual-task settings. During the dual-task, participants performed the n-back and force-tracking tasks simultaneously. Clinical and Model parameters were equally effective in improving the Unified Parkinson's disease Rating Scale III scores relative to Off deep brain stimulation scores. Single-task working memory declines, in the 2-back condition, were significantly less under Model compared with Clinical deep brain stimulation settings. Under dual-task conditions, force

  19. Tourette syndrome deep brain stimulation: a review and updated recommendations.

    PubMed

    Schrock, Lauren E; Mink, Jonathan W; Woods, Douglas W; Porta, Mauro; Servello, Dominico; Visser-Vandewalle, Veerle; Silburn, Peter A; Foltynie, Thomas; Walker, Harrison C; Shahed-Jimenez, Joohi; Savica, Rodolfo; Klassen, Bryan T; Machado, Andre G; Foote, Kelly D; Zhang, Jian-Guo; Hu, Wei; Ackermans, Linda; Temel, Yasin; Mari, Zoltan; Changizi, Barbara K; Lozano, Andres; Auyeung, M; Kaido, Takanobu; Agid, Yves; Welter, Marie L; Khandhar, Suketu M; Mogilner, Alon Y; Pourfar, Michael H; Walter, Benjamin L; Juncos, Jorge L; Gross, Robert E; Kuhn, Jens; Leckman, James F; Neimat, Joseph A; Okun, Michael S

    2015-04-01

    Deep brain stimulation (DBS) may improve disabling tics in severely affected medication and behaviorally resistant Tourette syndrome (TS). Here we review all reported cases of TS DBS and provide updated recommendations for selection, assessment, and management of potential TS DBS cases based on the literature and implantation experience. Candidates should have a Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM V) diagnosis of TS with severe motor and vocal tics, which despite exhaustive medical and behavioral treatment trials result in significant impairment. Deep brain stimulation should be offered to patients only by experienced DBS centers after evaluation by a multidisciplinary team. Rigorous preoperative and postoperative outcome measures of tics and associated comorbidities should be used. Tics and comorbid neuropsychiatric conditions should be optimally treated per current expert standards, and tics should be the major cause of disability. Psychogenic tics, embellishment, and malingering should be recognized and addressed. We have removed the previously suggested 25-year-old age limit, with the specification that a multidisciplinary team approach for screening is employed. A local ethics committee or institutional review board should be consulted for consideration of cases involving persons younger than 18 years of age, as well as in cases with urgent indications. Tourette syndrome patients represent a unique and complex population, and studies reveal a higher risk for post-DBS complications. Successes and failures have been reported for multiple brain targets; however, the optimal surgical approach remains unknown. Tourette syndrome DBS, though still evolving, is a promising approach for a subset of medication refractory and severely affected patients.

  20. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease

    PubMed Central

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir

    2016-01-01

    Chronic dopamine depletion in Parkinson’s disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus–cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise

  1. Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements.

    PubMed

    Barow, Ewgenia; Neumann, Wolf-Julian; Brücke, Christof; Huebl, Julius; Horn, Andreas; Brown, Peter; Krauss, Joachim K; Schneider, Gerd-Helge; Kühn, Andrea A

    2014-11-01

    Deep brain stimulation of the globus pallidus internus alleviates involuntary movements in patients with dystonia. However, the mechanism is still not entirely understood. One hypothesis is that deep brain stimulation suppresses abnormally enhanced synchronized oscillatory activity within the motor cortico-basal ganglia network. Here, we explore deep brain stimulation-induced modulation of pathological low frequency (4-12 Hz) pallidal activity that has been described in local field potential recordings in patients with dystonia. Therefore, local field potentials were recorded from 16 hemispheres in 12 patients undergoing deep brain stimulation for severe dystonia using a specially designed amplifier allowing simultaneous high frequency stimulation at therapeutic parameter settings and local field potential recordings. For coherence analysis electroencephalographic activity (EEG) over motor areas and electromyographic activity (EMG) from affected neck muscles were recorded before and immediately after cessation of high frequency stimulation. High frequency stimulation led to a significant reduction of mean power in the 4-12 Hz band by 24.8 ± 7.0% in patients with predominantly phasic dystonia. A significant decrease of coherence between cortical EEG and pallidal local field potential activity in the 4-12 Hz range was revealed for the time period of 30 s after switching off high frequency stimulation. Coherence between EMG activity and pallidal activity was mainly found in patients with phasic dystonic movements where it was suppressed after high frequency stimulation. Our findings suggest that high frequency stimulation may suppress pathologically enhanced low frequency activity in patients with phasic dystonia. These dystonic features are the quickest to respond to high frequency stimulation and may thus directly relate to modulation of pathological basal ganglia activity, whereas improvement in tonic features may depend on long-term plastic changes within the

  2. Deep brain stimulation for the treatment of vegetative state.

    PubMed

    Yamamoto, Takamitsu; Katayama, Yoichi; Kobayashi, Kazutaka; Oshima, Hideki; Fukaya, Chikashi; Tsubokawa, Takashi

    2010-10-01

    One hundred and seven patients in vegetative state (VS) were evaluated neurologically and electrophysiologically over 3 months (90 days) after the onset of brain injury. Among these patients, 21 were treated with deep brain stimulation (DBS). The stimulation sites were the mesencephalic reticular formation (two patients) and centromedian-parafascicularis nucleus complex (19 cases). Eight of the patients recovered from VS and were able to obey verbal commands at 13 and 10 months in the case of head trauma and at 19, 14, 13, 12, 12 and 8 months in the case of vascular disease after comatose brain injury, and no patients without DBS recovered from VS spontaneously within 24 months after brain injury. The eight patients who recovered from VS showed desynchronization on continuous EEG frequency analysis. The Vth wave of the auditory brainstem response and N20 of the somatosensory evoked potential could be recorded, although with a prolonged latency, and the pain-related P250 was recorded with an amplitude of > 7 μV. Sixteen (14.9%) of the 107 VS patients satisfied these criteria in our electrophysiological evaluation, 10 of whom were treated with DBS and six of whom were not treated with DBS. In these 16 patients, the recovery rate from VS was different between the DBS therapy group and the no DBS therapy group (P < 0.01, Fisher's exact probability test) These findings indicate that DBS may be useful for the recovery of patients from VS if the candidates are selected on the basis of electrophysiological criteria.

  3. Penfield’s Prediction: A Mechanism for Deep Brain Stimulation

    PubMed Central

    Murrow, Richard W.

    2014-01-01

    Context: Despite its widespread use, the precise mechanism of action of Deep Brain Stimulation (DBS) therapy remains unknown. The modern urgency to publish more and new data can obscure previously learned lessons by the giants who have preceded us and whose shoulders we now stand upon. Wilder Penfield extensively studied the effects of artificial electrical brain stimulation and his comments on the subject are still very relevant today. In particular, he noted two very different (and seemingly opposite) effects of stimulation within the human brain. In some structures, artificial electrical stimulation has an effect, which mimics ablation, while, in other structures, it produces a stimulatory effect on that tissue. Hypothesis: The hypothesis of this paper is fourfold. First, it proposes that some neural circuits are widely synchronized with other neural circuits, while some neural circuits are unsynchronized and operate independently. Second, it proposes that artificial high-frequency electrical stimulation of a synchronized neural circuit results in an ablative effect, but artificial high-frequency electrical stimulation of an unsynchronized neural circuit results in a stimulatory effect. Third, it suggests a part of the mechanism by which large-scale physiologic synchronization of widely distributed independently processed information streams may occur. This may be the neural mechanism underlying Penfield’s “centrencephalic system,” which he emphasized so many years ago. Fourth, it outlines the specific anatomic distribution of this physiologic synchronization, which Penfield has already clearly delineated as the distribution of his centrencephalic system. Evidence: This paper draws on a brief overview of previous theory regarding the mechanism of action of DBS and on historical, as well as widely known modern clinical data regarding the observed effects of stimulation delivered to various targets within the brain. Basic science investigations, which

  4. Fiber-based tissue identification for electrode placement in deep brain stimulation neurosurgery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    DePaoli, Damon T.; Lapointe, Nicolas; Goetz, Laurent; Parent, Martin; Prudhomme, Michel; Cantin, Léo.; Galstian, Tigran; Messaddeq, Younès.; Côté, Daniel C.

    2016-03-01

    Deep brain stimulation's effectiveness relies on the ability of the stimulating electrode to be properly placed within a specific target area of the brain. Optical guidance techniques that can increase the accuracy of the procedure, without causing any additional harm, are therefore of great interest. We have designed a cheap optical fiber-based device that is small enough to be placed within commercially available DBS stimulating electrodes' hollow cores and that is capable of sensing biological information from the surrounding tissue, using low power white light. With this probe we have shown the ability to distinguish white and grey matter as well as blood vessels, in vitro, in human brain samples and in vivo, in rats. We have also repeated the in vitro procedure with the probe inserted in a DBS stimulating electrode and found the results were in good agreement. We are currently validating a second fiber optic device, with micro-optical components, that will result in label free, molecular level sensing capabilities, using CARS spectroscopy. The final objective will be to use this data in real time, during deep brain stimulation neurosurgery, to increase the safety and accuracy of the procedure.

  5. Authenticity and autonomy in deep-brain stimulation.

    PubMed

    Wardrope, Alistair

    2014-08-01

    Felicitas Kraemer draws on the experiences of patients undergoing deep-brain stimulation (DBS) to propose two distinct and potentially conflicting principles of respect: for an individual's autonomy (interpreted as mental competence), and for their authenticity. I argue instead that, according to commonly-invoked justifications of respect for autonomy, authenticity is itself in part constitutive of an analysis of autonomy worthy of respect; Kraemer's argument thus highlights the shortcomings of practical applications of respect for autonomy that emphasise competence while neglecting other important dimensions of autonomy such as authenticity, since it shows that competence alone cannot be interpreted as a reliable indicator of an individual's capacity for exercising autonomy. I draw from relational accounts to suggest how respect for a more expansive conception of autonomy might be interpreted for individuals undergoing DBS and in general.

  6. Engineering the Next Generation of Clinical Deep Brain Stimulation Technology

    PubMed Central

    McIntyre, Cameron C.; Chaturvedi, Ashutosh; Shamir, Reuben R.; Lempka, Scott F.

    2014-01-01

    Deep brain stimulation (DBS) has evolved into a powerful clinical therapy for a range of neurological disorders, but even with impressive clinical growth, DBS technology has been relatively stagnant over its history. However, enhanced collaborations between neural engineers, neuroscientists, physicists, neurologists, and neurosurgeons are beginning to address some of the limitations of current DBS technology. These interactions have helped to develop novel ideas for the next generation of clinical DBS systems. This review attempts collate some of that progress and with two goals in mind. First, provide a general description of current clinical DBS practices, geared toward educating biomedical engineers and computer scientists on a field that needs their expertise and attention. Second, describe some of the technological developments that are currently underway in surgical targeting, stimulation parameter selection, stimulation protocols, and stimulation hardware that are being directly evaluated for near term clinical application. PMID:25161150

  7. Vocal Tremor: Novel Therapeutic Target for Deep Brain Stimulation

    PubMed Central

    Ravikumar, Vinod K.; Ho, Allen L.; Parker, Jonathon J.; Erickson-DiRenzo, Elizabeth; Halpern, Casey H.

    2016-01-01

    Tremulous voice is characteristically associated with essential tremor, and is referred to as essential vocal tremor (EVT). Current estimates suggest that up to 40% of individuals diagnosed with essential tremor also present with EVT, which is associated with an impaired quality of life. Traditional EVT treatments have demonstrated limited success in long-term management of symptoms. However, voice tremor has been noted to decrease in patients receiving deep brain stimulation (DBS) with the targeting of thalamic nuclei. In this study, we describe our multidisciplinary procedure for awake, frameless DBS with optimal stimulation targets as well as acoustic analysis and laryngoscopic assessment to quantify tremor reduction. Finally, we investigate the most recent clinical evidence regarding the procedure. PMID:27735866

  8. Neuronal Organization of Deep Brain Opsin Photoreceptors in Adult Teleosts

    PubMed Central

    Hang, Chong Yee; Kitahashi, Takashi; Parhar, Ishwar S.

    2016-01-01

    Biological impacts of light beyond vision, i.e., non-visual functions of light, signify the need to better understand light detection (or photoreception) systems in vertebrates. Photopigments, which comprise light-absorbing chromophores bound to a variety of G-protein coupled receptor opsins, are responsible for visual and non-visual photoreception. Non-visual opsin photopigments in the retina of mammals and extra-retinal tissues of non-mammals play an important role in non-image-forming functions of light, e.g., biological rhythms and seasonal reproduction. This review highlights the role of opsin photoreceptors in the deep brain, which could involve conserved neurochemical systems that control different time- and light-dependent physiologies in in non-mammalian vertebrates including teleost fish. PMID:27199680

  9. Patient specific Parkinson's disease detection for adaptive deep brain stimulation.

    PubMed

    Mohammed, Ameer; Zamani, Majid; Bayford, Richard; Demosthenous, Andreas

    2015-08-01

    Continuous deep brain stimulation for Parkinson's disease (PD) patients results in side effects and shortening of the pacemaker battery life. This can be remedied using adaptive stimulation. To achieve adaptive DBS, patient customized PD detection is required due to the inconsistency associated with biomarkers across patients and time. This paper proposes the use of patient specific feature extraction together with adaptive support vector machine (SVM) classifiers to create a patient customized detector for PD. The patient specific feature extraction is obtained using the extrema of the ratio between the PD and non-PD spectra bands of each patient as features, while the adaptive SVM classifier adjusts its decision boundary until a suitable model is obtained. This yields individualised features and classifier pairs for each patient. Datasets containing local field potentials of PD patients were used to validate the method. Six of the nine patient datasets tested achieved a classification accuracy greater than 98%. The adaptive detector is suitable for realization on chip.

  10. Deep brain stimulation for other tremors, myoclonus, and chorea.

    PubMed

    Starr, Philip A

    2013-01-01

    Deep brain stimulation (DBS) is a well established treatment for essential tremor and for the tremor associated with Parkinson's disease. The efficacy of DBS in these common tremors has led some investigators to apply the technique to rarer tremors such as such as Holmes' tremor, posttraumatic tremor, orthostatic tremor, and the tremor associated with multiple sclerosis. Likewise, DBS of the thalamus and globus pallidus directly suppresses levodopa-induced dyskinesias in Parkinson's disease, suggesting the application of DBS to other hyperkinetic states such as Huntington's disease, tardive dyskinesia, and hemiballism. Myoclonus has also been treated with DBS, especially in cases where it is associated with dystonia. This chapter reviews the reported results of DBS for these conditions. Due to the rarity of these indications, most of the literature reviewed takes the form of case reports or small single-center case series.

  11. Engineering the next generation of clinical deep brain stimulation technology.

    PubMed

    McIntyre, Cameron C; Chaturvedi, Ashutosh; Shamir, Reuben R; Lempka, Scott F

    2015-01-01

    Deep brain stimulation (DBS) has evolved into a powerful clinical therapy for a range of neurological disorders, but even with impressive clinical growth, DBS technology has been relatively stagnant over its history. However, enhanced collaborations between neural engineers, neuroscientists, physicists, neurologists, and neurosurgeons are beginning to address some of the limitations of current DBS technology. These interactions have helped to develop novel ideas for the next generation of clinical DBS systems. This review attempts collate some of that progress with two goals in mind. First, provide a general description of current clinical DBS practices, geared toward educating biomedical engineers and computer scientists on a field that needs their expertise and attention. Second, describe some of the technological developments that are currently underway in surgical targeting, stimulation parameter selection, stimulation protocols, and stimulation hardware that are being directly evaluated for near term clinical application.

  12. Carbon nanotube yarns for deep brain stimulation electrode.

    PubMed

    Jiang, Changqing; Li, Luming; Hao, Hongwei

    2011-12-01

    A new form of deep brain stimulation (DBS) electrode was proposed that was made of carbon nanotube yarns (CNTYs). Electrode interface properties were examined using cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). The CNTY electrode interface exhibited large charge storage capacity (CSC) of 12.3 mC/cm(2) which increased to 98.6 mC/cm(2) after acid treatment, compared with 5.0 mC/cm(2) of Pt-Ir. Impedance spectrum of both untreated and treated CNTY electrodes showed that finite diffusion process occurred at the interface due to their porous structure and charge was delivered through capacitive mechanism. To evaluate stability electrical stimulus was exerted for up to 72 h and CV and EIS results of CNTY electrodes revealed little alteration. Therefore CNTY could make a good electrode material for DBS.

  13. Early application of deep brain stimulation: clinical and ethical aspects.

    PubMed

    Woopen, Christiane; Pauls, K Amande M; Koy, Anne; Moro, Elena; Timmermann, Lars

    2013-11-01

    Deep brain stimulation (DBS) has proven to be a successful therapeutic approach in several patients with movement disorders such as Parkinson's disease and dystonia. Hitherto its application was mainly restricted to advanced disease patients resistant to medication or with severe treatment side effects. However, there is now growing interest in earlier application of DBS, aimed at improving clinical outcomes, quality of life, and avoiding psychosocial consequences of chronic disease-related impairments. We address the clinical and ethical aspects of two "early" uses of DBS, (1) DBS early in the course of the disease, and (2) DBS early in life (i.e. in children). Possible benefits, risks and burdens are discussed and thoroughly considered. Further research is needed to obtain a careful balance between exposing vulnerable patients to potential severe surgical risks and excluding them from a potentially good outcome.

  14. Psychosurgery and deep brain stimulation as ultima ratio treatment for refractory depression.

    PubMed

    Juckel, Georg; Uhl, Idun; Padberg, Frank; Brüne, Martin; Winter, Christine

    2009-02-01

    For decades, the most severe, protracted and therapy-resistant forms of major depression have compelled clinicians and researchers to look for last resort treatment. Early psychosurgical procedures were hazardous and often associated with severe and persistent side effects including avolition, apathy and change of personality. With the introduction of psychopharmacological treatments in the 1950s, the frequency of ablative procedures declined rapidly. The past decade, however, has witnessed the resurgence of surgical strategies as a result of refined techniques and advances such as high frequency stimulation of deep brain nuclei. Recent data suggest that the overall effect of high frequency stimulation lies in the functional inhibition of neural activity in the region stimulated. Contrary to other psychosurgical procedures, high frequency stimulation reversibly modulates targeted brain areas and allows a postsurgical adaption of the stimulation parameters according to clinical outcome. With increased understanding of the brain regions and functional circuits involved in the pathogenesis of psychiatric disorders, major depression has emerged as a target for new psychosurgical approaches to selectively and precisely modulate neural areas involved in the disease process. Recent studies of minimally intervening procedures report good clinical outcome in the treatment of therapy-resistant forms of major depression. High frequency stimulation was successfully applied in several small samples of patients with treatment-resistant depression when the stimulation focused on different areas, e.g., nucleus accumbens, the lateral habenula or cortical areas. Nevertheless, the reticence toward psychosurgery, even for those patients suffering from the most debilitating forms of depression, still prevails, even though recent studies have shown significant improvement in terms of quality of life with the limitation that the number of treated cases has been small. In any event, valid

  15. Differential impact of thalamic versus subthalamic deep brain stimulation on lexical processing.

    PubMed

    Krugel, Lea K; Ehlen, Felicitas; Tiedt, Hannes O; Kühn, Andrea A; Klostermann, Fabian

    2014-10-01

    Roles of subcortical structures in language processing are vague, but, interestingly, basal ganglia and thalamic Deep Brain Stimulation can go along with reduced lexical capacities. To deepen the understanding of this impact, we assessed word processing as a function of thalamic versus subthalamic Deep Brain Stimulation. Ten essential tremor patients treated with thalamic and 14 Parkinson׳s disease patients with subthalamic Deep Brain Stimulation performed an acoustic Lexical Decision Task ON and OFF stimulation. Combined analysis of task performance and event-related potentials allowed the determination of processing speed, priming effects, and N400 as neurophysiological correlate of lexical stimulus processing. 12 age-matched healthy participants acted as control subjects. Thalamic Deep Brain Stimulation prolonged word decisions and reduced N400 potentials. No comparable ON-OFF effects were present in patients with subthalamic Deep Brain Stimulation. In the latter group of patients with Parkinson' disease, N400 amplitudes were, however, abnormally low, whether under active or inactive Deep Brain Stimulation. In conclusion, performance speed and N400 appear to be influenced by state functions, modulated by thalamic, but not subthalamic Deep Brain Stimulation, compatible with concepts of thalamo-cortical engagement in word processing. Clinically, these findings specify cognitive sequels of Deep Brain Stimulation in a target-specific way.

  16. Use of deep brain stimulation for major affective disorders

    PubMed Central

    Mi, Kuanqing

    2016-01-01

    The multifactorial etiology of major affective disorders, such as major depression and bipolar disorder, poses a challenge for identification of effective treatments. In a substantial number of patients, psychopharmacologic treatment does not lead to effective continuous symptom relief. The use of deep brain stimulation (DBS) for treatment-resistant patients is an investigational approach that has recently produced promising results. The recent development of safer stereotaxic neurosurgery, and the combination with functional neuroimaging to map the affected brain circuits, have led to the investigation of DBS as a potential strategy to treat major mood disorders. Several independent clinical studies have recently shown that chronic DBS treatment leads to remission of symptoms in a high number of treatment-resistant patients for major depression and bipolar disorder. In conclusion, the existing proof-of-principle that DBS can be an effective intervention for treatment-resistant depression opens new avenues for treatment. However, multicenter, randomized and blind trials need to confirm efficacy and be approved after the most recent failures. Patient selection and surgical-related improvements are key issues that remain to be addressed to help deliver more precise and customized treatment. PMID:27698736

  17. Probabilistic Analysis of Activation Volumes Generated During Deep Brain Stimulation

    PubMed Central

    Butson, Christopher R.; Cooper, Scott E.; Henderson, Jaimie M.; Wolgamuth, Barbara; McIntyre, Cameron C.

    2010-01-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson’s disease (PD) and shows great promise for the treatment of several other disorders. However, while the clinical analysis of DBS has received great attention, a relative paucity of quantitative techniques exists to define the optimal surgical target and most effective stimulation protocol for a given disorder. In this study we describe a methodology that represents an evolutionary addition to the concept of a probabilistic brain atlas, which we call a probabilistic stimulation atlas (PSA). We outline steps to combine quantitative clinical outcome measures with advanced computational models of DBS to identify regions where stimulation-induced activation could provide the best therapeutic improvement on a per-symptom basis. While this methodology is relevant to any form of DBS, we present example results from subthalamic nucleus (STN) DBS for PD. We constructed patient-specific computer models of the volume of tissue activated (VTA) for 163 different stimulation parameter settings which were tested in six patients. We then assigned clinical outcome scores to each VTA and compiled all of the VTAs into a PSA to identify stimulation-induced activation targets that maximized therapeutic response with minimal side effects. The results suggest that selection of both electrode placement and clinical stimulation parameter settings could be tailored to the patient’s primary symptoms using patient-specific models and PSAs. PMID:20974269

  18. Deep brain stimulation for severe autism: from pathophysiology to procedure.

    PubMed

    Sinha, Saurabh; McGovern, Robert A; Sheth, Sameer A

    2015-06-01

    Autism is a heterogeneous neurodevelopmental disorder characterized by early-onset impairment in social interaction and communication and by repetitive, restricted behaviors and interests. Because the degree of impairment may vary, a spectrum of clinical manifestations exists. Severe autism is characterized by complete lack of language development and potentially life-threatening self-injurious behavior, the latter of which may be refractory to medical therapy and devastating for affected individuals and their caretakers. New treatment strategies are therefore needed. Here, the authors propose deep brain stimulation (DBS) of the basolateral nucleus of the amygdala (BLA) as a therapeutic intervention to treat severe autism. The authors review recent developments in the understanding of the pathophysiology of autism. Specifically, they describe the genetic and environmental alterations that affect neurodevelopment. The authors also highlight the resultant microstructural, macrostructural, and functional abnormalities that emerge during brain development, which create a pattern of dysfunctional neural networks involved in socioemotional processing. They then discuss how these findings implicate the BLA as a key node in the pathophysiology of autism and review a reported case of BLA DBS for treatment of severe autism. Much progress has been made in recent years in understanding the pathophysiology of autism. The BLA represents a logical neurosurgical target for treating severe autism. Further study is needed that considers mechanistic and operative challenges.

  19. Deep brain stimulation in addiction due to psychoactive substance use.

    PubMed

    Kuhn, Jens; Bührle, Christian P; Lenartz, Doris; Sturm, Volker

    2013-01-01

    Addiction is one of the most challenging health problems. It is associated with enormous individual distress and tremendous socioeconomic consequences. Unfortunately, its underlying mechanisms are not fully understood, and pharmacological, psychological, or social interventions often fail to achieve long-lasting remission. Next to genetic, social, and contextual factors, a substance-induced dysfunction of the brain's reward system is considered a decisive factor for the establishment and maintenance of addiction. Due to its successful application and approval for several neurological disorders, deep brain stimulation (DBS) is known as a powerful tool for modulating dysregulated networks and has also been considered for substance addiction. Initial promising case reports of DBS in alcohol and heroin addiction in humans have recently been published. Likewise, results from animal studies mimicking different kinds of substance addiction point in a similar direction. The objective of this review is to provide an overview of the published results on DBS in addiction, and to discuss whether these preliminary results justify further research, given the novelty of this treatment approach.

  20. Preclinical evaluation of a miniaturized Deep Brain Stimulation electrode lead.

    PubMed

    Villalobos, Joel; Fallon, James B; McNeill, Peter M; Allison, Rachel K; Bibari, Olivier; Williams, Chris E; McDermott, Hugh J

    2015-01-01

    The effect of miniaturizing the electrode lead for Deep Brain Stimulation (DBS) therapy was investigated in this work. A direct comparison was made between a miniature lead (0.65 mm diameter) and a lead of standard size (1.3 mm). Acute in vivo implantation in two cat brains was performed to evaluate surgical trauma and confirm capacity to target thalamic nuclei. Insertion into a homogeneous gel model of neural tissue was used to compare insertion forces while visualizing the process. The standard size cannula, used first to guide lead insertion, required substantially higher insertion force compared with the miniature version and produced a significantly larger region of tissue disruption. The characteristic hemorrhage and edema extended 119-352 μm from the implanted track surface of the miniature lead and cannula, while these extended 311-571 μm for the standard size lead and cannula. A miniature DBS implant can reduce the extent of trauma and could potentially help improve neural function preservation after functional neurosurgery.

  1. Probabilistic analysis of activation volumes generated during deep brain stimulation.

    PubMed

    Butson, Christopher R; Cooper, Scott E; Henderson, Jaimie M; Wolgamuth, Barbara; McIntyre, Cameron C

    2011-02-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson's disease (PD) and shows great promise for the treatment of several other disorders. However, while the clinical analysis of DBS has received great attention, a relative paucity of quantitative techniques exists to define the optimal surgical target and most effective stimulation protocol for a given disorder. In this study we describe a methodology that represents an evolutionary addition to the concept of a probabilistic brain atlas, which we call a probabilistic stimulation atlas (PSA). We outline steps to combine quantitative clinical outcome measures with advanced computational models of DBS to identify regions where stimulation-induced activation could provide the best therapeutic improvement on a per-symptom basis. While this methodology is relevant to any form of DBS, we present example results from subthalamic nucleus (STN) DBS for PD. We constructed patient-specific computer models of the volume of tissue activated (VTA) for 163 different stimulation parameter settings which were tested in six patients. We then assigned clinical outcome scores to each VTA and compiled all of the VTAs into a PSA to identify stimulation-induced activation targets that maximized therapeutic response with minimal side effects. The results suggest that selection of both electrode placement and clinical stimulation parameter settings could be tailored to the patient's primary symptoms using patient-specific models and PSAs.

  2. In vivo impedance spectroscopy of deep brain stimulation electrodes.

    PubMed

    Lempka, Scott F; Miocinovic, Svjetlana; Johnson, Matthew D; Vitek, Jerrold L; McIntyre, Cameron C

    2009-08-01

    Deep brain stimulation (DBS) represents a powerful clinical technology, but a systematic characterization of the electrical interactions between the electrode and the brain is lacking. The goal of this study was to examine the in vivo changes in the DBS electrode impedance that occur after implantation and during clinically relevant stimulation. Clinical DBS devices typically apply high-frequency voltage-controlled stimulation, and as a result, the injected current is directly regulated by the impedance of the electrode-tissue interface. We monitored the impedance of scaled-down clinical DBS electrodes implanted in the thalamus and subthalamic nucleus of a rhesus macaque using electrode impedance spectroscopy (EIS) measurements ranging from 0.5 Hz to 10 kHz. To further characterize our measurements, equivalent circuit models of the electrode-tissue interface were used to quantify the role of various interface components in producing the observed electrode impedance. Following implantation, the DBS electrode impedance increased and a semicircular arc was observed in the high-frequency range of the EIS measurements, commonly referred to as the tissue component of the impedance. Clinically relevant stimulation produced a rapid decrease in electrode impedance with extensive changes in the tissue component. These post-operative and stimulation-induced changes in impedance could play an important role in the observed functional effects of voltage-controlled DBS and should be considered during clinical stimulation parameter selection and chronic animal research studies.

  3. Optogenetically inspired deep brain stimulation: linking basic with clinical research.

    PubMed

    Lüscher, Christian; Pollak, Pierre

    2016-01-01

    In the last decade, optogenetics has revolutionised the neurosciences. The technique, which allows for cell-type specific excitation and inhibition of neurons in the brain of freely moving rodents, has been used to tighten the links of causality between neural activity and behaviour. Optogenetics is also enabling an unprecedented characterisation of circuits and their dysfunction in a number of brain diseases, above all those conditions that are not caused by neurodegeneration. Notable progress has been made in addiction, depression and obsessive-compulsive disorders, as well as other anxiety disorders. By extension, the technique has also been used to propose blueprints for innovative rational treatment of these diseases. The goal is to design manipulations that disrupt pathological circuit function or restore normal activity. This can be achieved by targeting specific projections in order to apply specific stimulation protocols validated by ex-vivo analysis of the mechanisms underlying the dysfunction. In a number of cases, specific forms of pathological synaptic plasticity have been implicated. For example, addictive drugs via strong increase of dopamine trigger a myriad of alterations of glutamate and γ-aminobutyric acid transmission, also called drug-evoked synaptic plasticity. This opens the way to the design of optogenetic reversal protocols, which might restore normal transmission with the hope to abolish the pathological behaviour. Several proof of principle studies for this approach have recently been published. However, for many reasons, optogenetics will not be translatable to human applications in the near future. Here, we argue that an intermediate step is novel deep brain stimulation (DBS) protocols that emulate successful optogenetic approaches in animal models. We provide a roadmap for a translational path to rational, optogenetically inspired DBS protocols to refine existing approaches and expand to novel indications.

  4. Automated 3-Dimensional Brain Atlas Fitting to Microelectrode Recordings from Deep Brain Stimulation Surgeries

    PubMed Central

    Luján, J. Luis; Noecker, Angela M.; Butson, Christopher R.; Cooper, Scott E.; Walter, Benjamin L.; Vitek, Jerrold L.; McIntyre, Cameron C.

    2009-01-01

    Objective Deep brain stimulation (DBS) surgeries commonly rely on brain atlases and microelectrode recordings (MER) to help identify the target location for electrode implantation. We present an automated method for optimally fitting a 3-dimensional brain atlas to intraoperative MER and predicting a target DBS electrode location in stereotactic coordinates for the patient. Methods We retrospectively fit a 3-dimensional brain atlas to MER points from 10 DBS surgeries targeting the subthalamic nucleus (STN). We used a constrained optimization algorithm to maximize the MER points correctly fitted (i.e., contained) within the appropriate atlas nuclei. We compared our optimization approach to conventional anterior commissure-posterior commissure (AC/PC) scaling, and to manual fits performed by four experts. A theoretical DBS electrode target location in the dorsal STN was customized to each patient as part of the fitting process and compared to the location of the clinically defined therapeutic stimulation contact. Results The human expert and computer optimization fits achieved significantly better fits than the AC/PC scaling (80, 81, and 41% of correctly fitted MER, respectively). However, the optimization fits were performed in less time than the expert fits and converged to a single solution for each patient, eliminating interexpert variance. Conclusions and Significance DBS therapeutic outcomes are directly related to electrode implantation accuracy. Our automated fitting techniques may aid in the surgical decision-making process by optimally integrating brain atlas and intraoperative neurophysiological data to provide a visual guide for target identification. PMID:19556832

  5. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain

    PubMed Central

    Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel

    2015-01-01

    Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS. PMID:26193653

  6. Deep brain stimulation mechanisms: beyond the concept of local functional inhibition.

    PubMed

    Deniau, Jean-Michel; Degos, Bertrand; Bosch, Clémentine; Maurice, Nicolas

    2010-10-01

    Deep brain electrical stimulation has become a recognized therapy in the treatment of a variety of motor disorders and has potentially promising applications in a wide range of neurological diseases including neuropsychiatry. Behavioural observation that electrical high-frequency stimulation of a given brain area induces an effect similar to a lesion suggested a mechanism of functional inhibition. In vitro and in vivo experiments as well as per operative recordings in patients have revealed a variety of effects involving local changes of neuronal excitability as well as widespread effects throughout the connected network resulting from activation of axons, including antidromic activation. Here we review current data regarding the local and network activity changes induced by high-frequency stimulation of the subthalamic nucleus and discuss this in the context of motor restoration in Parkinson's disease. Stressing the important functional consequences of axonal activation in deep brain stimulation mechanisms, we highlight the importance of developing anatomical knowledge concerning the fibre connections of the putative therapeutic targets.

  7. Deep brain optical measurements of cell type-specific neural activity in behaving mice.

    PubMed

    Cui, Guohong; Jun, Sang Beom; Jin, Xin; Luo, Guoxiang; Pham, Michael D; Lovinger, David M; Vogel, Steven S; Costa, Rui M

    2014-01-01

    Recent advances in genetically encoded fluorescent sensors enable the monitoring of cellular events from genetically defined groups of neurons in vivo. In this protocol, we describe how to use a time-correlated single-photon counting (TCSPC)-based fiber optics system to measure the intensity, emission spectra and lifetime of fluorescent biosensors expressed in deep brain structures in freely moving mice. When combined with Cre-dependent selective expression of genetically encoded Ca(2+) indicators (GECIs), this system can be used to measure the average neural activity from a specific population of cells in mice performing complex behavioral tasks. As an example, we used viral expression of GCaMPs in striatal projection neurons (SPNs) and recorded the fluorescence changes associated with calcium spikes from mice performing a lever-pressing operant task. The whole procedure, consisting of virus injection, behavior training and optical recording, takes 3-4 weeks to complete. With minor adaptations, this protocol can also be applied to recording cellular events from other cell types in deep brain regions, such as dopaminergic neurons in the ventral tegmental area. The simultaneously recorded fluorescence signals and behavior events can be used to explore the relationship between the neural activity of specific brain circuits and behavior.

  8. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Lin, Li; Xia, Jun; Wong, Terence T. W.; Zhang, Ruiying; Wang, Lihong V.

    2015-03-01

    We demonstrate, by means of internal light delivery, photoacoustic imaging of the deep brain of rats in vivo. With fiber illumination via the oral cavity, we delivered light directly into the bottom of the brain, much more than can be delivered by external illumination. The study was performed using a photoacoustic computed tomography (PACT) system equipped with a 512-element full-ring transducer array, providing a full two-dimensional view aperture. Using internal illumination, the PACT system provided clear cross sectional photoacoustic images from the palate to the middle brain of live rats, revealing deep brain structures such as the hypothalamus, brain stem, and cerebral medulla.

  9. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Lin, Li; Xia, Jun; Wong, Terence T. W.; Li, Lei; Wang, Lihong V.

    2015-01-01

    Using internal illumination with an optical fiber in the oral cavity, we demonstrate, for the first time, photoacoustic computed tomography (PACT) of the deep brain of rats in vivo. The experiment was performed on a full-ring-array PACT system, with the capability of providing high-speed cross-sectional imaging of the brain. Compared with external illumination through the cranial skull, internal illumination delivers more light to the base of the brain. Consequently, in vivo photoacoustic images clearly reveal deep brain structures such as the hypothalamus, brain stem, and cerebral medulla.

  10. Classification of CT brain images based on deep learning networks.

    PubMed

    Gao, Xiaohong W; Hui, Rui; Tian, Zengmin

    2017-01-01

    While computerised tomography (CT) may have been the first imaging tool to study human brain, it has not yet been implemented into clinical decision making process for diagnosis of Alzheimer's disease (AD). On the other hand, with the nature of being prevalent, inexpensive and non-invasive, CT does present diagnostic features of AD to a great extent. This study explores the significance and impact on the application of the burgeoning deep learning techniques to the task of classification of CT brain images, in particular utilising convolutional neural network (CNN), aiming at providing supplementary information for the early diagnosis of Alzheimer's disease. Towards this end, three categories of CT images (N = 285) are clustered into three groups, which are AD, lesion (e.g. tumour) and normal ageing. In addition, considering the characteristics of this collection with larger thickness along the direction of depth (z) (~3-5 mm), an advanced CNN architecture is established integrating both 2D and 3D CNN networks. The fusion of the two CNN networks is subsequently coordinated based on the average of Softmax scores obtained from both networks consolidating 2D images along spatial axial directions and 3D segmented blocks respectively. As a result, the classification accuracy rates rendered by this elaborated CNN architecture are 85.2%, 80% and 95.3% for classes of AD, lesion and normal respectively with an average of 87.6%. Additionally, this improved CNN network appears to outperform the others when in comparison with 2D version only of CNN network as well as a number of state of the art hand-crafted approaches. As a result, these approaches deliver accuracy rates in percentage of 86.3, 85.6 ± 1.10, 86.3 ± 1.04, 85.2 ± 1.60, 83.1 ± 0.35 for 2D CNN, 2D SIFT, 2D KAZE, 3D SIFT and 3D KAZE respectively. The two major contributions of the paper constitute a new 3-D approach while applying deep learning technique to extract signature information

  11. The Present Indication and Future of Deep Brain Stimulation

    PubMed Central

    SUGIYAMA, Kenji; NOZAKI, Takao; ASAKAWA, Tetsuya; KOIZUMI, Shinichiro; SAITOH, Osamu; NAMBA, Hiroki

    2015-01-01

    The use of electrical stimulation to treat pain in human disease dates back to ancient Rome or Greece. Modern deep brain stimulation (DBS) was initially applied for pain treatment in the 1960s, and was later used to treat movement disorders in the 1990s. After recognition of DBS as a therapy for central nervous system (CNS) circuit disorders, DBS use showed drastic increase in terms of adaptability to disease and the patient’s population. More than 100,000 patients have received DBS therapy worldwide. The established indications for DBS are Parkinson’s disease, tremor, and dystonia, whereas global indications of DBS expanded to other neuronal diseases or disorders such as neuropathic pain, epilepsy, and tinnitus. DBS is also experimentally used to manage cognitive disorders and psychiatric diseases such as major depression, obsessive-compulsive disorder (OCD), Tourette’s syndrome, and eating disorders. The importance of ethics and conflicts surrounding the regulation and freedom of choice associated with the application of DBS therapy for new diseases or disorders is increasing. These debates are centered on the use of DBS to treat new diseases and disorders as well as its potential to enhance ability in normal healthy individuals. Here we present three issues that need to be addressed in the future: (1) elucidation of the mechanisms of DBS, (2) development of new DBS methods, and (3) miniaturization of the DBS system. With the use of DBS, functional neurosurgery entered into the new era that man can manage and control the brain circuit to treat intractable neuronal diseases and disorders. PMID:25925757

  12. The epistemology of Deep Brain Stimulation and neuronal pathophysiology.

    PubMed

    Montgomery, Erwin B

    2012-01-01

    Deep Brain Stimulation (DBS) is a remarkable therapy succeeding where all manner of pharmacological manipulations and brain transplants fail. The success of DBS has resurrected the relevance of electrophysiology and dynamics on the order of milliseconds. Despite the remarkable effects of DBS, its mechanisms of action are largely unknown. There has been an expanding catalogue of various neuronal and neural responses to DBS or DBS-like stimulation but no clear conceptual encompassing explanatory scheme has emerged despite the technological prowess and intellectual sophistication of the scientists involved. Something is amiss. If the scientific observations are sound, then why has there not been more progress? The alternative is that it may be the hypotheses that frame the questions are at fault as well as the methods of inference (logic) used to validate the hypotheses. An analysis of the past and current notions of the DBS mechanisms of action is the subject in order to identify the presuppositions (premises) and logical fallacies that may be at fault. The hope is that these problems will be avoided in the future so the DBS can realize its full potential quickly. In this regard, the discussion of the methods of inference and presuppositions that underlie many current notions is no different then a critique of experimental methods common in scientific discussions and consequently, examinations of the epistemology and logic are appropriate. This analysis is in keeping with the growing appreciation among scientists and philosophers of science, the scientific observations (data) to not "speak for themselves" nor is the scientific method self-evidently true and that consideration of the underlying inferential methods is necessary.

  13. Lesion Analysis of the Brain Areas Involved in Language Comprehension

    ERIC Educational Resources Information Center

    Dronkers, Nina F.; Wilkins, David P.; Van Valin, Robert D., Jr.; Redfern, Brenda B.; Jaeger, Jeri J.

    2004-01-01

    The cortical regions of the brain traditionally associated with the comprehension of language are Wernicke's area and Broca's area. However, recent evidence suggests that other brain regions might also be involved in this complex process. This paper describes the opportunity to evaluate a large number of brain-injured patients to determine which…

  14. Deep brain stimulation in the treatment of depression.

    PubMed

    Delaloye, Sibylle; Holtzheimer, Paul E

    2014-03-01

    Major depressive disorder is a worldwide disease with debilitating effects on a patient's life. Common treatments include pharmacotherapy, psychotherapy, and electroconvulsive therapy. Many patients do not respond to these treatments; this has led to the investigation of alternative therapeutic modalities. Deep brain stimulation (DBS) is one of these modalities. It was first used with success for treating movement disorders and has since been extended to the treatment of psychiatric disorders. Although DBS is still an emerging treatment, promising efficacy and safety have been demonstrated in preliminary trials in patients with treatment-resistant depression (TRD). Further, neuroimaging has played a pivotal role in identifying some DBS targets and remains an important tool for evaluating the mechanism of action of this novel intervention. Preclinical animal studies have broadened knowledge about the possible mechanisms of action of DBS for TRD, Given that DBS involves neurosurgery in patients with severe psychiatric impairment, ethical questions concerning capacity to consent arise; these issues must continue to be carefully considered.

  15. Personality Changes after Deep Brain Stimulation in Parkinson's Disease

    PubMed Central

    Pham, Uyen; Solbakk, Anne-Kristin; Skogseid, Inger-Marie; Pripp, Are Hugo; Konglund, Ane Eidahl; Andersson, Stein; Haraldsen, Ira Ronit; Aarsland, Dag; Dietrichs, Espen; Malt, Ulrik Fredrik

    2015-01-01

    Objectives. Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a recognized therapy that improves motor symptoms in advanced Parkinson's disease (PD). However, little is known about its impact on personality. To address this topic, we have assessed personality traits before and after STN-DBS in PD patients. Methods. Forty patients with advanced PD were assessed with the Temperament and Character Inventory (TCI): the Urgency, Premeditation, Perseverance, Sensation Seeking impulsive behaviour scale (UPPS), and the Neuroticism and Lie subscales of the Eysenck Personality Questionnaire (EPQ-N, EPQ-L) before surgery and after three months of STN-DBS. Collateral information obtained from the UPPS was also reported. Results. Despite improvement in motor function and reduction in dopaminergic dosage patients reported lower score on the TCI Persistence and Self-Transcendence scales, after three months of STN-DBS, compared to baseline (P = 0.006; P = 0.024). Relatives reported significantly increased scores on the UPPS Lack of Premeditation scale at follow-up (P = 0.027). Conclusion. STN-DBS in PD patients is associated with personality changes in the direction of increased impulsivity. PMID:25705545

  16. Deep brain stimulation for enhancement of learning and memory.

    PubMed

    Suthana, Nanthia; Fried, Itzhak

    2014-01-15

    Deep brain stimulation (DBS) has emerged as a powerful technique to treat a host of neurological and neuropsychiatric disorders from Parkinson's disease and dystonia, to depression, and obsessive compulsive disorder (Benabid et al., 1987; Lang and Lozano, 1998; Davis et al., 1997; Vidailhet et al., 2005; Mayberg et al., 2005; Nuttin et al., 1999). More recently, results suggest that DBS can enhance memory for facts and events that are dependent on the medial temporal lobe (MTL), thus raising the possibility for DBS to be used as a treatment for MTL- related neurological disorders (e.g. Alzheimer's disease, temporal lobe epilepsy, and MTL injuries). In the following review, we summarize key results that show the ability of DBS or cortical surface stimulation to enhance memory. We also discuss current knowledge regarding the temporal specificity, underlying neurophysiological mechanisms of action, and generalization of stimulation's effects on memory. Throughout our discussion, we also propose several future directions that will provide the necessary insight into if and how DBS could be used as a therapeutic treatment for memory disorders.

  17. Rescue pallidotomy for dystonia through implanted deep brain stimulation electrode

    PubMed Central

    Blomstedt, Patric; Taira, Takaomi; Hariz, Marwan

    2016-01-01

    Background: Some patients with deep brain stimulation (DBS), where removal of implants is indicated due to hardware related infections, are not candidates for later re-implantation. In these patients a rescue lesion through the DBS electrode has been suggested as an option. In this case report we present a patient where a pallidotomy was performed using the DBS electrode. Case Description: An elderly woman with bilateral Gpi DBS suffered an infection around the left burr hole involving the DBS electrode. A unilateral lesion was performed through the DBS electrode before it was removed. No side effects were encountered. Burke-Fahn-Marsden (BFM) dystonia movement scale score was 39 before DBS. With DBS before lesioning BFM score was 2.5 points. The replacement of the left sided stimulation with a pallidotomy resulted in only a minor deterioration of the score to 5 points. Conclusions: In the case presented here a small pallidotomy performed with the DBS electrode provided a satisfactory effect on the patient's dystonic symptoms. Thus, rescue lesions through the DBS electrodes, although off-label, might be considered in patients with Gpi DBS for dystonia when indicated. PMID:27990311

  18. Deep brain stimulation for vocal tremor: a comprehensive, multidisciplinary methodology.

    PubMed

    Ho, Allen L; Erickson-Direnzo, Elizabeth; Pendharkar, Arjun V; Sung, Chih-Kwang; Halpern, Casey H

    2015-06-01

    Tremulous voice is a characteristic feature of a multitude of movement disorders, but when it occurs in individuals diagnosed with essential tremor, it is referred to as essential vocal tremor (EVT). For individuals with EVT, their tremulous voice is associated with significant social embarrassment and in severe cases may result in the discontinuation of employment and hobbies. Management of EVT is extremely difficult, and current behavioral and medical interventions for vocal tremor result in suboptimal outcomes. Deep brain stimulation (DBS) has been proposed as a potential therapeutic avenue for EVT, but few studies can be identified that have systematically examined improvements in EVT following DBS. The authors describe a case of awake bilateral DBS targeting the ventral intermediate nucleus for a patient suffering from severe voice and arm tremor. They also present their comprehensive, multidisciplinary methodology for definitive treatment of EVT via DBS. To the authors' knowledge, this is the first time comprehensive intraoperative voice evaluation has been used to guide microelectrode/stimulator placement, as well as the first time that standard pre- and post-DBS assessments have been conducted, demonstrating the efficacy of this tailored DBS approach.

  19. Personality changes after deep brain stimulation in Parkinson's disease.

    PubMed

    Pham, Uyen; Solbakk, Anne-Kristin; Skogseid, Inger-Marie; Toft, Mathias; Pripp, Are Hugo; Konglund, Ane Eidahl; Andersson, Stein; Haraldsen, Ira Ronit; Aarsland, Dag; Dietrichs, Espen; Malt, Ulrik Fredrik

    2015-01-01

    Objectives. Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a recognized therapy that improves motor symptoms in advanced Parkinson's disease (PD). However, little is known about its impact on personality. To address this topic, we have assessed personality traits before and after STN-DBS in PD patients. Methods. Forty patients with advanced PD were assessed with the Temperament and Character Inventory (TCI): the Urgency, Premeditation, Perseverance, Sensation Seeking impulsive behaviour scale (UPPS), and the Neuroticism and Lie subscales of the Eysenck Personality Questionnaire (EPQ-N, EPQ-L) before surgery and after three months of STN-DBS. Collateral information obtained from the UPPS was also reported. Results. Despite improvement in motor function and reduction in dopaminergic dosage patients reported lower score on the TCI Persistence and Self-Transcendence scales, after three months of STN-DBS, compared to baseline (P = 0.006; P = 0.024). Relatives reported significantly increased scores on the UPPS Lack of Premeditation scale at follow-up (P = 0.027). Conclusion. STN-DBS in PD patients is associated with personality changes in the direction of increased impulsivity.

  20. Evaluation of novel stimulus waveforms for deep brain stimulation

    PubMed Central

    Foutz, TJ; McIntyre, CC

    2010-01-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of a wide range of neurological disorders. Historically, DBS and other neurostimulation technologies have relied on rectangular stimulation waveforms to impose their effects on the nervous system. Recent work has suggested that non-rectangular waveforms may have advantages over the traditional rectangular pulse. Therefore, we used detailed computer models to compare a range of charge-balanced biphasic waveforms with rectangular, exponential, triangular, Gaussian, and sinusoidal stimulus pulse shapes. We explored the neural activation energy of these waveforms in both intracellular and extracellular stimulation. In the context of extracellular stimulation, we compared their effects on both axonal fibers of passage and projection neurons. Finally, we evaluated the impact of delivering the waveforms through a clinical DBS electrode, as opposed to a theoretical point source. Our results suggest that DBS with a 1 ms centered-triangular pulse can decrease energy consumption by 64 % when compared to the standard 100 μs rectangular pulse (energy cost of 48 nJ and 133 nJ, respectively, to stimulate 50 % of a distributed population of axons) and can decrease energy consumption by 10 % when compared to the most energy efficient rectangular pulse (1.25 ms duration). In turn, there may be measureable energy savings when using appropriately designed non-rectangular pulses in clinical DBS applications, thereby warranting further experimental investigation. PMID:21084732

  1. Weight change following deep brain stimulation for movement disorders.

    PubMed

    Strowd, Roy E; Cartwright, Michael S; Passmore, Leah V; Ellis, Thomas L; Tatter, Stephen B; Siddiqui, Mustafa S

    2010-08-01

    Patients with Parkinson's disease (PD) and essential tremor (ET) tend to lose weight progressively over years. Weight gain following deep brain stimulation (DBS) of the subthalamic nucleus (STN) for treatment of PD has been documented in several studies that were limited by small sample size and exclusive focus on PD patients with STN stimulation. The current study was undertaken to examine weight change in a large sample of movement disorder patients following DBS. A retrospective review was undertaken of 182 patient charts following DBS of the STN, ventralis intermedius nucleus of the thalamus (VIM), and globus pallidus internus (GPi). Weight was collected preoperatively and postoperatively up to 24 months following surgery. Data were adjusted for baseline weight and multivariate linear regression was performed with repeated measures to assess weight change. Statistically significant mean weight gain of 1.8 kg (2.8% increase from baseline, p = 0.0113) was observed at a rate of approximately 1 kg per year up to 24 months following surgery. This gain was not predicted by age, gender, diagnosis, or stimulation target in a multivariate model. Significant mean weight gain of 2.3 kg (p = 0.0124) or 4.2% was observed in our PD patients. Most patients with PD and ET gain weight following DBS, and this gain is not predicted by age, gender, diagnosis, or stimulation target.

  2. The impact of deep brain stimulation on tinnitus

    PubMed Central

    Smit, Jasper V.; Janssen, Marcus L. F.; Engelhard, Malou; de Bie, Rob M. A.; Schuurman, P. Richard; Contarino, Maria F.; Mosch, Arne; Temel, Yasin; Stokroos, Robert J.

    2016-01-01

    Background: Tinnitus is a disorder of the nervous system that cannot be adequately treated with current therapies. The effect of neuromodulation induced by deep brain stimulation (DBS) on tinnitus has not been studied well. This study investigated the effect of DBS on tinnitus by use of a multicenter questionnaire study. Methods: Tinnitus was retrospectively assessed prior to DBS and at the current situation (with DBS). From the 685 questionnaires, 443 were returned. A control group was one-to-one matched to DBS patients who had tinnitus before DBS (n = 61). Tinnitus was assessed by the tinnitus handicap inventory (THI) and visual analog scales (VAS) of loudness and burden. Results: The THI decreased significantly during DBS compared to the situation prior to surgery (from 18.9 to 15.1, P < .001), which was only significant for DBS in the subthalamic nucleus (STN). The THI in the control group (36.9 to 35.5, P = 0.50) and other DBS targets did not change. The VAS loudness increased in the control group (5.4 to 6.0 P < .01). Conclusion: DBS might have a modulatory effect on tinnitus. Our study suggests that DBS of the STN may have a beneficial effect on tinnitus, but most likely other nuclei linked to the tinnitus circuitry might be even more effective. PMID:27994936

  3. Longterm deep brain stimulation withdrawal: clinical stability despite electrophysiological instability.

    PubMed

    Ruge, Diane; Cif, Laura; Limousin, Patricia; Gonzalez, Victoria; Vasques, Xavier; Coubes, Philippe; Rothwell, John C

    2014-07-15

    Deep brain stimulation (DBS) is a powerful treatment option for movement disorders, including severe generalised dystonia. After several years of treatment, cases have been reported in which DBS has been stopped without any deterioration in clinical benefit. This might indicate that DBS can restore function in some cases. The mechanism of DBS induced clinical retention effects has been addressed before. Here, the question we asked was if such clinical stability is reflected at the underlying physiology level or whether there is indication to believe that a stand-still of symptoms might be at risk because of neurophysiological instability. We recorded patients with pre-intervention life-threatening or severe genetic dystonia with long lasting clinical benefit when turned off DBS. Despite clinical stability, our physiological studies revealed large changes in the excitability of excitatory and inhibitory motor circuits in the cortex, which exceed normal fluctuation. This discrepancy between instability in the motor network physiology caused by removal of DBS and clinical stability alerts as it potentially indicates a risk to fail and cause symptoms to return.

  4. In vivo multiphoton microscopy of deep brain tissue.

    PubMed

    Levene, Michael J; Dombeck, Daniel A; Kasischke, Karl A; Molloy, Raymond P; Webb, Watt W

    2004-04-01

    Although fluorescence microscopy has proven to be one of the most powerful tools in biology, its application to the intact animal has been limited to imaging several hundred micrometers below the surface. The rest of the animal has eluded investigation at the microscopic level without excising tissue or performing extensive surgery. However, the ability to image with subcellular resolution in the intact animal enables a contextual setting that may be critical for understanding proper function. Clinical applications such as disease diagnosis and optical biopsy may benefit from minimally invasive in vivo approaches. Gradient index (GRIN) lenses with needle-like dimensions can transfer high-quality images many centimeters from the object plane. Here, we show that multiphoton microscopy through GRIN lenses enables minimally invasive, subcellular resolution several millimeters in the anesthetized, intact animal, and we present in vivo images of cortical layer V and hippocampus in the anesthetized Thy1-YFP line H mouse. Microangiographies from deep capillaries and blood vessels containing fluorescein-dextran and quantum dot-labeled serum in wild-type mouse brain are also demonstrated.

  5. Evaluation of novel stimulus waveforms for deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Foutz, Thomas J.; McIntyre, Cameron C.

    2010-12-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of a wide range of neurological disorders. Historically, DBS and other neurostimulation technologies have relied on rectangular stimulation waveforms to impose their effects on the nervous system. Recent work has suggested that non-rectangular waveforms may have advantages over the traditional rectangular pulse. Therefore, we used detailed computer models to compare a range of charge-balanced biphasic waveforms with rectangular, exponential, triangular, Gaussian and sinusoidal stimulus pulse shapes. We explored the neural activation energy of these waveforms for both intracellular and extracellular current-controlled stimulation conditions. In the context of extracellular stimulation, we compared their effects on both axonal fibers of passage and projection neurons. Finally, we evaluated the impact of delivering the waveforms through a clinical DBS electrode, as opposed to a theoretical point source. Our results suggest that DBS with a 1 ms centered-triangular pulse can decrease energy consumption by 64% when compared with the standard 100 µs rectangular pulse (energy cost of 48 and 133 nJ, respectively, to stimulate 50% of a distributed population of axons) and can decrease energy consumption by 10% when compared with the most energy efficient rectangular pulse (1.25 ms duration). In turn, there may be measureable energy savings when using appropriately designed non-rectangular pulses in clinical DBS applications, thereby warranting further experimental investigation.

  6. Deep brain stimulation in the globus pallidus externa promotes sleep.

    PubMed

    Qiu, M H; Chen, M C; Wu, J; Nelson, D; Lu, J

    2016-05-13

    The basal ganglia, a network of subcortical structures, play a critical role in movements, sleep and mental behavior. Basal ganglia disorders such as Parkinson's disease and Huntington's disease affect sleep. Deep brain stimulation (DBS) to treat motor symptoms in Parkinson's disease can ameliorate sleep disturbances. Our series of previous studies lead the hypothesis that dopamine, acting on D2 receptors on the striatopallidal terminals, enhances activity in the globus pallidus externa (GPe) and promotes sleep. Here, we tested if DBS in the GPe promotes sleep in rats. We found that unilateral DBS (180 Hz at 100 μA) in the GPe in rats significantly increased both non-rapid eye movement and rapid eye movement sleep compared to sham DBS stimulation. The EEG power spectrum of sleep induced by DBS was similar to that of the baseline sleep, and sleep latency was not affected by DBS. The GPe is potentially a better site for DBS to treat both insomnia and motor disorders caused by basal ganglia dysfunction.

  7. Potential predictors for the amount of intra-operative brain shift during deep brain stimulation surgery

    NASA Astrophysics Data System (ADS)

    Datteri, Ryan; Pallavaram, Srivatsan; Konrad, Peter E.; Neimat, Joseph S.; D'Haese, Pierre-François; Dawant, Benoit M.

    2011-03-01

    A number of groups have reported on the occurrence of intra-operative brain shift during deep brain stimulation (DBS) surgery. This has a number of implications for the procedure including an increased chance of intra-cranial bleeding and complications due to the need for more exploratory electrodes to account for the brain shift. It has been reported that the amount of pneumocephalus or air invasion into the cranial cavity due to the opening of the dura correlates with intraoperative brain shift. Therefore, pre-operatively predicting the amount of pneumocephalus expected during surgery is of interest toward accounting for brain shift. In this study, we used 64 DBS patients who received bilateral electrode implantations and had a post-operative CT scan acquired immediately after surgery (CT-PI). For each patient, the volumes of the pneumocephalus, left ventricle, right ventricle, third ventricle, white matter, grey matter, and cerebral spinal fluid were calculated. The pneumocephalus was calculated from the CT-PI utilizing a region growing technique that was initialized with an atlas-based image registration method. A multi-atlas-based image segmentation method was used to segment out the ventricles of each patient. The Statistical Parametric Mapping (SPM) software package was utilized to calculate the volumes of the cerebral spinal fluid (CSF), white matter and grey matter. The volume of individual structures had a moderate correlation with pneumocephalus. Utilizing a multi-linear regression between the volume of the pneumocephalus and the statistically relevant individual structures a Pearson's coefficient of r = 0.4123 (p = 0.0103) was found. This study shows preliminary results that could be used to develop a method to predict the amount of pneumocephalus ahead of the surgery.

  8. Progressive gait ataxia following deep brain stimulation for essential tremor: adverse effect or lack of efficacy?

    PubMed

    Reich, Martin M; Brumberg, Joachim; Pozzi, Nicolò G; Marotta, Giorgio; Roothans, Jonas; Åström, Mattias; Musacchio, Thomas; Lopiano, Leonardo; Lanotte, Michele; Lehrke, Ralph; Buck, Andreas K; Volkmann, Jens; Isaias, Ioannis U

    2016-09-21

    Thalamic deep brain stimulation is a mainstay treatment for severe and drug-refractory essential tremor, but postoperative management may be complicated in some patients by a progressive cerebellar syndrome including gait ataxia, dysmetria, worsening of intention tremor and dysarthria. Typically, this syndrome manifests several months after an initially effective therapy and necessitates frequent adjustments in stimulation parameters. There is an ongoing debate as to whether progressive ataxia reflects a delayed therapeutic failure due to disease progression or an adverse effect related to repeated increases of stimulation intensity. In this study we used a multimodal approach comparing clinical stimulation responses, modelling of volume of tissue activated and metabolic brain maps in essential tremor patients with and without progressive ataxia to disentangle a disease-related from a stimulation-induced aetiology. Ten subjects with stable and effective bilateral thalamic stimulation were stratified according to the presence (five subjects) of severe chronic-progressive gait ataxia. We quantified stimulated brain areas and identified the stimulation-induced brain metabolic changes by multiple (18)F-fluorodeoxyglucose positron emission tomography performed with and without active neurostimulation. Three days after deactivating thalamic stimulation and following an initial rebound of symptom severity, gait ataxia had dramatically improved in all affected patients, while tremor had worsened to the presurgical severity, thus indicating a stimulation rather than disease-related phenomenon. Models of the volume of tissue activated revealed a more ventrocaudal stimulation in the (sub)thalamic area of patients with progressive gait ataxia. Metabolic maps of both patient groups differed by an increased glucose uptake in the cerebellar nodule of patients with gait ataxia. Our data suggest that chronic progressive gait ataxia in essential tremor is a reversible cerebellar

  9. Reduced Verbal Fluency following Subthalamic Deep Brain Stimulation: A Frontal-Related Cognitive Deficit?

    PubMed Central

    Houvenaghel, Jean-François; Le Jeune, Florence; Dondaine, Thibaut; Esquevin, Aurore; Robert, Gabriel Hadrien; Péron, Julie; Haegelen, Claire; Drapier, Sophie; Jannin, Pierre; Lozachmeur, Clément; Argaud, Soizic; Duprez, Joan; Drapier, Dominique; Vérin, Marc; Sauleau, Paul

    2015-01-01

    Objective The decrease in verbal fluency in patients with Parkinson’s disease (PD) undergoing subthalamic nucleus deep brain stimulation (STN-DBS) is usually assumed to reflect a frontal lobe-related cognitive dysfunction, although evidence for this is lacking. Methods To explore its underlying mechanisms, we combined neuropsychological, psychiatric and motor assessments with an examination of brain metabolism using F-18 fluorodeoxyglucose positron emission tomography, in 26 patients with PD, 3 months before and after surgery. We divided these patients into two groups, depending on whether or not they exhibited a postoperative deterioration in either phonemic (10 patients) or semantic (8 patients) fluency. We then compared the STN-DBS groups with and without verbal deterioration on changes in clinical measures and brain metabolism. Results We did not find any neuropsychological change supporting the presence of an executive dysfunction in patients with a deficit in either phonemic or semantic fluency. Similarly, a comparison of patients with or without impaired fluency on brain metabolism failed to highlight any frontal areas involved in cognitive functions. However, greater changes in cognitive slowdown and apathy were observed in patients with a postoperative decrease in verbal fluency. Conclusions These results suggest that frontal lobe-related cognitive dysfunction could play only a minor role in the postoperative impairment of phonemic or semantic fluency, and that cognitive slowdown and apathy could have a more decisive influence. Furthermore, the phonemic and semantic impairments appeared to result from the disturbance of distinct mechanisms. PMID:26448131

  10. Material and physical model for evaluation of deep brain activity contribution to EEG recordings

    NASA Astrophysics Data System (ADS)

    Ye, Yan; Li, Xiaoping; Wu, Tiecheng; Li, Zhe; Xie, Wenwen

    2015-12-01

    Deep brain activity is conventionally recorded with surgical implantation of electrodes. During the neurosurgery, brain tissue damage and the consequent side effects to patients are inevitably incurred. In order to eliminate undesired risks, we propose that deep brain activity should be measured using the noninvasive scalp electroencephalography (EEG) technique. However, the deeper the neuronal activity is located, the noisier the corresponding scalp EEG signals are. Thus, the present study aims to evaluate whether deep brain activity could be observed from EEG recordings. In the experiment, a three-layer cylindrical head model was constructed to mimic a human head. A single dipole source (sine wave, 10 Hz, altering amplitudes) was embedded inside the model to simulate neuronal activity. When the dipole source was activated, surface potential was measured via electrodes attached on the top surface of the model and raw data were recorded for signal analysis. Results show that the dipole source activity positioned at 66 mm depth in the model, equivalent to the depth of deep brain structures, is clearly observed from surface potential recordings. Therefore, it is highly possible that deep brain activity could be observed from EEG recordings and deep brain activity could be measured using the noninvasive scalp EEG technique.

  11. Computational modeling of pedunculopontine nucleus deep brain stimulation

    PubMed Central

    Zitella, Laura M.; Mohsenian, Kevin; Pahwa, Mrinal; Gloeckner, Cory; Johnson, Matthew D.

    2013-01-01

    Objective Deep brain stimulation (DBS) near the pedunculopontine nucleus (PPN) has been posited to improve medication-intractable gait and balance problems in patients with Parkinson’s disease. However, clinical studies evaluating this DBS target have not demonstrated consistent therapeutic effects, with several studies reporting the emergence of paresthesia and oculomotor side effects. The spatial and pathway-specific extent to which brainstem regions are modulated during PPN-DBS is not well understood. Approach Here, we describe two computational models that estimate the direct effects of DBS in the PPN region for human and translational non-human primate (NHP) studies. The three-dimensional models were constructed from segmented histological images from each species, multi-compartment neuron models, and inhomogeneous finite element models of the voltage distribution in the brainstem during DBS. Main Results The computational models predicted that: 1) the majority of PPN neurons are activated with −3V monopolar cathodic stimulation; 2) surgical targeting errors of as little as 1 mm in both species decrement activation selectivity; 3) specifically, monopolar stimulation in caudal, medial, or anterior PPN activates a significant proportion of the superior cerebellar peduncle (up to 60% in the human model and 90% in the NHP model at -3V); 4) monopolar stimulation in rostral, lateral, or anterior PPN activates a large percentage of medial lemniscus fibers (up to 33% in the human model and 40% in the NHP model at −3V); and, 5) the current clinical cylindrical electrode design is suboptimal for isolating the modulatory effects to PPN neurons. Significance We show that a DBS lead design with radially-segmented electrodes may yield improved functional outcome for PPN-DBS. PMID:23723145

  12. Brittle Dyskinesia Following STN but not GPi Deep Brain Stimulation

    PubMed Central

    Sriram, Ashok; Foote, Kelly D.; Oyama, Genko; Kwak, Joshua; Zeilman, Pam R.; Okun, Michael S.

    2014-01-01

    Background The aim was to describe the prevalence and characteristics of difficult to manage dyskinesia associated with subthalamic nucleus (STN) deep brain stimulation (DBS). A small subset of STN DBS patients experience troublesome dyskinesia despite optimal programming and medication adjustments. This group of patients has been referred to by some practitioners as brittle STN DBS-induced dyskinesia, drawing on comparisons with brittle diabetics experiencing severe blood sugar regulation issues and on a single description by McLellan in 1982. We sought to describe, and also to investigate how often the “brittle” phenomenon occurs in a relatively large DBS practice. Methods An Institutional Review Board-approved patient database was reviewed, and all STN and globus pallidus internus (GPi) DBS patients who had surgery at the University of Florida from July 2002 to July 2012 were extracted for analysis. Results There were 179 total STN DBS patients and, of those, four STN DBS (2.2%) cases were identified as having dyskinesia that could not be managed without the induction of an “off state,” or by the precipitation of a severe dyskinesia despite vigorous stimulation and medication adjustments. Of 75 GPi DBS cases reviewed, none (0%) was identified as having brittle dyskinesia. One STN DBS patient was successfully rescued by bilateral GPi DBS. Discussion Understanding the potential risk factors for postoperative troublesome and brittle dyskinesia may have an impact on the initial surgical target selection (STN vs. GPI) in DBS therapy. Rescue GPi DBS therapy may be a viable treatment option, though more cases will be required to verify this observation. PMID:24932426

  13. Computational modeling of pedunculopontine nucleus deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Zitella, Laura M.; Mohsenian, Kevin; Pahwa, Mrinal; Gloeckner, Cory; Johnson, Matthew D.

    2013-08-01

    Objective. Deep brain stimulation (DBS) near the pedunculopontine nucleus (PPN) has been posited to improve medication-intractable gait and balance problems in patients with Parkinson's disease. However, clinical studies evaluating this DBS target have not demonstrated consistent therapeutic effects, with several studies reporting the emergence of paresthesia and oculomotor side effects. The spatial and pathway-specific extent to which brainstem regions are modulated during PPN-DBS is not well understood. Approach. Here, we describe two computational models that estimate the direct effects of DBS in the PPN region for human and translational non-human primate (NHP) studies. The three-dimensional models were constructed from segmented histological images from each species, multi-compartment neuron models and inhomogeneous finite element models of the voltage distribution in the brainstem during DBS. Main Results. The computational models predicted that: (1) the majority of PPN neurons are activated with -3 V monopolar cathodic stimulation; (2) surgical targeting errors of as little as 1 mm in both species decrement activation selectivity; (3) specifically, monopolar stimulation in caudal, medial, or anterior PPN activates a significant proportion of the superior cerebellar peduncle (up to 60% in the human model and 90% in the NHP model at -3 V) (4) monopolar stimulation in rostral, lateral or anterior PPN activates a large percentage of medial lemniscus fibers (up to 33% in the human model and 40% in the NHP model at -3 V) and (5) the current clinical cylindrical electrode design is suboptimal for isolating the modulatory effects to PPN neurons. Significance. We show that a DBS lead design with radially-segmented electrodes may yield improved functional outcome for PPN-DBS.

  14. Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers

    PubMed Central

    Thorbergsson, Palmi Thor; Ekstrand, Joakim; Friberg, Annika; Granmo, Marcus; Pettersson, Lina M. E.; Schouenborg, Jens

    2016-01-01

    Neural interfaces which allow long-term recordings in deep brain structures in awake freely moving animals have the potential of becoming highly valuable tools in neuroscience. However, the recording quality usually deteriorates over time, probably at least partly due to tissue reactions caused by injuries during implantation, and subsequently micro-forces due to a lack of mechanical compliance between the tissue and neural interface. To address this challenge, we developed a gelatin embedded neural interface comprising highly flexible electrodes and evaluated its long term recording properties. Bundles of ultrathin parylene C coated platinum electrodes (N = 29) were embedded in a hard gelatin based matrix shaped like a needle, and coated with Kollicoat™ to retard dissolution of gelatin during the implantation. The implantation parameters were established in an in vitro model of the brain (0.5% agarose). Following a craniotomy in the anesthetized rat, the gelatin embedded electrodes were stereotactically inserted to a pre-target position, and after gelatin dissolution the electrodes were further advanced and spread out in the area of the subthalamic nucleus (STN). The performance of the implanted electrodes was evaluated under anesthesia, during 8 weeks. Apart from an increase in the median-noise level during the first 4 weeks, the electrode impedance and signal-to-noise ratio of single-units remained stable throughout the experiment. Histological postmortem analysis confirmed implantation in the area of STN in most animals. In conclusion, by combining novel biocompatible implantation techniques and ultra-flexible electrodes, long-term neuronal recordings from deep brain structures with no significant deterioration of electrode function were achieved. PMID:27159159

  15. Treatment of Pain and Autonomic Dysreflexia in Spinal Cord Injury with Deep Brain Stimulation

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-12-1-0559 TITLE: Treatment of Pain and Autonomic Dysreflexia in Spinal Cord Injury with Deep Brain Stimulation...Sep 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Treatment of Pain and Autonomic Dysreflexia in Spinal Cord Injury with Deep Brain...as a method for treating pain and autonomic dysreflexia in patients with chronic spinal cord injury (SCI). It is collaboration between the

  16. Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy.

    PubMed

    Liu, Ning; Cui, Xu; Bryant, Daniel M; Glover, Gary H; Reiss, Allan L

    2015-03-01

    Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying brain function because it is non-invasive, non-irradiating and relatively inexpensive. Further, fNIRS potentially allows measurement of hemodynamic activity with high temporal resolution (milliseconds) and in naturalistic settings. However, in comparison with other imaging modalities, namely fMRI, fNIRS has a significant drawback: limited sensitivity to hemodynamic changes in deep-brain regions. To overcome this limitation, we developed a computational method to infer deep-brain activity using fNIRS measurements of cortical activity. Using simultaneous fNIRS and fMRI, we measured brain activity in 17 participants as they completed three cognitive tasks. A support vector regression (SVR) learning algorithm was used to predict activity in twelve deep-brain regions using information from surface fNIRS measurements. We compared these predictions against actual fMRI-measured activity using Pearson's correlation to quantify prediction performance. To provide a benchmark for comparison, we also used fMRI measurements of cortical activity to infer deep-brain activity. When using fMRI-measured activity from the entire cortex, we were able to predict deep-brain activity in the fusiform cortex with an average correlation coefficient of 0.80 and in all deep-brain regions with an average correlation coefficient of 0.67. The top 15% of predictions using fNIRS signal achieved an accuracy of 0.7. To our knowledge, this study is the first to investigate the feasibility of using cortical activity to infer deep-brain activity. This new method has the potential to extend fNIRS applications in cognitive and clinical neuroscience research.

  17. Deep brain stimulation for the treatment of severe, medically refractory obsessive-compulsive disorder.

    PubMed

    Sedrak, Mark; Wong, William; Wilson, Paul; Bruce, Diana; Bernstein, Ivan; Khandhar, Suketu; Pappas, Conrad; Heit, Gary; Sabelman, Eric

    2013-01-01

    Deep brain stimulation is a rapidly expanding therapy initially designed for the treatment of movement disorders and pain syndromes. The therapy includes implantation of electrodes in specific targets of the brain, delivering programmable small and safe electric impulses, like a pacemaker, that modulates both local and broad neurologic networks. The effects are thought to primarily involve a focus in the brain, probably inhibitory, which then restores a network of neural circuitry. Psychiatric diseases can be refractory and severe, leading to high medical costs, significant morbidity, and even death. Whereas surgery for psychiatric disease used to include destructive procedures, deep brain stimulation allows safe, reversible, and adjustable treatment that can be tailored for each patient. Deep brain stimulation offers new hope for these unfortunate patients, and the preliminary results are promising.

  18. Temporal profile of improvement of tardive dystonia after globus pallidus deep brain stimulation

    PubMed Central

    Shaikh, Aasef G.; Mewes, Klaus; DeLong, Mahlon R.; Gross, Robert E.; Triche, Shirley D.; Jinnah, H.A.; Boulis, Nicholas; Willie, Jon T.; Freeman, Alan; Alexander, Garrett E.; Aia, Pratibha; Butefisch, Cathrine M.; Esper, Christine D.; Factor, Stewart A.

    2016-01-01

    Background Several case reports and small series have indicated that tardive dystonia is responsive to globus pallidus deep brain stimulation. Whether different subtypes or distributions of tardive dystonia are associated with different outcomes remains unknown. Methods We assessed the outcomes and temporal profile of improvement of eight tardive dystonia patients who underwent globus pallidus deep brain stimulation over the past six years through record review. Due to the retrospective nature of this study, it was not blinded or placebo controlled. Results: Consistent with previous studies, deep brain stimulation improved the overall the Burkee–Fahn–Marsden motor scores by 85.1 ± 13.5%. The distributions with best responses in descending order were upper face, lower face, larynx/pharynx, limbs, trunk, and neck. Patients with prominent cervical dystonia demonstrated improvement in the Toronto Western Spasmodic Torticollis Rating Scale but improvements took several months. In four patients the effects of deep brain stimulation on improvement in Burke Fahn Marsden score was rapid, while in four cases there was partial rapid response of neck and trunk dystonia followed by was gradual resolution of residual symptoms over 48 months. Conclusion Our retrospective analysis shows excellent resolution of tardive dystonia after globus pallidus deep brain stimulation. We found instantaneous response, except with neck and trunk dystonia where partial recovery was followed by further resolution at slower rate. Such outcome is encouraging for using deep brain stimulation in treatment of tardive dystonia. PMID:25465373

  19. Deep Brain Stimulation: A Paradigm Shifting Approach to Treat Parkinson's Disease

    PubMed Central

    Hickey, Patrick; Stacy, Mark

    2016-01-01

    Parkinson disease (PD) is a chronic and progressive movement disorder classically characterized by slowed voluntary movements, resting tremor, muscle rigidity, and impaired gait and balance. Medical treatment is highly successful early on, though the majority of people experience significant complications in later stages. In advanced PD, when medications no longer adequately control motor symptoms, deep brain stimulation (DBS) offers a powerful therapeutic alternative. DBS involves the surgical implantation of one or more electrodes into specific areas of the brain, which modulate or disrupt abnormal patterns of neural signaling within the targeted region. Outcomes are often dramatic following DBS, with improvements in motor function and reductions motor complications having been repeatedly demonstrated. Given such robust responses, emerging indications for DBS are being investigated. In parallel with expansions of therapeutic scope, advancements within the areas of neurosurgical technique and the precision of stimulation delivery have recently broadened as well. This review focuses on the revolutionary addition of DBS to the therapeutic armamentarium for PD, and summarizes the technological advancements in the areas of neuroimaging and biomedical engineering intended to improve targeting, programming, and overall management. PMID:27199637

  20. Deep Brain Stimulation: A Paradigm Shifting Approach to Treat Parkinson's Disease.

    PubMed

    Hickey, Patrick; Stacy, Mark

    2016-01-01

    Parkinson disease (PD) is a chronic and progressive movement disorder classically characterized by slowed voluntary movements, resting tremor, muscle rigidity, and impaired gait and balance. Medical treatment is highly successful early on, though the majority of people experience significant complications in later stages. In advanced PD, when medications no longer adequately control motor symptoms, deep brain stimulation (DBS) offers a powerful therapeutic alternative. DBS involves the surgical implantation of one or more electrodes into specific areas of the brain, which modulate or disrupt abnormal patterns of neural signaling within the targeted region. Outcomes are often dramatic following DBS, with improvements in motor function and reductions motor complications having been repeatedly demonstrated. Given such robust responses, emerging indications for DBS are being investigated. In parallel with expansions of therapeutic scope, advancements within the areas of neurosurgical technique and the precision of stimulation delivery have recently broadened as well. This review focuses on the revolutionary addition of DBS to the therapeutic armamentarium for PD, and summarizes the technological advancements in the areas of neuroimaging and biomedical engineering intended to improve targeting, programming, and overall management.

  1. Analysis of deep brain stimulation electrode characteristics for neural recording

    NASA Astrophysics Data System (ADS)

    Kent, Alexander R.; Grill, Warren M.

    2014-08-01

    Objective. Closed-loop deep brain stimulation (DBS) systems have the potential to optimize treatment of movement disorders by enabling automatic adjustment of stimulation parameters based on a feedback signal. Evoked compound action potentials (ECAPs) and local field potentials (LFPs) recorded from the DBS electrode may serve as suitable closed-loop control signals. The objective of this study was to understand better the factors that influence ECAP and LFP recording, including the physical presence of the electrode, the geometrical dimensions of the electrode, and changes in the composition of the peri-electrode space across recording conditions. Approach. Coupled volume conductor-neuron models were used to calculate single-unit activity as well as ECAP responses and LFP activity from a population of model thalamic neurons. Main results. Comparing ECAPs and LFPs measured with and without the presence of the highly conductive recording contacts, we found that the presence of these contacts had a negligible effect on the magnitude of single-unit recordings, ECAPs (7% RMS difference between waveforms), and LFPs (5% change in signal magnitude). Spatial averaging across the contact surface decreased the ECAP magnitude in a phase-dependent manner (74% RMS difference), resulting from a differential effect of the contact on the contribution from nearby or distant elements, and decreased the LFP magnitude (25% change). Reductions in the electrode diameter or recording contact length increased signal energy and increased spatial sensitivity of single neuron recordings. Moreover, smaller diameter electrodes (500 µm) were more selective for recording from local cells over passing axons, with the opposite true for larger diameters (1500 µm). Changes in electrode dimensions had phase-dependent effects on ECAP characteristics, and generally had small effects on the LFP magnitude. ECAP signal energy and LFP magnitude decreased with tighter contact spacing (100 µm), compared to

  2. Analysis of deep brain stimulation electrode characteristics for neural recording

    PubMed Central

    Kent, Alexander R.; Grill, Warren M.

    2014-01-01

    Closed-loop deep brain stimulation (DBS) systems have the potential to optimize treatment of movement disorders by enabling automatic adjustment of stimulation parameters based on a feedback signal. Evoked compound action potentials (ECAPs) and local field potentials (LFPs) recorded from the DBS electrode may serve as suitable closed-loop control signals. The objective of this study was to understand better the factors that influence ECAP and LFP recording, including the physical presence of the electrode, the geometrical dimensions of the electrode, and changes in the composition of the peri-electrode space across recording conditions. Coupled volume conductor-neuron models were used to calculate single-unit activity as well as ECAP responses and LFP activity from a population of model thalamic neurons. Comparing ECAPs and LFPs measured with and without the presence of the highly conductive recording contacts, we found that the presence of these contacts had a negligible effect on the magnitude of single-unit recordings, ECAPs (7% RMS difference between waveforms), and LFPs (5% change in signal magnitude). Spatial averaging across the contact surface decreased the ECAP magnitude in a phase-dependent manner (74% RMS difference), resulting from a differential effect of the contact on the contribution from nearby or distant elements, and decreased the LFP magnitude (25% change). Reductions in the electrode diameter or recording contact length increased signal energy and increased spatial sensitivity of single neuron recordings. Moreover, smaller diameter electrodes (500 µm) were more selective for recording from local cells over passing axons, with the opposite true for larger diameters (1500 µm). Changes in electrode dimensions had phase-dependent effects on ECAP characteristics, and generally had small effects on the LFP magnitude. ECAP signal energy and LFP magnitude decreased with tighter contact spacing (100 µm), compared to the original dimensions (1500 µm

  3. Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity.

    PubMed

    Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl; Foltynie, Tom

    2014-04-01

    Depleted of dopamine, the dynamics of the parkinsonian brain impact on both 'action' and 'resting' motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the 'effective' connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network-disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses.

  4. Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation

    PubMed Central

    Lysyansky, Borys; Rosenblum, Michael; Pikovsky, Arkady; Tass, Peter A.

    2017-01-01

    High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson’s disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS. PMID:28273176

  5. Emerging subspecialties in neurology: deep brain stimulation and electrical neuro-network modulation.

    PubMed

    Hassan, Anhar; Okun, Michael S

    2013-01-29

    Deep brain stimulation (DBS) is a surgical therapy that involves the delivery of an electrical current to one or more brain targets. This technology has been rapidly expanding to address movement, neuropsychiatric, and other disorders. The evolution of DBS has created a niche for neurologists, both in the operating room and in the clinic. Since DBS is not always deep, not always brain, and not always simply stimulation, a more accurate term for this field may be electrical neuro-network modulation (ENM). Fellowships will likely in future years evolve their scope to include other technologies, and other nervous system regions beyond typical DBS therapy.

  6. Deep brain stimulation versus anterior capsulotomy for obsessive-compulsive disorder: a review of the literature.

    PubMed

    Pepper, Joshua; Hariz, Marwan; Zrinzo, Ludvic

    2015-05-01

    Obsessive-compulsive disorder (OCD) is a chronic and debilitating psychiatric condition. Traditionally, anterior capsulotomy (AC) was an established procedure for treatment of patients with refractory OCD. Over recent decades, deep brain stimulation (DBS) has gained popularity. In this paper the authors review the published literature and compare the outcome of AC and DBS targeting of the area of the ventral capsule/ventral striatum (VC/VS) and nucleus accumbens (NAcc). Patients in published cases were grouped according to whether they received AC or DBS and according to their preoperative scores on the Yale-Brown Obsessive-Compulsive Scale (YBOCS), and then separated according to outcome measures: remission (YBOCS score < 8); response (≥ 35% improvement in YBOCS score); nonresponse (< 35% improvement in YBOCS score); and unfavorable (i.e., worsening of the baseline YBOCS score). Twenty studies were identified reporting on 170 patients; 62 patients underwent DBS of the VC/VS or the NAcc (mean age 38 years, follow-up 19 months, baseline YBOCS score of 33), and 108 patients underwent AC (mean age 36 years, follow-up 61 months, baseline YBOCS score of 30). In patients treated with DBS there was a 40% decrease in YBOCS score, compared with a 51% decrease for those who underwent AC (p = 0.004). Patients who underwent AC were 9% more likely to go into remission than patients treated with DBS (p = 0.02). No difference in complication rates was noted. Anterior capsulotomy is an efficient procedure for refractory OCD. Deep brain stimulation in the VC/VS and NAcc area is an emerging and promising therapy. The current popularity of DBS over ablative surgery for OCD is not due to nonefficacy of AC, but possibly because DBS is perceived as more acceptable by clinicians and patients.

  7. Cellular and molecular mechanisms triggered by Deep Brain Stimulation in depression: A preclinical and clinical approach.

    PubMed

    Torres-Sanchez, S; Perez-Caballero, L; Berrocoso, E

    2017-02-06

    Deep Brain Stimulation (DBS) was originally developed as a therapeutic approach to manage movement disorders, in particular Parkinson's Disease. However, DBS also seems to be an effective treatment against refractory depression when patients fail to respond satisfactorily to conventional therapies. Thus, DBS targeting specific brain areas can produce an antidepressant response that improves depressive symptomatology, these areas including the subcallosal cingulate region, nucleus accumbens, ventral capsule/ventral striatum, medial forebrain bundle, the inferior thalamic peduncle and lateral habenula. Although the efficacy and safety of this therapy has been demonstrated in some clinical trials and preclinical studies, the intrinsic mechanisms underlying its antidepressant effect remain poorly understood. This review aims to provide a comprehensive overview of DBS, focusing on the molecular and cellular changes reported after its use that could shed light on the mechanisms underpinning its antidepressant effect. Several potential mechanisms of action of DBS are considered, including monoaminergic and glutamatergic neurotransmission, neurotrophic and neuroinflammatory mechanisms, as well as potential effects on certain intracellular signaling pathways. Although future studies will be necessary to determine the key molecular events underlying the antidepressant effect of DBS, the findings presented provide an insight into some of its possible modes of action.

  8. [Mechanism of action for deep brain stimulation and electrical neuro-network modulation (ENM)].

    PubMed

    Okun, Michael S; Oyama, Genko

    2013-01-01

    Deep brain stimulation (DBS) has become an important treatment option for carefully screened medication resistant neurological and neuropsychiatric disorders. DBS therapy is not always applied deep to the brain; does not have to be applied exclusively to the brain; and the mechanism for DBS is not simply stimulation of structures. The applications and target locations for DBS devices are rapidly expanding, with many new regions of the brain, spinal cord, peripheral nerves, and muscles now possibly accessed through this technology. We will review the idea of "electrical neuro-network modulation (ENM)"; discuss the importance of the complex neural networks underpinning the effects of DBS; discuss the expansion of brain targets; discuss the use of fiber based targets; and discuss the importance of tailoring DBS therapy to the symptom, rather than the disease.

  9. Deep brain stimulation, brain maps and personalized medicine: lessons from the human genome project.

    PubMed

    Fins, Joseph J; Shapiro, Zachary E

    2014-01-01

    Although the appellation of personalized medicine is generally attributed to advanced therapeutics in molecular medicine, deep brain stimulation (DBS) can also be so categorized. Like its medical counterpart, DBS is a highly personalized intervention that needs to be tailored to a patient's individual anatomy. And because of this, DBS like more conventional personalized medicine, can be highly specific where the object of care is an N = 1. But that is where the similarities end. Besides their differing medical and surgical provenances, these two varieties of personalized medicine have had strikingly different impacts. The molecular variant, though of a more recent vintage has thrived and is experiencing explosive growth, while DBS still struggles to find a sustainable therapeutic niche. Despite its promise, and success as a vetted treatment for drug resistant Parkinson's Disease, DBS has lagged in broadening its development, often encountering regulatory hurdles and financial barriers necessary to mount an adequate number of quality trials. In this paper we will consider why DBS-or better yet neuromodulation-has encountered these challenges and contrast this experience with the more successful advance of personalized medicine. We will suggest that personalized medicine and DBS's differential performance can be explained as a matter of timing and complexity. We believe that DBS has struggled because it has been a journey of scientific exploration conducted without a map. In contrast to molecular personalized medicine which followed the mapping of the human genome and the Human Genome Project, DBS preceded plans for the mapping of the human brain. We believe that this sequence has given personalized medicine a distinct advantage and that the fullest potential of DBS will be realized both as a cartographical or electrophysiological probe and as a modality of personalized medicine.

  10. Development of in situ Imaging Probe for Surgical Operation of Deep Brain Stimulation

    NASA Astrophysics Data System (ADS)

    Noda, Toshihiko; Yi-Li, Pan; Tagawa, Ayato; Kobayashi, Takuma; Sasagawa, Kiyotaka; Tokuda, Takashi; Hatanaka, Yumiko; Nakano, Naoki; Kato, Amami; Shiosaka, Sadao; Ohta, Jun

    A novel clinical medical tool for surgical operation of deep brain stimulation was fabricated and evaluated. Dedicated micro-CMOS image sensor was mounted on the tip of quite fine probe tube. The probe has the same diameter as a probe that is utilized in surgical operation. A light source LED was also mounted on the tip of probe. Imaging trial using a postmortem brain was performed with the fabricated probe. The probe can be inserted into a brain easily and take still images of the brain.

  11. Shaping reversibility? Long-term deep brain stimulation in dystonia: the relationship between effects on electrophysiology and clinical symptoms.

    PubMed

    Ruge, Diane; Cif, Laura; Limousin, Patricia; Gonzalez, Victoria; Vasques, Xavier; Hariz, Marwan I; Coubes, Philippe; Rothwell, John C

    2011-07-01

    Long-term results show that benefits from chronic deep brain stimulation in dystonia are maintained for many years. Despite this, the neurophysiological long-term consequences of treatment and their relationship to clinical effects are not well understood. Previous studies have shown that transcranial magnetic stimulation measures of abnormal long-term potentiation-like plasticity (paired associative stimulation) and GABAa-ergic inhibition (short-interval intracortical inhibition), which are seen in dystonia, normalize after several months of deep brain stimulation. In the present study, we examine the same measures in a homogenous group of 10 DYT1 gene-positive patients after long-term deep brain stimulation treatment for at least 4.5 years. Recordings were made 'on' deep brain stimulation and after stopping deep brain stimulation for 2 days. The results show that: (i) on average, prior to discontinuing deep brain stimulation, the paired associative stimulation response was almost absent and short-interval intracortical inhibition was reduced compared with normal. This pattern differs from that in both healthy volunteers and from the typical pattern of enhanced plasticity and reduced inhibition seen in deep brain stimulation-naïve dystonia. It is similar to that seen in untreated Parkinson's disease and may relate to thus far unexplained clinical phenomena like parkinsonian symptoms that have sometimes been observed in patients treated with deep brain stimulation. (ii) Overall, there was no change in average physiological or clinical status when deep brain stimulation was turned off for 2 days, suggesting that deep brain stimulation had produced long-term neural reorganization in the motor system. (iii) However, there was considerable variation between patients. Those who had higher levels of plasticity when deep brain stimulation was 'on', had the best retention of clinical benefit when deep brain stimulation was stopped and vice versa. This may indicate that

  12. Ethical brain stimulation - neuroethics of deep brain stimulation in research and clinical practice.

    PubMed

    Clausen, Jens

    2010-10-01

    Deep brain stimulation (DBS) is a clinically established procedure for treating severe motor symptoms in patients suffering from end-stage Parkinson's disease, dystonia and essential tremor. Currently, it is tested for further indications including psychiatric disorders like major depression and a variety of other diseases. However, ethical issues of DBS demand continuing discussion. Analysing neuroethical and clinical literature, five major topics concerning the ethics of DBS in clinical practice were identified: thorough examination and weighing of risks and benefits; selecting patients fairly; protecting the health of children in paediatric DBS; special issues concerning patients' autonomy; and the normative impact of quality of life measurements. In exploring DBS for further applications, additionally, issues of research ethics have to be considered. Of special importance in this context are questions such as what additional value is generated by the research, how to realise scientific validity, which patients should be included, and how to achieve an acceptable risk-benefit ratio. Patients' benefit is central for ethical evaluation. This criterion can outweigh very serious side-effects, and can make DBS appropriate even in paediatrics. Because standard test procedures evade central aspects of patients' benefits, measuring quality of life should be supplemented by open in-depth interviews to provide a more adequate picture of patients' post-surgical situation. To examine its entire therapeutic potential, further research in DBS is needed. Studies should be based on solid scientific hypotheses and proceed cautiously to benefit severely suffering patients without putting them to undue risks.

  13. Accurate CT-MR image registration for deep brain stimulation: a multi-observer evaluation study

    NASA Astrophysics Data System (ADS)

    Rühaak, Jan; Derksen, Alexander; Heldmann, Stefan; Hallmann, Marc; Meine, Hans

    2015-03-01

    Since the first clinical interventions in the late 1980s, Deep Brain Stimulation (DBS) of the subthalamic nucleus has evolved into a very effective treatment option for patients with severe Parkinson's disease. DBS entails the implantation of an electrode that performs high frequency stimulations to a target area deep inside the brain. A very accurate placement of the electrode is a prerequisite for positive therapy outcome. The assessment of the intervention result is of central importance in DBS treatment and involves the registration of pre- and postinterventional scans. In this paper, we present an image processing pipeline for highly accurate registration of postoperative CT to preoperative MR. Our method consists of two steps: a fully automatic pre-alignment using a detection of the skull tip in the CT based on fuzzy connectedness, and an intensity-based rigid registration. The registration uses the Normalized Gradient Fields distance measure in a multilevel Gauss-Newton optimization framework and focuses on a region around the subthalamic nucleus in the MR. The accuracy of our method was extensively evaluated on 20 DBS datasets from clinical routine and compared with manual expert registrations. For each dataset, three independent registrations were available, thus allowing to relate algorithmic with expert performance. Our method achieved an average registration error of 0.95mm in the target region around the subthalamic nucleus as compared to an inter-observer variability of 1.12 mm. Together with the short registration time of about five seconds on average, our method forms a very attractive package that can be considered ready for clinical use.

  14. The treatment of Parkinson's disease with deep brain stimulation: current issues

    PubMed Central

    Moldovan, Alexia-Sabine; Groiss, Stefan Jun; Elben, Saskia; Südmeyer, Martin; Schnitzler, Alfons; Wojtecki, Lars

    2015-01-01

    Deep brain stimulation has become a well-established symptomatic treatment for Parkinson's disease during the last 25 years. Besides improving motor symptoms and long-term motor complications, positive effects on patients’ mobility, activities of daily living, emotional well-being and health-related quality of life have been recognized. Apart from that, numerous clinical trials analyzed effects on non-motor symptoms and side effects of deep brain stimulation. Several technical issues and stimulation paradigms have been and are still being developed to optimize the therapeutic effects, minimize the side effects and facilitate handling. This review summarizes current therapeutic issues, i.e., patient and target selection, surgical procedure and programming paradigms. In addition it focuses on neuropsychological effects and side effects of deep brain stimulation. PMID:26330809

  15. Cortico-muscular coherence increases with tremor improvement after deep brain stimulation in Parkinson's disease.

    PubMed

    Park, Hame; Kim, June Sic; Paek, Sun Ha; Jeon, Beom Seok; Lee, Jee Young; Chung, Chun Kee

    2009-10-28

    Deep brain stimulation on the subthalamic nucleus has been used to relieve Parkinsonian motor symptoms. However, the underlying physiological mechanism has not been fully understood. Beta-band cortico-muscular coherence increases when healthy humans perform isometric contraction. We hypothesized that this might be a measure of symptomatic improvement in motor performance after subthalamic nucleus deep brain stimulation. Here, we measured the beta-band cortico-muscular coherence with magnetoencephalography from three Parkinson's disease patients. We then compared the coherence values for stimulator on-state and off-state. We found that when the stimulator is on, the beta cortico-muscular coherence elevates significantly for the tremorous hand compared with that when the stimulator is off. This suggests that deep brain stimulation resulted in better cortico-muscular coordination.

  16. A Low Power Micro Deep Brain Stimulation Device for Murine Preclinical Research

    PubMed Central

    Abulseoud, Osama A.; Tye, Susannah J.; Hosain, Md Kamal; Berk, Michael

    2013-01-01

    Deep brain stimulation has emerged as an effective medical procedure that has therapeutic efficacy in a number of neuropsychiatric disorders. Preclinical research involving laboratory animals is being conducted to study the principles, mechanisms, and therapeutic effects of deep brain stimulation. A bottleneck is, however, the lack of deep brain stimulation devices that enable long term brain stimulation in freely moving laboratory animals. Most of the existing devices employ complex circuitry, and are thus bulky. These devices are usually connected to the electrode that is implanted into the animal brain using long fixed wires. In long term behavioral trials, however, laboratory animals often need to continuously receive brain stimulation for days without interruption, which is difficult with existing technology. This paper presents a low power and lightweight portable microdeep brain stimulation device for laboratory animals. Three different configurations of the device are presented as follows: 1) single piece head mountable; 2) single piece back mountable; and 3) two piece back mountable. The device can be easily carried by the animal during the course of a clinical trial, and that it can produce non-stop stimulation current pulses of desired characteristics for over 12 days on a single battery. It employs passive charge balancing to minimize undesirable effects on the target tissue. The results of bench, in-vitro, and in-vivo tests to evaluate the performance of the device are presented. PMID:27170861

  17. Deep brain stimulation effects in dystonia: time course of electrophysiological changes in early treatment.

    PubMed

    Ruge, Diane; Tisch, Stephen; Hariz, Marwan I; Zrinzo, Ludvic; Bhatia, Kailash P; Quinn, Niall P; Jahanshahi, Marjan; Limousin, Patricia; Rothwell, John C

    2011-08-15

    Deep brain stimulation to the internal globus pallidus is an effective treatment for primary dystonia. The optimal clinical effect often occurs only weeks to months after starting stimulation. To better understand the underlying electrophysiological changes in this period, we assessed longitudinally 2 pathophysiological markers of dystonia in patients prior to and in the early treatment period (1, 3, 6 months) after deep brain stimulation surgery. Transcranial magnetic stimulation was used to track changes in short-latency intracortical inhibition, a measure of excitability of GABA(A) -ergic corticocortical connections and long-term potentiation-like synaptic plasticity (as a response to paired associative stimulation). Deep brain stimulation remained on for the duration of the study. Prior to surgery, inhibition was reduced and plasticity increased in patients compared with healthy controls. Following surgery and commencement of deep brain stimulation, short-latency intracortical inhibition increased toward normal levels over the following months with the same monotonic time course as the patients' clinical benefit. In contrast, synaptic plasticity changed rapidly, following a nonmonotonic time course: it was absent early (1 month) after surgery, and then over the following months increased toward levels observed in healthy individuals. We postulate that before surgery preexisting high levels of plasticity form strong memories of dystonic movement patterns. When deep brain stimulation is turned on, it disrupts abnormal basal ganglia signals, resulting in the absent response to paired associative stimulation at 1 month. Clinical benefit is delayed because engrams of abnormal movement persist and take time to normalize. Our observations suggest that plasticity may be a driver of long-term therapeutic effects of deep brain stimulation in dystonia.

  18. [Abscess at the implant site following apical parodontitis. Hardware-related complications of deep brain stimulation].

    PubMed

    Sixel-Döring, F; Trenkwalder, C; Kappus, C; Hellwig, D

    2006-08-01

    Deep brain stimulation of the subthalamic nucleus is an important treatment option for advanced stages of idiopathic Parkinson's disease, leading to significant improvement of motor symptoms in suited patients. Hardware-related complications such as technical malfunction, skin erosion, and infections however cause patient discomfort and additional expense. The patient presented here suffered a putrid infection of the impulse generator site following only local dental treatment of apical parodontitis. Therefore, prophylactic systemic antibiotic treatment is recommended for patients with implanted deep brain stimulation devices in case of operations, dental procedures, or infectious disease.

  19. Calibration of clinical cerebellar and deep brain stimulation systems.

    PubMed Central

    McLellan, D L; Wright, G D; Renouf, F

    1981-01-01

    The increasing use of electrical stimulation of the brain for relief of pain, spasticity and epilepsy has introduced unfamiliar techniques into clinical neurological and neurosurgical practice. In view of the evidence that excessive levels of stimulation can damage brain tissue, it is of great importance to monitor the dose of stimulation. A review of recent clinical papers suggests that many centres do not measure the dose accurately, relying on arbitrary dial settings on external transmitters. This paper reviews that factors that affect the dose received by the patient and suggests methods of measuring them, at operation and subsequently, which should routinely be employed by clinicians implanting stimulators. Images PMID:6973614

  20. Brain Injury in Autonomic, Emotional, and Cognitive Regulatory Areas in Patients with Heart Failure

    PubMed Central

    Woo, Mary A.; Kumar, Rajesh; Macey, Paul M.; Fonarow, Gregg C.; Harper, Ronald M.

    2009-01-01

    Background Heart failure (HF) is accompanied by autonomic, emotional, and cognitive deficits, indicating brain alterations. Reduced gray matter volume and isolated white matter infarcts occur in HF, but the extent of damage is unclear. Using magnetic resonance T2 relaxometry, we evaluated the extent of injury across the entire brain in HF. Methods and Results Proton-density and T2-weighted images were acquired from 13 HF (age 54.6 ± 8.3 years; 69% male, LVEF 0.28 ± 0.07) and 49 controls (50.6 ± 7.3 years, 59% male). Whole brain maps of T2 relaxation times were compared at each voxel between groups using analysis of covariance (covariates: age and gender). Higher T2 relaxation values, indicating injured brain areas (p < 0.005), emerged in sites that control autonomic, analgesic, emotional, and cognitive functions (hypothalamus, raphé magnus, cerebellar cortex, deep nuclei and vermis; temporal, parietal, prefrontal, occipital, insular, cingulate, and ventral frontal cortices; corpus callosum; anterior thalamus; caudate nuclei; anterior fornix and hippocampus). No brain areas showed higher T2 values in control vs. HF subjects. Conclusions Brain structural injury emerged in areas involved in autonomic, pain, mood, language, and cognitive function in HF patients. Comorbid conditions accompanying HF may result from neural injury associated with the syndrome. PMID:19327623

  1. An implantable device for neuropsychiatric rehabilitation by chronic deep brain stimulation in freely moving rats

    PubMed Central

    Wang, Chenguang; Zhang, Fuqiang; Jia, Hong

    2017-01-01

    Successful practice of clinical deep brain stimulation (DBS) calls for basic research on the mechanisms and explorations of new indications in animals. In the article, a new implantable, single-channel, low-power miniature device is proposed, which may transmit pulses chronically into the brain nucleus of freely moving rats. The DBS system consists of an implantable pulse generator (IPG), a bipolar electrode, and an external programmer. The IPG circuit module is assembled as a 20-mm diameter circular board and fixed on a rat’s skull together with an electrode and battery. The rigid electrode may make its fabrication and implantation more easy. The external programmer is designed for bidirectional communication with the IPG by a telecontrol transceiver and adjusts stimulation parameters. A biological validation was performed in which the effects of electrical stimulation in brain nucleus accumbens were detected. The programmed parameters were accurate, implant steady, and power sufficient to allow stimulation for more than 3 months. The larger area of the electrode tip provided a moderate current or charge density and minimized the damage from electrochemistry and pyroelectricity. The rats implanted with the device showed a reduction in morphine-induced conditioned place preference after high-frequency stimulation. In conclusion, the DBS device is based on the criteria of simple technology, minimal invasion, low cost, small in size, light-weight, and wireless controlled. This shows that our DBS device is appropriate and can be used for preclinical studies, indicating its potential utility in the therapy and rehabilitation of neuropsychiatric disorders. PMID:28121810

  2. The reorganization of motor network in hemidystonia from the perspective of deep brain stimulation.

    PubMed

    Gonzalez, Victoria; Le Bars, Emmanuelle; Cif, Laura; van Dokkum, Liesjet E H; Laffont, Isabelle; Bonafé, Alain; Menjot de Champfleur, Nicolas; Zanca, Michel; Coubes, Philippe

    2015-06-01

    Hemidystonia is usually 'secondary' to structural lesions within the cortico-striato-pallido-thalamic or the cerebello-thalamo-cortical loops. Globus pallidus internus Deep Brain Stimulation (GPi DBS) is a validated technique in the treatment of primary dystonia and still under assessment for secondary dystonia. Results of DBS in hemidystonia are limited and heterogeneous. Further knowledge concerning motor network organization after focal brain lesions might contribute to the understanding of this mitigated response to DBS and to the refinement of DBS indications and techniques in secondary dystonia. This study aimed to identify movement-related functional magnetic resonance imaging (fMRI) activation patterns in a group of hemidystonic patients in comparison to healthy controls (HC). Further analysis assessed recruitment pattern in different patient subgroups defined according to clinical and radiological criteria relevant to GPi DBS eligibility (hyperkinetic/hypokinetic and prepallidal/postpallidal). Eleven patients and nine HC underwent fMRI with a block-design alternating active and rest conditions. The motor paradigm consisted of self-paced elbow flexion-extension movements. The main results were as follows: single-subject studies revealed several activation patterns involving motor-related network regions; both ipsilesional and contralesional hemispheres showed abnormal patterns of activity; compared with HC, hemidystonic patients showed decreased brain activity in ipsilesional thalamus, pallidal and temporal areas during affected arm task execution; 'hypokinetic' subgroup was commonly related to widespread bilateral overactivity. This study provides additional arguments for case-by-case assessment of DBS surgery indication and target selection in hemidystonia. Single-lead approach might be unable to modulate a highly disorganized network activity in certain patients with this clinical syndrome.

  3. Developments in deep brain stimulation using time dependent magnetic fields

    SciTech Connect

    Crowther, L.J.; Nlebedim, I.C.; Jiles, D.C.

    2012-03-07

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  4. Developments in deep brain stimulation using time dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Crowther, L. J.; Nlebedim, I. C.; Jiles, D. C.

    2012-04-01

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  5. Cavitation-enhanced nonthermal ablation in deep brain targets: feasibility in a large animal model.

    PubMed

    Arvanitis, Costas D; Vykhodtseva, Natalia; Jolesz, Ferenc; Livingstone, Margaret; McDannold, Nathan

    2016-05-01

    OBJECT Transcranial MRI-guided focused ultrasound (TcMRgFUS) is an emerging noninvasive alternative to surgery and radiosurgery that is undergoing testing for tumor ablation and functional neurosurgery. The method is currently limited to central brain targets due to skull heating and other factors. An alternative ablative approach combines very low intensity ultrasound bursts and an intravenously administered microbubble agent to locally destroy the vasculature. The objective of this work was to investigate whether it is feasible to use this approach at deep brain targets near the skull base in nonhuman primates. METHODS In 4 rhesus macaques, targets near the skull base were ablated using a clinical TcMRgFUS system operating at 220 kHz. Low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes in conjunction with the ultrasound contrast agent Definity, which was administered as a bolus injection or continuous infusion. The acoustic power level was set to be near the inertial cavitation threshold, which was measured using passive monitoring of the acoustic emissions. The resulting tissue effects were investigated with MRI and with histological analysis performed 3 hours to 1 week after sonication. RESULTS Thirteen targets were sonicated in regions next to the optic tract in the 4 animals. Inertial cavitation, indicated by broadband acoustic emissions, occurred at acoustic pressure amplitudes ranging from 340 to 540 kPa. MRI analysis suggested that the lesions had a central region containing red blood cell extravasations that was surrounded by edema. Blood-brain barrier disruption was observed on contrast-enhanced MRI in the lesions and in a surrounding region corresponding to the prefocal area of the FUS system. In histology, lesions consisting of tissue undergoing ischemic necrosis were found in all regions that were sonicated above the inertial cavitation threshold. Tissue damage in prefocal areas was found in several cases, suggesting that in

  6. No Effect of Subthalamic Deep Brain Stimulation on Intertemporal Decision-Making in Parkinson Patients123

    PubMed Central

    Wojtecki, Lars; Storzer, Lena; Schnitzler, Alfons

    2016-01-01

    Abstract Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used treatment for the motor symptoms of Parkinson’s disease (PD). DBS or pharmacological treatment is believed to modulate the tendency to, or reverse, impulse control disorders. Several brain areas involved in impulsivity and reward valuation, such as the prefrontal cortex and striatum, are linked to the STN, and activity in these areas might be affected by STN-DBS. To investigate the effect of STN-DBS on one type of impulsive decision-making—delay discounting (i.e., the devaluation of reward with increasing delay until its receipt)—we tested 40 human PD patients receiving STN-DBS treatment and medication for at least 3 months. Patients were pseudo-randomly assigned to one of four groups to test the effects of DBS on/off states as well as medication on/off states on delay discounting. The delay-discounting task consisted of a series of choices among a smaller. sooner or a larger, later monetary reward. Despite considerable effects of DBS on motor performance, patients receiving STN-DBS did not choose more or less impulsively compared with those in the off-DBS group, as well as when controlling for risk attitude. Although null results have to be interpreted with caution, our findings are of significance to other researchers studying the effects of PD treatment on impulsive decision-making, and they are of clinical relevance for determining the therapeutic benefits of using STN-DBS. PMID:27257622

  7. Evaluation of high-perimeter electrode designs for deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Howell, Bryan; Grill, Warren M.

    2014-08-01

    Objective. Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, complications including infections and mis-programing following surgical replacement of the battery-powered implantable pulse generator adversely impact the safety profile of this therapy. We sought to decrease power consumption and extend battery life by modifying the electrode geometry to increase stimulation efficiency. The specific goal of this study was to determine whether electrode contact perimeter or area had a greater effect on increasing stimulation efficiency. Approach. Finite-element method (FEM) models of eight prototype electrode designs were used to calculate the electrode access resistance, and the FEM models were coupled with cable models of passing axons to quantify stimulation efficiency. We also measured in vitro the electrical properties of the prototype electrode designs and measured in vivo the stimulation efficiency following acute implantation in anesthetized cats. Main results. Area had a greater effect than perimeter on altering the electrode access resistance; electrode (access or dynamic) resistance alone did not predict stimulation efficiency because efficiency was dependent on the shape of the potential distribution in the tissue; and, quantitative assessment of stimulation efficiency required consideration of the effects of the electrode-tissue interface impedance. Significance. These results advance understanding of the features of electrode geometry that are important for designing the next generation of efficient DBS electrodes.

  8. Perturbation and Nonlinear Dynamic Analysis of Acoustic Phonatory Signal in Parkinsonian Patients Receiving Deep Brain Stimulation

    ERIC Educational Resources Information Center

    Lee, Victoria S.; Zhou, Xiao Ping; Rahn, Douglas A., III; Wang, Emily Q.; Jiang, Jack J.

    2008-01-01

    Nineteen PD patients who received deep brain stimulation (DBS), 10 non-surgical (control) PD patients, and 11 non-pathologic age- and gender-matched subjects performed sustained vowel phonations. The following acoustic measures were obtained on the sustained vowel phonations: correlation dimension (D[subscript 2]), percent jitter, percent shimmer,…

  9. The Effect of Deep Brain Stimulation on the Speech Motor System

    ERIC Educational Resources Information Center

    Mücke, Doris; Becker, Johannes; Barbe, Michael T.; Meister, Ingo; Liebhart, Lena; Roettger, Timo B.; Dembek, Till; Timmermann, Lars; Grice, Martine

    2014-01-01

    Purpose: Chronic deep brain stimulation of the nucleus ventralis intermedius is an effective treatment for individuals with medication-resistant essential tremor. However, these individuals report that stimulation has a deleterious effect on their speech. The present study investigates one important factor leading to these effects: the…

  10. ["Psychosurgery" and deep brain stimulation with psychiatric indication. Current and historical aspects].

    PubMed

    Arends, M; Fangerau, H; Winterer, G

    2009-07-01

    Deep brain stimulation is a novel and reversible surgical intervention in the treatment of psychiatric disorders. Recent studies in small samples of patients with depression and obsessive-compulsive disorder have come up with promising results. Neurosurgical interventions in psychiatric patients raise ethical questions in the context of historical experiences with traditional and irreversible psychosurgical procedures that need to be discussed.

  11. Posterior occipitocervical instrumented fusion for dropped head syndrome after deep brain stimulation.

    PubMed

    Pereira, E A C; Wilson-MacDonald, J; Green, A L; Aziz, T Z; Cadoux-Hudson, T A D

    2010-04-01

    We describe dropped head syndrome in a patient with Parkinson's disease receiving subthalamic nucleus deep brain stimulation (DBS). Posterior occipitocervical instrumented fusion after transarticular screw fixation of an odontoid fracture is shown and its rationale explained. Pedunculopontine nucleus DBS as treatment for fall-predominant Parkinson's disease, and globus pallidus interna DBS for dystonia-predominant Parkinson's disease, are discussed.

  12. Cognitive Functioning in Children with Pantothenate-Kinase-Associated Neurodegeneration Undergoing Deep Brain Stimulation

    ERIC Educational Resources Information Center

    Mahoney, Rachel; Selway, Richard; Lin, Jean-Pierre

    2011-01-01

    Aim: To examine the cognitive functioning of young people with pantothenate-kinase-associated neurodegeneration (PKAN) after pallidal deep brain stimulation (DBS). PKAN is characterized by progressive generalized dystonia and has historically been associated with cognitive decline. With growing evidence that DBS can improve motor function in…

  13. Transmission in near-infrared optical windows for deep brain imaging.

    PubMed

    Shi, Lingyan; Sordillo, Laura A; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    Near-infrared (NIR) radiation has been employed using one- and two-photon excitation of fluorescence imaging at wavelengths 650-950 nm (optical window I) for deep brain imaging; however, longer wavelengths in NIR have been overlooked due to a lack of suitable NIR-low band gap semiconductor imaging detectors and/or femtosecond laser sources. This research introduces three new optical windows in NIR and demonstrates their potential for deep brain tissue imaging. The transmittances are measured in rat brain tissue in the second (II, 1,100-1,350 nm), third (III, 1,600-1,870 nm), and fourth (IV, centered at 2,200 nm) NIR optical tissue windows. The relationship between transmission and tissue thickness is measured and compared with the theory. Due to a reduction in scattering and minimal absorption, window III is shown to be the best for deep brain imaging, and windows II and IV show similar but better potential for deep imaging than window I.

  14. Improvement of both dystonia and tics with 60 Hz pallidal deep brain stimulation.

    PubMed

    Hwynn, Nelson; Tagliati, Michele; Alterman, Ron L; Limotai, Natlada; Zeilman, Pamela; Malaty, Irene A; Foote, Kelly D; Morishita, Takashi; Okun, Michael S

    2012-09-01

    Deep brain stimulation has been utilized in both dystonia and in medication refractory Tourette syndrome. We present an interesting case of a patient with a mixture of disabling dystonia and Tourette syndrome whose coexistent dystonia and tics were successfully treated with 60 Hz-stimulation of the globus pallidus region.

  15. Subthalamic Nucleus Deep Brain Stimulation Changes Velopharyngeal Control in Parkinson's Disease

    ERIC Educational Resources Information Center

    Hammer, Michael J.; Barlow, Steven M.; Lyons, Kelly E.; Pahwa, Rajesh

    2011-01-01

    Purpose: Adequate velopharyngeal control is essential for speech, but may be impaired in Parkinson's disease (PD). Bilateral subthalamic nucleus deep brain stimulation (STN DBS) improves limb function in PD, but the effects on velopharyngeal control remain unknown. We tested whether STN DBS would change aerodynamic measures of velopharyngeal…

  16. Review article: anesthetic management of patients undergoing deep brain stimulator insertion.

    PubMed

    Venkatraghavan, Lashmi; Luciano, Michelle; Manninen, Pirjo

    2010-04-01

    Deep brain stimulation is used for the treatment of patients with neurologic disorders who have an alteration of function, such as movement disorders and other chronic illnesses. The insertion of the deep brain stimulator (DBS) is a minimally invasive procedure that includes the placement of electrodes into deep brain structures for microelectrode recordings and intraoperative clinical testing and connection of the DBS to an implanted pacemaker. The anesthetic technique varies depending on the traditions and requirements of each institution performing these procedures and has included monitored anesthesia with local anesthesia, conscious sedation, and general anesthesia. The challenges and demands for the anesthesiologist in the care of these patients relate to the specific concerns of the patients with functional neurologic disorders, the effects of anesthetic drugs on microelectrode recordings, and the requirements of the surgical procedure, which often include an awake and cooperative patient. The purpose of this review is to familiarize anesthesiologists with deep brain stimulation by discussing the mechanism, the effects of anesthetic drugs, and the surgical procedure of DBS insertion, and the perioperative assessment, preparation, intraoperative anesthetic management, and complications in patients with functional neurologic disorders.

  17. Atlas-based segmentation of deep brain structures using non-rigid registration

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Faisal; Mewes, Klaus; Gross, Robert E.; Škrinjar, Oskar

    2008-03-01

    Deep brain structures are frequently used as targets in neurosurgical procedures. However, the boundaries of these structures are often not visible in clinically used MR and CT images. Techniques based on anatomical atlases and indirect targeting are used to infer the location of these targets intraoperatively. Initial errors of such approaches may be up to a few millimeters, which is not negligible. E.g. subthalamic nucleus is approximately 4x6 mm in the axial plane and the diameter of globus pallidus internus is approximately 8 mm, both of which are used as targets in deep brain stimulation surgery. To increase the initial localization accuracy of deep brain structures we have developed an atlas-based segmentation method that can be used for the surgery planning. The atlas is a high resolution MR head scan of a healthy volunteer with nine deep brain structures manually segmented. The quality of the atlas image allowed for the segmentation of the deep brain structures, which is not possible from the clinical MR head scans of patients. The subject image is non-rigidly registered to the atlas image using thin plate splines to represent the transformation and normalized mutual information as a similarity measure. The obtained transformation is used to map the segmented structures from the atlas to the subject image. We tested the approach on five subjects. The quality of the atlas-based segmentation was evaluated by visual inspection of the third and lateral ventricles, putamena, and caudate nuclei, which are visible in the subject MR images. The agreement of these structures for the five tested subjects was approximately 1 to 2 mm.

  18. Effects of deep brain stimulation in dyskinetic cerebral palsy: a meta-analysis.

    PubMed

    Koy, Anne; Hellmich, Martin; Pauls, K Amande M; Marks, Warren; Lin, Jean-Pierre; Fricke, Oliver; Timmermann, Lars

    2013-05-01

    Secondary dystonia encompasses a heterogeneous group with different etiologies. Cerebral palsy is the most common cause. Pharmacological treatment is often unsatisfactory. There are only limited data on the therapeutic outcomes of deep brain stimulation in dyskinetic cerebral palsy. The published literature regarding deep brain stimulation and secondary dystonia was reviewed in a meta-analysis to reevaluate the effect on cerebral palsy. The Burke-Fahn-Marsden Dystonia Rating Scale movement score was chosen as the primary outcome measure. Outcome over time was evaluated and summarized by mixed-model repeated-measures analysis, paired Student t test, and Pearson's correlation coefficient. Twenty articles comprising 68 patients with cerebral palsy undergoing deep brain stimulation assessed by the Burke-Fahn-Marsden Dystonia Rating Scale were identified. Most articles were case reports reflecting great variability in the score and duration of follow-up. The mean Burke-Fahn-Marsden Dystonia Rating Scale movement score was 64.94 ± 25.40 preoperatively and dropped to 50.5 ± 26.77 postoperatively, with a mean improvement of 23.6% (P < .001) at a median follow-up of 12 months. The mean Burke-Fahn-Marsden Dystonia Rating Scale disability score was 18.54 ± 6.15 preoperatively and 16.83 ± 6.42 postoperatively, with a mean improvement of 9.2% (P < .001). There was a significant negative correlation between severity of dystonia and clinical outcome (P < .05). Deep brain stimulation can be an effective treatment option for dyskinetic cerebral palsy. In view of the heterogeneous data, a prospective study with a large cohort of patients in a standardized setting with a multidisciplinary approach would be helpful in further evaluating the role of deep brain stimulation in cerebral palsy. © 2013 Movement Disorder Society.

  19. Regional anatomy of the pedunculopontine nucleus: relevance for deep brain stimulation.

    PubMed

    Fournier-Gosselin, Marie-Pierre; Lipsman, Nir; Saint-Cyr, Jean A; Hamani, Clement; Lozano, Andres M

    2013-09-01

    The pedunculopontine nucleus (PPN) is currently being investigated as a potential deep brain stimulation target to improve gait and posture in Parkinson's disease. This review examines the complex anatomy of the PPN region and suggests a functional mapping of the surrounding nuclei and fiber tracts that may serve as a guide to a more accurate placement of electrodes while avoiding potentially adverse effects. The relationships of the PPN were examined in different human brain atlases. Schematic representations of those structures in the vicinity of the PPN were generated and correlated with their potential stimulation effects. By providing a functional map and representative schematics of the PPN region, we hope to optimize the placement of deep brain stimulation electrodes, thereby maximizing safety and clinical efficacy.

  20. A Miniature, Fiber-Coupled, Wireless, Deep-Brain Optogenetic Stimulator.

    PubMed

    Lee, Steven T; Williams, Pete A; Braine, Catherine E; Lin, Da-Ting; John, Simon W M; Irazoqui, Pedro P

    2015-07-01

    Controlled, wireless neuromodulation using miniature implantable devices is a long-sought goal in neuroscience. It will allow many studies and treatments that are otherwise impractical. Recent studies demonstrate advances in neuromodulation through optogenetics, but test animals are typically tethered, severely limiting experimental possibilities. Existing nontethered optical stimulators either deliver light through a cranial window limiting applications to superficial layers of the brain, are not widely accessible due to highly specialized fabrication techniques, or do not demonstrate robust and flexible control of the optical power emitted. To overcome these limitations, we have developed a novel, miniature, wireless, deep-brain, modular optical stimulator with controllable stimulation parameters for use in optogenetic experiments. We demonstrate its use in a behavioral experiment targeting a deep brain structure in freely behaving mice. To allow its rapid and widespread adoption, we developed this stimulator using commercially available components. The modular and accessible optogenetic stimulator presented advances the wireless toolset available for freely behaving animal experiments.

  1. An Evaluation of Neuroplasticity and Behavior After Deep Brain Stimulation of the Nucleus Accumbens in an Animal Model of Depression

    PubMed Central

    Falowski, Steven M.; Sharan, Ashwini; Reyes, Beverly A. S.; Sikkema, Carl; Szot, Patricia; Van Bockstaele, Elisabeth J.

    2015-01-01

    BACKGROUND Recent interest has demonstrated the nucleus accumbens (NAcc) as a potential target for the treatment of depression with deep brain stimulation (DBS). OBJECTIVE To demonstrate that DBS of the NAcc is an effective treatment modality for depression and that chemical and structural changes associated with these behavioral changes are markers of neuroplasticity. METHODS A deep brain stimulator was placed in the NAcc of male Wistar-Kyoto rats. Groups were divided into sham (no stimulation), intermittent (3 h/d for 2 weeks), or continuous (constant stimulation for 2 weeks). Exploratory and anxietylike behaviors were evaluated with the open-field test before and after stimulation. Tissue samples of the prefrontal cortex (PFC) were processed with Western blot analysis of markers of noradrenergic activity that included the noradrenergic synthesizing enzyme tyrosine hydroxylase. Analysis of tissue levels for catecholamines was achieved with high-performance liquid chromatography. Morphological properties of cortical pyramidal neurons were assessed with Golgi-Cox staining. RESULTS Subjects undergoing intermittent and continuous stimulation of the NAcc exhibited an increase in exploratory behavior and reduced anxietylike behaviors. Tyrosine hydroxylase expression levels were decreased in the PFC after intermittent and continuous DBS, and dopamine and norepinephrine levels were decreased after continuous stimulation. Golgi-Cox staining indicated that DBS increased the length of apical and basilar dendrites in pyramidal neurons of the PFC. CONCLUSION Deep brain stimulation induces behavioral improvement in and neurochemical and morphological alterations of the PFC that demonstrate changes within the circuitry of the brain different from the target area of stimulation. This observed dendritic plasticity may underlie the therapeutic efficacy of this treatment. PMID:21566538

  2. Brain areas and pathways in the regulation of glucose metabolism.

    PubMed

    Diepenbroek, Charlene; Serlie, Mireille J; Fliers, Eric; Kalsbeek, Andries; la Fleur, Susanne E

    2013-01-01

    Glucose is the most important source of fuel for the brain and its concentration must be kept within strict boundaries to ensure the organism's optimal fitness. To maintain glucose homeostasis, an optimal balance between glucose uptake and glucose output is required. Besides managing acute changes in plasma glucose concentrations, the brain controls a daily rhythm in glucose concentrations. The various nuclei within the hypothalamus that are involved in the control of both these processes are well known. However, novel studies indicate an additional role for brain areas that are originally appreciated in other processes than glucose metabolism. Therefore, besides the classic hypothalamic pathways, we will review cortico-limbic brain areas and their role in glucose metabolism.

  3. Decoupling of the brain's default mode network during deep sleep.

    PubMed

    Horovitz, Silvina G; Braun, Allen R; Carr, Walter S; Picchioni, Dante; Balkin, Thomas J; Fukunaga, Masaki; Duyn, Jeff H

    2009-07-07

    The recent discovery of a circuit of brain regions that is highly active in the absence of overt behavior has led to a quest for revealing the possible function of this so-called default-mode network (DMN). A very recent study, finding similarities in awake humans and anesthetized primates, has suggested that DMN activity might not simply reflect ongoing conscious mentation but rather a more general form of network dynamics typical of complex systems. Here, by performing functional MRI in humans, it is shown that a natural, sleep-induced reduction of consciousness is reflected in altered correlation between DMN network components, most notably a reduced involvement of frontal cortex. This suggests that DMN may play an important role in the sustenance of conscious awareness.

  4. Camptocormia and deep brain stimulation: The interesting overlapping etiologies and the therapeutic role of subthalamic nucleus-deep brain stimulation in Parkinson disease with camptocormia

    PubMed Central

    Ekmekci, Hakan; Kaptan, Hulagu

    2016-01-01

    Background: Camptocormia is known as “bent spine syndrome” and defined as a forward hyperflexion. The most common etiologic factor is related with the movement disorders, mainly in Parkinson's disease (PD). Case Description: We present the case of a 51-year-old woman who has been followed with PD for the last 10 years, and also under the therapy for PD. An unappreciated correlation low back pain with camptocormia developed. She underwent deep brain stimulation (DBS) in the subthalamic nucleus bilaterally and improved her bending posture. Conclusion: The relationship between the DBS and camptocormia is discussed in this unique condition. PMID:26958425

  5. Deep brain stimulation improves behavior and modulates neural circuits in a rodent model of schizophrenia.

    PubMed

    Bikovsky, Lior; Hadar, Ravit; Soto-Montenegro, María Luisa; Klein, Julia; Weiner, Ina; Desco, Manuel; Pascau, Javier; Winter, Christine; Hamani, Clement

    2016-09-01

    Schizophrenia is a debilitating psychiatric disorder with a significant number of patients not adequately responding to treatment. Deep brain stimulation (DBS) is a surgical technique currently investigated for medically-refractory psychiatric disorders. Here, we use the poly I:C rat model of schizophrenia to study the effects of medial prefrontal cortex (mPFC) and nucleus accumbens (Nacc) DBS on two behavioral schizophrenia-like deficits, i.e. sensorimotor gating, as reflected by disrupted prepulse inhibition (PPI), and attentional selectivity, as reflected by disrupted latent inhibition (LI). In addition, the neurocircuitry influenced by DBS was studied using FDG PET. We found that mPFC- and Nacc-DBS alleviated PPI and LI abnormalities in poly I:C offspring, whereas Nacc- but not mPFC-DBS disrupted PPI and LI in saline offspring. In saline offspring, mPFC-DBS increased metabolism in the parietal cortex, striatum, ventral hippocampus and Nacc, while reducing it in the brainstem, cerebellum, hypothalamus and periaqueductal gray. Nacc-DBS, on the other hand, increased activity in the ventral hippocampus and olfactory bulb and reduced it in the septal area, brainstem, periaqueductal gray and hypothalamus. In poly I:C offspring changes in metabolism following mPFC-DBS were similar to those recorded in saline offspring, except for a reduced activity in the brainstem and hypothalamus. In contrast, Nacc-DBS did not induce any statistical changes in brain metabolism in poly I:C offspring. Our study shows that mPFC- or Nacc-DBS delivered to the adult progeny of poly I:C treated dams improves deficits in PPI and LI. Despite common behavioral responses, stimulation in the two targets induced different metabolic effects.

  6. Deep Brain Stimulation for Obesity: From a Theoretical Framework to Practical Application

    PubMed Central

    Nangunoori, Raj K.; Tomycz, Nestor D.; Oh, Michael Y.; Whiting, Donald M.

    2016-01-01

    Obesity remains a pervasive global health problem. While there are a number of nonsurgical and surgical options for treatment, the incidence of obesity continues to increase at an alarming rate. The inability to curtail the growing rise of the obesity epidemic may be related to a combination of increased food availability and palatability. Research into feeding behavior has yielded a number of insights into the homeostatic and reward mechanisms that govern feeding. However, there remains a gap between laboratory investigations of feeding physiology in animals and translation into meaningful treatment options for humans. In addition, laboratory investigation may not be able to recapitulate all aspects of human food consumption. In a landmark pilot study of deep brain stimulation (DBS) of the lateral hypothalamic area for obesity, we found that there was an increase in resting metabolic rate as well as a decreased urge to eat. In this review, the authors will review some of the work relating to feeding physiology and research surrounding two nodes involved in feeding homeostasis, nucleus accumbens (NAc) and hypothalamus, and use this to provide a framework for future investigations of DBS as a viable therapeutic modality for obesity. PMID:26819774

  7. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens

    PubMed Central

    Albaugh, Daniel L.; Salzwedel, Andrew; Van Den Berge, Nathalie; Gao, Wei; Stuber, Garret D.; Shih, Yen-Yu Ian

    2016-01-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action. PMID:27601003

  8. Carbon Nanofiber Nanoelectrodes for Neural Stimulation and Chemical Detection: The Era of "Smart" Deep Brain Stimulation

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica E.

    2016-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  9. Carbon Nanofiber Nanoelectrodes for Neural Stimulation and Chemical Detection: The Era of Smart Deep Brain Stimulation

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica E.

    2016-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report two studies using vertically aligned CNF nanoelectrodes for biomedical applications. CNF arrays are investigated as neural stimulation and neurotransmitter recording electrodes for application in deep brain stimulation (DBS). Polypyrrole coated CNF nanoelectrodes have shown great promise as stimulating electrodes due to their large surface area, low impedance, biocompatibility and capacity for highly localized stimulation. CNFs embedded in SiO2 have been used as sensing electrodes for neurotransmitter detection. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable "smart" therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  10. Influence of heterogeneous and anisotropic tissue conductivity on electric field distribution in deep brain stimulation.

    PubMed

    Aström, Mattias; Lemaire, Jean-Jacques; Wårdell, Karin

    2012-01-01

    The aim was to quantify the influence of heterogeneous isotropic and heterogeneous anisotropic tissue on the spatial distribution of the electric field during deep brain stimulation (DBS). Three finite element tissue models were created of one patient treated with DBS. Tissue conductivity was modelled as (I) homogeneous isotropic, (II) heterogeneous isotropic based on MRI, and (III) heterogeneous anisotropic based on diffusion tensor MRI. Modelled DBS electrodes were positioned in the subthalamic area, the pallidum, and the internal capsule in each tissue model. Electric fields generated during DBS were simulated for each model and target-combination and visualized with isolevels at 0.20 (inner), and 0.05 V mm(-1) (outer). Statistical and vector analysis was used for evaluation of the distribution of the electric field. Heterogeneous isotropic tissue altered the spatial distribution of the electric field by up to 4% at inner, and up to 10% at outer isolevel. Heterogeneous anisotropic tissue influenced the distribution of the electric field by up to 18 and 15% at each isolevel, respectively. The influence of heterogeneous and anisotropic tissue on the electric field may be clinically relevant in anatomic regions that are functionally subdivided and surrounded by multiple fibres of passage.

  11. Barriers to investigator-initiated deep brain stimulation and device research

    PubMed Central

    Malone, Donald; Okun, Michael S.; Booth, Joan; Machado, Andre G.

    2014-01-01

    The success of device-based research in the clinical neurosciences has overshadowed a critical and emerging problem in the biomedical research environment in the United States. Neuroprosthetic devices, such as deep brain stimulation (DBS), have been shown in humans to be promising technologies for scientific exploration of neural pathways and as powerful treatments. Large device companies have, over the past several decades, funded and developed major research programs. However, both the structure of clinical trial funding and the current regulation of device research threaten investigator-initiated efforts in neurologic disorders. The current atmosphere dissuades clinical investigators from pursuing formal and prospective research with novel devices or novel indications. We review our experience in conducting a federally funded, investigator-initiated, device-based clinical trial that utilized DBS for thalamic pain syndrome. We also explore barriers that clinical investigators face in conducting device-based clinical trials, particularly in early-stage studies or small disease populations. We discuss 5 specific areas for potential reform and integration: (1) alternative pathways for device approval; (2) eliminating right of reference requirements; (3) combining federal grant awards with regulatory approval; (4) consolidation of oversight for human subjects research; and (5) private insurance coverage for clinical trials. Careful reformulation of regulatory policy and funding mechanisms is critical for expanding investigator-initiated device research, which has great potential to benefit science, industry, and, most importantly, patients. PMID:24670888

  12. Pedunculopontine Nucleus Region Deep Brain Stimulation in Parkinson Disease: Surgical Anatomy and Terminology

    PubMed Central

    Hamani, Clement; Aziz, Tipu; Bloem, Bastiaan R.; Brown, Peter; Chabardes, Stephan; Coyne, Terry; Foote, Kelly; Garcia-Rill, Edgar; Hirsch, Etienne C.; Lozano, Andres M.; Mazzone, Paolo A.M.; Okun, Michael S.; Hutchison, William; Silburn, Peter; Zrinzo, Ludvic; Alam, Mesbah; Goetz, Laurent; Pereira, Erlick; Rughani, Anand; Thevathasan, Wesley; Moro, Elena; Krauss, Joachim K.

    2017-01-01

    Several lines of evidence over the last few years have been important in ascertaining that the pedunculopontine nucleus (PPN) region could be considered as a potential target for deep brain stimulation (DBS) to treat freezing and other problems as part of a spectrum of gait disorders in Parkinson disease and other akinetic movement disorders. Since the introduction of PPN DBS, a variety of clinical studies have been published. Most indicate improvements in freezing and falls in patients who are severely affected by these problems. The results across patients, however, have been variable, perhaps reflecting patient selection, heterogeneity in target selection and differences in surgical methodology and stimulation settings. Here we outline both the accumulated knowledge and the domains of uncertainty in surgical anatomy and terminology. Specific topics were assigned to groups of experts, and this work was accumulated and reviewed by the executive committee of the working group. Areas of disagreement were discussed and modified accordingly until a consensus could be reached. We demonstrate that both the anatomy and the functional role of the PPN region need further study. The borders of the PPN and of adjacent nuclei differ when different brainstem atlases and atlas slices are compared. It is difficult to delineate precisely the PPN pars dissipata from the nucleus cuneiformis, as these structures partially overlap. This lack of clarity contributes to the difficulty in targeting and determining the exact localization of the electrodes implanted in patients with akinetic gait disorders. Future clinical studies need to consider these issues. PMID:27723662

  13. Non-invasive Parenchymal, Vascular and Metabolic High-frequency Ultrasound and Photoacoustic Rat Deep Brain Imaging

    PubMed Central

    Giustetto, Pierangela; Filippi, Miriam; Castano, Mauro; Terreno, Enzo

    2015-01-01

    Photoacoustics and high frequency ultrasound stands out as powerful tools for neurobiological applications enabling high-resolution imaging on the central nervous system of small animals. However, transdermal and transcranial neuroimaging is frequently affected by low sensitivity, image aberrations and loss of space resolution, requiring scalp or even skull removal before imaging. To overcome this challenge, a new protocol is presented to gain significant insights in brain hemodynamics by photoacoustic and high-frequency ultrasounds imaging with the animal skin and skull intact. The procedure relies on the passage of ultrasound (US) waves and laser directly through the fissures that are naturally present on the animal cranium. By juxtaposing the imaging transducer device exactly in correspondence to these selected areas where the skull has a reduced thickness or is totally absent, one can acquire high quality deep images and explore internal brain regions that are usually difficult to anatomically or functionally describe without an invasive approach. By applying this experimental procedure, significant data can be collected in both sonic and optoacoustic modalities, enabling to image the parenchymal and the vascular anatomy far below the head surface. Deep brain features such as parenchymal convolutions and fissures separating the lobes were clearly visible. Moreover, the configuration of large and small blood vessels was imaged at several millimeters of depth, and precise information were collected about blood fluxes, vascular stream velocities and the hemoglobin chemical state. This repertoire of data could be crucial in several research contests, ranging from brain vascular disease studies to experimental techniques involving the systemic administration of exogenous chemicals or other objects endowed with imaging contrast enhancement properties. In conclusion, thanks to the presented protocol, the US and PA techniques become an attractive noninvasive

  14. Non-invasive parenchymal, vascular and metabolic high-frequency ultrasound and photoacoustic rat deep brain imaging.

    PubMed

    Giustetto, Pierangela; Filippi, Miriam; Castano, Mauro; Terreno, Enzo

    2015-03-02

    Photoacoustics and high frequency ultrasound stands out as powerful tools for neurobiological applications enabling high-resolution imaging on the central nervous system of small animals. However, transdermal and transcranial neuroimaging is frequently affected by low sensitivity, image aberrations and loss of space resolution, requiring scalp or even skull removal before imaging. To overcome this challenge, a new protocol is presented to gain significant insights in brain hemodynamics by photoacoustic and high-frequency ultrasounds imaging with the animal skin and skull intact. The procedure relies on the passage of ultrasound (US) waves and laser directly through the fissures that are naturally present on the animal cranium. By juxtaposing the imaging transducer device exactly in correspondence to these selected areas where the skull has a reduced thickness or is totally absent, one can acquire high quality deep images and explore internal brain regions that are usually difficult to anatomically or functionally describe without an invasive approach. By applying this experimental procedure, significant data can be collected in both sonic and optoacoustic modalities, enabling to image the parenchymal and the vascular anatomy far below the head surface. Deep brain features such as parenchymal convolutions and fissures separating the lobes were clearly visible. Moreover, the configuration of large and small blood vessels was imaged at several millimeters of depth, and precise information were collected about blood fluxes, vascular stream velocities and the hemoglobin chemical state. This repertoire of data could be crucial in several research contests, ranging from brain vascular disease studies to experimental techniques involving the systemic administration of exogenous chemicals or other objects endowed with imaging contrast enhancement properties. In conclusion, thanks to the presented protocol, the US and PA techniques become an attractive noninvasive

  15. Role of electrode design on the volume of tissue activated during deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Butson, Christopher R.; McIntyre, Cameron C.

    2006-03-01

    Deep brain stimulation (DBS) is an established clinical treatment for a range of neurological disorders. Depending on the disease state of the patient, different anatomical structures such as the ventral intermediate nucleus of the thalamus (VIM), the subthalamic nucleus or the globus pallidus are targeted for stimulation. However, the same electrode design is currently used in nearly all DBS applications, even though substantial morphological and anatomical differences exist between the various target nuclei. The fundamental goal of this study was to develop a theoretical understanding of the impact of changes in the DBS electrode contact geometry on the volume of tissue activated (VTA) during stimulation. Finite element models of the electrodes and surrounding medium were coupled to cable models of myelinated axons to predict the VTA as a function of stimulation parameter settings and electrode design. Clinical DBS electrodes have cylindrical contacts 1.27 mm in diameter (d) and 1.5 mm in height (h). Our results show that changes in contact height and diameter can substantially modulate the size and shape of the VTA, even when contact surface area is preserved. Electrode designs with a low aspect ratio (d/h) maximize the VTA by providing greater spread of the stimulation parallel to the electrode shaft without sacrificing lateral spread. The results of this study provide the foundation necessary to customize electrode design and VTA shape for specific anatomical targets, and an example is presented for the VIM. A range of opportunities exist to engineer DBS systems to maximize stimulation of the target area while minimizing stimulation of non-target areas. Therefore, it may be possible to improve therapeutic benefit and minimize side effects from DBS with the design of target-specific electrodes.

  16. Role of electrode design on the volume of tissue activated during deep brain stimulation.

    PubMed

    Butson, Christopher R; McIntyre, Cameron C

    2006-03-01

    Deep brain stimulation (DBS) is an established clinical treatment for a range of neurological disorders. Depending on the disease state of the patient, different anatomical structures such as the ventral intermediate nucleus of the thalamus (VIM), the subthalamic nucleus or the globus pallidus are targeted for stimulation. However, the same electrode design is currently used in nearly all DBS applications, even though substantial morphological and anatomical differences exist between the various target nuclei. The fundamental goal of this study was to develop a theoretical understanding of the impact of changes in the DBS electrode contact geometry on the volume of tissue activated (VTA) during stimulation. Finite element models of the electrodes and surrounding medium were coupled to cable models of myelinated axons to predict the VTA as a function of stimulation parameter settings and electrode design. Clinical DBS electrodes have cylindrical contacts 1.27 mm in diameter (d) and 1.5 mm in height (h). Our results show that changes in contact height and diameter can substantially modulate the size and shape of the VTA, even when contact surface area is preserved. Electrode designs with a low aspect ratio (d/h) maximize the VTA by providing greater spread of the stimulation parallel to the electrode shaft without sacrificing lateral spread. The results of this study provide the foundation necessary to customize electrode design and VTA shape for specific anatomical targets, and an example is presented for the VIM. A range of opportunities exist to engineer DBS systems to maximize stimulation of the target area while minimizing stimulation of non-target areas. Therefore, it may be possible to improve therapeutic benefit and minimize side effects from DBS with the design of target-specific electrodes.

  17. Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Ganghun; Nagarajan, Naveen; Pastuzyn, Elissa; Jenks, Kyle; Capecchi, Mario; Shepherd, Jason; Menon, Rajesh

    2017-03-01

    Here we demonstrate widefield (field diameter = 200 μm) fluorescence microscopy and video imaging inside the rodent brain at a depth of 2 mm using a simple surgical glass needle (cannula) of diameter 0.22 mm as the primary optical element. The cannula guides excitation light into the brain and the fluorescence signal out of the brain. Concomitant image-processing algorithms are utilized to convert the spatially scrambled images into fluorescent images and video. The small size of the cannula enables minimally invasive imaging, while the long length (>2 mm) allow for deep-brain imaging with no additional complexity in the optical system. Since no scanning is involved, widefield fluorescence video at the native frame rate of the camera can be achieved.

  18. Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy

    PubMed Central

    Kim, Ganghun; Nagarajan, Naveen; Pastuzyn, Elissa; Jenks, Kyle; Capecchi, Mario; Shepherd, Jason; Menon, Rajesh

    2017-01-01

    Here we demonstrate widefield (field diameter = 200 μm) fluorescence microscopy and video imaging inside the rodent brain at a depth of 2 mm using a simple surgical glass needle (cannula) of diameter 0.22 mm as the primary optical element. The cannula guides excitation light into the brain and the fluorescence signal out of the brain. Concomitant image-processing algorithms are utilized to convert the spatially scrambled images into fluorescent images and video. The small size of the cannula enables minimally invasive imaging, while the long length (>2 mm) allow for deep-brain imaging with no additional complexity in the optical system. Since no scanning is involved, widefield fluorescence video at the native frame rate of the camera can be achieved. PMID:28317915

  19. Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy.

    PubMed

    Kim, Ganghun; Nagarajan, Naveen; Pastuzyn, Elissa; Jenks, Kyle; Capecchi, Mario; Shepherd, Jason; Menon, Rajesh

    2017-03-20

    Here we demonstrate widefield (field diameter = 200 μm) fluorescence microscopy and video imaging inside the rodent brain at a depth of 2 mm using a simple surgical glass needle (cannula) of diameter 0.22 mm as the primary optical element. The cannula guides excitation light into the brain and the fluorescence signal out of the brain. Concomitant image-processing algorithms are utilized to convert the spatially scrambled images into fluorescent images and video. The small size of the cannula enables minimally invasive imaging, while the long length (>2 mm) allow for deep-brain imaging with no additional complexity in the optical system. Since no scanning is involved, widefield fluorescence video at the native frame rate of the camera can be achieved.

  20. Novel fingerprinting method characterises the necessary and sufficient structural connectivity from deep brain stimulation electrodes for a successful outcome

    NASA Astrophysics Data System (ADS)

    Fernandes, Henrique M.; Van Hartevelt, Tim J.; Boccard, Sandra G. J.; Owen, Sarah L. F.; Cabral, Joana; Deco, Gustavo; Green, Alex L.; Fitzgerald, James J.; Aziz, Tipu Z.; Kringelbach, Morten L.

    2015-01-01

    Deep brain stimulation (DBS) is a remarkably effective clinical tool, used primarily for movement disorders. DBS relies on precise targeting of specific brain regions to rebalance the oscillatory behaviour of whole-brain neural networks. Traditionally, DBS targeting has been based upon animal models (such as MPTP for Parkinson’s disease) but has also been the result of serendipity during human lesional neurosurgery. There are, however, no good animal models of psychiatric disorders such as depression and schizophrenia, and progress in this area has been slow. In this paper, we use advanced tractography combined with whole-brain anatomical parcellation to provide a rational foundation for identifying the connectivity ‘fingerprint’ of existing, successful DBS targets. This knowledge can then be used pre-surgically and even potentially for the discovery of novel targets. First, using data from our recent case series of cingulate DBS for patients with treatment-resistant chronic pain, we demonstrate how to identify the structural ‘fingerprints’ of existing successful and unsuccessful DBS targets in terms of their connectivity to other brain regions, as defined by the whole-brain anatomical parcellation. Second, we use a number of different strategies to identify the successful fingerprints of structural connectivity across four patients with successful outcomes compared with two patients with unsuccessful outcomes. This fingerprinting method can potentially be used pre-surgically to account for a patient’s individual connectivity and identify the best DBS target. Ultimately, our novel fingerprinting method could be combined with advanced whole-brain computational modelling of the spontaneous dynamics arising from the structural changes in disease, to provide new insights and potentially new targets for hitherto impenetrable neuropsychiatric disorders.

  1. [Deep Vein Thrombosis Prophylaxis in Patients with Traumatic Brain Injury].

    PubMed

    Silva, Vinícius Trindade Gomes da; Iglesio, Ricardo; Paiva, Wellingson Silva; Siqueira, Mario Gilberto; Teixeira, Manoel Jacobsen

    2015-01-01

    Introdução: O risco de trombose venosa profunda encontra-se aumentado em doentes vítimas de traumatismo cranioencefálico, mas a profilaxia da trombose venosa profunda se confronta com o possível risco de piora de lesões hemorrágicas relacionados ao traumatismo cranioencefálico. Neste artigo apresentamos uma revisão crítica do tema e propomos um protocolo de profilaxia para estes doentes.Material e Métodos: Foi realizada uma pesquisa na base de dados Medline/PubMed, Cochrane, e Scielo de janeiro de 1998 a janeiro de 2014 com a expressão de busca âÄúdeep venous thrombosis and prophylaxis and traumatic brain injuryâÄù. Foram encontrados 44 artigos usando os termos MeSH definidos. Destes foram selecionados 23 artigos, usando como critérios: publicação em inglês ou português, fase aguda do traumatismo cranioencefálico moderado e grave, profilaxia mecânica não invasiva ou química.Resultados: O traumatismo cranioencefálico é um fator de risco para trombose venosa profunda e tromboembolismo pulmonar. A chance de trombose venosa profunda é 2,59 vezes maior em doentes com traumatismo cranioencefálico. A prevalência de trombose venosa profunda e embolia pulmonar em doentes que sofreram traumatismo cranioencefálico é de 20%, podendo atingir 30% dos doentes em alguns estudos.Discussão e Conclusão: As diversas formas de traumatismo de forma isolada constituem fator de risco para trombose venosa profunda e tromboembolismo pulmonar. Ensaios clínicos são necessários para estabelecer a eficácia da profilaxia e o melhor momento de iniciar medicação para trombose venosa profunda em doentes com traumatismo craniencefálico.

  2. Deep brain stimulation for Parkinson's disease prior to L-dopa treatment: A case report

    PubMed Central

    Servello, Domenico; Saleh, Christian; Bona, Alberto R.; Zekaj, Edvin; Zanaboni, Carlotta; Porta, Mauro

    2016-01-01

    Background: Leva-dopa (L-dopa) is the gold-standard treatment for Parkinson's disease (PD). Deep brain stimulation is generally reserved for patients who become refractory to l-dopa treatment. Case Description: We present a male patient with a 9-year course of PD who at 53 years of age preferred deep brain stimulation (DBS) of the subthalamic nucleus over initial l-dopa treatment. The patient argued that he wanted to avoid the serious adverse effects of l-dopa, which would have presented within his time of full professional activity. DBS resulted in significant motor improvement lasting for 6 years without l-dopa treatment. Conclusion: Large multicentre-based international trials with long follow-ups are needed to answer the effectiveness of early DBS in PD. PMID:27990314

  3. A PC-based system for predicting movement from deep brain signals in Parkinson's disease.

    PubMed

    Loukas, Constantinos; Brown, Peter

    2012-07-01

    There is much current interest in deep brain stimulation (DBS) of the subthalamic nucleus (STN) for the treatment of Parkinson's disease (PD). This type of surgery has enabled unprecedented access to deep brain signals in the awake human. In this paper we present an easy-to-use computer based system for recording, displaying, archiving, and processing electrophysiological signals from the STN. The system was developed for predicting self-paced hand-movements in real-time via the online processing of the electrophysiological activity of the STN. It is hoped that such a computerised system might have clinical and experimental applications. For example, those sites within the STN most relevant to the processing of voluntary movement could be identified through the predictive value of their activities with respect to the timing of future movement.

  4. Development of Demand-Controlled Deep Brain Stimulation Techniques Based on Stochastic Phase Resetting

    NASA Astrophysics Data System (ADS)

    Tass, Peter A.

    2003-05-01

    Stimulation techniques are discussed here which make it possible to effectively desynchronize a synchronized cluster of globally coupled phase oscillators in the presence of noise. To this end composite stimuli are used which consist of a first, stronger stimulus followed by a second, weaker stimulus after a constant time delay. The first stimulus controls the dynamics of the cluster by resetting it, whereas the second stimulus desynchronizes the cluster by hitting it in a vulnerable state. The first, resetting stimulus can be a strong single pulse, a high-frequency pulse train or a low-frequency pulse train. The cluster's resynchronization can effectively be blocked by repeated administration of a composite stimulus. Demand controlled deep brain stimulation with these desynchronizing stimulation techniques is suggested for the therapy of patients suffering from tremor-dominant Parkinson's disease or essential tremor as a milder and more efficient therapy compared to the standard permanent high-frequency deep brain stimulation.

  5. Quantitative analysis of axonal fiber activation evoked by deep brain stimulation via activation density heat maps

    PubMed Central

    Hartmann, Christian J.; Chaturvedi, Ashutosh; Lujan, J. Luis

    2015-01-01

    Background: Cortical modulation is likely to be involved in the various therapeutic effects of deep brain stimulation (DBS). However, it is currently difficult to predict the changes of cortical modulation during clinical adjustment of DBS. Therefore, we present a novel quantitative approach to estimate anatomical regions of DBS-evoked cortical modulation. Methods: Four different models of the subthalamic nucleus (STN) DBS were created to represent variable electrode placements (model I: dorsal border of the posterolateral STN; model II: central posterolateral STN; model III: central anteromedial STN; model IV: dorsal border of the anteromedial STN). Axonal fibers of passage near each electrode location were reconstructed using probabilistic tractography and modeled using multi-compartment cable models. Stimulation-evoked activation of local axon fibers and corresponding cortical projections were modeled and quantified. Results: Stimulation at the border of the STN (models I and IV) led to a higher degree of fiber activation and associated cortical modulation than stimulation deeply inside the STN (models II and III). A posterolateral target (models I and II) was highly connected to cortical areas representing motor function. Additionally, model I was also associated with strong activation of fibers projecting to the cerebellum. Finally, models III and IV showed a dorsoventral difference of preferentially targeted prefrontal areas (models III: middle frontal gyrus; model IV: inferior frontal gyrus). Discussion: The method described herein allows characterization of cortical modulation across different electrode placements and stimulation parameters. Furthermore, knowledge of anatomical distribution of stimulation-evoked activation targeting cortical regions may help predict efficacy and potential side effects, and therefore can be used to improve the therapeutic effectiveness of individual adjustments in DBS patients. PMID:25713510

  6. Deep Brain Stimulation in Huntington’s Disease—Preliminary Evidence on Pathophysiology, Efficacy and Safety

    PubMed Central

    Wojtecki, Lars; Groiss, Stefan Jun; Hartmann, Christian Johannes; Elben, Saskia; Omlor, Sonja; Schnitzler, Alfons; Vesper, Jan

    2016-01-01

    Huntington’s disease (HD) is one of the most disabling degenerative movement disorders, as it not only affects the motor system but also leads to cognitive disabilities and psychiatric symptoms. Deep brain stimulation (DBS) of the pallidum is a promising symptomatic treatment targeting the core motor symptom: chorea. This article gives an overview of preliminary evidence on pathophysiology, safety and efficacy of DBS in HD. PMID:27589813

  7. Deep brain stimulation of the pedunculopontine nucleus in Parkinson's disease. Preliminary experience at Oxford.

    PubMed

    Pereira, E A; Muthusamy, K A; De Pennington, N; Joint, C A; Aziz, T Z

    2008-01-01

    Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) is a novel neurosurgical therapy developed to address symptoms of gait freezing and postural instability in Parkinson's disease and related disorders. Here, we summarize our non-human primate and neuroimaging research of relevance to our surgical targeting of the PPN. We also describe our clinical experience of PPN DBS with greatest motor improvements achieved by stimulation at low frequencies.

  8. Low-frequency deep brain stimulation for Parkinson's disease: Great expectation or false hope?

    PubMed

    di Biase, Lazzaro; Fasano, Alfonso

    2016-07-01

    The long-term efficacy of subthalamic deep brain stimulation for Parkinson's disease is not always retained, and many patients lose the improvement achieved during the "second honeymoon" following surgery. Deep brain stimulation is a versatile tool, as stimulation parameters may undergo a fine-tuning depending on clinical needs. Among them, frequency is the parameter that leads to more complex scenarios because there is no generalizable relationship between its modulation and the overall clinical response, which also depends on the specific considered sign. High-frequency stimulation (>100 Hz) has shown to be effective in improving most parkinsonian signs, particularly the levodopa-responsive ones. However, its effect on axial signs (such as balance, gait, speech, or swallowing) may not be sustained, minimal, or even detrimental. For these reasons, several studies have explored the effectiveness of low-frequency stimulation (generally 60 or 80 Hz). Methods, results, and especially interpretations of these studies are quite variable. Although the use of low-frequency stimulation certainly opens new avenues in the field of deep brain stimulation, after having gathered all the available evidence in patients with subthalamic implants, our conclusion is that it might be clinically useful mainly when it lessens the detrimental effects of high-frequency stimulation. © 2016 International Parkinson and Movement Disorder Society.

  9. Brain Areas Responsible for Vigilance: An EEG Source Imaging Study.

    PubMed

    Kim, Jung-Hoon; Kim, Do-Won; Im, Chang-Hwan

    2017-01-04

    Vigilance, sometimes referred to as sustained attention, is an important type of human attention as it is closely associated with cognitive activities required in various daily-life situations. Although many researchers have investigated which brain areas control the maintenance of vigilance, findings have been inconsistent. We hypothesized that this inconsistency might be due to the use of different experimental paradigms in the various studies. We found that most of the previous studies used paradigms that included specific cognitive tasks requiring a high cognitive load, which could complicate identification of brain areas associated only with vigilance. To minimize the influence of cognitive processes other than vigilance on the analysis results, we adopted the d2-test of attention, which is a well-known neuropsychological test of attention that does not require high cognitive load, and searched for brain areas at which EEG source activities were temporally correlated with fluctuation of vigilance over a prolonged period of time. EEG experiments conducted with 31 young adults showed that left prefrontal cortex activity was significantly correlated with vigilance variation in the delta, beta1, beta2, and gamma frequency bands, but not the theta and alpha frequency bands. Our study results suggest that the left prefrontal cortex plays a key role in vigilance modulation, and can therefore be used to monitor individual vigilance changes over time or serve as a potential target of noninvasive brain stimulation.

  10. Nonthermal ablation of deep brain targets: A simulation study on a large animal model

    PubMed Central

    Top, Can Barış; White, P. Jason; McDannold, Nathan J.

    2016-01-01

    Purpose: Thermal ablation with transcranial MRI-guided focused ultrasound (FUS) is currently limited to central brain targets because of heating and other beam effects caused by the presence of the skull. Recently, it was shown that it is possible to ablate tissues without depositing thermal energy by driving intravenously administered microbubbles to inertial cavitation using low-duty-cycle burst sonications. A recent study demonstrated that this ablation method could ablate tissue volumes near the skull base in nonhuman primates without thermally damaging the nearby bone. However, blood–brain disruption was observed in the prefocal region, and in some cases, this region contained small areas of tissue damage. The objective of this study was to analyze the experimental model with simulations and to interpret the cause of these effects. Methods: The authors simulated prior experiments where nonthermal ablation was performed in the brain in anesthetized rhesus macaques using a 220 kHz clinical prototype transcranial MRI-guided FUS system. Low-duty-cycle sonications were applied at deep brain targets with the ultrasound contrast agent Definity. For simulations, a 3D pseudospectral finite difference time domain tool was used. The effects of shear mode conversion, focal steering, skull aberrations, nonlinear propagation, and the presence of skull base on the pressure field were investigated using acoustic and elastic wave propagation models. Results: The simulation results were in agreement with the experimental findings in the prefocal region. In the postfocal region, however, side lobes were predicted by the simulations, but no effects were evident in the experiments. The main beam was not affected by the different simulated scenarios except for a shift of about 1 mm in peak position due to skull aberrations. However, the authors observed differences in the volume, amplitude, and distribution of the side lobes. In the experiments, a single element passive

  11. Deep sequencing analysis of the developing mouse brain reveals a novel microRNA

    PubMed Central

    2011-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNAs that can exert multilevel inhibition/repression at a post-transcriptional or protein synthesis level during disease or development. Characterisation of miRNAs in adult mammalian brains by deep sequencing has been reported previously. However, to date, no small RNA profiling of the developing brain has been undertaken using this method. We have performed deep sequencing and small RNA analysis of a developing (E15.5) mouse brain. Results We identified the expression of 294 known miRNAs in the E15.5 developing mouse brain, which were mostly represented by let-7 family and other brain-specific miRNAs such as miR-9 and miR-124. We also discovered 4 putative 22-23 nt miRNAs: mm_br_e15_1181, mm_br_e15_279920, mm_br_e15_96719 and mm_br_e15_294354 each with a 70-76 nt predicted pre-miRNA. We validated the 4 putative miRNAs and further characterised one of them, mm_br_e15_1181, throughout embryogenesis. Mm_br_e15_1181 biogenesis was Dicer1-dependent and was expressed in E3.5 blastocysts and E7 whole embryos. Embryo-wide expression patterns were observed at E9.5 and E11.5 followed by a near complete loss of expression by E13.5, with expression restricted to a specialised layer of cells within the developing and early postnatal brain. Mm_br_e15_1181 was upregulated during neurodifferentiation of P19 teratocarcinoma cells. This novel miRNA has been identified as miR-3099. Conclusions We have generated and analysed the first deep sequencing dataset of small RNA sequences of the developing mouse brain. The analysis revealed a novel miRNA, miR-3099, with potential regulatory effects on early embryogenesis, and involvement in neuronal cell differentiation/function in the brain during late embryonic and early neonatal development. PMID:21466694

  12. Parkinson's disease progression at 30 years: a study of subthalamic deep brain-stimulated patients.

    PubMed

    Merola, Aristide; Zibetti, Maurizio; Angrisano, Serena; Rizzi, Laura; Ricchi, Valeria; Artusi, Carlo A; Lanotte, Michele; Rizzone, Mario G; Lopiano, Leonardo

    2011-07-01

    Clinical findings in Parkinson's disease suggest that most patients progressively develop disabling non-levodopa-responsive symptoms during the course of the disease. Nevertheless, several heterogeneous factors, such as clinical phenotype, age at onset and genetic aspects may influence the long-term clinical picture. In order to investigate the main features of long-term Parkinson's disease progression, we studied a cohort of 19 subjects treated with subthalamic nucleus deep brain stimulation after >20 years of disease, reporting clinical and neuropsychological data up to a mean of 30 years from disease onset. This group of patients was characterized by an early onset of disease, with a mean age of 38.63 years at Parkinson's disease onset, which was significantly lower than in the other long-term subthalamic nucleus deep brain stimulation follow-up cohorts reported in the literature. All subjects were regularly evaluated by a complete Unified Parkinson's Disease Rating Scale, a battery of neuropsychological tests and a clinical interview, intended to assess the rate of non-levodopa-responsive symptom progression. Clinical data were available for all patients at presurgical baseline and at 1, 3 and 5 years from the subthalamic nucleus deep brain stimulation surgical procedure, while follow-up data after >7 years were additionally reported in a subgroup of 14 patients. The clinical and neuropsychological performance progressively worsened during the course of follow-up; 64% of patients gradually developed falls, 86% dysphagia, 57% urinary incontinence and 43% dementia. A progressive worsening of motor symptoms was observed both in 'medication-ON' condition and in 'stimulation-ON' condition, with a parallel reduction in the synergistic effect of 'medication-ON/stimulation-ON' condition. Neuropsychological data also showed a gradual decline in the performances of all main cognitive domains, with an initial involvement of executive functions, followed by the impairment

  13. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease.

    PubMed

    de Hemptinne, Coralie; Swann, Nicole C; Ostrem, Jill L; Ryapolova-Webb, Elena S; San Luciano, Marta; Galifianakis, Nicholas B; Starr, Philip A

    2015-05-01

    Deep brain stimulation (DBS) is increasingly applied for the treatment of brain disorders, but its mechanism of action remains unknown. Here we evaluate the effect of basal ganglia DBS on cortical function using invasive cortical recordings in Parkinson's disease (PD) patients undergoing DBS implantation surgery. In the primary motor cortex of PD patients, neuronal population spiking is excessively synchronized to the phase of network oscillations. This manifests in brain surface recordings as exaggerated coupling between the phase of the beta rhythm and the amplitude of broadband activity. We show that acute therapeutic DBS reversibly reduces phase-amplitude interactions over a similar time course as that of the reduction in parkinsonian motor signs. We propose that DBS of the basal ganglia improves cortical function by alleviating excessive beta phase locking of motor cortex neurons.

  14. Temporally Coordinated Deep Brain Stimulation in the Dorsal and Ventral Striatum Synergistically Enhances Associative Learning

    PubMed Central

    Katnani, Husam A.; Patel, Shaun R.; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T.; Eskandar, Emad N.

    2016-01-01

    The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect. PMID:26725509

  15. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease

    PubMed Central

    de Hemptinne, Coralie; Swann, Nicole; Ostrem, Jill L.; Ryapolova-Webb, Elena S.; Luciano, Marta San; Galifianakis, Nicholas; Starr, Philip A.

    2015-01-01

    Deep brain stimulation (DBS) is increasingly applied to the treatment of brain disorders, but its mechanism of action remains unknown. Here, we evaluate the effect of basal ganglia DBS on cortical function using invasive cortical recordings in Parkinson's disease (PD) patients undergoing DBS implantation surgery. In the primary motor cortex of PD patients neuronal population spiking is excessively synchronized to the phase of network oscillations. This manifests in brain surface recordings as exaggerated coupling between the phase of the β rhythm and the amplitude of broadband activity. We show that acute therapeutic DBS reversibly reduces phase-amplitude interactions over a similar time course as reduction in parkinsonian motor signs. We propose that DBS of the basal ganglia improves cortical function by alleviating excessive β phase locking of motor cortex neurons. PMID:25867121

  16. Current perspectives on deep brain stimulation for severe neurological and psychiatric disorders

    PubMed Central

    Kocabicak, Ersoy; Temel, Yasin; Höllig, Anke; Falkenburger, Björn; Tan, Sonny KH

    2015-01-01

    Deep brain stimulation (DBS) has become a well-accepted therapy to treat movement disorders, including Parkinson’s disease, essential tremor, and dystonia. Long-term follow-up studies have demonstrated sustained improvement in motor symptoms and quality of life. DBS offers the opportunity to selectively modulate the targeted brain regions and related networks. Moreover, stimulation can be adjusted according to individual patients’ demands, and stimulation is reversible. This has led to the introduction of DBS as a treatment for further neurological and psychiatric disorders and many clinical studies investigating the efficacy of stimulating various brain regions in order to alleviate severe neurological or psychiatric disorders including epilepsy, major depression, and obsessive–compulsive disorder. In this review, we provide an overview of accepted and experimental indications for DBS therapy and the corresponding anatomical targets. PMID:25914538

  17. Temporally Coordinated Deep Brain Stimulation in the Dorsal and Ventral Striatum Synergistically Enhances Associative Learning.

    PubMed

    Katnani, Husam A; Patel, Shaun R; Kwon, Churl-Su; Abdel-Aziz, Samer; Gale, John T; Eskandar, Emad N

    2016-01-04

    The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect.

  18. Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features

    PubMed Central

    Horikawa, Tomoyasu; Kamitani, Yukiyasu

    2017-01-01

    Dreaming is generally thought to be generated by spontaneous brain activity during sleep with patterns common to waking experience. This view is supported by a recent study demonstrating that dreamed objects can be predicted from brain activity during sleep using statistical decoders trained with stimulus-induced brain activity. However, it remains unclear whether and how visual image features associated with dreamed objects are represented in the brain. In this study, we used a deep neural network (DNN) model for object recognition as a proxy for hierarchical visual feature representation, and DNN features for dreamed objects were analyzed with brain decoding of fMRI data collected during dreaming. The decoders were first trained with stimulus-induced brain activity labeled with the feature values of the stimulus image from multiple DNN layers. The decoders were then used to decode DNN features from the dream fMRI data, and the decoded features were compared with the averaged features of each object category calculated from a large-scale image database. We found that the feature values decoded from the dream fMRI data positively correlated with those associated with dreamed object categories at mid- to high-level DNN layers. Using the decoded features, the dreamed object category could be identified at above-chance levels by matching them to the averaged features for candidate categories. The results suggest that dreaming recruits hierarchical visual feature representations associated with objects, which may support phenomenal aspects of dream experience. PMID:28197089

  19. Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features.

    PubMed

    Horikawa, Tomoyasu; Kamitani, Yukiyasu

    2017-01-01

    Dreaming is generally thought to be generated by spontaneous brain activity during sleep with patterns common to waking experience. This view is supported by a recent study demonstrating that dreamed objects can be predicted from brain activity during sleep using statistical decoders trained with stimulus-induced brain activity. However, it remains unclear whether and how visual image features associated with dreamed objects are represented in the brain. In this study, we used a deep neural network (DNN) model for object recognition as a proxy for hierarchical visual feature representation, and DNN features for dreamed objects were analyzed with brain decoding of fMRI data collected during dreaming. The decoders were first trained with stimulus-induced brain activity labeled with the feature values of the stimulus image from multiple DNN layers. The decoders were then used to decode DNN features from the dream fMRI data, and the decoded features were compared with the averaged features of each object category calculated from a large-scale image database. We found that the feature values decoded from the dream fMRI data positively correlated with those associated with dreamed object categories at mid- to high-level DNN layers. Using the decoded features, the dreamed object category could be identified at above-chance levels by matching them to the averaged features for candidate categories. The results suggest that dreaming recruits hierarchical visual feature representations associated with objects, which may support phenomenal aspects of dream experience.

  20. Detection of Alzheimer’s disease amyloid-beta plaque deposition by deep brain impedance profiling

    NASA Astrophysics Data System (ADS)

    Béduer, Amélie; Joris, Pierre; Mosser, Sébastien; Fraering, Patrick C.; Renaud, Philippe

    2015-04-01

    Objective. Alzheimer disease (AD) is the most common form of neurodegenerative disease in elderly people. Toxic brain amyloid-beta (Aß) aggregates and ensuing cell death are believed to play a central role in the pathogenesis of the disease. In this study, we investigated if we could monitor the presence of these aggregates by performing in situ electrical impedance spectroscopy measurements in AD model mice brains. Approach. In this study, electrical impedance spectroscopy measurements were performed post-mortem in APPPS1 transgenic mice brains. This transgenic model is commonly used to study amyloidogenesis, a pathological hallmark of AD. We used flexible probes with embedded micrometric electrodes array to demonstrate the feasibility of detecting senile plaques composed of Aß peptides by localized impedance measurements. Main results. We particularly focused on deep brain structures, such as the hippocampus. Ex vivo experiments using brains from young and old APPPS1 mice lead us to show that impedance measurements clearly correlate with the percentage of Aβ plaque load in the brain tissues. We could monitor the effects of aging in the AD APPPS1 mice model. Significance. We demonstrated that a localized electrical impedance measurement constitutes a valuable technique to monitor the presence of Aβ-plaques, which is complementary with existing imaging techniques. This method does not require prior Aβ staining, precluding the risk of variations in tissue uptake of dyes or tracers, and consequently ensuring reproducible data collection.

  1. How Localized are Language Brain Areas? A Review of Brodmann Areas Involvement in Oral Language.

    PubMed

    Ardila, Alfredo; Bernal, Byron; Rosselli, Monica

    2016-02-01

    The interest in understanding how language is "localized" in the brain has existed for centuries. Departing from seven meta-analytic studies of functional magnetic resonance imaging activity during the performance of different language activities, it is proposed here that there are two different language networks in the brain: first, a language reception/understanding system, including a "core Wernicke's area" involved in word recognition (BA21, BA22, BA41, and BA42), and a fringe or peripheral area ("extended Wernicke's area:" BA20, BA37, BA38, BA39, and BA40) involved in language associations (associating words with other information); second, a language production system ("Broca's complex:" BA44, BA45, and also BA46, BA47, partially BA6-mainly its mesial supplementary motor area-and extending toward the basal ganglia and the thalamus). This paper additionally proposes that the insula (BA13) plays a certain coordinating role in interconnecting these two brain language systems.

  2. Improved sequence learning with subthalamic nucleus deep brain stimulation: evidence for treatment-specific network modulation.

    PubMed

    Mure, Hideo; Tang, Chris C; Argyelan, Miklos; Ghilardi, Maria-Felice; Kaplitt, Michael G; Dhawan, Vijay; Eidelberg, David

    2012-02-22

    We used a network approach to study the effects of anti-parkinsonian treatment on motor sequence learning in humans. Eight Parkinson's disease (PD) patients with bilateral subthalamic nucleus (STN) deep brain stimulation underwent H(2)(15)O positron emission tomography (PET) imaging to measure regional cerebral blood flow (rCBF) while they performed kinematically matched sequence learning and movement tasks at baseline and during stimulation. Network analysis revealed a significant learning-related spatial covariance pattern characterized by consistent increases in subject expression during stimulation (p = 0.008, permutation test). The network was associated with increased activity in the lateral cerebellum, dorsal premotor cortex, and parahippocampal gyrus, with covarying reductions in the supplementary motor area (SMA) and orbitofrontal cortex. Stimulation-mediated increases in network activity correlated with concurrent improvement in learning performance (p < 0.02). To determine whether similar changes occurred during dopaminergic pharmacotherapy, we studied the subjects during an intravenous levodopa infusion titrated to achieve a motor response equivalent to stimulation. Despite consistent improvement in motor ratings during infusion, levodopa did not alter learning performance or network activity. Analysis of learning-related rCBF in network regions revealed improvement in baseline abnormalities with STN stimulation but not levodopa. These effects were most pronounced in the SMA. In this region, a consistent rCBF response to stimulation was observed across subjects and trials (p = 0.01), although the levodopa response was not significant. These findings link the cognitive treatment response in PD to changes in the activity of a specific cerebello-premotor cortical network. Selective modulation of overactive SMA-STN projection pathways may underlie the improvement in learning found with stimulation.

  3. Disruption in proprioception from long-term thalamic deep brain stimulation: a pilot study

    PubMed Central

    Semrau, Jennifer A.; Herter, Troy M.; Kiss, Zelma H.; Dukelow, Sean P.

    2015-01-01

    Deep brain stimulation (DBS) is an excellent treatment for tremor and is generally thought to be reversible by turning off stimulation. For tremor, DBS is implanted in the ventrointermedius (Vim) nucleus of the thalamus, a region that relays proprioceptive information for movement sensation (kinaesthesia). Gait disturbances have been observed with bilateral Vim DBS, but the long-term effects on proprioceptive processing are unknown. We aimed to determine whether Vim DBS surgical implantation or stimulation leads to proprioceptive deficits in the upper limb. We assessed two groups of tremor subjects on measures of proprioception (kinaesthesia, position sense) and motor function using a robotic exoskeleton. In the first group (Surgery), we tested patients before and after implantation of Vim DBS, but before DBS was turned on to determine if proprioceptive deficits were inherent to tremor or caused by DBS implantation. In the second group (Stim), we tested subjects with chronically implanted Vim DBS ON and OFF stimulation. Compared to controls, there were no proprioceptive deficits before or after DBS implantation in the Surgery group. Surprisingly, those that received chronic long-term stimulation (LT-stim, 3–10 years) displayed significant proprioceptive deficits ON and OFF stimulation not present in subjects with chronic short-term stimulation (ST-stim, 0.5–2 years). LT-stim had significantly larger variability and reduced workspace area during the position sense assessment. During the kinesthetic assessment, LT-stim made significantly larger directional errors and consistently underestimated the speed of the robot, despite generating normal movement speeds during motor assessment. Chronic long-term Vim DBS may potentially disrupt proprioceptive processing, possibly inducing irreversible plasticity in the Vim nucleus and/or its network connections. Our findings in the upper limb may help explain some of the gait disturbances seen by others following Vim DBS

  4. Evaluation of Interactive Visualization on Mobile Computing Platforms for Selection of Deep Brain Stimulation Parameters.

    PubMed

    Butson, Christopher R; Tamm, Georg; Jain, Sanket; Fogal, Thomas; Krüger, Jens

    2013-01-01

    In recent years, there has been significant growth in the use of patient-specific models to predict the effects of neuromodulation therapies such as deep brain stimulation (DBS). However, translating these models from a research environment to the everyday clinical workflow has been a challenge, primarily due to the complexity of the models and the expertise required in specialized visualization software. In this paper, we deploy the interactive visualization system ImageVis3D Mobile, which has been designed for mobile computing devices such as the iPhone or iPad, in an evaluation environment to visualize models of Parkinson's disease patients who received DBS therapy. Selection of DBS settings is a significant clinical challenge that requires repeated revisions to achieve optimal therapeutic response, and is often performed without any visual representation of the stimulation system in the patient. We used ImageVis3D Mobile to provide models to movement disorders clinicians and asked them to use the software to determine: 1) which of the four DBS electrode contacts they would select for therapy; and 2) what stimulation settings they would choose. We compared the stimulation protocol chosen from the software versus the stimulation protocol that was chosen via clinical practice (independent of the study). Lastly, we compared the amount of time required to reach these settings using the software versus the time required through standard practice. We found that the stimulation settings chosen using ImageVis3D Mobile were similar to those used in standard of care, but were selected in drastically less time. We show how our visualization system, available directly at the point of care on a device familiar to the clinician, can be used to guide clinical decision making for selection of DBS settings. In our view, the positive impact of the system could also translate to areas other than DBS.

  5. Theoretical Optimization of Stimulation Strategies for a Directionally Segmented Deep Brain Stimulation Electrode Array

    PubMed Central

    Xiao, YiZi; Peña, Edgar; Johnson, Matthew D.

    2016-01-01

    Goal Programming deep brain stimulation (DBS) systems currently involves a clinician manually sweeping through a range of stimulus parameter settings to identify the setting that delivers the most robust therapy for a patient. With the advent of DBS arrays with a higher number and density of electrodes, this trial and error process becomes unmanageable in a clinical setting. This study developed a computationally efficient, model-based algorithm to estimate an electrode configuration that will most strongly activate tissue within a volume of interest. Methods The cerebellar-receiving area of motor thalamus, the target for treating essential tremor with DBS, was rendered from imaging data and discretized into grid points aligned in approximate afferent and efferent axonal pathway orientations. A finite-element model (FEM) was constructed to simulate the volumetric tissue voltage during DBS. We leveraged the principle of voltage superposition to formulate a convex optimization-based approach to maximize activating function (AF) values at each grid point (via three different criteria), hence increasing the overall probability of action potential initiation and neuronal entrainment within the target volume. Results For both efferent and afferent pathways, this approach achieved global optima within several seconds. The optimal electrode configuration and resulting AF values differed across each optimization criteria and between axonal orientations. Conclusion This approach only required a set of FEM simulations equal to the number of DBS array electrodes, and could readily accommodate anisotropic-inhomogeneous tissue conductances or other axonal orientations. Significance The algorithm provides an efficient, flexible determination of optimal electrode configurations for programming DBS arrays. PMID:26208259

  6. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine reinstatement through local and antidromic activation.

    PubMed

    Vassoler, Fair M; White, Samantha L; Hopkins, Thomas J; Guercio, Leonardo A; Espallergues, Julie; Berton, Olivier; Schmidt, Heath D; Pierce, R Christopher

    2013-09-04

    Accumbal deep brain stimulation (DBS) is a promising therapeutic modality for the treatment of addiction. Here, we demonstrate that DBS in the nucleus accumbens shell, but not the core, attenuates cocaine priming-induced reinstatement of drug seeking, an animal model of relapse, in male Sprague Dawley rats. Next, we compared DBS of the shell with pharmacological inactivation. Results indicated that inactivation using reagents that influenced (lidocaine) or spared (GABA receptor agonists) fibers of passage blocked cocaine reinstatement when administered into the core but not the shell. It seems unlikely, therefore, that intrashell DBS influences cocaine reinstatement by inactivating this nucleus or the fibers coursing through it. To examine potential circuit-wide changes, c-Fos immunohistochemistry was used to examine neuronal activation following DBS of the nucleus accumbens shell. Intrashell DBS increased c-Fos induction at the site of stimulation as well as in the infralimbic cortex, but had no effect on the dorsal striatum, prelimbic cortex, or ventral pallidum. Recent evidence indicates that accumbens DBS antidromically stimulates axon terminals, which ultimately activates GABAergic interneurons in cortical areas that send afferents to the shell. To test this hypothesis, GABA receptor agonists (baclofen/muscimol) were microinjected into the anterior cingulate, and prelimbic or infralimbic cortices before cocaine reinstatement. Pharmacological inactivation of all three medial prefrontal cortical subregions attenuated the reinstatement of cocaine seeking. These results are consistent with DBS of the accumbens shell attenuating cocaine reinstatement via local activation and/or activation of GABAergic interneurons in the medial prefrontal cortex via antidromic stimulation of cortico-accumbal afferents.

  7. Deep ensemble learning of sparse regression models for brain disease diagnosis.

    PubMed

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2017-04-01

    Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer's disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call 'Deep Ensemble Sparse Regression Network.' To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature.

  8. Human brain activity patterns beyond the isoelectric line of extreme deep coma.

    PubMed

    Kroeger, Daniel; Florea, Bogdan; Amzica, Florin

    2013-01-01

    The electroencephalogram (EEG) reflects brain electrical activity. A flat (isoelectric) EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irreversible structural brain damage, one of the criteria for the assessment of brain death. In this study we use EEG recordings for humans on the one hand, and on the other hand double simultaneous intracellular recordings in the cortex and hippocampus, combined with EEG, in cats. They serve to demonstrate that a novel brain phenomenon is observable in both humans and animals during coma that is deeper than the one reflected by the isoelectric EEG, and that this state is characterized by brain activity generated within the hippocampal formation. This new state was induced either by medication applied to postanoxic coma (in human) or by application of high doses of anesthesia (isoflurane in animals) leading to an EEG activity of quasi-rhythmic sharp waves which henceforth we propose to call ν-complexes (Nu-complexes). Using simultaneous intracellular recordings in vivo in the cortex and hippocampus (especially in the CA3 region) we demonstrate that ν-complexes arise in the hippocampus and are subsequently transmitted to the cortex. The genesis of a hippocampal ν-complex depends upon another hippocampal activity, known as ripple activity, which is not overtly detectable at the cortical level. Based on our observations, we propose a scenario of how self-oscillations in hippocampal neurons can lead to a whole brain phenomenon during coma.

  9. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.

    2003-01-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  10. Frameless Stereotactic Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device for Resection of Deep Brain Lesions: Technical Report

    PubMed Central

    Chakraborty, Shamik; Lall, Rohan; Fanous, Andrew A; Boockvar, John; Langer, David J

    2017-01-01

    The surgical management of deep brain tumors is often challenging due to the limitations of stereotactic needle biopsies and the morbidity associated with transcortical approaches. We present a novel microscopic navigational technique utilizing the Viewsite Brain Access System (VBAS) (Vycor Medical, Boca Raton, FL, USA) for resection of a deep parietal periventricular high-grade glioma as well as another glioma and a cavernoma with no related morbidity. The approach utilized a navigational tracker mounted on a microscope, which was set to the desired trajectory and depth. It allowed gentle continuous insertion of the VBAS directly to a deep lesion under continuous microscopic visualization, increasing safety by obviating the need to look up from the microscope and thus avoiding loss of trajectory. This technique has broad value for the resection of a variety of deep brain lesions. PMID:28331774

  11. Response to Deep Brain Stimulation in Three Brain Targets with Implications in Mental Disorders: A PET Study in Rats

    PubMed Central

    Casquero-Veiga, Marta; Hadar, Ravit; Pascau, Javier; Winter, Christine; Desco, Manuel; Soto-Montenegro, María Luisa

    2016-01-01

    Objective To investigate metabolic changes in brain networks by deep brain stimulation (DBS) of the medial prefrontal cortex (mPFC), nucleus accumbens (NAcc) and dorsomedial thalamus (DM) using positron emission tomography (PET) in naïve rats. Methods 43 male Wistar rats underwent stereotactic surgery and concentric bipolar platinum-iridium electrodes were bilaterally implanted into one of the three brain sites. [18F]-fluoro-2-deoxy-glucose-PET (18FDG-PET) and computed tomography (CT) scans were performed at the 7th (without DBS) and 9th day (with DBS) after surgery. Stimulation period matched tracer uptake period. Images were acquired with a small-animal PET-CT scanner. Differences in glucose uptake between groups were assessed with Statistical Parametric Mapping. Results DBS induced site-specific metabolic changes, although a common increased metabolic activity in the piriform cortex was found for the three brain targets. mPFC-DBS increased metabolic activity in the striatum, temporal and amygdala, and reduced it in the cerebellum, brainstem (BS) and periaqueductal gray matter (PAG). NAcc-DBS increased metabolic activity in the subiculum and olfactory bulb, and decreased it in the BS, PAG, septum and hypothalamus. DM-DBS increased metabolic activity in the striatum, NAcc and thalamus and decreased it in the temporal and cingulate cortex. Conclusions DBS induced significant changes in 18FDG uptake in brain regions associated with the basal ganglia-thalamo-cortical circuitry. Stimulation of mPFC, NAcc and DM induced different patterns of 18FDG uptake despite interacting with the same circuitries. This may have important implications to DBS research suggesting individualized target selection according to specific neural modulatory requirements. PMID:28033356

  12. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder.

    PubMed

    Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.

  13. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder

    PubMed Central

    Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain. PMID:27057543

  14. Deep Convolutional Neural Networks for Multi-Modality Isointense Infant Brain Image Segmentation

    PubMed Central

    Zhang, Wenlu; Li, Rongjian; Deng, Houtao; Wang, Li; Lin, Weili; Ji, Shuiwang; Shen, Dinggang

    2015-01-01

    The segmentation of infant brain tissue images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) plays an important role in studying early brain development in health and disease. In the isointense stage (approximately 6–8 months of age), WM and GM exhibit similar levels of intensity in both T1 and T2 MR images, making the tissue segmentation very challenging. Only a small number of existing methods have been designed for tissue segmentation in this isointense stage; however, they only used a single T1 or T2 images, or the combination of T1 and T2 images. In this paper, we propose to use deep convolutional neural networks (CNNs) for segmenting isointense stage brain tissues using multi-modality MR images. CNNs are a type of deep models in which trainable filters and local neighborhood pooling operations are applied alternatingly on the raw input images, resulting in a hierarchy of increasingly complex features. Specifically, we used multimodality information from T1, T2, and fractional anisotropy (FA) images as inputs and then generated the segmentation maps as outputs. The multiple intermediate layers applied convolution, pooling, normalization, and other operations to capture the highly nonlinear mappings between inputs and outputs. We compared the performance of our approach with that of the commonly used segmentation methods on a set of manually segmented isointense stage brain images. Results showed that our proposed model significantly outperformed prior methods on infant brain tissue segmentation. In addition, our results indicated that integration of multi-modality images led to significant performance improvement. PMID:25562829

  15. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation.

    PubMed

    Zhang, Wenlu; Li, Rongjian; Deng, Houtao; Wang, Li; Lin, Weili; Ji, Shuiwang; Shen, Dinggang

    2015-03-01

    The segmentation of infant brain tissue images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) plays an important role in studying early brain development in health and disease. In the isointense stage (approximately 6-8 months of age), WM and GM exhibit similar levels of intensity in both T1 and T2 MR images, making the tissue segmentation very challenging. Only a small number of existing methods have been designed for tissue segmentation in this isointense stage; however, they only used a single T1 or T2 images, or the combination of T1 and T2 images. In this paper, we propose to use deep convolutional neural networks (CNNs) for segmenting isointense stage brain tissues using multi-modality MR images. CNNs are a type of deep models in which trainable filters and local neighborhood pooling operations are applied alternatingly on the raw input images, resulting in a hierarchy of increasingly complex features. Specifically, we used multi-modality information from T1, T2, and fractional anisotropy (FA) images as inputs and then generated the segmentation maps as outputs. The multiple intermediate layers applied convolution, pooling, normalization, and other operations to capture the highly nonlinear mappings between inputs and outputs. We compared the performance of our approach with that of the commonly used segmentation methods on a set of manually segmented isointense stage brain images. Results showed that our proposed model significantly outperformed prior methods on infant brain tissue segmentation. In addition, our results indicated that integration of multi-modality images led to significant performance improvement.

  16. Metallothionein-I induction by stress in specific brain areas.

    PubMed

    Hidalgo, J; Campmany, L; Martí, O; Armario, A

    1991-10-01

    The distribution of metallothionein-I (MT) in several areas of the brain and its induction by immobilization stress has been studied in the rat. MT content was highest in hippocampus and midbrain and lowest in frontal cortex and pons plus medulla oblongata. Immobilization stress for 18 hours (which was accompanied by food and water deprivation) significantly increased MT levels in the frontal cortex, pons plus medulla oblongata and hypothalamus, but not in midbrain and hippocampus. The effect of stress on MT levels was specific as food and water deprivation along had no significant effect on MT levels in any of the brain areas studied. The effect of stress on MT levels was independent of changes in cytosolic Zn content; this was generally unaffected by stress or food and water deprivation but decreased in pons plus medulla oblongata from stressed rats. The results suggest that MT is induced more significantly in the brain areas that are usually involved in the response of animals to stress.

  17. Cortical magnetoencephalography of deep brain stimulation for the treatment of postural tremor.

    PubMed

    Connolly, Allison T; Bajwa, Jawad A; Johnson, Matthew D

    2012-10-01

    The effects of deep brain stimulation (DBS) on motor cortex circuitry in Essential tremor (ET) and Parkinson's disease (PD) patients are not well understood, in part, because most imaging modalities have difficulty capturing and localizing motor cortex dynamics on the same temporal scale as motor symptom expression. Here, we report on the use of magnetoencephalography (MEG) to characterize sources of postural tremor activity within the brain of an ET/PD patient and the effects of bilateral subthalamic nucleus DBS on these sources. Recordings were performed during unilateral and bilateral DBS at stimulation amplitudes of 0 V, 1 V, and 3 V corresponding to no therapy, subtherapeutic, and therapeutic configurations, respectively. Dipole source localization in reference to the postural tremor frequency recorded with electromyography (EMG) showed prominent sources in both right and left motor cortices when no therapy was provided. These sources dissipated as the amplitude of stimulation increased to a therapeutic level (P = 0.0062). Coherence peaks between the EMG and MEG recordings were seen at both 4 Hz, postural tremor frequency, and at 8 Hz, twice the tremor frequency, with no therapy. Both peaks were reduced with therapeutic DBS. These results demonstrate the capabilities of MEG to record cortical dynamics of tremor during deep brain stimulation and suggest that MEG could be used to examine DBS in the context of motor symptoms of PD and of ET.

  18. A surgeon specific automatic path planning algorithm for deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Dawant, Benoit M.; Pallavaram, Srivatsan; Neimat, Joseph S.; Konrad, Peter E.; D'Haese, Pierre-Francois; Datteri, Ryan D.; Landman, Bennett A.; Noble, Jack H.

    2012-02-01

    In deep brain stimulation surgeries, stimulating electrodes are placed at specific targets in the deep brain to treat neurological disorders. Reaching these targets safely requires avoiding critical structures in the brain. Meticulous planning is required to find a safe path from the cortical surface to the intended target. Choosing a trajectory automatically is difficult because there is little consensus among neurosurgeons on what is optimal. Our goals are to design a path planning system that is able to learn the preferences of individual surgeons and, eventually, to standardize the surgical approach using this learned information. In this work, we take the first step towards these goals, which is to develop a trajectory planning approach that is able to effectively mimic individual surgeons and is designed such that parameters, which potentially can be automatically learned, are used to describe an individual surgeon's preferences. To validate the approach, two neurosurgeons were asked to choose between their manual and a computed trajectory, blinded to their identity. The results of this experiment showed that the neurosurgeons preferred the computed trajectory over their own in 10 out of 40 cases. The computed trajectory was judged to be equivalent to the manual one or otherwise acceptable in 27 of the remaining cases. These results demonstrate the potential clinical utility of computer-assisted path planning.

  19. Deep brain stimulation for neurodegenerative disease: a computational blueprint using dynamic causal modeling.

    PubMed

    Moran, Rosalyn

    2015-01-01

    Advances in deep brain stimulation (DBS) therapeutics for neurological and psychiatric disorders represent a new clinical avenue that may potentially augment or adjunct traditional pharmacological approaches to disease treatment. Using modern molecular biology and genomics, pharmacological development proceeds through an albeit lengthy and expensive pipeline from candidate compound to preclinical and clinical trials. Such a pathway, however, is lacking in the field of neurostimulation, with developments arising from a selection of early sources and motivated by diverse fields including surgery and neuroscience. In this chapter, I propose that biophysical models of connected brain networks optimized using empirical neuroimaging data from patients and healthy controls can provide a principled computational pipeline for testing and developing neurostimulation interventions. Dynamic causal modeling (DCM) provides such a computational framework, serving as a method to test effective connectivity between and within regions of an active brain network. Importantly, the methodology links brain dynamics with behavior by directly assessing experimental task effects under different behavioral or cognitive sets. Therefore, healthy brain dynamics in circuits of interest can be defined mathematically with stimulation interventions in pathological counterparts simulated with the goal of restoring normal functionality. In this chapter, I outline the dynamic characterization of brain circuits using DCM and propose a blueprint for testing in silico, the effects of stimulation in neurodegenerative disorders affecting cognition. In particular, the models can be simulated to test whether neuroimaging correlates of nondiseased brain dynamics can be reinstantiated in a pathological setting using DBS. Thus, the key advantage of this framework is that distributed effects of DBS on neural circuitry and network connectivity can be predicted in silico. The chapter also includes a review of how

  20. Cortactin is associated with perineural invasion in the deep invasive front area of laryngeal carcinomas.

    PubMed

    Ambrosio, Eliane Papa; Rosa, Fabíola Encinas; Domingues, Maria Aparecida Custódio; Villacis, Rolando André Rios; Coudry, Renata de Almeida; Tagliarini, José Vicente; Soares, Fernando Augusto; Kowalski, Luiz Paulo; Rogatto, Silvia Regina

    2011-09-01

    The cortactin gene, mapped at 11q13, has been associated with an aggressive clinical course in many cancers because of its function of invasiveness. This study evaluated CTTN protein and its prognostic value in the deep invasive front and superficial areas of laryngeal squamous cell carcinomas. The transcript expression levels were evaluated in a subset of cases. Overexpression of CTTN cytoplasmatic protein (80% of cases in both the deep invasive front and superficial areas) and transcript (30% of samples) was detected in a significant number of cases. In more than 20% of cases, observation verified membrane immunostaining in the deep invasive front and superficial areas. Perineural invasion was significantly associated with N stage and recurrence (P = .0058 and P = .0037, respectively). Higher protein expression levels were correlated with perineural invasion (P = .004) in deep invasive front cells, suggesting that this area should be considered a prognostic tool in laryngeal carcinomas. Although most cases had moderate to strong CTTN expression on the tumor surface, 2 sets of cases revealed a differential expression pattern in the deep invasive front. A group of cases with absent to weak expression of CTTN in the deep invasive front showed good prognosis parameters, and a second group with moderate to strong expression of CTTN were associated with an unfavorable prognosis, suggesting an association with worse outcome. Taken together, these results suggest that the deep invasive front might be considered a grading system in laryngeal carcinomas and that cortactin is a putative marker of worse outcome in the deep invasive front of laryngeal carcinomas.

  1. Deep potential of Hugoton - evaluation of unexplored and underexplored areas

    SciTech Connect

    Woltz, D.

    1986-05-01

    Structurally, the Hugoton embayment is a large, southward-plunging syncline that represents a northerly extension of the Anadarko basin. It is bounded on the east by the Pratt anticline, on the northeast by the Central Kansas uplift, on the northwest by the Las Animas arch, on the west by the Sierra Grande uplift, and on the southwest by the Amarillo uplift. The embayment is approximately 150 mi wide and 250 mi long. Subsidence began during the Early Ordovician and reached a maximum from the middle Mississippi through the early middle Permian. Rocks of Paleozoic, Mesozoic, and Cenozoic ages are present in the embayment. The section thickens toward the axis of the embayment where it is about 9500 ft. The Ordovician through Cambrian section attains a thickness of about 650 ft. The Devonian and Silurian are largely absent from the area. The Mississippian and Pennsylvanian sections are about 3000 ft thick. Excluding the Permian, the Mississippian and Pennsylvanian contain the highest exploration potential. An evaluation of the deeper zones in the underexplored areas of the embayment identified several structural and stratigraphic trends that are presently untested or remain underexplored. The trends can be separated into those controlled by early structural developments which persisted through the section and later structural stratigraphic events. The probability of finding new fields in the 500,000 to 5,000,000-bbl range is good.

  2. Testosterone affects language areas of the adult human brain

    PubMed Central

    Hahn, Andreas; Kranz, Georg S.; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.

    2016-01-01

    Abstract Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high‐dose hormone application in adult female‐to‐male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel‐based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting‐state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone‐dependent neuroplastic adaptations in adulthood within language‐specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738–1748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876303

  3. Testosterone affects language areas of the adult human brain.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F; Lanzenberger, Rupert

    2016-05-01

    Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high-dose hormone application in adult female-to-male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel-based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting-state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone-dependent neuroplastic adaptations in adulthood within language-specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738-1748, 2016. © 2016 Wiley Periodicals, Inc.

  4. Physical Therapy for a Patient with Essential Tremor and Prolonged Deep Brain Stimulation: A Case Report

    PubMed Central

    Ulanowski, Elizabeth A.; Danzl, Megan M.; Sims, Kara M.

    2017-01-01

    Background There is a lack of evidence examining the role of physical therapy (PT) to address movement dysfunction for individuals with essential tremor (ET). Case Report A 61-year-old male with ET and prolonged bilateral deep brain stimulation (DBS) completed 14 sessions of outpatient PT that emphasized balance, functional movements, and proximal stability training with an integration of principles of body awareness training and visual motor coordination. Improvements were noted in all outcome measures. Discussion This report describes a novel PT approach that offers a promising means of improving functional mobility and balance while decreasing falls risk in patients with ET. PMID:28316875

  5. From psychosurgery to neuromodulation: deep brain stimulation for intractable Tourette syndrome.

    PubMed

    Neuner, Irene; Podoll, Klaus; Janouschek, Hildegard; Michel, Tanja M; Sheldrick, Abigail J; Schneider, Frank

    2009-01-01

    Tourette syndrome is a neuropsychiatric disorder characterized by motor and vocal tics. It is often associated with depression, obsessive-compulsive symptoms, self-injurious behaviour and attention deficit-hyperactivity disorder (ADHD). In intractable patients, neuromodulation using deep brain stimulation (DBS) has widely replaced psychosurgery. Three different key structures are defined for DBS, the medial portion of the thalamus, the globus pallidus internus and the anterior limb of the internal capsule/nucleus accumbens. This is a comprehensive overview on the effect of DBS on motor and non-motor symptoms using different case series and two larger studies.

  6. Scientific and Ethical Issues Related to Deep Brain Stimulation for Disorders of Mood, Behavior and Thought

    PubMed Central

    Rabins, Peter; Appleby, Brian S.; Brandt, Jason; DeLong, Mahlon R.; Dunn, Laura B.; Gabriëls, Loes; Greenberg, Benjamin D.; Haber, Suzanne N.; Holtzheimer, Paul E.; Mari, Zoltan; Mayberg, Helen S.; McCann, Evelyn; Mink, Sallie P; Rasmussen, Steven; Schlaepfer, Thomas E.; Vawter, Dorothy E.; Vitek, Jerrold L.; Walkup, John; Mathews, Debra J. H.

    2009-01-01

    A two-day consensus conference was held in order to examine scientific and ethical issues in the application of deep brain stimulation in the treatment of mood and behavioral disorders such as major depression, obsessive-compulsive disorder, and Tourette syndrome. The primary objectives of the conference were to 1) establish consensus among participants about the design of future clinical trials of DBS for disorders of mood, behavior and thought and 2) develop standards for the protection of human subjects participating in such studies. Conference participants identified 16 key points for guiding research in this growing field. PMID:19736349

  7. Predicting acute affective symptoms after deep brain stimulation surgery in Parkinson's disease.

    PubMed

    Schneider, Frank; Reske, Martina; Finkelmeyer, Andreas; Wojtecki, Lars; Timmermann, Lars; Brosig, Timo; Backes, Volker; Amir-Manavi, Atoosa; Sturm, Volker; Habel, Ute; Schnitzler, Alfons

    2010-01-01

    The current study aimed to investigate predictive markers for acute symptoms of depression and mania following deep brain stimulation (DBS) surgery of the subthalamic nucleus for the treatment of motor symptoms in Parkinson's disease (PD). Fourteen patients with PD (7 males) were included in a prospective longitudinal study. Neuropsychological tests, psychopathology scales and tests of motor functions were administered at several time points prior to and after neurosurgery. Pre-existing psychopathological and motor symptoms predicted postoperative affective side effects of DBS surgery. As these can easily be assessed, they should be considered along with other selection criteria for DBS surgery.

  8. Proceedings of the Second Annual Deep Brain Stimulation Think Tank: What's in the Pipeline

    PubMed Central

    Gunduz, Aysegul; Morita, Hokuto; Rossi, P. Justin; Allen, William L.; Alterman, Ron L.; Bronte-Stewart, Helen; Butson, Christopher R.; Charles, David; Deckers, Sjaak; de Hemptinne, Coralie; DeLong, Mahlon; Dougherty, Darin; Ellrich, Jens; Foote, Kelly D.; Giordano, James; Goodman, Wayne; Greenberg, Benjamin D.; Greene, David; Gross, Robert; Judy, Jack W.; Karst, Edward; Kent, Alexander; Kopell, Brian; Lang, Anthony; Lozano, Andres; Lungu, Codrin; Lyons, Kelly E.; Machado, Andre; Martens, Hubert; McIntyre, Cameron; Min, Hoon-Ki; Neimat, Joseph; Ostrem, Jill; Pannu, Sat; Ponce, Francisco; Pouratian, Nader; Reymers, Donnie; Schrock, Lauren; Sheth, Sameer; Shih, Ludy; Stanslaski, Scott; Steinke, G. Karl; Stypulkowski, Paul; Tröster, Alexander I.; Verhagen, Leo; Walker, Harrison; Okun, Michael S.

    2015-01-01

    The proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers and members of industry. Presentations and discussions covered a broad range of topics, including advocacy for DBS, improving clinical outcomes, innovations in computational models of DBS, understanding of the neurophysiology of Parkinson's disease (PD) and Tourette syndrome (TS) and evolving sensor and device technologies. PMID:25526555

  9. Proceedings of the second annual deep brain stimulation think tank: What's in the pipeline

    DOE PAGES

    Gunduz, Aysegul; Morita, Hokuto; Rossi, P. Justin; ...

    2015-05-25

    Here the proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers and members of industry. Presentations and discussions covered a broad range of topics, including advocacy for DBS, improving clinical outcomes, innovations in computational models of DBS, understanding of the neurophysiology of Parkinson's disease (PD) and Tourette syndrome (TS) and evolving sensor and device technologies.

  10. Proceedings of the Second Annual Deep Brain Stimulation Think Tank: What's in the Pipeline.

    PubMed

    Gunduz, Aysegul; Morita, Hokuto; Rossi, P Justin; Allen, William L; Alterman, Ron L; Bronte-Stewart, Helen; Butson, Christopher R; Charles, David; Deckers, Sjaak; de Hemptinne, Coralie; DeLong, Mahlon; Dougherty, Darin; Ellrich, Jens; Foote, Kelly D; Giordano, James; Goodman, Wayne; Greenberg, Benjamin D; Greene, David; Gross, Robert; Judy, Jack W; Karst, Edward; Kent, Alexander; Kopell, Brian; Lang, Anthony; Lozano, Andres; Lungu, Codrin; Lyons, Kelly E; Machado, Andre; Martens, Hubert; McIntyre, Cameron; Min, Hoon-Ki; Neimat, Joseph; Ostrem, Jill; Pannu, Sat; Ponce, Francisco; Pouratian, Nader; Reymers, Donnie; Schrock, Lauren; Sheth, Sameer; Shih, Ludy; Stanslaski, Scott; Steinke, G Karl; Stypulkowski, Paul; Tröster, Alexander I; Verhagen, Leo; Walker, Harrison; Okun, Michael S

    2015-01-01

    The proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers and members of industry. Presentations and discussions covered a broad range of topics, including advocacy for DBS, improving clinical outcomes, innovations in computational models of DBS, understanding of the neurophysiology of Parkinson's disease (PD) and Tourette syndrome (TS) and evolving sensor and device technologies.

  11. High incidence of carpal tunnel syndrome after deep brain stimulation in Parkinson's disease.

    PubMed

    Loizon, Marine; Laurencin, Chloé; Vial, Christophe; Danaila, Teodor; Thobois, Stéphane

    2016-12-01

    We observed several cases of carpal tunnel syndrome (CTS) revealed after subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD). 115 consecutive PD patients who underwent STN-DBS between 2010 and 2014 at the Neurological Hospital in Lyon were retrospectively included. CTS was accepted as the diagnosis only if clinical examination and ENMG both confirmed it. Nine patients (7.8 %) developed CTS in the 2 years following surgery, which is far beyond the 2.7/1000 incidence in the general population. The present study shows an overrepresentation of CTS occurrence after STN-DBS in PD.

  12. Application of non-linear control theory to a model of deep brain stimulation.

    PubMed

    Davidson, Clare M; Lowery, Madeleine M; de Paor, Annraoi M

    2011-01-01

    Deep brain stimulation (DBS) effectively alleviates the pathological neural activity associated with Parkinson's disease. Its exact mode of action is not entirely understood. This paper explores theoretically the optimum stimulation parameters necessary to quench oscillations in a neural-mass type model with second order dynamics. This model applies well established nonlinear control system theory to DBS. The analysis here determines the minimum criteria in terms of amplitude and pulse duration of stimulation, necessary to quench the unwanted oscillations in a closed loop system, and outlines the relationship between this model and the actual physiological system.

  13. Weight and body mass index in Parkinson's disease patients after deep brain stimulation surgery.

    PubMed

    Tuite, Paul J; Maxwell, Robert E; Ikramuddin, Sayeed; Kotz, Catherine M; Kotzd, Catherine M; Billington, Charles J; Billingtond, Charles J; Laseski, Maggie A; Thielen, Scott D

    2005-06-01

    A retrospective chart review characterizing changes in 17 male and 10 female Parkinson's disease (PD) patients undergoing deep brain stimulation (DBS) surgery indicated that 6 mo before surgery, patients lost a mean of 5.1 lbs, whereas in the 6 mo after surgery, subjects gained a mean of 10.1 lbs; 22% gained more than 14 lbs. In 10 patients followed an additional 6 mo, weight gain continued. This weight gain may be associated with decreased energy expenditure due to subsidence of chronic tremor. The magnitude of gain underscores the need for proactive management of body weight in PD patients undergoing DBS.

  14. Mood Response to Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson Disease

    PubMed Central

    Campbell, Meghan C.; Black, Kevin J.; Weaver, Patrick M.; Lugar, Heather M.; Videen, Tom O.; Tabbal, Samer D.; Karimi, Morvarid; Perlmutter, Joel S.; Hershey, Tamara

    2012-01-01

    Deep brain stimulation of the subthalamic nucleus (STN DBS) in Parkinson disease (PD) improves motor function but has variable effects on mood. Little is known about the relationship between electrode contact location and mood response. We identified the anatomical location of electrode contacts and measured mood response to stimulation with the Visual Analog Scale in 24 STN DBS PD patients. Participants reported greater positive mood, decreased anxiety and apathy with bilateral and unilateral stimulation. Left DBS improved mood more than right DBS. Right DBS-induced increase in positive mood was related to more medial and dorsal contact locations. These results highlight the functional heterogeneity of the STN. PMID:22450611

  15. Deep Brain Stimulation Salvages a Flourishing Dental Practice: A Dentist with Essential Tremor Recounts his Experience

    PubMed Central

    Giacopuzzi, Guy; Lising, Melanie

    2016-01-01

    In recounting his experience with deep brain stimulation (DBS), a practicing dentist challenged with long-standing bilateral essential tremor of the hands shares insights into his diagnosis, treatments, and ultimately successful DBS surgery at Stanford University Medical Center, CA, USA. Now nearly one year after his surgery, his practice continues to flourish and he encourages others in his profession to consider the possibility of DBS as a definitive treatment for tremors of the hand, which may salvage their practice. PMID:27909628

  16. The effect of deep brain stimulation on quality of life in movement disorders

    PubMed Central

    Diamond, A; Jankovic, J

    2005-01-01

    Deep brain stimulation (DBS) is a viable treatment alternative for patients with Parkinson's disease (PD), essential tremor (ET), dystonia, and cerebellar outflow tremors. When poorly controlled, these disorders have detrimental effects on the patient's health related quality of life (HRQoL). Instruments that measure HRQoL are useful tools to assess burden of disease and the impact of therapeutic interventions on activities of daily living, employment, and other functions. We systematically and critically reviewed the literature on the effects of DBS on HRQoL in PD, ET, dystonia, and cerebellar outflow tremor related to multiple sclerosis. PMID:16107348

  17. Addiction in Parkinson's disease: impact of subthalamic nucleus deep brain stimulation.

    PubMed

    Witjas, Tatiana; Baunez, Christelle; Henry, Jean Marc; Delfini, Marie; Regis, Jean; Cherif, André Ali; Peragut, Jean Claude; Azulay, Jean Philippe

    2005-08-01

    In Parkinson's disease, dopamine dysregulation syndrome (DDS) is characterized by severe dopamine addiction and behavioral disorders such as manic psychosis, hypersexuality, pathological gambling, and mood swings. Here, we describe the case of 2 young parkinsonian patients suffering from disabling motor fluctuations and dyskinesia associated with severe DDS. In addition to alleviating the motor disability in both patients, subthalamic nucleus (STN) deep brain stimulation greatly reduced the behavioral disorders as well as completely abolished the addiction to dopaminergic treatment. Dopaminergic addiction in patients with Parkinson's disease, therefore, does not constitute an obstacle to high-frequency STN stimulation, and this treatment may even cure the addiction.

  18. Inside tract: can deep brain stimulation survive its reputation for success?

    PubMed

    Fischer, Shannon

    2015-01-01

    When she was 37, Clare developed a tremor down her left side. At 39, she was diagnosed with Parkinson's disease and put on a series of medications. These helped for a time, but the effect didn't last. Within a few years, her tremors had grown so severe that Clare was dropping food at her waitressing job. She couldn't seat guests, and she burned herself when she tried to help out in the kitchen. Increasingly unable to support herself and at a loss for other options, Clare began to look into something called deep brain stimulation (DBS).

  19. Patient Perspectives on Deep Brain Stimulation Clinical Research in Early Stage Parkinson's Disease.

    PubMed

    Heusinkveld, Lauren; Hacker, Mallory; Turchan, Maxim; Bollig, Madelyn; Tamargo, Christina; Fisher, William; McLaughlin, Lauren; Martig, Adria; Charles, David

    2017-01-01

    The FDA has approved a multicenter, double-blind, Phase III, pivotal trial testing deep brain stimulation (DBS) in 280 people with very early stage Parkinson's disease (PD; IDE#G050016). In partnership with The Michael J. Fox Foundation for Parkinson's Research, we conducted a survey to investigate motivating factors, barriers, and gender differences among potentially eligible patients for participation in a trial testing DBS in early PD compared to standard medical treatment. The majority of survey respondents (72%) indicated they would consider learning more about participating. Early PD patients are therefore likely to consider enrolling in trials of invasive therapies that may slow symptom progression and help future patients.

  20. Deep brain stimulation of the nucleus accumbens for the treatment of addiction.

    PubMed

    Müller, Ulf J; Voges, Jürgen; Steiner, Johann; Galazky, Imke; Heinze, Hans-Jochen; Möller, Michaela; Pisapia, Jared; Halpern, Casey; Caplan, Arthur; Bogerts, Bernhard; Kuhn, Jens

    2013-04-01

    Despite novel medications and other therapeutic strategies, addiction to psychotropic substances remains one of the most serious public health problems worldwide. In this review, beginning with an introduction of deep brain stimulation (DBS), we highlight the importance of the nucleus accumbens (NAc) in the context of the reward circuitry and addictive behavior. We will provide a short historic overview of other neurosurgical approaches to treat addiction and describe the experimental and preclinical data on DBS in addiction. Finally, we call attention to key ethical issues related to using DBS to treat addiction that are important for future research and the design of clinical trials.

  1. Deep brain stimulation for medically refractory life-threatening status dystonicus in children.

    PubMed

    Walcott, Brian P; Nahed, Brian V; Kahle, Kristopher T; Duhaime, Ann-Christine; Sharma, Nutan; Eskandar, Emad N

    2012-01-01

    Generalized dystonic syndromes may escalate into persistent episodes of generalized dystonia known as status dystonicus that can be life-threatening due to dystonia-induced rhabdomyolysis and/or respiratory compromise. Treatment of these conditions usually entails parenteral infusion of antispasmodic agents and sedatives and occasionally necessitates a medically induced coma for symptom control. The authors report a series of 3 children who presented with medically intractable, life-threatening status dystonicus and were successfully treated with bilateral pallidal deep brain stimulation. Bilateral globus pallidus internus stimulation appears to be effective in the urgent treatment of medically refractory and life-threatening movement disorders.

  2. High-voltage VIM Region Deep Brain Stimulation Mimicking Progressive Supranuclear Palsy

    PubMed Central

    Patterson, Addie; Okun, Michael S.; Hess, Christopher

    2017-01-01

    Background Deep brain stimulation (DBS) for essential tremor (ET) can cause unwanted side effects. Case Report A patient with ET underwent unilateral dual-lead thalamic DBS. He later developed parkinsonism with atypical features and was diagnosed with progressive supranuclear palsy. During presentation for a second opinion, stimulation-induced side effects were suspected. Inactivation of DBS resolved atypical features and superimposed idiopathic Parkinson disease (PD) was diagnosed. Discussion This case illustrates the importance of recognizing the possible influence of stimulation-induced side effects and discusses when to utilize dual-lead DBS for ET and the co-occurrence of ET and PD. PMID:28373925

  3. Diffusion tensor imaging and neuromodulation: DTI as key technology for deep brain stimulation.

    PubMed

    Coenen, Volker Arnd; Schlaepfer, Thomas E; Allert, Niels; Mädler, Burkhard

    2012-01-01

    Diffusion tensor imaging (DTI) is more than just a useful adjunct to invasive techniques like optogenetics which recently have tremendously influenced our understanding of the mechanisms of deep brain stimulation (DBS). In combination with other technologies, DTI helps us to understand which parts of the brain tissue are connected to others and which ones are truly influenced with neuromodulation. The complex interaction of DBS with the surrounding tissues-scrutinized with DTI-allows to create testable hypotheses that can explain network interactions. Those interactions are vital for our understanding of the net effects of neuromodulation. This work naturally was first done in the field of movement disorder surgery, where a lot of experience regarding therapeutic effects and only a short latency between initiation of neuromodulation and alleviation of symptoms exist. This chapter shows the journey over the past 10 years with first applications in DBS toward current research in affect regulating network balances and their therapeutic alterations with the neuromodulation technology.

  4. Limbic, associative, and motor territories within the targets for deep brain stimulation: potential clinical implications.

    PubMed

    Sudhyadhom, Atchar; Bova, Frank J; Foote, Kelly D; Rosado, Christian A; Kirsch-Darrow, Lindsey; Okun, Michael S

    2007-07-01

    The use of deep brain stimulation (DBS) has recently been expanding for the treatment of many neurologic disorders such as Parkinson disease, dystonia, essential tremor, Tourette's syndrome, cluster headache, epilepsy, depression, and obsessive compulsive disorder. The target structures for DBS include specific segregated territories within limbic, associative, or motor regions of very small subnuclei. In this review, we summarize current clinical techniques for DBS, the cognitive/mood/motor outcomes, and the relevant neuroanatomy with respect to functional territories within specific brain targets. Future development of new techniques and technology that may include a more direct visualization of "motor" territories within target structures may prove useful for avoiding side effects that may result from stimulation of associative and limbic regions. Alternatively, newer procedures may choose and specifically target non-motor territories for chronic electrical stimulation.

  5. Optimizing the delivery of deep brain stimulation using electrophysiological atlases and an inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Sun, Kay; Pallavaram, Srivatsan; Rodriguez, William; D'Haese, Pierre-Francois; Dawant, Benoit M.; Miga, Michael I.

    2012-02-01

    The use of deep brain stimulation (DBS) for the treatment of neurological movement degenerative disorders requires the precise placement of the stimulating electrode and the determination of optimal stimulation parameters that maximize symptom relief (e.g. tremor, rigidity, movement difficulties, etc.) while minimizing undesired physiological side-effects. This study demonstrates the feasibility of determining the ideal electrode placement and stimulation current amplitude by performing a patient-specific multivariate optimization using electrophysiological atlases and a bioelectric finite element model of the brain. Using one clinical case as a preliminary test, the optimization routine is able to find the most efficacious electrode location while avoiding the high side-effect regions. Future work involves optimization validation clinically and improvement to the accuracy of the model.

  6. Tractography-activation models applied to subcallosal cingulate deep brain stimulation.

    PubMed

    Lujan, J Luis; Chaturvedi, Ashutosh; Choi, Ki Sueng; Holtzheimer, Paul E; Gross, Robert E; Mayberg, Helen S; McIntyre, Cameron C

    2013-09-01

    Deep brain stimulation (DBS) of the subcallosal cingulate white matter (SCCWM) is an experimental therapy for major depressive disorder (MDD). The specific axonal pathways that mediate the anti-depressant effects of DBS remain unknown. Patient-specific tractography-activation models (TAMs) are a new tool to help identify pathways modulated by DBS. TAMs consist of four basic components: 1) anatomical and diffusion-weighted imaging data acquired on the patient; 2) probabilistic tractography from the brain region surrounding the implanted DBS electrode; 3) finite element models of the electric field generated by the patient-specific DBS parameter settings; and 4) application of the DBS electric field to multi-compartment cable models of axons, with trajectories defined by the tractography, to predict action potential generation in specific pathways. This study presents TAM predictions from DBS of the SCCWM in one MDD patient. Our findings suggest that small differences in electrode location can generate substantial differences in the directly activated pathways.

  7. Bio-heat transfer model of deep brain stimulation-induced temperature changes

    NASA Astrophysics Data System (ADS)

    Elwassif, Maged M.; Kong, Qingjun; Vazquez, Maribel; Bikson, Marom

    2006-12-01

    There is a growing interest in the use of chronic deep brain stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. Fundamental questions remain about the physiologic effects of DBS. Previous basic research studies have focused on the direct polarization of neuronal membranes by electrical stimulation. The goal of this paper is to provide information on the thermal effects of DBS using finite element models to investigate the magnitude and spatial distribution of DBS-induced temperature changes. The parameters investigated include stimulation waveform, lead selection, brain tissue electrical and thermal conductivities, blood perfusion, metabolic heat generation during the stimulation and lead thermal conductivity/heat dissipation through the electrode. Our results show that clinical DBS protocols will increase the temperature of surrounding tissue by up to 0.8 °C depending on stimulation/tissue parameters.

  8. Neuroplasticity-dependent and -independent mechanisms of chronic deep brain stimulation in stressed rats

    PubMed Central

    Bambico, F R; Bregman, T; Diwan, M; Li, J; Darvish-Ghane, S; Li, Z; Laver, B; Amorim, B O; Covolan, L; Nobrega, J N; Hamani, C

    2015-01-01

    Chronic ventromedial prefrontal cortex (vmPFC) deep brain stimulation (DBS) improves depressive-like behaviour in rats via serotonergic and neurotrophic-related mechanisms. We hypothesise that, in addition to these substrates, DBS-induced increases in hippocampal neurogenesis may also be involved. Our results show that stress-induced behavioural deficits in the sucrose preference test, forced swim test, novelty-suppressed feeding test (NSFT) and elevated plus maze were countered by chronic vmPFC DBS. In addition, stressed rats receiving stimulation had significant increases in hippocampal neurogenesis, PFC and hippocampal brain-derived neurotrophic factor levels. To block neurogenesis, stressed animals given DBS were injected with temozolomide. Such treatment reversed the anxiolytic-like effect of stimulation in the NSFT without significantly affecting performance in other behavioural tests. Taken together, our findings suggest that neuroplastic changes, including neurogenesis, may be involved in specific anxiolytic effects of DBS without affecting its general antidepressant-like response. PMID:26529427

  9. Neurocognitive Brain Response to Transient Impairment of Wernicke's Area

    PubMed Central

    Mason, Robert A.; Prat, Chantel S.; Just, Marcel Adam

    2014-01-01

    This study examined how the brain system adapts and reconfigures its information processing capabilities to maintain cognitive performance after a key cortical center [left posterior superior temporal gyrus (LSTGp)] is temporarily impaired during the performance of a language comprehension task. By applying repetitive transcranial magnetic stimulation (rTMS) to LSTGp and concurrently assessing the brain response with functional magnetic resonance imaging, we found that adaptation consisted of 1) increased synchronization between compensating regions coupled with a decrease in synchronization within the primary language network and 2) a decrease in activation at the rTMS site as well as in distal regions, followed by their recovery. The compensatory synchronization included 3 centers: The contralateral homolog (RSTGp) of the area receiving rTMS, areas adjacent to the rTMS site, and a region involved in discourse monitoring (medial frontal gyrus). This approach reveals some principles of network-level adaptation to trauma with potential application to traumatic brain injury, stroke, and seizure. PMID:23322403

  10. Deep brain stimulation mechanisms: the control of network activity via neurochemistry modulation.

    PubMed

    McIntyre, Cameron C; Anderson, Ross W

    2016-10-01

    Deep brain stimulation (DBS) has revolutionized the clinical care of late-stage Parkinson's disease and shows promise for improving the treatment of intractable neuropsychiatric disorders. However, after over 25 years of clinical experience, numerous questions still remain on the neurophysiological basis for the therapeutic mechanisms of action. At their fundamental core, the general purpose of electrical stimulation therapies in the nervous system are to use the applied electric field to manipulate the opening and closing of voltage-gated sodium channels on neurons, generate stimulation induced action potentials, and subsequently, control the release of neurotransmitters in targeted pathways. Historically, DBS mechanisms research has focused on characterizing the effects of stimulation on neurons and the resulting impact on neuronal network activity. However, when electrodes are placed within the central nervous system, glia are also being directly (and indirectly) influenced by the stimulation. Mounting evidence shows that non-neuronal tissue can play an important role in modulating the neurochemistry changes induced by DBS. The goal of this review is to evaluate how DBS effects on both neuronal and non-neuronal tissue can potentially work together to suppress oscillatory activity (and/or information transfer) between brain regions. These resulting effects of ~ 100 Hz electrical stimulation help explain how DBS can disrupt pathological network activity in the brain and generate therapeutic effects in patients. Deep brain stimulation is an effective clinical technology, but detailed therapeutic mechanisms remain undefined. This review provides an overview of the leading hypotheses, which focus on stimulation-induced disruption of network oscillations and integrates possible roles for non-neuronal tissue in explaining the clinical response to therapeutic stimulation. This article is part of a special issue on Parkinson disease.

  11. Using Species-Area Relationships to Inform Baseline Conservation Targets for the Deep North East Atlantic

    PubMed Central

    Foster, Nicola L.; Foggo, Andrew; Howell, Kerry L.

    2013-01-01

    Demands on the resources of the deep-sea have increased in recent years. Consequently, the need to create and implement a comprehensive network of Marine Protected Areas (MPAs) to help manage and protect these resources has become a global political priority. Efforts are currently underway to implement MPA networks in the deep North East Atlantic. To ensure these networks are effective, it is essential that baseline information be available to inform the conservation planning process. Using empirical data, we calculated conservation targets for sessile benthic invertebrates in the deep North East Atlantic for consideration during the planning process. We assessed Species-Area Relationships across two depth bands (200–1100 m and 1100–1800 m) and nine substrata. Conservation targets were predicted for each substratum within each depth band using z-values obtained from fitting a power model to the Species-Area Relationships of observed and estimated species richness (Chao1). Results suggest an MPA network incorporating 10% of the North East Atlantic’s deep-sea area would protect approximately 58% and 49% of sessile benthic species for the depth bands 200–1100 m and 1100–1800 m, respectively. Species richness was shown to vary with substratum type indicating that, along with depth, substratum information needs to be incorporated into the conservation planning process to ensure the most effective MPA network is implemented in the deep North East Atlantic. PMID:23527053

  12. Selectivity to Translational Egomotion in Human Brain Motion Areas

    PubMed Central

    Pitzalis, Sabrina; Sdoia, Stefano; Bultrini, Alessandro; Committeri, Giorgia; Di Russo, Francesco; Fattori, Patrizia; Galletti, Claudio; Galati, Gaspare

    2013-01-01

    The optic flow generated when a person moves through the environment can be locally decomposed into several basic components, including radial, circular, translational and spiral motion. Since their analysis plays an important part in the visual perception and control of locomotion and posture it is likely that some brain regions in the primate dorsal visual pathway are specialized to distinguish among them. The aim of this study is to explore the sensitivity to different types of egomotion-compatible visual stimulations in the human motion-sensitive regions of the brain. Event-related fMRI experiments, 3D motion and wide-field stimulation, functional localizers and brain mapping methods were used to study the sensitivity of six distinct motion areas (V6, MT, MST+, V3A, CSv and an Intra-Parietal Sulcus motion [IPSmot] region) to different types of optic flow stimuli. Results show that only areas V6, MST+ and IPSmot are specialized in distinguishing among the various types of flow patterns, with a high response for the translational flow which was maximum in V6 and IPSmot and less marked in MST+. Given that during egomotion the translational optic flow conveys differential information about the near and far external objects, areas V6 and IPSmot likely process visual egomotion signals to extract information about the relative distance of objects with respect to the observer. Since area V6 is also involved in distinguishing object-motion from self-motion, it could provide information about location in space of moving and static objects during self-motion, particularly in a dynamically unstable environment. PMID:23577096

  13. A Novel Human Body Area Network for Brain Diseases Analysis.

    PubMed

    Lin, Kai; Xu, Tianlang

    2016-10-01

    Development of wireless sensor and mobile communication technology provide an unprecedented opportunity for realizing smart and interactive healthcare systems. Designing such systems aims to remotely monitor the health and diagnose the diseases for users. In this paper, we design a novel human body area network for brain diseases analysis, which is named BABDA. Considering the brain is one of the most complex organs in the human body, the BABDA system provides four function modules to ensure the high quality of the analysis result, which includes initial data collection, data correction, data transmission and comprehensive data analysis. The performance evaluation conducted in a realistic environment with several criteria shows the availability and practicability of the BABDA system.

  14. Predicting the effects of deep brain stimulation with diffusion tensor based electric field models.

    PubMed

    Butson, Christopher R; Cooper, Scott E; Henderson, Jaimie M; McIntyre, Cameron C

    2006-01-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of movement disorders, and has shown promising results for the treatment of a wide range of other neurological disorders. However, little is known about the mechanism of action of DBS or the volume of brain tissue affected by stimulation. We have developed methods that use anatomical and diffusion tensor MRI (DTI) data to predict the volume of tissue activated (VTA) during DBS. We co-register the imaging data with detailed finite element models of the brain and stimulating electrode to enable anatomically and electrically accurate predictions of the spread of stimulation. One critical component of the model is the DTI tensor field that is used to represent the 3-dimensionally anisotropic and inhomogeneous tissue conductivity. With this system we are able to fuse structural and functional information to study a relevant clinical problem: DBS of the subthalamic nucleus for the treatment of Parkinsons disease (PD). Our results show that inclusion of the tensor field in our model caused significant differences in the size and shape of the VTA when compared to a homogeneous, isotropic tissue volume. The magnitude of these differences was proportional to the stimulation voltage. Our model predictions are validated by comparing spread of predicted activation to observed effects of oculomotor nerve stimulation in a PD patient. In turn, the 3D tissue electrical properties of the brain play an important role in regulating the spread of neural activation generated by DBS.

  15. Optical coherence tomography and optical coherence domain reflectometry for deep brain stimulation probe guidance

    NASA Astrophysics Data System (ADS)

    Jeon, Sung W.; Shure, Mark A.; Baker, Kenneth B.; Chahlavi, Ali; Hatoum, Nagi; Turbay, Massud; Rollins, Andrew M.; Rezai, Ali R.; Huang, David

    2005-04-01

    Deep Brain Stimulation (DBS) is FDA-approved for the treatment of Parkinson's disease and essential tremor. Currently, placement of DBS leads is guided through a combination of anatomical targeting and intraoperative microelectrode recordings. The physiological mapping process requires several hours, and each pass of the microelectrode into the brain increases the risk of hemorrhage. Optical Coherence Domain Reflectometry (OCDR) in combination with current methodologies could reduce surgical time and increase accuracy and safety by providing data on structures some distance ahead of the probe. For this preliminary study, we scanned a rat brain in vitro using polarization-insensitive Optical Coherence Tomography (OCT). For accurate measurement of intensity and attenuation, polarization effects arising from tissue birefringence are removed by polarization diversity detection. A fresh rat brain was sectioned along the coronal plane and immersed in a 5 mm cuvette with saline solution. OCT images from a 1294 nm light source showed depth profiles up to 2 mm. Light intensity and attenuation rate distinguished various tissue structures such as hippocampus, cortex, external capsule, internal capsule, and optic tract. Attenuation coefficient is determined by linear fitting of the single scattering regime in averaged A-scans where Beer"s law is applicable. Histology showed very good correlation with OCT images. From the preliminary study using OCT, we conclude that OCDR is a promising approach for guiding DBS probe placement.

  16. Deep Brain Stimulation for Obsessive Compulsive Disorder Reduces Symptoms of Irritable Bowel Syndrome in a Single Patient.

    PubMed

    Langguth, Berthold; Sturm, Kornelia; Wetter, Thomas C; Lange, Max; Gabriels, Loes; Mayer, Emeran A; Schlaier, Juergen

    2015-07-01

    Irritable bowel syndrome (IBS) is a frequent gastrointestinal disorder that is difficult to treat. We describe findings from evaluation of a woman (55 years old) with obsessive compulsive disorder, which was treated with bilateral deep brain stimulation in the anterior limb of the internal capsule, and IBS. After the brain stimulation treatment she reported substantial relief of her IBS symptoms. This reduction depended on specific stimulation parameters, was reproducible over time, and was not directly associated with improvements in obsessive compulsive disorder symptoms. These observations indicate a specific effect of deep brain stimulation on IBS. This observation confirms involvement of specific brain structures in the pathophysiology of IBS and shows that symptoms can be reduced through modulation of neuronal activity in the central nervous system. Further studies of the effects of brain stimulation on IBS are required.

  17. Deep Brain Stimulation Results in Local Glutamate and Adenosine Release: Investigation into the Role of Astrocytes

    PubMed Central

    Tawfik, Vivianne L.; Chang, Su-Youne; Hitti, Frederick L.; Roberts, David W.; Leiter, James C.; Jovanovic, Svetlana; Lee, Kendall H.

    2010-01-01

    Objective Several neurologic disorders are treated with deep brain stimulation; however, the mechanism underlying its ability to abolish oscillatory phenomena associated with diseases as diverse as Parkinson's and epilepsy remain largely unknown. In this study we sought to investigate the role of specific neurotransmitters in deep brain stimulation (DBS) and determine the role of non-neuronal cells in its mechanism of action. Methods We used the ferret thalamic slice preparation in vitro, which exhibits spontaneous spindle oscillations, in order to determine the effect of high-frequency stimulation on neurotransmitter release. We then performed experiments using an in vitro astrocyte culture to investigate the role of glial transmitter release in HFS-mediated abolishment of spindle oscillations. Results In this series of experiments we demonstrated that glutamate and adenosine release in ferret slices was able to abolish spontaneous spindle oscillations. The glutamate release was still evoked in the presence of the Na+ channel blocker tetrodotoxin (TTX), but was eliminated with the vesicular H+-ATPase inhibitor, bafilomycin, and the calcium chelator, BAPTA-AM. Furthermore, electrical stimulation of purified primary astrocytic cultures was able to evoke intracellular calcium transients and glutamate release, and bath application of BAPTA-AM inhibited glutamate release in this setting. Conclusion These results suggest that vesicular astrocytic neurotransmitter release may be an important mechanism by which DBS is able to achieve clinical benefits. PMID:20644423

  18. A Novel Lead Design for Modulation and Sensing of Deep Brain Structures

    PubMed Central

    Connolly, Allison T.; Vetter, Rio J.; Hetke, Jamille F.; Teplitzky, Benjamin A.; Kipke, Daryl R.; Pellinen, David S.; Anderson, David J.; Baker, Kenneth B.; Vitek, Jerrold L.; Johnson, Matthew D.

    2016-01-01

    Goal Develop and characterize the functionality of a novel thin-film probe technology with a higher density of electrode contacts than are currently available with commercial deep brain stimulation (DBS) lead technology. Such technology has potential to enhance the spatial precision of DBS and enable a more robust approach to sensing local field potential activity in the context of adaptive DBS strategies. Methods Thin-film planar arrays were microfabricated and then assembled on a cylindrical carrier to achieve a lead with 3D conformation. Using an integrated and removable stylet, the arrays were chronically implanted in the subthalamic nucleus and globus pallidus in two parkinsonian non-human primates. Results This study provides the first in vivo data from chronically implanted DBS arrays for translational non-human primate studies. Stimulation through the arrays induced a decrease in parkinsonian rigidity, and directing current around the lead showed an orientation dependency for eliciting motor capsule side effects. The array recordings also showed that oscillatory activity in the basal ganglia is heterogeneous at a smaller scale than detected by current DBS lead technology. Conclusion These 3D DBS arrays provide an enabling tool for future studies that seek to monitor and modulate deep brain activity through chronically implanted leads. Significance DBS lead technology with a higher density of electrode contacts have potential to enable sculpting DBS current flow and sensing biomarkers of disease and therapy. PMID:26529747

  19. Studies of the neural mechanisms of deep brain stimulation in rodent models of Parkinson's disease.

    PubMed

    Chang, Jing-Yu; Shi, Li-Hong; Luo, Fei; Zhang, Wang-Ming; Woodward, Donald J

    2007-01-01

    Several rodent models of deep brain stimulation (DBS) have been developed in recent years. Electrophysiological and neurochemical studies have been performed to examine the mechanisms underlying the effects of DBS. In vitro studies have provided deep insights into the role of ion channels in response to brain stimulation. In vivo studies reveal neural responses in the context of intact neural circuits. Most importantly, recording of neural responses to behaviorally effective DBS in freely moving animals provides a direct means for examining how DBS modulates the basal ganglia thalamocortical circuits and thereby improves motor function. DBS can modulate firing rate, normalize irregular burst firing patterns and reduce low-frequency oscillations associated with the Parkinsonian state. Our current efforts are focused on elucidating the mechanisms by which DBS effects on neural circuitry improve motor performance. New behavioral models and improved recording techniques will aide researchers conducting future DBS studies in a variety of behavioral modalities and enable new treatment strategies to be explored, such as closed-loop stimulations based on real-time computation of ensemble neural activity.

  20. Studies of the neural mechanisms of deep brain stimulation in rodent models of Parkinson's disease.

    PubMed

    Chang, Jing-Yu; Shi, Li-Hong; Luo, Fei; Zhang, Wang-Ming; Woodward, Donald J

    2008-01-01

    Several rodent models of deep brain stimulation (DBS) have been developed in recent years. Electrophysiological and neurochemical studies have been performed to examine the mechanisms underlying the effects of DBS. In vitro studies have provided deep insights into the role of ion channels in response to brain stimulation. In vivo studies reveal neural responses in the context of intact neural circuits. Most importantly, recording of neural responses to behaviorally effective DBS in freely moving animals provides a direct means for examining how DBS modulates the basal ganglia thalamocortical circuits and thereby improves motor function. DBS can modulate firing rate, normalize irregular burst firing patterns and reduce low frequency oscillations associated with the Parkinsonian state. Our current efforts are focused on elucidating the mechanisms by which DBS effects on neural circuitry improve motor performance. New behavioral models and improved recording techniques will aide researchers conducting future DBS studies in a variety of behavioral modalities and enable new treatment strategies to be explored, such as closed-loop stimulations based on real time computation of ensemble neural activity.

  1. Memory modulation by weak synchronous deep brain stimulation: a pilot study.

    PubMed

    Fell, Juergen; Staresina, Bernhard P; Do Lam, Anne T A; Widman, Guido; Helmstaedter, Christoph; Elger, Christian E; Axmacher, Nikolai

    2013-05-01

    Zero-lag phase synchronization of EEG activity has been reported to be a central mechanism accompanying long-term memory formation. In this pilot study, we examined the effects of synchronous low-amplitude stimulation of the rhinal cortex and the hippocampus in eleven temporal lobe epilepsy patients. The impact of in-phase stimulation (zero lag) on long-term memory encoding of words was contrasted with anti-phase (180° phase lag) and sham stimulation. We hypothesized more correctly remembered words for the in-phase compared to the sham condition and fewer correctly remembered words for the anti-phase vs. the sham condition. Indeed, we observed a trend for a linear condition effect for correctly remembered words, which is in accordance to our prediction (in-phase > sham > anti-phase). This finding suggests that even weak synchronous deep brain stimulation of rhinal cortex and hippocampus may modulate memory performance, while clear evidence for an enhancement of memory by this kind of deep brain simulation is still lacking.

  2. Restoring Conscious Arousal During Focal Limbic Seizures with Deep Brain Stimulation.

    PubMed

    Kundishora, Adam J; Gummadavelli, Abhijeet; Ma, Chanthia; Liu, Mengran; McCafferty, Cian; Schiff, Nicholas D; Willie, Jon T; Gross, Robert E; Gerrard, Jason; Blumenfeld, Hal

    2016-03-03

    Impaired consciousness occurs suddenly and unpredictably in people with epilepsy, markedly worsening quality of life and increasing risk of mortality. Focal seizures with impaired consciousness are the most common form of epilepsy and are refractory to all current medical and surgical therapies in about one-sixth of cases. Restoring consciousness during and following seizures would be potentially transformative for these individuals. Here, we investigate deep brain stimulation to improve level of conscious arousal in a rat model of focal limbic seizures. We found that dual-site stimulation of the central lateral nucleus of the intralaminar thalamus (CL) and the pontine nucleus oralis (PnO) bilaterally during focal limbic seizures restored normal-appearing cortical electrophysiology and markedly improved behavioral arousal. In contrast, single-site bilateral stimulation of CL or PnO alone was insufficient to achieve the same result. These findings support the "network inhibition hypothesis" that focal limbic seizures impair consciousness through widespread inhibition of subcortical arousal. Driving subcortical arousal function would be a novel therapeutic approach to some forms of refractory epilepsy and may be compatible with devices already in use for responsive neurostimulation. Multisite deep brain stimulation of subcortical arousal structures may benefit not only patients with epilepsy but also those with other disorders of consciousness.

  3. Hemodynamic measurements in deep brain tissues of humans by near-infrared time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroaki; Oda, Motoki; Yamaki, Etsuko; Suzuki, Toshihiko; Yamashita, Daisuke; Yoshimoto, Kenji; Homma, Shu; Yamashita, Yutaka

    2014-03-01

    Using near-infrared time-resolved spectroscopy (TRS), we measured the human head in transmittance mode to obtain the optical properties, tissue oxygenation, and hemodynamics of deep brain tissues in 50 healthy adult volunteers. The right ear canal was irradiated with 3-wavelengths of pulsed light (760, 795, and 835nm), and the photons passing through the human head were collected at the left ear canal. Optical signals with sufficient intensity could be obtained from 46 of the 50 volunteers. By analyzing the temporal profiles based on the photon diffusion theory, we successfully obtained absorption coefficients for each wavelength. The levels of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), total hemoglobin (tHb), and tissue oxygen saturation (SO2) were then determined by referring to the hemoglobin spectroscopic data. Compared with the SO2 values for the forehead measurements in reflectance mode, the SO2 values of the transmittance measurements of the human head were approximately 10% lower, and tHb values of the transmittance measurements were always lower than those of the forehead reflectance measurements. Moreover, the level of hemoglobin and the SO2 were strongly correlated between the human head measurements in transmittance mode and the forehead measurements in the reflectance mode, respectively. These results demonstrated a potential application of this TRS system in examining deep brain tissues of humans.

  4. A novel quality of life instrument for deep brain stimulation in movement disorders

    PubMed Central

    Kuehler, A; Henrich, G; Schroeder, U; Conrad, B; Herschbach, P; Ceballos-Baumann, A

    2003-01-01

    Objective: To develop a short instrument to examine quality of life (QoL) which specifically addresses patients with movement disorders treated by deep brain stimulation (DBS). Design: The instrument was developed within an existing concept of a modular questionnaire (questions on life satisfaction: "general life satisfaction" QLSM-A, and "satisfaction with health" QLSM-G), in which each item is weighted according to its relative importance to the individual. Methods: Items were generated by interviews with 20 DBS patients, followed by item reduction and scale generation, factor analysis to determine relevant and final questionnaire items, estimation of reliability, and validation based on the medical outcome study 36 item short form health survey (SF-36) and the EuroQol (EQ-5D) (data from 152 patients with Parkinson's disease, essential tremor, or idiopathic torsion dystonia, including 75 patients with DBS). Results: Initial questionnaires were reduced to 12 items for a "movement disorder module" (QLSM-MD), and five items for a "deep brain stimulation module" (QLSM-DBS). Psychometric analysis revealed Cronbach's α values of of 0.87 and 0.73, and satisfactory correlation coefficients for convergent validity with SF-36 and EQ-5D. Conclusions: QLSM-MD and QLSM-DBS can evaluate quality of life aspects of DBS in movement disorders. Psychometric evaluation showed the questionnaires to be reliable, valid, and well accepted by the patients. PMID:12876228

  5. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia

    PubMed Central

    Pinaya, Walter H. L.; Gadelha, Ary; Doyle, Orla M.; Noto, Cristiano; Zugman, André; Cordeiro, Quirino; Jackowski, Andrea P.; Bressan, Rodrigo A.; Sato, João R.

    2016-01-01

    Neuroimaging-based models contribute to increasing our understanding of schizophrenia pathophysiology and can reveal the underlying characteristics of this and other clinical conditions. However, the considerable variability in reported neuroimaging results mirrors the heterogeneity of the disorder. Machine learning methods capable of representing invariant features could circumvent this problem. In this structural MRI study, we trained a deep learning model known as deep belief network (DBN) to extract features from brain morphometry data and investigated its performance in discriminating between healthy controls (N = 83) and patients with schizophrenia (N = 143). We further analysed performance in classifying patients with a first-episode psychosis (N = 32). The DBN highlighted differences between classes, especially in the frontal, temporal, parietal, and insular cortices, and in some subcortical regions, including the corpus callosum, putamen, and cerebellum. The DBN was slightly more accurate as a classifier (accuracy = 73.6%) than the support vector machine (accuracy = 68.1%). Finally, the error rate of the DBN in classifying first-episode patients was 56.3%, indicating that the representations learned from patients with schizophrenia and healthy controls were not suitable to define these patients. Our data suggest that deep learning could improve our understanding of psychiatric disorders such as schizophrenia by improving neuromorphometric analyses. PMID:27941946

  6. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia

    NASA Astrophysics Data System (ADS)

    Pinaya, Walter H. L.; Gadelha, Ary; Doyle, Orla M.; Noto, Cristiano; Zugman, André; Cordeiro, Quirino; Jackowski, Andrea P.; Bressan, Rodrigo A.; Sato, João R.

    2016-12-01

    Neuroimaging-based models contribute to increasing our understanding of schizophrenia pathophysiology and can reveal the underlying characteristics of this and other clinical conditions. However, the considerable variability in reported neuroimaging results mirrors the heterogeneity of the disorder. Machine learning methods capable of representing invariant features could circumvent this problem. In this structural MRI study, we trained a deep learning model known as deep belief network (DBN) to extract features from brain morphometry data and investigated its performance in discriminating between healthy controls (N = 83) and patients with schizophrenia (N = 143). We further analysed performance in classifying patients with a first-episode psychosis (N = 32). The DBN highlighted differences between classes, especially in the frontal, temporal, parietal, and insular cortices, and in some subcortical regions, including the corpus callosum, putamen, and cerebellum. The DBN was slightly more accurate as a classifier (accuracy = 73.6%) than the support vector machine (accuracy = 68.1%). Finally, the error rate of the DBN in classifying first-episode patients was 56.3%, indicating that the representations learned from patients with schizophrenia and healthy controls were not suitable to define these patients. Our data suggest that deep learning could improve our understanding of psychiatric disorders such as schizophrenia by improving neuromorphometric analyses.

  7. Motor responses of muscles supplied by cranial nerves to subthalamic nucleus deep brain stimuli.

    PubMed

    Costa, João; Valls-Solé, Josep; Valldeoriola, Francesc; Rumià, Jordi; Tolosa, Eduardo

    2007-01-01

    The distribution of human corticobulbar motor excitatory and inhibitory output is not fully understood. In particular, it is unclear whether the pattern of innervation is the same for upper and lower facial muscles, and what is the motor cortical area giving rise to such innervation. We used electrodes implanted in the subthalamic nucleus (STN) in patients with Parkinson's disease to activate motor tracts at a subcortical level. We examined the excitatory and inhibitory effects of unilateral single STN deep brain stimulation (sSTN-DBS) in 14 patients by taking recordings from facial, cervical and upper limb muscles on both sides. We measured the latency and amplitude of the motor-evoked potentials (MEPs), and the latency and duration of the silent periods, and compared ipsilateral with contralateral responses and responses obtained in different muscles. Unilateral sSTN-DBS induced strictly contralateral MEPs in the trapezius, deltoid, biceps and thenar muscles. The same stimulus always induced bilateral MEPs in the orbicularis oculi, orbicularis oris, masseter and sternocleidomastoid at a mean latency in the range 6.0-9.1 ms. MEP latencies in the orbicularis oculi and orbicularis oris were significantly longer than in the masseter and sternocleidomastoid (P < 0.01). A short latency small action potential was recorded in the ipsilateral orbicularis oculi that was likely generated by activation of extraocular muscles. During sustained voluntary muscle contraction, a silent period was recorded at similar onset latency on both sides. This period was significantly shorter in orbicularis oculi than in masseter, and in the ipsilateral side for both muscles (P < 0.01). sSTN-DBS is able to activate the descending projecting fibres in the corticobulbar tract eliciting bilateral MEPs and silent periods in facial and cranial muscles. This suggests that fibres to both ipsi- and contralateral motor nuclei descend together at the level of the STN. These findings are relevant in

  8. High-speed swept source optical coherence Doppler tomography for deep brain microvascular imaging

    PubMed Central

    Chen, Wei; You, Jiang; Gu, Xiaochun; Du, Congwu; Pan, Yingtian

    2016-01-01

    Noninvasive microvascular imaging using optical coherence Doppler tomography (ODT) has shown great promise in brain studies; however, high-speed microcirculatory imaging in deep brain remains an open quest. A high-speed 1.3 μm swept-source ODT (SS-ODT) system is reported which was based on a 200 kHz vertical-cavity-surface-emitting laser. Phase errors induced by sweep-trigger desynchronization were effectively reduced by spectral phase encoding and instantaneous correlation among the A-scans. Phantom studies have revealed a significant reduction in phase noise, thus an enhancement of minimally detectable flow down to 268.2 μm/s. Further in vivo validation was performed, in which 3D cerebral-blood-flow (CBF) networks in mouse brain over a large field-of-view (FOV: 8.5 × 5 × 3.2 mm3) was scanned through thinned skull. Results showed that fast flows up to 3 cm/s in pial vessels and minute flows down to 0.3 mm/s in arterioles or venules were readily detectable at depths down to 3.2 mm. Moreover, the dynamic changes of the CBF networks elicited by acute cocaine such as heterogeneous responses in various vessel compartments and at different cortical layers as well as transient ischemic events were tracked, suggesting the potential of SS-ODT for brain functional imaging that requires high flow sensitivity and dynamic range, fast frame rate and a large FOV to cover different brain regions. PMID:27934907

  9. High-speed swept source optical coherence Doppler tomography for deep brain microvascular imaging

    NASA Astrophysics Data System (ADS)

    Chen, Wei; You, Jiang; Gu, Xiaochun; Du, Congwu; Pan, Yingtian

    2016-12-01

    Noninvasive microvascular imaging using optical coherence Doppler tomography (ODT) has shown great promise in brain studies; however, high-speed microcirculatory imaging in deep brain remains an open quest. A high-speed 1.3 μm swept-source ODT (SS-ODT) system is reported which was based on a 200 kHz vertical-cavity-surface-emitting laser. Phase errors induced by sweep-trigger desynchronization were effectively reduced by spectral phase encoding and instantaneous correlation among the A-scans. Phantom studies have revealed a significant reduction in phase noise, thus an enhancement of minimally detectable flow down to 268.2 μm/s. Further in vivo validation was performed, in which 3D cerebral-blood-flow (CBF) networks in mouse brain over a large field-of-view (FOV: 8.5 × 5 × 3.2 mm3) was scanned through thinned skull. Results showed that fast flows up to 3 cm/s in pial vessels and minute flows down to 0.3 mm/s in arterioles or venules were readily detectable at depths down to 3.2 mm. Moreover, the dynamic changes of the CBF networks elicited by acute cocaine such as heterogeneous responses in various vessel compartments and at different cortical layers as well as transient ischemic events were tracked, suggesting the potential of SS-ODT for brain functional imaging that requires high flow sensitivity and dynamic range, fast frame rate and a large FOV to cover different brain regions.

  10. Deep Brain Stimulation: In Search of Reliable Instruments for Assessing Complex Personality-Related Changes

    PubMed Central

    Ineichen, Christian; Baumann-Vogel, Heide; Christen, Markus

    2016-01-01

    During the last 25 years, more than 100,000 patients have been treated with Deep Brain Stimulation (DBS). While human clinical and animal preclinical research has shed light on the complex brain-signaling disturbances that underpin e.g., Parkinson’s disease (PD), less information is available when it comes to complex psychosocial changes following DBS interventions. In this contribution, we propose to more thoroughly investigate complex personality-related changes following deep brain stimulation through refined and reliable instruments in order to help patients and their relatives in the post-surgery phase. By pursuing this goal, we first outline the clinical importance DBS has attained followed by discussing problematic and undesired non-motor problems that accompany some DBS interventions. After providing a brief definition of complex changes, we move on by outlining the measurement problem complex changes relating to non-motor symptoms currently are associated with. The latter circumstance substantiates the need for refined instruments that are able to validly assess personality-related changes. After providing a brief paragraph with regard to conceptions of personality, we argue that the latter is significantly influenced by certain competencies which themselves currently play only a tangential role in the clinical DBS-discourse. Increasing awareness of the latter circumstance is crucial in the context of DBS because it could illuminate a link between competencies and the emergence of personality-related changes, such as new-onset impulse control disorders that have relevance for patients and their relatives. Finally, we elaborate on the field of application of instruments that are able to measure personality-related changes. PMID:27618110

  11. Stimulating at the right time: phase-specific deep brain stimulation.

    PubMed

    Cagnan, Hayriye; Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J; Denison, Timothy; Brown, Peter

    2017-01-01

    SEE MOLL AND ENGEL DOI101093/AWW308 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson's disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient's tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects.

  12. Central thalamic deep brain stimulation for support of forebrain arousal regulation in the minimally conscious state.

    PubMed

    Schiff, Nicholas D

    2013-01-01

    This chapter considers the use of central thalamic deep brain stimulation (CT/DBS) to support arousal regulation mechanisms in the minimally conscious state (MCS). CT/DBS for selected patients in a MCS is first placed in the historical context of prior efforts to use thalamic electrical brain stimulation to treat the unconscious clinical conditions of coma and vegetative state. These previous studies and a proof of concept result from a single-subject study of a patient in a MCS are reviewed against the background of new population data providing benchmarks of the natural history of vegetative and MCSs. The conceptual foundations for CT/DBS in selected patients in a MCS are then presented with consideration of both circuit and cellular mechanisms underlying recovery of consciousness identified from empirical studies. Directions for developing future generalizable criteria for CT/DBS that focus on the integrity of necessary brain systems and behavioral profiles in patients in a MCS that may optimally response to support of arousal regulation mechanisms are proposed.

  13. Computational modeling of chemotactic signaling and aggregation of microglia around implantation site during deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Silchenko, A. N.; Tass, P. A.

    2013-10-01

    It is well established that prolonged electrical stimulation of brain tissue causes massive release of ATP in the extracellular space. The released ATP and the products of its hydrolysis, such as ADP and adenosine, become the main elements mediating chemotactic sensitivity and motility of microglial cells via subsequent activation of P2Y2,12 as well as A3A and A2A adenosine receptors. The size of the sheath around the electrode formed by the microglial cells is an important criterion for the optimization of the parameters of electrical current delivered to brain tissue. Here, we study a purinergic signaling pathway underlying the chemotactic motion of microglia towards the implanted electrode during deep brain stimulation. We present a computational model describing formation of a stable aggregate around the implantation site due to the joint chemo-attractive action of ATP and ADP together with a mixed influence of extracellular adenosine. The model was built in accordance with the classical Keller-Segel approach and includes an equation for the cells' density as well as equations describing the hydrolysis of extracellular ATP via successive reaction steps ATP →ADP →AMP →adenosine. The results of our modeling allowed us to reveal the dependence of the width of the encapsulating layer around the electrode on the amount of ATP released due to permanent electrical stimulation. The dependences of the aggregates' size on the parameter governing the nonlinearity of interaction between extracellular adenosine and adenosine receptors are also analyzed.

  14. Stimulating at the right time: phase-specific deep brain stimulation

    PubMed Central

    Pedrosa, David; Little, Simon; Pogosyan, Alek; Cheeran, Binith; Aziz, Tipu; Green, Alexander; Fitzgerald, James; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Friston, Karl J.; Denison, Timothy; Brown, Peter

    2017-01-01

    Abstract See Moll and Engel (doi:10.1093/aww308) for a scientific commentary on this article. Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson’s disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient’s tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects. PMID:28007997

  15. Statistical significance of task related deep brain EEG dynamic changes in the time-frequency domain.

    PubMed

    Chládek, J; Brázdil, M; Halámek, J; Plešinger, F; Jurák, P

    2013-01-01

    We present an off-line analysis procedure for exploring brain activity recorded from intra-cerebral electroencephalographic data (SEEG). The objective is to determine the statistical differences between different types of stimulations in the time-frequency domain. The procedure is based on computing relative signal power change and subsequent statistical analysis. An example of characteristic statistically significant event-related de/synchronization (ERD/ERS) detected across different frequency bands following different oddball stimuli is presented. The method is used for off-line functional classification of different brain areas.

  16. Exploring avian deep-brain photoreceptors and their role in activating the neuroendocrine regulation of gonadal development1

    PubMed Central

    Kuenzel, Wayne J.; Kang, Seong W.; Zhou, Z. Jimmy

    2015-01-01

    In the eyes of mammals, specialized photoreceptors called intrinsically photosensitive retinal ganglion cells (ipRGC) have been identified that sense photoperiodic or daylight exposure, providing them over time with seasonal information. Detectors of photoperiods are critical in vertebrates, particularly for timing the onset of reproduction each year. In birds, the eyes do not appear to monitor photoperiodic information; rather, neurons within at least 4 different brain structures have been proposed to function in this capacity. Specialized neurons, called deep brain photoreceptors (DBP), have been found in the septum and 3 hypothalamic areas. Within each of the 4 brain loci, one or more of 3 unique photopigments, including melanopsin, neuropsin, and vertebrate ancient opsin, have been identified. An experiment was designed to characterize electrophysiological responses of neurons proposed to be avian DBP following light stimulation. A second study used immature chicks raised under short-day photoperiods and transferred to long day lengths. Gene expression of photopigments was then determined in 3 septal-hypothalamic regions. Preliminary electrophysiological data obtained from patch-clamping neurons in brain slices have shown that bipolar neurons in the lateral septal organ responded to photostimulation comparable with mammalian ipRGC, particularly by showing depolarization and a delayed, slow response to directed light stimulation. Utilizing real-time reverse-transcription PCR, it was found that all 3 photopigments showed significantly increased gene expression in the septal-hypothalamic regions in chicks on the third day after being transferred to long-day photoperiods. Each dissected region contained structures previously proposed to have DBP. The highly significant increased gene expression for all 3 photopigments on the third, long-day photoperiod in brain regions proposed to contain 4 structures with DBP suggests that all 3 types of DBP (melanopsin, neuropsin

  17. Parafascicular thalamic nucleus deep brain stimulation decreases NMDA receptor GluN1 subunit gene expression in the prefrontal cortex.

    PubMed

    Fernández-Cabrera, Mónica R; Selvas, Abraham; Miguéns, Miguel; Higuera-Matas, Alejandro; Vale-Martínez, Anna; Ambrosio, Emilio; Martí-Nicolovius, Margarita; Guillazo-Blanch, Gemma

    2017-04-21

    The rodent parafascicular nucleus (PFn) or the centromedian-parafascicular complex of primates is a posterior intralaminar nucleus of the thalamus related to cortical activation and maintenance of states of consciousness underlying attention, learning and memory. Deep brain stimulation (DBS) of the PFn has been proved to restore arousal and consciousness in humans and to enhance performance in learning and memory tasks in rats. The primary expected effect of PFn DBS is to induce plastic changes in target neurons of brain areas associated with cognitive function. In this study, Wistar rats were stimulated for 20mins in the PFn following a DBS protocol that had previously facilitated memory in rats. NMDA and GABAB receptor binding, and gene expression of the GluN1subunit of the NMDA receptor (NMDAR) were assessed in regions related to cognitive functions, such as the prefrontal cortex and hippocampus. The results showed that PFn DBS induced a decrease in NMDAR GluN1 subunit gene expression in the cingulate and prelimbic cortices, but no significant statistical differences were found in the density of NMDA or GABAB receptors in any of the analyzed regions. Taken together, our findings suggest a possible role for the NMDAR GluN1 subunit in the prefrontal cortex in the procognitive actions of the PFn DBS.

  18. Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice

    DOE PAGES

    Fan, Quli; Cheng, Kai; Yang, Zhen; ...

    2014-11-06

    In order to promote preclinical and clinical applications of photoacoustic imaging, novel photoacoustic contrast agents are highly desired for molecular imaging of diseases, especially for deep tumor imaging. In this paper, perylene-3,4,9,10-tetracarboxylic diiimide-based near-infrared-absorptive organic nanoparticles are reported as an efficient agent for photoacoustic imaging of deep brain tumors in living mice with enhanced permeability and retention effect

  19. Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice.

    PubMed

    Fan, Quli; Cheng, Kai; Yang, Zhen; Zhang, Ruiping; Yang, Min; Hu, Xiang; Ma, Xiaowei; Bu, Lihong; Lu, Xiaomei; Xiong, Xiaoxing; Huang, Wei; Zhao, Heng; Cheng, Zhen

    2015-02-04

    In order to promote preclinical and clinical applications of photoacoustic imaging, novel photoacoustic contrast agents are highly desired for molecular imaging of diseases, especially for deep tumor imaging. Here, perylene-3,4,9,10-tetracarboxylic diiimide-based near-infrared-absorptive organic nanoparticles are reported as an efficient agent for photoacoustic imaging of deep brain tumors in living mice with enhanced permeability and retention effect.

  20. Encoding-based brain-computer interface controlled by non-motor area of rat brain.

    PubMed

    Lang, Yiran; Du, Ping; Shin, Hyung-Cheul

    2011-09-01

    As the needs of disabled patients are increasingly recognized in society, researchers have begun to use single neuron activity to construct brain-computer interfaces (BCI), designed to facilitate the daily lives of individuals with physical disabilities. BCI systems typically allow users to control computer programs or external devices via signals produced in the motor or pre-motor areas of the brain, rather than producing actual motor movements. However, impairments in these brain areas can hinder the application of BCI. The current paper demonstrates the feasibility of a one-dimensional (1D) machine controlled by rat prefrontal cortex (PFC) neurons using an encoding method. In this novel system, rats are able to quench thirst by varying neuronal firing rate in the PFC to manipulate a water dish that can rotate in 1D. The results revealed that control commands generated by an appropriate firing frequency in rat PFC exhibited performance improvements with practice, indicated by increasing water-drinking duration and frequency. These results demonstrated that it is possible for rats to understand an encoding-based BCI system and control a 1D machine using PFC activity to obtain reward.

  1. Timing for deep vein thrombosis chemoprophylaxis in traumatic brain injury: an evidence-based review.

    PubMed

    Abdel-Aziz, Hiba; Dunham, C Michael; Malik, Rema J; Hileman, Barbara M

    2015-03-24

    Multiple studies have addressed deep vein thrombosis chemoprophylaxis timing in traumatic brain injuries. However, a precise time for safe and effective chemoprophylaxis is uncertain according to experts. A comprehensive literature review on brain injuries was performed to delineate temporal proportions for 1) spontaneous intracranial hemorrhage (ICH) progression, 2) post-chemoprophylaxis ICH expansion, and 3) post-chemoprophylaxis deep vein thrombosis. Twenty-three publications were found including more than 5,000 patients. Spontaneous ICH expansion at 24 hours was 14.8% in 1,437 patients from chemoprophylaxis studies and 29.9% in 1,257 patients not in chemoprophylaxis studies (P < 0.0001). With low-risk ICH (n = 136), 99% of spontaneous ICH expansion occurred within 48 hours. In moderate or high-risk ICH (n = 109), 18% of spontaneous ICH expansion occurred after day 3. If patients with pre-chemoprophylaxis ICH expansion are included, the post-chemoprophylaxis ICH expansion proportion was 5.6% in 1,258 patients with chemoprophylaxis on days 1 to 3 and was 1.5% in 401 with chemoprophylaxis after day 3 (P = 0.0116). If patients with pre-chemoprophylaxis ICH expansion were excluded, the post-chemoprophylaxis ICH expansion proportion was 3.1% in 1,570 patients with chemoprophylaxis on days 1 to 3 and was 2.8% in 582 with chemoprophylaxis after day 3 (P = 0.7769). In diffuse axonal injury (n = 188), the post-chemoprophylaxis ICH expansion proportion was 1.6% with chemoprophylaxis after day 3. The deep vein thrombosis proportions were as follows: chemoprophylaxis on days 1 to 3, 2.6% in 2,384 patients; chemoprophylaxis on days 4 or 5, 2.2% in 831; and chemoprophylaxis on day 8, 14.1% in 99 (P < 0.0001). Spontaneous ICH expansion proportions at 24 hours substantially vary between chemoprophylaxis and non-chemoprophylaxis studies. Chemoprophylaxis should not be given within 3 days of injury for moderate-risk or high-risk ICH. Chemoprophylaxis

  2. Analysis of electrodes' placement and deformation in deep brain stimulation from medical images

    NASA Astrophysics Data System (ADS)

    Mehri, Maroua; Lalys, Florent; Maumet, Camille; Haegelen, Claire; Jannin, Pierre

    2012-02-01

    Deep brain stimulation (DBS) is used to reduce the motor symptoms such as rigidity or bradykinesia, in patients with Parkinson's disease (PD). The Subthalamic Nucleus (STN) has emerged as prime target of DBS in idiopathic PD. However, DBS surgery is a difficult procedure requiring the exact positioning of electrodes in the pre-operative selected targets. This positioning is usually planned using patients' pre-operative images, along with digital atlases, assuming that electrode's trajectory is linear. However, it has been demonstrated that anatomical brain deformations induce electrode's deformations resulting in errors in the intra-operative targeting stage. In order to meet the need of a higher degree of placement accuracy and to help constructing a computer-aided-placement tool, we studied the electrodes' deformation in regards to patients' clinical data (i.e., sex, mean PD duration and brain atrophy index). Firstly, we presented an automatic algorithm for the segmentation of electrode's axis from post-operative CT images, which aims to localize the electrodes' stimulated contacts. To assess our method, we applied our algorithm on 25 patients who had undergone bilateral STNDBS. We found a placement error of 0.91+/-0.38 mm. Then, from the segmented axis, we quantitatively analyzed the electrodes' curvature and correlated it with patients' clinical data. We found a positive significant correlation between mean curvature index of the electrode and brain atrophy index for male patients and between mean curvature index of the electrode and mean PD duration for female patients. These results help understanding DBS electrode' deformations and would help ensuring better anticipation of electrodes' placement.

  3. Repeated BOLD-fMRI Imaging of Deep Brain Stimulation Responses in Rats

    PubMed Central

    Chao, Tzu-Hao Harry; Chen, Jyh-Horng; Yen, Chen-Tung

    2014-01-01

    Functional magnetic resonance imaging (fMRI) provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol) with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP) thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1). The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91), and location (overlap ratio from 0.61 to 0.67). The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI. PMID:24825464

  4. Dyslexic brain activation abnormalities in deep and shallow orthographies: A meta‐analysis of 28 functional neuroimaging studies

    PubMed Central

    Martin, Anna; Kronbichler, Martin

    2016-01-01

    Abstract We used coordinate‐based meta‐analysis to objectively quantify commonalities and differences of dyslexic functional brain abnormalities between alphabetic languages differing in orthographic depth. Specifically, we compared foci of under‐ and overactivation in dyslexic readers relative to nonimpaired readers reported in 14 studies in deep orthographies (DO: English) and in 14 studies in shallow orthographies (SO: Dutch, German, Italian, Swedish). The separate meta‐analyses of the two sets of studies showed universal reading‐related dyslexic underactivation in the left occipitotemporal cortex (including the visual word form area (VWFA)). The direct statistical comparison revealed higher convergence of underactivation for DO compared with SO in bilateral inferior parietal regions, but this abnormality disappeared when foci resulting from stronger dyslexic task‐negative activation (i.e., deactivation relative to baseline) were excluded. Higher convergence of underactivation for DO compared with SO was further identified in the left inferior frontal gyrus (IFG) pars triangularis, left precuneus, and right superior temporal gyrus, together with higher convergence of overactivation in the left anterior insula. Higher convergence of underactivation for SO compared with DO was found in the left fusiform gyrus, left temporoparietal cortex, left IFG pars orbitalis, and left frontal operculum, together with higher convergence of overactivation in the left precentral gyrus. Taken together, the findings support the notion of a biological unity of dyslexia, with additional orthography‐specific abnormalities and presumably different compensatory mechanisms. The results are discussed in relation to current functional neuroanatomical models of developmental dyslexia. Hum Brain Mapp 37:2676–2699, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27061464

  5. Deep brain stimulation in rats: different targets induce similar antidepressant-like effects but influence different circuits.

    PubMed

    Hamani, Clement; Amorim, Beatriz O; Wheeler, Anne L; Diwan, Mustansir; Driesslein, Klaus; Covolan, Luciene; Butson, Christopher R; Nobrega, José N

    2014-11-01

    Recent studies in patients with treatment-resistant depression have shown similar results with the use of deep brain stimulation (DBS) in the subcallosal cingulate gyrus (SCG), ventral capsule/ventral striatum (VC/VS) and nucleus accumbens (Acb). As these brain regions are interconnected, one hypothesis is that by stimulating these targets one would just be influencing different relays in the same circuitry. We investigate behavioral, immediate early gene expression, and functional connectivity changes in rats given DBS in homologous regions, namely the ventromedial prefrontal cortex (vmPFC), white matter fibers of the frontal region (WMF) and nucleus accumbens. We found that DBS delivered to the vmPFC, Acb but not WMF induced significant antidepressant-like effects in the FST (31%, 44%, and 17% reduction in immobility compared to controls). Despite these findings, stimulation applied to these three targets induced distinct patterns of regional activity and functional connectivity. While animals given vmPFC DBS had increased cortical zif268 expression, changes after Acb stimulation were primarily observed in subcortical structures. In animals receiving WMF DBS, both cortical and subcortical structures at a distance from the target were influenced by stimulation. In regard to functional connectivity, DBS in all targets decreased intercorrelations among cortical areas. This is in contrast to the clear differences observed in subcortical connectivity, which was reduced after vmPFC DBS but increased in rats receiving Acb or WMF stimulation. In conclusion, results from our study suggest that, despite similar antidepressant-like effects, stimulation of the vmPFC, WMF and Acb induces distinct changes in regional brain activity and functional connectivity.

  6. Brain Stimulation Therapies

    MedlinePlus

    ... Magnetic Seizure Therapy Deep Brain Stimulation Additional Resources Brain Stimulation Therapies Overview Brain stimulation therapies can play ... for a shorter recovery time than ECT Deep Brain Stimulation Deep brain stimulation (DBS) was first developed ...

  7. Deep brain stimulation (DBS) at the interface of neurology and psychiatry

    PubMed Central

    Williams, Nolan R.; Okun, Michael S.

    2013-01-01

    Deep brain stimulation (DBS) is an emerging interventional therapy for well-screened patients with specific treatment-resistant neuropsychiatric diseases. Some neuropsychiatric conditions, such as Parkinson disease, have available and reasonable guideline and efficacy data, while other conditions, such as major depressive disorder and Tourette syndrome, have more limited, but promising results. This review summarizes both the efficacy and the neuroanatomical targets for DBS in four common neuropsychiatric conditions: Parkinson disease, Tourette syndrome, major depressive disorder, and obsessive-compulsive disorder. Based on emerging new research, we summarize novel approaches to optimization of stimulation for each neuropsychiatric disease and we review the potential positive and negative effects that may be observed following DBS. Finally, we summarize the likely future innovations in the field of electrical neural-network modulation. PMID:24177464

  8. Role of adenosine in the antiepileptic effects of deep brain stimulation

    PubMed Central

    Miranda, Maisa F.; Hamani, Clement; de Almeida, Antônio-Carlos G.; Amorim, Beatriz O.; Macedo, Carlos E.; Fernandes, Maria José S.; Nobrega, José N.; Aarão, Mayra C.; Madureira, Ana Paula; Rodrigues, Antônio M.; Andersen, Monica L.; Tufik, Sergio; Mello, Luiz E.; Covolan, Luciene

    2014-01-01

    Despite the effectiveness of anterior thalamic nucleus (AN) deep brain stimulation (DBS) for the treatment of epilepsy, mechanisms responsible for the antiepileptic effects of this therapy remain elusive. As adenosine modulates neuronal excitability and seizure activity in animal models, we hypothesized that this nucleoside could be one of the substrates involved in the effects of AN DBS. We applied 5 days of stimulation to rats rendered chronically epileptic by pilocarpine injections and recorded epileptiform activity in hippocampal slices. We found that slices from animals given DBS had reduced hippocampal excitability and were less susceptible to develop ictal activity. In live animals, AN DBS significantly increased adenosine levels in the hippocampus as measured by microdialysis. The reduced excitability of DBS in vitro was completely abolished in animals pre-treated with A1 receptor antagonists and was strongly potentiated by A1 receptor agonists. We conclude that some of the antiepileptic effects of DBS may be mediated by adenosine. PMID:25324724

  9. The effects of subthalamic deep brain stimulation on metaphor comprehension and language abilities in Parkinson's disease.

    PubMed

    Tremblay, Christina; Macoir, Joël; Langlois, Mélanie; Cantin, Léo; Prud'homme, Michel; Monetta, Laura

    2015-02-01

    The effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) on different language abilities are still controversial and its impact on high-level language abilities such as metaphor comprehension has been overlooked. The aim of this study was to determine the effects of STN electrical stimulation on metaphor comprehension and language abilities such as lexical and semantic capacities. Eight PD individuals with bilateral STN-DBS were first evaluated OFF-DBS and, at least seven weeks later, ON-DBS. Performance on metaphor comprehension, lexical decision, word association and verbal fluency tasks were compared ON and OFF-DBS in addition to motor symptoms evaluation. STN stimulation had a significant beneficial effect on motor symptoms in PD. However, this stimulation did not have any effect on metaphor comprehension or any other cognitive ability evaluated in this study. These outcomes suggest that STN stimulation may have dissociable effects on motor and language functions.

  10. Treatment of dysarthria following subthalamic nucleus deep brain stimulation for Parkinson’s disease

    PubMed Central

    Tripoliti, Elina; Strong, Laura; Hickey, Freya; Foltynie, Tom; Zrinzo, Ludvic; Candelario, Joseph; Hariz, Marwan; Limousin, Patricia

    2011-01-01

    Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an established treatment for patients with Parkinson’s disease (PD). Speech impairment is a frequent side effect of the surgery. This study examined the efficacy of an intensive speech treatment (the Lee Silverman Voice Treatment, LSVT) on dysarthria after STN-DBS. The LSVT was administered in ten patients with STN-DBS (surgical group) and ten patients without (medical group). Patients were assessed before, immediately after and six months following the speech treatment using sustained phonation, a speech intelligibility scale and monologue. Vocal loudness, speech intelligibility and perceptual ratings were the primary outcome measures. Vocal loudness and perceptual scores improved significantly across tasks for the medical group only. Speech intelligibility did not significantly change for either group. Results in the surgical group were variable with some patients deteriorating. Treatment of dysarthria following STN-DBS needs further investigation due to the variable response to LSVT. PMID:21953693

  11. Method for patient-specific finite element modeling and simulation of deep brain stimulation.

    PubMed

    Aström, Mattias; Zrinzo, Ludvic U; Tisch, Stephen; Tripoliti, Elina; Hariz, Marwan I; Wårdell, Karin

    2009-01-01

    Deep brain stimulation (DBS) is an established treatment for Parkinson's disease. Success of DBS is highly dependent on electrode location and electrical parameter settings. The aim of this study was to develop a general method for setting up patient-specific 3D computer models of DBS, based on magnetic resonance images, and to demonstrate the use of such models for assessing the position of the electrode contacts and the distribution of the electric field in relation to individual patient anatomy. A software tool was developed for creating finite element DBS-models. The electric field generated by DBS was simulated in one patient and the result was visualized with isolevels and glyphs. The result was evaluated and it corresponded well with reported effects and side effects of stimulation. It was demonstrated that patient-specific finite element models and simulations of DBS can be useful for increasing the understanding of the clinical outcome of DBS.

  12. Bilateral deep brain stimulation of the nucleus accumbens for comorbid obsessive compulsive disorder and Tourette's syndrome.

    PubMed

    Sachdev, Perminder Singh; Cannon, Elisabeth; Coyne, Terry J; Silburn, Peter

    2012-09-12

    We present the case of a 32-year-old Caucasian woman with severe treatment-refractory obsessive compulsive disorder (OCD) and Tourette's syndrome. Both conditions were present prior to age 5 and impacted significantly on the patient's functioning. Multiple trials of evidence-based pharmacological and behavioural therapies had not achieved remission of symptoms. Bilateral deep brain stimulation of the nucleus accumbens was undertaken to treat both illnesses but with a particular focus on OCD, as the patient identified this as the more debilitating of the two disorders. Following surgery there was an immediate improvement in OCD and tic severity. At follow-up 8 months later, there was a 90% improvement in OCD symptoms and a 57% improvement in tic severity. No intraoperative or postoperative complications or adverse events occurred and there were no undesired effects of stimulation.

  13. Preserving cortico-striatal function: deep brain stimulation in Huntington's disease.

    PubMed

    Nagel, Sean J; Machado, Andre G; Gale, John T; Lobel, Darlene A; Pandya, Mayur

    2015-01-01

    Huntington's disease (HD) is an incurable neurodegenerative disease characterized by the triad of chorea, cognitive dysfunction and psychiatric disturbances. Since the discovery of the HD gene, the pathogenesis has been outlined, but to date a cure has not been found. Disease modifying therapies are needed desperately to improve function, alleviate suffering, and provide hope for symptomatic patients. Deep brain stimulation (DBS), a proven therapy for managing the symptoms of some neurodegenerative movement disorders, including Parkinson's disease, has been reported as a palliative treatment in select cases of HD with debilitating chorea with variable success. New insights into the mechanism of action of DBS suggest it may have the potential to circumvent other manifestations of HD including cognitive deterioration. Furthermore, because DBS is already widely used, reversible, and has a risk profile that is relatively low, new studies can be initiated. In this article we contend that new clinical trials be considered to test the effects of DBS for HD.

  14. Parkinson's disease patients with bilateral subthalamic deep brain stimulation gain weight.

    PubMed

    Macia, Frédéric; Perlemoine, Caroline; Coman, Irène; Guehl, Dominique; Burbaud, Pierre; Cuny, Emmanuel; Gin, Henri; Rigalleau, Vincent; Tison, François

    2004-02-01

    Weight, body mass index (BMI) and energy expenditure/energy intake (EE/EI) was studied in 19 Parkinson's disease (PD) patients after subthalamic deep brain stimulation (STN-DBS) versus 14 nonoperated ones. Operated patients had a significant weight gain (WG, + 9.7 +/- 7 kg) and BMI increase (+ 4.7 kg/m2). The fat mass was higher after STN-DBS. Resting EE (REE; offdrug/ON stimulation) was significantly decreased in STN-DBS patients, while their daily energy expenditure (DEI) was not significantly different. A significant correlation was found among WG, BMI increase, and pre-operative levodopa-equivalent daily dose, their reduction after STN-DBS, and the differential REE related to stimulation and the REE in the offdrug/OFF stimulation condition. In conclusion, STN-DBS in PD induces a significant WG associated with a reduction in REE without DEI adjustment.

  15. A case of musical preference for Johnny Cash following deep brain stimulation of the nucleus accumbens

    PubMed Central

    Mantione, Mariska; Figee, Martijn; Denys, Damiaan

    2014-01-01

    Music is among all cultures an important part of the live of most people. Music has psychological benefits and may generate strong emotional and physiological responses. Recently, neuroscientists have discovered that music influences the reward circuit of the nucleus accumbens (NAcc), even when no explicit reward is present. In this clinical case study, we describe a 60-year old patient who developed a sudden and distinct musical preference for Johnny Cash following deep brain stimulation (DBS) targeted at the NAcc. This case report substantiates the assumption that the NAcc is involved in musical preference, based on the observation of direct stimulation of the accumbens with DBS. It also shows that accumbens DBS can change musical preference without habituation of its rewarding properties. PMID:24834035

  16. Management of impulse control disorders with deep brain stimulation: A double-edged sword.

    PubMed

    Kasemsuk, Chayut; Oyama, Genko; Hattori, Nobutaka

    2017-03-15

    Deep brain stimulation (DBS) is a surgical option for advanced Parkinson's disease. Although DBS is used to treat motor fluctuation, DBS may affect non-motor symptoms including mood disorders, cognitive dysfunction, and behavior problems. Impulse control disorders (ICDs) are abnormal behaviors with various manifestations such as pathological gambling, hypersexuality, compulsive shopping, and binge eating, which can affect the quality of life in patients with Parkinson's disease. The effect of DBS on ICD is controversial. Reducing medication by DBS may improve ICDs, however, worsening or even developing new ICDs after DBS can occur. We will review the impact of DBS on ICDs and reveal factors associated with a good response to DBS as well as risk factors for developing ICDs after DBS. We also propose a strategy to manage preexisting ICD and prevent postoperative de novo ICDs.

  17. Ethical concerns regarding commercialization of deep brain stimulation for obsessive compulsive disorder.

    PubMed

    Erickson-Davis, Cordelia

    2012-10-01

    The United States Food and Drug Administration's recent approval of the commercial use of Deep Brain Stimulation (DBS) as a treatment for Obsessive Compulsive Disorder (OCD) will be discussed within the context of the existing USA regulatory framework. The purpose will be to illustrate the current lack of regulation and oversight of the DBS market, which has resulted in the violation of basic ethical norms. The discussion will focus on: 1) the lack of available evidence on procedural safety and efficacy, 2) the numerous conflicts of interest held by research investigators, and 3) the ambiguity of both aforementioned categories due to an inherent lack of transparency in the research. It is argued that in order to address these issues, ethical analyses of DBS for psychiatric disorders must include the role of the industry forces that have become the primary impetus for this research. As such, DBS for OCD serves as an important case example in studies of neurotechnology and innovative surgery.

  18. Eligibility Criteria for Deep Brain Stimulation in Parkinson's Disease, Tremor, and Dystonia.

    PubMed

    Munhoz, Renato P; Picillo, Marina; Fox, Susan H; Bruno, Veronica; Panisset, Michel; Honey, Christopher R; Fasano, Alfonso

    2016-07-01

    In this review, the available evidence to guide clinicians regarding eligibility for deep brain stimulation (DBS) in the main conditions in which these forms of therapy are generally indicated-Parkinson's disease (PD), tremor, and dystonia-is presented. In general, the literature shows that DBS is effective for PD, essential tremor, and idiopathic dystonia. In these cases, key points in patient selection must include the level of disability and inability to manage symptoms using the best available medical therapy. Results are, however, still not optimal when dealing with other aetiologies, such as secondary tremors and symptomatic dystonia. Also, in PD, issues such as age and neuropsychiatric profile are still debatable parameters. Overall, currently available literature is able to guide physicians on basic aspects of patient selection and indications for DBS; however, a few points are still debatable and controversial. These issues should be refined and clarified in future studies.

  19. A target-specific electrode and lead design for internal globus pallidus deep brain stimulation.

    PubMed

    Vasques, Xavier; Cif, Laura; Mennessier, Gérard; Coubes, Philippe

    2010-01-01

    In nearly all deep brain stimulation (DBS) applications, the same quadripolar electrode design is used for different anatomical targets even if shape and volume differences exist between nuclei. Taking into account the electrode location within the internal globus pallidus (GPi) and the size of the GPi, 2 electrodes were designed in order to improve the therapeutic benefit, to minimize side effects from DBS and to obtain a more homogeneous electric field distribution. The electrodes were evaluated numerically by using a stereotactic model measuring the correlation between the electric field and the GPi. The model was applied to 26 dystonodyskinetic patients who underwent surgery for a bilateral lead implantation into the posteroventral part of the GPi. The designed electrodes produced a more homogeneous distribution of the electric field than the quadripolar electrode.

  20. [Twiddler's syndrome in a patient with obsessive-compulsive disorder treated with deep brain stimulation].

    PubMed

    Moliz, Nicolás; Katati, Majed J; Iañez, Benjamín; García, Asunción; Yagui, Eskandar; Horcajadas, Ángel

    2015-01-01

    Twiddler's syndrome is a rare complication associated with implantable electrical stimulation devices. First described in a patient with a pacemaker, it is a known complication in the field of cardiology. However, it is not so recognised in the world of neurosurgery, in which it has been described in relation to deep brain stimulation (DBS) devices. Characterised by manipulating either consciously or unconsciously the generator of such devices, which causes it to rotate on itself, the syndrome causes the coiling of the wiring of these systems and can lead to their rupture or the displacement of intracranial electrodes. We describe a case of twiddler's syndrome in a patient treated with DBS for obsessive-compulsive disorder, in which clinical deterioration presented after a good initial response. Control radiographs revealed rotation of the wiring system and displacement of the intracranial electrodes.

  1. Nonmotor outcomes in Parkinson’s disease: is deep brain stimulation better than dopamine replacement therapy?

    PubMed Central

    Kandadai, Rukmini Mridula; Jabeen, Afshan; Kannikannan, Meena A.

    2012-01-01

    Nonmotor symptoms are an integral part of Parkinson’s disease and cause significant morbidity. Pharmacological therapy helps alleviate the disease but produces nonmotor manifestations. While deep brain stimulation (DBS) has emerged as the treatment of choice for motor dysfunction, the effect on nonmotor symptoms is not well known. Compared with pharmacological therapy, bilateral subthalamic nucleus (STN)-DBS or globus pallidum interna (GPi)-DBS has significant beneficial effects on pain, sleep, gastrointestinal and urological symptoms. STN-DBS is associated with a mild worsening in verbal fluency while GPi-DBS has no effect on cognition. STN-DBS may improve cardiovascular autonomic disturbances by reducing the dose of dopaminergic drugs. Because the motor effects of STN-DBS and GPi-DBS appear to be similar, nonmotor symptoms may determine the target choice in surgery of future patients. PMID:22276074

  2. Automatic target and trajectory identification for deep brain stimulation (DBS) procedures.

    PubMed

    Guo, Ting; Parrent, Andrew G; Peters, Terry M

    2007-01-01

    This paper presents an automatic surgical target and trajectory identification technique for planning deep brain stimulation (DBS) procedures. The probabilistic functional maps, constructed from population-based actual stimulating field information and intra-operative electrophysiological activities, were integrated into a neurosurgical visualization and navigation system to facilitate the surgical planning and guidance. In our preliminary studies, we compared the actual surgical target locations and trajectories established by an experienced stereotactic neurosurgeon with those automatically planned using our probabilistic functional maps on 10 subthalamic nucleus (STN) DBS procedures. The average displacement between the surgical target locations in both groups was 1.82mm with a standard deviation of 0.77mm. The difference between the surgical trajectories was 3.1 degrees and 2.3 degrees in the lateral-to-medial and anterior-to-posterior orientations respectively.

  3. A slow axon antidromic blockade hypothesis for tremor reduction via deep brain stimulation.

    PubMed

    García, Míriam R; Pearlmutter, Barak A; Wellstead, Peter E; Middleton, Richard H

    2013-01-01

    Parkinsonian and essential tremor can often be effectively treated by deep brain stimulation. We propose a novel explanation for the mechanism by which this technique ameliorates tremor: a reduction of the delay in the relevant motor control loops via preferential antidromic blockade of slow axons. The antidromic blockade is preferential because the pulses more rapidly clear fast axons, and the distribution of axonal diameters, and therefore velocities, in the involved tracts, is sufficiently long-tailed to make this effect quite significant. The preferential blockade of slow axons, combined with gain adaptation, results in a reduction of the mean delay in the motor control loop, which serves to stabilize the feedback system, thus ameliorating tremor. This theory, without any tuning, accounts for several previously perplexing phenomena, and makes a variety of novel predictions.

  4. Therapeutic Perspective on Tardive Syndrome with Special Reference to Deep Brain Stimulation

    PubMed Central

    Morigaki, Ryoma; Mure, Hideo; Kaji, Ryuji; Nagahiro, Shinji; Goto, Satoshi

    2016-01-01

    Tardive syndrome (TDS) is a potentially permanent and irreversible hyperkinetic movement disorder caused by exposure to dopamine receptor blocking agents. Guidelines published by the American Academy of Neurology recommend pharmacological first-line treatment for TDS with clonazepam (level B), ginkgo biloba (level B), amantadine (level C), and tetrabenazine (level C). Recently, a class II study provided level C evidence for use of deep brain stimulation (DBS) of the globus pallidus internus (GPi) in patients with TDS. Although the precise pathogenesis of TDS remains to be elucidated, the beneficial effects of GPi-DBS in patients with TDS suggest that the disease may be a basal ganglia disorder. In addition to recent advances in understanding the pathophysiology of TDS, this article introduces the current use of DBS in the treatment of medically intractable TDS. PMID:28082923

  5. Cross validation of experts versus registration methods for target localization in deep brain stimulation.

    PubMed

    Sánchez Castro, F Javier; Pollo, Claudio; Meuli, Reto; Maeder, Philippe; Cuadra, Meritxell Bach; Cuisenaire, Olivier; Villemure, Jean-Guy; Thiran, Jean-Philippe

    2005-01-01

    In the last five years, Deep Brain Stimulation (DBS) has become the most popular and effective surgical technique for the treatent of Parkinson's disease (PD). The Subthalamic Nucleus (STN) is the usual target involved when applying DBS. Unfortunately, the STN is in general not visible in common medical imaging modalities. Therefore, atlas-based segmentation is commonly considered to locate it in the images. In this paper, we propose a scheme that allows both, to perform a comparison between different registration algorithms and to evaluate their ability to locate the STN automatically. Using this scheme we can evaluate the expert variability against the error of the algorithms and we demonstrate that automatic STN location is possible and as accurate as the methods currently used.

  6. A critical reflection on the technological development of deep brain stimulation (DBS)

    PubMed Central

    Ineichen, Christian; Glannon, Walter; Temel, Yasin; Baumann, Christian R.; Sürücü, Oguzkan

    2014-01-01

    Since the translational research findings of Benabid and colleagues which partly led to their seminal paper regarding the treatment of mainly tremor-dominant Parkinson patients through thalamic high-frequency-stimulation (HFS) in 1987, we still struggle with identifying a satisfactory mechanistic explanation of the underlying principles of deep brain stimulation (DBS). Furthermore, the technological advance of DBS devices (electrodes and implantable pulse generators, IPG’s) has shown a distinct lack of dynamic progression. In light of this we argue that it is time to leave the paleolithic age and enter hellenistic times: the device-manufacturing industry and the medical community together should put more emphasis on advancing the technology rather than resting on their laurels. PMID:25278864

  7. Addiction therapy. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology.

    PubMed

    Creed, Meaghan; Pascoli, Vincent Jean; Lüscher, Christian

    2015-02-06

    Circuit remodeling driven by pathological forms of synaptic plasticity underlies several psychiatric diseases, including addiction. Deep brain stimulation (DBS) has been applied to treat a number of neurological and psychiatric conditions, although its effects are transient and mediated by largely unknown mechanisms. Recently, optogenetic protocols that restore normal transmission at identified synapses in mice have provided proof of the idea that cocaine-adaptive behavior can be reversed in vivo. The most efficient protocol relies on the activation of metabotropic glutamate receptors, mGluRs, which depotentiates excitatory synaptic inputs onto dopamine D1 receptor medium-sized spiny neurons and normalizes drug-adaptive behavior. We discovered that acute low-frequency DBS, refined by selective blockade of dopamine D1 receptors, mimics optogenetic mGluR-dependent normalization of synaptic transmission. Consequently, there was a long-lasting abolishment of behavioral sensitization.

  8. Patterns of reoccurrence of segmental dystonia after discontinuation of deep brain stimulation

    PubMed Central

    Grips, E; Blahak, C; Capelle, H H; Bäzner, H; Weigel, R; Sedlaczek, O; Krauss, J K; Wöhrle, J C

    2007-01-01

    The pattern of reoccurrence of symptoms after discontinuation of deep brain stimulation (DBS) has not been systematically studied in dystonia. Eight patients (mean age (SD) 53.8 (14.4) years) with segmental dystonia at a mean follow‐up of 11.3 (4.2) months were studied after implantation of bilateral DBS electrodes in the internal globus pallidus using a standard video protocol and clinical rating scales, immediately and at 2 and 4 h after switching off DBS. Dystonic signs returned sequentially, with a rapid worsening of phasic and a slower worsening of tonic dystonic components. In all patients, phasic dystonic features appeared within a few minutes, whereas the tonic elements of dystonia reoccurred with a more variable delay. Differential clinical effects when withdrawing DBS might reflect its influence on different pathophysiological mechanisms in dystonia. PMID:17030588

  9. The turnover of protein in discrete areas of rat brain

    PubMed Central

    Austin, Lawrence; Lowry, Oliver H.; Brown, Joseph G.; Carter, Joyce G.

    1972-01-01

    1. Rats were injected serially with [14C]glucose to obtain a constant specific radioactivity of brain amino acids. Measurements with this system for periods of up to 8h gave an apparent mean half-life for protein in whole brain of 85h (indicating the presence of a protein fraction with much more rapid turnover than this). 2. The half-lives of proteins in the granule-cell, molecular and white-matter layers of cerebellum were also determined. These had values of 33, 59 and 136h respectively. In addition, the incorporation into protein in six layers of the cerebral cortex, subjacent white matter and five layers of Ammon's horn was studied. All cell-body layers incorporated amino acids at about the same rate irrespective of location, and these rates were considerably higher than those for incorporation into proteins in areas rich in dendrites or fibre tracts. 3. A new method for measuring small amounts of glutamate with a cyclic enzyme system is presented. PMID:4341911

  10. Deep brain stimulation as a treatment for Parkinson's disease related camptocormia.

    PubMed

    Chieng, Lee Onn; Madhavan, Karthik; Wang, Michael Y

    2015-10-01

    In this systematic review, we aimed to profile the various reported interventions for camptocormia in Parkinson's disease (PD) and give an overview of the benefits of deep brain stimulation (DBS). Currently, there is no consensus in the literature regarding this. PD manifests in several ways and camptocormia is one of the commonly encountered problems for both spine and functional neurosurgeons. It is a significant forward flexion of the thoracolumbar spine which resolves in the recumbent position. DBS was introduced in 2002 in the USA, and since then its efficacy and applications have tremendously increased. We reviewed the PubMed and Medical Subject Headings database using the phrases "Parkinson's disease" or "Parkinson" in combination with "spinal deformity" or "camptocormia" or "bent spine syndrome" and "deep brain stimulation". Our review was limited to English language literature and we excluded camptocormia of non-PD origin. Our search yielded 361 articles with 131 patients in the pooled data. The majority (59%) of patients were women and the age range was 48-76 years. While half the patients on levodopa (n=42) saw no improvement of their camptocormia, 71% of the lidocaine group (n=27) and 68% of the DBS group (n=32) showed significant improvement. For mean flexion angle, the spinal surgery and DBS group demonstrated profound improvement in the bending angle, 89.9% and 78.2%, respectively. However, major complications following spinal surgery were noted. Although the results are from a small group of patients, DBS has achieved sustained improvement in camptocormia with low postoperative morbidity, and appears to be a promising treatment option. A larger, long term study is necessary to establish comprehensive outcome data.

  11. Deep brain stimulation of anterior nucleus thalami disrupts sleep in epilepsy patients.

    PubMed

    Voges, Berthold R; Schmitt, Friedhelm C; Hamel, Wolfgang; House, Patrick M; Kluge, Christian; Moll, Christian K E; Stodieck, Stefan R

    2015-08-01

    In view of the regulatory function of the thalamus in the sleep-wake cycle, the impact of deep brain stimulation (DBS) of the anterior nucleus thalami (ANT) on sleep was assessed in a small consecutive cohort of epilepsy patients with standardized polysomnography (PSG). In nine patients treated with ANT-DBS (voltage 5 V, frequency 145 Hz, cyclic mode), the number of arousals during stimulation and nonstimulation periods, neuropsychiatric symptoms (npS), and seizure frequency were determined. Electroclinical arousals were triggered in 14.0 to 67.0% (mean 42.4 ± SD 16.8%) of all deep brain stimuli. Six patients reported npS. Nocturnal DBS voltages were reduced in eight patients (one patient without npS refused) and PSGs were repeated. Electroclinical arousals occurred between 1.4 and 6.7 (mean 3.3 ± 1.7) times more frequently during stimulation periods compared to nonstimulation periods; the number of arousals positively correlated with the level of DBS voltage (range 1 V to 5 V) (Spearman's rank coefficient 0.53121; p < 0.05). No patient experienced seizure deterioration and four patients reported remission of npS. This case-cohort study provides evidence that ANT-DBS interrupts sleep in a voltage-dependent manner, thus putatively resulting in an increase of npS. Reduction of nocturnal DBS voltage seems to lead to improvement of npS without hampering efficacy of ANT-DBS.

  12. Deep Brain Stimulation of the Ventral Capsule/Ventral Striatum for Treatment-Resistant Depression

    PubMed Central

    Malone, Donald A.; Dougherty, Darin D.; Rezai, Ali R.; Carpenter, Linda L.; Friehs, Gerhard M.; Eskandar, Emad N.; Rauch, Scott L.; Rasmussen, Steven A.; Machado, Andre G.; Kubu, Cynthia S.; Tyrka, Audrey R.; Price, Lawrence H.; Stypulkowski, Paul H.; Giftakis, Jonathon E.; Rise, Mark T.; Malloy, Paul F.; Salloway, Stephen P.; Greenberg, Benjamin D.

    2012-01-01

    Background We investigated the use of deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) for treatment refractory depression. Methods Fifteen patients with chronic, severe, highly refractory depression received open-label DBS at three collaborating clinical sites. Electrodes were implanted bilaterally in the VC/VS region. Stimulation was titrated to therapeutic benefit and the absence of adverse effects. All patients received continuous stimulation and were followed for a minimum of 6 months to longer than 4 years. Outcome measures included the Hamilton Depression Rating Scale—24 item (HDRS), the Montgomery-Asberg Depression Rating Scale (MADRS), and the Global Assessment of Function Scale (GAF). Results Significant improvements in depressive symptoms were observed during DBS treatment. Mean HDRS scores declined from 33.1 at baseline to 17.5 at 6 months and 14.3 at last follow-up. Similar improvements were seen with the MADRS (34.8, 17.9, and 15.7, respectively) and the GAF (43.4, 55.5, and 61.8, respectively). Responder rates with the HDRS were 40% at 6 months and 53.3% at last follow-up (MADRS: 46.7% and 53.3%, respectively). Remission rates were 20% at 6 months and 40% at last follow-up with the HDRS (MADRS: 26.6% and 33.3%, respectively). The DBS was well-tolerated in this group. Conclusions Deep brain stimulation of the VC/VS offers promise for the treatment of refractory major depression. PMID:18842257

  13. Post-operative assessment in Deep Brain Stimulation based on multimodal images: registration workflow and validation

    NASA Astrophysics Data System (ADS)

    Lalys, Florent; Haegelen, Claire; Abadie, Alexandre; Jannin, Pierre

    2009-02-01

    Object Movement disorders in Parkinson disease patients may require functional surgery, when medical therapy isn't effective. In Deep Brain Stimulation (DBS) electrodes are implanted within the brain to stimulate deep structures such as SubThalamic Nucleus (STN). This paper describes successive steps for constructing a digital Atlas gathering patient's location of electrodes and contacts for post operative assessment. Materials and Method 12 patients who had undergone bilateral STN DBS have participated to the study. Contacts on post-operative CT scans were automatically localized, based on black artefacts. For each patient, post operative CT images were rigidly registered to pre operative MR images. Then, pre operative MR images were registered to a MR template (super-resolution Collin27 average MRI template). This last registration was the combination of global affine, local affine and local non linear registrations, respectively. Four different studies were performed in order to validate the MR patient to template registration process, based on anatomical landmarks and clinical scores (i.e., Unified Parkinson's disease rating Scale). Visualisation software was developed for displaying into the template images the stimulated contacts represented as cylinders with a colour code related to the improvement of the UPDRS. Results The automatic contact localization algorithm was successful for all the patients. Validation studies for the registration process gave a placement error of 1.4 +/- 0.2 mm and coherence with UPDRS scores. Conclusion The developed visualization tool allows post-operative assessment for previous interventions. Correlation with additional clinical scores will certainly permit to learn more about DBS and to better understand clinical side-effects.

  14. Delayed and lasting effects of deep brain stimulation on locomotion in Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Beuter, Anne; Modolo, Julien

    2009-06-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by a variety of motor signs affecting gait, postural stability, and tremor. These symptoms can be improved when electrodes are implanted in deep brain structures and electrical stimulation is delivered chronically at high frequency (>100 Hz). Deep brain stimulation (DBS) onset or cessation affects PD signs with different latencies, and the long-term improvements of symptoms affecting the body axis and those affecting the limbs vary in duration. Interestingly, these effects have not been systematically analyzed and modeled. We compare these timing phenomena in relation to one axial (i.e., locomotion) and one distal (i.e., tremor) signs. We suggest that during DBS, these symptoms are improved by different network mechanisms operating at multiple time scales. Locomotion improvement may involve a delayed plastic reorganization, which takes hours to develop, whereas rest tremor is probably alleviated by an almost instantaneous desynchronization of neural activity in subcortical structures. Even if all PD patients develop both distal and axial symptoms sooner or later, current computational models of locomotion and rest tremor are separate. Furthermore, a few computational models of locomotion focus on PD and none exploring the effect of DBS was found in the literature. We, therefore, discuss a model of a neuronal network during DBS, general enough to explore the subcircuits controlling locomotion and rest tremor simultaneously. This model accounts for synchronization and plasticity, two mechanisms that are believed to underlie the two types of symptoms analyzed. We suggest that a hysteretic effect caused by DBS-induced plasticity and synchronization modulation contributes to the different therapeutic latencies observed. Such a comprehensive, generic computational model of DBS effects, incorporating these timing phenomena, should assist in developing a more efficient, faster, durable treatment of

  15. Deep brain stimulation of the subthalamic nucleus: All that glitters isn't gold?

    PubMed

    Galati, Salvatore; Stefani, Alessandro

    2015-04-15

    With the silver anniversary of deep brain stimulation (DBS) behind us, this would seem to be a good juncture to consider its successes and unanswered questions. Bilateral subthalamic nucleus (STN) stimulation has changed the clinical perspective of several thousand Parkinson's disease (PD) patients worldwide. A recent reappraisal animates the field with strong arguments in favor of an anticipation of the stereotactic approach in patients with as little as 5 to 6 years of disease history if they manifest motor complications. From what was once a no-choice option, STN-DBS is now becoming more and more attractive to neurologists dealing with movement disorders. Despite the development of new pharmacological treatment and renewed rehabilitation programs able to modify the severity of drug-related complications, a resurgence of stimulation therapy reminiscent of an old era of medicine with an attendant blinkered mindset has emerged. Yet, the DBS-mediated effects are modest on critical aspects such as gait impairment and extremely variable depending on the clinical phenotype and individual clinical profile. Hence, the indication for DBS should become more, and not less, individually tailored. Those physicians considering deep brain stimulation (DBS) as a therapeutic option need to evaluate results beyond short-term quality of life, giving the correct weight to the direct and indirect costs over the longer term as well as to life prognosis. Unequivocal recourse to early-stimulation surgery necessitates investigations not limited to a mere comparative assessment versus drug-mediated benefits, but instead showing evidence of a clear degree of disease-modifying effect or a rescue of basal ganglia plasticity.

  16. Age-Related Differences in the Brain Areas outside the Classical Language Areas among Adults Using Category Decision Task

    ERIC Educational Resources Information Center

    Cho, Yong Won; Song, Hui-Jin; Lee, Jae Jun; Lee, Joo Hwa; Lee, Hui Joong; Yi, Sang Doe; Chang, Hyuk Won; Berl, Madison M.; Gaillard, William D.; Chang, Yongmin

    2012-01-01

    Older adults perform much like younger adults on language. This similar level of performance, however, may come about through different underlying brain processes. In the present study, we evaluated age-related differences in the brain areas outside the typical language areas among adults using a category decision task. Our results showed that…

  17. Axonal and somatic filtering of antidromically evoked cortical excitation by simulated deep brain stimulation in rat brain

    PubMed Central

    Chomiak, T; Hu, B

    2007-01-01

    Antidromic cortical excitation has been implicated as a contributing mechanism for high-frequency deep brain stimulation (DBS). Here, we examined the reliability of antidromic responses of type 2 corticofugal fibres in rat over a stimulation frequency range compatible to the DBS used in humans. We activated antidromically individual layer V neurones by stimulating their two subcortical axonal branches. We found that antidromic cortical excitation is not as reliable as generally assumed. Whereas the fast conducting branches of a type 2 axon in the highly myelinated brainstem region follow high-frequency stimulation, the slower conducting fibres in the poorly myelinated thalamic region function as low-pass filters. These fibres fail to transmit consecutive antidromic spikes at the beginning of high-frequency stimulation, but are able to maintain a steady low-frequency (6–12 Hz) spike output during the stimulation. In addition, antidromic responses evoked from both branches are rarely present in cortical neurones with a more hyperpolarized membrane potential. Our data indicate that axon-mediated antidromic excitation in the cortex is strongly influenced by the myelo-architecture of the stimulation site and the excitability of individual cortical neurones. PMID:17170044

  18. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain.

    PubMed

    Ouzounov, Dimitre G; Wang, Tianyu; Wang, Mengran; Feng, Danielle D; Horton, Nicholas G; Cruz-Hernández, Jean C; Cheng, Yu-Ting; Reimer, Jacob; Tolias, Andreas S; Nishimura, Nozomi; Xu, Chris

    2017-04-01

    High-resolution optical imaging is critical to understanding brain function. We demonstrate that three-photon microscopy at 1,300-nm excitation enables functional imaging of GCaMP6s-labeled neurons beyond the depth limit of two-photon microscopy. We record spontaneous activity from up to 150 neurons in the hippocampal stratum pyramidale at ∼1-mm depth within an intact mouse brain. Our method creates opportunities for noninvasive recording of neuronal activity with high spatial and temporal resolution deep within scattering brain tissues.

  19. Post-mortem Findings in Huntington’s Deep Brain Stimulation: A Moving Target Due to Atrophy

    PubMed Central

    Vedam-Mai, Vinata; Martinez-Ramirez, Daniel; Hilliard, Justin D.; Carbunaru, Samuel; Yachnis, Anthony T.; Bloom, Joshua; Keeling, Peyton; Awe, Lisa; Foote, Kelly D.; Okun, Michael S.

    2016-01-01

    Background Deep brain stimulation (DBS) has been shown to be effective for Parkinson’s disease, essential tremor, and primary dystonia. However, mixed results have been reported in Huntington’s disease (HD). Case Report A single case of HD DBS was identified from the University of Florida DBS Brain Tissue Network. The clinical presentation, evolution, surgical planning, DBS parameters, clinical outcomes, and brain pathological changes are summarized. Discussion This case of HD DBS revealed that chorea may improve and be sustained. Minimal histopathological changes were noted around the DBS leads. Severe atrophy due to HD likely changed the DBS lead position relative to the internal capsule. PMID:27127722

  20. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording.

    PubMed

    Lai, Hsin-Yi; Liao, Lun-De; Lin, Chin-Teng; Hsu, Jui-Hsiang; He, Xin; Chen, You-Yin; Chang, Jyh-Yeong; Chen, Hui-Fen; Tsang, Siny; Shih, Yen-Yu I

    2012-06-01

    An implantable micromachined neural probe with multichannel electrode arrays for both neural signal recording and electrical stimulation was designed, simulated and experimentally validated for deep brain stimulation (DBS) applications. The developed probe has a rough three-dimensional microstructure on the electrode surface to maximize the electrode-tissue contact area. The flexible, polyimide-based microelectrode arrays were each composed of a long shaft (14.9 mm in length) and 16 electrodes (5 µm thick and with a diameter of 16 µm). The ability of these arrays to record and stimulate specific areas in a rat brain was evaluated. Moreover, we have developed a finite element model (FEM) applied to an electric field to evaluate the volume of tissue activated (VTA) by DBS as a function of the stimulation parameters. The signal-to-noise ratio ranged from 4.4 to 5 over a 50 day recording period, indicating that the laboratory-designed neural probe is reliable and may be used successfully for long-term recordings. The somatosensory evoked potential (SSEP) obtained by thalamic stimulations and in vivo electrode-electrolyte interface impedance measurements was stable for 50 days and demonstrated that the neural probe is feasible for long-term stimulation. A strongly linear (positive correlation) relationship was observed among the simulated VTA, the absolute value of the SSEP during the 200 ms post-stimulus period (ΣSSEP) and c-Fos expression, indicating that the simulated VTA has perfect sensitivity to predict the evoked responses (c-Fos expression). This laboratory-designed neural probe and its FEM simulation represent a simple, functionally effective technique for studying DBS and neural recordings in animal models.

  1. Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording

    NASA Astrophysics Data System (ADS)

    Lai, Hsin-Yi; Liao, Lun-De; Lin, Chin-Teng; Hsu, Jui-Hsiang; He, Xin; Chen, You-Yin; Chang, Jyh-Yeong; Chen, Hui-Fen; Tsang, Siny; Shih, Yen-Yu I.

    2012-06-01

    An implantable micromachined neural probe with multichannel electrode arrays for both neural signal recording and electrical stimulation was designed, simulated and experimentally validated for deep brain stimulation (DBS) applications. The developed probe has a rough three-dimensional microstructure on the electrode surface to maximize the electrode-tissue contact area. The flexible, polyimide-based microelectrode arrays were each composed of a long shaft (14.9 mm in length) and 16 electrodes (5 µm thick and with a diameter of 16 µm). The ability of these arrays to record and stimulate specific areas in a rat brain was evaluated. Moreover, we have developed a finite element model (FEM) applied to an electric field to evaluate the volume of tissue activated (VTA) by DBS as a function of the stimulation parameters. The signal-to-noise ratio ranged from 4.4 to 5 over a 50 day recording period, indicating that the laboratory-designed neural probe is reliable and may be used successfully for long-term recordings. The somatosensory evoked potential (SSEP) obtained by thalamic stimulations and in vivo electrode-electrolyte interface impedance measurements was stable for 50 days and demonstrated that the neural probe is feasible for long-term stimulation. A strongly linear (positive correlation) relationship was observed among the simulated VTA, the absolute value of the SSEP during the 200 ms post-stimulus period (ΣSSEP) and c-Fos expression, indicating that the simulated VTA has perfect sensitivity to predict the evoked responses (c-Fos expression). This laboratory-designed neural probe and its FEM simulation represent a simple, functionally effective technique for studying DBS and neural recordings in animal models.

  2. Central Thalamic Deep-Brain Stimulation Alters Striatal-Thalamic Connectivity in Cognitive Neural Behavior

    PubMed Central

    Lin, Hui-Ching; Pan, Han-Chi; Lin, Sheng-Huang; Lo, Yu-Chun; Shen, Elise Ting-Hsin; Liao, Lun-De; Liao, Pei-Han; Chien, Yi-Wei; Liao, Kuei-Da; Jaw, Fu-Shan; Chu, Kai-Wen; Lai, Hsin-Yi; Chen, You-Yin

    2016-01-01

    Central thalamic deep brain stimulation (CT-DBS) has been proposed as an experimental therapeutic approach to produce consistent sustained regulation of forebrain arousal for several neurological diseases. We investigated local field potentials (LFPs) induced by CT-DBS from the thalamic central lateral nuclei (CL) and the striatum as potential biomarkers for the enhancement of lever-pressing skill learning. LFPs were simultaneously recorded from multiple sites in the CL, ventral striatum (Vstr), and dorsal striatum (Dstr). LFP oscillation power and functional connectivity were assessed and compared between the CT-DBS and sham control groups. The theta and alpha LFP oscillations were significantly increased in the CL and striatum in the CT-DBS group. Furthermore, interhemispheric coherences between bilateral CL and striatum were increased in the theta band. Additionally, enhancement of c-Fos activity, dopamine D2 receptor (Drd2), and α4-nicotinic acetylcholine receptor (α4-nAChR) occurred after CT-DBS treatment in the striatum and hippocampus. CT-DBS strengthened thalamic-striatal functional connectivity, which demonstrates that the inter-regional connectivity enhancement might contribute to synaptic plasticity in the striatum. Altered dopaminergic and cholinergic receptors resulted in modulation of striatal synaptic plasticity's ability to regulate downstream signaling cascades for higher brain functions of lever-pressing skill learning. PMID:26793069

  3. A Programmable High-Voltage Compliance Neural Stimulator for Deep Brain Stimulation in Vivo

    PubMed Central

    Gong, Cihun-Siyong Alex; Lai, Hsin-Yi; Huang, Sy-Han; Lo, Yu-Chun; Lee, Nicole; Chen, Pin-Yuan; Tu, Po-Hsun; Yang, Chia-Yen; Lin, James Chang-Chieh; Chen, You-Yin

    2015-01-01

    Deep brain stimulation (DBS) is one of the most effective therapies for movement and other disorders. The DBS neurosurgical procedure involves the implantation of a DBS device and a battery-operated neurotransmitter, which delivers electrical impulses to treatment targets through implanted electrodes. The DBS modulates the neuronal activities in the brain nucleus for improving physiological responses as long as an electric discharge above the stimulation threshold can be achieved. In an effort to improve the performance of an implanted DBS device, the device size, implementation cost, and power efficiency are among the most important DBS device design aspects. This study aims to present preliminary research results of an efficient stimulator, with emphasis on conversion efficiency. The prototype stimulator features high-voltage compliance, implemented with only a standard semiconductor process, without the use of extra masks in the foundry through our proposed circuit structure. The results of animal experiments, including evaluation of evoked responses induced by thalamic electrical stimuli with our fabricated chip, were shown to demonstrate the proof of concept of our design. PMID:26029954

  4. A General Method for Evaluating Deep Brain Stimulation Effects on Intravenous Methamphetamine Self-Administration

    PubMed Central

    Batra, Vinita; Guerin, Glenn F.; Goeders, Nicholas E.; Wilden, Jessica A.

    2016-01-01

    Substance use disorders, particularly to methamphetamine, are devastating, relapsing diseases that disproportionally affect young people. There is a need for novel, effective and practical treatment strategies that are validated in animal models. Neuromodulation, including deep brain stimulation (DBS) therapy, refers to the use of electricity to influence pathological neuronal activity and has shown promise for psychiatric disorders, including drug dependence. DBS in clinical practice involves the continuous delivery of stimulation into brain structures using an implantable pacemaker-like system that is programmed externally by a physician to alleviate symptoms. This treatment will be limited in methamphetamine users due to challenging psychosocial situations. Electrical treatments that can be delivered intermittently, non-invasively and remotely from the drug-use setting will be more realistic. This article describes the delivery of intracranial electrical stimulation that is temporally and spatially separate from the drug-use environment for the treatment of IV methamphetamine dependence. Methamphetamine dependence is rapidly developed in rodents using an operant paradigm of intravenous (IV) self-administration that incorporates a period of extended access to drug and demonstrates both escalation of use and high motivation to obtain drug. PMID:26863392

  5. Fornix deep brain stimulation induced long-term spatial memory independent of hippocampal neurogenesis.

    PubMed

    Hescham, Sarah; Temel, Yasin; Schipper, Sandra; Lagiere, Mélanie; Schönfeld, Lisa-Maria; Blokland, Arjan; Jahanshahi, Ali

    2017-03-01

    Deep brain stimulation (DBS) is an established symptomatic treatment modality for movement disorders and constitutes an emerging therapeutic approach for the treatment of memory impairment. In line with this, fornix DBS has shown to ameliorate cognitive decline associated with dementia. Nonetheless, mechanisms mediating clinical effects in demented patients or patients with other neurological disorders are largely unknown. There is evidence that DBS is able to modulate neurophysiological activity in targeted brain regions. We therefore hypothesized that DBS might be able to influence cognitive function via activity-dependent regulation of hippocampal neurogenesis. Using stimulation parameters, which were validated to restore memory loss in a previous behavioral study, we here assessed long-term effects of fornix DBS. To do so, we injected the thymidine analog, 5-bromo-2'-deoxyuridine (BrdU), after DBS and perfused the animals 6.5 weeks later. A week prior to perfusion, memory performance was assessed in the water maze. We found that acute stimulation of the fornix improved spatial memory performance in the water maze when the probe trial was performed 1 h after the last training session. However, no evidence for stimulation-induced neurogenesis was found in fornix DBS rats when compared to sham. Our results suggest that fornix DBS improves memory functions independent of hippocampal neurogenesis, possibly through other mechanisms such as synaptic plasticity and acute neurotransmitter release.

  6. Computational Modeling and Neuroimaging Techniques for Targeting during Deep Brain Stimulation

    PubMed Central

    Sweet, Jennifer A.; Pace, Jonathan; Girgis, Fady; Miller, Jonathan P.

    2016-01-01

    Accurate surgical localization of the varied targets for deep brain stimulation (DBS) is a process undergoing constant evolution, with increasingly sophisticated techniques to allow for highly precise targeting. However, despite the fastidious placement of electrodes into specific structures within the brain, there is increasing evidence to suggest that the clinical effects of DBS are likely due to the activation of widespread neuronal networks directly and indirectly influenced by the stimulation of a given target. Selective activation of these complex and inter-connected pathways may further improve the outcomes of currently treated diseases by targeting specific fiber tracts responsible for a particular symptom in a patient-specific manner. Moreover, the delivery of such focused stimulation may aid in the discovery of new targets for electrical stimulation to treat additional neurological, psychiatric, and even cognitive disorders. As such, advancements in surgical targeting, computational modeling, engineering designs, and neuroimaging techniques play a critical role in this process. This article reviews the progress of these applications, discussing the importance of target localization for DBS, and the role of computational modeling and novel neuroimaging in improving our understanding of the pathophysiology of diseases, and thus paving the way for improved selective target localization using DBS. PMID:27445709

  7. Combining cell transplants or gene therapy with deep brain stimulation for Parkinson's disease.

    PubMed

    Rowland, Nathan C; Starr, Philip A; Larson, Paul S; Ostrem, Jill L; Marks, William J; Lim, Daniel A

    2015-02-01

    Cell transplantation and gene therapy each show promise to enhance the treatment of Parkinson's disease (PD). However, because cell transplantation and gene therapy generally require direct delivery to the central nervous system, clinical trial design involves unique scientific, ethical, and financial concerns related to the invasive nature of the procedure. Typically, such biologics have been tested in PD patients who have not received any neurosurgical intervention. Here, we suggest that PD patients undergoing deep brain stimulation (DBS) device implantation are an ideal patient population for the clinical evaluation of cell transplantation and gene therapy. Randomizing subjects to an experimental group that receives the biologic concurrently with the DBS implantation-or to a control group that receives the DBS treatment alone-has several compelling advantages. First, this study design enables the participation of patients likely to benefit from DBS, many of whom simultaneously meet the inclusion criteria of biologic studies. Second, the need for a sham neurosurgical procedure is eliminated, which may reduce ethical concerns, promote patient recruitment, and enhance the blinding of surgical trials. Third, testing the biologic by "piggybacking" onto an established, reimbursable procedure should reduce the cost of clinical trials, which may allow a greater number of biologics to reach this critical stage of research translation. Finally, this clinical trial design may lead to combinatorial treatment strategies that provide PD patients with more durable control over disabling motor symptoms. By combining neuromodulation with biologics, we may also reveal important treatment paradigms relevant to other diseases of the brain.

  8. A Bayesian statistical analysis of behavioral facilitation associated with deep brain stimulation

    PubMed Central

    Smith, Anne C; Shah, Sudhin A; Hudson, Andrew E; Purpura, Keith P; Victor, Jonathan D; Brown, Emery N; Schiff, Nicholas D

    2009-01-01

    Deep brain stimulation (DBS) is an established therapy for Parkinson’s Disease and is being investigated as a treatment for chronic depression, obsessive compulsive disorder and for facilitating functional recovery of patients in minimally conscious states following brain injury. For all of these applications, quantitative assessments of the behavioral effects of DBS are crucial to determine whether the therapy is effective and, if so, how stimulation parameters can be optimized. Behavioral analyses for DBS are challenging because subject performance is typically assessed from only a small set of discrete measurements made on a discrete rating scale, the time course of DBS effects is unknown, and between-subject differences are often large. We demonstrate how Bayesian state-space methods can be used to characterize the relationship between DBS and behavior comparing our approach with logistic regression in two experiments: the effects of DBS on attention of a macaque monkey performing a reaction-time task, and the effects of DBS on motor behavior of a human patient in a minimally conscious state. The state-space analysis can assess the magnitude of DBS behavioral facilitation (positive or negative) at specific time points and has important implications for developing principled strategies to optimize DBS paradigms. PMID:19576932

  9. Current Steering to Control the Volume of Tissue Activated During Deep Brain Stimulation

    PubMed Central

    Butson, Christopher R.; McIntyre, Cameron C.

    2009-01-01

    Background Over the last two decades, deep brain stimulation (DBS) has become a recognized and effective clinical therapy for numerous neurological conditions. Since its inception, clinical DBS technology has progressed at a relatively slow rate; however, advances in neural engineering research have the potential to improve DBS systems. One such advance is the concept of current steering, or the use of multiple stimulation sources to direct current flow through targeted regions of brain tissue. Objective The goals of this study were to develop a theoretical understanding of the effects of current steering in the context of DBS, and use that information to evaluate the potential utility of current steering during stimulation of the subthalamic nucleus. Methods We used finite element electric field models, coupled to multi-compartment cable axon models, to predict the volume of tissue activated (VTA) by DBS as a function of the stimulation parameter settings. Results Balancing current flow through adjacent cathodes increased the VTA magnitude, relative to monopolar stimulation, and current steering enabled us to sculpt the shape of the VTA to fit a given anatomical target. Conclusions These results provide motivation for the integration of current steering technology into clinical DBS systems, thereby expanding opportunities to customize DBS to individual patients, and potentially enhancing therapeutic efficacy. PMID:19142235

  10. Central thalamic deep brain stimulation for cognitive neuromodulation: a review of proposed mechanisms and investigational studies

    PubMed Central

    Shah, Sudhin A.; Schiff, Nicholas D.

    2010-01-01

    We review the history of efforts to apply central thalamic deep brain stimulation (CT/DBS) to restore consciousness in patients in coma and vegetative state by changing the arousal state. Early experimental and clinical studies and the results of a recent single-subject human study that demonstrated both immediate behavioral facilitation and carry-over effects of CT/DBS are reviewed. We consider possible mechanisms underlying CT/DBS effects on cognitively-mediated behaviors in conscious patients in light of the anatomical connectivity and physiological specializations of the central thalamus. Immediate and carry-over effects of CT/DBS are discussed within the context of possible effects on neuronal plasticity and gene expression. We conclude that CT/DBS be studied as a therapeutic intervention to improve impaired cognitive function in severely brain-injured patients who in addition to demonstrating clinical evidence of consciousness and goal-directed behavior, retain sufficient preservation of large-scale cerebral networks within the anterior forebrain. Although available data provide evidence for proof-of-concept, very significant challenges for study design and development of CT/DBS for clinical use are identified. PMID:21039953

  11. Probing Deep Brain Circuitry: New Advances in in Vivo Calcium Measurement Strategies.

    PubMed

    Girven, Kasey S; Sparta, Dennis R

    2017-02-15

    The study of neuronal ensembles in awake and behaving animals is a critical question in contemporary neuroscience research. Through the examination of calcium fluctuations, which are correlated with neuronal activity, we are able to better understand complex neural circuits. Recently, the development of technologies including two-photon microscopy, miniature microscopes, and fiber photometry has allowed us to examine calcium activity in behaving subjects over time. Visualizing changes in intracellular calcium in vivo has been accomplished utilizing GCaMP, a genetically encoded calcium indicator. GCaMP allows researchers to tag cell-type specific neurons with engineered fluorescent proteins that alter their levels of fluorescence in response to changes in intracellular calcium concentration. Even with the evolution of GCaMP, in vivo calcium imaging had yet to overcome the limitation of light scattering, which occurs when imaging from neural tissue in deep brain regions. Currently, researchers have created in vivo methods to bypass this problem; this Review will delve into three of these state of the art techniques: (1) two-photon calcium imaging, (2) single photon calcium imaging, and (3) fiber photometry. Here we discuss the advantages and disadvantages of the three techniques. Continued advances in these imaging techniques will provide researchers with unparalleled access to the inner workings of the brain.

  12. A programmable high-voltage compliance neural stimulator for deep brain stimulation in vivo.

    PubMed

    Gong, Cihun-Siyong Alex; Lai, Hsin-Yi; Huang, Sy-Han; Lo, Yu-Chun; Lee, Nicole; Chen, Pin-Yuan; Tu, Po-Hsun; Yang, Chia-Yen; Lin, James Chang-Chieh; Chen, You-Yin

    2015-05-28

    Deep brain stimulation (DBS) is one of the most effective therapies for movement and other disorders. The DBS neurosurgical procedure involves the implantation of a DBS device and a battery-operated neurotransmitter, which delivers electrical impulses to treatment targets through implanted electrodes. The DBS modulates the neuronal activities in the brain nucleus for improving physiological responses as long as an electric discharge above the stimulation threshold can be achieved. In an effort to improve the performance of an implanted DBS device, the device size, implementation cost, and power efficiency are among the most important DBS device design aspects. This study aims to present preliminary research results of an efficient stimulator, with emphasis on conversion efficiency. The prototype stimulator features high-voltage compliance, implemented with only a standard semiconductor process, without the use of extra masks in the foundry through our proposed circuit structure. The results of animal experiments, including evaluation of evoked responses induced by thalamic electrical stimuli with our fabricated chip, were shown to demonstrate the proof of concept of our design.

  13. Deep brain stimulation or thalamotomy in fragile X-associated tremor/ataxia syndrome? Case report.

    PubMed

    Tamás, Gertrúd; Kovács, Norbert; Varga, Noémi Ágnes; Barsi, Péter; Erőss, Loránd; Molnár, Mária Judit; Balás, István

    2016-01-01

    We present the case of a 66-year-old man who has been treated for essential tremor since the age of 58. He developed mild cerebellar gait ataxia seven years after tremor onset. Moderate, global brain atrophy was identified on MRI scans. At the age of 68, only temporary tremor relief could be achieved by bilateral deep brain stimulation of the ventral intermedius nucleus of the thalamus. Bilateral stimulation of the subthalamic nucleus also resulted only in transient improvement. In the meantime, progressive gait ataxia and tetraataxia developed accompanied by other cerebellar symptoms, such as nystagmus and scanning speech. These correlated with progressive development of bilateral symmetric hyperintensity of the middle cerebellar peduncles on T2 weighted MRI scans. Genetic testing revealed premutation of the FMR1 gene, establishing the diagnosis of fragile X-associated tremor/ataxia syndrome. Although this is a rare disorder, it should be taken into consideration during preoperative evaluation of essential tremor. Postural tremor ceased two years later after thalamotomy on the left side, while kinetic tremor of the right hand also improved.

  14. Deep brain stimulation for movement disorders: update on recent discoveries and outlook on future developments.

    PubMed

    Mahlknecht, Philipp; Limousin, Patricia; Foltynie, Thomas

    2015-11-01

    Modern deep brain stimulation (DBS) has become a routine therapy for patients with movement disorders such as Parkinson's disease, generalized or segmental dystonia and for multiple forms of tremor. Growing numbers of publications also report beneficial effects in other movement disorders such as Tourette's syndrome, various forms of chorea and DBS is even being studied for Parkinson's-related dementia. While exerting remarkable effects on many motor symptoms, DBS does not restore normal neurophysiology and therefore may also have undesirable side effects including speech and gait deterioration. Furthermore, its efficacy might be compromised in the long term, due to progression of the underlying disease. Various programming strategies have been studied to try and address these issues, e.g., the use of low-frequency rather than high-frequency stimulation or the targeting of alternative brain structures such as the pedunculopontine nucleus. In addition, further technical developments will soon provide clinicians with an expanded choice of hardware such as segmented electrodes allowing for a steering of the current to optimize beneficial effects and reduce side effects as well as the possibility of adaptive stimulation systems based on closed-loop concepts with or without accompanying advances in programming and imaging software. In the present article, we will provide an update on the most recent achievements and discoveries relevant to the application of DBS in the treatment of movement disorder patients and give an outlook on future clinical and technical developments.

  15. A General Method for Evaluating Deep Brain Stimulation Effects on Intravenous Methamphetamine Self-Administration.

    PubMed

    Batra, Vinita; Guerin, Glenn F; Goeders, Nicholas E; Wilden, Jessica A

    2016-01-22

    Substance use disorders, particularly to methamphetamine, are devastating, relapsing diseases that disproportionally affect young people. There is a need for novel, effective and practical treatment strategies that are validated in animal models. Neuromodulation, including deep brain stimulation (DBS) therapy, refers to the use of electricity to influence pathological neuronal activity and has shown promise for psychiatric disorders, including drug dependence. DBS in clinical practice involves the continuous delivery of stimulation into brain structures using an implantable pacemaker-like system that is programmed externally by a physician to alleviate symptoms. This treatment will be limited in methamphetamine users due to challenging psychosocial situations. Electrical treatments that can be delivered intermittently, non-invasively and remotely from the drug-use setting will be more realistic. This article describes the delivery of intracranial electrical stimulation that is temporally and spatially separate from the drug-use environment for the treatment of IV methamphetamine dependence. Methamphetamine dependence is rapidly developed in rodents using an operant paradigm of intravenous (IV) self-administration that incorporates a period of extended access to drug and demonstrates both escalation of use and high motivation to obtain drug.

  16. Central Thalamic Deep-Brain Stimulation Alters Striatal-Thalamic Connectivity in Cognitive Neural Behavior.

    PubMed

    Lin, Hui-Ching; Pan, Han-Chi; Lin, Sheng-Huang; Lo, Yu-Chun; Shen, Elise Ting-Hsin; Liao, Lun-De; Liao, Pei-Han; Chien, Yi-Wei; Liao, Kuei-Da; Jaw, Fu-Shan; Chu, Kai-Wen; Lai, Hsin-Yi; Chen, You-Yin

    2015-01-01

    Central thalamic deep brain stimulation (CT-DBS) has been proposed as an experimental therapeutic approach to produce consistent sustained regulation of forebrain arousal for several neurological diseases. We investigated local field potentials (LFPs) induced by CT-DBS from the thalamic central lateral nuclei (CL) and the striatum as potential biomarkers for the enhancement of lever-pressing skill learning. LFPs were simultaneously recorded from multiple sites in the CL, ventral striatum (Vstr), and dorsal striatum (Dstr). LFP oscillation power and functional connectivity were assessed and compared between the CT-DBS and sham control groups. The theta and alpha LFP oscillations were significantly increased in the CL and striatum in the CT-DBS group. Furthermore, interhemispheric coherences between bilateral CL and striatum were increased in the theta band. Additionally, enhancement of c-Fos activity, dopamine D2 receptor (Drd2), and α4-nicotinic acetylcholine receptor (α4-nAChR) occurred after CT-DBS treatment in the striatum and hippocampus. CT-DBS strengthened thalamic-striatal functional connectivity, which demonstrates that the inter-regional connectivity enhancement might contribute to synaptic plasticity in the striatum. Altered dopaminergic and cholinergic receptors resulted in modulation of striatal synaptic plasticity's ability to regulate downstream signaling cascades for higher brain functions of lever-pressing skill learning.

  17. Deep-brain photoreception links luminance detection to motor output in Xenopus frog tadpoles

    PubMed Central

    Currie, Stephen P.; Doherty, Gayle H.; Sillar, Keith T.

    2016-01-01

    Nonvisual photoreceptors are widely distributed in the retina and brain, but their roles in animal behavior remain poorly understood. Here we document a previously unidentified form of deep-brain photoreception in Xenopus laevis frog tadpoles. The isolated nervous system retains sensitivity to light even when devoid of input from classical eye and pineal photoreceptors. These preparations produce regular bouts of rhythmic swimming activity in ambient light but fall silent in the dark. This sensitivity is tuned to short-wavelength UV light; illumination at 400 nm initiates motor activity over a broad range of intensities, whereas longer wavelengths do not cause a response. The photosensitive tissue is located in a small region of caudal diencephalon—this region is necessary to retain responses to illumination, whereas its focal illumination is sufficient to drive them. We present evidence for photoreception via the light-sensitive proteins opsin (OPN)5 and/or cryptochrome 1, because populations of OPN5-positive and cryptochrome-positive cells reside within the caudal diencephalon. This discovery represents a hitherto undescribed vertebrate pathway that links luminance detection to motor output. The pathway provides a simple mechanism for light avoidance and/or may reinforce classical circadian systems. PMID:27166423

  18. Investigation into Deep Brain Stimulation Lead Designs: A Patient-Specific Simulation Study

    PubMed Central

    Alonso, Fabiola; Latorre, Malcolm A.; Göransson, Nathanael; Zsigmond, Peter; Wårdell, Karin

    2016-01-01

    New deep brain stimulation (DBS) electrode designs offer operation in voltage and current mode and capability to steer the electric field (EF). The aim of the study was to compare the EF distributions of four DBS leads at equivalent amplitudes (3 V and 3.4 mA). Finite element method (FEM) simulations (n = 38) around cylindrical contacts (leads 3389, 6148) or equivalent contact configurations (leads 6180, SureStim1) were performed using homogeneous and patient-specific (heterogeneous) brain tissue models. Steering effects of 6180 and SureStim1 were compared with symmetric stimulation fields. To make relative comparisons between simulations, an EF isolevel of 0.2 V/mm was chosen based on neuron model simulations (n = 832) applied before EF visualization and comparisons. The simulations show that the EF distribution is largely influenced by the heterogeneity of the tissue, and the operating mode. Equivalent contact configurations result in similar EF distributions. In steering configurations, larger EF volumes were achieved in current mode using equivalent amplitudes. The methodology was demonstrated in a patient-specific simulation around the zona incerta and a “virtual” ventral intermediate nucleus target. In conclusion, lead design differences are enhanced when using patient-specific tissue models and current stimulation mode. PMID:27618109

  19. Rescue Procedures after Suboptimal Deep Brain Stimulation Outcomes in Common Movement Disorders

    PubMed Central

    Nagy, Adam M.; Tolleson, Christopher M.

    2016-01-01

    Deep brain stimulation (DBS) is a unique, functional neurosurgical therapy indicated for medication refractory movement disorders as well as some psychiatric diseases. Multicontact electrodes are placed in “deep” structures within the brain with targets varying depending on the surgical indication. An implanted programmable pulse generator supplies the electrodes with a chronic, high frequency electrical current that clinically mimics the effects of ablative lesioning techniques. DBS’s efficacy has been well established for its movement disorder indications (Parkinson’s disease, essential tremor, and dystonia). However, clinical outcomes are sometimes suboptimal, even in the absence of common, potentially reversible complications such as hardware complications, infection, poor electrode placement, and poor programming parameters. This review highlights some of the rescue procedures that have been explored in suboptimal DBS cases for Parkinson’s disease, essential tremor, and dystonia. To date, the data is limited and difficult to generalize, but a large majority of published reports demonstrate positive results. The decision to proceed with such treatments should be made on a case by case basis. Larger studies are needed to clearly establish the benefit of rescue procedures and to establish for which patient populations they may be most appropriate. PMID:27740598

  20. Intensive Voice Treatment (LSVT[R]LOUD) for Parkinson's Disease Following Deep Brain Stimulation of the Subthalamic Nucleus

    ERIC Educational Resources Information Center

    Spielman, Jennifer; Mahler, Leslie; Halpern, Angela; Gilley, Phllip; Klepitskaya, Olga; Ramig, Lorraine

    2011-01-01

    Purpose: Intensive voice therapy (LSVT[R]LOUD) can effectively manage voice and speech symptoms associated with idiopathic Parkinson disease (PD). This small-group study evaluated voice and speech in individuals with and without deep brain stimulation of the subthalamic nucleus (STN-DBS) before and after LSVT LOUD, to determine whether outcomes…

  1. Pitch Variability in Patients with Parkinson's Disease: Effects of Deep Brain Stimulation of Caudal Zona Incerta and Subthalamic Nucleus

    ERIC Educational Resources Information Center

    Karlsson, Fredrik; Olofsson, Katarina; Blomstedt, Patric; Linder, Jan; van Doorn, Jan

    2013-01-01

    Purpose: The purpose of the present study was to examine the effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN) and the caudal zona incerta (cZi) pitch characteristics of connected speech in patients with Parkinson's disease (PD). Method: The authors evaluated 16 patients preoperatively and 12 months after DBS surgery. Eight…

  2. Theoretical analysis of the local field potential in deep brain stimulation applications.

    PubMed

    Lempka, Scott F; McIntyre, Cameron C

    2013-01-01

    Deep brain stimulation (DBS) is a common therapy for treating movement disorders, such as Parkinson's disease (PD), and provides a unique opportunity to study the neural activity of various subcortical structures in human patients. Local field potential (LFP) recordings are often performed with either intraoperative microelectrodes or DBS leads and reflect oscillatory activity within nuclei of the basal ganglia. These LFP recordings have numerous clinical implications and might someday be used to optimize DBS outcomes in closed-loop systems. However, the origin of the recorded LFP is poorly understood. Therefore, the goal of this study was to theoretically analyze LFP recordings within the context of clinical DBS applications. This goal was achieved with a detailed recording model of beta oscillations (∼20 Hz) in the subthalamic nucleus. The recording model consisted of finite element models of intraoperative microelectrodes and DBS macroelectrodes implanted in the brain along with multi-compartment cable models of STN projection neurons. Model analysis permitted systematic investigation into a number of variables that can affect the composition of the recorded LFP (e.g. electrode size, electrode impedance, recording configuration, and filtering effects of the brain, electrode-electrolyte interface, and recording electronics). The results of the study suggest that the spatial reach of the LFP can extend several millimeters. Model analysis also showed that variables such as electrode geometry and recording configuration can have a significant effect on LFP amplitude and spatial reach, while the effects of other variables, such as electrode impedance, are often negligible. The results of this study provide insight into the origin of the LFP and identify variables that need to be considered when analyzing LFP recordings in clinical DBS applications.

  3. Deep brain stimulation of the periaqueductal gray releases endogenous opioids in humans.

    PubMed

    Sims-Williams, Hugh; Matthews, Julian C; Talbot, Peter S; Love-Jones, Sarah; Brooks, Jonathan Cw; Patel, Nikunj K; Pickering, Anthony E

    2017-02-01

    Deep brain stimulation (DBS) of the periaqueductal gray (PAG) is used in the treatment of severe refractory neuropathic pain. We tested the hypothesis that DBS releases endogenous opioids to exert its analgesic effect using [(11)C]diprenorphine (DPN) positron emission tomography (PET). Patients with de-afferentation pain (phantom limb pain or Anaesthesia Dolorosa (n=5)) who obtained long-lasting analgesic benefit from DBS were recruited. [(11)C]DPN and [(15)O]water PET scanning was performed in consecutive sessions; first without, and then with PAG stimulation. The regional cerebral tracer distribution and kinetics were quantified for the whole brain and brainstem. Analysis was performed on a voxel-wise basis using statistical parametric mapping (SPM) and also within brainstem regions of interest and correlated to the DBS-induced improvement in pain score and mood. Brain-wide analysis identified a single cluster of reduced [(11)C]DPN binding (15.5% reduction) in the caudal, dorsal PAG following DBS from effective electrodes located in rostral dorsal/lateral PAG. There was no evidence for an accompanying focal change in blood flow within the PAG. No correlation was found between the change in PAG [(11)C]DPN binding and the analgesic effect or the effect on mood (POMSSV) of DBS. The analgesic effect of DBS in these subjects was not altered by systemic administration of the opioid antagonist naloxone (400ug). These findings indicate that DBS of the PAG does indeed release endogenous opioid peptides focally within the midbrain of these neuropathic pain patients but we are unable to further resolve the question of whether this release is responsible for the observed analgesic benefit.

  4. Multimodal 7T Imaging of Thalamic Nuclei for Preclinical Deep Brain Stimulation Applications

    PubMed Central

    Xiao, YiZi; Zitella, Laura M.; Duchin, Yuval; Teplitzky, Benjamin A.; Kastl, Daniel; Adriany, Gregor; Yacoub, Essa; Harel, Noam; Johnson, Matthew D.

    2016-01-01

    Precise neurosurgical targeting of electrode arrays within the brain is essential to the successful treatment of a range of brain disorders with deep brain stimulation (DBS) therapy. Here, we describe a set of computational tools to generate in vivo, subject-specific atlases of individual thalamic nuclei thus improving the ability to visualize thalamic targets for preclinical DBS applications on a subject-specific basis. A sequential nonlinear atlas warping technique and a Bayesian estimation technique for probabilistic crossing fiber tractography were applied to high field (7T) susceptibility-weighted and diffusion-weighted imaging, respectively, in seven rhesus macaques. Image contrast, including contrast within thalamus from the susceptibility-weighted images, informed the atlas warping process and guided the seed point placement for fiber tractography. The susceptibility-weighted imaging resulted in relative hyperintensity of the intralaminar nuclei and relative hypointensity in the medial dorsal nucleus, pulvinar, and the medial/ventral border of the ventral posterior nuclei, providing context to demarcate borders of the ventral nuclei of thalamus, which are often targeted for DBS applications. Additionally, ascending fiber tractography of the medial lemniscus, superior cerebellar peduncle, and pallidofugal pathways into thalamus provided structural demarcation of the ventral nuclei of thalamus. The thalamic substructure boundaries were validated through in vivo electrophysiological recordings and post-mortem blockface tissue sectioning. Together, these imaging tools for visualizing and segmenting thalamus have the potential to improve the neurosurgical targeting of DBS implants and enhance the selection of stimulation settings through more accurate computational models of DBS. PMID:27375422

  5. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression.

    PubMed

    Schlaepfer, Thomas E; Cohen, Michael X; Frick, Caroline; Kosel, Markus; Brodesser, Daniela; Axmacher, Nikolai; Joe, Alexius Young; Kreft, Martina; Lenartz, Doris; Sturm, Volker

    2008-01-01

    Deep brain stimulation (DBS) to different sites allows interfering with dysfunctional network function implicated in major depression. Because a prominent clinical feature of depression is anhedonia--the inability to experience pleasure from previously pleasurable activities--and because there is clear evidence of dysfunctions of the reward system in depression, DBS to the nucleus accumbens might offer a new possibility to target depressive symptomatology in otherwise treatment-resistant depression. Three patients suffering from extremely resistant forms of depression, who did not respond to pharmacotherapy, psychotherapy, and electroconvulsive therapy, were implanted with bilateral DBS electrodes in the nucleus accumbens. Stimulation parameters were modified in a double-blind manner, and clinical ratings were assessed at each modification. Additionally, brain metabolism was assessed 1 week before and 1 week after stimulation onset. Clinical ratings improved in all three patients when the stimulator was on, and worsened in all three patients when the stimulator was turned off. Effects were observable immediately, and no side effects occurred in any of the patients. Using FDG-PET, significant changes in brain metabolism as a function of the stimulation in fronto-striatal networks were observed. No unwanted effects of DBS other than those directly related to the surgical procedure (eg pain at sites of implantation) were observed. Dysfunctions of the reward system--in which the nucleus accumbens is a key structure--are implicated in the neurobiology of major depression and might be responsible for impaired reward processing, as evidenced by the symptom of anhedonia. These preliminary findings suggest that DBS to the nucleus accumbens might be a hypothesis-guided approach for refractory major depression.

  6. Deep brain stimulation modulates nonsense-mediated RNA decay in Parkinson’s patients leukocytes

    PubMed Central

    2013-01-01

    Background Nonsense-Mediated decay (NMD) selectively degrades mRNA transcripts that carry premature stop codons. NMD is often triggered by alternative splicing (AS) modifications introducing such codons. NMD plays an important regulatory role in brain neurons, but the in vivo dynamics of AS and NMD changes in neurological diseases and under treatment were scarcely explored. Results Here, we report exon arrays analysis of leukocyte mRNA AS events prior to and following Deep Brain Stimulation (DBS) neurosurgery, which efficiently improves the motor symptoms of Parkinson’s disease (PD), the leading movement disorder, and is increasingly applied to treat other diseases. We also analyzed publicly available exon array dataset of whole blood cells from mixed early and advanced PD patients. Our in-house exon array dataset of leukocyte transcripts was derived from advanced PD patients’ pre- and post-DBS stimulation and matched healthy control volunteers. The mixed cohort exhibited 146 AS changes in 136 transcripts compared to controls, including 9 NMD protein-level assessed events. In comparison, PD patients from our advanced cohort differed from healthy controls by 319 AS events in 280 transcripts, assessed as inducing 27 protein-level NMD events. DBS stimulation induced 254 AS events in 229 genes as compared to the pre-DBS state including 44 NMD inductions. A short, one hour electrical stimulus cessation caused 234 AS changes in 125 genes compared to ON-stimulus state, 22 of these were assessed for NMD. Functional analysis highlighted disease-induced DNA damage and inflammatory control and its reversal under ON and OFF stimulus as well as alternative splicing in all the tested states. Conclusions The study findings indicate a potential role for NMD both in PD and following electrical brain stimulation. Furthermore, our current observations entail future implications for developing therapies for PD, and for interfering with the impaired molecular mechanisms that

  7. Theoretical Analysis of the Local Field Potential in Deep Brain Stimulation Applications

    PubMed Central

    Lempka, Scott F.; McIntyre, Cameron C.

    2013-01-01

    Deep brain stimulation (DBS) is a common therapy for treating movement disorders, such as Parkinson’s disease (PD), and provides a unique opportunity to study the neural activity of various subcortical structures in human patients. Local field potential (LFP) recordings are often performed with either intraoperative microelectrodes or DBS leads and reflect oscillatory activity within nuclei of the basal ganglia. These LFP recordings have numerous clinical implications and might someday be used to optimize DBS outcomes in closed-loop systems. However, the origin of the recorded LFP is poorly understood. Therefore, the goal of this study was to theoretically analyze LFP recordings within the context of clinical DBS applications. This goal was achieved with a detailed recording model of beta oscillations (∼20 Hz) in the subthalamic nucleus. The recording model consisted of finite element models of intraoperative microelectrodes and DBS macroelectrodes implanted in the brain along with multi-compartment cable models of STN projection neurons. Model analysis permitted systematic investigation into a number of variables that can affect the composition of the recorded LFP (e.g. electrode size, electrode impedance, recording configuration, and filtering effects of the brain, electrode-electrolyte interface, and recording electronics). The results of the study suggest that the spatial reach of the LFP can extend several millimeters. Model analysis also showed that variables such as electrode geometry and recording configuration can have a significant effect on LFP amplitude and spatial reach, while the effects of other variables, such as electrode impedance, are often negligible. The results of this study provide insight into the origin of the LFP and identify variables that need to be considered when analyzing LFP recordings in clinical DBS applications. PMID:23555799

  8. Early responses to deep brain stimulation in depression are modulated by anti-inflammatory drugs.

    PubMed

    Perez-Caballero, L; Pérez-Egea, R; Romero-Grimaldi, C; Puigdemont, D; Molet, J; Caso, J-R; Mico, J-A; Pérez, V; Leza, J-C; Berrocoso, E

    2014-05-01

    Deep brain stimulation (DBS) in the subgenual cingulated gyrus (SCG) is a promising new technique that may provide sustained remission in resistant major depressive disorder (MDD). Initial studies reported a significant early improvement in patients, followed by a decline within the first month of treatment, an unexpected phenomenon attributed to potential placebo effects or a physiological response to probe insertion that remains poorly understood. Here we characterized the behavioural antidepressant-like effect of DBS in the rat medial prefrontal cortex, focusing on modifications to rodent SCG correlate (prelimbic and infralimbic (IL) cortex). In addition, we evaluated the early outcome of DBS in the SCG of eight patients with resistant MDD involved in a clinical trial. We found similar antidepressant-like effects in rats implanted with electrodes, irrespective of whether they received electrical brain stimulation or not. This effect was due to regional inflammation, as it was temporally correlated with an increase of glial-fibrillary-acidic-protein immunoreactivity, and it was blocked by anti-inflammatory drugs. Indeed, inflammatory mediators and neuronal p11 expression also changed. Furthermore, a retrospective study indicated that the early response of MDD patients subjected to DBS was poorer when they received anti-inflammatory drugs. Our study demonstrates that electrode implantation up to the IL cortex is sufficient to produce an antidepressant-like effect of a similar magnitude to that observed in rats receiving brain stimulation. Moreover, both preclinical and clinical findings suggest that the use of anti-inflammatory drugs after electrode implantation may attenuate the early anti-depressive response in patients who are subjected to DBS.

  9. A Network Analysis of 15O-H2O PET Reveals Deep Brain Stimulation Effects on Brain Network of Parkinson's Disease

    PubMed Central

    Park, Hae-Jeong; Park, Bumhee; Kim, Hae Yu; Oh, Maeng-Keun; Kim, Joong Il; Yoon, Misun; Lee, Jong Doo

    2015-01-01

    Purpose As Parkinson's disease (PD) can be considered a network abnormality, the effects of deep brain stimulation (DBS) need to be investigated in the aspect of networks. This study aimed to examine how DBS of the bilateral subthalamic nucleus (STN) affects the motor networks of patients with idiopathic PD during motor performance and to show the feasibility of the network analysis using cross-sectional positron emission tomography (PET) images in DBS studies. Materials and Methods We obtained [15O]H2O PET images from ten patients with PD during a sequential finger-to-thumb opposition task and during the resting state, with DBS-On and DBS-Off at STN. To identify the alteration of motor networks in PD and their changes due to STN-DBS, we applied independent component analysis (ICA) to all the cross-sectional PET images. We analysed the strength of each component according to DBS effects, task effects and interaction effects. Results ICA blindly decomposed components of functionally associated distributed clusters, which were comparable to the results of univariate statistical parametric mapping. ICA further revealed that STN-DBS modifies usage-strengths of components corresponding to the basal ganglia-thalamo-cortical circuits in PD patients by increasing the hypoactive basal ganglia and by suppressing the hyperactive cortical motor areas, ventrolateral thalamus and cerebellum. Conclusion Our results suggest that STN-DBS may affect not only the abnormal local activity, but also alter brain networks in patients with PD. This study also demonstrated the usefulness of ICA for cross-sectional PET data to reveal network modifications due to DBS, which was not observable using the subtraction method. PMID:25837179

  10. Disentangling linear and nonlinear brain responses to evoked deep tissue pain

    PubMed Central

    Loggia, Marco L.; Edwards, Robert R.; Kim, Jieun; Vangel, Mark G.; Wasan, Ajay; Gollub, Randy L.; Harris, Richard E.; Park, Kyungmo; Napadow, Vitaly

    2012-01-01

    Pain stimuli evoke widespread responses in the brain. However, our understanding of the physiological significance underlying heterogeneous response within different pain-activated and -deactivated regions is still limited. Using functional MRI, we evaluated brain responses to a wide range of stimulus intensity levels (1 innocuous, 7 painful) in order to estimate region-specific stimulus-response functions, which we hypothesized could illuminate that region’s functional relationship to pain. Linear and nonlinear brain responses to pain were estimated through independent Legendre polynomial transformations of pain ratings within a general linear model. This approach identified at least five different, regionally-specific activity profiles in the brain. Linearly increasing (e.g., primary somatosensory/motor cortex, insulae) and intensity-independent (e.g., secondary somatosensory cortex) activation was noted in traditional pain processing areas, potentially reflecting sensory encoding and all-or-none salience responses, respectively. Multiple activity profiles were seen in areas of the default mode network (DMN): intensity-independent deactivation (e.g., posterior cingulate cortex), linearly decreasing (e.g., contralateral inferior parietal lobule), and quadratic (U-shaped; e.g., medial prefrontal cortex). The latter observation suggests that: 1) different DMN subregions exhibit functional heterogeneity and 2) some DMN subregions respond in a percept-related manner to pain, suggesting closer linkage between the DMN and pain processing than previously thought. Future studies should apply a similar approach using innocuous stimuli of multiple intensities in order to evaluate whether the response profiles reported here can also be generalized to nonpainful somatosensory processing. PMID:22883925

  11. Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator

    PubMed Central

    Tischbirek, Carsten; Birkner, Antje; Jia, Hongbo; Sakmann, Bert; Konnerth, Arthur

    2015-01-01

    In vivo Ca2+ imaging of neuronal populations in deep cortical layers has remained a major challenge, as the recording depth of two-photon microscopy is limited because of the scattering and absorption of photons in brain tissue. A possible strategy to increase the imaging depth is the use of red-shifted fluorescent dyes, as scattering of photons is reduced at long wavelengths. Here, we tested the red-shifted fluorescent Ca2+ indicator Cal-590 for deep tissue experiments in the mouse cortex in vivo. In experiments involving bulk loading of neurons with the acetoxymethyl (AM) ester version of Cal-590, combined two-photon imaging and cell-attached recordings revealed that, despite the relatively low affinity of Cal-590 for Ca2+ (Kd = 561 nM), single-action potential-evoked Ca2+ transients were discernable in most neurons with a good signal-to-noise ratio. Action potential-dependent Ca2+ transients were recorded in neurons of all six layers of the cortex at depths of up to −900 µm below the pial surface. We demonstrate that Cal-590 is also suited for multicolor functional imaging experiments in combination with other Ca2+ indicators. Ca2+ transients in the dendrites of an individual Oregon green 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid-1 (OGB-1)-labeled neuron and the surrounding population of Cal-590-labeled cells were recorded simultaneously on two spectrally separated detection channels. We conclude that the red-shifted Ca2+ indicator Cal-590 is well suited for in vivo two-photon Ca2+ imaging experiments in all layers of mouse cortex. In combination with spectrally different Ca2+ indicators, such as OGB-1, Cal-590 can be readily used for simultaneous multicolor functional imaging experiments. PMID:26305966

  12. Groundwater quality monitoring in shallow and deep aquifers in Saidabad tahsil area, Mathura district, India.

    PubMed

    Misra, Anil K; Mishra, Ajai

    2006-06-01

    Water availability in arid regions is both sporadic and highly variable in quantity. If the water quality shows large variations of salinity and concentration of other chemical constituents with depth and time span, it has considerable effect on the entire hydrological set up of the area. In the Saidabad tahsil area, the deep aquifers that supply water to borewells in the alluvial plain of the Mathura region, Uttar Pradesh, have higher salinity than those of the dugwells from the shallow aquifers. The excessive drilling of tubewells and high yield tubewells are resulting in deterioration of water quality of the shallow aquifers. On the contrary, the chemical constituents such as, Na(+), K (+), Cl (-), andHCO (3) (-) show higher concentration in shallow aquifers than deep aquifers. A study carried out to monitor water quality in this region reveals that the groundwater quality varies with depth and time span in shallow and deep aquifers. Factors controlling variations in salinity and concentration of chemical constituents of the water in the two types of aquifers are discussed. The relative merits of the shallow water for potability are pointed out with respect to salinity concentrations and public health.

  13. Subcallosal Cingulate Deep Brain Stimulation for Treatment-Resistant Unipolar and Bipolar Depression

    PubMed Central

    Holtzheimer, Paul E.; Kelley, Mary E.; Gross, Robert E.; Filkowski, Megan M.; Garlow, Steven J.; Barrocas, Andrea; Wint, Dylan; Craighead, Margaret C.; Kozarsky, Julie; Chismar, Ronald; Moreines, Jared L.; Mewes, Klaus; Posse, Patricio Riva; Gutman, David A.; Mayberg, Helen S.

    2015-01-01

    Context Deep brain stimulation (DBS) may be an effective intervention for treatment-resistant depression (TRD), but available data are limited. Objective To assess the efficacy and safety of subcallosal cingulate DBS in patients with TRD with either major depressive disorder (MDD) or bipolar II disorder (BP). Design Open-label trial with a sham lead-in phase. Setting Academic medical center. Patients Men and women aged 18 to 70 years with a moderate-to-severe major depressive episode after at least 4 adequate antidepressant treatments. Ten patients with MDD and 7 with BP were enrolled from a total of 323 patients screened. Intervention Deep brain stimulation electrodes were implanted bilaterally in the subcallosal cingulate white matter. Patients received single-blind sham stimulation for 4 weeks followed by active stimulation for 24 weeks. Patients then entered a single-blind discontinuation phase; this phase was stopped after the first 3 patients because of ethical concerns. Patients were evaluated for up to 2 years after the onset of active stimulation. Main Outcome Measures Change in depression severity and functioning over time, and response and remission rates after 24 weeks were the primary efficacy end points; secondary efficacy end points were 1 year and 2 years of active stimulation. Results A significant decrease in depression and increase in function were associated with chronic stimulation. Remission and response were seen in 3 patients (18%) and 7 (41%) after 24 weeks (n=17), 5 (36%) and 5 (36%) after 1 year (n=14), and 7 (58%) and 11 (92%) after 2 years (n=12) of active stimulation. No patient achieving remission experienced a spontaneous relapse. Efficacy was similar for patients with MDD and those with BP. Chronic DBS was safe and well tolerated, and no hypomanic or manic episodes occurred. A modest sham stimulation effect was found, likely due to a decrease in depression after the surgical intervention but prior to entering the sham phase

  14. Critical evaluation of the anatomical location of the Barrington nucleus: relevance for deep brain stimulation surgery of pedunculopontine tegmental nucleus.

    PubMed

    Blanco, Lisette; Yuste, Jose Enrique; Carrillo-de Sauvage, María Angeles; Gómez, Aurora; Fernández-Villalba, Emiliano; Avilés-Olmos, Itciar; Limousin, Patricia; Zrinzo, Ludvic; Herrero, María Trinidad

    2013-09-05

    Deep brain stimulation (DBS) has become the standard surgical procedure for advanced Parkinson's disease (PD). Recently, the pedunculopontine tegmental nucleus (PPN) has emerged as a potential target for DBS in patients whose quality of life is compromised by freezing of gait and falls. To date, only a few groups have published their long-term clinical experience with PPN stimulation. Bearing in mind that the Barrington (Bar) nucleus and some adjacent nuclei (also known as the micturition centre) are close to the PPN and may be affected by DBS, the aim of the present study was to review the anatomical location of this structure in human and other species. To this end, the Bar nucleus area was analysed in mouse, monkey and human tissues, paying particular attention to the anatomical position in humans, where it has been largely overlooked. Results confirm that anatomical location renders the Bar nucleus susceptible to influence by the PPN DBS lead or to diffusion of electrical current. This may have an undesirable impact on the quality of life of patients.

  15. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes

    PubMed Central

    Howell, Bryan; Huynh, Brian; Grill, Warren M.

    2015-01-01

    Objective Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, the efficiency and selectivity of DBS can be improved. Our objective was to design electrode geometries that increased the efficiency and selectivity of DBS. Approach We coupled computational models of electrodes in brain tissue with cable models of axons of passage (AOPs), terminating axons (TAs), and local neurons (LNs); we used engineering optimization to design electrodes for stimulating these neural elements; and the model predictions were tested in vivo. Main results Compared with the standard electrode used in the Medtronic Model 3387 and 3389 arrays, model-optimized electrodes consumed 45–84 % less power. Similar gains in selectivity were evident with the optimized electrodes: 50 % of parallel AOPs could be activated while reducing activation of perpendicular AOPs from 44–48 % with the standard electrode to 0–14 % with bipolar designs; 50 % of perpendicular AOPs could be activated while reducing activation of parallel AOPs from 53–55 % with the standard electrode to 1–5 % with an array of cathodes; and, 50 % of TAs could be activated while reducing activation of AOPs from 43–100 % with the standard electrode to 2–15 % with a distal anode. In vivo, both the geometry and polarity of the electrode had a profound impact on the efficiency and selectivity of stimulation. Significance Model-based design is a powerful tool that can be used to improve the efficiency and selectivity of DBS electrodes. PMID:26170244

  16. Moving forward: advances in the treatment of movement disorders with deep brain stimulation.

    PubMed

    Schiefer, Terry K; Matsumoto, Joseph Y; Lee, Kendall H

    2011-01-01

    The modern era of stereotactic and functional neurosurgery has ushered in state of the art technologies for the treatment of movement disorders, particularly Parkinson's disease (PD), tremor, and dystonia. After years of experience with various surgical therapies, the eventual shortcomings of both medical and surgical treatments, and several serendipitous discoveries, deep brain stimulation (DBS) has risen to the forefront as a highly effective, safe, and reversible treatment for these conditions. Idiopathic advanced PD can be treated with thalamic, globus pallidus internus (GPi), or subthalamic nucleus (STN) DBS. Thalamic DBS primarily relieves tremor while GPi and STN DBS alleviate a wide range of Parkinsonian symptoms. Thalamic DBS is also used in the treatment of other types of tremor, particularly essential tremor, with excellent results. Both primary and various types of secondary dystonia can be treated very effectively with GPi DBS. The variety of anatomical targets for these movement disorders is indicative of the network-level dysfunction mediating these movement disturbances. Despite an increasing understanding of the clinical benefits of DBS, little is known about how DBS can create such wide sweeping neuromodulatory effects. The key to improving this therapeutic modality and discovering new ways to treat these and other neurologic conditions lies in better understanding the intricacies of DBS. Here we review the history and pertinent clinical data for DBS treatment of PD, tremor, and dystonia. While multiple regions of the brain have been targeted for DBS in the treatment of these movement disorders, this review article focuses on those that are most commonly used in current clinical practice. Our search criteria for PubMed included combinations of the following terms: DBS, neuromodulation, movement disorders, PD, tremor, dystonia, and history. Dates were not restricted.

  17. Targeting of deep-brain structures in nonhuman primates using MR and CT Images

    NASA Astrophysics Data System (ADS)

    Chen, Antong; Hines, Catherine; Dogdas, Belma; Bone, Ashleigh; Lodge, Kenneth; O'Malley, Stacey; Connolly, Brett; Winkelmann, Christopher T.; Bagchi, Ansuman; Lubbers, Laura S.; Uslaner, Jason M.; Johnson, Colena; Renger, John; Zariwala, Hatim A.

    2015-03-01

    In vivo gene delivery in central nervous systems of nonhuman primates (NHP) is an important approach for gene therapy and animal model development of human disease. To achieve a more accurate delivery of genetic probes, precise stereotactic targeting of brain structures is required. However, even with assistance from multi-modality 3D imaging techniques (e.g. MR and CT), the precision of targeting is often challenging due to difficulties in identification of deep brain structures, e.g. the striatum which consists of multiple substructures, and the nucleus basalis of meynert (NBM), which often lack clear boundaries to supporting anatomical landmarks. Here we demonstrate a 3D-image-based intracranial stereotactic approach applied toward reproducible intracranial targeting of bilateral NBM and striatum of rhesus. For the targeting we discuss the feasibility of an atlas-based automatic approach. Delineated originally on a high resolution 3D histology-MR atlas set, the NBM and the striatum could be located on the MR image of a rhesus subject through affine and nonrigid registrations. The atlas-based targeting of NBM was compared with the targeting conducted manually by an experienced neuroscientist. Based on the targeting, the trajectories and entry points for delivering the genetic probes to the targets could be established on the CT images of the subject after rigid registration. The accuracy of the targeting was assessed quantitatively by comparison between NBM locations obtained automatically and manually, and finally demonstrated qualitatively via post mortem analysis of slices that had been labelled via Evan Blue infusion and immunohistochemistry.

  18. Invasive circuitry-based neurotherapeutics: stereotactic ablation and deep brain stimulation for OCD.

    PubMed

    Greenberg, Benjamin D; Rauch, Scott L; Haber, Suzanne N

    2010-01-01

    Psychiatric neurosurgery, specifically stereotactic ablation, has continued since the 1940s, mainly at a few centers in Europe and the US. Since the late 1990s, the resurgence of interest in this field has been remarkable; reports of both lesion procedures and the newer technique of deep brain stimulation (DBS) have increased rapidly. In early 2009, the US FDA granted limited humanitarian approval for DBS for otherwise intractable obsessive-compulsive disorder (OCD), the first such approval for a psychiatric illness. Several factors explain the emergence of DBS and continued small-scale use of refined lesion procedures. DBS and stereotactic ablation have been successful and widely used for movement disorders. There remains an unmet clinical need: current drug and behavioral treatments offer limited benefit to some seriously ill people. Understandings of the neurocircuitry underlying psychopathology and the response to treatment, while still works in progress, are much enhanced. Here, we review modern lesion procedures and DBS for OCD in the context of neurocircuitry. A key issue is that clinical benefit can be obtained after surgeries targeting different brain structures. This fits well with anatomical models, in which circuits connecting orbitofrontal cortex (OFC), medial prefrontal cortex (mPFC), basal ganglia, and thalamus are central to OCD pathophysiology and treatment response. As in movement disorders, dedicated interdisciplinary teams, here led by psychiatrists, are required to implement these procedures and maintain care for patients so treated. Available data, although limited, support the promise of stereotactic ablation or DBS in carefully selected patients. Benefit in such cases appears not to be confined to obsessions and compulsions, but includes changes in affective state. Caution is imperative, and key issues in long-term management of psychiatric neurosurgery patients deserve focused attention. DBS and contemporary ablation also present different

  19. Current steering to activate targeted neural pathways during deep brain stimulation of the subthalamic region

    PubMed Central

    Chaturvedi, Ashutosh; Foutz, Thomas J.; McIntyre, Cameron C.

    2012-01-01

    Deep brain stimulation (DBS) has steadily evolved into an established surgical therapy for numerous neurological disorders, most notably Parkinson’s disease (PD). Traditional DBS technology relies on voltage-controlled stimulation with a single source; however, recent engineering advances are providing current-controlled devices with multiple independent sources. These new stimulators deliver constant current to the brain tissue, irrespective of impedance changes that occur around the electrode, and enable more specific steering of current towards targeted regions of interest. In this study, we examined the impact of current steering between multiple electrode contacts to directly activate three distinct neural populations in the subthalamic region commonly stimulated for the treatment of PD: projection neurons of the subthalamic nucleus (STN), globus pallidus internus (GPi) fibers of the lenticular fasiculus, and internal capsule (IC) fibers of passage. We used three-dimensional finite element electric field models, along with detailed multi-compartment cable models of the three neural populations to determine their activations using a wide range of stimulation parameter settings. Our results indicate that selective activation of neural populations largely depends on the location of the active electrode(s). Greater activation of the GPi and STN populations (without activating any side-effect related IC fibers) was achieved by current steering with multiple independent sources, compared to a single current source. Despite this potential advantage, it remains to be seen if these theoretical predictions result in a measurable clinical effect that outweighs the added complexity of the expanded stimulation parameter search space generated by the more flexible technology. PMID:22277548

  20. Effects of Anterior Thalamic Nucleus Deep Brain Stimulation in Chronic Epileptic Rats

    PubMed Central

    Amorim, Beatriz; Cavarsan, Clarissa; Miranda, Maisa Ferreira; Aarão, Mayra C.; Madureira, Ana Paula; Rodrigues, Antônio M.; Nobrega, José N.; Mello, Luiz E.; Hamani, Clement

    2014-01-01

    Deep brain stimulation (DBS) has been investigated for the treatment of epilepsy. In rodents, an increase in the latency for the development of seizures and status epilepticus (SE) has been reported in different animal models but the consequences of delivering stimulation to chronic epileptic animals have not been extensively addressed. We study the effects of anterior thalamic nucleus (AN) stimulation at different current intensities in rats rendered epileptic following pilocarpine (Pilo) administration. Four months after Pilo-induced SE, chronic epileptic rats were bilaterally implanted with AN electrodes or had sham-surgery. Stimulation was delivered for 6 h/day, 5 days/week at 130 Hz, 90 µsec. and either 100 µA or 500 µA. The frequency of spontaneous recurrent seizures in animals receiving stimulation was compared to that recorded in the preoperative period and in rats given sham treatment. To investigate the effects of DBS on hippocampal excitability, brain slices from animals receiving AN DBS or sham surgery were studied with electrophysiology. We found that rats treated with AN DBS at 100 µA had a 52% non-significant reduction in the frequency of seizures as compared to sham-treated controls and 61% less seizures than at baseline. Animals given DBS at 500 µA had 5.1 times more seizures than controls and a 2.8 fold increase in seizure rate as compared to preoperative values. In non-stimulated controls, the average frequency of seizures before and after surgery remained unaltered. In vitro recordings have shown that slices from animals previously given DBS at 100 µA had a longer latency for the development of epileptiform activity, shorter and smaller DC shifts, and a smaller spike amplitude compared to non-stimulated controls. In contrast, a higher spike amplitude was recorded in slices from animals given AN DBS at 500 µA. PMID:24892420

  1. Fornix deep brain stimulation circuit effect is dependent on major excitatory transmission via the nucleus accumbens

    PubMed Central

    Ross, Erika K.; Kim, Joo Pyung; Settell, Megan L.; Han, Seong Rok; Blaha, Charles D.; Min, Hoon-Ki; Lee, Kendall H.

    2016-01-01

    Introduction Deep brain stimulation (DBS) is a circuit-based treatment shown to relieve symptoms from multiple neurologic and neuropsychiatric disorders. In order to treat the memory deficit associated with Alzheimer's disease (AD), several clinical trials have tested the efficacy of DBS near the fornix. Early results from these studies indicated that patients who received fornix DBS experienced an improvement in memory and quality of life, yet the mechanisms behind this effect remain controversial. It is known that transmission between the medial limbic and corticolimbic circuits plays an integral role in declarative memory, and dysfunction at the circuit level results in various forms of dementia, including AD. Here, we aimed to determine the potential underlying mechanism of fornix DBS by examining the functional circuitry and brain structures engaged by fornix DBS. Methods A multimodal approach was employed to examine global and local temporal changes that occur in an anesthetized swine model of fornix DBS. Changes in global functional activity were measured by functional MRI (fMRI), and local neurochemical changes were monitored by fast scan cyclic voltammetry (FSCV) during electrical stimulation of the fornix. Additionally, intracranial microinfusions into the nucleus accumbens (NAc) were performed to investigate the global activity changes that occur with dopamine and glutamate receptor-specific antagonism. Results Hemodynamic responses in both medial limbic and corticolimbic circuits measured by fMRI were induced by fornix DBS. Additionally, fornix DBS resulted in increases in dopamine oxidation current (corresponding to dopamine efflux) monitored by FSCV in the NAc. Finally, fornix DBS-evoked hemodynamic responses in the amygdala and hippocampus decreased following dopamine and glutamate receptor antagonism in the NAc. Conclusions The present findings suggest that fornix DBS modulates dopamine release on presynaptic dopaminergic terminals in the NAc

  2. Deep brain stimulation activation volumes and their association with neurophysiological mapping and therapeutic outcomes

    PubMed Central

    Maks, Christopher B.; Butson, Christopher R.; Walter, Benjamin L.; Vitek, Jerrold L.; McIntyre, Cameron C.

    2010-01-01

    Objective Despite the clinical success of deep brain stimulation (DBS) for the treatment of Parkinson’s disease (PD), little is known about the electrical spread of the stimulation. The primary goal of this study was to integrate neuroimaging, neurophysiology, and neurostimulation data sets from 10 PD patients, unilaterally implanted with subthalamic nucleus (STN) DBS electrodes, to identify the theoretical volume of tissue activated (VTA) by clinically defined therapeutic stimulation parameters. Methods Each patient-specific model was created with a series of five steps: 1) definition of the neurosurgical stereotactic coordinate system within the context of pre-operative imaging data; 2) entry of intra-operative microelectrode recording locations from neurophysiologically defined thalamic, subthalamic, and substantia nigra neurons into the context of the imaging data; 3) fitting a 3D brain atlas to the neuroanatomy and neurophysiology of the patient; 4) positioning the DBS electrode in the documented stereotactic location, verified by post-operative imaging data; and 5) calculation of the VTA using a diffusion tensor based finite element neurostimulation model. Results The patient-specific models show that therapeutic benefit was achieved with direct stimulation of a wide range of anatomical structures in the subthalamic region. Interestingly, of the 5 patients exhibiting a greater than 40% improvement in their unified PD rating scale (UPDRS), all but one had the majority of their VTA outside the atlas defined borders of the STN. Further, of the 5 patients with less than 40% UPDRS improvement all but one had the majority of their VTA inside the STN. Conclusions Our results are consistent with previous studies suggesting that therapeutic benefit is associated with electrode contacts near the dorsal border of the STN, and provide quantitative estimates of the electrical spread of the stimulation in a clinically relevant context. PMID:18403440

  3. Hypothalamic deep brain stimulation reduces weight gain in an obesity-animal model.

    PubMed

    Melega, William P; Lacan, Goran; Gorgulho, Alessandra A; Behnke, Eric J; De Salles, Antonio A F

    2012-01-01

    Prior studies of appetite regulatory networks, primarily in rodents, have established that targeted electrical stimulation of ventromedial hypothalamus (VMH) can alter food intake patterns and metabolic homeostasis. Consideration of this method for weight modulation in humans with severe overeating disorders and morbid obesity can be further advanced by modeling procedures and assessing endpoints that can provide preclinical data on efficacy and safety. In this study we adapted human deep brain stimulation (DBS) stereotactic methods and instrumentation to demonstrate in a large animal model the modulation of weight gain with VMH-DBS. Female Göttingen minipigs were used because of their dietary habits, physiologic characteristics, and brain structures that resemble those of primates. Further, these animals become obese on extra-feeding regimens. DBS electrodes were first bilaterally implanted into the VMH of the animals (n = 8) which were then maintained on a restricted food regimen for 1 mo following the surgery. The daily amount of food was then doubled for the next 2 mo in all animals to produce obesity associated with extra calorie intake, with half of the animals (n = 4) concurrently receiving continuous low frequency (50 Hz) VMH-DBS. Adverse motoric or behavioral effects were not observed subsequent to the surgical procedure or during the DBS period. Throughout this 2 mo DBS period, all animals consumed the doubled amount of daily food. However, the animals that had received VMH-DBS showed a cumulative weight gain (6.1±0.4 kg; mean ± SEM) that was lower than the nonstimulated VMH-DBS animals (9.4±1.3 kg; p<0.05), suggestive of a DBS-associated increase in metabolic rate. These results in a porcine obesity model demonstrate the efficacy and behavioral safety of a low frequency VMH-DBS application as a potential clinical strategy for modulation of body weight.

  4. Hypothalamic Deep Brain Stimulation Reduces Weight Gain in an Obesity-Animal Model

    PubMed Central

    Melega, William P.; Lacan, Goran; Gorgulho, Alessandra A.; Behnke, Eric J.; De Salles, Antonio A. F.

    2012-01-01

    Prior studies of appetite regulatory networks, primarily in rodents, have established that targeted electrical stimulation of ventromedial hypothalamus (VMH) can alter food intake patterns and metabolic homeostasis. Consideration of this method for weight modulation in humans with severe overeating disorders and morbid obesity can be further advanced by modeling procedures and assessing endpoints that can provide preclinical data on efficacy and safety. In this study we adapted human deep brain stimulation (DBS) stereotactic methods and instrumentation to demonstrate in a large animal model the modulation of weight gain with VMH-DBS. Female Göttingen minipigs were used because of their dietary habits, physiologic characteristics, and brain structures that resemble those of primates. Further, these animals become obese on extra-feeding regimens. DBS electrodes were first bilaterally implanted into the VMH of the animals (n = 8) which were then maintained on a restricted food regimen for 1 mo following the surgery. The daily amount of food was then doubled for the next 2 mo in all animals to produce obesity associated with extra calorie intake, with half of the animals (n = 4) concurrently receiving continuous low frequency (50 Hz) VMH-DBS. Adverse motoric or behavioral effects were not observed subsequent to the surgical procedure or during the DBS period. Throughout this 2 mo DBS period, all animals consumed the doubled amount of daily food. However, the animals that had received VMH-DBS showed a cumulative weight gain (6.1±0.4 kg; mean ± SEM) that was lower than the nonstimulated VMH-DBS animals (9.4±1.3 kg; p<0.05), suggestive of a DBS-associated increase in metabolic rate. These results in a porcine obesity model demonstrate the efficacy and behavioral safety of a low frequency VMH-DBS application as a potential clinical strategy for modulation of body weight. PMID:22295102

  5. Deep brain stimulation and cognitive decline in Parkinson's disease: The predictive value of electroencephalography.

    PubMed

    Markser, A; Maier, Franziska; Lewis, C J; Dembek, T A; Pedrosa, D; Eggers, C; Timmermann, L; Kalbe, E; Fink, G R; Burghaus, Lothar

    2015-10-01

    Some Parkinson's disease (PD) patients treated with subthalamic nucleus deep brain stimulation (STN-DBS) develop new-onset cognitive decline. We examined whether clinical EEG recordings can be used to predict cognitive deterioration in PD patients undergoing STN-DBS. In this retrospective study, we used the Grand Total EEG (GTE)-score (short and total) to evaluate pre- and postoperative EEGs. In PD patients undergoing STN-DBS (N = 30), cognitive functioning was measured using Mini-Mental State Test and DemTect before and after surgery. Severity of motor impairment was assessed using the Unified Parkinson's Disease Rating Scale-III. Patients were classified into patients with or without cognitive decline after STN-DBS surgery. Epidemiological data, pre- and postoperative EEG recordings as well as neuropsychological and neurological data, electrode positions and the third ventricle width were compared. A logistic regression model was used to identify predictors of cognitive decline. Motor deficits significantly improved from pre- to post-surgery, while the mean GTE-scores increased significantly. Six patients developed cognitive deterioration 4-12 months postoperatively. These patients had significantly higher preoperative GTE-scores than patients without cognitive deterioration, although preoperative cognitive functioning was comparable. Electrode positions, brain atrophy and neurological data did not differ between groups. Logistic regression analysis identified the GTE-score as a significant predictor of postoperative cognitive deterioration. Data suggest that the preoperative GTE-score can be used to identify PD patients that are at high risk for developing cognitive deterioration after STN-DBS surgery even though their preoperative cognitive state was normal.

  6. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Howell, Bryan; Huynh, Brian; Grill, Warren M.

    2015-08-01

    Objective. Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, the efficiency and selectivity of DBS can be improved. Our objective was to design electrode geometries that increased the efficiency and selectivity of DBS. Approach. We coupled computational models of electrodes in brain tissue with cable models of axons of passage (AOPs), terminating axons (TAs), and local neurons (LNs); we used engineering optimization to design electrodes for stimulating these neural elements; and the model predictions were tested in vivo. Main results. Compared with the standard electrode used in the Medtronic Model 3387 and 3389 arrays, model-optimized electrodes consumed 45-84% less power. Similar gains in selectivity were evident with the optimized electrodes: 50% of parallel AOPs could be activated while reducing activation of perpendicular AOPs from 44 to 48% with the standard electrode to 0-14% with bipolar designs; 50% of perpendicular AOPs could be activated while reducing activation of parallel AOPs from 53 to 55% with the standard electrode to 1-5% with an array of cathodes; and, 50% of TAs could be activated while reducing activation of AOPs from 43 to 100% with the standard electrode to 2-15% with a distal anode. In vivo, both the geometry and polarity of the electrode had a profound impact on the efficiency and selectivity of stimulation. Significance. Model-based design is a powerful tool that can be used to improve the efficiency and selectivity of DBS electrodes.

  7. A Phase II Study of Fornix Deep Brain Stimulation in Mild Alzheimer’s Disease

    PubMed Central

    Lozano, Andres M.; Fosdick, Lisa; Chakravarty, M. Mallar; Leoutsakos, Jeannie-Marie; Munro, Cynthia; Oh, Esther; Drake, Kristen E.; Lyman, Christopher H.; Rosenberg, Paul B.; Anderson, William S.; Tang-Wai, David F.; Pendergrass, Jo Cara; Salloway, Stephen; Asaad, Wael F.; Ponce, Francisco A.; Burke, Anna; Sabbagh, Marwan; Wolk, David A.; Baltuch, Gordon; Okun, Michael S.; Foote, Kelly D.; McAndrews, Mary Pat; Giacobbe, Peter; Targum, Steven D.; Lyketsos, Constantine G.; Smith, Gwenn S.

    2016-01-01

    Background: Deep brain stimulation (DBS) is used to modulate the activity of dysfunctional brain circuits. The safety and efficacy of DBS in dementia is unknown. Objective: To assess DBS of memory circuits as a treatment for patients with mild Alzheimer’s disease (AD). Methods: We evaluated active “on” versus sham “off” bilateral DBS directed at the fornix-a major fiber bundle in the brain’s memory circuit-in a randomized, double-blind trial (ClinicalTrials.gov NCT01608061) in 42 patients with mild AD. We measured cognitive function and cerebral glucose metabolism up to 12 months post-implantation. Results: Surgery and electrical stimulation were safe and well tolerated. There were no significant differences in the primary cognitive outcomes (ADAS-Cog 13, CDR-SB) in the “on” versus “off” stimulation group at 12 months for the whole cohort. Patients receiving stimulation showed increased metabolism at 6 months but this was not significant at 12 months. On post-hoc analysis, there was a significant interaction between age and treatment outcome: in contrast to patients <65 years old (n = 12) whose results trended toward being worse with DBS ON versus OFF, in patients≥65 (n = 30) DBS-f ON treatment was associated with a trend toward both benefit on clinical outcomes and a greater increase in cerebral glucose metabolism. Conclusion: DBS for AD was safe and associated with increased cerebral glucose metabolism. There were no differences in cognitive outcomes for participants as a whole, but participants aged≥65 years may have derived benefit while there was possible worsening in patients below age 65 years with stimulation. PMID:27567810

  8. CMOS Image Sensor and System for Imaging Hemodynamic Changes in Response to Deep Brain Stimulation.

    PubMed

    Zhang, Xiao; Noor, Muhammad S; McCracken, Clinton B; Kiss, Zelma H T; Yadid-Pecht, Orly; Murari, Kartikeya

    2016-06-01

    Deep brain stimulation (DBS) is a therapeutic intervention used for a variety of neurological and psychiatric disorders, but its mechanism of action is not well understood. It is known that DBS modulates neural activity which changes metabolic demands and thus the cerebral circulation state. However, it is unclear whether there are correlations between electrophysiological, hemodynamic and behavioral changes and whether they have any implications for clinical benefits. In order to investigate these questions, we present a miniaturized system for spectroscopic imaging of brain hemodynamics. The system consists of a 144 ×144, [Formula: see text] pixel pitch, high-sensitivity, analog-output CMOS imager fabricated in a standard 0.35 μm CMOS process, along with a miniaturized imaging system comprising illumination, focusing, analog-to-digital conversion and μSD card based data storage. This enables stand alone operation without a computer, nor electrical or fiberoptic tethers. To achieve high sensitivity, the pixel uses a capacitive transimpedance amplifier (CTIA). The nMOS transistors are in the pixel while pMOS transistors are column-parallel, resulting in a fill factor (FF) of 26%. Running at 60 fps and exposed to 470 nm light, the CMOS imager has a minimum detectable intensity of 2.3 nW/cm(2) , a maximum signal-to-noise ratio (SNR) of 49 dB at 2.45 μW/cm(2) leading to a dynamic range (DR) of 61 dB while consuming 167 μA from a 3.3 V supply. In anesthetized rats, the system was able to detect temporal, spatial and spectral hemodynamic changes in response to DBS.

  9. Case study: could ultrasound and elastography visualized densified areas inside the deep fascia?

    PubMed

    Luomala, Tuulia; Pihlman, Mika; Heiskanen, Jouko; Stecco, Carla

    2014-07-01

    Many manual techniques describe palpable changes in the subcutaneous tissue. Many manual therapists have perceived palpable tissue stiffness and how it changes after treatment. No clear demonstration exists of the presence of specific alterations in the subcutaneous tissue and even less a visualization of their changes following manual therapy. This case study visualizes by ultrasound and elastography an alteration of the deep fascia in a 40-year-old male with subacute pain in the calf area. Ultrasound and elastography permits visualization of gliding, echogenicity and elasticity of deep fascia and their changes, after manual therapy (Fascial Manipulation(©)). This study suggests the possible use of the ultrasound and elastography to furnish a more objective picture of the "sensations" that are commonly reported by manual therapists, and which supports clinicians in the diagnosis of the myofascial pain.

  10. Dynamics of rabbit brain edema in focal lesion and perilesion area after traumatic brain injury: a MRI study.

    PubMed

    Wei, Xiao-Er; Zhang, Yu-Zhen; Li, Yue-Hua; Li, Ming-Hua; Li, Wen-Bin

    2012-09-20

    To understand the dynamics of brain edema in different areas after traumatic brain injury (TBI) in rabbit, we used dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) to monitor blood-brain barrier (BBB) permeability and cytotoxic brain edema after weight drop-induced TBI in rabbit. The dynamics of BBB permeability and brain edema were quantified using K(trans) and apparent diffusion coefficient (ADC) in the focal and perifocal lesion areas, as well as the area contralateral to the lesion. In the focal lesion area, K(trans) began to increase at 3 h post-TBI, peaked at 3 days, and decreased gradually while remaining higher than sham injury animals at 7 and 30 days. ADC was more variable, increased slightly at 3 h, decreased to its lowest value at 7 days, then increased to a peak at 30 days. In the perifocal lesion area, K(trans) began to increase at 1 day, peaked at 3-7 days, and returned to control level by 30 days. ADC showed a trend to increase at 1 day, followed by a continuous increase thereafter. In the contralateral area, no changes in K(trans) and ADC were observed at any time-point. These data demonstrate that different types of brain edema predominate in the focal and perifocal lesion areas. Specifically cytotoxic edema was predominant in the focal lesion area while vasogenic edema predominated in the perifocal area in acute phase. Furthermore, secondary opening of the BBB after TBI may appear if secondary injury is not controlled. BBB damage may be a driving force for cytotoxic brain edema and could be a new target for TBI intervention.

  11. Investigating the depth electrode-brain interface in deep brain stimulation using finite element models with graded complexity in structure and solution.

    PubMed

    Yousif, Nada; Liu, Xuguang

    2009-10-30

    Deep brain stimulation (DBS) is an increasingly used surgical therapy for a range of neurological disorders involving the long-term electrical stimulation of various regions of the human brain in a disorder specific manner. Despite being used for the last 20 years, the underlying mechanisms are still not known, and disputed. In particular, when the electrodes are implanted into the human brain, an interface is created with changing biophysical properties which may impact on stimulation. We previously defined the electrode-brain interface (EBI) as consisting of three structural elements: the quadripolar DBS electrode, the peri-electrode space and the surrounding brain tissue. In order to understand more about the nature of this EBI, we used structural computational models of this interface, and estimated the effects of stimulation using coupled axon models. These finite element models differ in complexity, each highlighting a different feature of the EBI's effect on the DBS-induced electric field. We show that the quasi-static models are sufficient to demonstrate the difference between the acute and chronic clinical stages post-implantation. However, the frequency-dependent models are necessary as the waveform shaping has a major influence on the activation of neuronal fibres. We also investigate anatomical effects on the electric field, by taking specific account of the ventricular system in the human brain. Taken together, these models allow us to visualise the static, dynamic and target specific properties of the DBS-induced field in the surrounding brain regions.

  12. Deep brain stimulation in Gilles de la Tourette syndrome: killing several birds with one stone?

    PubMed Central

    Hartmann, Andreas

    2016-01-01

    In patients with severe, treatment-refractory Gilles de la Tourette syndrome (GTS), deep brain stimulation (DBS) of various targets has been increasingly explored over the past 15 years. The multiplicity of surgical targets is intriguing and may be partly due to the complexity of GTS, specifically the various and frequent associated psychiatric comorbidities in this disorder. Thus, the target choice may not only be aimed at reducing tics but also comorbidities. While this approach is laudable, it also carries the risk to increase confounding factors in DBS trials and patient evaluation. Moreover, I question whether DBS should really be expected to alleviate multiple symptoms at a time. Rather, I argue that tic reduction should remain our primary objective in severe GTS patients and that this intervention may subsequently allow an improved psychotherapeutic and/or pharmacological treatment of comorbidities. Thus, I consider DBS in GTS not as a single solution for all our patients’ ailments but as a stepping stone to improved holistic care made possible by tic reduction. PMID:27746910

  13. Deep Brain Stimulation of the Basolateral Amygdala: Targeting Technique and Electrodiagnostic Findings

    PubMed Central

    Langevin, Jean-Philippe; Chen, James W. Y.; Koek, Ralph J.; Sultzer, David L.; Mandelkern, Mark A.; Schwartz, Holly N.; Krahl, Scott E.

    2016-01-01

    The amygdala plays a critical role in emotion regulation. It could prove to be an effective neuromodulation target in the treatment of psychiatric conditions characterized by failure of extinction. We aim to describe our targeting technique, and intra-operative and post-operative electrodiagnostic findings associated with the placement of deep brain stimulation (DBS) electrodes in the amygdala. We used a transfrontal approach to implant DBS electrodes in the basolateral nucleus of the amygdala (BLn) of a patient suffering from severe post-traumatic stress disorder. We used microelectrode recording (MER) and awake intra-operative neurostimulation to assist with the placement. Post-operatively, the patient underwent monthly surveillance electroencephalograms (EEG). MER predicted the trajectory of the electrode through the amygdala. The right BLn showed a higher spike frequency than the left BLn. Intra-operative neurostimulation of the BLn elicited pleasant memories. The monthly EEG showed the presence of more sleep patterns over time with DBS. BLn DBS electrodes can be placed using a transfrontal approach. MER can predict the trajectory of the electrode in the amygdala and it may reflect the BLn neuronal activity underlying post-traumatic stress disorder PTSD. The EEG findings may underscore the reduction in anxiety. PMID:27517963

  14. Patients’ experiences of deep brain stimulation for Parkinson's disease: a qualitative systematic review and synthesis

    PubMed Central

    Mathers, J; Rick, C; Jenkinson, C; Garside, R; Pall, H; Mitchell, R; Bayliss, S

    2016-01-01

    Objective To review and synthesise qualitative research studies that have explored patients’ experience of deep brain stimulation (DBS) in advanced Parkinson's disease (PD). Design Systematic review and meta-synthesis of 7 original papers, using metaethnography. Setting Studies conducted in Denmark, France and Sweden. Participants 116 patients who had undergone DBS and 9 spouses of patients. Results Prior to surgery, the experience of advancing PD is one of considerable loss and a feeling of loss of control. There are significant hopes for what DBS can bring. Following surgery, a sense of euphoria is described by many, although this does not persist and there is a need for significant transitions following this. We suggest that normality as a concept is core to the experience of DBS and that a sense of control may be a key condition for normality. Experience of DBS for patients and spouses, and of the transitions that they must undertake, is influenced by their hopes of what surgery will enable them to achieve, or regain (ie, a new normality). Conclusions There is a need for further qualitative research to understand the nature of these transitions to inform how best patients and their spouses can be supported by healthcare professionals before, during and after DBS. In assessing the outcomes of DBS and other treatments in advanced PD, we should consider how to capture holistic concepts such as normality and control. Studies that examine the outcomes of DBS require longer term follow-up. PMID:27338883

  15. Effects of deep brain stimulation on vocal fold immobility in Parkinson's disease

    PubMed Central

    Arocho-Quinones, Elsa V.; Hammer, Michael J.; Bock, Jonathan M.; Pahapill, Peter A.

    2017-01-01

    Background: Vocal fold (VF) immobility is a rare, potentially fatal complication of advanced Parkinson's disease (PD). Previous reports suggest that subthalamic nucleus deep brain stimulation (STN-DBS) may influence laryngeal function, yet the role of STN-DBS on VF immobility remains unexplored. Case Description: We report a case of a patient with advanced PD and bilateral VF immobility ultimately requiring a tracheostomy. To assess the effects of STN-DBS on vocal cord function and to correlate these effects with peripheral motor symptoms at different stimulation settings, the patient was evaluated before and after initiation of bilateral STN-DBS. Measures included direct observation of VF mobility via transnasal laryngoscopy, levodopa equivalent dose of anti-PD medication, and motor scores. High frequency (150 Hz) STN-DBS resulted in improved motor scores, reduced medication requirement, and modestly improved right VF abduction although insufficient for safe decannulation. Low frequency (60 Hz) stimulation resulted in lower motor scores, but without worsening VF abduction. Conclusions: STN-DBS may play an important role in the neuromodulation of PD-induced laryngeal dysfunction, including VF mobility. Characterization of these axial symptoms is important when programming and evaluating responsiveness to DBS. PMID:28303202

  16. A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation

    PubMed Central

    Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam

    2014-01-01

    A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro. PMID:24678126

  17. Deep Brain Stimulation Frequency of the Subthalamic Nucleus Affects Phonemic and Action Fluency in Parkinson's Disease

    PubMed Central

    da Cruz, Aline Nunes; Beber, Bárbara Costa

    2016-01-01

    Introduction. Deep brain stimulation of the subthalamic nucleus (STN-DBS) in Parkinson's disease (PD) has been linked to a decline in verbal fluency. The decline can be attributed to surgical effects, but the relative contributions of the stimulation parameters are not well understood. This study aimed to investigate the impact of the frequency of STN-DBS on the performance of verbal fluency tasks in patients with PD. Methods. Twenty individuals with PD who received bilateral STN-DBS were evaluated. Their performances of verbal fluency tasks (semantic, phonemic, action, and unconstrained fluencies) upon receiving low-frequency (60 Hz) and high-frequency (130 Hz) STN-DBS were assessed. Results. The performances of phonemic and action fluencies were significantly different between low- and high-frequency STN-DBS. Patients showed a decrease in these verbal fluencies for high-frequency STN-DBS. Conclusion. Low-frequency STN-DBS may be less harmful to the verbal fluency of PD patients. PMID:28050309

  18. Toward sophisiticated basal ganglia neuromodulation: review on basal gaglia deep brain stimulation

    PubMed Central

    Da Cunha, Claudio; Boschen, Suelen L.; Gómez-A, Alexander; Ross, Erika K.; Gibson, William S. J.; Min, Hoon-Ki; Lee, Kendall H.; Blaha, Charles D.

    2015-01-01

    This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson’s disease, Huntington’s disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms. PMID:25684727

  19. Deep brain stimulation of the dorsal anterior cingulate cortex for the treatment of chronic neuropathic pain.

    PubMed

    Russo, Jennifer F; Sheth, Sameer A

    2015-06-01

    Chronic neuropathic pain is estimated to affect 3%-4.5% of the worldwide population. It is associated with significant loss of productive time, withdrawal from the workforce, development of mood disorders such as depression and anxiety, and disruption of family and social life. Current medical therapeutics often fail to adequately treat chronic neuropathic pain. Deep brain stimulation (DBS) targeting subcortical structures such as the periaqueductal gray, the ventral posterior lateral and medial thalamic nuclei, and the internal capsule has been investigated for the relief of refractory neuropathic pain over the past 3 decades. Recent work has identified the dorsal anterior cingulate cortex (dACC) as a new potential neuromodulation target given its central role in cognitive and affective processing. In this review, the authors briefly discuss the history of DBS for chronic neuropathic pain in the United States and present evidence supporting dACC DBS for this indication. They review existent literature on dACC DBS and summarize important findings from imaging and neurophysiological studies supporting a central role for the dACC in the processing of chronic neuropathic pain. The available neurophysiological and empirical clinical evidence suggests that dACC DBS is a viable therapeutic option for the treatment of chronic neuropathic pain and warrants further investigation.

  20. Functional circuit mapping of striatal output nuclei using simultaneous deep brain stimulation and fMRI.

    PubMed

    Van Den Berge, Nathalie; Albaugh, Daniel L; Salzwedel, Andrew; Vanhove, Christian; Van Holen, Roel; Gao, Wei; Stuber, Garret D; Ian Shih, Yen-Yu

    2017-02-01

    The substantia nigra pars reticulata (SNr) and external globus pallidus (GPe) constitute the two major output targets of the rodent striatum. Both the SNr and GPe converge upon thalamic relay nuclei (directly or indirectly, respectively), and are traditionally modeled as functionally antagonistic relay inputs. However, recent anatomical and functional studies have identified unanticipated circuit connectivity in both the SNr and GPe, demonstrating their potential as far more than relay nuclei. In the present study, we employed simultaneous deep brain stimulation and functional magnetic resonance imaging (DBS-fMRI) with cerebral blood volume (CBV) measurements to functionally and unbiasedly map the circuit- and network level connectivity of the SNr and GPe. Sprague-Dawley rats were implanted with a custom-made MR-compatible stimulating electrode in the right SNr (n=6) or GPe (n=7). SNr- and GPe-DBS, conducted across a wide range of stimulation frequencies, revealed a number of surprising evoked responses, including unexpected CBV decreases within the striatum during DBS at either target, as well as GPe-DBS-evoked positive modulation of frontal cortex. Functional connectivity MRI revealed global modulation of neural networks during DBS at either target, sensitive to stimulation frequency and readily reversed following cessation of stimulation. This work thus contributes to a growing literature demonstrating extensive and unanticipated functional connectivity among basal ganglia nuclei.

  1. Reduction of influence of task difficulty on perceptual decision making by STN deep brain stimulation.

    PubMed

    Green, Nikos; Bogacz, Rafal; Huebl, Julius; Beyer, Ann-Kristin; Kühn, Andrea A; Heekeren, Hauke R

    2013-09-09

    Neurocomputational models of optimal decision making ascribe a crucial role-the computation of conflict between choice alternatives-to the subthalamic nucleus (STN). Specifically, these models predict that deep brain stimulation (DBS) of the STN will diminish the influence of decision conflict on decision making. In this work, patients with Parkinson's disease judged the direction of motion in random dot stimuli while ON and OFF DBS. To induce decision conflict, we varied the task difficulty (motion coherence), leading to increased reaction time (RT) in trials with greater task difficulty in healthy subjects. Results indicate that DBS significantly influences performance for perceptual decisions under high decision conflict. RT increased substantially OFF DBS as the task became more difficult, and a diffusion model best accounted for behavioral data. In contrast, ON DBS, the influence of task difficulty on RT was significantly reduced and a race model best accounted for the observed data. Individual data fits of evidence accumulation models demonstrate different information processing under distinct DBS states. Furthermore, ON DBS, speed-accuracy tradeoffs affected the magnitude of decision criterion adjustment significantly less compared to OFF DBS. Together, these findings suggest a crucial role for the STN in adjusting decision making during high-conflict trials in perceptual decision making.

  2. Deep brain stimulation and medication for parkinsonian tremor during secondary tasks.

    PubMed

    Sturman, Molly M; Vaillancourt, David E; Metman, Leo Verhagen; Sierens, Diane K; Bakay, Roy A E; Corcos, Daniel M

    2007-06-15

    This study examined the efficacy of subthalamic nucleus (STN), deep brain stimulation (DBS), and medication for resting tremor during performance of secondary tasks. Hand tremor was recorded using accelerometry and electromyography (EMG) from 10 patients with Parkinson's disease (PD) and ten matched control subjects. The PD subjects were examined off treatment, on STN DBS, on medication, and on STN DBS plus medication. In the first experiment, tremor was recorded in a quiet condition and during a cognitive task designed to enhance tremor. In the second experiment, tremor was recorded in a quiet condition and during isometric finger flexion (motor task) with the contralateral limb at 5% of the maximal voluntary contraction (MVC) that was designed to suppress tremor. Results showed that: (1) STN DBS and medication reduced tremor during a cognitive task that exacerbated tremor, (2) STN DBS normalized tremor frequency in both the quiet and cognitive task conditions, whereas tremor amplitude was only normalized in the quiet condition, (3) a secondary motor task reduced tremor in a similar manner to STN DBS. These findings demonstrate that STN DBS still suppresses tremor in the presence of a cognitive task. Furthermore, a secondary motor task of the opposite limb suppresses tremor to levels comparable to STN DBS.

  3. Axonal Pathways Linked to Therapeutic and Nontherapeutic Outcomes During Psychiatric Deep Brain Stimulation

    PubMed Central

    Lujan, J. Luis; Chaturvedi, Ashutosh; Malone, Donald A.; Rezai, Ali R.; Machado, Andre G.; McIntyre, Cameron C.

    2016-01-01

    Objective The underlying hypothesis of our work is that specific clinical neuropsychiatric benefits can be achieved by selective activation of specific axonal pathways during deep brain stimulation (DBS). As such, the goal of this study was to develop a method for identifying axonal pathways whose activation is most likely necessary for achieving therapeutic benefits during DBS. Experimental design Our approach combined clinical data, diffusion tensor tractography, and computer models of patient-specific neurostimulation to identify particular axonal pathways activated by DBS and determine their correlations with individual clinical outcome measures. We used this method to evaluate a cohort of seven treatment-resistant depression patients treated with DBS of the ventral anterior internal capsule and ventral striatum (VC/VS). Principal observations Clinical responders exhibited five axonal pathways that were consistently activated by DBS. All five pathways coursed lateral and medial to the VS or dorsal and lateral to the nucleus accumbens; however, details of their specific trajectories differed. Similarly, one common pathway was identified across nonresponders. Conclusions Our method and preliminary results provide important background for studies aiming to expand scientific characterization of neural circuitry associated with specific psychiatric outcomes from DBS. Furthermore, identification of pathways linked to therapeutic benefit provides opportunities to improve clinical selection of surgical targets and stimulation settings for DBS devices. PMID:21520343

  4. A Power-Efficient Wireless System With Adaptive Supply Control for Deep Brain Stimulation.

    PubMed

    Lee, Hyung-Min; Park, Hangue; Ghovanloo, Maysam

    2013-09-01

    A power-efficient wireless stimulating system for a head-mounted deep brain stimulator (DBS) is presented. A new adaptive rectifier generates a variable DC supply voltage from a constant AC power carrier utilizing phase control feedback, while achieving high AC-DC power conversion efficiency (PCE) through active synchronous switching. A current-controlled stimulator adopts closed-loop supply control to automatically adjust the stimulation compliance voltage by detecting stimulation site potentials through a voltage readout channel, and improve the stimulation efficiency. The stimulator also utilizes closed-loop active charge balancing to maintain the residual charge at each site within a safe limit, while receiving the stimulation parameters wirelessly from the amplitude-shift-keyed power carrier. A 4-ch wireless stimulating system prototype was fabricated in a 0.5-μm 3M2P standard CMOS process, occupying 2.25 mm². With 5 V peak AC input at 2 MHz, the adaptive rectifier provides an adjustable DC output between 2.5 V and 4.6 V at 2.8 mA loading, resulting in measured PCE of 72 ~ 87%. The adaptive supply control increases the stimulation efficiency up to 30% higher than a fixed supply voltage to 58 ~ 68%. The prototype wireless stimulating system was verified in vitro.

  5. Thinking Ahead on Deep Brain Stimulation: An Analysis of the Ethical Implications of a Developing Technology

    PubMed Central

    Johansson, Veronica; Garwicz, Martin; Kanje, Martin; Halldenius, Lena; Schouenborg, Jens

    2014-01-01

    Deep brain stimulation (DBS) is a developing technology. New generations of DBS technology are already in the pipeline, yet this particular fact has been largely ignored among ethicists interested in DBS. Focusing only on ethical concerns raised by the current DBS technology is, albeit necessary, not sufficient. Since current bioethical concerns raised by a specific technology could be quite different from the concerns it will raise a couple of years ahead, an ethical analysis should be sensitive to such alterations, or it could end up with results that soon become dated. The goal of this analysis is to address these changing bioethical concerns, to think ahead on upcoming and future DBS concerns both in terms of a changing technology and changing moral attitudes. By employing the distinction between inherent and noninherent bioethical concerns we identify and make explicit the particular limits and potentials for change within each category, respectively, including how present and upcoming bioethical concerns regarding DBS emerge and become obsolete. Many of the currently identified ethical problems with DBS, such as stimulation-induced mania, are a result of suboptimal technology. These challenges could be addressed by technical advances, while for instance perceptions of an altered body image caused by the mere awareness of having an implant may not. Other concerns will not emerge until the technology has become sophisticated enough for new uses to be realized, such as concerns on DBS for enhancement purposes. As a part of the present analysis, concerns regarding authenticity are used as an example. PMID:24587963

  6. Timing of deep brain stimulation in Parkinson disease: a need for reappraisal?

    PubMed

    deSouza, Ruth-Mary; Moro, Elena; Lang, Anthony E; Schapira, Anthony H V

    2013-05-01

    We review the current application of deep brain stimulation (DBS) in Parkinson disease (PD) and consider the evidence that earlier use of DBS confers long-term symptomatic benefit for patients compared to best medical therapy. Electronic searches were performed of PubMed, Web of Knowledge, Embase, Cochrane Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials to identify all article types relating to the timing of DBS in PD. Current evidence suggests that DBS is typically performed in late stage PD, a mean of 14 to 15 years after diagnosis. Current guidelines recommend that PD patients who are resistant to medical therapies, have significant medication side effects and lengthening off periods, but are otherwise cognitively intact and medically fit for surgery be considered for DBS. If these criteria are rigidly interpreted, it may be that, by the time medical treatment options have been exhausted, the disease has progressed to the point that the patient may no longer be fit for neurosurgical intervention. From the evidence available, we conclude that surgical management of PD alone or in combination with medical therapy results in greater improvement of motor symptoms and quality of life than medical treatment alone. There is evidence to support the use of DBS in less advanced PD and that it may be appropriate for earlier stages of the disease than for which it is currently used. The improving short and long-term safety profile of DBS makes early application a realistic possibility.

  7. Stochastic Modeling of Mouse Motor Activity under Deep Brain Stimulation: The Extraction of Arousal Information

    PubMed Central

    Keenan, Daniel M.; Quinkert, Amy W.; Pfaff, Donald W.

    2015-01-01

    In the present paper, we quantify, with a rigorous approach, the nature of motor activity in response to Deep Brain Stimulation (DBS), in the mouse. DBS is currently being used in the treatment of a broad range of diseases, but its underlying principles are still unclear. Because mouse movement involves rapidly repeated starting and stopping, one must statistically verify that the movement at a given stimulation time was not just coincidental, endogenously-driven movement. Moreover, the amount of activity changes significantly over the circadian rhythm, and hence the means, variances and autocorrelations are all time varying. A new methodology is presented. For example, to discern what is and what is not impacted by stimulation, velocity is classified (in a time-evolving manner) as being zero-, one- and two-dimensional movement. The most important conclusions of the paper are: (1) (DBS) stimulation is proven to be truly effective; (2) it is two-dimensional (2-D) movement that strongly differs between light and dark and responds to stimulation; and, (3) stimulation in the light initiates a manner of movement, 2-D movement, that is more commonly seen in the (non-stimulated) dark. Based upon these conclusions, it is conjectured that the above patterns of 2-D movement could be a straightforward, easy to calculate correlate of arousal. The above conclusions will aid in the systematic evaluation and understanding of how DBS in CNS arousal pathways leads to the activation of behavior. PMID:25720000

  8. Deep brain stimulation and sleep-wake functions in Parkinson's disease: A systematic review.

    PubMed

    Eugster, Lukas; Bargiotas, Panagiotis; Bassetti, Claudio L; Michael Schuepbach, W M

    2016-11-01

    Sleep-wake disturbances (SWD) are common nonmotor symptoms (NMS) and have a great impact on quality of life of patients with Parkinson's disease (PD). Deep brain stimulation (DBS) is an established treatment in PD. While the beneficial effects of DBS on cardinal PD motor symptoms are indisputable, the data for several NMS, including sleep-wake functions, are limited and often controversial. Our primary objective was to review the literature on the impact of DBS on sleep-wake functions in patients with PD. A systematic review of articles, published in PubMed between January 1st, 2000 and December 31st, 2015 was performed to identify studies addressing the evolution of sleep-wake functions after DBS in patients with PD. Only 38 of 208 studies, involving a total of 1443 subjects, met the inclusion criteria. Most of them reported a positive effect of subthalamic DBS on sleep quality and consequently on quality of life. Seven studies used polysomnography to objectively assess sleep parameters. The data concerning subthalamic DBS and wake functions are controversial and studies using objective, laboratory-based measures for the assessment of wake functions are lacking. Very few studies assessed the impact of other DBS targets (e.g. pallidal stimulation) on SWD. Further prospective observational DBS studies assessing subjectively and objectively specific sleep-wake parameters in patients with PD are needed.

  9. Towards a Switched-Capacitor Based Stimulator for Efficient Deep-Brain Stimulation

    PubMed Central

    Vidal, Jose; Ghovanloo, Maysam

    2013-01-01

    We have developed a novel 4-channel prototype stimulation circuit for implantable neurological stimulators (INS). This Switched-Capacitor based Stimulator (SCS) aims to utilize charge storage and charge injection techniques to take advantage of both the efficiency of conventional voltage-controlled stimulators (VCS) and the safety and controllability of current-controlled stimulators (CCS). The discrete SCS prototype offers fine control over stimulation parameters such as voltage, current, pulse width, frequency, and active electrode channel via a LabVIEW graphical user interface (GUI) when connected to a PC through USB. Furthermore, the prototype utilizes a floating current sensor to provide charge-balanced biphasic stimulation and ensure safety. The stimulator was analyzed using an electrode-electrolyte interface (EEI) model as well as with a pair of pacing electrodes in saline. The primary motivation of this research is to test the feasibility and functionality of a safe, effective, and power-efficient switched-capacitor based stimulator for use in Deep Brain Stimulation. PMID:21095987

  10. Deep Brain Stimulation Frequency of the Subthalamic Nucleus Affects Phonemic and Action Fluency in Parkinson's Disease.

    PubMed

    Fagundes, Valéria de Carvalho; Rieder, Carlos R M; da Cruz, Aline Nunes; Beber, Bárbara Costa; Portuguez, Mirna Wetters

    2016-01-01

    Introduction. Deep brain stimulation of the subthalamic nucleus (STN-DBS) in Parkinson's disease (PD) has been linked to a decline in verbal fluency. The decline can be attributed to surgical effects, but the relative contributions of the stimulation parameters are not well understood. This study aimed to investigate the impact of the frequency of STN-DBS on the performance of verbal fluency tasks in patients with PD. Methods. Twenty individuals with PD who received bilateral STN-DBS were evaluated. Their performances of verbal fluency tasks (semantic, phonemic, action, and unconstrained fluencies) upon receiving low-frequency (60 Hz) and high-frequency (130 Hz) STN-DBS were assessed. Results. The performances of phonemic and action fluencies were significantly different between low- and high-frequency STN-DBS. Patients showed a decrease in these verbal fluencies for high-frequency STN-DBS. Conclusion. Low-frequency STN-DBS may be less harmful to the verbal fluency of PD patients.

  11. Relationship between neural activation and electric field distribution during deep brain stimulation.

    PubMed

    Åström, Mattias; Diczfalusy, Elin; Martens, Hubert; Wårdell, Karin

    2015-02-01

    Models and simulations are commonly used to study deep brain stimulation (DBS). Simulated stimulation fields are often defined and visualized by electric field isolevels or volumes of tissue activated (VTA). The aim of the present study was to evaluate the relationship between stimulation field strength as defined by the electric potential V, the electric field E, and the divergence of the electric field ∇(2) V, and neural activation. Axon cable models were developed and coupled to finite-element DBS models in three-dimensional (3-D). Field thresholds ( VT , ET, and ∇(2) VT ) were derived at the location of activation for various stimulation amplitudes (1 to 5 V), pulse widths (30 to 120 μs), and axon diameters (2.0 to 7.5 μm). Results showed that thresholds for VT and ∇(2) VT were highly dependent on the stimulation amplitude while ET were approximately independent of the amplitude for large axons. The activation field strength thresholds presented in this study may be used in future studies to approximate the VTA during model-based investigations of DBS without the need of computational axon models.

  12. Patient-Specific Model-Based Investigation of Speech Intelligibility and Movement during Deep Brain Stimulation

    PubMed Central

    Åström, Mattias; Tripoliti, Elina; Hariz, Marwan I.; Zrinzo, Ludvic U.; Martinez-Torres, Irene; Limousin, Patricia; Wårdell, Karin

    2010-01-01

    Background/Aims Deep brain stimulation (DBS) is widely used to treat motor symptoms in patients with advanced Parkinson's disease. The aim of this study was to investigate the anatomical aspects of the electric field in relation to effects on speech and movement during DBS in the subthalamic nucleus. Methods Patient-specific finite element models of DBS were developed for simulation of the electric field in 10 patients. In each patient, speech intelligibility and movement were assessed during 2 electrical settings, i.e. 4 V (high) and 2 V (low). The electric field was simulated for each electrical setting. Results Movement was improved in all patients for both high and low electrical settings. In general, high-amplitude stimulation was more consistent in improving the motor scores than low-amplitude stimulation. In 6 cases, speech intelligibility was impaired during high-amplitude electrical settings. Stimulation of part of the fasciculus cerebellothalamicus from electrodes positioned medial and/or posterior to the center of the subthalamic nucleus was recognized as a possible cause of the stimulation-induced dysarthria. Conclusion Special attention to stimulation-induced speech impairments should be taken in cases when active electrodes are positioned medial and/or posterior to the center of the subthalamic nucleus. PMID:20460952

  13. Image-guided preoperative prediction of pyramidal tract side effect in deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Baumgarten, C.; Zhao, Y.; Sauleau, P.; Malrain, C.; Jannin, P.; Haegelen, C.

    2016-03-01

    Deep brain stimulation of the medial globus pallidus is a surgical procedure for treating patients suffering from Parkinson's disease. Its therapeutic effect may be limited by the presence of pyramidal tract side effect (PTSE). PTSE is a contraction time-locked to the stimulation when the current spreading reaches the motor fibers of the pyramidal tract within the internal capsule. The lack of side-effect predictive model leads the neurologist to secure an optimal electrode placement by iterating clinical testing on an awake patient during the surgical procedure. The objective of the study was to propose a preoperative predictive model of PTSE. A machine learning based method called PyMAN (for Pyramidal tract side effect Model based on Artificial Neural network) that accounted for the current of the stimulation, the 3D electrode coordinates and the angle of the trajectory, was designed to predict the occurrence of PTSE. Ten patients implanted in the medial globus pallidus have been tested by a clinician to create a labeled dataset of the stimulation parameters that trigger PTSE. The kappa index value between the data predicted by PyMAN and the labeled data was .78. Further evaluation studies are desirable to confirm whether PyMAN could be a reliable tool for assisting the surgeon to prevent PTSE during the preoperative planning.

  14. Body weight gain rate in patients with Parkinson's disease and deep brain stimulation.

    PubMed

    Barichella, Michela; Marczewska, Agnieszka M; Mariani, Claudio; Landi, Andrea; Vairo, Antonella; Pezzoli, Gianni

    2003-11-01

    We evaluated body weight changes in patients with Parkinson's disease (PD) after electrode implantation for deep brain stimulation (DBS) in the subthalamic nucleus (STN) in relation to clinical improvement. Thirty PD patients who received STN DBS were included (22 men, 8 women; mean age, 60.0 +/- 7.1 years; mean PD duration, 13.5 +/- 3.7 years; mean body mass index [BMI], 21.6 +/- 3.0 kg/m2). Body weight, physical activity, and Unified Parkinson's Disease Rating Scale (UPDRS) scores were noted before and 3 and 12 months after the procedure. Significant weight gain occurred in 29 patients; the mean increase was 14.8 +/- 9.8% of initial body weight in 1 year. Of the patients, 46.5% reported weight gain in the first 3 months, 21.4% gradual weight gain in the first 6 months, and 32.1% a slow increase for 1 year. Mean BMI increased up to 24.7 +/- 3.7 kg/m2. After 1 year, mean UPDRS motor score improved significantly in off and in on; and therapy complications improved by 91.0 +/- 17.0%. BMI changes at 3 and 12 months were significantly correlated to dyskinesia score changes, and levodopa dosage was not. In PD, STN DBS produces not only symptom control, but also weight gain. DBS candidates should be given nutritional counseling before the intervention to prevent rapid and/or excessive weight gain.

  15. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality?

    PubMed

    Wichmann, Thomas; DeLong, Mahlon R

    2016-04-01

    Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks.

  16. Impact of deep brain stimulation on upper limb akinesia in Parkinson's disease.

    PubMed

    Brown, R G; Dowsey, P L; Brown, P; Jahanshahi, M; Pollak, P; Benabid, A L; Rodriguez-Oroz, M C; Obeso, J; Rothwell, J C

    1999-04-01

    Recent pathophysiological models of Parkinson's disease have led to new surgical approaches to treatment including deep brain stimulation (DBS) and lesioning of basal ganglia structures. Various measures of upper limb akinesia were assessed in 6 patients with bilateral DBS of the internal pallidum and 6 with DBS of the subthalamic nucleus. Stimulation improved a number of aspects of motor function, and particularly movement time, and force production. Time to initiate movements, and to perform repetitive movements also improved but less dramatically. Processes indicating preparatory motor processes showed no significant change. Few significant differences were found between the internal pallidum and subthalamic nucleus groups. In general, the effects of DBS closely parallel previous reports of the effects of dopaminergic medication. It is suggested that disrupted pallidal output in Parkinson's disease interferes with the rate, level, and coordination of force production but has little effect on preparatory processes. The similarity of the effects of subthalamic nucleus and internal pallidum stimulation suggests this disrupted outflow is the most important determinant of upper limb akinesia in Parkinson's disease. The effects of DBS were similar to the effects of unilateral pallidal lesions reported elsewhere.

  17. Deep brain stimulation of different pedunculopontine targets in a novel rodent model of parkinsonism.

    PubMed

    Gut, Nadine K; Winn, Philip

    2015-03-25

    The pedunculopontine tegmental nucleus (PPTg) has been proposed as a target for deep brain stimulation (DBS) in parkinsonian patients, particularly for symptoms such as gait and postural difficulties refractory to dopaminergic treatments. Several patients have had electrodes implanted aimed at the PPTg, but outcomes have been disappointing, with little evidence that gait and posture are improved. The PPTg is a heterogeneous structure. Consequently, exact target sites in PPTg, possible DBS mechanisms, and potential benefits still need systematic investigation in good animal models. We have investigated the role of PPTg in gait, developed a refined model of parkinsonism including partial loss of the PPTg with bilateral destruction of nigrostriatal dopamine neurons that mimics human pathophysiology, and investigated the effect of DBS at different PPTg locations on gait and posture using a wireless device that lets rats move freely while receiving stimulation. Neither partial nor complete lesions of PPTg caused gait deficits, underlining questions raised previously about the status of PPTg as a motor control structure. The effect of DBS in the refined and standard model of parkinsonism were very different despite minimal behavioral differences in nonstimulation control conditions. Anterior PPTg DBS caused severe episodes of freezing and worsened gait, whereas specific gait parameters were mildly improved by stimulation of posterior PPTg. These results emphasize the critical importance of intra-PPTg DBS location and highlight the need to take PPTg degeneration into consideration when modeling parkinsonian symptoms. They also further implicate a role for PPTg in the pathophysiology of parkinsonism.

  18. Deep brain stimulation amplitude alters posture shift velocity in Parkinson's disease.

    PubMed

    Krishnamurthi, Narayanan; Mulligan, Stefani; Mahant, Padma; Samanta, Johan; Abbas, James J

    2012-08-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is now widely used to alleviate symptoms of Parkinson's disease (PD). The specific aim of this study was to identify posture control measures that may be used to improve selection of DBS parameters in the clinic and this was carried out by changing the DBS stimulation amplitude. A dynamic posture shift paradigm was used to assess posture control in 4 PD STN-DBS subjects. Each subject was tested at 4 stimulation amplitude settings. Movements of the center of pressure and the position of the pelvis were monitored and several quantitative indices were calculated. The presence of any statistically significant changes in several normalized indices due to reduced/no stimulation was tested using the one-sample t test. The peak velocity and the average movement velocity during the initial and mid phases of movement towards the target posture were substantially reduced. These results may be explained in terms of increased akinesia and bradykinesia due to altered stimulation conditions. Thus, the dynamic posture shift paradigm may be an effective tool to quantitatively characterize the effects of DBS on posture control and should be further investigated as a tool for selection of DBS parameters in the clinic.

  19. Systematic Optimization of Long Gradient Chromatography Mass Spectrometry for Deep Analysis of Brain Proteome

    SciTech Connect

    Wang, Hong; Yang, Yanling; Li, Yuxin; Bai, Bing; Wang, Xusheng; Tan, Haiyan; Liu, Tao; Beach, Thomas G.; Peng, Junmun; Wu, Zhiping

    2015-02-06

    Development of high resolution liquid chromatography (LC) is essential for improving the sensitivity and throughput of mass spectrometry (MS)-based proteomics. Here we present systematic optimization of a long gradient LC-MS/MS platform to enhance protein identification from a complex mixture. The platform employed an in-house fabricated, reverse phase column (100 μm x 150 cm) coupled with Q Exactive MS. The column was capable of achieving a peak capacity of approximately 700 in a 720 min gradient of 10-45% acetonitrile. The optimal loading level was about 6 micrograms of peptides, although the column allowed loading as many as 20 micrograms. Gas phase fractionation of peptide ions further increased the number of peptide identification by ~10%. Moreover, the combination of basic pH LC pre-fractionation with the long gradient LC-MS/MS platform enabled the identification of 96,127 peptides and 10,544 proteins at 1% protein false discovery rate in a postmortem brain sample of Alzheimer’s disease. As deep RNA sequencing of the same specimen suggested that ~16,000 genes were expressed, current analysis covered more than 60% of the expressed proteome. Further improvement strategies of the LC/LC-MS/MS platform were also discussed.

  20. Impact of Deep Brain Stimulation on Daily Routine Driving Practice in Patients with Parkinson's Disease

    PubMed Central

    Buhmann, Carsten; Vettorazzi, Eik; Oehlwein, Christian; Rikkers, Fred; Poetter-Nerger, Monika; Gulberti, Alessandro; Gerloff, Christian; Moll, Christian K.; Hamel, Wolfgang

    2015-01-01

    Objective. To determine the influence of deep brain stimulation (DBS) on daily routine driving behavior in Parkinson's disease (PD) patients. Methods. A cross-sectional questionnaire survey was done in 121 DBS-PD patients. The influences of patient characteristics and DBS on current driving and driving at time of surgery and the predictive value of the preoperative levodopa-test on postoperative driving were evaluated. Results. 50% of 110 driving-license holders currently drove. 63.0% rated themselves as safe drivers, 39.4% reported improvement, and 10.9% noted deterioration in driving after DBS surgery. Inactive drivers had quit driving mainly due to disease burden (90.9%). Active drivers were younger, more often males, and less impaired according to H&Y and MMSE, had surgery more recently, and reported more often overall benefit from DBS. H&Y “on” and UPDRS III “off” scores at time of surgery were lower in pre- and postoperative active than in inactive drivers. Tremor and akinesia were less frequent reasons to quit driving after than before DBS surgery. Postoperatively, 22.7% (10/44) of patients restarted and 10.6% (7/66) of patients discontinued driving, independently of H&Y stage. The preoperative levodopa-test was not predictive for the postoperative driving outcome. Conclusion. 50% of PD patients with DBS drive. DBS surgery changes daily routine driving behavior. PMID:26640738

  1. Enhancement of Fear Extinction with Deep Brain Stimulation: Evidence for Medial Orbitofrontal Involvement

    PubMed Central

    Rodriguez-Romaguera, Jose; Do-Monte, Fabricio H; Tanimura, Yoko; Quirk, Gregory J; Haber, Suzanne N

    2015-01-01

    Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) reduces anxiety, fear, and compulsive symptoms in patients suffering from refractory obsessive-compulsive disorder. In a rodent model, DBS-like high-frequency stimulation of VS can either enhance or impair extinction of conditioned fear, depending on the location of electrodes within VS (dorsal vs ventral). As striatal DBS activates fibers descending from the cortex, we reasoned that the differing effects on extinction may reflect differences in cortical sources of fibers passing through dorsal–VS and ventral–VS. In agreement with prior anatomical studies, we found that infralimbic (IL) and anterior insular (AI) cortices project densely through ventral–VS, the site where DBS impaired extinction. Contrary to IL and AI, we found that medial orbitofrontal cortex (mOFC) projects densely through dorsal–VS, the site where DBS enhanced extinction. Furthermore, pharmacological inactivation of mOFC reduced conditioned fear and DBS of dorsal-VS-induced plasticity (pERK) in mOFC neurons. Our results support the idea that VS DBS modulates fear extinction by stimulating specific fibers descending from mOFC and prefrontal cortices. PMID:25601229

  2. Modeling and Automatic Feedback Control of Tremor: Adaptive Estimation of Deep Brain Stimulation

    PubMed Central

    Rehan, Muhammad; Hong, Keum-Shik

    2013-01-01

    This paper discusses modeling and automatic feedback control of (postural and rest) tremor for adaptive-control-methodology-based estimation of deep brain stimulation (DBS) parameters. The simplest linear oscillator-based tremor model, between stimulation amplitude and tremor, is investigated by utilizing input-output knowledge. Further, a nonlinear generalization of the oscillator-based tremor model, useful for derivation of a control strategy involving incorporation of parametric-bound knowledge, is provided. Using the Lyapunov method, a robust adaptive output feedback control law, based on measurement of the tremor signal from the fingers of a patient, is formulated to estimate the stimulation amplitude required to control the tremor. By means of the proposed control strategy, an algorithm is developed for estimation of DBS parameters such as amplitude, frequency and pulse width, which provides a framework for development of an automatic clinical device for control of motor symptoms. The DBS parameter estimation results for the proposed control scheme are verified through numerical simulations. PMID:23638163

  3. An adaptive model approach for quantitative wrist rigidity evaluation during deep brain stimulation surgery.

    PubMed

    Assis, Sofia; Costa, Pedro; Rosas, Maria Jose; Vaz, Rui; Silva Cunha, Joao Paulo

    2016-08-01

    Intraoperative evaluation of the efficacy of Deep Brain Stimulation includes evaluation of the effect on rigidity. A subjective semi-quantitative scale is used, dependent on the examiner perception and experience. A system was proposed previously, aiming to tackle this subjectivity, using quantitative data and providing real-time feedback of the computed rigidity reduction, hence supporting the physician decision. This system comprised of a gyroscope-based motion sensor in a textile band, placed in the patients hand, which communicated its measurements to a laptop. The latter computed a signal descriptor from the angular velocity of the hand during wrist flexion in DBS surgery. The first approach relied on using a general rigidity reduction model, regardless of the initial severity of the symptom. Thus, to enhance the performance of the previously presented system, we aimed to develop models for high and low baseline rigidity, according to the examiner assessment before any stimulation. This would allow a more patient-oriented approach. Additionally, usability was improved by having in situ processing in a smartphone, instead of a computer. Such system has shown to be reliable, presenting an accuracy of 82.0% and a mean error of 3.4%. Relatively to previous results, the performance was similar, further supporting the importance of considering the cogwheel rigidity to better infer about the reduction in rigidity. Overall, we present a simple, wearable, mobile system, suitable for intra-operatory conditions during DBS, supporting a physician in decision-making when setting stimulation parameters.

  4. Deep brain stimulation for obesity: rationale and approach to trial design.

    PubMed

    Ho, Allen L; Sussman, Eric S; Pendharkar, Arjun V; Azagury, Dan E; Bohon, Cara; Halpern, Casey H

    2015-06-01

    Obesity is one of the most serious public health concerns in the US. While bariatric surgery has been shown to be successful for treatment of morbid obesity for those who have undergone unsuccessful behavioral modification, its associated risks and rates of relapse are not insignificant. There exists a neurological basis for the binge-like feeding behavior observed in morbid obesity that is believed to be due to dysregulation of the reward circuitry. The authors present a review of the evidence of the neuroanatomical basis for obesity, the potential neural targets for deep brain stimulation (DBS), as well as a rationale for DBS and future trial design. Identification of an appropriate patient population that would most likely benefit from this type of therapy is essential. There are also significant cost and ethical considerations for such a neuromodulatory intervention designed to alter maladaptive behavior. Finally, the authors present a consolidated set of inclusion criteria and study end points that should serve as the basis for any trial of DBS for obesity.

  5. Genotype and phenotype in Parkinson's disease: lessons in heterogeneity from deep brain stimulation.

    PubMed

    Angeli, Aikaterina; Mencacci, Niccolo E; Duran, Raquel; Aviles-Olmos, Iciar; Kefalopoulou, Zinovia; Candelario, Joseph; Rusbridge, Sarah; Foley, Jennifer; Pradhan, Priyanka; Jahanshahi, Marjan; Zrinzo, Ludvic; Hariz, Marwan; Wood, Nicholas W; Hardy, John; Limousin, Patricia; Foltynie, Tom

    2013-09-01

    Variation in the genetic risk(s) of developing Parkinson's disease (PD) undoubtedly contributes to the subsequent phenotypic heterogeneity. Although patients with PD who undergo deep brain stimulation (DBS) are a skewed population, they represent a valuable resource for exploring the relationships between heterogeneous phenotypes and PD genetics. In this series, 94 patients who underwent DBS were screened for mutations in the most common genes associated with PD. The consequent genetic subgroups of patients were compared with respect to phenotype, levodopa (l-dopa), and DBS responsiveness. An unprecedented number (29%) of patients tested positive for at least 1 of the currently known PD genes. Patients with Parkin mutations presented at the youngest age but had many years of disease before needing DBS, whereas glucocerebrosidase (GBA) mutation carriers reached the threshold of needing DBS earlier, and developed earlier cognitive impairment after DBS. DBS cohorts include large numbers of gene positive PD patients and can be clinically instructive in the exploration of genotype-phenotype relationships.

  6. Artificial neural network based characterization of the volume of tissue activated during deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Ashutosh; Luján, J. Luis; McIntyre, Cameron C.

    2013-10-01

    Objective. Clinical deep brain stimulation (DBS) systems can be programmed with thousands of different stimulation parameter combinations (e.g. electrode contact(s), voltage, pulse width, frequency). Our goal was to develop novel computational tools to characterize the effects of stimulation parameter adjustment for DBS. Approach. The volume of tissue activated (VTA) represents a metric used to estimate the spatial extent of DBS for a given parameter setting. Traditional methods for calculating the VTA rely on activation function (AF)-based approaches and tend to overestimate the neural response when stimulation is applied through multiple electrode contacts. Therefore, we created a new method for VTA calculation that relied on artificial neural networks (ANNs). Main results. The ANN-based predictor provides more accurate descriptions of the spatial spread of activation compared to AF-based approaches for monopolar stimulation. In addition, the ANN was able to accurately estimate the VTA in response to multi-contact electrode configurations. Significance. The ANN-based approach may represent a useful method for fast computation of the VTA in situations with limited computational resources, such as a clinical DBS programming application on a tablet computer.

  7. Two-Photon Enzymatic Probes Visualizing Sub-cellular/Deep-brain Caspase Activities in Neurodegenerative Models

    PubMed Central

    Qian, Linghui; Zhang, Cheng-Wu; Mao, Yanli; Li, Lin; Gao, Nengyue; Lim, Kah-Leong; Xu, Qing-Hua; Yao, Shao Q.

    2016-01-01

    Caspases work as a double-edged sword in maintaining cell homeostasis. Highly regulated caspase activities are essential during animal development, but dysregulation might lead to different diseases, e.g. extreme caspase activation is known to promote neurodegeneration. At present, visualization of caspase activation has mostly remained at the cellular level, in part due to a lack of cell-permeable imaging probes capable of direct, real-time investigations of endogenous caspase activities in deep tissues. Herein, we report a suite of two-photon, small molecule/peptide probes which enable sensitive and dynamic imaging of individual caspase activities in neurodegenerative models under physiological conditions. With no apparent toxicity and the ability of imaging endogenous caspases both in different subcellular organelles of mammalian cells and in brain tissues, these probes serve as complementary tools to conventional histological analysis. They should facilitate future explorations of caspases at molecular, cellular and organism levels and inspire development of novel two-photon probes against other enzymes. PMID:27210613

  8. Neural targets for relieving parkinsonian rigidity and bradykinesia with pallidal deep brain stimulation.

    PubMed

    Johnson, Matthew D; Zhang, Jianyu; Ghosh, Debabrata; McIntyre, Cameron C; Vitek, Jerrold L

    2012-07-01

    Clinical evidence has suggested that subtle changes in deep brain stimulation (DBS) settings can have differential effects on bradykinesia and rigidity in patients with Parkinson's disease. In this study, we first investigated the degree of improvement in bradykinesia and rigidity during targeted globus pallidus DBS in three 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated rhesus macaques. Behavioral outcomes of DBS were then coupled with detailed, subject-specific computational models of neurons in the globus pallidus internus (GPi), globus pallidus externus (GPe), and internal capsule (IC) to determine which neuronal pathways when modulated with high-frequency electrical stimulation best correlate with improvement in motor symptoms. The modeling results support the hypothesis that multiple neuronal pathways can underlie the therapeutic effect of DBS on parkinsonian bradykinesia and rigidity. Across all three subjects, improvements in rigidity correlated most strongly with spread of neuronal activation into IC, driving a small percentage of fibers within this tract (<10% on average). The most robust effect on bradykinesia resulted from stimulating a combination of sensorimotor axonal projections within the GP, specifically at the site of the medial medullary lamina. Thus the beneficial effects of pallidal DBS for parkinsonian symptoms may occur from multiple targets within and near the target nucleus.

  9. Neural targets for relieving parkinsonian rigidity and bradykinesia with pallidal deep brain stimulation

    PubMed Central

    Zhang, Jianyu; Ghosh, Debabrata; McIntyre, Cameron C.; Vitek, Jerrold L.

    2012-01-01

    Clinical evidence has suggested that subtle changes in deep brain stimulation (DBS) settings can have differential effects on bradykinesia and rigidity in patients with Parkinson's disease. In this study, we first investigated the degree of improvement in bradykinesia and rigidity during targeted globus pallidus DBS in three 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated rhesus macaques. Behavioral outcomes of DBS were then coupled with detailed, subject-specific computational models of neurons in the globus pallidus internus (GPi), globus pallidus externus (GPe), and internal capsule (IC) to determine which neuronal pathways when modulated with high-frequency electrical stimulation best correlate with improvement in motor symptoms. The modeling results support the hypothesis that multiple neuronal pathways can underlie the therapeutic effect of DBS on parkinsonian bradykinesia and rigidity. Across all three subjects, improvements in rigidity correlated most strongly with spread of neuronal activation into IC, driving a small percentage of fibers within this tract (<10% on average). The most robust effect on bradykinesia resulted from stimulating a combination of sensorimotor axonal projections within the GP, specifically at the site of the medial medullary lamina. Thus the beneficial effects of pallidal DBS for parkinsonian symptoms may occur from multiple targets within and near the target nucleus. PMID:22514292

  10. Transcranial Magnetic Stimulation and Deep Brain Stimulation in the treatment of alcohol dependence

    PubMed Central

    Alba-Ferrara, L.; Fernandez, F.; Salas, R.; de Erausquin, G. A.

    2013-01-01

    Alcohol dependence is a major social, economic, and public health problem. Alcoholism can lead to damage of the gastrointestinal, nervous, cardiovascular, and respiratory systems and it can be lethal, costing hundreds of billions to the health care system. Despite the existence of cognitive-behavioral therapy, psychosocial interventions, and spiritually integrated treatment to treat it, alcohol dependence has a high relapse rate and poor prognosis, albeit with high interindividual variability. In this review, we discuss the use of two neuromodulation techniques, namely repetitive transcranial magnetic stimulation (rTMS) and deep brain stimulation (DBS), and their advantages and disadvantages compared to first-line pharmacological treatment for alcohol dependence. We also discuss rTMS and DBS targets for alcohol dependence treatment, considering experimental animal and human evidence, with careful consideration of methodological issues preventing the identification of feasible targets for neuromodulation treatments, as well as inter-individual variability factors influencing alcoholism prognosis. Lastly, we anticipate future research aiming to tailor the treatment to each individual patient by combining neurofunctional, neuroanatomical and neurodisruptive techniques optimizing the outcome. PMID:25598743

  11. Deep Brain Stimulation and Cognitive Decline in Parkinson’s Disease: A Clinical Review

    PubMed Central

    Massano, João; Garrett, Carolina

    2012-01-01

    Parkinson’s disease is a common and often debilitating disorder, with a growing prevalence accompanying global population aging. Current drug therapy is not satisfactory enough for many patients, especially after a few years of symptom progression. This is mainly due to the motor complications that frequently emerge as disease progresses. Deep brain stimulation (DBS) is a useful therapeutic option in carefully selected patients that significantly improves motor symptoms, functional status, and quality of life. However, cognitive impairment may limit patient selection for DBS, as patients need to have sufficient mental capabilities in order to understand the procedure, as well as its benefits and limitations, and cooperate with the medical team throughout the process of selection, surgery, and postsurgical follow-up. On the other hand it has been observed that certain aspects of cognitive performance may decline after DBS, namely when the therapeutic target is the widely used subthalamic nucleus. These are important pieces of information for patients, their families, and health care professionals. This manuscript reviews these aspects and their clinical implications. PMID:22557991

  12. Subthalamic nucleus deep brain stimulation affects distractor interference in auditory working memory.

    PubMed

    Camalier, Corrie R; Wang, Alice Y; McIntosh, Lindsey G; Park, Sohee; Neimat, Joseph S

    2017-03-01

    Computational and theoretical accounts hypothesize the basal ganglia play a supramodal "gating" role in the maintenance of working memory representations, especially in preservation from distractor interference. There are currently two major limitations to this account. The first is that supporting experiments have focused exclusively on the visuospatial domain, leaving questions as to whether such "gating" is domain-specific. The second is that current evidence relies on correlational measures, as it is extremely difficult to causally and reversibly manipulate subcortical structures in humans. To address these shortcomings, we examined non-spatial, auditory working memory performance during reversible modulation of the basal ganglia, an approach afforded by deep brain stimulation of the subthalamic nucleus. We found that subthalamic nucleus stimulation impaired auditory working memory performance, specifically in the group tested in the presence of distractors, even though the distractors were predictable and completely irrelevant to the encoding of the task stimuli. This study provides key causal evidence that the basal ganglia act as a supramodal filter in working memory processes, further adding to our growing understanding of their role in cognition.

  13. System Identification of Local Field Potentials under Deep Brain Stimulation in a Healthy Primate

    PubMed Central

    Pedoto, Gilda; Santaniello, Sabato; Montgomery, Erwin B.; Gale, John T.; Fiengo, Giovanni; Glielmo, Luigi; Sarma, Sridevi V.

    2013-01-01

    High frequency (HF) Deep Brain Stimulation (DBS) in the Sub-Thalamic Nucleus (STN) is a clinically recognized therapy for the treatment of motor disorders in Parkinson Disease (PD). The underlying mechanisms of DBS and how it impacts neighboring nuclei, however, are not yet completely understood. Electrophysiological data has been collected in PD patients and primates to better understand the impact of DBS on STN and the entire Basal Ganglia (BG) motor circuit. We use single unit recordings from Globus Pallidus, both pars interna and externa segments (GPi and GPe) in the BG, in a normal primate before and after DBS to reconstruct Local Field Potentials (LFPs) in the region. We then use system identification techniques to understand how GPe LFP activity and the DBS signal applied to STN influence GPi LFP activity. Our models suggest that when no stimulation is applied, the GPe LFPs have an inhibitory effect on GPi LFPs with a 2-3 ms delay, as is the case for single unit neuronal activity. On the other hand, when DBS is ON the models suggest that stimulation has a dominant effect on GPi LFPs which mask the inhibitory effects of GPe. PMID:21096635

  14. Deep Brain Stimulation Significantly Decreases Disability from Low Back Pain in Patients with Advanced Parkinson's Disease

    PubMed Central

    Smith, Heather; Gee, Lucy; Kumar, Vignessh; Ramirez-Zamora, Adolfo; Durphy, Jennifer; Hanspal, Era; Barba, Anne; Molho, Eric; Shin, Damian; Pilitsis, Julie G.

    2015-01-01

    Background Up to 60% of Parkinson's patients suffer from low back pain (LBP) during the course of their disease. How LBP affects daily functional status and how to manage this aspect of PD has not been adequately explored. Methods We examined sixteen patients undergoing bilateral subthalamic nucleus deep brain stimulation (STN DBS) who met inclusion criteria for moderate disability from LBP, as classified by the Oswestry Low Back Pain Disability Index (OLBPD). Results Thirteen of 16 patients had attempted additional treatments for LBP including medical management, massage, chiropractic, epidural steroid injections and/or surgery and with minimal relief. Following DBS, there was a significant improvement in OLBPD at both the 6-month and 1-year time points (p < 0.02, p < 0.005 respectively). A mean improvement of 31.7% on OLBPD score was noted. Visual Analogue Scale (VAS) similarly decreased significantly at 1 year (p = 0.015). There was no correlation between OLBPD score and other measures including UPDRS, age, and other non-motor symptoms. Conclusion Given the prevalent yet undertreated disability associated with LBP in PD, these results are novel in that they show STN DBS has a significant positive effect on disability associated with LBP. PMID:25895600

  15. STDP in Oscillatory Recurrent Networks: Theoretical Conditions for Desynchronization and Applications to Deep Brain Stimulation

    PubMed Central

    Pfister, Jean-Pascal; Tass, Peter A.

    2010-01-01

    Highly synchronized neural networks can be the source of various pathologies such as Parkinson's disease or essential tremor. Therefore, it is crucial to better understand the dynamics of such networks and the conditions under which a high level of synchronization can be observed. One of the key factors that influences the level of synchronization is the type of learning rule that governs synaptic plasticity. Most of the existing work on synchronization in recurrent networks with synaptic plasticity are based on numerical simulations and there is a clear lack of a theoretical framework for studying the effects of various synaptic plasticity rules. In this paper we derive analytically the conditions for spike-timing dependent plasticity (STDP) to lead a network into a synchronized or a desynchronized state. We also show that under appropriate conditions bistability occurs in recurrent networks governed by STDP. Indeed, a pathological regime with strong connections and therefore strong synchronized activity, as well as a physiological regime with weaker connections and lower levels of synchronization are found to coexist. Furthermore, we show that with appropriate stimulation, the network dynamics can be pushed to the low synchronization stable state. This type of therapeutical stimulation is very different from the existing high-frequency stimulation for deep brain stimulation since once the stimulation is stopped the network stays in the low synchronization regime. PMID:20802859

  16. A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission

    NASA Astrophysics Data System (ADS)

    Zhang, Zhang; Ye, Tan; Jianmin, Zeng; Xu, Han; Xin, Cheng; Guangjun, Xie

    2016-09-01

    A monolithic integrated low-voltage deep brain stimulator with wireless power and data transmission is presented. Data and power are transmitted to the stimulator by mutual inductance coupling, while the in-vitro controller encodes the stimulation parameters. The stimulator integrates the digital control module and can generate the bipolar current with equal amplitude in four channels. In order to reduce power consumption, a novel controlled threshold voltage cancellation rectifier is proposed in this paper to provide the supply voltage of the stimulator. The monolithic stimulator was fabricated in a SMIC 0.18 μm 1-poly 6-metal mixed-signal CMOS process, occupying 0.23 mm2, and consumes 180 μW on average. Compared with previously published stimulators, this design has advantages of large stimulated current (0-0.8 mA) with the double low-voltage supply (1.8 and 3.3 V), and high-level integration. Project supported by the National Natural Science Foundation of China (Nos. 61404043, 61401137), the Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences (Nos. IIMDKFJJ-13-06, IIMDKFJJ-14-03), and the Fundamental Research Funds for the Central Universities (No. 2015HGZX0026).

  17. Medical Management of Parkinson's Disease after Initiation of Deep Brain Stimulation.

    PubMed

    Fasano, Alfonso; Appel-Cresswell, Silke; Jog, Mandar; Zurowkski, Mateusz; Duff-Canning, Sarah; Cohn, Melanie; Picillo, Marina; Honey, Christopher R; Panisset, Michel; Munhoz, Renato Puppi

    2016-09-01

    In this review, we have gathered all the available evidence to guide medication management after deep brain stimulation (DBS) in Parkinson's disease (PD). Surprisingly, we found that almost no study addressed drug-based management in the postoperative period. Dopaminergic medications are usually reduced, but whether the levodopa or dopamine agonist is to be reduced is left to the personal preference of the treating physician. We have summarized the pros and cons of both approaches. No study on the management of cognitive problems after DBS has been done, and only a few studies have explored the pharmacological management of such DBS-resistant symptoms as voice (amantadine), balance (donepezil) or gait disorders (amantadine, methylphenidate). As for the psychiatric problems so frequently reported in PD patients, researchers have directed their attention to the complex interplay between stimulation and reduction of dopaminergic drugs only recently. In conclusion, studies addressing medical management following DBS are still needed and will certainly contribute to the ultimate success of DBS procedures.

  18. The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation

    PubMed Central

    Haynes, William I. A.; Haber, Suzanne N.

    2013-01-01

    The identification of a hyperdirect cortico-subthalamic nucleus connection highlighted the important role of the subthalamic nucleus (STN) in regulating behavior. However, this pathway was shown primarily from motor areas. Hyperdirect pathways associated with cognitive and motivational cortical regions are particularly relevant given recent data from deep brain stimulation, both for neurological and psychiatric disorders. Our experiments were designed to: demonstrate the existence and organization of prefrontal-STN projections, help delineate the ‘limbic’ STN, and determine whether convergence between cortico-STN fibers from functionally diverse cortical areas exists in the STN. We injected anterograde tracers in the ventromedial prefrontal, orbitofrontal, anterior cingulate and dorsal prefrontal cortices of Macaca nemestrina & M. fascicularis to analyze the organization of terminals and passing fibers in the STN. Results show a topographically organized prefrontal hyperdirect pathway in primates. Limbic areas project to the medial tip of the nucleus, straddling its border and extending into the lateral hypothalamus. Associative areas project to the medial half, motor areas to the lateral half. Limbic projections terminated primarily rostrally and motor projections more caudally. The extension of limbic projections into the lateral hypothalamus, suggests that this region be included in the STN. A high degree of convergence exists between projections from functionally diverse cortical areas, creating potentially important interfaces between terminal fields. Taken together, the results provide an anatomical substrate to extend the role of the hyperdirect pathway in models of basal ganglia function, and new keys for understanding deep brain stimulation effects on cognitive and motivational aspects of behavior. PMID:23486951

  19. Geology of the Deep Creek area, Washington, and its regional significance

    USGS Publications Warehouse

    Yates, Robert Giertz

    1976-01-01

    This report, although primarily concerned with the stratigraphy and structure of a lead-zinc mining district in northern Stevens County, Washington, discusses and integrates the geology of the region about the Deep Creek area. Although the study centers in an area of about 200 square miles immediately south of the International Boundary, the regional background comes from: (1)the previously undescribed Northport quadrangle to the west, (2) published reports and reconnaissance of the Metaline quadrangle to the east, and (3) from published reports and maps of a 16 mile wide area that lies to the north adjacent to these three quadrangles in British Columbia. The report is divided into three parts: (1) descriptions of rocks and structures of the Deep Creek area, (2) descriptions of the regional setting of the Deep Creek area, and (3) an analysis and interpretation of the depositional and tectonic events that produced the geologic features exposed today. In the Deep Creek area surficial deposits of sand and gravel of glacial origin cover much of the consolidated rocks, which range in age from greenschist of the late Precambrlan to albite granite of the Eocene. Three broad divisions of depositional history are represented: (1) Precambrian, (2) lower Paleozoic and (3) upper Paleozoic; the record of the Mesozoic and Eocene is fragmentary. The lower Paleozoic division is the only fossil-controlled sequence; the age of the other two divisions were established by less direct methods. Both Precambrian and upper Paleozoic sequences are dominated by fine-grained detrital sediments, the Precambrian tending towards the alumina-rich and the upper Paleozoic tending towards the black shale facies with high silica. Neither sequence has more than trivial amounts of coarse clastics. Both include limestones, but in minor abundance. The lower Paleozoic sequence, on the other hand, represents a progressive change in deposition. The sequence began during the very late Precambrian with the

  20. The phenomenology of deep brain stimulation-induced changes in OCD: an enactive affordance-based model

    PubMed Central

    de Haan, Sanneke; Rietveld, Erik; Stokhof, Martin; Denys, Damiaan

    2013-01-01

    People suffering from Obsessive-Compulsive Disorder (OCD) do things they do not want to do, and/or they think things they do not want to think. In about 10% of OCD patients, none of the available treatment options is effective. A small group of these patients is currently being treated with deep brain stimulation (DBS). DBS involves the implantation of electrodes in the brain. These electrodes give a continuous electrical pulse to the brain area in which they are implanted. It turns out that patients may experience profound changes as a result of DBS treatment. It is not just the symptoms that change; patients rather seem to experience a different way of being in the world. These global effects are insufficiently captured by traditional psychiatric scales, which mainly consist of behavioral measures of the severity of the symptoms. In this article we aim to capture the changes in the patients' phenomenology and make sense of the broad range of changes they report. For that we introduce an enactive, affordance-based model that fleshes out the dynamic interactions between person and world in four aspects. The first aspect is the patients' experience of the world. We propose to specify the patients' world in terms of a field of affordances, with the three dimensions of broadness of scope (“width” of the field), temporal horizon (“depth”), and relevance of the perceived affordances (“height”). The second aspect is the person-side of the interaction, that is, the patients' self-experience, notably their moods and feelings. Thirdly, we point to the different characteristics of the way in which patients relate to the world. And lastly, the existential stance refers to the stance that patients take toward the changes they experience: the second-order evaluative relation to their interactions and themselves. With our model we intend to specify the notion of being in the world in order to do justice to the phenomenological effects of DBS treatment. PMID:24133438

  1. Seismic signature of crustal magma and fluid from deep seismic sounding data across Tengchong volcanic area

    NASA Astrophysics Data System (ADS)

    Bai, Z. M.; Zhang, Z. Z.; Wang, C. Y.; Klemperer, S. L.

    2012-04-01

    The weakened lithosphere around eastern syntax of Tibet plateau has been revealed by the Average Pn and Sn velocities, the 3D upper mantle velocity variations of P wave and S wave, and the iimaging results of magnetotelluric data. Tengchong volcanic area is neighboring to core of eastern syntax and famous for its springs, volcanic-geothermal activities and remarkable seismicity in mainland China. To probe the deep environment for the Tengchong volcanic-geothermal activity a deep seismic sounding (DSS) project was carried out across the this area in 1999. In this paper the seismic signature of crustal magma and fluid is explored from the DSS data with the seismic attribute fusion (SAF) technique, hence four possible positions for magma generation together with some locations for porous and fractured fluid beneath the Tengchong volcanic area were disclosed from the final fusion image of multi seismic attributes. The adopted attributes include the Vp, Vs and Vp/Vs results derived from a new inversion method based on the No-Ray-Tomography technique, and the migrated instantaneous attributes of central frequency, bandwidth and high frequency energy of pressure wave. Moreover, the back-projected ones which are mainly consisted by the attenuation factor Qp , the delay-time of shear wave splitting, and the amplitude ratio between S wave and P wave + S wave were also considered in this fusion process. Our fusion image indicates such a mechanism for the surface springs: a large amount of heat and the fluid released by the crystallization of magma were transmitted upward into the fluid-filled rock, and the fluid upwells along some pipeline since the high pressure in deep, thus the widespread springs of Tengchong volcanic area were developed. Moreover, the fusion image, regional volcanic and geothermal activities, and the seismicity suggest that the main risk of volcanic eruption was concentrated to the south of Tengchong city, especially around the shot point (SP) Tuantian

  2. Deep brain stimulation of the subthalamic nucleus in Parkinson's disease: From history to the interaction with the monoaminergic systems.

    PubMed

    Faggiani, E; Benazzouz, A

    2017-04-01

    Parkinson's disease is the second most common neurodegenerative disorder, characterized by the manifestation of motor symptoms, which are mainly attributed to the degeneration of dopamine neurons in the pars compacta of substantia nigra. Based on advancements in the understanding of the pathophysiology of the disease, especially in animal models, the subthalamic nucleus has been pointed as a major target for deep brain stimulation in the treatment of motor symptoms, first developed in non-human primate and then successfully transfered to parkinsonian patients. Nevertheless, despite the focus on motor deficits, Parkinson's disease is also characterized by the manifestation of non-motor symptoms, which can be due to the additional degeneration of norepinephrine, serotonin and cholinergic systems. The pathophysiology of the non-motor symptoms is under studied and consequently not well treated. Furthermore, data from the literature about the impact of subthalamic deep brain stimulation on non-motor disorders are controversial and still under debate. Similarly, the risk of mood disorders post-deep brain stimulation surgery remains also controversial. Here, we review the clinical and experimental data of this neurosurgical approach on motor and non-motor behaviors and provide evidence for its interaction with the monoaminergic systems.

  3. Electrical resistance increases at the tissue-electrode interface as an early response to nucleus accumbens deep brain stimulation.

    PubMed

    Kale, Rajas P; Kouzani, Abbas Z; Berk, Julian; Walder, Ken; Berk, Michael; Tye, Susannah J

    2016-08-01

    The therapeutic actions of deep brain stimulation are not fully understood. The early inflammatory response of electrode implantation is associated with symptom relief without electrical stimulation, but is negated by anti-inflammatory drugs. Early excitotoxic necrosis and subsequent glial scarring modulate the conductivity of the tissue-electrode interface, which can provide some detail into the inflammatory response of individual patients. The feasibility of this was demonstrated by measuring resistance values across a bipolar electrode which was unilaterally implanted into the nucleus accumbens of a rat while receiving continuous deep brain stimulation with a portable back-mounted device using clinical parameters (130Hz, 200μA, 90μs) for 3 days. Daily resistance values rose significantly (p<;0.0001), while hourly resistance analysis demonstrated a plateau after an initial spike in resistance, which was then followed by a steady increase (p<;0.05; p<;0.0001). We discuss that the biphasic nature of the inflammatory response may contribute to these observations and conclude that this method may translate to a safe predictive screening for more effective clinical deep brain stimulation.

  4. Real-time classification of activated brain areas for fMRI-based human-brain-interfaces

    NASA Astrophysics Data System (ADS)

    Moench, Tobias; Hollmann, Maurice; Grzeschik, Ramona; Mueller, Charles; Luetzkendorf, Ralf; Baecke, Sebastian; Luchtmann, Michael; Wagegg, Daniela; Bernarding, Johannes

    2008-03-01

    Functional MR imaging (fMRI) enables to detect different activated brain areas according to the performed tasks. However, data are usually evaluated after the experiment, which prohibits intra-experiment optimization or more sophisticated applications such as biofeedback experiments. Using a human-brain-interface (HBI), subjects are able to communicate with external programs, e.g. to navigate through virtual scenes, or to experience and modify their own brain activation. These applications require the real-time analysis and classification of activated brain areas. Our paper presents first results of different strategies for real-time pattern analysis and classification realized within a flexible experiment control system that enables the volunteers to move through a 3D virtual scene in real-time using finger tapping tasks, and alternatively only thought-based tasks.

  5. Optimal control of directional deep brain stimulation in the parkinsonian neuronal network

    NASA Astrophysics Data System (ADS)

    Fan, Denggui; Wang, Zhihui; Wang, Qingyun

    2016-07-01

    The effect of conventional deep brain stimulation (DBS) on debilitating symptoms of Parkinson's disease can be limited because it can only yield the spherical field. And, some side effects are clearly induced with influencing their adjacent ganglia. Recent experimental evidence for patients with Parkinson's disease has shown that a novel DBS electrode with 32 independent stimulation source contacts can effectively optimize the clinical therapy by enlarging the therapeutic windows, when it is applied on the subthalamic nucleus (STN). This is due to the selective activation in clusters of various stimulation contacts which can be steered directionally and accurately on the targeted regions of interest. In addition, because of the serious damage to the neural tissues, the charge-unbalanced stimulation is not typically indicated and the real DBS utilizes charge-balanced bi-phasic (CBBP) pulses. Inspired by this, we computationally investigate the optimal control of directional CBBP-DBS from the proposed parkinsonian neuronal network of basal ganglia-thalamocortical circuit. By appropriately tuning stimulation for different neuronal populations, it can be found that directional steering CBBP-DBS paradigms are superior to the spherical case in improving parkinsonian dynamical properties including the synchronization of neuronal populations and the reliability of thalamus relaying the information from cortex, which is in a good agreement with the physiological experiments. Furthermore, it can be found that directional steering stimulations can increase the optimal stimulation intensity of desynchronization by more than 1 mA compared to the spherical case. This is consistent with the experimental result with showing that there exists at least one steering direction that can allow increasing the threshold of side effects by 1 mA. In addition, we also simulate the local field potential (LFP) and dominant frequency (DF) of the STN neuronal population induced by the activation

  6. STN vs. GPi Deep Brain Stimulation: Translating the Rematch into Clinical Practice

    PubMed Central

    Williams, Nolan R.; Foote, Kelly D.; Okun, Michael S.

    2014-01-01

    When formulating a deep brain stimulation (DBS) treatment plan for a patient with Parkinson’s disease (PD), two critical questions should be addressed: 1- Which brain target should be chosen to optimize this patient’s outcome? and 2- Should this patient’s DBS operation be unilateral or bilateral? Over the past two decades, two targets have emerged as leading contenders for PD DBS; the subthalamic nucleus (STN) and the globus pallidus internus (GPi). While the GPi target does have a following, most centers have uniformly employed bilateral STN DBS for all Parkinson’s disease cases (Figure 1). This bilateral STN “one-size-fits-all” approach was challenged by an editorial entitled “STN vs. GPi: The Rematch,” which appeared in the Archives of Neurology in 2005. Since 2005, a series of well designed clinical trials and follow-up studies have addressed the question as to whether a more tailored approach to DBS therapy might improve overall outcomes. Such a tailored approach would include the options of targeting the GPi, or choosing a unilateral operation. The results of the STN vs. GPi ‘rematch’ studies support the conclusion that bilateral STN DBS may not be the best option for every Parkinson’s disease surgical patient. Off period motor symptoms and tremor improve in both targets, and with either unilateral or bilateral stimulation. Advantages of the STN target include more medication reduction, less frequent battery changes, and a more favorable economic profile. Advantages of GPi include more robust dyskinesia suppression, easier programming, and greater flexibility in adjusting medications. In cases where unilateral stimulation is anticipated, the data favor GPi DBS. This review summarizes the accumulated evidence regarding the use of bilateral vs. unilateral DBS and the selection of STN vs. GPi DBS, including definite and possible advantages of different targets and approaches. Based on this evidence, a more patient-tailored, symptom specific

  7. Hypothalamic deep brain stimulation in the treatment of chronic cluster headache

    PubMed Central

    Leone, Massimo; Franzini, Angelo; Cecchini, Alberto Proietti; Broggi, Giovanni; Bussone, Gennaro

    2010-01-01

    Cluster headache (CH) is a short-lasting unilateral headache associated with ipsilateral craniofacial autonomic manifestations. A positron emission tomography (PET) study has shown that the posterior hypothalamus is activated during CH attacks, suggesting that hypothalamic hyperactivity plays a key role in CH pathophysiology. On this basis, stimulation of the ipsilateral posterior hypothalamus was hypothesized to counteract such hyperactivity to prevent intractable CH. Ten years after its introduction, hypothalamic stimulation has been proved to successfully prevent attacks in more than 60% of 58 hypothalamic implanted drug-resistant chronic CH patients. The implantation procedure has generally been proved to be safe, although it carries a small risk of brain haemorrhage. Long-term stimulation is safe, and nonsymptomatic impairment of orthostatic adaptation is the only noteworthy change. Microrecording studies will make it possible to better identify the target site. Neuroimaging investigations have shown that hypothalamic stimulation activates ipsilateral trigeminal complex, but with no immediate perceived sensation within the trigeminal distribution. Other studies on the pain threshold in chronically stimulated patients showed increased threshold for cold pain in the distribution of the first trigeminal branch ipsilateral to stimulation. These studies suggest that activation of the hypothalamus and of the trigeminal system are both necessary, but not sufficient to generate CH attacks. In addition to the hypothalamus, other unknown brain areas are likely to play a role in the pathophysiology of this illness. Hypothalamus implantation is associated with a small risk of intracerebral haemorrhage and must be performed by an expert neurosurgical team, in selected patients. PMID:21179610

  8. Tissue Response to Deep Brain Stimulation and Microlesion: A Comparative Study

    PubMed Central

    Baradaran‐Shoraka, Massoud; Reynolds, Brent A.; Okun, Michael S.

    2016-01-01

    Objectives Deep brain stimulation (DBS) is used for a variety of movement disorders, including Parkinson's disease. There are several theories regarding the biology and mechanisms of action of DBS. Previously, we observed an up‐regulation of neural progenitor cell proliferation in post‐mortem tissue suggesting that DBS can influence cellular plasticity in regions beyond the site of stimulation. We wanted to support these observations and investigate the relationship if any, between DBS, neural progenitor cells, and microglia. Methods We used naïve rats in this study for DBS electrode implantation, stimulation, and microlesions. We used immunohistochemistry techniques for labeling microglial and progenitor cells, and fluorescence microscopy for viewing and quantification of labeled cells. Results We present data that demonstrates a reciprocal relationship of microglia and neural precursor cells in the presence of acute high frequency stimulation. In our hands, stimulated animals demonstrate significantly lower numbers of activated microglia (p = 0.026) when compared to microlesion and sham animals. The subthalamic region surrounding the DBS stimulating electrode reveals a significant increase in the number of neural precursor cells expressing cell cycle markers, plasticity and precursor cell markers (Ki67; p = 0.0013, MCM2; p = 0.0002). Interpretation We conclude that in this animal model, acute DBS results in modest local progenitor cell proliferation and influenced the total number of activated microglia. This could be of clinical significance in patients with PD, as it is thought to progress via neuroinflammatory processes involving microglia, cytokines, and the complement system. Further studies are required to comprehend the behavior of microglia in different activation states and their ability to regulate adult neurogenesis under physiologic and pathologic conditions. PMID:27018335

  9. Deep brain stimulation for Alzheimer disease: a decision and cost-effectiveness analysis.

    PubMed

    Mirsaeedi-Farahani, Keyvan; Halpern, C H; Baltuch, G H; Wolk, D A; Stein, S C

    2015-05-01

    Alzheimer disease (AD) is characterized by impairments in memory function. Standard AD treatment provides marginal improvements in this domain. Recent reports, however, suggested that deep brain stimulation (DBS) may result in improved memory. Given significant equipment costs and health expenses required for DBS surgery, we determine clinical and economic thresholds required for it to be as effective as standard AD treatment. Literature review yielded annual AD progression probabilities, health-related quality of life (QoL), and costs by AD stage. Our 5-year decision analysis model compared cumulative QoL in quality-adjusted life years (QALYs) and costs of standard therapy to theoretical DBS treatment of various success rates, using known complication rates and QoL data. The base case was a patient with mild-stage AD. DBS success was defined as regression to and maintenance of minimal stage AD, which was defined as midway between mild and no dementia, for the first year, and continuation of the natural course of AD for the remaining 4 years. Compared to standard treatment alone, DBS for mild-stage AD requires a success rate of 3% to overcome effects of possible surgical complications on QoL. If DBS can be delivered with success rates above 20% ($200 K/QALY) or 74% ($50 K/QALY) for mild AD, it can be considered cost-effective. Above a success rate of 80%, DBS treatment is both clinically more effective and more cost-effective than standard treatment. Our findings demonstrate that clinical and economic thresholds required for DBS to be cost-effective for AD are relatively low.

  10. A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies.

    PubMed

    Grahn, Peter J; Mallory, Grant W; Khurram, Obaid U; Berry, B Michael; Hachmann, Jan T; Bieber, Allan J; Bennet, Kevin E; Min, Hoon-Ki; Chang, Su-Youne; Lee, Kendall H; Lujan, J L

    2014-01-01

    Current strategies for optimizing deep brain stimulation (DBS) therapy involve multiple postoperative visits. During each visit, stimulation parameters are adjusted until desired therapeutic effects are achieved and adverse effects are minimized. However, the efficacy of these therapeutic parameters may decline with time due at least in part to disease progression, interactions between the host environment and the electrode, and lead migration. As such, development of closed-loop control systems that can respond to changing neurochemical environments, tailoring DBS therapy to individual patients, is paramount for improving the therapeutic efficacy of DBS. Evidence obtained using electrophysiology and imaging techniques in both animals and humans suggests that DBS works by modulating neural network activity. Recently, animal studies have shown that stimulation-evoked changes in neurotransmitter release that mirror normal physiology are associated with the therapeutic benefits of DBS. Therefore, to fully understand the neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond conventional electrophysiological analyses and characterize the neurochemical effects of therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring and mathematical modeling techniques, we can potentially replace the trial-and-error process used in clinical programming with deterministic approaches that help attain optimal and stable neurochemical profiles. In this manuscript, we summarize the current understanding of electrophysiological and electrochemical processing for control of neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop controller that characterizes DBS-evoked dopamine changes to adjust stimulation parameters in a rodent model of DBS. The work described herein represents the initial steps toward achieving a "smart" neuroprosthetic system for treatment of neurologic and psychiatric disorders.

  11. Multi-modal Learning-based Pre-operative Targeting in Deep Brain Stimulation Procedures.

    PubMed

    Liu, Yuan; Dawant, Benoit M

    2016-02-01

    Deep brain stimulation, as a primary surgical treatment for various neurological disorders, involves implanting electrodes to stimulate target nuclei within millimeter accuracy. Accurate pre-operative target selection is challenging due to the poor contrast in its surrounding region in MR images. In this paper, we present a learning-based method to automatically and rapidly localize the target using multi-modal images. A learning-based technique is applied first to spatially normalize the images in a common coordinate space. Given a point in this space, we extract a heterogeneous set of features that capture spatial and intensity contextual patterns at different scales in each image modality. Regression forests are used to learn a displacement vector of this point to the target. The target is predicted as a weighted aggregation of votes from various test samples, leading to a robust and accurate solution. We conduct five-fold cross validation using 100 subjects and compare our method to three indirect targeting methods, a state-of-the-art statistical atlas-based approach, and two variations of our method that use only a single modality image. With an overall error of 2.63±1.37mm, our method improves upon the single modality-based variations and statistically significantly outperforms the indirect targeting ones. Our technique matches state-of-the-art registration methods but operates on completely different principles. Both techniques can be used in tandem in processing pipelines operating on large databases or in the clinical flow for automated error detection.

  12. Deep brain stimulation of the subthalamic nucleus increases premature responding in a rat gambling task.

    PubMed

    Aleksandrova, Lily R; Creed, Meaghan C; Fletcher, Paul J; Lobo, Daniela S S; Hamani, Clement; Nobrega, José N

    2013-05-15

    Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a treatment option for the motor symptoms of Parkinson's disease (PD). However, several recent studies have found an association between STN-DBS and increased impulsivity. Currently, it is not clear whether the observed increase in impulsivity results from STN-DBS per se, or whether it involves an interaction with the underlying PD neuropathology and/or intake of dopaminergic drugs. We investigated the effects of STN-DBS on performance of intact rats on two tasks measuring impulsive responding: a novel rat gambling task (rGT) and a differential reinforcement of low rate responding (DRL20s) schedule. Following initial behavioural training, animals received electrode implantation into the STN (n=24) or sham surgery (n=24), and were re-tested on their assigned behavioural task, with or without STN-DBS. Bilateral STN-DBS administered for two hours immediately prior to testing, had no effects on rGT choice behaviour or on DRL response inhibition (p>0.05). However, STN-DBS significantly increased premature responding in the rGT task (p=0.0004), an effect that took several sessions to develop and persisted in subsequent trials when no stimulation was given. Consistent with the notion of distinct facets of impulsivity with unique neurochemical underpinnings, we observed differential effects of STN-DBS in the two tasks employed. These results suggest that STN-DBS in the absence of parkinsonism may not lead to a general loss of inhibitory control, but may instead affect impulsivity under specific conditions.

  13. An automated approach towards detecting complex behaviours in deep brain oscillations.

    PubMed

    Mace, Michael; Yousif, Nada; Naushahi, Mohammad; Abdullah-Al-Mamun, Khondaker; Wang, Shouyan; Nandi, Dipankar; Vaidyanathan, Ravi

    2014-03-15

    Extracting event-related potentials (ERPs) from neurological rhythms is of fundamental importance in neuroscience research. Standard ERP techniques typically require the associated ERP waveform to have low variance, be shape and latency invariant and require many repeated trials. Additionally, the non-ERP part of the signal needs to be sampled from an uncorrelated Gaussian process. This limits methods of analysis to quantifying simple behaviours and movements only when multi-trial data-sets are available. We introduce a method for automatically detecting events associated with complex or large-scale behaviours, where the ERP need not conform to the aforementioned requirements. The algorithm is based on the calculation of a detection contour and adaptive threshold. These are combined using logical operations to produce a binary signal indicating the presence (or absence) of an event with the associated detection parameters tuned using a multi-objective genetic algorithm. To validate the proposed methodology, deep brain signals were recorded from implanted electrodes in patients with Parkinson's disease as they participated in a large movement-based behavioural paradigm. The experiment involved bilateral recordings of local field potentials from the sub-thalamic nucleus (STN) and pedunculopontine nucleus (PPN) during an orientation task. After tuning, the algorithm is able to extract events achieving training set sensitivities and specificities of [87.5 ± 6.5, 76.7 ± 12.8, 90.0 ± 4.1] and [92.6 ± 6.3, 86.0 ± 9.0, 29.8 ± 12.3] (mean ± 1 std) for the three subjects, averaged across the four neural sites. Furthermore, the methodology has the potential for utility in real-time applications as only a single-trial ERP is required.

  14. Deep Brain Stimulation for Parkinson’s Disease: Recent Trends and Future Direction

    PubMed Central

    FUKAYA, Chikashi; YAMAMOTO, Takamitsu

    2015-01-01

    To date, deep brain stimulation (DBS) has already been performed on more than 120,000 patients worldwide and in more than 7,000 patients in Japan. However, fundamental understanding of DBS effects on the pathological neural circuitry remains insufficient. Recent studies have specifically shown the importance of cortico-striato-thalamo-cortical (CSTC) loops, which were identified as functionally and anatomically discrete units. Three main circuits exist in the CSTC loops, namely, the motor, associative, and limbic circuits. From these theoretical backgrounds, it is determined that DBS sometimes influences not only motor functions but also the cognitive and affective functions of Parkinson’s disease (PD) patients. The main targets of DBS for PD are subthalamic nucleus (STN) and globus pallidus interna (GPi). Ventralis intermedius (Vim)-DBS was found to be effective in improving tremor. However, Vim-DBS cannot sufficiently improve akinesia and rigidity. Therefore, Vim-DBS is seldom carried out for the treatment of PD. In this article, we review the present state of DBS, mainly STN-DBS and GPi-DBS, for PD. In the first part of the article, appropriate indications and practical effects established in previous studies are discussed. The findings of previous investigations on the complications caused by the surgical procedure and on the adverse events induced by DBS itself are reviewed. In the second part, we discuss target selection (GPi vs. STN) and the effect of DBS on nonmotor symptoms. In the final part, as issues that should be resolved, the suitable timing of surgery, symptoms unresponsive to DBS such as on-period axial symptoms, and the related postoperative programing of stimulation parameters, are discussed. PMID:25925761

  15. Analyzing 7000 texts on deep brain stimulation: what do they tell us?

    PubMed Central

    Ineichen, Christian; Christen, Markus

    2015-01-01

    The enormous increase in numbers of scientific publications in the last decades requires quantitative methods for obtaining a better understanding of topics and developments in various fields. In this exploratory study, we investigate the emergence, trends, and connections of topics within the whole text corpus of the deep brain stimulation (DBS) literature based on more than 7000 papers (title and abstracts) published between 1991 to 2014 using a network approach. Taking the co-occurrence of basic terms that represent important topics within DBS as starting point, we outline the statistics of interconnections between DBS indications, anatomical targets, positive, and negative effects, as well as methodological, technological, and economic issues. This quantitative approach confirms known trends within the literature (e.g., regarding the emergence of psychiatric indications). The data also reflect an increased discussion about complex issues such as personality connected tightly to the ethical context, as well as an apparent focus on depression as important DBS indication, where the co-occurrence of terms related to negative effects is low both for the indication as well as the related anatomical targets. We also discuss consequences of the analysis from a bioethical perspective, i.e., how such a quantitative analysis could uncover hidden subject matters that have ethical relevance. For example, we find that hardware-related issues in DBS are far more robustly connected to an ethical context compared to impulsivity, concrete side-effects or death/suicide. Our contribution also outlines the methodology of quantitative text analysis that combines statistical approaches with expert knowledge. It thus serves as an example how innovative quantitative tools can be made useful for gaining a better understanding in the field of DBS. PMID:26578908

  16. Pedunculopontine Nucleus Region Deep Brain Stimulation in Parkinson Disease: Surgical Techniques, Side Effects, and Postoperative Imaging

    PubMed Central

    Hamani, Clement; Lozano, Andres M.; Mazzone, Paolo A.M.; Moro, Elena; Hutchison, William; Silburn, Peter A.; Zrinzo, Ludvic; Alam, Mesbah; Goetz, Laurent; Pereira, Erlick; Rughani, Anand; Thevathasan, Wesley; Aziz, Tipu; Bloem, Bastiaan R.; Brown, Peter; Chabardes, Stephan; Coyne, Terry; Foote, Kelly; Garcia-Rill, Edgar; Hirsch, Etienne C.; Okun, Michael S.; Krauss, Joachim K.

    2017-01-01

    The pedunculopontine nucleus (PPN) region has received considerable attention in clinical studies as a target for deep brain stimulation (DBS) in Parkinson disease. These studies have yielded variable results with an overall impression of improvement in falls and freezing in many but not all patients treated. We evaluated the available data on the surgical anatomy and terminology of the PPN region in a companion paper. Here we focus on issues concerning surgical technique, imaging, and early side effects of surgery. The aim of this paper was to gain more insight into the reasoning for choosing specific techniques and to discuss short-comings of available studies. Our data demonstrate the wide range in almost all fields which were investigated. There are a number of important challenges to be resolved, such as identification of the optimal target, the choice of the surgical approach to optimize electrode placement, the impact on the outcome of specific surgical techniques, the reliability of intraoperative confirmation of the target, and methodological differences in postoperative validation of the electrode position. There is considerable variability both within and across groups, the overall experience with PPN DBS is still limited, and there is a lack of controlled trials. Despite these challenges, the procedure seems to provide benefit to selected patients and appears to be relatively safe. One important limitation in comparing studies from different centers and analyzing outcomes is the great variability in targeting and surgical techniques, as shown in our paper. The challenges we identified will be of relevance when designing future studies to better address several controversial issues. We hope that the data we accumulated may facilitate the development of surgical protocols for PPN DBS. PMID:27728909

  17. Subthalamic Nucleus Deep Brain Stimulation in Early Stage Parkinson’s Disease

    PubMed Central

    Charles, David; Konrad, Peter E.; Neimat, Joseph S.; Molinari, Anna L.; Tramontana, Michael G.; Finder, Stuart G.; Gill, Chandler E.; Bliton, Mark J.; Kao, Chris C.; Phibbs, Fenna T.; Hedera, Peter; Salomon, Ronald M.; Cannard, Kevin R.; Wang, Lily; Song, Yanna; Davis, Thomas L.

    2014-01-01

    Background Deep brain stimulation (DBS) is an effective and approved therapy for advanced Parkinson’s disease (PD), and a recent study suggests efficacy in mid-stage disease. This manuscript reports the results of a pilot trial investigating preliminary safety and tolerability of DBS in early PD. Methods Thirty subjects with idiopathic PD (Hoehn & Yahr Stage II off medication), age 50–75, on medication ≥ 6 months but < 4 years, and without motor fluctuations or dyskinesias were randomized to optimal drug therapy (ODT) (n=15) or DBS+ODT (n=15). Co-primary endpoints were the time to reach a 4-point worsening from baseline in the UPDRS-III off therapy and the change in levodopa equivalent daily dose from baseline to 24 months. Results As hypothesized, the mean UPDRS total and part III scores were not significantly different on or off therapy at 24 months. The DBS+ODT group took less medication at all time points, and this reached maximum difference at 18 months. With a few exceptions, differences in neuropsychological functioning were not significant. Two subjects in the DBS+ODT group suffered serious adverse events; remaining adverse events were mild or transient. Conclusions This study demonstrates that subjects with early stage PD will enroll in and complete trials testing invasive therapies and provides preliminary evidence that DBS is well tolerated in early PD. The results of this trial provide the data necessary to design a large, phase III, double-blind, multicenter trial investigating the safety and efficacy of DBS in early PD. PMID:24768120

  18. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region

    NASA Astrophysics Data System (ADS)

    van Dijk, Kees J.; Verhagen, Rens; Chaturvedi, Ashutosh; McIntyre, Cameron C.; Bour, Lo J.; Heida, Ciska; Veltink, Peter H.

    2015-08-01

    Objective. The clinical effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) as a treatment for Parkinson’s disease are sensitive to the location of the DBS lead within the STN. New high density (HD) lead designs have been created which are hypothesized to provide additional degrees of freedom in shaping the stimulating electric field. The obje