Sample records for deep chlorophyll maximum

  1. Spatial extent and dissipation of the deep chlorophyll layer in Lake Ontario during the Lake Ontario lower foodweb assessment, 2003 and 2008

    USGS Publications Warehouse

    Watkins, J. M.; Weidel, Brian M.; Rudstam, L. G.; Holek, K. T.

    2014-01-01

    Increasing water clarity in Lake Ontario has led to a vertical redistribution of phytoplankton and an increased importance of the deep chlorophyll layer in overall primary productivity. We used in situ fluorometer profiles collected in lakewide surveys of Lake Ontario in 2008 to assess the spatial extent and intensity of the deep chlorophyll layer. In situ fluorometer data were corrected with extracted chlorophyll data using paired samples from Lake Ontario collected in August 2008. The deep chlorophyll layer was present offshore during the stratified conditions of late July 2008 with maximum values from 4-13 μg l-1 corrected chlorophyll a at 10 to 17 m depth within the metalimnion. Deep chlorophyll layer was closely associated with the base of the thermocline and a subsurface maximum of dissolved oxygen, indicating the feature's importance as a growth and productivity maximum. Crucial to the deep chlorophyll layer formation, the photic zone extended deeper than the surface mixed layer in mid-summer. The layer extended through most of the offshore in July 2008, but was not present in the easternmost transect that had a deeper surface mixed layer. By early September 2008, the lakewide deep chlorophyll layer had dissipated. A similar formation and dissipation was observed in the lakewide survey of Lake Ontario in 2003.

  2. Observational insights into chlorophyll distributions of subtropical South Indian Ocean eddies

    NASA Astrophysics Data System (ADS)

    Dufois, François; Hardman-Mountford, Nick J.; Fernandes, Michelle; Wojtasiewicz, Bozena; Shenoy, Damodar; Slawinski, Dirk; Gauns, Mangesh; Greenwood, Jim; Toresen, Reidar

    2017-04-01

    The South Indian Ocean subtropical gyre has been described as a unique environment where anticyclonic ocean eddies highlight enhanced surface chlorophyll in winter. The processes responsible for this chlorophyll increase in anticyclones have remained elusive, primarily because previous studies investigating this unusual behavior were mostly based on satellite data, which only views the ocean surface. Here we present in situ data from an oceanographic voyage focusing on the mesoscale variability of biogeochemical variables across the subtropical gyre. During this voyage an autonomous biogeochemical profiling float transected an anticyclonic eddy, recording its physical and biological state over a period of 6 weeks. We show that several processes might be responsible for the eddy/chlorophyll relationship, including horizontal advection of productive waters and deeper convective mixing in anticyclonic eddies. While a deep chlorophyll maximum is present in the subtropical Indian Ocean outside anticyclonic eddies, mixing reaches deeper in anticyclonic eddy cores, resulting in increased surface chlorophyll due to the stirring of the deep chlorophyll maximum and possibly resulting in new production from nitrate injection below the deep chlorophyll maximum.

  3. Chlorophyll maxima in mountain ponds and lakes, Mount Rainier National Park, Washington State, USA

    USGS Publications Warehouse

    Larson, Gary L.

    2000-01-01

    Hypolimnetic chlorophyll maxima are common in clear lakes and often occur at depths with between 1 and 0.1% of the surface incident light. Little is known, however, about the concentrations of chlorophyll in thermally unstratified mountain ponds and how these concentrations compare to epilimnetic and hypolimnetic concentrations in mountain lakes. The objectives of this study were to document the concentrations of chlorophyll in thermally unstratified ponds and stratified lakes in Mount Rainier National Park (MORA) and to compare the results with concentrations and distributions of chlorophyll in clear-deep lakes in the Oregon Cascade Range and the Sierra Nevada Range. Thirty-two ponds (<2.5 m deep) and 14 lakes(>9.9 m deep) were sampled primarily during the summers of 1992 to 1996 at MORA. Water samples from near the surface (0.1–0.5 m) of ponds and near the surface and near the bottom of lakes were collected over the deepest part of each system. One exception, Mowich Lake, was sampled at seven depths between the surface and 50 m (Z=58.6 m). Chlorophyll concentrations were low in all systems, but higher in ponds (average 1.8 μg·L−1) than in lakes. Chlorophyll concentrations were higher in hypolimnetic lake samples (average 0.7 μg·L−1) than in epilimnetic lake samples (average 0.2 μg·L−1). Elevated concentrations of chlorophyll in mountain ponds, relative to those in hypolimnetic lake samples, may have been influenced by increased nutrient availability from interactions at the mud-water interface and, in this park, defecation by elk that used many of the ponds as wallows. Mowich Lake showed a chlorophyll maximum (~1.5 μg·L−1) near the lake bottom. Based on Secchi disk clarity readings, the depth of 1.0% incident surface solar radiation was greater than the maximum depths of the ponds and lakes. Comparative data from other clear-deep lakes in the Oregon Cascade Range and Sierra Nevada Range suggested that deep-chlorophyll maxima (~1.5 μg·L−1) occurred at <1.0% and > 0.1% of the incident surface solar radiation, and that the typical maximum depths ranged between 75 and 140 m during thermal stratification.

  4. Mixing and the dynamics of the deep chlorophyll maximum in Lake Tahoe

    NASA Technical Reports Server (NTRS)

    Abbott, M. R.; Denman, K. L.; Powell, T. M.; Richerson, P. J.; Richards, R. C.; Goldman, C. R.

    1984-01-01

    Chlorophyll-temperature profiles were measured across Lake Tahoe about every 10 days from April through July 1980. Analysis of the 123 profiles and associated productivity and nutrient data identified three important processes in the formation and dynamics of the deep chlorophyll maximum (DCM): turbulent diffusion, nutrient supply rate, and light availability. Seasonal variation in these three processes resulted in three regimes: a diffusion-dominated regime with a weak DCM, a variable-mixing regime with a pronounced, nutrient supply-dominated DCM, and a stable regime with a deep, moderate light availability-dominated DCM. The transition between the first two regimes occurred in about 10 days, the transition between the last two more gradually over about 3 weeks. The degree of spatial variability of the DCM was highest in the second regime and lowest in the third. These data indicate that the DCM in Lake Tahoe is constant in neither time nor space.

  5. viral abundance distribution in deep waters of the Northern of South China Sea

    NASA Astrophysics Data System (ADS)

    He, Lei; Yin, Kedong

    2017-04-01

    Little is known about the vertical distribution and interaction of viruses and bacteria in the deep ocean water column. The vertical distribution of viral-like particles and bacterial abundance was investigated in the deep water column in the South China Sea during September 2005 along with salinity, temperature and dissolved oxygen. There were double maxima in the ratio of viral to bacterial abundance (VBR) in the water column: the subsurface maximum located at 50-100 m near the pycnocline layer, and the deep maximum at 800-1000 m. At the subsurface maximum of VBR, both viral and bacterial abundance were maximal in the water column, and at the deep maximum of VBR, both viral and bacterial abundance were low, but bacterial abundance was relatively lower than viral abundance. The subsurface VBR maximum coincided with the subsurface chlorophyll maximum while the deep VBR maximum coincided with the minimum in dissolved oxygen (2.91mg L-1). Therefore, we hypothesize that the two maxima were formed by different mechanisms. The subsurface VBR maximum was formed due to an increase in bacterial abundance resulting from the stimulation of abundant organic supply at the subsurface chlorophyll maximum, whereas the deep VBR maximum was formed due to a decrease in bacterial abundance caused by more limitation of organic matter at the oxygen minimum. The evidence suggests that viruses play an important role in controlling bacterial abundance in the deep water column due to the limitation of organic matter supply. In turn, this slows down the formation of the oxygen minimum in which oxygen may be otherwise lower. The mechanism has a great implication that viruses could control bacterial decomposition of organic matter, oxygen consumption and nutrient remineralization in the deep oceans.

  6. Wind effects on coastal zone color scanner chlorophyll patterns in the U.S. Mid-Atlantic Bight during spring 1979

    NASA Technical Reports Server (NTRS)

    Eslinger, David L.; Iverson, Richard L.

    1986-01-01

    Coastal zone color scanner (CZCS) chlorophyll concentration increases in the Mid-Atlantic Bight were associated with high wind speeds in continental shelf waters during March and May 1979. Maximum spring CZCS chlorophyll concentrations occurred during April when the water column was not thermally stratified and were spatially and temporally associated with reductions in wind speed both in onshelf and in offshelf regions. Increased chlorophyll concentrations in offshelf waters were associated with high wind speeds during May when a deep chlorophyll maximum was present. Chlorophyll patchiness was observed on length scales typical of those controlled by biological processes during the April low-wind period but not during March or May when wind speeds were greater. The spring CZCS chlorophyll maximum in the southern portion of the Mid-Atlantic Bight occurred in response to a reduction in mixed layer depth caused by decreased wind speeds and not by increased water column stratification.

  7. Evolution of the Marginal Ice Zone: Adaptive Sampling with Autonomous Gliders

    DTIC Science & Technology

    2015-09-30

    kinetic energy (ε). Gliders also sampled dissolved oxygen, optical backscatter ( chlorophyll and CDOM fluorescence) and multi-spectral downwelling...Fig. 2). In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become...Sections across the ice edge just prior to recovery, during freeze-up, reveal elevated chlorophyll fluorescence throughout the mixed layer (Fig. 4

  8. Microbial diversity from chlorophyll maximum, oxygen minimum and bottom zones in the southwestern Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Medina-Silva, Renata; de Oliveira, Rafael R.; Pivel, Maria A. G.; Borges, Luiz G. A.; Simão, Taiz L. L.; Pereira, Leandro M.; Trindade, Fernanda J.; Augustin, Adolpho H.; Valdez, Fernanda P.; Eizirik, Eduardo; Utz, Laura R. P.; Groposo, Claudia; Miller, Dennis J.; Viana, Adriano R.; Ketzer, João M. M.; Giongo, Adriana

    2018-02-01

    Conspicuous physicochemical vertical stratification in the deep sea is one of the main forces driving microbial diversity in the oceans. Oxygen and sunlight availability are key factors promoting microbial diversity throughout the water column. Ocean currents also play a major role in the physicochemical stratification, carrying oxygen down to deeper zones as well as moving deeper water masses up towards shallower depths. Water samples within a 50-km radius in a pockmark location of the southwestern Atlantic Ocean were collected and the prokaryotic communities from different water depths - chlorophyll maximum, oxygen minimum and deep-sea bottom (down to 1355 m) - were described. At phylum level, Proteobacteria were the most frequent in all water depths, Cyanobacteria were statistically more frequent in chlorophyll maximum zone, while Thaumarchaeota were significantly more abundant in both oxygen minimum and bottom waters. The most frequent microorganism in the chlorophyll maximum and oxygen minimum zones was a Pelagibacteraceae operational taxonomic unit (OTU). At the bottom, the most abundant genus was the archaeon Nitrosopumilus. Beta diversity analysis of the 16S rRNA gene sequencing data uncovered in this study shows high spatial heterogeneity among water zones communities. Our data brings important contribution for the characterisation of oceanic microbial diversity, as it consists of the first description of prokaryotic communities occurring in different oceanic water zones in the southwestern Atlantic Ocean.

  9. Temporal variability of chlorophyll distribution in the Gulf of Mexico: bio-optical data from profiling floats

    NASA Astrophysics Data System (ADS)

    Pasqueron de Fommervault, Orens; Perez-Brunius, Paula; Damien, Pierre; Camacho-Ibar, Victor F.; Sheinbaum, Julio

    2017-12-01

    Chlorophyll concentration is a key oceanic biogeochemical variable. In the Gulf of Mexico (GOM), its distribution, which is mainly obtained from satellite surface observations and scarce in situ experiments, is still poorly understood. In 2011-2012, eight profiling floats equipped with biogeochemical sensors were deployed for the first time in the GOM and generated an unprecedented dataset that significantly increased the number of chlorophyll vertical distribution measurements in the region. The analysis of these data, once calibrated, permits us to reconsider the spatial and temporal variability of the chlorophyll concentration in the water column. At a seasonal scale, results confirm the surface signal seen by satellites, presenting maximum concentrations in winter and low values in summer. It is shown that the deepening of the mixed layer is the primary factor triggering the chlorophyll surface increase in winter. In the GOM, a possible interpretation is that this surface increase corresponds to a biomass increase. However, the present dataset suggests that the basin-scale climatological surface increase in chlorophyll content results from a vertical redistribution of subsurface chlorophyll and/or photoacclimation processes, rather than a net increase of biomass. One plausible explanation for this is the decoupling between the mixed-layer depth and the deep nutrient reservoir since mixed-layer depth only reaches the nitracline in sporadic events in the observations. Float measurements also provide evidence that the depth and the magnitude of the deep chlorophyll maximum is strongly controlled by the mesoscale variability, with higher chlorophyll biomass generally observed in cyclones rather than anticyclones.

  10. How Diffusivity, Thermocline and Incident Light Intensity Modulate the Dynamics of Deep Chlorophyll Maximum in Tyrrhenian Sea

    PubMed Central

    Valenti, Davide; Denaro, Giovanni; Spagnolo, Bernardo; Conversano, Fabio; Brunet, Christophe

    2015-01-01

    During the last few years theoretical works have shed new light and proposed new hypotheses on the mechanisms which regulate the spatio-temporal behaviour of phytoplankton communities in marine pelagic ecosystems. Despite this, relevant physical and biological issues, such as effects of the time-dependent mixing in the upper layer, competition between groups, and dynamics of non-stationary deep chlorophyll maxima, are still open questions. In this work, we analyze the spatio-temporal behaviour of five phytoplankton populations in a real marine ecosystem by using a one-dimensional reaction-diffusion-taxis model. The study is performed, taking into account the seasonal variations of environmental variables, such as light intensity, thickness of upper mixed layer and profiles of vertical turbulent diffusivity, obtained starting from experimental findings. Theoretical distributions of phytoplankton cell concentration was converted in chlorophyll concentration, and compared with the experimental profiles measured in a site of the Tyrrhenian Sea at four different times (seasons) of the year, during four different oceanographic cruises. As a result we find a good agreement between theoretical and experimental distributions of chlorophyll concentration. In particular, theoretical results reveal that the seasonal changes of environmental variables play a key role in the phytoplankton distribution and determine the properties of the deep chlorophyll maximum. This study could be extended to other marine ecosystems to predict future changes in the phytoplankton biomass due to global warming, in view of devising strategies to prevent the decline of the primary production and the consequent decrease of fish species. PMID:25629963

  11. Spatial and Temporal Patterns of Chlorophyll Concentration in the Southern California Bight

    NASA Astrophysics Data System (ADS)

    Nezlin, Nikolay P.; McLaughlin, Karen; Booth, J. Ashley T.; Cash, Curtis L.; Diehl, Dario W.; Davis, Kristen A.; Feit, Adriano; Goericke, Ralf; Gully, Joseph R.; Howard, Meredith D. A.; Johnson, Scott; Latker, Ami; Mengel, Michael J.; Robertson, George L.; Steele, Alex; Terriquez, Laura; Washburn, Libe; Weisberg, Stephen B.

    2018-01-01

    Distinguishing between local, anthropogenic nutrient inputs and large-scale climatic forcing as drivers of coastal phytoplankton biomass is critical to developing effective nutrient management strategies. Here we assess the relative importance of these two drivers by comparing trends in chlorophyll-a between shallow coastal (0.1-16.5 km) and deep offshore (17-700 km) areas, hypothesizing that coastal regions influenced by anthropogenic nutrient inputs may have different spatial and temporal patterns in chlorophyll-a concentration from offshore regions where coastal inputs are less influential. Quarterly conductivity-temperature-depth (CTD) fluorescence measurements collected from three southern California continental shelf regions since 1998 were compared to chlorophyll-a data from the more offshore California Cooperative Fisheries Investigations (CalCOFI) program. The trends in the coastal zone were similar to those offshore, with a gradual increase of chlorophyll-a biomass and shallowing of its maximum layer since the beginning of observations, followed by chlorophyll-a declining and deepening from 2010 to present. An exception was the northern coastal part of SCB, where chlorophyll-a continued increasing after 2010. The long-term increase in chlorophyll-a prior to 2010 was correlated with increased nitrate concentrations in deep waters, while the recent decline was associated with deepening of the upper mixed layer, both linked to the low-frequency climatic cycles of the Pacific Decadal Oscillation and North Pacific Gyre Oscillation. These large-scale factors affecting the physical structure of the water column may also influence the delivery of nutrients from deep ocean outfalls to the euphotic zone, making it difficult to distinguish the effects of anthropogenic inputs on chlorophyll along the coast.

  12. Chlorophyll a reconstruction from in situ measurements: 1. Method description

    NASA Astrophysics Data System (ADS)

    Fründt, B.; Dippner, J. W.; Waniek, J. J.

    2015-02-01

    Understanding the development of primary production is essential for projections of the global carbon cycle in the context of climate change. A chlorophyll a hindcast that serves as a primary production indicator was obtained by fitting in situ measurements of nitrate, chlorophyll a, and temperature. The resulting fitting functions were adapted to a modeled temperature field. The method was applied to observations from the Madeira Basin, in the northeastern part of the oligotrophic North Atlantic Subtropical Gyre and yielded a chlorophyll a field from 1989 to 2008 with a monthly resolution validated with remotely measured surface chlorophyll a data by SeaWiFS. The chlorophyll a hindcast determined with our method resolved the seasonal and interannual variability in the phytoplankton biomass of the euphotic zone as well as the deep chlorophyll maximum. Moreover, it will allow estimation of carbon uptake over long time scales.

  13. Metaproteome of the viral concentrates from the deep chlorophyll maximum of the South China Sea

    NASA Astrophysics Data System (ADS)

    Xie, Zhang-Xian; Chen, Feng; Zhang, Shu-Feng; Wang, Ming-Hua; Zhang, Hao; Kong, Ling-Fen; Dai, Min-Han; Hong, Hua-Sheng; Lin, Lin; Wang, Da-Zhi

    2016-04-01

    Viral concentrates (VCs) have been commonly used for studying viral diversity, viral metagenomics and virus-host interactions in the natural ecosystem. However, the protein characteristics of VCs have not been explored. Here, we applied shotgun proteomics to characterize the proteins of VCs collected from the oligotrophic deep chlorophyll maximum of the South China Sea. We found that 34% of the identified proteins were assigned to the viruses, mainly being those of SAR11 related bacteria, cyanobacteria and picophytoeukaryotes. The remaining 66% were non-viral proteins mostly originating from diverse bacteria, such as SAR324, SAR11 and the Alteromonadales, and were functionally dominated by transport, translation, sulfur metabolism and one-carbon metabolism. Among the non-viral proteins, 28% were extracellular proteins and 10% were identified exclusively in the VCs, suggesting that non-viral entities might exist in the VCs. This study demonstrated that metaproteomics provides a valuable avenue to explore not only the diversity and structure of a viral community but also the novel ecological functions affiliated with microbes in the natural environment.

  14. Deriving depths of deep chlorophyll maximum and water inherent optical properties: A regional model

    NASA Astrophysics Data System (ADS)

    Xiu, Peng; Liu, Yuguang; Li, Gang; Xu, Qing; Zong, Haibo; Rong, Zengrui; Yin, Xiaobin; Chai, Fei

    2009-10-01

    The Bohai Sea is a semi-enclosed inland sea with case-2 waters near the coast. A comprehensive set of optical data was collected during three cruises in June, August, and September 2005 in the Bohai Sea. The vertical profile measurements, such as chlorophyll concentration, water turbidity, downwelling irradiance, and diffuse attenuation coefficient, showed that the Bohai Sea was vertically stratified with a relative clear upper layer superimposed on a turbid lower layer. The upper layer was found to correspond to the euphotic zone and the deep chlorophyll maximum (DCM) occurs at the base of this layer. By tuning a semi-analytical model (Lee et al., 1998, 1999) for the Bohai Sea, we developed a method to derive water inherent optical properties and the depth of DCM from above-surface measurements. Assuming a 'fake' bottom in the stratified water, this new method retrieves the 'fake' bottom depth, which is highly correlated with the DCM depth. The average relative error between derived and measured values is 33.9% for phytoplankton absorption at 440 nm, 25.6% for colored detrital matter (detritus plus gelbstoff) absorption at 440 nm, and 24.2% for the DCM depth. This modified method can retrieve water inherent optical properties and monitor the depth of DCM in the Bohai Sea, and the method is also applicable to other stratified waters.

  15. An underwater light attenuation scheme for marine ecosystem models.

    PubMed

    Penta, Bradley; Lee, Zhongping; Kudela, Raphael M; Palacios, Sherry L; Gray, Deric J; Jolliff, Jason K; Shulman, Igor G

    2008-10-13

    Simulation of underwater light is essential for modeling marine ecosystems. A new model of underwater light attenuation is presented and compared with previous models. In situ data collected in Monterey Bay, CA. during September 2006 are used for validation. It is demonstrated that while the new light model is computationally simple and efficient it maintains accuracy and flexibility. When this light model is incorporated into an ecosystem model, the correlation between modeled and observed coastal chlorophyll is improved over an eight-year time period. While the simulation of a deep chlorophyll maximum demonstrates the effect of the new model at depth.

  16. Aerobic methane production in surface waters of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Finke, N.; Crespo-Medina, M.; Schweers, J.; Joye, S. B.

    2011-12-01

    Near surface water of the global oceans often show elevated methane concentrations compared to the water column below with concentrations in supersaturation in regard to the atmosphere (Lamontagne et al. 1973), resulting in a source of this potent greenhouse gas to the atmosphere. The mechanisms leading to methane supersaturation in surface waters remains unclear. Incubations with Trichodesmium-containing Pacific surface water suggested methylphosphonate as potential methane precursor under phosphate limiting conditions (Karl et al. 2008), whereas in phosphate rich Arctic surface waters, DMSP addition stimulated methane production (Damm et al. 2010). Surface waters of the Gulf of Mexico typically exhibit a methane maximum that is conincident with the deep chlorophyll maximum, below the depths where Trichodesmium is abundant. Addition of methylphosphonate, dimethylsulfoniopropionate (DMSP) or methane thiol (MeSH), the proposed methane precursor in DMSP conversion to methane, to oxic sea water did not affect methane production within the chlorophyll maximum at most stations, whereas methyl phosphonate addition stimulated methane production in the surface water and proposed deep Trichodesmium horizon. Pre-filtration of the water through a 10 μm sieve, which eliminated Trichodesmium, or through a 1.2 μm filter, which eliminated additional cyanobacteria such as Synechococcus, did not reduce methane production. Under dark oxic and dark anoxic conditions, however, methane production was reduced 5 and 7-20 fold, respectively, indicating that anerobic methane production in anoxic microniches is not responsible for the methane production. The reduction of methane production under dark conditions suggests that methane production is, in some yet unrecognized way, linked to phototrophic metabolism. Cyanobacteria are likely not responsible for the observed aerobic methane production in the surface waters of the Gulf of Mexico and while methylphosphonate is a potential precursor in the surface waters, the precursor and methanism of methane production within the coincident deep chlorophyll/methane maximum remains unknown. Lamontagne R, Swinnert J, Linnenbo V, Smith WD (1973) Methane concentrations in various marine environments. Journal of Geophysical Research 78, 5317-5324 Karl DM et al. (2008) Aerobic production of methane in the sea. Nature Geosciences 1, 473-478 Damm E et al. (2010) Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences 7, 1099-1108

  17. Seasonal dynamics in colored dissolved organic matter in the Mediterranean Sea: Patterns and drivers

    NASA Astrophysics Data System (ADS)

    Xing, Xiaogang; Claustre, Hervé; Wang, Haili; Poteau, Antoine; D`Ortenzio, Fabrizio

    2014-01-01

    Two autonomous profiling “Bio-Argo” floats were deployed in the northwestern and eastern sub-basins of the Mediterranean Sea in 2008. They recorded at high vertical (1 m) and temporal (5 day) resolution, the vertical distribution and seasonal variation of colored dissolved organic matter (CDOM), as well as of chlorophyll-a concentration and hydrological variables. The CDOM standing stock presented a clear seasonal dynamics with the progressive summer formation and winter destruction of subsurface CDOM maxima (YSM, for Yellow Substance Maximum). It was argued that subsurface CDOM is a by-product of phytoplankton, based on two main characteristics, (1) the YSM was located at the same depth than the deep chlorophyll maximum (DCM) and (2) the CDOM increased in summer parallels the decline in chlorophyll-a. These observations suggested an indirect but tight coupling between subsurface CDOM and phytoplankton via microbial activity or planktonic foodweb interactions. Moreover, the surface CDOM variations observed both by floats and MODIS displayed different seasonal dynamics from what recorded at subsurface one. This implies that CDOM standing stock can be hardly detected by satellite. It is worthnoting that surface CDOM was found to be more related to the sea surface temperature (SST) than chlorophyll-a concentration, suggesting its physical origin, in contrast to the biological origin of YSM and subsurface standing stocks.

  18. Vertical nutrient fluxes, turbulence and the distribution of chlorophyll a in the north-eastern North Sea

    NASA Astrophysics Data System (ADS)

    Bendtsen, Jørgen; Richardson, Katherine

    2017-04-01

    During summer the northern North Sea is characterized by nutrient rich bottom water masses and nutrient poor surface layers. This explains the distribution of chlorophyll a in the water column where a subsurface maximum, referred to as the deep chlorophyll maximum (DCM), often is present during the growth season. Vertical transport of nutrients between bottom water masses and the well lit surface layer stimulates phytoplankton growth and this generally explains the location of the DCM. However, a more specific understanding of the interplay between vertical transports, nutrient fluxes and phytoplankton abundance is required for identifying the nature of the vertical transport processes, e.g the role of advection versus vertical turbulent diffusion or the role of localized mixing associated with mesoscale eddies. We present results from the VERMIX study in the north-eastern North Sea where nutrients, chlorophyll a and turbulence profiles were measured along five north-south directed transects in July 2016. A high-resolution sampling program, with horizontal distances of 1-10 km between CTD-stations, resolved the horizontal gradients of chlorophyll a across the steep bottom slope from the relatively shallow central North Sea ( 50-80 m) towards the deep Norwegian Trench (>700 m). Low oxygen concentrations in the bottom water masses above the slope indicated enhanced biological production where vertical mixing would stimulate phytoplankton growth around the DCM. Measurements of variable fluorescence (Fv/Fm) showed elevated values in the DCM which demonstrates a higher potential for electron transport in the Photosystem II in the phytoplankton cells, i.e. an indication of nutrient-rich conditions favorable for phytoplankton production. Profiles of the vertical shear and microstructure of temperature and salinity were measured by a VMP-250 turbulence profiler and the vertical diffusion of nutrients was calculated from the estimated vertical turbulent diffusivity and the distributions of nutrients. Results from the five transects and two time-series stations, where vertical profiles were made at hourly intervals, showed that vertical mixing processes above the slope increased the vertical transport of nutrients significantly and mixing above the slope can explain the hydrographic features and the distribution of the DCM in the area.

  19. Chlorophyll a reconstruction from in situ measurements: 2. Marked carbon uptake decrease in the last century

    NASA Astrophysics Data System (ADS)

    Fründt, B.; Dippner, J. W.; Schulz-Bull, D. E.; Waniek, J. J.

    2015-02-01

    A chlorophyll a hindcast in the Madeira Basin from 1871 to 2008 was used to analyze the long-term variability in the oligotrophic, subtropical gyres in relation to the climate change of the last century. The deep chlorophyll maximum (DCM), as dominant pattern of the chlorophyll a field, showed a fast decrease in its strength in the 1940s. An absolute minimum was reached between 1967 and 1973 when no DCM established with a recovering to the end of the time series. Long-term variability of the DCM was related to the North Atlantic Oscillation with a time delay of 9 years. The marked decrease in the 1940s was correlated to the drop of the solar radiation in transition from early brightening to global dimming. Caused by the influence of the solar radiation and maybe related to increasing global temperatures in the last century, the integrated chlorophyll a concentration decreased by about 0.7 mg m-2 in 2008 compared to 1871. The high-resolved chlorophyll a hindcast allowed an estimation of the carbon uptake by the ocean due to primary production in the euphotic zone. A rough calculation over the area of the global subtropical oceans showed 700 megaton less carbon uptake in 2008.

  20. Vertical Mixing Effects on Phytoplankton Dynamics and Organic Carbon Export in the Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Kessouri, Faycal; Ulses, Caroline; Estournel, Claude; Marsaleix, Patrick; D'Ortenzio, Fabrizio; Severin, Tatiana; Taillandier, Vincent; Conan, Pascal

    2018-03-01

    A 3-D high-resolution coupled hydrodynamic-biogeochemical model of the western Mediterranean was used to study phytoplankton dynamics and organic carbon export in three regions with contrasting vertical regimes, ranging from deep convection to a shallow mixed layer. One month after the initial increase in surface chlorophyll (caused by the erosion of the deep chlorophyll maximum), the autumnal bloom was triggered in all three regions by the upward flux of nutrients resulting from mixed layer deepening. In contrast, at the end of winter, the end of turbulent mixing favored the onset of the spring bloom in the deep convection region. Low grazing pressure allowed rapid phytoplankton growth during the bloom. Primary production in the shallow mixed layer region, the Algerian subbasin, was characterized by a long period (4 months) of sustained phytoplankton development, unlike the deep convection region where primary production was inhibited during 2 months in winter. Despite seasonal variations, annual primary production in all three regions is similar. In the deep convection region, total organic carbon export below the photic layer (150 m) and transfer to deep waters (800 m) was 5 and 8 times, respectively, higher than in the Algerian subbasin. Although some of the exported material will be injected back into the surface layer during the next convection event, lateral transport, and strong interannual variability of MLD in this region suggest that a significant amount of exported material is effectively sequestrated.

  1. Autonomous gliders reveal features of the water column associated with foraging by adelie penguins.

    PubMed

    Kahl, L Alex; Schofield, Oscar; Fraser, William R

    2010-12-01

    Despite their strong dependence on the pelagic environment, seabirds and other top predators in polar marine ecosystems are generally studied during their reproductive phases in terrestrial environments. As a result, a significant portion of their life history is understudied which in turn has led to limited understanding. Recent advances in autonomous underwater vehicle (AUV) technologies have allowed satellite-tagged Adélie penguins to guide AUV surveys of the marine environment at the Palmer Long-Term Ecological Research (LTER) site on the western Antarctic Peninsula. Near real-time data sent via Iridium satellites from the AUVs to a centralized control center thousands of miles away allowed scientists to adapt AUV sampling strategies to meet the changing conditions of the subsurface. Such AUV data revealed the water masses and fine-scale features associated with Adélie penguin foraging trips. During this study, the maximum concentration of chlorophyll was between 30 and 50 m deep. Encompassing this peak in the chlorophyll concentration, within the water-column, was a mixture of nutrient-laden Upper Circumpolar Deep (UCDW) and western Antarctic Peninsula winter water (WW). Together, data from the AUV survey and penguin dives reveal that 54% of foraging by Adélie penguins occurs immediately below the chlorophyll maximum. These data demonstrate how bringing together emerging technologies, such as AUVs, with established methods such as the radio-tagging of penguins can provide powerful tools for monitoring and hypothesis testing of previously inaccessible ecological processes. Ocean and atmosphere temperatures are expected to continue increasing along the western Antarctic Peninsula, which will undoubtedly affect regional marine ecosystems. New and emerging technologies such as unmanned underwater vehicles and individually mounted satellite tracking devices will provide the tools critical to documenting and understanding the widespread ecological change expected in polar regions.

  2. The biological pump: Profiles of plankton production and consumption in the upper ocean

    NASA Astrophysics Data System (ADS)

    Longhurst, Alan R.; Glen Harrison, W.

    The ‘biological pump’ mediates flux of carbon to the interior of the ocean by interctions between the components of the vertically-structured pelagic ecosystem of the photic zone. Chlorophyll profiles are not a simple indicator of autotrophic biomass or production, because of non-linearities in the physiology of cells and preferential vertical distribution of taxa. Profiles of numbers or biomass of heterotrophs do not correspond with profiles of consumption, because of depth-selection (taxa, seasons) for reasons unconnected with feeding. Depths of highest plant biomass, chlorophyll and growth rate coincide when these depths are shallow, but become progressively separated in profiles where they are deeper - so that highest growth rate lies progressively shallower than the chloropyll maximum. It is still uncertain how plant biomass is distributed in deep profiles. Depths of greatest heterotroph biomass (mesozooplankton) are usually close to depths of fastest plant growth rate, and thus lie shallower than the chlorophyll maximum in profiles where this itself is deep. This correlation is functional, and relates to the role of heterotrophs in excreting metabolic wastes (especially ammonia), which may fuel a significant component of integrated algal production, especially in the oligotrophic ocean. Some, but not all faecal material from mesozooplankton of the photic zone appears in vertical flux below the pycnocine, depending on the size of the source organisms, and the degree of vertical mixing above the pycnocline. Diel, but probably not seasonal, vertical migration is significant in the vertical flux of dissolved nitrogen. Regional generalisations of the vertical relations of the main components of the ‘biological pump’ now appear within reach, and an approach is suggested.

  3. First Autonomous Bio-Optical Profiling Float in the Gulf of Mexico Reveals Dynamic Biogeochemistry in Deep Waters

    PubMed Central

    Green, Rebecca E.; Bower, Amy S.; Lugo-Fernández, Alexis

    2014-01-01

    Profiling floats equipped with bio-optical sensors well complement ship-based and satellite ocean color measurements by providing highly-resolved time-series data on the vertical structure of biogeochemical processes in oceanic waters. This is the first study to employ an autonomous profiling (APEX) float in the Gulf of Mexico for measuring spatiotemporal variability in bio-optics and hydrography. During the 17-month deployment (July 2011 to December 2012), the float mission collected profiles of temperature, salinity, chlorophyll fluorescence, particulate backscattering (bbp), and colored dissolved organic matter (CDOM) fluorescence from the ocean surface to a depth of 1,500 m. Biogeochemical variability was characterized by distinct depth trends and local “hot spots”, including impacts from mesoscale processes associated with each of the water masses sampled, from ambient deep waters over the Florida Plain, into the Loop Current, up the Florida Canyon, and eventually into the Florida Straits. A deep chlorophyll maximum (DCM) occurred between 30 and 120 m, with the DCM depth significantly related to the unique density layer ρ = 1023.6 (R2 = 0.62). Particulate backscattering, bbp, demonstrated multiple peaks throughout the water column, including from phytoplankton, deep scattering layers, and resuspension. The bio-optical relationship developed between bbp and chlorophyll (R2 = 0.49) was compared to a global relationship and could significantly improve regional ocean-color algorithms. Photooxidation and autochthonous production contributed to CDOM distributions in the upper water column, whereas in deep water, CDOM behaved as a semi-conservative tracer of water masses, demonstrating a tight relationship with density (R2 = 0.87). In the wake of the Deepwater Horizon oil spill, this research lends support to the use of autonomous drifting profilers as a powerful tool for consideration in the design of an expanded and integrated observing network for the Gulf of Mexico. PMID:24992646

  4. The deep chlorophyll layer in Lake Ontario: Extent, mechanisms of formation, and abiotic predictors

    USGS Publications Warehouse

    Scofield, Anne E.; Watkins, James M.; Weidel, Brian C.; Luckey, Frederick J.; Rudstam, Lars G.

    2017-01-01

    Epilimnetic production has declined in Lake Ontario, but increased production in metalimnetic deep chlorophyll layers (DCLs) may compensate for these losses. We investigated the spatial and temporal extent of DCLs, the mechanisms driving DCL formation, and the use of physical variables for predicting the depth and concentration of the deep chlorophyll maximum (DCM) during April–September 2013. A DCL with DCM concentrations 2 to 3 times greater than those in the epilimnion was present when the euphotic depth extended below the epilimnion, which occurred primarily from late June through mid-August. In situ growth was important for DCL formation in June and July, but settling and photoadaptation likely also contributed to the later-season DCL. Supporting evidence includes: phytoplankton biovolume was 2.4 × greater in the DCL than in the epilimnion during July, the DCL phytoplankton community of July was different from that of May and the July epilimnion (p = 0.004), and there were concurrences of DCM with maxima in fine particle concentration and dissolved oxygen saturation. Higher nutrient levels in the metalimnion may also be a necessary condition for DCL formation because July metalimnetic concentrations were 1.5 × (nitrate) and 3.5 × (silica) greater than in the epilimnion. Thermal structure variables including epilimnion depth, thermocline depth, and thermocline steepness were useful for predicting DCM depth; the inclusion of euphotic depth only marginally improved these predictions. However, euphotic depth was critical for predicting DCM concentrations. The DCL is a productive and predictable feature of the Lake Ontario ecosystem during the stratified period.

  5. Temporal and Spatial Patterns of Plankton and Microbial Dynamics in the Offshore Gulf of Mexico After the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Sutor, M.; Longnecker, K.

    2016-02-01

    The oligotrophic regions of the world oceans represent large and important marine ecosystems. The vast majority of animals in these zones are plankton and marine microbes and they play a key role in the export of carbon and organic matter to seafloor benthic communities and higher trophic levels. There is little published data on the ecology of plankton and microbes in the offshore waters of the Northern Gulf of Mexico. In the wake of the Deepwater Horizon oil spill, which was a primarily oceanic event, it is clear that understanding the microbial and planktonic community and how it responded to this event is critical to interpret any observed changes at higher trophic levels (i.e. fish). We conducted three cruises in the spring of 2011, 2012, and 2013 and measured the primary production, respiration, bacterial production, and community composition of plankton and marine microbes. The data show that there are important differences in these parameters between the surface waters and the deep chlorophyll maximum and proximity to the spill site in 2011. Spatial patterns in relation to the spill site are not pronounced in 2012 and 2013. These data represent an important estimate of the microbial and planktonic community ecology of this region and demonstrate the important role the deep chlorophyll maximum plays in this system.

  6. What if the Diatoms of the Deep Chlorophyll Maximum Can Ascend?

    NASA Astrophysics Data System (ADS)

    Villareal, T. A.

    2016-02-01

    Buoyancy regulation is an integral part of diatom ecology via its role in sinking rates and is fundamental to understanding their distribution and abundance. Numerous studies have documented the effects of size and nutrition on sinking rates. Many pelagic diatoms have low intrinsic sinking rates when healthy and nutrient-replete (< 1-2 meters per day). Physiological control of buoyancy via ion regulation and osmolyte control can easily result in cell sap densities less than seawater, resulting in near-zero sinking rates across a large size spectrum of diatoms as well as positive buoyancy in giant diatoms with their low surface:volume ratio. Ascent by smaller diatoms is much less described although predicted in cells as small as 200 cubic microns. Decreased sedimentation rates have long been linked to formation of layers in the water column, particularly at the low light and nutricline conditions of the deep chlorophyll maximum. The potential for ascending behavior adds an additional layer of complexity by allowing both active depth regulation similar to that observed in flagellated taxa and upward transport by some fraction of deep euphotic zone diatom blooms supported by nutrient injection. In this talk, I review the data documenting positive buoyancy in small diatoms, offer direct visual evidence of ascending behavior in common diatoms typical of both oceanic and coastal zones, and note the characteristics of sinking rate distributions within a single species. Buoyancy control leads to bidirectional movement at similar rates across a wide size spectrum of diatoms although the frequency of ascending behavior may be only a small portion of the individual species' abundance. While much remains to be learned, the paradigm of unidirectional downward movement by diatoms is both inaccurate and an oversimplification.

  7. Modeling Primary Productivity in the Margin Ice Zone from Glider-Based Measurements of Chlorophyll and Light during the 2014 Miz Program

    NASA Astrophysics Data System (ADS)

    Perry, M. J.; Lee, C.; Rainville, L.; Cetinic, I.; Yang, E. J.; Kang, S. H.

    2016-02-01

    In late summer 2014 during the Marginal Ice Zone (MIZ) Experiment, an international project sponsored by ONR, four Seagliders transited open water, through the marginal ice zone, and under ice-covered regions in the Beaufort Sea, penetrating as far as 100 km into the ice pack. The gliders navigated either by GPS in open water or, when under the ice, by acoustics from sound sources embedded in the MIZ autonomous observing array. The glider sensor suite included temperature, temperature microstructure, salinity, oxygen, chlorophyll fluorescence, optical backscatter, and multi-spectral downwelling irradiance. Cruises on the IBRV Araon operating in the open Beaufort Sea and on the R/V Ukpik and Norseman operating in continental shelf waters off Alaska's north slope allowed us to construct proxy libraries for converting chlorophyll fluorescence to chlorophyll concentration and optical backscatter to particulate organic carbon concentration. Water samples were collected for chlorophyll and particulate organic carbon analysis on the cruises and aligned with optical profiles of fluorescence and backscatter using sensors that were factory calibrated at the same time as the glider sensors. Fields of chlorophyll, particulate organic carbon, light, and primary productivity are constructed from the glider data. Productivity is modeled as a function of chlorophyll and light, using photosynthesis-light (PE) models with available PE parameters from Arctic measurements. During August the region under the ice was characterized by a deep chlorophyll maximum layer with low rates of production in overlying waters. A phytoplankton bloom developed in open water at the end of September, preceding the rapid reformation of ice, despite shorter days and reduce irradiation.

  8. Genomes of planktonic Acidimicrobiales: widening horizons for marine Actinobacteria by metagenomics.

    PubMed

    Mizuno, Carolina Megumi; Rodriguez-Valera, Francisco; Ghai, Rohit

    2015-02-10

    The genomes of four novel marine Actinobacteria have been assembled from large metagenomic data sets derived from the Mediterranean deep chlorophyll maximum (DCM). These are the first marine representatives belonging to the order Acidimicrobiales and only the second group of planktonic marine Actinobacteria to be described. Their streamlined genomes and photoheterotrophic lifestyle suggest that they are planktonic, free-living microbes. A novel rhodopsin clade, acidirhodopsins, related to freshwater actinorhodopsins, was found in these organisms. Their genomes suggest a capacity to assimilate C2 compounds, some using the glyoxylate bypass and others with the ethylmalonyl-coenzyme A (CoA) pathway. They are also able to derive energy from dimethylsulfopropionate (DMSP), sulfonate, and carbon monoxide oxidation, all commonly available in the marine habitat. These organisms appear to be prevalent in the deep photic zone at or around the DCM. The presence of sister clades to the marine Acidimicrobiales in freshwater aquatic habitats provides a new example of marine-freshwater transitions with potential evolutionary insights. Despite several studies showing the importance and abundance of planktonic Actinobacteria in the marine habitat, a representative genome was only recently described. In order to expand the genomic repertoire of marine Actinobacteria, we describe here the first Acidimicrobidae genomes of marine origin and provide insights about their ecology. They display metabolic versatility in the acquisition of carbon and appear capable of utilizing diverse sources of energy. One of the genomes harbors a new kind of rhodopsin related to the actinorhodopsin clade of freshwater origin that is widespread in the oceans. Our data also support their preference to inhabit the deep chlorophyll maximum and the deep photic zone. This work contributes to the perception of marine actinobacterial groups as important players in the marine environment with distinct and important contributions to nutrient cycling in the oceans. Copyright © 2015 Mizuno et al.

  9. Fronts and eddies: Engines for biogeochemical variability of the Central Red Sea during winter-spring periods

    NASA Astrophysics Data System (ADS)

    Zarokanellos, Nikolaos; Jones, Burton

    2017-04-01

    The central Red Sea (CRS) has been shown to be characterized by significant eddy activity throughout the year. In winter, weakened stratification may lead to enhanced vertical exchange contributing to physical and biogeochemical processes. In winter 2014-2015 we began an extended glider time series to monitor a region in the northern CRS where eddy activity is significant. Remote sensing and glider observations that include CTD, oxygen, CDOM and chlorophyll fluorescence, and multi-wavelength optical backscatter, have been used to characterize the effects of winter mixing and eddy activity in this region. During winter, deep mixing driven by surface cooling and strong winds combined with eddy features, can supply nutrients into the upper layer dramatically modifies the environment from its typically stratified conditions. These mixing events disperse the phytoplankton from the deep chlorophyll maximum throughout the upper mixed layer, and increase the chlorophyll signature detected by ocean color imagery. In addition to the mixing, cyclonic eddies in the region can enhance the vertical displacement of deeper, nutrient containing water toward the euphotic zone contributing to increased chlorophyll concentration and biological productivity. Remote sensing analyses indicate that these eddies also contribute to significant horizontal dispersion including the exchange between the open sea and coastal coral reef ecosystems. During the winter mixing periods, diel fluctuations in phytoplankton biomass have been observed indicative of solar driven plankton dynamics. The biogeochemical response to the subsurface physical processes provides a sensitive indicator to the processes that result from the mixing and eddy dynamics - processes that are not necessarily detectable via remote sensing. In order to understand the seasonal responses, but also the interannual influences on these processes, sustained in situ autonomous platform measurements are essential.

  10. Primary production in the northern Red Sea

    NASA Astrophysics Data System (ADS)

    Qurban, Mohammed Ali; Balala, Arvin C.; Kumar, Sanjeev; Bhavya, P. S.; Wafar, Mohideen

    2014-04-01

    Rates of uptake of carbon and nitrogen (ammonium, nitrate and urea) by phytoplankton, along with concentrations of nutrients and chlorophyll a, in the Saudi Arabian waters of the northern Red Sea (23 °N-28 °N) were measured in autumn, 2012. Concentrations of nitrate, nitrite and phosphate within the euphotic zone were in trace amounts while those of silicon were in excess of 0.5 μmol L- 1. Concentrations of chlorophyll (Chl a) were very low within the euphotic zone (0.01-0.6 μg L- 1 at discrete depths and 1.53-21.5 mg m- 2 as column-integrated values). A deep chlorophyll maximum and a nitrite maximum were present between 60 and 80 m at almost all of the stations occupied. Rates of carbon uptake at discrete depths ranged from 0.02 to 3 μg C L- 1 h- 1. Chl-normalized carbon uptake rates related with ambient light in a Michaelis-Menten kinetic pattern. About 80% of the carbon uptake was attributable to the < 20 μm fraction. Ammonium and urea were the nitrogen compounds taken up in preference by phytoplankton and accounted for close to 90% of the total N uptake. Considered together, these results indicate that the waters of the northern Red Sea are oligotrophic and that the primary production is strongly N-controlled. Analyses of the data and interpretation of the results led to the following speculations: (1) the perceived north-south gradient in Chl a (and possibly in primary production) in the Red Sea is maintained by circulation of Chl- and nutrient-rich waters through a series of gyres, (2) there is a greater role for heterotrophy and microbial loop in the trophic dynamics, and (3) in situ nitrification in the euphotic zone is an important source of N for phytoplankton and consequently export of carbon to deep sea could be lesser than that indicated by f-ratios.

  11. Bacterial Diversity in the South Adriatic Sea during a Strong, Deep Winter Convection Year

    PubMed Central

    Korlević, M.; Pop Ristova, P.; Garić, R.; Amann, R.

    2014-01-01

    The South Adriatic Sea is the deepest part of the Adriatic Sea and represents a key area for both the Adriatic Sea and the deep eastern Mediterranean. It has a role in dense water formation for the eastern Mediterranean deep circulation cell, and it represents an entry point for water masses originating from the Ionian Sea. The biodiversity and seasonality of bacterial picoplankton before, during, and after deep winter convection in the oligotrophic South Adriatic waters were assessed by combining comparative 16S rRNA sequence analysis and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). The picoplankton communities reached their maximum abundance in the spring euphotic zone when the maximum value of the chlorophyll a in response to deep winter convection was recorded. The communities were dominated by Bacteria, while Archaea were a minor constituent. A seasonality of bacterial richness and diversity was observed, with minimum values occurring during the winter convection and spring postconvection periods and maximum values occurring under summer stratified conditions. The SAR11 clade was the main constituent of the bacterial communities and reached the maximum abundance in the euphotic zone in spring after the convection episode. Cyanobacteria were the second most abundant group, and their abundance strongly depended on the convection event, when minimal cyanobacterial abundance was observed. In spring and autumn, the euphotic zone was characterized by Bacteroidetes and Gammaproteobacteria. Bacteroidetes clades NS2b, NS4, and NS5 and the gammaproteobacterial SAR86 clade were detected to co-occur with phytoplankton blooms. The SAR324, SAR202, and SAR406 clades were present in the deep layer, exhibiting different seasonal variations in abundance. Overall, our data demonstrate that the abundances of particular bacterial clades and the overall bacterial richness and diversity are greatly impacted by strong winter convection. PMID:25548042

  12. Impact of change in climate and policy from 1988 to 2007 on environmental and microbial variables at the time series station Boknis Eck, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hoppe, H.-G.; Giesenhagen, H. C.; Koppe, R.; Hansen, H.-P.; Gocke, K.

    2013-07-01

    Phytoplankton and bacteria are sensitive indicators of environmental change. The temporal development of these key organisms was monitored from 1988 to the end of 2007 at the time series station Boknis Eck in the western Baltic Sea. This period was characterized by the adaption of the Baltic Sea ecosystem to changes in the environmental conditions caused by the conversion of the political system in the southern and eastern border states, accompanied by the general effects of global climate change. Measured variables were chlorophyll, primary production, bacteria number, -biomass and -production, glucose turnover rate, macro-nutrients, pH, temperature and salinity. Negative trends with time were recorded for chlorophyll, bacteria number, bacterial biomass and bacterial production, nitrate, ammonia, phosphate, silicate, oxygen and salinity while temperature, pH, and the ratio between bacteria numbers and chlorophyll increased. Strongest reductions with time occurred for the annual maximum values, e.g. for chlorophyll during the spring bloom or for nitrate during winter, while the annual minimum values remained more stable. In deep water above sediment the negative trends of oxygen, nitrate, phosphate and bacterial variables as well as the positive trend of temperature were similar to those in the surface while the trends of salinity, ammonia and silicate were opposite to those in the surface. Decreasing oxygen, even in the surface layer, was of particular interest because it suggested enhanced recycling of nutrients from the deep hypoxic zones to the surface by vertical mixing. The long-term seasonal patterns of all variables correlated positively with temperature, except chlorophyll and salinity. Salinity correlated negatively with all bacterial variables (as well as precipitation) and positively with chlorophyll. Surprisingly, bacterial variables did not correlate with chlorophyll, which may be inherent with the time lag between the peaks of phytoplankton and bacteria during spring. Compared to the 20-yr averages of the environmental and microbial variables, the strongest negative deviations of corresponding annual averages were measured about ten years after political change for nitrate and bacterial secondary production (~ -60%), followed by chlorophyll (-50%) and bacterial biomass (-40%). Considering the circulation of surface currents in the Baltic Sea we interpret the observed patterns of the microbial variables at the Boknis Eck time series station as a consequence of the improved management of water resources after 1989 and - to a minor extent - the trends of the climate variables salinity and temperature.

  13. Impact of change in climate and policy from 1988 to 2007 on environmental and microbial variables at the time series station Boknis Eck, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hoppe, H.-G.; Giesenhagen, H. C.; Koppe, R.; Hansen, H.-P.; Gocke, K.

    2012-12-01

    Phytoplankton and bacteria are sensitive indicators of environmental change. The temporal development of these key organisms was monitored from 1988 to the end of 2007 at the time series station Boknis Eck in the Western Baltic Sea. This period was characterized by the adaption of the Baltic Sea ecosystem to changes in the environmental conditions caused by the collapse and conversion of the political system in the Southern and Eastern Border States, accompanied by the general effects of global climate change. Measured variables were chlorophyll, primary production, bacteria number, -biomass and -production, glucose turnover rate, macro-nutrients, pH, temperature and salinity. Negative trends with time were recorded for chlorophyll, the bacterial variables, nitrate, ammonia, phosphate, silicate, oxygen and salinity while temperature, pH, and the ratio between bacteria numbers and chlorophyll increased. The strongest reductions with time occurred for the annual maximum values, e.g. for chlorophyll during the spring bloom or for nitrate during winter, while the annual minimum values remained more stable. In deep water above sediment the negative trends of oxygen, nitrate, phosphate and bacterial variables as well as the positive trend of temperature were similar to those in the surface while the trends of salinity, ammonia and silicate were opposite to those in the surface. Decreasing oxygen even in the surface layer was of particular interest because it suggested enhanced recycling of nutrients from the deep hypoxic zones to the surface by vertical mixing. In the long run all variables correlated positively with temperature, except chlorophyll and salinity. Salinity correlated negatively with all bacterial variables as well as precipitation and positively with chlorophyll. Surprisingly, bacterial variables did not correlate with chlorophyll which may be inherent with the time lag between the peaks of phytoplankton and bacteria during spring. Compared to the 20-yr averages of the environmental and microbial variables, the strongest negative deviations of corresponding annual averages were measured about ten years after political change for nitrate and bacterial secondary production (~ -60%), followed by chlorophyll (-50%) and bacterial biomass (-40%). Considering the circulation of surface currents in the Baltic Sea we conclude that the improved management of water resources after 1989 together with the trends of the climate variables salinity and temperature were responsible for the observed patterns of the microbial variables at the Boknis Eck time series station.

  14. Biological consequences of a recurrent eddy off Point Conception, California

    NASA Technical Reports Server (NTRS)

    Haury, Loren R.; Simpson, James J.; Pelaez, Jose; Wisenhahn, David; Koblinsky, Chester J.

    1986-01-01

    The biological effects on three different time scales (100-day mesoscale, annual, and several-year) of a mesoscale anticyclonic eddy consistently found in shipboard surveys and satellite-sensed data several hundred kilometers southwest of Point Conception, CA, are described. A detailed shipboard study of the eddy in January 1981 found a complex system of fronts in surface chlorophyll at the northern edge of the eddy; microplankton and zooplankton distributions were strongly affected by entrainment processes at the surface and, apparently, at depth. Concurrent satellite coastal zone color scanner ocean color images show agreement with the general surface characteristics of the eddy chlorophyll field but do not reflect features deeper than about 25 m, including the contribution of the deep chlorophyll maximum to the integrated chlorophyll values. Satellite data for the period October 1980 through October 1981 and shipboard data from California Cooperative Oceanic Fisheries Investigations (CalCOFI) for December 1980 to July 1981 show the continued presence of the eddy in the sea surface temperature and color field and in the distributions of surface chlorophyll and zooplankton displacement volume. A review of the CalCOFI survey results from 1949 to the present time demonstrates the recurrent nature of the eddy system on a year-to-year basis. The eddy system appears to have a significant effect on the distribution of both oceanic and nearshore organisms. Offshore transport of coastal species occurs in the form of large entrained plumes or filaments.

  15. Increase in Dominance of Eukaryote Over Prokaryote Phytoplankton Biomass Between the Surface and the Deep Chlorophyll Maximum in the Summertime Western North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Vaillancourt, R. D.; Lance, V. P.; Hargreaves, B. R.; Marra, J. F.

    2016-02-01

    We report a general increase in the dominance of eukaryotes phytoplankton between the surface and the deep chlorophyll maximum (DCM) depths in the western North Atlantic Ocean along a transect between Bermuda (BATS) and the New England continental shelf sea during the summer 2007 & 2008. At each of 40 stations HPLC pigment concentrations were determined from 6 -10 depths from the surface to near or below the base of the euphotic zone. The community composition was determined using CHEMTAX (Mackey et al. 1996) using marker pigment ratios for varying light regimes published in Higgins et al (2011) and from our own monocultures. Cluster analysis was used to partition the dataset into five distinct regional groups to reduce the pigment ratio variability in CHEMTAX runs. Within each regional group the data were again clustered depth-wise into five to seven overlapping optical depth (OD) bins, and each OD bin was analyzed using a pigment ratio matrix ideal for that light depth range. This analysis revealed the likely presence of nine pigment classes: pelagophytes, diatoms, dinoflagellates, Synechococcus sp., Prochlorococcs sp., cryptophytes, chlorophytes, prasinophytes, and haptophytes. Partial verification of CHEMTAX results was obtained using flow cytometry cell counts coincident with samples from the BATS stations that show reasonable (according to published values) Chl a/cell values for surface and deep populations. At most locations and depths, the eukaryote haptophyte group dominated the phytoplankton biomass. In the upper optical depth the proportion of phytoplankton biomass contributed by prokaryotes was 39 (± 23)%. Deeper, between OD 1 and 2, this proportion decreased to 33 (± 17)%, between ODs 2 and 4.6 to 25 (± 15)%, and below OD 4.6, to 21 (± 17)%. Some geographic variation was observed, with the trend most pronounced in oligotrophic ocean waters and weaker in continental shelf waters.

  16. How to avoid eutrophication in coastal seas? A new approach to derive river-specific combined nitrate and phosphate maximum concentrations.

    PubMed

    Ménesguen, Alain; Desmit, Xavier; Dulière, Valérie; Lacroix, Geneviève; Thouvenin, Bénédicte; Thieu, Vincent; Dussauze, Morgan

    2018-07-01

    Since 1950, increase in nitrogen (N) and phosphorus (P) river loadings in the North-East Atlantic (NEA) continental seas has induced a deep change in the marine coastal ecosystems, leading to eutrophication symptoms in some areas. In order to recover a Good Ecological Status (GES) in the NEA, as required by European Water Framework Directive (WFD) and Marine Strategy Framework Directive (MSFD), reductions in N- and P-river loadings are necessary but they need to be minimal due to their economic impact on the farming industry. In the frame of the "EMoSEM" European project, we used two marine 3D ecological models (ECO-MARS3D, MIRO&CO) covering the Bay of Biscay, the English Channel and the southern North Sea to estimate the contributions of various sources (riverine, oceanic and atmospheric) to the winter nitrate and phosphate marine concentrations. The various distributed descriptors provided by the simulations allowed also to find a log-linear relationship between the 90th percentile of satellite-derived chlorophyll concentrations and the "fully bioavailable" nutrients, i.e. simulated nutrient concentrations weighted by light and stoichiometric limitation factors. Any GES threshold on the 90th percentile of marine chlorophyll concentration can then be translated in maximum admissible 'fully bioavailable' DIN and DIP concentrations, from which an iterative linear optimization method can compute river-specific minimal abatements of N and P loadings. The method has been applied to four major river groups, assuming either a conservative (8μgChlL -1 ) or a more socially acceptable (15μgChlL -1 ) GES chlorophyll concentration threshold. In the conservative case, maximum admissible winter concentrations for nutrients correspond to marine background values, whereas in the lenient case, they are close to values recommended by the WFD/MSFD. Both models suggest that to reach chlorophyll GES, strong reductions of DIN and DIP are required in the Eastern French and Belgian-Dutch river groups. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Detection of deep water formation from remote sensing chlorophyll in the NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Bernardello, Raffaele; Bahamon, Nixon; Ahumada, Miguel-Angel; Martin, Adrian; Henson, Stephanie

    2015-04-01

    The Northwestern Mediterranean Sea is one of the few regions in the world where Deep Water Formation (DWF) occurs. During wintertime cold and dry winds that typically occur in strong bursts lasting a few days, are able to erode the near-surface stability over this area, exposing the weakly stratified underwaters and initiate a phase of violent mixing and deep convection. DWF is not a steady-state process that recurs every year. Variations in wind stress and heat flux over the winter can induce a marked interannual variability: during some years the process is specially intense and completely absent during others. The extent of the area over which DWF occurs is also uncertain. The interannual variability of the DWF process is also associated to the variability in the seasonal phytoplankton dynamics over the area. The extent of the vertical mixing set the total amount of nutrients available for the phytoplankton during the following spring bloom. However, before the bloom, when deep convection is still active, surface chlorophyll (an index for phytoplankton biomass) is vertically diluted showing low surface concentration. The occurrence of these patches of anomalously low chlorophyll concentration can, in principle, be associated to the presence of active deep convection. In this study we investigate the possibility of exploiting such association in order to quantify the duration of deep convection and the extent of the area over which it occurs. These goals will be achieved through the analysis of remote sensing chlorophyll data and in-situ Argo-floats profiles.

  18. Seasonal Variation in the Spatial Distribution of Basking Sharks (Cetorhinus maximus) in the Lower Bay of Fundy, Canada

    PubMed Central

    Siders, Zachary A.; Westgate, Andrew J.; Johnston, David W.; Murison, Laurie D.; Koopman, Heather N.

    2013-01-01

    The local distribution of basking sharks in the Bay of Fundy (BoF) is unknown despite frequent occurrences in the area from May to November. Defining this species’ spatial habitat use is critical for accurately assessing its Special Concern conservation status in Atlantic Canada. We developed maximum entropy distribution models for the lower BoF and the northeast Gulf of Maine (GoM) to describe spatiotemporal variation in habitat use of basking sharks. Under the Maxent framework, we assessed model responses and distribution shifts in relation to known migratory behavior and local prey dynamics. We used 10 years (2002-2011) of basking shark surface sightings from July-October acquired during boat-based surveys in relation to chlorophyll-a concentration, sea surface temperature, bathymetric features, and distance to seafloor contours to assess habitat suitability. Maximum entropy estimations were selected based on AICc criterion and used to predict habitat utilizing three model-fitting routines as well as converted to binary suitable/non-suitable habitat using the maximum sensitivity and specificity threshold. All models predicted habitat better than random (AUC values >0.796). From July-September, a majority of habitat was in the BoF, in waters >100 m deep, and in the Grand Manan Basin. In October, a majority of the habitat shifted southward into the GoM and to areas >200 m deep. Model responses suggest that suitable habitat from July - October is dependent on a mix of distance to the 0, 100, 150, and 200 m contours but in some models on sea surface temperature (July) and chlorophyll-a (August and September). Our results reveal temporally dynamic habitat use of basking sharks within the BoF and GoM. The relative importance of predictor variables suggests that prey dynamics constrained the species distribution in the BoF. Also, suitable habitat shifted minimally from July-September providing opportunities to conserve the species during peak abundance in the region. PMID:24324747

  19. Basin-wide N2 fixation in the deep waters of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Benavides, Mar; Bonnet, Sophie; Hernández, Nauzet; Martínez-Pérez, Alba María.; Nieto-Cid, Mar; Álvarez-Salgado, Xosé Antón; Baños, Isabel; Montero, María. F.; Mazuecos, Ignacio P.; Gasol, Josep M.; Osterholz, Helena; Dittmar, Thorsten; Berman-Frank, Ilana; Arístegui, Javier

    2016-06-01

    Recent findings indicate that N2 fixation is significant in aphotic waters, presumably due to heterotrophic diazotrophs depending on organic matter for their nutrition. However, the relationship between organic matter and heterotrophic N2 fixation remains unknown. Here we explore N2 fixation in the deep chlorophyll maximum and underneath deep waters across the whole Mediterranean Sea and relate it to organic matter composition, characterized by optical and molecular methods. Our N2 fixation rates were in the range of those previously reported for the euphotic zone of the Mediterranean Sea (up to 0.43 nmol N L-1 d-1) and were significantly correlated to the presence of relatively labile organic matter with fluorescence and molecular formula properties representative for peptides and unsaturated aliphatics and associated with the presence of more oxygenated ventilated water masses. Finally, and despite that the aphotic N2 fixation contributes largely to total water column diazotrophic activity (>50%), its contribution to overall nitrogen inputs to the basin is negligible (<0.5%).

  20. A simple fiber-optic microprobe for high resolution light measurements: application in marine sediment

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Des Marais, D. J.

    1986-01-01

    A fiber-optic microphobe is described which is inexpensive and simple to build and use. It consists of an 80-micrometers optical fiber which at the end is tapered down to a rounded sensing tip of 20-30-micrometers diameter. The detector is a hybrid photodiode/amplifier. The probe has a sensitivity of 0.01 microEinst m-2 s-1 and a spectral range of 300-1,100 nm. Spectral light gradients were measured in fine-grained San Francisco Bay sediment that had an undisturbed diatom coating on the surface. The photic zone of the mud was only 0.4 mm deep. Measured in situ spectra showed extinction maxima at 430-520, 620-630, 670, and 825-850 nm due to absorption by chlorophyll a, carotenoids, phycocyanin, and bacterio-chlorophyll a. Maximum light penetration in the visible range was found in both the violet and the red < or = 400 and > or = 700 nm.

  1. Fluorescence characteristics in the deep waters of South Gulf of México.

    PubMed

    Schifter, I; Sánchez-Reyna, G; González-Macías, C; Salazar-Coria, L; González-Lozano, C

    2017-10-15

    Vertical profiles of deep-water fluorescence determined by the chlorophyll sensor, polycyclic aromatic hydrocarbons, biomarkers, and other miscellaneous parameters measured in the southern Gulf of Mexico are reported. In the course of the survey, unexpected deep fluorescences were recorded (>1100m depth) in half of the 40 stations studied, a novel finding in this area of the Gulf. Currently, the deep-water fluorescence phenomenon is not completely understood, however we observe linear correlation between the fluorescence intensity and chlorophyll-α concentrations and coincidence of higher number of hydrocarbonoclastic bacteria in samples collected precisely in the deep-water fluorescence. This information is particularly interesting in relation to the Deepwater Horizon oil spill in 2010, in view that the aftermaths of the spill can be observed till today as oil plumes trapped in deep water layers that may disturb the natural water ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Plankton networks driving carbon export in the oligotrophic ocean

    PubMed Central

    Larhlimi, Abdelhalim; Roux, Simon; Darzi, Youssef; Audic, Stephane; Berline, Léo; Brum, Jennifer; Coelho, Luis Pedro; Espinoza, Julio Cesar Ignacio; Malviya, Shruti; Sunagawa, Shinichi; Dimier, Céline; Kandels-Lewis, Stefanie; Picheral, Marc; Poulain, Julie; Searson, Sarah; Stemmann, Lars; Not, Fabrice; Hingamp, Pascal; Speich, Sabrina; Follows, Mick; Karp-Boss, Lee; Boss, Emmanuel; Ogata, Hiroyuki; Pesant, Stephane; Weissenbach, Jean; Wincker, Patrick; Acinas, Silvia G.; Bork, Peer; de Vargas, Colomban; Iudicone, Daniele; Sullivan, Matthew B.; Raes, Jeroen; Karsenti, Eric; Bowler, Chris; Gorsky, Gabriel

    2015-01-01

    The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterised. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria, alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of just a few bacterial and viral genes can predict most of the variability in carbon export in these regions. PMID:26863193

  3. Plankton networks driving carbon export in the oligotrophic ocean

    NASA Astrophysics Data System (ADS)

    2016-04-01

    The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterized. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria and alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of a few bacterial and viral genes can predict a significant fraction of the variability in carbon export in these regions.

  4. Mixing and phytoplankton dynamics in a submarine canyon in the West Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Carvalho, Filipa; Kohut, Josh; Oliver, Matthew J.; Sherrell, Robert M.; Schofield, Oscar

    2016-07-01

    Bathymetric depressions (canyons) exist along the West Antarctic Peninsula shelf and have been linked with increased phytoplankton biomass and sustained penguin colonies. However, the physical mechanisms driving this enhanced biomass are not well understood. Using a Slocum glider data set with over 25,000 water column profiles, we evaluate the relationship between mixed layer depth (MLD, estimated using the depth of maximum buoyancy frequency) and phytoplankton vertical distribution. We use the glider deployments in the Palmer Deep region to examine seasonal and across canyon variability. Throughout the season, the ML becomes warmer and saltier, as a result of vertical mixing and advection. Shallow ML and increased stratification due to sea ice melt are linked to higher chlorophyll concentrations. Deeper mixed layers, resulting from increased wind forcing, show decreased chlorophyll, suggesting the importance of light in regulating phytoplankton productivity. Spatial variations were found in the canyon head region where local physical water column properties were associated with different biological responses, reinforcing the importance of local canyon circulation in regulating phytoplankton distribution in the region. While the mechanism initially hypothesized to produce the observed increases in phytoplankton over the canyons was the intrusion of warm, nutrient enriched modified Upper Circumpolar Deep Water (mUCDW), our analysis suggests that ML dynamics are key to increased primary production over submarine canyons in the WAP.

  5. Chlorophyll-a specific volume scattering function of phytoplankton.

    PubMed

    Tan, Hiroyuki; Oishi, Tomohiko; Tanaka, Akihiko; Doerffer, Roland; Tan, Yasuhiro

    2017-06-12

    Chlorophyll-a specific light volume scattering functions (VSFs) by cultured phytoplankton in visible spectrum range is presented. Chlorophyll-a specific VSFs were determined based on the linear least squares method using a measured VSFs with different chlorophyll-a concentrations. We found obvious variability of it in terms of spectral and angular shapes of VSF between cultures. It was also presented that chlorophyll-a specific scattering significantly affected on spectral variation of the remote sensing reflectance, depending on spectral shape of b. This result is useful for developing an advance algorithm of ocean color remote sensing and for deep understanding of light in the sea.

  6. A coupled physical-biological pelagic model of a shallow sill fjord

    NASA Astrophysics Data System (ADS)

    Aksnes, Dag L.; Lie, Ulf

    1990-10-01

    A vertically resolved model for the land-locked fjord Lindåspollene, western Norway is presented. Salinity, temperature, oxygen, nitrogen-nutrients, silicate, and two groups of phytoplankton and herbivores are represented as dynamic variables. From 'below' the model is driven by solar radiation, precipitation, wind and tidal exchange and from 'above' by herbivore mortality. Simulation results are presented and discussed together with actual observations from Lindåspollene. The main seasonal and vertical characteristics of the phytoplankton and herbivore dynamics seem to be well reflected by the model, and realistic seasonal patterns may be produced for several successive years. The most characteristic vertical features are the formation of a summer surface production maximum and a deep chlorophyll maximum. Furthermore, a herbivore biomass which develops in the surface layer divides into a shallow and a deep component during summer and becomes concentrated in the surface layer again in the autumn. The nutricline and the pycnocline develop independently of one another, with consequences for the supply of nutrients to the upper euphotic zone. The bottom-up control exerted by the meteorological forcing, especially the freshwater runoff, seems to be of paramount significance for the observed vertical structure and seasonality of the present fjord system.

  7. The dynamics of suspended particulate matter (SPM) and chlorophyll-a from intratidal to annual time scales in a coastal turbidity maximum

    NASA Astrophysics Data System (ADS)

    van der Hout, C. M.; Witbaard, R.; Bergman, M. J. N.; Duineveld, G. C. A.; Rozemeijer, M. J. C.; Gerkema, T.

    2017-09-01

    The analysis of 1.8 years of data gives an understanding of the response to varying forcing of suspended particulate matter (SPM) and chlorophyll-a (CHL-a) in a coastal turbidity maximum zone (TMZ). Both temporal and vertical concentration variations in the near-bed layer (0-2 m) in the shallow (11 m deep) coastal zone at 1 km off the Dutch coast are shown. Temporal variations in the concentration of both parameters are found on tidal and seasonal scales, and a marked response to episodic events (e.g. storms). The seasonal cycle in the near-bed CHL-a concentration is determined by the spring bloom. The role of the wave climate as the primary forcing in the SPM seasonal cycle is discussed. The tidal current provides a background signal, generated predominantly by local resuspension and settling and a minor role is for advection in the cross-shore and the alongshore direction. We tested the logarithmic Rouse profile to the vertical profiles of both the SPM and the CHL-a data, with respectively 84% and only 2% success. The resulting large percentage of low Rouse numbers for the SPM profiles suggest a mixed suspension is dominant in the TMZ, i.e. surface SPM concentrations are in the same order of magnitude as near-bed concentrations.

  8. Patterns and Drivers of Vertical Distribution of the Ciliate Community from the Surface to the Abyssopelagic Zone in the Western Pacific Ocean.

    PubMed

    Zhao, Feng; Filker, Sabine; Xu, Kuidong; Huang, Pingping; Zheng, Shan

    2017-01-01

    The deep sea is one of the largest but least understood ecosystems on earth. Knowledge about the diversity and distribution patterns as well as drivers of microbial eukaryote (including ciliates) along the water column, particularly below the photic zone, is scarce. In this study, we investigated the diversity of pelagic ciliates, the main group of marine microeukaryotes, their vertical distribution from the surface to the abyssopelagic zone, as well as their horizontal distribution over a distance of 1,300 km in the Western Pacific Ocean, using high-throughput DNA and cDNA (complementary DNA) sequencing. No distance-decay relationship could be detected along the horizontal scale; instead, a distinct vertical distribution within the ciliate communities was revealed. The alpha diversity of the ciliate communities in the deep chlorophyll maximum (DCM) and the 200 m layer turned out to be significantly higher compared with the other water layers. The ciliate communities in the 200 m water layer appeared to be more similar to those in deeper layers from 1,000 m to about 5,000 m than to the surface and DCM ciliate communities. Dominant species in the bathypelagic and abyssopelagic zone, particularly some parasites, were also detected in the 200 m layer, but were almost absent in the surface layer. The 200 m layer, therefore, seems to be an important "species bank" for deep ocean layers. Statistical analyses further revealed significant effects of temperature and chlorophyll a on the partitioning of ciliate diversity, indicating that environmental factors are a stronger force in shaping marine pelagic ciliate communities than the geographic distance.

  9. Physical and Biogeochemical Controls of the Phytoplankton Blooms in North Western Mediterranean Sea: A Multiplatform Approach Over a Complete Annual Cycle (2012-2013 DEWEX Experiment)

    NASA Astrophysics Data System (ADS)

    Mayot, Nicolas; D'Ortenzio, Fabrizio; Taillandier, Vincent; Prieur, Louis; de Fommervault, Orens Pasqueron; Claustre, Hervé; Bosse, Anthony; Testor, Pierre; Conan, Pascal

    2017-12-01

    The North Western Mediterranean Sea exhibits recurrent and significant autumnal and spring phytoplankton blooms. The existence of these two blooms coincides with typical temperate dynamics. To determine the potential control of physical and biogeochemical factors on these phytoplankton blooms, data from a multiplatform approach (combining ships, Argo and BGC-Argo floats, and bio-optical gliders) were analyzed in association with satellite observations in 2012-2013. The satellite framework allowed a simultaneous analysis over the whole annual cycle of in situ observations of mixed layer depth, photosynthetical available radiation, particle backscattering, nutrients (nitrate and silicate), and chlorophyll-a concentrations. During the year 2012-2013, satellite ocean color observations, confirmed by in situ data, have revealed the existence of two areas (or bioregions) with comparable autumnal blooms but contrasting spring blooms. In both bioregions, the ratio of the euphotic zone (defined as the isolume 0.415 mol photons m-2 d-1, Z0.415) and the MLD identified the initiation of the autumnal bloom, as well as the maximal annual increase in [Chl-a] in spring. In fact, the autumnal phytoplankton bloom might be initiated by mixing of the summer shallowing deep chlorophyll maximum, while the spring restratification (when Z0.415/MLD ratio became >1) might induce surface phytoplankton production that largely overcomes the losses. Finally, winter deep convection events that took place in one of the bioregions induced higher net accumulation rate of phytoplankton in spring associated with a diatom-dominated phytoplankton community principally. We suggest that very deep winter MLD lead to an increase in surface silicates availability, which favored the development of diatoms.

  10. Spatio-Temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian; Wu, Jin; Wu, Xiaocui; Gioli, Beniamino; Wohlfahrt, Georg; Cescatti, Alessandro; van der Tol, Christiaan; Zhou, Sha; Gough, Christopher M.; Gentine, Pierre; Zhang, Yongguang; Steinbrecher, Rainer; Ardö, Jonas

    2018-04-01

    Light-use efficiency (LUE), which quantifies the plants' efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production estimation. Here we use satellite-based solar-induced chlorophyll fluorescence as a proxy for photosynthetically active radiation absorbed by chlorophyll (APARchl) and derive an estimation of the fraction of APARchl (fPARchl) from four remotely sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (ɛmaxchl), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPARchl, suggesting the corresponding ɛmaxchl to have less seasonal variation. This spatio-temporal convergence of LUE derived from fPARchl can be used to build simple but robust gross primary production models and to better constrain process-based models.

  11. Biodiversity patterns of plankton assemblages at the extremes of the Red Sea.

    PubMed

    Pearman, J K; Kürten, S; Sarma, Y V B; Jones, B H; Carvalho, S

    2016-03-01

    The diversity of microbial plankton has received limited attention in the main basin of the Red Sea. This study investigates changes in the community composition and structure of prokaryotes and eukaryotes at the extremes of the Red Sea along cross-shelf gradients and between the surface and deep chlorophyll maximum. Using molecular methods to target both the 16S and 18S rRNA genes, it was observed that the dominant prokaryotic classes were Acidimicrobiia, Alphaproteobacteria and Cyanobacteria, regardless of the region and depth. The eukaryotes Syndiniophyceae and Dinophyceae between them dominated in the north, with Bacillariophyceae and Mamiellophyceae more prominent in the southern region. Significant differences were observed for prokaryotes and eukaryotes for region, depth and distance from shore. Similarly, it was noticed that communities became less similar with increasing distance from the shore. Canonical correspondence analysis at the class level showed that Mamiellophyceae and Bacillariophyceae correlated with increased nutrients and chlorophyll a found in the southern region, which is influenced by the input of Gulf of Aden Intermediate Water. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Role of physical processes in chlorophyll distribution in the western tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    George, Jenson V.; Nuncio, M.; Chacko, Racheal; Anilkumar, N.; Noronha, Sharon B.; Patil, Shramik M.; Pavithran, Sini; Alappattu, Denny P.; Krishnan, K. P.; Achuthankutty, C. T.

    2013-03-01

    Physical control of the chlorophyll a (chl a) distribution in the western tropical Indian Ocean (WTIO, 8°N to 18°S along 65°E) was studied during the 2008 winter monsoon (WM) and the 2009 summer monsoon (SM). During both seasons, a prominent deep chlorophyll maximum (DCM, 0.3-0.5 mg m- 3) was observed at all stations between 8°N and 10°S in the depth range of 50-75 m, but south of 10°S, this phenomenon was observed as deeper (~ 120 m) and relatively weak (0.15-0.3 mg m- 3). During the SM, in addition to seasonal forcing, eddies and a freshened surface layer also played major roles in controlling the DCM and the surface chl a concentrations in the southern Arabian Sea and the equatorial Indian Ocean. During the WM, surface freshening controlled the chl a distribution in the Seychelles Chagos Thermocline Ridge (SCTR, 5°S-10°S) region by modulating the static stability and mixed layer depth. It appears that the surface freshening in this region is associated with the core of the South Equatorial Current. South of the SCTR, the chl a distribution was predominantly determined by the anti-cyclonic eddies in both seasons. The spatial patterns of the Sea Level Anomaly (SLA) followed most of the thermocline features observed during the study period.

  13. Annual phytoplankton blooming using satellite-derived chlorophyll-a data around the Vitória-Trindade Chain, Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Lemos, A. T.; Ghisolfi, R. D. R.; Mazzini, P. L. F.

    2018-06-01

    The present study aimed to investigate the influence that four seamounts of the Vitória-Trindade Chain (VTC): the Vitória (VB), Jaseur (JB), Davis (DB) and Dogaressa (DoB) Banks, located on the western South Atlantic Ocean, potentially exert on the annual variability of the chlorophyll-a concentration [Chla] over their summits and surrounding regions. Nine years (January 2003 to December 2011) of monthly and weekly (8-days composite) satellite derived chlorophyll-a concentration, with 4 km spatial resolution were obtained for the study area using the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Aqua satellite. For comparison purposes, different time-series were analyzed for both the region over the seamounts and the surrounding waters. A Gaussian model was adjusted to each of the time series of monthly mean chlorophyll-a concentration, and the curve parameters were used in order to objectively characterize the blooms. The results showed that the entire study area (both above and beyond the seamounts) underwent seasonal blooms, with peak of chlorophyll-a occurring around the austral winter (June, July and August), when due to surface cooling the deepening of the surface mixed layer is observed, enriching the photic zone with nutrients. Nevertheless, the peak chlorophyll-a concentration over the shallow seamounts was twice higher than that over deep seamounts or in the adjacent deep ocean. Our results suggest that the presence of these seamounts and their morphological characteristics can significantly impact the primary productivity observed in this region. Thus, the VTC can be divided into areas of diffuse [Chla] (VB and JB), with lower zonal scattering and higher phytoplankton concentrations (DB), and areas distant from the continental shelf and the mesoscale processes that develop there, hence with lower [Chla] (DoB). The profound impact that these seamounts have on the oceanic ecosystem may turn them into becoming true oasis in the oligotrophic deep ocean, supporting higher trophic levels, as well as important fisheries in this region.

  14. Picophytoplankton physiology and the microbial loop

    NASA Astrophysics Data System (ADS)

    Stawiarski, Beate

    2013-04-01

    Physiological observations are needed for a better understanding of the complexity of marine ecosystem processes. This information is important for a better model formulation and parameterisation to identify the consequences of, and feedbacks to, global change and to make future projections. Picophytoplankton form the smallest component of the phytoplankton community (˜ 3μm) and show a substantial contribution to phytoplankton biomass in oligotrophic oceans. Here they also have an important function as primary producers in the microbial loop. They include cyanobacteria, represented by Prochlorococcus and Synechococcus, and picoeukaryotes. The aim of this project is to achieve a better representation of picophytoplankton in the global biogeochemical model PlankTOM 10. PlankTOM 10 simplifies the complex ecosystem into 10 conceptual groups also known as plankton functional types (PFTs). These groups of organisms are defined by physiological and biochemical parameters (6 of phytoplankton, 3 of zooplankton and 1 of bacteria). Furthermore, the question will be addressed, whether picophytoplankton are typical K-strategists with low minimum nutrient and high maximum chlorophyll quota relative to carbon, or by having superior nutrient uptake kinetics and light harvesting (high αChl). Laboratory experiments showed that the smaller picoprokaryotes respond faster to increasing light intensities than their picoeukaryotic counterpart. Preliminary data show that the initial slope of the photosynthesis vs. irradiance curve (αChl) of picoprokaryotes is about 1.5 times higher than of picoeukaryotes. This is consistent with their common distribution at the deep chlorophyll maximum. The maximum chlorophyll quota are not significantly different. Temperature experiments confirmed that the maximum growth rates of picophytoplankton at the optimum temperature (0.47 ± 0.17 d-1 for prokaryotes and 1.05 ± 0.47 d-1 for eukaryotes) are significantly lower than of diatoms (1.57 ± 0.73 d-1, Chollet et al. in prep.) and not significantly different from coccolithophores (0.68 ± 0.10 d-1, Buitenhuis et al. 2008), consistent with the characterisation of picophytoplanton as K-strategists. Their optimum temperatures were found to be 22.7 ± 2.0 ° C for prokaryotes and 23.6 ± 3.1 ° C for eukaryotes. Nutrient limitation experiments will be conducted to characterize the nutrient uptake and elemental composition of picophytoplankton. Finally the results of all experiments will then be used to improve the representation of picophytoplankton in PlankTOM10, evaluated against a recently compiled global database of picophytoplankton biomass.

  15. Late Quaternary palaeoenvironmental reconstruction of sediment drift accumulation in the Malta Graben (central Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Ferraro, Serena; Sulli, Attilio; Di Stefano, Enrico; Giaramita, Luigi; Incarbona, Alessandro; Graham Mortyn, P.; Sprovieri, Mario; Sprovieri, Rodolfo; Tonielli, Renato; Vallefuoco, Mattia; Zizzo, Elisabetta; Tranchida, Giorgio

    2018-06-01

    The Malta Graben is a deep tectonic depression in the Sicily Channel, bounded by NW-SE normal faults and filled by thick Pliocene-Quaternary deposits. A previous analysis of a giant piston core (LC09) from the Malta Graben had revealed a wide range of sedimentary features (carbonate turbidites, bioturbated mud and scours), although the chronostratigraphic constraint of the stacking pattern has remained elusive. After establishing a reliable chronological framework based on seven radiocarbon dates for a shorter core from the Malta Graben (ANSIC03-735), a down-core analysis of planktonic foraminifer and coccolith abundance, stable isotopes and sediment grain size was carried out. Since the last glacial maximum, palaeoenvironmental conditions (surface fertility and deep chlorophyll maximum during the last glacial and the Younger Dryas; warm and oligotrophic water masses, with a deep nutricline and intense winter mixing during the Holocene) as well as selected calcareous plankton taxa trends and peaks seem to be similar to those reported for other central and western Mediterranean sites, possibly in spite of a unique response of these areas to late Quaternary climatic fluctuations. Four distinct layers, each tens of centimetres thick, are barren of foraminifers but not of coccoliths. Morphobathymetric data as well as new high-resolution and high-penetration seismic profiles show that prolonged contouritic activity has persisted on the western side of the Malta Graben. It is thus likely that layers barren of foraminifers are due to the overflow of fine-grained (clayey) material beyond drift channel dikes.

  16. Late Quaternary palaeoenvironmental reconstruction of sediment drift accumulation in the Malta Graben (central Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Ferraro, Serena; Sulli, Attilio; Di Stefano, Enrico; Giaramita, Luigi; Incarbona, Alessandro; Graham Mortyn, P.; Sprovieri, Mario; Sprovieri, Rodolfo; Tonielli, Renato; Vallefuoco, Mattia; Zizzo, Elisabetta; Tranchida, Giorgio

    2018-03-01

    The Malta Graben is a deep tectonic depression in the Sicily Channel, bounded by NW-SE normal faults and filled by thick Pliocene-Quaternary deposits. A previous analysis of a giant piston core (LC09) from the Malta Graben had revealed a wide range of sedimentary features (carbonate turbidites, bioturbated mud and scours), although the chronostratigraphic constraint of the stacking pattern has remained elusive. After establishing a reliable chronological framework based on seven radiocarbon dates for a shorter core from the Malta Graben (ANSIC03-735), a down-core analysis of planktonic foraminifer and coccolith abundance, stable isotopes and sediment grain size was carried out. Since the last glacial maximum, palaeoenvironmental conditions (surface fertility and deep chlorophyll maximum during the last glacial and the Younger Dryas; warm and oligotrophic water masses, with a deep nutricline and intense winter mixing during the Holocene) as well as selected calcareous plankton taxa trends and peaks seem to be similar to those reported for other central and western Mediterranean sites, possibly in spite of a unique response of these areas to late Quaternary climatic fluctuations. Four distinct layers, each tens of centimetres thick, are barren of foraminifers but not of coccoliths. Morphobathymetric data as well as new high-resolution and high-penetration seismic profiles show that prolonged contouritic activity has persisted on the western side of the Malta Graben. It is thus likely that layers barren of foraminifers are due to the overflow of fine-grained (clayey) material beyond drift channel dikes.

  17. Genomes of Planktonic Acidimicrobiales: Widening Horizons for Marine Actinobacteria by Metagenomics

    PubMed Central

    Mizuno, Carolina Megumi; Ghai, Rohit

    2015-01-01

    ABSTRACT The genomes of four novel marine Actinobacteria have been assembled from large metagenomic data sets derived from the Mediterranean deep chlorophyll maximum (DCM). These are the first marine representatives belonging to the order Acidimicrobiales and only the second group of planktonic marine Actinobacteria to be described. Their streamlined genomes and photoheterotrophic lifestyle suggest that they are planktonic, free-living microbes. A novel rhodopsin clade, acidirhodopsins, related to freshwater actinorhodopsins, was found in these organisms. Their genomes suggest a capacity to assimilate C2 compounds, some using the glyoxylate bypass and others with the ethylmalonyl-coenzyme A (CoA) pathway. They are also able to derive energy from dimethylsulfopropionate (DMSP), sulfonate, and carbon monoxide oxidation, all commonly available in the marine habitat. These organisms appear to be prevalent in the deep photic zone at or around the DCM. The presence of sister clades to the marine Acidimicrobiales in freshwater aquatic habitats provides a new example of marine-freshwater transitions with potential evolutionary insights. PMID:25670777

  18. Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria

    PubMed Central

    Ghai, Rohit; Mizuno, Carolina Megumi; Picazo, Antonio; Camacho, Antonio; Rodriguez-Valera, Francisco

    2013-01-01

    We describe a deep-branching lineage of marine Actinobacteria with very low GC content (33%) and the smallest free living cells described yet (cell volume ca. 0.013 μm3), even smaller than the cosmopolitan marine photoheterotroph, ‘Candidatus Pelagibacter ubique'. These microbes are highly related to 16S rRNA sequences retrieved by PCR from the Pacific and Atlantic oceans 20 years ago. Metagenomic fosmids allowed a virtual genome reconstruction that also indicated very small genomes below 1 Mb. A new kind of rhodopsin was detected indicating a photoheterotrophic lifestyle. They are estimated to be ~4% of the total numbers of cells found at the site studied (the Mediterranean deep chlorophyll maximum) and similar numbers were estimated in all tropical and temperate photic zone metagenomes available. Their geographic distribution mirrors that of picocyanobacteria and there appears to be an association between these microbial groups. A new sub-class, ‘Candidatus Actinomarinidae' is proposed to designate these microbes. PMID:23959135

  19. Spatio-temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll

    DOE PAGES

    Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian; ...

    2018-04-03

    Light-use efficiency (LUE), which quantifies the plants’ efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production (GPP) estimation. Here we use satellite-based solar-induced chlorophyll fluorescence (SIF) as a proxy for photosynthetically active radiation absorbed by chlorophyll (APAR chl) and derive an estimation of the fraction of APAR chl (fPAR chl) from four remotely-sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (εmore » $$chl\\atop{max}$$), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPAR chl, suggesting the corresponding (ε$$chl\\atop{max}$$}$) to have less seasonal variation. Finally, this spatio-temporal convergence of LUE derived from fPAR chl can be used to build simple but robust GPP models and to better constrain process-based models.« less

  20. Spatio-temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian

    Light-use efficiency (LUE), which quantifies the plants’ efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production (GPP) estimation. Here we use satellite-based solar-induced chlorophyll fluorescence (SIF) as a proxy for photosynthetically active radiation absorbed by chlorophyll (APAR chl) and derive an estimation of the fraction of APAR chl (fPAR chl) from four remotely-sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (εmore » $$chl\\atop{max}$$), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPAR chl, suggesting the corresponding (ε$$chl\\atop{max}$$}$) to have less seasonal variation. Finally, this spatio-temporal convergence of LUE derived from fPAR chl can be used to build simple but robust GPP models and to better constrain process-based models.« less

  1. Contrasting patterns of phytoplankton pigments and chemotaxonomic groups along 30°S in the subtropical South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Araujo, Milton Luiz Vieira; Mendes, Carlos Rafael Borges; Tavano, Virginia Maria; Garcia, Carlos Alberto Eiras; Baringer, Molly O'Neil

    2017-02-01

    This work describes the spatial distribution of pigments and main taxonomic groups of phytoplankton in the biogeochemical provinces of the subtropical South Atlantic Ocean, along 30°S latitude. Seawater samples (surface to 200 m depth) were collected along 120 oceanographic stations occupied in the early austral spring of 2011, during a CLIVAR Repeat Hydrography cruise. The pigments were identified and quantified by high performance liquid chromatography (HPLC), and CHEMTAX software was used to determine the relative contributions of the main taxonomic groups to total chlorophyll a (phytoplankton biomass index). Sampling stations were grouped into three provinces: Africa, Gyre, and Brazil, corresponding to the eastern, central, and western sectors of the transect, respectively. Our results showed that both vertical and horizontal distribution patterns of pigments and taxonomic groups were mainly determined by the availability of light and/or nutrients. Photosynthetic carotenoids (PSCs), associated with small flagellates (mainly haptophytes), dominated the light-limited and nutrient-enhanced deep chlorophyll maximum (DCM) layers of both the Brazil and Gyre provinces, as well as the upwelling influenced surface waters of the Africa province. The latter showed the highest chlorophyll a values ​​(>1 mg m-3) and abundance of dinoflagellates in the coastal region. Photoprotective carotenoids (PPCs) were predominant in the nutrient-poor and well-lit surface layers of the Brazil and Gyre provinces, associated with a low content of chlorophyll a ( 0.1 mg m-3) and dominance of prokaryotes (Synechoccocus and Prochloroccocus). This study demonstrates that pigment analysis can provide a useful approach to better understand the distribution of phytoplankton communities along physical-chemical gradients in a still undersampled region of the South Atlantic Ocean.

  2. A Simulation of Biological Prosesses in the Equatorial Pacific Warm Pool at 165 deg E

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Murtugudde, Ragu; Signorini, Sergio

    1998-01-01

    A nine-year simulation (1984-1992) of biological processes in the equatorial Pacific Warm Pool is presented. A modified version of the 4-component (phytoplankton, zooplankton, nitrate and ammonium) ecosystem model by McClain et al. (1996) is used. Modifications include use of a spectral model for computation of PAR and inclusion of fecal pellet remineralization and ammonium nitrification. The physical parameters (horizontal and vertical velocities and temperature) required by the ecosystem model were derived from an improved version of the Gent and Cane (1990) ocean general circulation model (Murtugudde and Busalacchi, 1997). Surface downwelling spectral irradiance was estimated using the clear-sky models of Frouin et al. (1989) and Gregg and Carder (1990) and cloud cover information from the International Satellite Cloud Climatology Project (ISCCP). The simulations indicate considerable variability on interannual time scales in all four ecosystem components. In particular, surface chlorophyll concentrations varied by an order of magnitude with maximum values exceeding 0.30 mg/cu m in 1988, 1989, and 1990, and pronounced minimums during 1987 and 1992. The deep chlorophyll maximum ranged between 75 and 125 meters with values occasionally exceeding 0.40 mg/cu m. With the exception of the last half of 1988, surface nitrate was always near depletion. Ammonium exhibited a subsurface maximum just below the DCM with concentrations as high as 0.5 mg-atN/cu m . Total integrated annual primary production varied between 40 and 250 gC/sq m/yr with an annual average of 140 gC/sq m/yr. Finally, the model is used to estimate the mean irradiance at the base of the mixed layer, i.e., the penetration irradiance, which was 18 Watts/sq m over the nine year period. The average mixed layer depth was 42 m.

  3. 90% Below 10m: Summer Biomass and Productivity are Invisible to Satellites and Surface Transects in Modern Lake Michigan

    NASA Astrophysics Data System (ADS)

    Cuhel, R. L.; Aguilar, C.

    2013-12-01

    Deep biomass maxima, often identified through in vivo chlorophyll fluorescence profiles (DCM or deep chlorophyll maximum), have been common 'forever' in Lake Michigan. Usually present in the upper thermocline zone of 15-25m, summer DCM populations were characteristically dominated by diatoms. Increased light transmission in quagga mussel (QM) engineered Lake Michigan waters now has enabled phytoplankton to proliferate in discrete layers as deep as 50m. Instances of multiple fluorescence maxima and transmission minima, often not coincident, document the habitat diversity available in clear, often sequentially stratified offshore waters and MidLake Reef Complex locations. Phytoplankton population structure has also changed, and diatoms have become a much smaller component of algal biomass. Discrete layers of chromatically adapted picoplankton now dominate the deepest biomass maxima. Photosynthetic characteristics differ substantially among leading edge, principal biomass or fluorescence, and deep trailing edge populations. Saturation coefficients are often as low as 25 uEin/m2/sec, or 1% of midday summer surface radiance. In vivo fluorescence is only loosely related to biomass, which is greatest in shallower zones of beam transmission minima. On a daily basis, areal primary productivity post-QM is less than half of previous levels, and seasonality has been muted. Spring bloom enhancement no longer exists, and the depth zone of maximum productivity is 10-20m deeper than during the diatom epoch. Altered phytoplankton community structure and decreased productivity left strong signals in biogeochemical time series measurements. A clear discontinuity in silicate cycling indicates dampened diatom productivity and consequently lower silica loss through deposition and burial. Porewater analysis pre- and post-QM shows evidence of reduced organic sedimentation overall, with an especially strong signal in decreased potential silicate efflux. Biogeochemical consequences include weaker nutrient gradients in nearsurface upper thermocline zones. Subsurface minima for silicate and nitrate are common, but of small magnitude compared to pre-QM profiles. By late July of 2013, total CO2 in deep waters increased by nearly 5% compared to surface, but the biomass and productivity maxima are far below the thermocline defining 'surface water.' Phosphate remains in the range of 10-20nM throughout the water column. Particulate P, the primary component of total P, is maximal in 15-25m depths but rarely exceeds 80nM P. Phytoplankton favor ammonium as an N source and recycling plus mussel excretion reduce demand for nitrate. As a result, many cycles and/or inventories for biomass and nutrient parameters appear to have reached new conditions quite different from pre-QM lake characteristics. The 15-year time series includes meteorologically anomalous years that are biogeochemically distinct from bracketing years, but interannual continuity is rare.

  4. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos.

    PubMed

    Smolikova, Galina; Dolgikh, Elena; Vikhnina, Maria; Frolov, Andrej; Medvedev, Sergei

    2017-09-16

    The embryos of some angiosperms (usually referred to as chloroembryos) contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN ( SGR ) genes are the principle ones. On the biochemical level, abscisic acid (ABA) is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.

  5. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos

    PubMed Central

    Dolgikh, Elena; Vikhnina, Maria; Frolov, Andrej

    2017-01-01

    The embryos of some angiosperms (usually referred to as chloroembryos) contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN (SGR) genes are the principle ones. On the biochemical level, abscisic acid (ABA) is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds. PMID:28926960

  6. Patterns of chlorophyll-a distribution linked to mesoscale structures in two contrasting areas Campeche Canyon and Bank, Southern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Durán-Campos, Elizabeth; Salas-de-León, David Alberto; Monreal-Gómez, María Adela; Coria-Monter, Erik

    2017-05-01

    The chlorophyll-a (Chl-a) distribution in Campeche Canyon and Campeche Bank, at the Southern Gulf of Mexico, as well as its relationship with hydrographic structure were analyzed. The results show the existence of the Gulf Common Water (GCW), the Caribbean Tropical Surface Water (CTSW) and the Caribbean Subtropical Underwater (CSUW) in the 120 m upper layer at the Campeche Canyon. While at the Campeche Bank only the Caribbean Tropical Surface Water (CTSW) was found. The 15 °C and 18.5 °C isotherms topography depict the presence of a mesoscale anticyclone-cyclone dipole. The nutrient pumping mechanism fertilizes the eutrophic zone promoted by the cyclonic eddy. Submesoscale processes in the border of an anticyclone and a cyclone results in maximum of nitrate concentration and vertically integrated Chl-a at the frontal zone. Two Chl-a vertical distribution patterns were found, a deep maximum at the base of the euphotic layer not associated to the thermocline over the Campeche Canyon and a peak associated to the thermocline related to the shallow bottom at the Campeche Bank. Oligotrophic conditions were observed in the 50 m upper layer and mesotrophic conditions were found below this layer. The differences between the Campeche Bank and Campeche Canyon are that: in the canyon, the nutrient and Chl-a peaks were linked with the cyclone, and the submesoscale processes in the border of an anticyclone and a cyclone, respectively. In the vertical the maximum Chl-a was associated to the base of the euphotic layer and dominated by coccolithophores. In the Campeche Bank the nutrient and Chl-a peaks were influenced by the shelf break in the vertical the maximum Chl-a was associated with the thermocline and the silicoflagellate was identified as the dominant species.

  7. Coherent stimulated light emission (lasing) in covalently linked chlorophyll dimers

    PubMed Central

    Hindman, James C.; Kugel, Roger; Wasielewski, Michael R.; Katz, Joseph J.

    1978-01-01

    The covalently linked chlorophyll a dimer exhibits remarkably different properties in the folded and open configurations. In the folded configuration the absorption maximum is at 695 nm and the fluorescence maximum is at 730 nm. Laser output at 733 and 735 nm is obtained for solutions in wet benzene and 0.1 M ethanol/toluene, respectively. Measurements of fluorescence lineshapes, made with a transverse excited atmospheric (TEA) nitrogen laser for excitation, show the lifetime shortening associated with stimulated emission resulting from appreciable concentrations of molecules in S1 excited states. In contrast, the open dimer has absorption and fluorescence spectra essentially the same as those of chlorophyll a monomer. Unlike either the folded dimer or chlorophyll a monomer, the open dimer shows no laser emission or fluorescene lifetime shortening. It does not appear that the behavior of the open dimer can be explained in terms of excimer or triplet formation or by nonradiative decay processes. It is suggested that absorption of the exciting radiation by S1, leading to the formation of an exciplex or charge transfer state, may be involved. Significantly, no large changes in fluorescence quantum yield or fluorescence lifetime are observed for these dimers as compared to monomer chlorophyll. This suggests that concentration quenching and lifetime shortening in condensed chlorophyll systems involve more than the simple proximity of two chlorophyll molecules. Images PMID:16592524

  8. Remote sensing of chlorophyll and temperature in marine and fresh waters.

    NASA Technical Reports Server (NTRS)

    Arvesen, J. C.; Millard, J. P.; Weaver, E. C.

    1973-01-01

    An airborne differential radiometer was demonstrated to be a sensitive, real-time detector of surface chlorophyll content in water bodies. The instrument continuously measures the difference in radiance between two wavelength bands, one centered near the maximum of the blue chlorophyll a absorption region and the other at a reference wavelength outside this region. Flights were made over fresh water lakes, marine waters, and an estuary, and the results were compared with 'ground truth' measurements of chlorophyll concentration. A correlation between output signal of the differential radiometer and the chlorophyll concentration was obtained. Examples of flight data are illustrated. Simultaneous airborne measurements of chlorophyll content and water temperature revealed that variations in chlorophyll are often associated with changes in temperature. Thus, simultaneous sensing of chlorophyll and temperature provides useful information for studies of marine food production, water pollution, and physical processes such as upwelling.

  9. Simulated laser fluorosensor signals from subsurface chlorophyll distributions

    NASA Technical Reports Server (NTRS)

    Venable, D. D.; Khatun, S.; Punjabi, A.; Poole, L.

    1986-01-01

    A semianalytic Monte Carlo model has been used to simulate laser fluorosensor signals returned from subsurface distributions of chlorophyll. This study assumes the only constituent of the ocean medium is the common coastal zone dinoflagellate Prorocentrum minimum. The concentration is represented by Gaussian distributions in which the location of the distribution maximum and the standard deviation are variable. Most of the qualitative features observed in the fluorescence signal for total chlorophyll concentrations up to 1.0 microg/liter can be accounted for with a simple analytic solution assuming a rectangular chlorophyll distribution function.

  10. Optical characterization of an eddy-induced diatom bloom west of the island of Hawaii

    NASA Astrophysics Data System (ADS)

    Nencioli, F.; Chang, G.; Twardowski, M.; Dickey, T. D.

    2009-08-01

    Optical properties are used to characterize the biogeochemistry of cyclonic eddy Opal in the lee of Hawaii. The eddy featured an intense diatom bloom. Our results show that the ratio of chlorophyll concentration to particulate beam attenuation coefficient, [chl]/cp, is not a good indicator of the changes in particle composition through the water column. The ratio is controlled primarily by the variation in chlorophyll concentration per cell with depth (photoadaptation), so that its values increase throughout the Deep Chlorophyll Maximum Layer (DCML). Below the DCML, high values of [chl]/cp suggest that remineralization might be another important controlling factor. On the other hand, the backscattering ratio (particle backscattering to particle scattering ratio, b~bp) clearly indicates a shift from a small phytoplankton to a diatom dominated community. Below an upper layer characterized by constant values, the b~bp ratio showed a rapid decrease to a broad minimum within the DCML. The higher values below the DCML are consistent with enhanced remineralization below the eddy-induced bloom. The DCML was characterized by a layer of "healthy" diatoms underlying a layer of "senescent" diatoms. These two layers are characterized by similar optical properties, indicating some possible limitations in using optical measurements to fully characterize the composition of suspended material in the water column. An inverse relationship between b~bp and [chl]/cp, also reported by others, is observed as deep as the DCML. There, [chl]/cp increases whereas b~bp remains similar to values found in the empty frustule layer. This is a further indication that [chl]/cp might not be a good alternative to the backscattering ratio for investigating changes in particle composition with depth in Case I waters.

  11. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  12. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf.

    PubMed

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  13. Satellite retrievals of leaf chlorophyll and photosynthetic capacity for improved modeling of GPP

    USDA-ARS?s Scientific Manuscript database

    This study investigates the utility of in-situ and satellite-based leaf chlorophyll (Chl) estimates for quantifying leaf photosynthetic capacity and for constraining model simulations of Gross Primary Productivity (GPP) over a corn field in Maryland, U.S.A. The maximum rate of carboxylation (Vmax) r...

  14. Different responses of chlorophyll-a concentration and Sea Surface Temperature (SST) on southeasterly wind blowing in the Sunda Strait

    NASA Astrophysics Data System (ADS)

    Wirasatriya, A.; Kunarso; Maslukah, L.; Satriadi, A.; Armanto, R. D.

    2018-03-01

    During southeast monsoon, along the western coast of Sumatra Island and southern coast of Java Island are known as the coastal upwelling areas denoted by the occurrence of Sea Surface Temperature (SST) cooling and chlorophyll-a blooming. Located between Sumatra and Java Islands, Sunda Strait waters may give different response to the southeasterly wind blowing above. Using SST and chlorophyll-a data obtained from daily MODIS level 3 during 2006–2016, this study demonstrated the evidence on how bathymetry and topography modified the effect of southeasterly wind on the spatial variability of SST and chlorophyll-a. All datasets were composed into monthly and monthly climatology. The area in the center of Sunda Strait had the lowest chlorophyll-a concentration and the warmest SST during the peak of upwelling season. The deep bottom topography and the absence of barrier land prevented the generation of wind driven coastal upwelling. However, the chlorophyll-a concentration in this area had the highest correlation with the wind speed which means that the variation of chlorophyll-a concentration in this area was highly depended on the variability of wind. On the other hand, the areas with shallow bathymetry and in front of Panaitan and Java Islands had higher chlorophyll-a concentration and cooler SSTs.

  15. The Leeuwin Current and its eddies: An introductory overview

    NASA Astrophysics Data System (ADS)

    Waite, A. M.; Thompson, P. A.; Pesant, S.; Feng, M.; Beckley, L. E.; Domingues, C. M.; Gaughan, D.; Hanson, C. E.; Holl, C. M.; Koslow, T.; Meuleners, M.; Montoya, J. P.; Moore, T.; Muhling, B. A.; Paterson, H.; Rennie, S.; Strzelecki, J.; Twomey, L.

    2007-04-01

    The Leeuwin Current (LC) is an anomalous poleward-flowing eastern boundary current that carries warm, low-salinity water southward along the coast of Western Australia. We present an introduction to a new body of work on the physical and biological dynamics of the LC and its eddies, collected in this Special Issue of Deep-Sea Research II, including (1) several modelling efforts aimed at understanding LC dynamics and eddy generation, (2) papers from regional surveys of primary productivity and nitrogen uptake patterns in the LC, and (3) the first detailed field investigations of the biological oceanography of LC mesoscale eddies. Key results in papers collected here include insight into the source regions of the LC and the Leeuwin Undercurrent (LUC), the energetic interactions of the LC and LUC, and their roles in the generation of warm-core (WC) and cold-core (CC) eddies, respectively. In near-shore waters, the dynamics of upwelling were found to control the spatio-temporal variability of primary production, and important latitudinal differences were found in the fraction of production driven by nitrate (the f-ratio). The ubiquitous deep chlorophyll maximum within LC was found to be a significant contributor to total water column production within the region. WC eddies including a single large eddy studied in 2000 contained relatively elevated chlorophyll a concentrations thought to originate at least in part from the continental shelf/shelf break region and to have been incorporated during eddy formation. During the Eddies 2003 voyage, a more detailed study comparing the WC and CC eddies illuminated more mechanistic details of the unusual dynamics and ecology of the eddies. Food web analysis suggested that the WC eddy had an enhanced "classic" food web, with more concentrated mesozooplankton and larger diatom populations than in the CC eddy. Finally, implications for fisheries management are addressed.

  16. Overview of the limnology of crater lake

    USGS Publications Warehouse

    Larson, G.L.

    1996-01-01

    Crater Lake occupies the collapsed caldera of volcanic Mount Mazama in Crater Lake National Park, Oregon. It is the deepest lake (589 m) in the United States and the 7th deepest lake in the world. The water column mixes to a depth of about 200 m in winter and spring from wind energy and cooling. The deep lake is mixed in winter and early spring each year when relatively cold water near the surface sinks and exchanges positions with water in the deep basins of the lake. The lake becomes thermally stratified in summer and early fall. The metalimnion extends to a depth of about 100 m; thus most of the water column is a cold hypolimnion. Secchi disk clarity measurements typically are in the upper-20-m range to the low-30-m range in summer and early fall. Concentrations of nutrients are low, although conductivity is relatively high owing to the inflow of hydrothermal fluids. Total chlorophyll is low in concentration, but typically maximal at a depth of 120 m during periods of thermal stratification. Primary production also is low, with the maximum levels occurring between the depth of 40 and 80 m. Phytoplankton taxa are spatially segregated from each other within the water column to a depth of 200 m in summer and early fall. The same generalization applies to the Zooplankton taxa. Water level, clarity, concentrations of total chlorophyll, primary production, and abundances of zooplankton and introduced kokanee salmon exhibit long-term fluctuations. Based primarily on a recent 10-year study of the lake, the lake is considered to be pristine, except for the consequences of fish introductions. ?? 1996 by the Northwest Scientific Association. All rights reserved.

  17. Overview of the limnology of Crater Lake

    USGS Publications Warehouse

    Larson, Gary L.

    1996-01-01

    Crater Lake occupies the collapsed caldera of volcanic Mount Mazama in Crater Lake National Park, Oregon. It is the deepest lake (589 m) in the United States and the 7th deepest lake in the world. The water column mixes to a depth of about 200 m in winter and spring from wind energy and cooling. The deep lake is mixed in winter and early spring each year when relatively cold water near the surface sinks and exchanges positions with water in the deep basins of the lake. The lake becomes thermally stratified in summer and early fall. The metalimnion extends to a depth of about 100 m; thus most of the water column is a cold hypolimnion. Secchi disk clarity measurements typically are in the upper-20-m range to the low-30-m range in summer and early fall. Concentrations of nutrients are low, although conductivity is relatively high owing to the inflow of hydrothermal fluids. Total chlorophyll is low in concentration, but typically maximal at a depth of 120 m during periods of thermal stratification. Primary production also is low, with the maximum levels occurring between the depth of 40 and 80 m. Phytoplankton taxa are spatially segregated from each other within the water column to a depth of 200 m in summer and early fall. The same generalization applies to the zooplankton taxa. Water level, clarity, concentrations of total chlorophyll, primary production, and abundances of zooplankton and introduced kokanee salmon exhibit long-term fluctuations. Based primarily on a recent 10-year study of the lake, the lake is considered to be pristine, except for the consequences of fish introductions.

  18. Environmental and biological characteristics of Atlantic bluefin tuna and albacore spawning habitats based on their egg distributions

    NASA Astrophysics Data System (ADS)

    Reglero, Patricia; Santos, Maria; Balbín, Rosa; Laíz-Carrión, Raul; Alvarez-Berastegui, Diego; Ciannelli, Lorenzo; Jiménez, Elisa; Alemany, Francisco

    2017-06-01

    Tuna spawning habitats are traditionally characterized using data sets of larvae or gonads from mature adults and concurrent environmental variables. Data on egg distributions have never previously been used since molecular analyses are mandatory to identify tuna eggs to species level. However, in this study we use molecularly derived egg distribution data, in addition to larval data, to characterize hydrographic and biological drivers of the spatial distribution of eggs and larvae of bluefin Thunnus thynnus and albacore tuna Thunnus alalunga in the Balearic Sea, a main spawning area of these species in the Mediterranean. The effects of the hydrography, characterized by salinity, temperature and geostrophic velocity, on the spatial distributions of the eggs and larvae are investigated. Three biological variables are used to describe the productivity in the area: chlorophyll a in the mixed layer, chlorophyll a in the deep chlorophyll maximum and mesozooplankton biomass in the mixed layer. Our results point to the importance of salinity fronts and temperatures above a minimum threshold in shaping the egg and larval distribution of both species. The spatial distribution of the biotic variables was very scattered, and they did not emerge as significant variables in the presence-absence models. However, they became significant when modeling egg and larval abundances. The lack of correlation between the three biotic variables challenges the use of chlorophyll a to describe trophic scenarios for the larvae and suggests that the spatial distribution of resources is not persistent in time. The different patterns in relation to biotic variables across species and stages found in this and other studies indicate a still elusive understanding of the link between trophic levels involving tuna early larval stages. Our ability to improve short-term forecasting and long-term predictions of climate effects on the egg and larval distributions is discussed based on the consistency of the environmentally driven spatial patterns for the two species.

  19. The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates

    PubMed Central

    Gimmler, Anna; Korn, Ralf; de Vargas, Colomban; Audic, Stéphane; Stoeck, Thorsten

    2016-01-01

    Illumina reads of the SSU-rDNA-V9 region obtained from the circumglobal Tara Oceans expedition allow the investigation of protistan plankton diversity patterns on a global scale. We analyzed 6,137,350 V9-amplicons from ocean surface waters and the deep chlorophyll maximum, which were taxonomically assigned to the phylum Ciliophora. For open ocean samples global planktonic ciliate diversity is relatively low (ca. 1,300 observed and predicted ciliate OTUs). We found that 17% of all detected ciliate OTUs occurred in all oceanic regions under study. On average, local ciliate OTU richness represented 27% of the global ciliate OTU richness, indicating that a large proportion of ciliates is widely distributed. Yet, more than half of these OTUs shared <90% sequence similarity with reference sequences of described ciliates. While alpha-diversity measures (richness and exp(Shannon H)) are hardly affected by contemporary environmental conditions, species (OTU) turnover and community similarity (β-diversity) across taxonomic groups showed strong correlation to environmental parameters. Logistic regression models predicted significant correlations between the occurrence of specific ciliate genera and individual nutrients, the oceanic carbonate system and temperature. Planktonic ciliates displayed distinct vertical distributions relative to chlorophyll a. In contrast, the Tara Oceans dataset did not reveal any evidence that latitude is structuring ciliate communities. PMID:27633177

  20. The relationship between concentration of clorophyll-a with skipjack (Katsuwonus pelamis, Linnaeus 1758) production at West Sumatera waters, Indonesia

    NASA Astrophysics Data System (ADS)

    Usman; Ersti Yulika Sari, T.; Syaifuddin; Audina

    2017-01-01

    The regression and correlation technic was uses to evaluated the contribution of chlorophyll-a concentration on variation of longline skipjack tuna production. An analysis was performed by placing Chlorophyll-a as predictor and Skipjack (Katsuwonus pelamis, Linnaeus 1758) production as dependent variable, using Chlorophyll-a derived from NPP VIIRS, and CPUE derived from longline fisherman log books for the year of 2013. Chlorophyll-a distribution which derived from NPP VIIRS between 0.13-0.26 mg/m3 whereas maximum CPUE as much as 0,1875 kg/trip in April. The regression equation obtained was CPUE = -1.12 + 11.5 Chl-a. Correlation between chlorophyll-a and CPUE have moderate relationship (r=0.51). From regression equation for those variables showed that the variation of chlorophyll-a had affected about 26% on variation of CPUE, only.

  1. Satellite Remote Sensing of Chlorophyll a in Support of Nutrient Management in the Neuse and Tar-Pamlico River Estuaries

    EPA Science Inventory

    The North Carolina Environmental Management Commission (EMC) has adopted as a water quality standard that chlorophyll a concentration should not exceed 40 ug/L in sounds, estuaries and other slow-moving waters. Exceedances require regulators to develop a Total Maximum Daily Limit...

  2. Satellite remote sensing of chlorophyll a in support of nutrient management in the Neuse and Tar-Pamlico River (North Carolina) estuaries

    EPA Science Inventory

    The North Carolina Environmental Management Commission (EMC) has adopted as a water quality standard that chlorophyll a concentration should not exceed 40 ug/L in sounds, estuaries and other slow-moving waters. Exceedances require regulators to develop a Total Maximum Daily Limit...

  3. Sequential resuspension of biofilm components (viruses, prokaryotes and protists) as measured by erodimetry experiments in the Brouage mudflat (French Atlantic coast)

    NASA Astrophysics Data System (ADS)

    Dupuy, Christine; Mallet, Clarisse; Guizien, Katell; Montanié, Hélène; Bréret, Martine; Mornet, Françoise; Fontaine, Camille; Nérot, Caroline; Orvain, Francis

    2014-09-01

    Resuspension thresholds in terms of friction velocity were experimentally quantified for the prokaryotes, protists and for the first time, viruses of intertidal mudflat biofilms. Differences in resuspension thresholds could be related to the type, behaviour and size of microorganisms and their association with particles. Free microorganisms (viruses, bacteria and some nanoflagellates) were resuspended by weak flow at friction velocities lower than 2 cm s- 1. Chlorophyll a, some nanoflagellates and attached bacteria were resuspended together with the bed's muddy sediment, which required friction velocities larger than 3 cm s- 1. Diatoms smaller than 60 μm were resuspended at velocities between 3 and 5 cm s- 1, while those larger than 60 μm were resuspended at higher friction velocities (5.5 to 6.5 cm s- 1). The thresholds of resuspension also depended on the micro-scale position of microorganisms in the sediment (horizontal and vertical distributions). In the field, the vertical distribution of chlorophyll a (a proxy of microphytobenthos) was skewed, with a maximum in the first 2 mm of sediment. Along the neap-spring tidal cycle, chlorophyll a revealed an increase in MPB biomass in the first 2 mm of the sediment, in relation to light increases with exposure durations. The horizontal distribution of chlorophyll a could be inferred from erosion experiments. During the initial phase of biofilm growth, the distribution of chlorophyll a seemed horizontally homogeneous, and was uniformly eroded at the beginning of the increase in chlorophyll a. From these results, we can make a hypothesis: in the subsequent phase of biofilm growth until the maximum of emersion duration, the eroded quantity of chlorophyll a was larger than expected based from chlorophyll a vertical distribution, suggesting that biofilm horizontal distribution became patchy and enriched chlorophyll a was preferentially eroded. When emersion duration and biofilm growth decreased, the trend was reversed, and eroded quantity of chlorophyll a was lower than expected from chlorophyll a vertical distribution, suggesting that areas with low chlorophyll a were preferentially eroded. Such erosion patterns when biofilm growth decreased probably resulted from the bulldozing activity of a surficial sediment bioturbator, the gastropod Peringia ulvae. Our study did not directly prove this horizontal distribution but it should be further discussed. This distribution needs to be studied to acquire real evidence of patchy distributions.

  4. Surface ocean carbon dioxide during the Atlantic Meridional Transect (1995-2013); evidence of ocean acidification

    NASA Astrophysics Data System (ADS)

    Kitidis, Vassilis; Brown, Ian; Hardman-Mountford, Nicholas; Lefèvre, Nathalie

    2017-11-01

    Here we present more than 21,000 observations of carbon dioxide fugacity in air and seawater (fCO2) along the Atlantic Meridional Transect (AMT) programme for the period 1995-2013. Our dataset consists of 11 southbound and 2 northbound cruises in boreal autumn and spring respectively. Our paper is primarily focused on change in the surface-ocean carbonate system during southbound cruises. We used observed fCO2 and total alkalinity (TA), derived from salinity and temperature, to estimate dissolved inorganic carbon (DIC) and pH (total scale). Using this approach, estimated pH was consistent with spectrophotometric measurements carried out on 3 of our cruises. The AMT cruises transect a range of biogeographic provinces where surface Chlorophyll-α spans two orders of magnitude (mesotrophic high latitudes to oligotrophic subtropical gyres). We found that surface Chlorophyll-α was negatively correlated with fCO2, but that the deep chlorophyll maximum was not a controlling variable for fCO2. Our data show clear evidence of ocean acidification across 100° of latitude in the Atlantic Ocean. Over the period 1995-2013 we estimated annual rates of change in: (a) sea surface temperature of 0.01 ± 0.05 °C, (b) seawater fCO2 of 1.44 ± 0.84 μatm, (c) DIC of 0.87 ± 1.02 μmol per kg and (d) pH of -0.0013 ± 0.0009 units. Monte Carlo simulations propagating the respective analytical uncertainties showed that the latter were < 5% of the observed trends. Seawater fCO2 increased at the same rate as atmospheric CO2.

  5. Mining a sea of data: deducing the environmental controls of ocean chlorophyll.

    PubMed

    Irwin, Andrew J; Finkel, Zoe V

    2008-01-01

    Chlorophyll biomass in the surface ocean is regulated by a complex interaction of physiological, oceanographic, and ecological factors and in turn regulates the rates of primary production and export of organic carbon to the deep ocean. Mechanistic models of phytoplankton responses to climate change require the parameterization of many processes of which we have limited knowledge. We develop a statistical approach to estimate the response of remote-sensed ocean chlorophyll to a variety of physical and chemical variables. Irradiance over the mixed layer depth, surface nitrate, sea-surface temperature, and latitude and longitude together can predict 83% of the variation in log chlorophyll in the North Atlantic. Light and nitrate regulate biomass through an empirically determined minimum function explaining nearly 50% of the variation in log chlorophyll by themselves and confirming that either light or macronutrients are often limiting and that much of the variation in chlorophyll concentration is determined by bottom-up mechanisms. Assuming the dynamics of the future ocean are governed by the same processes at work today, we should be able to apply these response functions to future climate change scenarios, with changes in temperature, nutrient distributions, irradiance, and ocean physics.

  6. Complex vertical migration of larvae of the ghost shrimp, Nihonotrypaea harmandi, in inner shelf waters of western Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Tamaki, Akio; Mandal, Sumit; Agata, Yoshihiro; Aoki, Ikumi; Suzuki, Toshikazu; Kanehara, Hisao; Aoshima, Takashi; Fukuda, Yasushi; Tsukamoto, Hideshi; Yanagi, Tetsuo

    2010-01-01

    The position of meroplanktonic larvae in the water column with depth-dependent current velocities determines horizontal transport trajectories. For those larvae occurring in inner shelf waters, little is known about how combined diel and tidally-synchronized vertical migration patterns shift ontogenetically. The vertical migration of larvae of Nihonotrypaea harmandi (Decapoda: Thalassinidea: Callianassidae) was investigated in mesotidal, inner shelf waters of western Kyushu, Japan in July-August 2006. The larval sampling at seven depth layers down to 60 m was conducted every 3 h for 36 h in a 68.5-m deep area 10 km off a major coastal adult habitat. Within a 61-65-m deep area 5-7.5 km off the adult habitat, water temperature, salinity, chlorophyll a concentration, and photon flux density were measured, and water currents there were characterized from harmonic analysis of current meter data collected in 2008. The water column was stratified, with pycnocline, chlorophyll a concentration maximum, and 2% of photon flux density at 2 m, recorded at around 22-24 m. The stratified residual currents were detected in their north component, directed offshore and onshore in the upper and lower mixed layers, respectively. More than 87% of larvae occurred between 20 m and 60 m, producing a net onshore transport of approximately 1.3 km d -1. At the sunset flooding tide, all zoeal-stage larvae ascended, which could further promote retention (1.4-km potential onshore transport in 3 h). The actual onshore transport of larvae was detected by observing their occurrence pattern in a shallow embayment area with the adult habitat for 24 h in October 1994. However, ontogenetic differences in the vertical migration pattern in inner shelf waters were also apparent, with the maximum mean positions of zoeae deepening with increasing stages. Zoeae I and II performed a reverse diel migration, with their minimum and maximum depths being reached around noon and midnight, respectively. Zoeae IV and V descended continuously. Zoeae III had behaviors that were intermediate to those of the earlier- and later-stage zoeae. Postlarvae underwent a normal diel migration (nocturnal ascent) regardless of tides, with the deepest position (below 60 m and/or on the bottom) during the day. These findings give a new perspective towards how complex vertical migration patterns in meroplanktonic larvae enable their retention in inner shelf waters before the final entry of postlarvae into their natal populations.

  7. Seasonal and interannual variability in the taxonomic composition and production dynamics of phytoplankton assemblages in Crater Lake, Oregon

    USGS Publications Warehouse

    C. David, McIntire; Larson, Gary L.; Truitt, Robert E.

    2007-01-01

    Taxonomic composition and production dynamics of phytoplankton assemblages in Crater Lake, Oregon, were examined during time periods between 1984 and 2000. The objectives of the study were (1) to investigate spatial and temporal patterns in species composition, chlorophyll concentration, and primary productivity relative to seasonal patterns of water circulation; (2) to explore relationships between water column chemistry and the taxonomic composition of the phytoplankton; and (3) to determine effects of primary and secondary consumers on the phytoplankton assemblage. An analysis of 690 samples obtained on 50 sampling dates from 14 depths in the water column found a total of 163 phytoplankton taxa, 134 of which were identified to genus and 101 were identified to the species or variety level of classification. Dominant species by density or biovolume included Nitzschia gracilis, Stephanodiscus hantzschii, Ankistrodesmus spiralis, Mougeotia parvula, Dinobryon sertularia, Tribonema affine, Aphanocapsa delicatissima, Synechocystis sp., Gymnodinium inversum, and Peridinium inconspicuum. When the lake was thermally stratified in late summer, some of these species exhibited a stratified vertical distribution in the water column. A cluster analysis of these data also revealed a vertical stratification of the flora from the middle of the summer through the early fall. Multivariate test statistics indicated that there was a significant relationship between the species composition of the phytoplankton and a corresponding set of chemical variables measured for samples from the water column. In this case, concentrations of total phosphorus, ammonia, total Kjeldahl nitrogen, and alkalinity were associated with interannual changes in the flora; whereas pH and concentrations of dissolved oxygen, orthophosphate, nitrate, and silicon were more closely related to spatial variation and thermal stratification. The maximum chlorophyll concentration when the lake was thermally stratified in August and September was usually between depths of 100 m and 120 m. In comparison, the depth of maximum primary production ranged from 60 m to 80 m at this time of year. Regression analysis detected a weak negative relationship between chlorophyll concentration and Secchi disk depth, a measure of lake transparency. However, interannual changes in chlorophyll concentration and the species composition of the phytoplankton could not be explained by the removal of the septic field near Rim Village or by patterns of upwelling from the deep lake. An alternative trophic hypothesis proposes that the productivity of Crater Lake is controlled primarily by long-term patterns of climatic change that regulate the supply of allochthonous nutrients.

  8. Annual cycles of deep-ocean biogeochemical export fluxes in subtropical and subantarctic waters, southwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nodder, Scott D.; Chiswell, Stephen M.; Northcote, Lisa C.

    2016-04-01

    The annual cycles of particle fluxes derived from moored sediment trap data collected during 2000-2012 in subtropical (STW) and subantarctic waters (SAW) east of New Zealand are presented. These observations are the most comprehensive export flux time series from temperate Southern Hemisphere latitudes to date. With high levels of variability, fluxes in SAW were markedly lower than in STW, reflecting the picophytoplankton-dominated communities in the iron-limited, high nutrient-low chlorophyll SAW. Austral spring chlorophyll blooms in surface STW were near synchronous with elevated fluxes of bio-siliceous, carbonate, and organic carbon-rich materials to the deep ocean, probably facilitated by diatom and/or coccolithophorid sedimentation. Lithogenic fluxes were also high in STW, compared to SAW, reflecting proximity to the New Zealand landmass. In contrast, the highest biogenic fluxes in SAW occurred in spring when surface chlorophyll concentrations were low, while highest annual chlorophyll concentrations were in summer with no associated flux increase. We hypothesize that the high spring export in SAW results from subsurface chlorophyll accumulation that is not evident from remote-sensing satellites. This material was also rich in biogenic silica, perhaps related to the preferential export of diatoms and other silica-producing organisms, such as silicoflagellates and radiolarians. Organic carbon fluxes in STW are similar to that of other mesotrophic to oligotrophic waters (˜6-7 mg C m-2 d-1), whereas export from SAW is below the global average (˜3 mg C m-2 d-1). Regional differences in flux across the SW Pacific and Tasman region reflect variations in physical processes and ecosystem structure and function.

  9. Annual Cycles of Deep-ocean, Biogeochemical Export Fluxes and Biological Pump Processes in Subtropical and Subantarctic Waters, Southwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nodder, S.; Chiswell, S.; Northcote, L.

    2016-02-01

    One of the key aspects of the global carbon cycle is the efficiency and spatio-temporal variability of the biological pump. In this paper, the annual cycles of particle fluxes, derived from moored sediment trap data collected from 2000-12 in subtropical (STW) and subantarctic waters (SAW), east of New Zealand, are presented. These observations are the most comprehensive export flux time-series from temperate Southern Hemisphere latitudes to date. With high levels of variability, fluxes in SAW were markedly lower than in STW, reflecting the picophytoplankton-dominated communities in the iron-limited, high nutrient-low chlorophyll SAW. Austral spring chlorophyll blooms in surface STW were near-synchronous with elevated fluxes of bio-siliceous, carbonate and organic carbon-rich materials to the deep ocean, probably facilitated by diatom sedimentation. Lithogenic fluxes were also high in STW, compared to SAW, reflecting proximity to the New Zealand landmass. In contrast, the highest biogenic fluxes in SAW occurred in spring when surface chlorophyll concentrations were low, while highest annual chlorophyll concentrations were in summer with no associated flux increase. We hypothesize that the high spring export in SAW occurs from subsurface chlorophyll accumulations that are not evident from remote-sensing satellites. This material was also rich in biogenic silica, perhaps related to the preferential export of diatoms and other silica-producing organisms, such as silicoflagellates and radiolarians. Particle fluxes in STW are similar to that of other mesotrophic to oligotrophic waters ( 6-7 mgC m-2 d-1), whereas export from SAW is below global averages ( 3 mgC m-2 d-1), and is characterized by carbonate-dominated and prominent bio-siliceous deposition.

  10. Wind driven nutrient and subsurface chlorophyll-a enhancement in the Bay of La Paz, Gulf of California

    NASA Astrophysics Data System (ADS)

    Coria-Monter, Erik; Monreal-Gómez, María Adela; Salas de León, David Alberto; Durán-Campos, Elizabeth; Merino-Ibarra, Martín

    2017-09-01

    Nutrient and chlorophyll-a distributions in the Bay of La Paz, Gulf of California, Mexico were analyzed during the late spring of 2004 to assess their relations to hydrography and circulation patterns. The results show the presence of both Gulf of California Water and Subtropical Subsurface Water. Water circulation was dominated by wind stress driven cyclonic circulation along f / H contours (f is planetary vorticity and H is depth), and upwelling resulting from the divergence shows a vertical velocity of ∼0.4 m d-1. Nutrient concentrations were higher in the center of the cyclonic pattern, where a rise in the nutricline contributed nutrients to the euphotic layer as a result of Ekman pumping. The vertical section showed the presence of a chlorophyll-a maximum at the thermocline shoaling to a depth of only 12 m. Along the surface, two peaks of chlorophyll-a were observed, one at Boca Grande and another off San Juan de la Costa, associated with upwelling and mixing derived from current interactions with abrupt topographies. The chlorophyll-a maximum increased from 0.8 mg m-3 in the external part of the cyclonic pattern to 2.0 mg m-3 in its center. The vertically integrated chlorophyll-a concentrations followed a similar pattern, rising from 10 to 20 mg m-2 and reaching their highest values in the center of the cyclonic circulation pattern. A schematic model was developed to describe processes that occur in late spring: the wind stress driven cyclonic structure promotes upward nutrient flux, which in turn drives an enhancement of chlorophyll-a. Upwelling was found to be the main mechanism of fertilization responsible for the enhancement of productivity levels by means of nutrient transport into the euphotic zone during spring. Other chlorophyll enhancement areas point to the occurrence of additional fertilization processes that may derive from interactions between cyclonic circulation patterns and the topography off of San Juan de la Costa, where phosphate mining occurs.

  11. Prevalence of the Chloroflexi-Related SAR202 Bacterioplankton Cluster throughout the Mesopelagic Zone and Deep Ocean†

    PubMed Central

    Morris, R. M.; Rappé, M. S.; Urbach, E.; Connon, S. A.; Giovannoni, S. J.

    2004-01-01

    Since their initial discovery in samples from the north Atlantic Ocean, 16S rRNA genes related to the environmental gene clone cluster known as SAR202 have been recovered from pelagic freshwater, marine sediment, soil, and deep subsurface terrestrial environments. Together, these clones form a major, monophyletic subgroup of the phylum Chloroflexi. While members of this diverse group are consistently identified in the marine environment, there are currently no cultured representatives, and very little is known about their distribution or abundance in the world's oceans. In this study, published and newly identified SAR202-related 16S rRNA gene sequences were used to further resolve the phylogeny of this cluster and to design taxon-specific oligonucleotide probes for fluorescence in situ hybridization. Direct cell counts from the Bermuda Atlantic time series study site in the north Atlantic Ocean, the Hawaii ocean time series site in the central Pacific Ocean, and along the Newport hydroline in eastern Pacific coastal waters showed that SAR202 cluster cells were most abundant below the deep chlorophyll maximum and that they persisted to 3,600 m in the Atlantic Ocean and to 4,000 m in the Pacific Ocean, the deepest samples used in this study. On average, members of the SAR202 group accounted for 10.2% (±5.7%) of all DNA-containing bacterioplankton between 500 and 4,000 m. PMID:15128540

  12. Ambiguous dependence of fluorescence intensity of trees on chlorophyll concentration

    NASA Astrophysics Data System (ADS)

    Zavoruev, Valeriy V.; Zavorueva, Elena N.

    2014-11-01

    Using fluorimetry Junior PAM (Heinz Walz GmbH, Germany) fluorescence parameters of leaves Prinsepia sinensis, Crataegus chlorocarca M, Acer negúndo, Bétula péndula are studied. It was found that the dependence of maximum fluorescence (Fm) plants on the concentration of chlorophyll depends on the sampling method during of vegetation. The correctness of sampling proves during vegetation is substantiated.

  13. Best of both worlds: simultaneous high-light and shade-tolerance adaptations within individual leaves of the living stone Lithops aucampiae.

    PubMed

    Field, Katie J; George, Rachel; Fearn, Brian; Quick, W Paul; Davey, Matthew P

    2013-01-01

    "Living stones" (Lithops spp.) display some of the most extreme morphological and physiological adaptations in the plant kingdom to tolerate the xeric environments in which they grow. The physiological mechanisms that optimise the photosynthetic processes of Lithops spp. while minimising transpirational water loss in both above- and below-ground tissues remain unclear. Our experiments have shown unique simultaneous high-light and shade-tolerant adaptations within individual leaves of Lithops aucampiae. Leaf windows on the upper surfaces of the plant allow sunlight to penetrate to photosynthetic tissues within while sunlight-blocking flavonoid accumulation limits incoming solar radiation and aids screening of harmful UV radiation. Increased concentration of chlorophyll a and greater chlorophyll a:b in above-ground regions of leaves enable maximum photosynthetic use of incoming light, while inverted conical epidermal cells, increased chlorophyll b, and reduced chlorophyll a:b ensure maximum absorption and use of low light levels within the below-ground region of the leaf. High NPQ capacity affords physiological flexibility under variable natural light conditions. Our findings demonstrate unprecedented physiological flexibility in a xerophyte and further our understanding of plant responses and adaptations to extreme environments.

  14. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading.

    PubMed

    García-Sánchez, M A; Serratos, I N; Sosa, R; Tapia-Esquivel, T; González-García, F; Rojas-González, F; Tello-Solís, S R; Palacios-Enriquez, A Y; Esparza Schulz, J M; Arrieta, A

    2016-07-22

    Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO₂, TiO₂ or ZrO₂ synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most physicochemical properties of trapped chlorophyll for diverse technological applications. The data herein collected suggest the possibility of applying the developed methodology to other active, captive molecules in order to synthesize new hybrid materials with optimized properties, suitable to be applied in diverse technological fields.

  15. From the chlorophyll a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications

    NASA Astrophysics Data System (ADS)

    Cherkasheva, A.; Nöthig, E.-M.; Bauerfeind, E.; Melsheimer, C.; Bracher, A.

    2013-04-01

    Current estimates of global marine primary production range over a factor of two. Improving these estimates requires an accurate knowledge of the chlorophyll vertical profiles, since they are the basis for most primary production models. At high latitudes, the uncertainty in primary production estimates is larger than globally, because here phytoplankton absorption shows specific characteristics due to the low-light adaptation, and in situ data and ocean colour observations are scarce. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer have not included the Arctic region, or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved profiles. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the regions in the Arctic where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S. Merian cruises combined with data from the ARCSS-PP database (Arctic primary production in situ database) for the years 1957-2010. The profiles were categorized according to their mean concentration in the surface layer, and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll (CHL) exceeding 0.7 mg C m-3 showed values gradually decreasing from April to August. A similar seasonal pattern was observed when monthly profiles were averaged over all the surface CHL concentrations. The maxima of all chlorophyll profiles moved from the greater depths to the surface from spring to late summer respectively. The profiles with the smallest surface values always showed a subsurface chlorophyll maximum with its median magnitude reaching up to three times the surface concentration. While the variability of the Greenland Sea season in April, May and June followed the global non-monthly resolved relationship of the chlorophyll profile to surface chlorophyll concentrations described by the model of Morel and Berthon (1989), it deviated significantly from the model in the other months (July-September), when the maxima of the chlorophyll are at quite different depths. The Greenland Sea dimensionless monthly median profiles intersected roughly at one common depth within each category. By applying a Gaussian fit with 0.1 mg C m-3 surface chlorophyll steps to the median monthly resolved chlorophyll profiles of the defined categories, mathematical approximations were determined. They generally reproduce the magnitude and position of the CHL maximum, resulting in an average 4% underestimation in Ctot (and 2% in rough primary production estimates) when compared to in situ estimates. These mathematical approximations can be used as the input to the satellite-based primary production models that estimate primary production in the Arctic regions.

  16. Linking deep convection and phytoplankton blooms in the northern Labrador Sea in a changing climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaguru, Karthik; Doney, Scott C.; Bianucci, Laura

    Wintertime convective mixing plays a pivotal role in the sub-polar North Atlantic spring phytoplankton blooms by favoring phytoplankton survival in the competition between light-dependent production and losses due to grazing and gravitational settling. We use satellite and ocean reanalyses to show that the area-averaged maximum winter mixed layer depth is positively correlated with April chlorophyll concentration in the northern Labrador Sea. A simple theoretical framework is developed to understand the relative roles of winter/spring convection and gravitational sedimentation in spring blooms in this region. Combining climate model simulations that project a weakening of wintertime Labrador Sea convection from Arctic seamore » ice melt with our framework suggests a potentially significant reduction in the initial fall phytoplankton population that survive the winter to seed the region's spring bloom by the end of the 21st century.« less

  17. Community composition of picoeukaryotes in the South China Sea during winter

    NASA Astrophysics Data System (ADS)

    Lin, Yun-Chi; Chiang, Kuo-Ping; Kang, Lee-Kuo

    2017-07-01

    Picoeukaryotes, the smallest protists, are highly diverse and abundant in the ocean. However, little information is available about their community composition in the tropical northwestern Pacific Ocean. This study collected surface and deep chlorophyll maximum (DCM) waters from the South China Sea (SCS) to study the picoeukaryotic composition by constructing clone libraries of the 18S rRNA gene. The libraries were dominated by the heterotrophic organisms, alveolates and Rhizaria, which accounted for 46% and 16% of total clones, respectively. MALV-I was the most abundant group in alveolates, and Rhizaria appears to be a key organism in the SCS, particularly within DCM layers. These results indicate that parasitism is significant in the oligotrophic and tropical SCS. Apart from core-dinoflagellates, chlorophytes, haptophytes, cryptophytes and pelagophytes were other important contributors to primary production in pico-sized fraction based on quantitative and qualitative data.

  18. Linking deep convection and phytoplankton blooms in the northern Labrador Sea in a changing climate

    PubMed Central

    Doney, Scott C.; Bianucci, Laura; Rasch, Philip J.; Leung, L. Ruby; Yoon, Jin-Ho; Lima, Ivan D.

    2018-01-01

    Wintertime convective mixing plays a pivotal role in the sub-polar North Atlantic spring phytoplankton blooms by favoring phytoplankton survival in the competition between light-dependent production and losses due to grazing and gravitational settling. We use satellite and ocean reanalyses to show that the area-averaged maximum winter mixed layer depth is positively correlated with April chlorophyll concentration in the northern Labrador Sea. A simple theoretical framework is developed to understand the relative roles of winter/spring convection and gravitational sedimentation in spring blooms in this region. Combining climate model simulations that project a weakening of wintertime Labrador Sea convection from Arctic sea ice melt with our framework suggests a potentially significant reduction in the initial fall phytoplankton population that survive the winter to seed the region’s spring bloom by the end of the 21st century. PMID:29370224

  19. Linking deep convection and phytoplankton blooms in the northern Labrador Sea in a changing climate.

    PubMed

    Balaguru, Karthik; Doney, Scott C; Bianucci, Laura; Rasch, Philip J; Leung, L Ruby; Yoon, Jin-Ho; Lima, Ivan D

    2018-01-01

    Wintertime convective mixing plays a pivotal role in the sub-polar North Atlantic spring phytoplankton blooms by favoring phytoplankton survival in the competition between light-dependent production and losses due to grazing and gravitational settling. We use satellite and ocean reanalyses to show that the area-averaged maximum winter mixed layer depth is positively correlated with April chlorophyll concentration in the northern Labrador Sea. A simple theoretical framework is developed to understand the relative roles of winter/spring convection and gravitational sedimentation in spring blooms in this region. Combining climate model simulations that project a weakening of wintertime Labrador Sea convection from Arctic sea ice melt with our framework suggests a potentially significant reduction in the initial fall phytoplankton population that survive the winter to seed the region's spring bloom by the end of the 21st century.

  20. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved?

    PubMed

    Cullen, John J

    2015-01-01

    The phenomenon of subsurface chlorophyll maximum layers (SCMLs) is not a unique ecological response to environmental conditions; rather, a broad range of interacting processes can contribute to the formation of persistent layers of elevated chlorophyll a concentration (Chl) that are nearly ubiquitous in stratified surface waters. Mechanisms that contribute to the formation and maintenance of the SCMLs include a local maximum in phytoplankton growth rate near the nutricline, photoacclimation of pigment content that leads to elevated Chl relative to phytoplankton biomass at depth, and a range of physiologically influenced swimming behaviors in motile phytoplankton and buoyancy control in diatoms and cyanobacteria that can lead to aggregations of phytoplankton in layers, subject to grazing and physical control. A postulated typical stable water structure characterizes consistent patterns in vertical profiles of Chl, phytoplankton biomass, nutrients, and light across a trophic gradient structured by the vertical flux of nutrients and characterized by the average daily irradiance at the nutricline. Hypothetical predictions can be tested using a nascent biogeochemical global ocean observing system. Partial results to date are generally consistent with predictions based on current knowledge, which has strong roots in research from the twentieth century.

  1. On the Subsurface Chlorophyll Maximum layer in the Black Sea Romanian shelf waters

    NASA Astrophysics Data System (ADS)

    Vasiliu, Dan; Gomoiu, Marian-Traian; Secrieru, Dan; Caraus, Ioan; Balan, Sorin

    2013-04-01

    By analyzing data recorded in 38 sampling stations (bottom depths between 16 and 200 m) covering the entire Romanian shelf, from the Danube's mouths to the southern part of the coast, the authors study Subsurface Chlorophyll Maximum (SCM) from May 2009 to April 2011. Chlorophyll a (Chla), seawater temperature, salinity, sigma T, dissolved oxygen, ph, beam attenuation, were measured over the water column depth with the CTD probe and averaged over 1-db intervals (about 1 m depth). Nutrients and phytoplankton qualitative and quantitative parameters were recorded from different depths according to water masses stratification (inscribed in the research protocol of the cruise). In late winter/early spring, due to strong mixing processes of water masses, SCM was not observed in the Black Sea shelf waters. In spring (May), the Danube's increased discharges, characteristic to that period, strongly affected the vertical distribution of Chla, particularly in the area of the Danube's direct influence, where Chla reached maximum in the surface layer (19.76 - 30.39 µg.l-1). In the deeper sampling stations, a relatively weak SCM (Chla within 0.77 - 1.21 µg.l-1) was observed, mainly at the lower limit of the euphotic zone (between 30 and 40 m depths). Here, the position and magnitude of SCM seemed to be controlled mainly by the light conditions; the seasonal thermocline was not well contoured yet. In the warm season, once the stratification becomes stronger, the magnitude of SCM increased (Chla varies between 1.45 - 2.12 µg.l-1). The SCM was well pronounced below the upper boundary of thermocline, at depths between 20 and 25 m, where the dissolved oxygen concentrations have also reached the highest values (>10 mg.l-1 O2), thus suggesting strong photosynthetic processes, where both nutrient and light conditions are favorable. A particular situation was found in July 2010, when abnormally high discharges from the Danube led to a well pronounced SCM (3.23 - 6.87 µg.l-1 Chla) above thermocline (within 8 - 12 m depths) in the shallow waters, the nutrients being not limitative factors. Keywords Chlorophyll a, Subsurface Chlorophyll Maximum layer, the Black Sea, the Danube

  2. Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea.

    PubMed

    Repeta, D J; Simpson, D J; Jorgensen, B B; Jannasch, H W

    1989-11-02

    The contribution of anoxygenic photosynthesis to carbon cycling in the Black Sea, the world's largest body of anoxic marine water, has been vigorously investigated and debated for over four decades. Penetration of light into the sulphide-containing deep water may result in a zone of anaerobic primary production by photosynthetic bacteria. We report here the results of analyses of photosynthetic pigments in samples of suspended particulate matter collected from two stations in the western basin of the Black Sea. Our data demonstrate high concentrations of a bacterio-chlorophyll at the chemocline, and thus the potential for anoxygenic photosynthesis as a component of primary production in the carbon cycle of the Black Sea. More than 95% of the pigments in the bacteriochlorophyll-maximum are accounted for by a series of aromatic carotenoids and bacteriochlorophylls-e, including a previously unreported geranyl ester of 4-i-butyl bacteriochlorophyll-e. The distribution of pigments is characteristic of the obligate phototrophs Chlorobium phaeobacteroides and C. phaeovibriodes. Total depth-integrated bacteriochlorophyll at one station exceeded total chlorophyll-a in the overlying oxygenated portion of the euphotic zone. We suggest that anoxygenic photosynthesis is a relatively recent phenomenon in the Black Sea initiated by shallowing of the chemocline over the past decade and development of an anoxic layer devoid of O2 and H2S.

  3. Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments

    NASA Astrophysics Data System (ADS)

    Avila-Alonso, Dailé; Baetens, Jan M.; Cardenas, Rolando; de Baets, Bernard

    2017-07-01

    In this work, the photosynthesis model presented by Avila et al. in 2013 is extended and more scenarios inhabited by ancient cyanobacteria are investigated to quantify the effects of ultraviolet (UV) radiation on their photosynthetic potential in marine environments of the Archean eon. We consider ferrous ions as blockers of UV during the Early Archean, while the absorption spectrum of chlorophyll a is used to quantify the fraction of photosynthetically active radiation absorbed by photosynthetic organisms. UV could have induced photoinhibition at the water surface, thereby strongly affecting the species with low light use efficiency. A higher photosynthetic potential in early marine environments was shown than in the Late Archean as a consequence of the attenuation of UVC and UVB by iron ions, which probably played an important role in the protection of ancient free-floating bacteria from high-intensity UV radiation. Photosynthetic organisms in Archean coastal and ocean environments were probably abundant in the first 5 and 25 m of the water column, respectively. However, species with a relatively high efficiency in the use of light could have inhabited ocean waters up to a depth of 200 m and show a Deep Chlorophyll Maximum near 60 m depth. We show that the electromagnetic radiation from the Sun, both UV and visible light, could have determined the vertical distribution of Archean marine photosynthetic organisms.

  4. Leaf Optical Properties in Higher Plants: Linking Spectral Characteristics to Stress and Chlorophyll Concentration

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Knapp, Alan K.

    2000-01-01

    A number of studies have linked responses in leaf spectral reflectance, transmittance or absorptance to physiological stress. A variety of stressors including dehydration, flooding,freezing, ozone, herbicides, competition, disease, insects and deficiencies in ectomycorrhizal development and N fertilization have been imposed on species ranging from grasses to conifers and deciduous trees. In this cases, the maximum difference in reflectance within the 400 - 850 nm wavelength range between control and stressed states occurred as a reflectance increase at wavelength near 700 nm. In studies that included transmittance and absorptance as well as reflectance, maximum differences occurred as increases and decreases, respectively, near 700 nm. This common optical response to stress could be simulated closely by varying the chlorophyll concentrations in senescent leaves of five species. The optical response to stress near 700 nm, as well as corresponding changes in reflectance that occur in the green-yellow spectrum, can be explained by the general tendency of stress to reduce leaf chlorophyll concentration.

  5. Biogeochemical characteristics of suspended particulate matter in deep chlorophyll maximum layers in the southern East China Sea

    NASA Astrophysics Data System (ADS)

    Liu, Qianqian; Kandasamy, Selvaraj; Lin, Baozhi; Wang, Huawei; Chen, Chen-Tung Arthur

    2018-04-01

    Continental shelves and marginal seas are key sites of particulate organic matter (POM) production, remineralization and sequestration, playing an important role in the global carbon cycle. Elemental and stable isotopic compositions of organic carbon and nitrogen are thus frequently used to characterize and distinguish POM and its sources in suspended particles and surface sediments in the marginal seas. Here we investigated suspended particulate matter (SPM) collected around deep chlorophyll maximum (DCM) layers in the southern East China Sea for particulate organic carbon and nitrogen (POC and PN) contents and their isotopic compositions (δ13CPOC and δ15NPN) to understand provenance and dynamics of POM. Hydrographic parameters (temperature, salinity and turbidity) indicated that the study area was weakly influenced by freshwater derived from the Yangtze River during summer 2013. Elemental and isotopic results showed a large variation in δ13CPOC (-25.8 to -18.2 ‰) and δ15NPN (3.8 to 8.0 ‰), but a narrow molar C / N ratio (4.1-6.3) and low POC / Chl a ratio ( < 200 g g-1) in POM, and indicated that the POM in DCM layers was newly produced by phytoplankton. In addition to temperature effects, the range and distribution of δ13CPOC were controlled by variations in primary productivity and phytoplankton species composition; the former explained ˜ 70 % of the variability in δ13CPOC. However, the variation in δ15NPN was controlled by the nutrient status and δ15NNO3- in seawater, as indicated by similar spatial distribution between δ15NPN and the current pattern and water masses in the East China Sea; although interpretations of δ15NPN data should be verified with the nutrient data in future studies. Furthermore, the POM investigated was weakly influenced by the terrestrial OM supplied by the Yangtze River during summer 2013 due to the reduced sediment supply by the Yangtze River and north-eastward transport of riverine particles to the northern East China Sea. We demonstrated that the composition of POM around DCM layers in the southern East China Sea is highly dynamic and largely driven by phytoplankton abundance. Nonetheless, additional radiocarbon and biomarker data are needed to re-evaluate whether or not the POM around the DCM water depths is influenced by terrestrial OM in the river-dominated East China Sea.

  6. Chlorophyll-Based Organic-Inorganic Heterojunction Solar Cells.

    PubMed

    Li, Yue; Zhao, Wenjie; Li, Mengzhen; Chen, Gang; Wang, Xiao-Feng; Fu, Xueqi; Kitao, Osamu; Tamiaki, Hitoshi; Sakai, Kotowa; Ikeuchi, Toshitaka; Sasaki, Shin-Ichi

    2017-08-10

    Solid-state chlorophyll solar cells (CSCs) employing a carboxylated chlorophyll derivative, methyl trans-3 2 -carboxypyropheophorbide a, as a light-harvesting dye sensitizer chlorophyll (DSC) deposited on mesoporous TiO 2 , on which four zinc hydroxylated chlorophyll derivatives were spin-coated for hole transporter chlorophylls (HTCs), are described. Key parameters, including the effective carrier mobility of the HTC films, as determined by the space charge-limited current method, and the frontier molecular orbitals of these DSCs and HTCs, as estimated from cyclic voltammetry and electronic absorption spectra, suggest that both charge separation and carrier transport are favorable. The power conversion efficiencies (PCEs) of the present CSCs with fluorine-doped tin oxide (FTO)/TiO 2 /DSC/HTCs/Ag were determined to follow the order of HTC-1>HTC-2>HTC-3>HTC-4, which coincided perfectly with the order of their hole mobilities. The maximum PCE achieved was 0.86 % with HTC-1. The photovoltaic devices studied herein with two types of chlorophyll derivatives as dye sensitizers and hole transporters provide a unique solution for the utilization of solar energy with a view to truly realizing "green energy". © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Function of terahertz spectra in monitoring the decomposing process of biological macromolecules and in investigating the causes of photoinhibition.

    PubMed

    Qu, Yuangang; Zhang, Shuai; Lian, Yuji; Kuang, Tingyun

    2017-03-01

    Chlorophyll a and β-carotene play an important role in harvesting light energy, which is used to drive photosynthesis in plants. In this study, terahertz (THz) and visible range spectra of chlorophyll a and β-carotene and their changes under light treatment were investigated. The results show that the all THz transmission and absorption spectra of chlorophyll a and β-carotene changed upon light treatment, with the maximum changes at 15 min of illumination indicating the greatest changes of the collective vibrational mode of chlorophyll a and β-carotene. The absorption spectra of chlorophyll a in the visible light region decreased upon light treatment, signifying the degradation of chlorophyll a molecules. It can be inferred from these results that the THz spectra are very sensitive in monitoring the changes of the collective vibrational mode, despite the absence of changes in molecular configuration. The THz spectra can therefore be used to monitor the decomposing process of biological macromolecules; however, visible absorption spectra can only be used to monitor the breakdown extent of biological macromolecules.

  8. Optimalisation of remote sensing algorithm in mapping of chlorophyl-a concentration at Pasuruan coastal based on surface reflectance images of Aqua Modis

    NASA Astrophysics Data System (ADS)

    Wibisana, H.; Zainab, S.; Dara K., A.

    2018-01-01

    Chlorophyll-a is one of the parameters used to detect the presence of fish populations, as well as one of the parameters to state the quality of a water. Research on chlorophyll concentrations has been extensively investigated as well as with chlorophyll-a mapping using remote sensing satellites. Mapping of chlorophyll concentration is used to obtain an optimal picture of the condition of waters that is often used as a fishing area by the fishermen. The role of remote sensing is a technological breakthrough in broadly monitoring the condition of waters. And in the process to get a complete picture of the aquatic conditions it would be used an algorithm that can provide an image of the concentration of chlorophyll at certain points scattered in the research area of capture fisheries. Remote sensing algorithms have been widely used by researchers to detect the presence of chlorophyll content, where the channels corresponding to the mapping of chlorophyll -concentrations from Landsat 8 images are canals 4, 3 and 2. With multiple channels from Landsat-8 satellite imagery used for chlorophyll detection, optimum algorithmic search can be formulated to obtain maximum results of chlorophyll-a concentration in the research area. From the calculation of remote sensing algorithm hence can be known the suitable algorithm for condition at coast of Pasuruan, where green channel give good enough correlation equal to R2 = 0,853 with algorithm for Chlorophyll-a (mg / m3) = 0,093 (R (-0) Red - 3,7049, from this result it can be concluded that there is a good correlation of the green channel that can illustrate the concentration of chlorophyll scattered along the coast of Pasuruan

  9. Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem

    PubMed Central

    Smith, Maria W.; Zeigler Allen, Lisa; Allen, Andrew E.; Herfort, Lydie; Simon, Holly M.

    2013-01-01

    The Columbia River (CR) is a powerful economic and environmental driver in the US Pacific Northwest. Microbial communities in the water column were analyzed from four diverse habitats: (1) an estuarine turbidity maximum (ETM), (2) a chlorophyll maximum of the river plume, (3) an upwelling-associated hypoxic zone, and (4) the deep ocean bottom. Three size fractions, 0.1–0.8, 0.8–3, and 3–200 μm were collected for each habitat in August 2007, and used for DNA isolation and 454 sequencing, resulting in 12 metagenomes of >5 million reads (>1.6 Gbp). To characterize the dominant microorganisms and metabolisms contributing to coastal biogeochemistry, we used predicted peptide and rRNA data. The 3- and 0.8-μm metagenomes, representing particulate fractions, were taxonomically diverse across habitats. The 3-μm size fractions contained a high abundance of eukaryota with diatoms dominating the hypoxic water and plume, while cryptophytes were more abundant in the ETM. The 0.1-μm metagenomes represented mainly free-living bacteria and archaea. The most abundant archaeal hits were observed in the deep ocean and hypoxic water (19% of prokaryotic peptides in the 0.1-μm metagenomes), and were homologous to Nitrosopumilus maritimus (ammonia-oxidizing Thaumarchaeota). Bacteria dominated metagenomes of all samples. In the euphotic zone (estuary, plume and hypoxic ocean), the most abundant bacterial taxa (≥40% of prokaryotic peptides) represented aerobic photoheterotrophs. In contrast, the low-oxygen, deep water metagenome was enriched with sequences for strict and facultative anaerobes. Interestingly, many of the same anaerobic bacterial families were enriched in the 3-μm size fraction of the ETM (2–10X more abundant relative to the 0.1-μm metagenome), indicating possible formation of anoxic microniches within particles. Results from this study provide a metagenome perspective on ecosystem-scale metabolism in an upwelling-influenced river-dominated coastal margin. PMID:23750156

  10. Removal of Organic Pollutants from Municipal Wastewater by Applying High-Rate Algal Pond in Addis Ababa, Ethiopia

    NASA Astrophysics Data System (ADS)

    Alemu, Keneni; Assefa, Berhanu; Kifle, Demeke; Kloos, Helmut

    2018-05-01

    The discharge of inadequately treated municipal wastewater has aggravated the pollution load in developing countries including Ethiopia. Conventional wastewater treatment methods that require high capital and operational costs are not affordable for many developing nations, including Ethiopia. This study aimed to investigate the performance of two high-rate algal ponds (HRAPs) in organic pollutant removal from primary settled municipal wastewater under highland tropical climate conditions in Addis Ababa. The experiment was done for 2 months at hydraulic retention times (HRTs) ranging from 2 to 8 days using an organic loading rates ranging 333-65 kg {BOD}5 /ha/day using two HRAPs, 250 and 300 mm deep, respectively. In this experiment, Chlorella sp., Chlamydomonas sp., and Scenedesmus sp., the class of Chlorophyceae, were identified as the dominant species. Chlorophyll-a production was higher in the shallower ponds (250 mm) throughout the course of the study, whereas the deeper HRAP (300 mm) showed better dissolved oxygen production. The maximum COD and {BOD}5 removal of 78.03 and 81.8% was achieved at a 6-day HRT operation in the 250-mm-deep HRAP. Therefore, the 300-mm-deep HRAP is promising for scaling up organic pollutant removal from municipal wastewater at a daily average organic loading rate of 109.3 kg {BOD}5 /ha/day and a 6-day HRT. We conclude that the removal of organic pollutants in HRAP can be controlled by pond depth, organic loading rate, and HRT.

  11. Mesoscale variation in the photophysiology of the reef building coral Pocillopora damicornis along an environmental gradient

    NASA Astrophysics Data System (ADS)

    Cooper, Timothy F.; Ulstrup, Karin E.

    2009-06-01

    Spatial variation in the photophysiology of symbiotic dinoflagellates (zooxanthellae) of the scleractinian coral Pocillopora damicornis was examined along an environmental gradient in the Whitsunday Islands (Great Barrier Reef) at two depths (3 m and 6 m). Chlorophyll a fluorescence of photosystem II (PSII) and PAR-absorptivity measurements were conducted using an Imaging-PAM (pulse-amplitude-modulation) fluorometer. Most photophysiological parameters correlated with changes in environmental conditions quantified by differences in water quality along the gradient. For example, maximum quantum yield ( Fv/ Fm) increased and PAR-absorptivity decreased as water quality improved along the gradient from nearshore reefs (low irradiance, elevated nutrients and sediments) to outer islands (high irradiance, low nutrients and sediments). For apparent photosynthetic rate (PS max) and minimum saturating irradiance ( Ek), the direction of change differed depending on sampling depth, suggesting that different mechanisms of photo-acclimatisation operated between shallow and deep corals. Deep corals conformed to typical patterns of light/shade acclimatisation whereas shallow corals exhibited reduced PS max and Ek with improving water quality coinciding with greater heat dissipation (NPQ 241). Furthermore, deep corals on nearshore reefs exhibited elevated Q241 in comparison to outer islands possibly due to effects of sedimentation and/or pollutants rather than irradiance. These results highlight the importance of mesoscale sampling to obtain useful estimates of the variability of photophysiological parameters, particularly if such measures are to be used as bioindicators of the condition of coral reefs.

  12. The effectiveness of laser diode induction to Carica Papaya L. chlorophyll extract to be ROS generating in the photodynamic inactivation mechanisms for C.albicans biofilms

    NASA Astrophysics Data System (ADS)

    Dewi Astuty, S.; Baktir, A.

    2017-05-01

    Research on the effectiveness of photo inactivation of C.albicans biofilms led by a-PDT system mediated by chlorophyll-diode-laser-induced was done. This research was done using in vitro technique in order to effectively determine chlorophyll extract of ROS-generated Carica Papaya L. using in situ technique. This technique induced laser diode on different dose and C. albicans with reduced degree. This research is a preliminary study in efforts to find anew sensitizer agent candidate made of chlorophyll extract and antifungal of Carica Papaya L. The effectiveness of eradication has been tested with MDA’s content and OD of biomass biofilms as well as analyzed using ANOVA and Tukey Test (α=0.05). The characteristic of chlorophyll extract of Carica Papaya L. has maximum absorptions on blue areas (λmax = 420 nm) and red areas (λmax = 670 nm). The MIC value of Carica Papaya L.’schlorophyll extract against C. albicans planktonic and biofilms cell is 63.8 μM and 31.9 μM respectively. The result shows that treatment using laser which was combined with chlorophyll extract is more effective than that with laser only or chlorophyll extract only. The treatment using laser combined with chlorophyll extract obtained more than 65% (α=0.05) (more than that of negative control) for P2L1 group with OD595 0.915. The MDA’s content showed that group of laser which was mediated with chlorophyll extract had larger values than group of laser or chlorophyll extract only.

  13. High-Performance Liquid Chromatography (HPLC) Measurements of Phytoplankton Pigment Distributions of Ocean Waters

    DTIC Science & Technology

    1988-11-01

    coccolithophorids 19. ABSTRACT (CanMyw on rviosfe Inhcesway aM den*t byblock nmber) Until the application of high-performance liquid chromatography (HPLC) to... phycocyanin , has a maximum 0 01 absorption peak. The spectra for the 008 chlorophyll degradation products (chlo- 0.06 rophyllides, phaeophorbides and...phaeo- phytins) which are not shown in Figure z I have similar absorption maxima as their associated chlorophylls, 002 , Until the application of high

  14. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions.

    PubMed

    Sato, Rei; Ito, Hisashi; Tanaka, Ayumi

    2015-12-01

    The light-harvesting chlorophyll a/b binding protein complex of photosystem II (LHCII) is the main antenna complex of photosystem II (PSII). Plants change their LHCII content depending on the light environment. Under high-light conditions, the content of LHCII should decrease because over-excitation damages the photosystem. Chlorophyll b is indispensable for accumulating LHCII, and chlorophyll b degradation induces LHCII degradation. Chlorophyll b degradation is initiated by chlorophyll b reductase (CBR). In land plants, NON-YELLOW COLORING 1 (NYC1) and NYC1-Like (NOL) are isozymes of CBR. We analyzed these mutants to determine their functions under high-light conditions. During high-light treatment, the chlorophyll a/b ratio was stable in the wild-type (WT) and nol plants, and the LHCII content decreased in WT plants. The chlorophyll a/b ratio decreased in the nyc1 and nyc1/nol plants, and a substantial degree of LHCII was retained in nyc1/nol plants after the high-light treatment. These results demonstrate that NYC1 degrades the chlorophyll b on LHCII under high-light conditions, thus decreasing the LHCII content. After the high-light treatment, the maximum quantum efficiency of the PSII photochemistry was lower in nyc1 and nyc1/nol plants than in WT and nol plants. A larger light-harvesting system would damage PSII in nyc1 and nyc1/nol plants. The fluorescence spectroscopy of the leaves indicated that photosystem I was also damaged by the excess LHCII in nyc1/nol plants. These observations suggest that chlorophyll b degradation by NYC1 is the initial reaction for the optimization of the light-harvesting capacity under high-light conditions.

  15. Ocean Primary Production Estimates from Terra MODIS and Their Dependency on Satellite Chlorophyll Alpha Algorithms

    NASA Technical Reports Server (NTRS)

    Essias, Wayne E.; Abbott, Mark; Carder, Kendall; Campbell, Janet; Clark, Dennis; Evans, Robert; Brown, Otis; Kearns, Ed; Kilpatrick, Kay; Balch, W.

    2003-01-01

    Simplistic models relating global satellite ocean color, temperature, and light to ocean net primary production (ONPP) are sensitive to the accuracy and limitations of the satellite estimate of chlorophyll and other input fields, as well as the primary productivity model. The standard MODIS ONPP product uses the new semi-analytic chlorophyll algorithm as its input for two ONPP indexes. The three primary MODIS chlorophyll Q estimates from MODIS, as well as the SeaWiFS 4 chlorophyll product, were used to assess global and regional performance in estimating ONPP for the full mission, but concentrating on 2001. The two standard ONPP algorithms were examined with 8-day and 39 kilometer resolution to quantify chlorophyll algorithm dependency of ONPP. Ancillary data (MLD from FNMOC, MODIS SSTD1, and PAR from the GSFC DAO) were identical. The standard MODIS ONPP estimates for annual production in 2001 was 59 and 58 GT C for the two ONPP algorithms. Differences in ONPP using alternate chlorophylls were on the order of 10% for global annual ONPP, but ranged to 100% regionally. On all scales the differences in ONPP were smaller between MODIS and SeaWiFS than between ONPP models, or among chlorophyll algorithms within MODIS. Largest regional ONPP differences were found in the Southern Ocean (SO). In the SO, application of the semi-analytic chlorophyll resulted in not only a magnitude difference in ONPP (2x), but also a temporal shift in the time of maximum production compared to empirical algorithms when summed over standard oceanic areas. The resulting increase in global ONPP (6-7 GT) is supported by better performance of the semi-analytic chlorophyll in the SO and other high chlorophyll regions. The differences are significant in terms of understanding regional differences and dynamics of ocean carbon transformations.

  16. Regional variability among nonlinear chlorophyll-phosphorus relationships in lakes

    USGS Publications Warehouse

    Filstrup, Christopher T.; Wagner, Tyler; Soranno, Patricia A.; Stanley, Emily H.; Stow, Craig A.; Webster, Katherine E.; Downing, John A.

    2014-01-01

    The relationship between chlorophyll a (Chl a) and total phosphorus (TP) is a fundamental relationship in lakes that reflects multiple aspects of ecosystem function and is also used in the regulation and management of inland waters. The exact form of this relationship has substantial implications on its meaning and its use. We assembled a spatially extensive data set to examine whether nonlinear models are a better fit for Chl a—TP relationships than traditional log-linear models, whether there were regional differences in the form of the relationships, and, if so, which regional factors were related to these differences. We analyzed a data set from 2105 temperate lakes across 35 ecoregions by fitting and comparing two different nonlinear models and one log-linear model. The two nonlinear models fit the data better than the log-linear model. In addition, the parameters for the best-fitting model varied among regions: the maximum and lower Chl aasymptotes were positively and negatively related to percent regional pasture land use, respectively, and the rate at which chlorophyll increased with TP was negatively related to percent regional wetland cover. Lakes in regions with more pasture fields had higher maximum chlorophyll concentrations at high TP concentrations but lower minimum chlorophyll concentrations at low TP concentrations. Lakes in regions with less wetland cover showed a steeper Chl a—TP relationship than wetland-rich regions. Interpretation of Chl a—TP relationships depends on regional differences, and theory and management based on a monolithic relationship may be inaccurate.

  17. Long-term Trend of Satellite-observed Chlorophyll-a Concentration Variations in the East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Park, J. E.; PARK, K. A.

    2016-02-01

    Long-term time-series of satellite ocean color data enable us to analyze the effects of climate change on ocean ecosystem through chlorophyll-a concentration as a proxy for phytoplankton biomass. In this study, we constructed a 17 year-long time-series dataset (1998-2014) of chlorophyll-a concentration by combining SeaWiFS (Obrview-2, 1997-2010) and MODIS (Aqua, 2002-present) data in the East Sea (Japan Sea). Several types of errors such as anonymously high values (a speckle error), stripe-like patterns, discrepancy originating from time gap between the two satellites were eliminated to enhance the accuracy of chlorophyll-a concentration data. The composited chlorophyll-a concentration maps, passing through the post-processing of the speckle errors, were improved significantly, by 14% of abnormal variability in maximum. Using the database, we investigated spatial and temporal variability of chlorophyll-a concentration in the East Sea. Spatial distribution of long-term trend of chlorophyll-a concentration indicated obvious distinction between northern and southern regions of the subpolar front. It revealed predominant seasonal variabilities as well as long-term changes in the timings of spring bloom. This study addresses the important role of local climate change on fast changing ecosystem of the East Sea as one of miniature oceans.

  18. Frontal dynamics boost primary production in the summer stratified Mediterranean sea

    NASA Astrophysics Data System (ADS)

    Olita, Antonio; Capet, Arthur; Claret, Mariona; Mahadevan, Amala; Poulain, Pierre Marie; Ribotti, Alberto; Ruiz, Simón; Tintoré, Joaquín; Tovar-Sánchez, Antonio; Pascual, Ananda

    2017-06-01

    Bio-physical glider measurements from a unique process-oriented experiment in the Eastern Alboran Sea (AlborEx) allowed us to observe the distribution of the deep chlorophyll maximum (DCM) across an intense density front, with a resolution (˜ 400 m) suitable for investigating sub-mesoscale dynamics. This front, at the interface between Atlantic and Mediterranean waters, had a sharp density gradient (Δ ρ ˜ 1 kg/m3 in ˜ 10 km) and showed imprints of (sub-)mesoscale phenomena on tracer distributions. Specifically, the chlorophyll-a concentration within the DCM showed a disrupted pattern along isopycnal surfaces, with patches bearing a relationship to the stratification (buoyancy frequency) at depths between 30 and 60 m. In order to estimate the primary production (PP) rate within the chlorophyll patches observed at the sub-surface, we applied the Morel and Andrè (J Geophys Res 96:685-698 1991) bio-optical model using the photosynthetic active radiation (PAR) from Argo profiles collected simultaneously with glider data. The highest production was located concurrently with domed isopycnals on the fresh side of the front, suggestive that (sub-)mesoscale upwelling is carrying phytoplankton patches from less to more illuminated levels, with a contemporaneous delivering of nutrients. Integrated estimations of PP (1.3 g C m-2d-1) along the glider path are two to four times larger than the estimations obtained from satellite-based algorithms, i.e., derived from the 8-day composite fields extracted over the glider trip path. Despite the differences in spatial and temporal sampling between instruments, the differences in PP estimations are mainly due to the inability of the satellite to measure DCM patches responsible for the high production. The deepest (depth > 60 m) chlorophyll patches are almost unproductive and probably transported passively (subducted) from upper productive layers. Finally, the relationship between primary production and oxygen is also investigated. The logarithm of the primary production in the DCM interior (chlorophyll (Chl) > 0.5 mg/m3) shows a linear negative relationship with the apparent oxygen utilization, confirming that high chlorophyll patches are productive. The slope of this relationship is different for Atlantic, mixed interface waters and Mediterranean waters, suggesting the presence of differences in planktonic communities (whether physiological, population, or community level should be object of further investigation) on the different sides of the front. In addition, the ratio of optical backscatter to Chl is high within the intermediate (mixed) waters, which is suggestive of large phytoplankton cells, and lower within the core of the Atlantic and Mediterranean waters. These observations highlight the relevance of fronts in triggering primary production at DCM level and shaping the characteristic patchiness of the pelagic domain. This gains further relevance considering the inadequacy of optical satellite sensors to observe DCM concentrations at such fine scales.

  19. Inferring Source Regions and Supply Mechanisms of Iron in the Southern Ocean from Satellite Data

    NASA Astrophysics Data System (ADS)

    Graham, R. M.

    2016-02-01

    In many biogeochemical models a large shelf sediment iron flux is prescribed through the seafloor over all areas of bathymetry shallower than 1000 m. Here we infer the likely location of shelf sediment iron sources by identifying where mean annual satellite chlorophyll concentrations are enhanced over shallow bathymetry ( < 1000 m). We show that mean annual chlorophyll concentrations are not visibly enhanced over areas of shallow bathymetry located more than 500 km from a coastline. Chlorophyll concentrations > 2 mg m-3are only found within 50 km of a continental or island coastline. These results suggest that large sedimentary iron fluxes only exist on continental or island shelves. Large sedimentary iron fluxes are unlikely to be found on isolated seamounts and submerged plateaus. We further compare satellite chlorophyll concentrations to the position of ocean fronts to assess the relative role of horizontal advection and upwelling for supplying iron to the ocean surface. Sharp gradients in chlorophyll concentrations are observed across western boundary currents. Large chlorophyll blooms develop where western boundary currents detach from the continental shelves and turn eastwards into the Southern Ocean. Chlorophyll concentrations are enhanced along contours of sea surface height extending off continental and island shelves. These observations support the hypothesis that bioavailable iron from continental shelves is entrained into western boundary currents and advected into the Sub-Antarctic Zone along the Dynamical Subtropical Front. Likewise, iron from island shelves is entrained into nearby fronts and advected downstream. Mean annual chlorophyll concentrations are very low in open ocean regions with large modelled upwelling velocities, where fronts cross over topographic ridges. These results suggests that open ocean upwelling is unlikely to deliver iron to the surface from deep sources such as hydrothermal vents.

  20. Long-term dynamics of chlorophyll concentration in the ocean surface layer (by space data)

    NASA Astrophysics Data System (ADS)

    Shevyrnogov, A.; Vysotskaya, G.

    To preserve the biosphere and to use it efficiently, it is necessary to gain a deep insight into the dynamics of the primary production process on our planet. Variability of chlorophyll concentration in the ocean is one of the most important components of this process. These investigations are, however, very labor-consuming, because of the difficulties related to the accessibility of the water surface and its large size. In this work long-term changes in chlorophyll concentration in the surface layer of the ocean have been analyzed on the basis of the CZCS data for 7.5 years from 1979 to 1986 and the SeaWiFS data from 1997 to 2004. It has been shown that the average chlorophyll concentration calculated in all investigated areas varies moderately. However, when analyzing spatially local trends, the areas have been detected that have significant rise and fall of chlorophyll concentrations. Some interesting features of the long-term dynamics of chlorophyll concentration have been found. The opposite directions of long-term trends (essential increase or decrease) cannot be explained only by large-scale hydrological phenomena in the ocean (currents, upwellings, etc.). The measured chlorophyll concentration results from the balance between production and destruction processes. Which process dominates is determined by various hydrophysical, hydrobiological, and climatic processes, leading to sharp rises or falls of the concentration. It is important to estimate the scale of the areas in which this or that process dominates. Therefore, the study addresses not only the dynamics of the mean value but also the dynamics of the areas in which the dominance of certain factors has led to a sharp fall or rise in chlorophyll concentration. Thus, the obtained results can be used to estimate long-term changes in the ocean biota.

  1. Algicidal and denitrification characterization of Acinetobacter sp. J25 against Microcystis aeruginosa and microbial community in eutrophic landscape water.

    PubMed

    Su, Jun Feng; Ma, Min; Wei, Li; Ma, Fang; Lu, Jin Suo; Shao, Si Cheng

    2016-06-15

    Acinetobacter sp. J25 exhibited good denitrification and high algicidal activity against toxic Microcystis aeruginosa. Response surface methodology (RSM) experiments showed that the maximum algicidal ratio occurred under the following conditions: temperature, 30.46°C; M. aeruginosa density, 960,000cellsmL(-1); and inoculum, 23.75% (v/v). Of these, inoculum produced the maximum effect. In the eutrophic landscape water experiment, 10% bacterial culture was infected with M. aeruginosa cells in the landscape water. After 24days, the removal ratios of nitrate and chlorophyll-a were high, 100% and 87.86%, respectively. The denitrification rate was approximately 0.118mgNO3(-)-N·L(-1)·h(-1). Moreover, the high-throughput sequencing result showed that Acinetobacter sp. J25 was obviously beneficial for chlorophyll-a and nitrate removal performance in the eutrophic landscape water treatment. Therefore, strain J25 is promising for the simultaneous removal of chlorophyll-a and nitrate in the eutrophic landscape water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses.

    PubMed

    Brum, Jennifer R; Schenck, Ryan O; Sullivan, Matthew B

    2013-09-01

    Viruses influence oceanic ecosystems by causing mortality of microorganisms, altering nutrient and organic matter flux via lysis and auxiliary metabolic gene expression and changing the trajectory of microbial evolution through horizontal gene transfer. Limited host range and differing genetic potential of individual virus types mean that investigations into the types of viruses that exist in the ocean and their spatial distribution throughout the world's oceans are critical to understanding the global impacts of marine viruses. Here we evaluate viral morphological characteristics (morphotype, capsid diameter and tail length) using a quantitative transmission electron microscopy (qTEM) method across six of the world's oceans and seas sampled through the Tara Oceans Expedition. Extensive experimental validation of the qTEM method shows that neither sample preservation nor preparation significantly alters natural viral morphological characteristics. The global sampling analysis demonstrated that morphological characteristics did not vary consistently with depth (surface versus deep chlorophyll maximum waters) or oceanic region. Instead, temperature, salinity and oxygen concentration, but not chlorophyll a concentration, were more explanatory in evaluating differences in viral assemblage morphological characteristics. Surprisingly, given that the majority of cultivated bacterial viruses are tailed, non-tailed viruses appear to numerically dominate the upper oceans as they comprised 51-92% of the viral particles observed. Together, these results document global marine viral morphological characteristics, show that their minimal variability is more explained by environmental conditions than geography and suggest that non-tailed viruses might represent the most ecologically important targets for future research.

  3. Novel type of red-shifted chlorophyll a antenna complex from Chromera velia: II. Biochemistry and spectroscopy.

    PubMed

    Bína, David; Gardian, Zdenko; Herbstová, Miroslava; Kotabová, Eva; Koník, Peter; Litvín, Radek; Prášil, Ondřej; Tichý, Josef; Vácha, František

    2014-06-01

    A novel chlorophyll a containing pigment-protein complex expressed by cells of Chromera velia adapted to growth under red/far-red illumination [1]. Purification of the complex was achieved by means of anion-exchange chromatography and gel-filtration. The antenna is shown to be an aggregate of ~20kDa proteins of the light-harvesting complex (LHC) family, unstable in the isolated form. The complex possesses an absorption maximum at 705nm at room temperature in addition to the main chlorophyll a maximum at 677nm producing the major emission band at 714nm at room temperature. The far-red absorption is shown to be the property of the isolated aggregate in the intact form and lost upon dissociation. The purified complex was further characterized by circular dichroism spectroscopy and fluorescence spectroscopy. This work thus identified the third different class of antenna complex in C. velia after the recently described FCP-like and LHCr-like antennas. Possible candidates for red antennas are identified in other taxonomic groups, such as eustigmatophytes and the relevance of the present results to other known examples of red-shifted antenna from other organisms is discussed. This work appears to be the first successful isolation of a chlorophyll a-based far-red antenna complex absorbing above 700nm unrelated to LHCI. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding.

    PubMed

    Wasson, A P; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Richards, R A; Watt, M

    2014-11-01

    We aim to incorporate deep root traits into future wheat varieties to increase access to stored soil water during grain development, which is twice as valuable for yield as water captured at younger stages. Most root phenotyping efforts have been indirect studies in the laboratory, at young plant stages, or using indirect shoot measures. Here, soil coring to 2 m depth was used across three field environments to directly phenotype deep root traits on grain development (depth, descent rate, density, length, and distribution). Shoot phenotypes at coring included canopy temperature depression, chlorophyll reflectance, and green leaf scoring, with developmental stage, biomass, and yield. Current varieties, and genotypes with breeding histories and plant architectures expected to promote deep roots, were used to maximize identification of variation due to genetics. Variation was observed for deep root traits (e.g. 111.4-178.5cm (60%) for depth; 0.09-0.22cm/°C day (144%) for descent rate) using soil coring in the field environments. There was significant variation for root traits between sites, and variation in the relative performance of genotypes between sites. However, genotypes were identified that performed consistently well or poorly at both sites. Furthermore, high-performing genotypes were statistically superior in root traits than low-performing genotypes or commercial varieties. There was a weak but significant negative correlation between green leaf score (-0.5), CTD (0.45), and rooting depth and a positive correlation for chlorophyll reflectance (0.32). Shoot phenotypes did not predict other root traits. This study suggests that field coring can directly identify variation in deep root traits to speed up selection of genotypes for breeding programmes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Open ocean pelago-benthic coupling: cyanobacteria as tracers of sedimenting salp faeces

    NASA Astrophysics Data System (ADS)

    Pfannkuche, Olaf; Lochte, Karin

    1993-04-01

    Coupling between surface water plankton and abyssal benthos was investigated during a mass development of salps ( Salpa fusiformis) in the Northeast Atlantic. Cyanobacteria numbers and composition of photosynthetic pigments were determined in faeces of captured salps from surface waters, sediment trap material, detritus from plankton hauls, surface sediments from 4500-4800 m depth and Holothurian gut contents. Cyanobacteria were found in all samples containing salp faeces and also in the guts of deep-sea Holothuria. The ratio between zeaxanthin (typical of cyanobacteria) and sum of chlorophyll a pigments was higher in samples from the deep sea when compared to fresh salp faeces, indicating that this carotenoid persisted longer in the sedimenting material than total chlorophyll a pigments. The microscopic and chemical observations allowed us to trace sedimenting salp faeces from the epipelagial to the abyssal benthos, and demonstrated their role as a fast and direct link between both systems. Cyanobacteria may provide a simple tracer for sedimenting phytodetritus.

  6. Deciphering the Temporal and Spatial Complexity in Submarine Canyons in Antarctica: the Role of Mixed Layer Depth in Regulating Primary Production

    NASA Astrophysics Data System (ADS)

    Carvalho, F.; Kohut, J. T.; Schofield, O.; Oliver, M. J.; Gorbunov, M. Y.

    2016-02-01

    There is a high spatial and temporal variability in the biophysical processes regulating primary productivity in submarine canyons in the West Antarctic Peninsula (WAP). WAP canyon heads are considered biological "hotspots" by providing predictable food resource and driving penguin foraging locations. Because the physiology and composition of the phytoplankton blooms and the physical mechanisms driving them aren't well understood, we aim to characterize the dynamics of the spring phytoplankton bloom at the head of a canyon in the WAP. A 6-year record of Slocum glider deployments is analyzed, corresponding to over 16,000 water column profiles. The mixed layer depth (MLD), determined by the maximum of the buoyancy frequency criteria, was found to be the MLD definition with the highest ecological relevance. The same holds true for other regions in Antarctica such as the Ross and Amundsen Seas. A FIRe sensor on a glider was used to evaluate physiological responses of phytoplankton to canyon dynamics using fluorescence kinetics. Initial results show a spatial influence, with increased photosynthetic efficiencies found at the canyon head. The strongest signal was the seasonal cycle. The shoaling of the MLD in early January results in increased chlorophyll a concentrations and as MLD deepens in mid season due to wind forcing, phytoplankton concentrations decrease, likely due to decreased light availability. A consistent secondary peak in chlorophyll matches a shoaling in MLD later in the growth season. A steady warming and increase in salinity of the MLD is seen throughout the season. Spatial differences were recorded at the head of the canyon and result from the local circulation. Shallower MLD found on the northern region are consistent with a fresher surface ocean (coastal influence) and increased chlorophyll concentrations. The southern region is thought to be more oceanic influenced as intrusions of warm deep water (mUCDW) to the upper water column were recorded regularly there.

  7. A submesoscale coherent vortex in the Ligurian Sea: From dynamical barriers to biological implications

    NASA Astrophysics Data System (ADS)

    Bosse, Anthony; Testor, Pierre; Mayot, Nicolas; Prieur, Louis; D'Ortenzio, Fabrizio; Mortier, Laurent; Le Goff, Hervé; Gourcuff, Claire; Coppola, Laurent; Lavigne, Héloïse; Raimbault, Patrick

    2017-08-01

    In June 2013, a glider equipped with oxygen and fluorescence sensors has been used to extensively sample an anticyclonic Submesoscale Coherent Vortex (SCV) in the Ligurian Sea (NW Mediterranean Sea). Those measurements are complemented by full-depth CTD casts (T, S, and oxygen) and water samples documenting nutrients and phytoplankton pigments within the SCV and outside. The SCV has a very homogeneous core of oxygenated waters between 300 and 1200 m formed 4.5 months earlier during the winter deep convection event. It has a strong dynamical signature with peak velocities at 700 m depth of 13.9 cm s-1 in cyclogeostrophic balance. The eddy has a small radius of 6.2 km corresponding to high Rossby number of -0.45. The vorticity at the eddy center reaches -0.8f. Cross-stream isopycnic diffusion of tracers between the eddy core and the surroundings is found to be very limited due to dynamical barriers set by the SCV associated with a diffusivity coefficient of about 0.2 m2 s-1. The deep core is nutrients-depleted with concentrations of nitrate, phosphate, and silicate, 13-18% lower than the rich surrounding waters. However, the nutriclines are shifted of about 20-50 m toward the surface thus increasing the nutrients availability for phytoplankton. Chlorophyll-a concentrations at the deep chlorophyll maximum are subsequently about twice bigger as compared to outside. Pigments further reveal the predominance of nanophytoplankton inside the eddy and an enhancement of the primary productivity. This study demonstrates the important impact of postconvective SCVs on nutrients distribution and phytoplankton community, as well as on the subsequent primary production and carbon sequestration.Plain Language SummaryDue to harsh meteorological conditions in winter, a few places of the world's ocean experience an intense cooling of their surface waters that start to sink in a process called oceanic deep convection. It is crucial for the functioning of the ocean, but also the marine biology as it brings oxygen deep below the surface and nutrients up to the surface thereby stimulating phytoplankton growth. In this study, we describe with unprecedented details the physics and its biological implications of an eddy formed after a convective event occurring in winter 2013 south of France in the northwestern Mediterranean Sea. This oceanic eddy has a radius of about 6 km and a subsurface signature with intensified rotation of about 15 cm/s at around 750 m. Its size is rather small for an oceanic eddy and makes it particularly challenging to sample and detect. This type of eddies are able to live for years in the quiescent deep ocean and this specimen was observed 4.5 months after its formation. Water samples collected by a ship inside the eddy enable us to further evaluate for the first time its influence on the nutrients concentration, as well as on the phytoplankton size group.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007BGD.....4.3041R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007BGD.....4.3041R"><span>Distribution of inorganic and organic nutrients in the South Pacific Ocean - evidence for long-term accumulation of organic matter in nitrogen-depleted waters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raimbault, P.; Garcia, N.; Cerutti, F.</p> <p>2007-08-01</p> <p>The BIOSOPE cruise of the RV Atalante was devoted to study the biogeochemical properties in the South Pacific between the Marquesas Islands (141° W-8° S) and the Chilean upwelling (73° W-34° S). The 8000 km cruise had the opportunity to encounter different trophic situations, and especially strong oligotrophic conditions in the Central South Pacific Gyre (SPG, between 123° W and 101° W). In this isolated region, nitrate was undetectable between surface and 160-180 m, while regenerated nitrogen (nitrite and ammonium) only revealed some traces (<20 nmoles l-1), even in the subsurface maximum. Integrated nitrate over the photic layer, which reached 165 m, was close to zero. In spite of this severe nitrogen-depletion, phosphate was always present at significant concentrations (≍0.1 μmoles l-1), while silicate maintained at low but classical oceanic levels (≍1 μmoles l-1). In contrast, the Marquesas region (MAR) at west and Chilean upwelling (UPW) at east were characterized by large nutrient contents one hundred to one thousand fold higher than in the SPG. Distribution of surface chlorophyll concentration reflected this gradient of nitrate availability. The lowest value (0.023 nmoles l-1) was measured in the centre of the SPG, where integrated chlorophyll over the photic layer was very weak (≍10 mg m-2), since a great part (up to 50%) of the deep chlorophyll maximum (DCM) was located below the 1% light. But, because of the relative high concentration encountered in the DCM (0.2 μg l-1), chlorophyll a content over the photic layer varied much less (by a factor 2 to 5) than the nitrate content. In contrast to chlorophyll a, integrated content of particulate organic matter (POM) remained more or less constant along the investigated area (500 mmoles m-2, 60 mmoles m-2 and 3.5 mmoles m-2 for particulate organic carbon, particulate organic nitrogen and particulate organic phosphorus, respectively), except in the upwelling where values were two fold higher. Extensive comparison has shown that glass fiber GF/F filters efficiency collected particulate chlorophyll, while a significant fraction of POM (up to 50%) passed trough this filter and was retained by 0.2 μm Teflon membrane. The most striking feature was the large accumulation of dissolved organic matter (DOM) in the SPG relative to surrounding waters, especially dissolved organic carbon (DOC) where concentrations were at levels rarely measured in oceanic waters (>100 μmoles l-1). Due to this large pool of DOM over the whole photic layer of the SPG, integrated values followed an opposite geographical pattern than this of inorganic nutrients with a large accumulation within the centre of the SPG. While suspended particulate matter in the mixed layer had C/N ratio largely conform to Redfield stoichiometry (C/N≍6.6), marked deviations were observed in this excess DOM (C/N≍16 to 23). The existence of C-rich dissolved organic matter is recognized as a feature typical of oligotrophic waters, requiring the over consumption of carbon. Thus, in spite of strong nitrate-depletion leading to low chlorophyll biomass, the closed ecosystem of the SPG can produce a large amount of carbon. The implications of this finding are discussed, the conclusion being that, due to the lack of seasonal vertical mixing and weak lateral advection, the dissolved organic carbon biologically produced can be accumulated and stored in the photic layer for a very long period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20688344','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20688344"><span>Inherent optical properties and satellite retrieval of chlorophyll concentration in the lagoon and open ocean waters of New Caledonia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dupouy, Cécile; Neveux, Jacques; Ouillon, Sylvain; Frouin, Robert; Murakami, Hiroshi; Hochard, Sébastien; Dirberg, Guillaume</p> <p>2010-01-01</p> <p>The retrieval of chlorophyll-a concentration from remote sensing reflectance (Rrs) data was tested with the NASA OC4v4 algorithm on the inner New Caledonian lagoon (Case 2) and adjacent open ocean (Case 1) waters. The input to OC4v4 was Rrs measured in situ or modeled from water's inherent optical properties (2001-2007). At open ocean stations, backscattering and absorption coefficients were correlated with chlorophyll (R(2)=0.31-0.51, respectively), in agreement with models for Case 1 waters. Taking spectrofluorometric measurement as reference, the OC4v4 model leads to an average underestimation of 33% of the chlorophyll concentration. For the lagoon waters, OC4v4 performed inadequately because the backscattering coefficient, highly correlated with turbidity and suspended matter (R(2)=0.98), was poorly correlated to chlorophyll (R(2)=0.42). The OC4v4 performance was better in deep lagoon waters for stations with a TDT index (Tchla x depth/turbidity) higher than 19 mg m(-2) NTU(-1) (R(2)=0.974, bias=10.2%). Global Imager Rrs provided a good estimate of Tchla (R(2)=0.79, N=28) in the deeper part of the lagoon. Copyright (c) 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA174388','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA174388"><span>Optical Measurements with Related Chemical, Biological, and Physical Parameters from the Central Equatorial Pacific Ocean: NOAA Ship Discoverer Cruise RP-9-DI-84</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1986-09-01</p> <p>stations one and two, separate casts were made for Freon sampling and deep geochemistry sampling with either Freon syringes or 30-liter bottles. On...subsequent stations, deep geochemistry and Freon sampling were done on one cast. A separate cast for chlorophyll using 10-liter bottles on the Rosette...vertical to horizontal. The deck sensor used was a Biospherical Instruments, Inc., Solar Reference Hemispherical Irradiance Sensor which monitors the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=387162','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=387162"><span>Genetically engineered mutant of the cyanobacterium Synechocystis 6803 lacks the photosystem II chlorophyll-binding protein CP-47</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Vermaas, Wim F. J.; Williams, John G. K.; Rutherford, A. William; Mathis, Paul; Arntzen, Charles J.</p> <p>1986-01-01</p> <p>CP-47 is absent in a genetically engineered mutant of cyanobacterium Synechocystis 6803, in which the psbB gene [encoding the chlorophyll-binding photosystem II (PSII) protein CP-47] was interrupted. Another chlorophyll-binding PSII protein, CP-43, is present in the mutant, and functionally inactive PSII-enriched particles can be isolated from mutant thylakoids. We interpret these data as indicating that the PSII core complex of the mutant still assembles in the absence of CP-47. The mutant lacks a 77 K fluorescence emission maximum at 695 nm, suggesting that the PSII reaction center is not functional. The absence of primary photochemistry was indicated by EPR and optical measurements: no chlorophyll triplet originating from charge recombination between P680+ and Pheo- was observed in the mutant, and there were no flash-induced absorption changes at 820 nm attributable to chlorophyll P680 oxidation. These observations lead us to conclude that CP-47 plays an essential role in the activity of the PSII reaction center. Images PMID:16593788</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050041778&hterms=productivity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dproductivity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050041778&hterms=productivity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dproductivity"><span>Relationship between the Fluorescence Lifetime of Chlorophyll 'a' and Primary Productivity within the Mississippi River Plume and Adjacent Shelf Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hall, Callie; Miller, Richard L.; Fernandez, Salvador M.; McKee, Brent A.</p> <p>2000-01-01</p> <p>In situ measurements of chlorophyll fluorescence intensity have been widely used to estimate phytoplankton biomass. However, because the fluorescence quantum yield of chlorophyll a in vivo can be highly variable, measurements of chlorophyll fluorescence intensity cannot be directly correlated with phytoplankton biomass and do not provide information on the physiological state of the phytoplankton under study. Conversely, lifetime-based measurements of chlorophyll fluorescence provide a framework in which photosynthetic rates of phytoplankton can be analyzed according to phytoplankton physiology. Along with the measurement of primary production and ambient nutrient concentrations within the Mississippi River plume in the northern Gulf of Mexico, phytoplankton fluorescence lifetimes were measured using a Fluorescence Lifetime Phytoplankton Analyzer (developed under a NASA Small Business Innovative Research contract to Ciencia, Inc.). Variability of fluorescence lifetimes within the plume can be used as a background from which to interpret variations in the maximum quantum yield of photochemistry. The extent to which nutrient and effluent loading in this dynamic coastal area affect the photosynthetic performance of phytoplankton will be presented as a function of phytoplankton fluorescence lifetimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26710629','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26710629"><span>[Effects of different water potentials on leaf gas exchange and chlorophyll fluorescence parameters of cucumber during post-flowering growth stage].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Lu; Tang, Yun; Zhang, Ji-tao; Yan, Wan-li; Xiao, Jian-hong; Ding, Chao; Dong, Chuan; Ji, Zeng-shun</p> <p>2015-07-01</p> <p>Impacts of different substrate water potentials (SWP) on leaf gas exchange and chlorophyll fluorescence parameters of greenhouse cucumber during its post-flowering growth stage were analyzed in this study. The results demonstrated that -10 and -30 kPa were the critical values for initiating stomatal and non-stomatal limitation of drought stress, respectively. During the stage of no drought stress (-10 kPa < SWP ≤ 0 kPa), gas exchange parameters and chlorophyll fluorescence parameters were not different significantly among treatments. During the stage of stomatal limitation of drought stress (-30 kPa<SWP ≤ -10 kPa), with the decrease of SWP, the stomatal conductance (gs), intercellular carbon dioxide concentration (Ci), net photosynthetic rate (Pn) , apparent quantum efficiency (ε), transpiration rate (Tr), carboxylation efficiency (CE), maximum Rubisco-limited rate of carboxylation (Vc max), maximum rate of electron transport (Jmax), rate of triosephosphate utilization (VTPU), maximum and actual quantum efficiency of PSII (ΦPSII, and Fv/Fm) and photochemical quenching (qP) decreased, but the light compensation point (LCP), dark respiration rate (Rd), carbon dioxide compensation point (CCP), stomatal limitation value (LS), instantaneous water use efficiency (WUEi) and non-photochemical quenching (qN) increased. In this stage, gas exchange parameters changed faster than chlorophyll fluorescence parameters and differed significantly among treatments. During the stage of non-stomatal limitation of drought stress (-45 kPa≤SWP ≤ -30 kPa), with the decrease of SWP, light saturation point (LSP), Rd, CE, Vcmax, VTPU, LS, WUEi, ΦpPSII, Fv/Fm and qp decreased, while CCP, Ci and qN increased. In this stage, chlorophyll fluorescence parameters changed faster than gas exchange parameters and differed significantly among treatments. In production of greenhouse cucumber, -10 and -5 kPa should be the lower and upper limit value of irrigation, respectively. The stomatal limitation of drought stress could be relieved by irrigation before SWP decreased to -30 kPa. While, the non-stomatal injury of drought stress would be unrecoverable once SWP decreased to lower than -30 kPa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26477612','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26477612"><span>Beneficial role of spermidine in chlorophyll metabolism and D1 protein content in tomato seedlings under salinity-alkalinity stress.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Lipan; Xiang, Lixia; Li, Shuting; Zou, Zhirong; Hu, Xiao-Hui</p> <p>2016-04-01</p> <p>Polyamines are important in protecting plants against various environmental stresses, including protection against photodamage to the photosynthetic apparatus. The molecular mechanism of this latter effect is not completely understood. Here, we have investigated the effects of salinity-alkalinity stress and spermidine (Spd) on tomato seedlings at both physiological and transcriptional levels. Salinity-alkalinity stress decreased leaf area, net photosynthetic rate, maximum net photosynthetic rate, light saturation point, apparent quantum efficiency, total chlorophyll, chlorophyll a and chlorophyll a:chlorophyll b relative to the control. The amount of D1 protein, an important component of photosystem II, was reduced compared with the control, as was the expression of psbA, which codes for D1. Expression of the chlorophyll biosynthesis gene porphobilinogen deaminase (PBGD) was reduced following salinity-alkalinity stress, whereas the expression of Chlase, which codes for chlorophyllase, was increased. These negative physiological effects of salinity-alkalinity stress were alleviated by exogenous Spd. Expression of PBGD and psbA were enhanced, whereas the expression of Chlase was reduced, when exogenous Spd was included in the stress treatment compared with when it was not. The protective effect of Spd on chlorophyll and D1 protein content during stress may maintain the photosynthetic apparatus, permitting continued photosynthesis and growth of tomato seedlings (Solanum lycopersicum cv. Jinpengchaoguan) under salinity-alkalinity stress. © 2015 Scandinavian Plant Physiology Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21384362','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21384362"><span>Thermal stability of corn oil flavoured with Thymus capitatus under heating and deep-frying conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Karoui, Iness Jabri; Dhifi, Wissal; Jemia, Meriam Ben; Marzouk, Brahim</p> <p>2011-03-30</p> <p>The thermal stability of corn oil flavoured with thyme flowers was determined and compared with that of the original refined corn oil (control). The oxidative stability index (OSI) was measured and samples were exposed to heating (30 min at 150, 180 and 200 °C) and deep-frying (180 °C). Changes in peroxide value (PV), free fatty acid (FFA) content, specific absorptivity values (K(232) and K(270)), colour and chlorophyll, carotenoid and total phenol contents were monitored. The OSI and heating results showed that thyme incorporation was effective against thermal oxidation based on the increased induction time observed for the flavoured oil (6.48 vs 4.36 h), which was characterised by lower PV, FFA content, K(232) and K(270) than the control oil after heating from 25 to 200 °C, with higher red and yellow colour intensities and chlorophyll, carotenoid and total phenol contents. The deep-frying test showed the accelerated deterioration of both oils in the presence of French fries. Compared with the control oil, the thyme-flavoured oil showed improved thermal stability after heating. This could be attributed to the presence of thyme pigments and antioxidant compounds allowing extended oil thermal resistance. Copyright © 2011 Society of Chemical Industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24946711','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24946711"><span>Effect of crude oil contamination on the chlorophyll content and morpho-anatomy of Cyperus brevifolius (Rottb.) Hassk.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baruah, Plabita; Saikia, Rashmi Rekha; Baruah, Partha Pratim; Deka, Suresh</p> <p>2014-11-01</p> <p>Chlorophyll plays a pivotal role in the plant physiology and its productivity. Cultivation of plants in crude oil contaminated soil has a great impact on the synthesis of chlorophyll pigment. Morpho-anatomy of the experimental plant also shows structural deformation in higher concentrations. Keeping this in mind, a laboratory investigation has been carried out to study the effect of crude oil on chlorophyll content and morpho-anatomy of Cyperus brevifolius plant. Fifteen-day-old seedling of the plant was planted in different concentrations of the crude oil mixed soil (i.e., 10,000, 20,000, 30,000, 40,000, and 50,000 ppm). A control setup was also maintained without adding crude oil. Results were recorded after 6 months of plantation. Investigation revealed that there is a great impact of crude oil contamination on chlorophyll content of the leaves of the experimental plant. It also showed that chlorophyll a, chlorophyll b, and total chlorophyll content of leaves grown in different concentrations of crude oil were found to be lower than those of the control plant. Further, results also demonstrated that chlorophyll content was lowest in the treatment that received maximum dose of crude oil. It also showed that chlorophyll content was decreased with increased concentration of crude oil. Results also demonstrated that there was a reduction in plant shoot and root biomass with the increase of crude oil concentration. Results also revealed that the shoot biomass is higher than root biomass. Morphology and anatomy of the experimental plant also show structural deformation in higher concentrations. Accumulation of crude oil on the cuticle of the transverse section of the leaves and shoot forms a thick dark layer. Estimation of the level of pollution in an environment due to oil spill is possible by the in-depth study of the harmful effects of oil on the morphology and anatomy and chlorophyll content of the plants grown in that particular environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16751565','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16751565"><span>Depth-related gradients of viral activity in Lake Pavin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Colombet, J; Sime-Ngando, T; Cauchie, H M; Fonty, G; Hoffmann, L; Demeure, G</p> <p>2006-06-01</p> <p>High-resolution vertical sampling and determination of viral and prokaryotic parameters in a deep volcanic lake shows that in the absence of thermal stratification but within light, oxygen, and chlorophyll gradients, host availability empirically is prevalent over the physical and chemical environments and favors lytic over lysogenic "viral life cycles."</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRII.140..163S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRII.140..163S"><span>Linking mesopelagic prey abundance and distribution to the foraging behavior of a deep-diving predator, the northern elephant seal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saijo, Daisuke; Mitani, Yoko; Abe, Takuzo; Sasaki, Hiroko; Goetsch, Chandra; Costa, Daniel P.; Miyashita, Kazushi</p> <p>2017-06-01</p> <p>The Transition Zone in the eastern North Pacific is important foraging habitat for many marine predators. Further, the mesopelagic depths (200-1000 m) host an abundant prey resource known as the deep scattering layer that supports deep diving predators, such as northern elephant seals, beaked whales, and sperm whales. Female northern elephant seals (Mirounga angustirostris) undertake biannual foraging migrations to this region where they feed on mesopelagic fish and squid; however, in situ measurements of prey distribution and abundance, as well as the subsurface oceanographic features in the mesopelagic Transition Zone are limited. While concurrently tracking female elephant seals during their post-molt migration, we conducted a ship-based oceanographic and hydroacoustic survey and used mesopelagic mid-water trawls to sample the deep scattering layer. We found that the abundance of mesopelagic fish at 400-600 m depth zone was the highest in the 43 °N zone, the primary foraging area of female seals. We identified twenty-nine families of fishes from the mid-water trawls, with energy-rich myctophid fishes dominating by species number, individual number, and wet weight. Biomass of mesopelagic fishes is positively correlated to annual net primary productivity; however, at the temporal and spatial scale of our study, we found no relationship between satellite derived surface primary production and prey density. Instead, we found that the subsurface chlorophyll maximum correlated with the primary elephant seal foraging regions, indicating a stronger linkage between mesopelagic ecosystem dynamics and subsurface features rather than the surface features measured with satellites. Our study not only provides insights on prey distribution in a little-studied deep ocean ecosystem, but shows that northern elephant seals are targeting the dense, species-diverse mesopelagic ecosystem at the gyre-gyre boundary that was previously inferred from their diving behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4366296','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4366296"><span>Quantification of Plant Chlorophyll Content Using Google Glass</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cortazar, Bingen; Koydemir, Hatice Ceylan; Tseng, Derek; Feng, Steve; Ozcan, Aydogan</p> <p>2015-01-01</p> <p>Measuring plant chlorophyll concentration is a well-known and commonly used method in agriculture and environmental applications for monitoring plant health, which also correlates with many other plant parameters including, e.g., carotenoids, nitrogen, maximum green fluorescence, etc. Direct chlorophyll measurement using chemical extraction is destructive, complex and time-consuming, which has led to the development of mobile optical readers, providing non-destructive but at the same time relatively expensive tools for evaluation of plant chlorophyll levels. Here we demonstrate accurate measurement of chlorophyll concentration in plant leaves using Google Glass and a custom-developed software application together with a cost-effective leaf holder and multi-spectral illuminator device. Two images, taken using Google Glass, of a leaf placed in our portable illuminator device under red and white (i.e., broadband) light-emitting-diode (LED) illumination are uploaded to our servers for remote digital processing and chlorophyll quantification, with results returned to the user in less than 10 seconds. Intensity measurements extracted from the uploaded images are mapped against gold-standard colorimetric measurements made through a commercially available reader to generate calibration curves for plant leaf chlorophyll concentration. Using five plant species to calibrate our system, we demonstrate that our approach can accurately and rapidly estimate chlorophyll concentration of fifteen different plant species under both indoor and outdoor lighting conditions. This Google Glass based chlorophyll measurement platform can display the results in spatiotemporal and tabular forms and would be highly useful for monitoring of plant health in environmental and agriculture related applications, including e.g., urban plant monitoring, indirect measurements of the effects of climate change, and as an early indicator for water, soil, and air quality degradation. PMID:25669673</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25669673','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25669673"><span>Quantification of plant chlorophyll content using Google Glass.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cortazar, Bingen; Koydemir, Hatice Ceylan; Tseng, Derek; Feng, Steve; Ozcan, Aydogan</p> <p>2015-04-07</p> <p>Measuring plant chlorophyll concentration is a well-known and commonly used method in agriculture and environmental applications for monitoring plant health, which also correlates with many other plant parameters including, e.g., carotenoids, nitrogen, maximum green fluorescence, etc. Direct chlorophyll measurement using chemical extraction is destructive, complex and time-consuming, which has led to the development of mobile optical readers, providing non-destructive but at the same time relatively expensive tools for evaluation of plant chlorophyll levels. Here we demonstrate accurate measurement of chlorophyll concentration in plant leaves using Google Glass and a custom-developed software application together with a cost-effective leaf holder and multi-spectral illuminator device. Two images, taken using Google Glass, of a leaf placed in our portable illuminator device under red and white (i.e., broadband) light-emitting-diode (LED) illumination are uploaded to our servers for remote digital processing and chlorophyll quantification, with results returned to the user in less than 10 seconds. Intensity measurements extracted from the uploaded images are mapped against gold-standard colorimetric measurements made through a commercially available reader to generate calibration curves for plant leaf chlorophyll concentration. Using five plant species to calibrate our system, we demonstrate that our approach can accurately and rapidly estimate chlorophyll concentration of fifteen different plant species under both indoor and outdoor lighting conditions. This Google Glass based chlorophyll measurement platform can display the results in spatiotemporal and tabular forms and would be highly useful for monitoring of plant health in environmental and agriculture related applications, including e.g., urban plant monitoring, indirect measurements of the effects of climate change, and as an early indicator for water, soil, and air quality degradation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000025436&hterms=physiology+conifers&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dphysiology%2Bconifers','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000025436&hterms=physiology+conifers&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dphysiology%2Bconifers"><span>Exploring the Relationship Between Reflectance Red Edge and Chlorophyll Content in Slash Pine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Curran, Paul J.; Dungan, Jennifer L.; Gholz, Henry L.</p> <p>1990-01-01</p> <p>Chlorophyll is a key indicator of the physiological status of a forest canopy. However, its distribution may vary greatly in time and space, so that the estimation of chlorophyll content of canopies or branches by extrapolation from leaf values obtained by destructive sampling is labor intensive and potentially inaccurate. Chlorophy11 content is related positively to the point of maximum slope in vegetation reflectance spectra which occurs at wavelengths between 690-740 nm and is known as the "red edge." The red edge of needles on individual slash pine (Piniis elliottii Engelm.) branches and in whole forest canopies was measured with a spectroradiometer. Branches were measured on the ground against a spectrally flat reflectance target and canopies were measured from observation towers against a spectrally variable understory and forest floor. There was a linear relationship between red edge and chlorophyll content of branches (R(exp 2) = 0.91). Measurements of the red edge and this relationship were used to estimate the chlorophyll content of other branches with an error that was lower than that associated with the colorimetric (laboratory) method. There was no relationship between the red edge and the chlorophyll content of whole canopies. This can be explained by the overriding influence of the understory and forest floor, an influence that was illustrated by spectral mixture modeling. The results suggest that the red edge could be used to estimate the chlorophyll content in branches but it is unlikely to be of value for the estimation of chlorophyll content in canopies unless the canopy cover is high.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4242249','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4242249"><span>The Ratio of Leaf to Total Photosynthetic Area Influences Shade Survival and Plastic Response to Light of Green‐stemmed Leguminous Shrub Seedlings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>VALLADARES, FERNANDO; HERNÁNDEZ, LIBERTAD G.; DOBARRO, IKER; GARCÍA‐PÉREZ, CRISTINA; SANZ, RUBÉN; PUGNAIRE, FRANCISCO I.</p> <p>2003-01-01</p> <p>Different plant species and organs within a plant differ in their plastic response to light. These responses influence their performance and survival in relation to the light environment, which may range from full sunlight to deep shade. Plasticity, especially with regard to physiological features, is linked to a greater capacity to exploit high light and is usually low in shade‐tolerant species. Among photosynthetic organs, green stems, which represent a large fraction of the total photosynthetic area of certain species, are hypothesized to be less capable of adjustment to light than leaves, because of biomechanical and hydraulic constraints. The response to light by leaves and stems of six species of leguminous, green‐stemmed shrubs from dry and high‐light environments was studied by growing seedlings in three light environments: deep shade, moderate shade and sun (3, 30 and 100 % of full sunlight, respectively). Survival in deep shade ranged from 2 % in Retama sphaerocarpa to 74 % in Ulex europaeus. Survival was maximal at moderate shade in all species, ranging from 80 to 98 %. The six species differed significantly in their ratio of leaf to total photosynthetic area, which influenced their light response. Survival in deep shade increased significantly with increasing ratio of leaf to total photosynthetic area, and decreased with increasing plasticity in net photosynthesis and dark respiration. Responses to light differed between stems and leaves within each species. Mean phenotypic plasticity for the variables leaf or stem specific mass, chlorophyll content, chlorophyll a/b ratio, and carotenoid to chlorophyll ratio of leaves, was inversely related to that of stems. Although mean plasticity of stems increased with the ratio of leaf to total photosynthetic area, the mean plasticity of leaves decreased. Shrubs with green stems and a low ratio of leaf to total photosynthetic area are expected to be restricted to well‐lit habitats, at least during the seedling stage, owing to their inefficient light capture and the low plasticity of their stems. PMID:12646502</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ECSS..118...72L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ECSS..118...72L"><span>An examination of photoacclimatory responses of Zostera marina transplants along a depth gradient for transplant-site selection in a disturbed estuary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Wen-Tao; Kim, Seung Hyeon; Kim, Jae Woo; Kim, Jong-Hyeob; Lee, Kun-Seop</p> <p>2013-02-01</p> <p>Growth and photosynthetic responses of Zostera marina transplants along a depth gradient were examined to determine appropriate transplanting areas for seagrass restoration. Seagrass Z. marina was once widely distributed in the Taehwa River estuary in southeastern Korea, but has disappeared since the 1960s due to port construction and large scale pollutant inputs from upstream industrial areas. Recently, water quality has been considerably improved as a result of effective sewage treatment, and the local government is attempting to restore Z. marina to the estuary. For seagrass restoration in this estuary, a pilot transplantation trial of Z. marina at three water depths (shallow: 0.5 m; intermediate: 1.5 m; deep: 2.5 m relative to MLLW) was conducted in November 2008. The transplant shoot density increased gradually at the intermediate and deep sites, whereas the transplants at the shallow site disappeared after 3 months. To find the optimal transplantation locations in this estuary, the growth and photosynthetic responses of the transplants along a depth gradient were examined for approximately 4 months following transplantation in March 2009. In the 2009 experimental transplantation trial, shoot density of transplants at the shallow site was significantly higher than those at the intermediate and deep sites during the first 3 months following transplantation, but rapidly decreased approximately 4 months after transplantation. The chlorophyll content, photosynthetic efficiency (α), and maximum quantum yield (Fv/Fm) of the transplants were significantly higher at the deep site than at the shallow site. Shoot size, biomass and leaf productivity were also significantly higher at the deep site than at the shallow site. Although underwater irradiance was significantly lower at the deep site than at the shallow site, transplants at the deep site were morphologically and physiologically acclimated to the low light. Transplants at the shallow site exhibited high mortality during the early period of transplantation perhaps due to high physical disturbances at the site, but transplants at the intermediate and deep sites showed higher growth through more efficient photosynthesis and morphological adaptation. Thus, the intermediate and deep sites (1.5-2.5 m relative to MLLW) appeared to be more appropriate seagrass transplantation sites in this estuary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000JMS....24..313U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000JMS....24..313U"><span>Pigments, size and distribution of Synechococcus spp. in the Black Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uysal, Zahit</p> <p>2000-03-01</p> <p>Pigments, size and distribution of Phycoerythrin-containing unicellular cyanobacteria Synechococcus spp. within the euphotic zone were studied for the first time in April-May 1994 in the western and southwestern Black Sea by epifluorescence microscopy and flow-cytometry. Synechococcus was present in varying quantities at every station and depth studied. Surface spatial distribution of Synechococcus revealed that cells were much more abundant in offshore waters than near coastal regions under the direct influence of the Danube river. Minimum and maximum cell concentrations ranged between 9×10 2 and 1.45×10 5 cells/ml at the surface, between 2×10 3 and 1.23×10 5 cells/ml at the chlorophyll sub-maximum layer, and between 1.3×10 2 and 3.5×10 2 at the nitrite maximum layer. Cells at the chlorophyll sub-maximum layer (based on in-situ fluorometer readings) fluoresce brighter and longer than the ones at the surface and lower depths. Spectral properties of chromophore pigment types of total 64 clonal isolates from different depths down to the lower layer of the euphotic zone (˜60 m) in the southern Black Sea coast revealed that all have type 2 phycoerythrobilin in common, lacking in phycourobilin. In vivo fluorescence emission maxima for the phycoerythrobilin were about the same (˜578 nm) for all isolates. All isolates examined showed in vivo absorption maxima at between 435 and 442 nm and at about 681 nm due to chlorophyll- a. Based on the flow cytometer mean forward light scatter data for size distribution, it could be concluded that cells at the surface mixed layer (0-10 m) were larger in cell size than the cells at lower depths (20-60 m).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21380467','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21380467"><span>Competition for spectral irradiance between epilimnetic optically active dissolved and suspended matter and phytoplankton in the metalimnion. Consequences for limnology and chemistry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bracchini, Luca; Dattilo, Arduino Massimo; Falcucci, Margherita; Hull, Vincent; Tognazzi, Antonio; Rossi, Claudio; Loiselle, Steven Arthur</p> <p>2011-06-01</p> <p>In deep lakes, water column stratification isolates the surface water from the deeper bottom layers, creating a three dimensional differentiation of the chemical, physical, biological and optical characteristics of the waters. Chromophoric dissolved organic matter (CDOM) and total suspended solids (TSS) play an important role in the attenuation of ultraviolet and photosynthetically active radiation. In the present analysis of spectral irradiance, we show that the wavelength composition of the metalimnetic visible irradiance was influenced by epilimnetic spatial distribution of CDOM. We found a low occurrence of blue-green photons in the metalimnion where epilimnetic concentrations of CDOM are high. In this field study, the spatial variation of the spectral irradiance in the metalimnion correlates with the observed metalimnetic concentrations of chlorophyll a as well as chlorophyll a : chlorophyll b/c ratios. Dissolved oxygen, pH, and nutrients trends suggest that chlorophyll a concentrations were representative of the phytoplankton biomass and primary production. Thus, metalimnetic changes of spectral irradiance may have a direct impact on primary production and an indirect effect on the spatial trends of pH, dissolved oxygen, and inorganic nutrients in the metalimnion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26868257','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26868257"><span>Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oukarroum, Abdallah</p> <p>2016-06-01</p> <p>Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820064060&hterms=normalization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dnormalization','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820064060&hterms=normalization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dnormalization"><span>Water Raman normalization of airborne laser fluorosensor measurements - A computer model study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Poole, L. R.; Esaias, W. E.</p> <p>1982-01-01</p> <p>The technique for normalizing airborne lidar measurements of chlorophyll fluoresence by the water Raman scattering signal is investigated for laser-excitation wavelengths of 480 and 532 nm using a semianalytic Monte Carlo methodology (SALMON). The signal-integration depth for chlorophyll fluorescence Z(90,F), is found to be insensitive to excitation wavelength and ranges from a maximum of 4.5 m in clearest waters to less than 1 m at a chlorophyll concentration of 20 microgram/liter. For excitation at 532 nm, the signal-integration depth for Raman scattering, Z(90,R), is comparable to Z(90,F). For excitation at 480 nm, Z(90,R) is four times as large as Z(90,F) in clearest waters but nearly equivalent at chlorophyll concentrations greater than 2-3 microgram/liter. Absolute signal levels are stronger with excitation at 480 nm than with excitation at 532 nm, but this advantage must be weighed against potential ambiguities resulting from different integration depths for the fluorescence and Raman scattering signals in clearer waters. To the precision of the simulations, Raman normalization produces effectively linear response to chlorophyll concentration for both excitation wavelengths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatGe..11...27T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatGe..11...27T"><span>Influence of diatom diversity on the ocean biological carbon pump</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tréguer, Paul; Bowler, Chris; Moriceau, Brivaela; Dutkiewicz, Stephanie; Gehlen, Marion; Aumont, Olivier; Bittner, Lucie; Dugdale, Richard; Finkel, Zoe; Iudicone, Daniele; Jahn, Oliver; Guidi, Lionel; Lasbleiz, Marine; Leblanc, Karine; Levy, Marina; Pondaven, Philippe</p> <p>2018-01-01</p> <p>Diatoms sustain the marine food web and contribute to the export of carbon from the surface ocean to depth. They account for about 40% of marine primary productivity and particulate carbon exported to depth as part of the biological pump. Diatoms have long been known to be abundant in turbulent, nutrient-rich waters, but observations and simulations indicate that they are dominant also in meso- and submesoscale structures such as fronts and filaments, and in the deep chlorophyll maximum. Diatoms vary widely in size, morphology and elemental composition, all of which control the quality, quantity and sinking speed of biogenic matter to depth. In particular, their silica shells provide ballast to marine snow and faecal pellets, and can help transport carbon to both the mesopelagic layer and deep ocean. Herein we show that the extent to which diatoms contribute to the export of carbon varies by diatom type, with carbon transfer modulated by the Si/C ratio of diatom cells, the thickness of the shells and their life strategies; for instance, the tendency to form aggregates or resting spores. Model simulations project a decline in the contribution of diatoms to primary production everywhere outside of the Southern Ocean. We argue that we need to understand changes in diatom diversity, life cycle and plankton interactions in a warmer and more acidic ocean in much more detail to fully assess any changes in their contribution to the biological pump.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3749506','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3749506"><span>Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Brum, Jennifer R; Schenck, Ryan O; Sullivan, Matthew B</p> <p>2013-01-01</p> <p>Viruses influence oceanic ecosystems by causing mortality of microorganisms, altering nutrient and organic matter flux via lysis and auxiliary metabolic gene expression and changing the trajectory of microbial evolution through horizontal gene transfer. Limited host range and differing genetic potential of individual virus types mean that investigations into the types of viruses that exist in the ocean and their spatial distribution throughout the world's oceans are critical to understanding the global impacts of marine viruses. Here we evaluate viral morphological characteristics (morphotype, capsid diameter and tail length) using a quantitative transmission electron microscopy (qTEM) method across six of the world's oceans and seas sampled through the Tara Oceans Expedition. Extensive experimental validation of the qTEM method shows that neither sample preservation nor preparation significantly alters natural viral morphological characteristics. The global sampling analysis demonstrated that morphological characteristics did not vary consistently with depth (surface versus deep chlorophyll maximum waters) or oceanic region. Instead, temperature, salinity and oxygen concentration, but not chlorophyll a concentration, were more explanatory in evaluating differences in viral assemblage morphological characteristics. Surprisingly, given that the majority of cultivated bacterial viruses are tailed, non-tailed viruses appear to numerically dominate the upper oceans as they comprised 51–92% of the viral particles observed. Together, these results document global marine viral morphological characteristics, show that their minimal variability is more explained by environmental conditions than geography and suggest that non-tailed viruses might represent the most ecologically important targets for future research. PMID:23635867</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1489628','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1489628"><span>Depth-Related Gradients of Viral Activity in Lake Pavin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Colombet, J.; Sime-Ngando, T.; Cauchie, H. M.; Fonty, G.; Hoffmann, L.; Demeure, G.</p> <p>2006-01-01</p> <p>High-resolution vertical sampling and determination of viral and prokaryotic parameters in a deep volcanic lake shows that in the absence of thermal stratification but within light, oxygen, and chlorophyll gradients, host availability empirically is prevalent over the physical and chemical environments and favors lytic over lysogenic “viral life cycles.” PMID:16751565</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21409361','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21409361"><span>A long-term monitoring study of chlorophyll, microbial contaminants, and pesticides in a coastal residential stormwater pond and its adjacent tidal creek.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>DeLorenzo, Marie E; Thompson, Brian; Cooper, Emily; Moore, Janet; Fulton, Michael H</p> <p>2012-01-01</p> <p>Stormwater ponds are commonly used in residential and commercial areas to control flooding. The accumulation of urban contaminants in stormwater ponds can lead to water-quality problems including nutrient enrichment, chemical contamination, and bacterial contamination. This study presents 5 years of monitoring data assessing water quality of a residential subdivision pond and adjacent tidal creek in coastal South Carolina, USA. The stormwater pond is eutrophic, as described by elevated concentrations of chlorophyll and phosphorus, and experiences periodic cyanobacterial blooms. A maximum monthly average chlorophyll concentration of 318.75 μg/L was measured in the stormwater pond and 227.63 μg/L in the tidal creek. Fecal coliform bacteria (FCB) levels were measured in both the pond and the tidal creek that exceeded health and safety standards for safe recreational use. A maximum monthly average FCB level of 1,247 CFU/100 mL was measured in the stormwater pond and 12,850 CFU/100 mL in the tidal creek. In addition, the presence of antibiotic resistant bacteria and pathogenic bacteria were detected. Low concentrations of herbicides (atrazine and 2,4-D: ), a fungicide (chlorothalonil), and insecticides (pyrethroids and imidacloprid) were measured. Seasonal trends were identified, with the winter months having the lowest concentrations of chlorophyll and FCB. Statistical differences between the stormwater pond and the tidal creek were also noted within seasons. The tidal creek had higher FCB levels than the stormwater pond in the spring and summer, whereas the stormwater pond had higher chlorophyll levels than the tidal creek in the summer and fall seasons. Chlorophyll and FCB levels in the stormwater pond were significantly correlated with monthly average temperature and total rainfall. Pesticide concentrations were also significantly correlated with temperature and rainfall. Pesticide concentrations in the stormwater pond were significantly correlated with pesticide concentrations in the adjacent tidal creek. Chlorophyll and FCB levels in the tidal creek, however, were not significantly correlated with levels in the pond. While stormwater ponds are beneficial in controlling flooding, they may pose environmental and human health risks due to biological and chemical contamination. Management to reduce residential runoff may improve water quality in coastal stormwater ponds and their adjacent estuarine ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO34A3026S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO34A3026S"><span>Variation of subsurface chlorophyll maximum layer from the vertical profiler and in-situ observation in the eastern coastal region of Korea (the East/Japan Sea)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Son, Y. T.; Chang, K. I.; Nam, S.; Kang, D. J.</p> <p>2016-02-01</p> <p>Coastal monitoring buoy (called it as ESROB) has been continually operated to monitor meteorological (wind, air temperature, air pressure, PAR) and oceanic properties (temperature, salinity, current, chlorophyll fluorescence, DO, turbidity) using equipment such as CTD, fluorometer and WQM (Water Quality Monitor) in the eastern coastal region of Korea (the East/Japan Sea) since April 2011. The ESROB produced temporal evolution of physical and biogeochemical parameters of the water column with high resolution of 10 min interval. In order to understand horizontal influence of physical and biogeochemical parameters on variation of subsurface chlorophyll maximum layer (SCM), interdisciplinary in-situ surveys with small R/V in the study area for about week were conducted in June/October 2014 and in May 2015. A wirewalker, a wave-driven vertically profiling platform (Rainville and Pinkel 2001), was also deployed at two points (about 30 m and 80 m water depth) along cross-shore direction with the ESROB for about one or two weeks with in-situ survey durations. The wirewalker was equipped with CTD, turbidity and chlorophyll a fluorometer profiler, which was completed approximately every 3 10 minute depending on sea surface state. The SCM was observed in almost every deployment nearest coast, except for June in 2014, with variation of semi- and diurnal time periods. Temporal evolution of the wirewalker showed that disappearance and reoccurrence of the SCM within the water column in October 2014, which was associated with vertical mixing induced by strong wind stress. Low salinity plume in the surface layer and shoaling of bottom cold water were concurrently observed after homogeneous water column, affecting another condition to the vertical distribution of chlorophyll a in this coastal region. Moreover in-situ observation with densely points and temporal interval for 1 day revealed that distribution with high concentration of chlorophyll a on isopycnal was association with the horizontal local circulation that has influence on stability (vertical stratification and shear) of the water column. Optical and biogeochemical parameter analyzed from the water samples, affecting on the variation of chlorophyll a concentration within the water column, will be also discussed in the presentation of Ocean Science Meeting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ESSDD...8..365S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ESSDD...8..365S"><span>Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.</p> <p>2015-04-01</p> <p>In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted in phytoplankton biomass (i.e. chlorophyll a concentration) and size-based community composition (i.e. microphytoplankton, nanophytoplankton and picophytoplankton), using a~method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over five decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available in open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition: http://doi.pangaea.de/10.1594/PANGAEA.844485.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010021837&hterms=us+temperature&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dus%2Btemperature','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010021837&hterms=us+temperature&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dus%2Btemperature"><span>The Northeast Monsoon's Impact on Mixing, Phytoplankton Biomass and Nutrient Cycling in the Arabian Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wiggert, J. D.; Jones, B. H.; Dickey, T. D.; Brink, K. H.; Weller, R. A.; Marra, J.; Codispoti, L. A.</p> <p>2000-01-01</p> <p>In the northern Arabian Sea, atmospheric conditions during the Northeast (winter) Monsoon lead to deep convective mixing. Due to the proximity of the permanent pyncnocline to the sea surface, this mixing does not penetrate below 125 m. However, a strong nitracline is also present and the deep convection results in significant nitrate flux into the surface waters. This leads to nitrate concentrations over the upper 100 m that exceed 4 micrometers toward the end of the Monsoon. During the 1994/1995 US JGOFS/Arabian Sea expedition, the mean areal gross primary production over two successive Northeast Monsoons was determined to be 1.35gC/sq m/d. Thus, despite the deep penetrative convection, high rates of primary productivity were maintained. An interdisciplinary model was developed to elucidate the biogeochemical processes involved in supporting the elevated productivity. This model consists of a 1-D mixed-layer model coupled to a set of equations that tracked phytoplankton growth and the concentration of the two major nutrients (nitrate and ammonium). Zooplankton grazing was parameterized by rate constant determined by shipboard experiments. Model boundary conditions consist of meteorological time-series measured from the surface buoy that was part of the ONR Arabian Sea Experiment's central mooring. Our numerical experiments show that elevated surface evaporation, and the associated salinization of the mixed layer, strongly contributes to the frequency and penetration depth of the observed convective mixing. Cooler surface temperatures, increased nitrate entrainment, reduced water column stratification, and lower near-surface chlorophyll a concentrations all result from this enhanced mixing. The model also captured a dependence on regenerated nitrogen observed in nutrient uptake experiments performed during the Northeast Monsoon. Our numerical experiments also indicate that variability in mean pycnocline depth causes up to a 25% reduction in areal chlorophyll a concentration. We hypothesize that such shifts in pycnocline depth may contribute to the interannual variations in primary production and surface chlorophyll a concentration that have been previously observed in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011OcSci...7..185W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011OcSci...7..185W"><span>Upper ocean stratification and sea ice growth rates during the summer-fall transition, as revealed by Elephant seal foraging in the Adélie Depression, East Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, G. D.; Hindell, M.; Houssais, M.-N.; Tamura, T.; Field, I. C.</p> <p>2011-03-01</p> <p>Southern elephant seals (Mirounga leonina), fitted with Conductivity-Temperature-Depth sensors at Macquarie Island in January 2005 and 2010, collected unique oceanographic observations of the Adélie and George V Land continental shelf (140-148° E) during the summer-fall transition (late February through April). This is a key region of dense shelf water formation from enhanced sea ice growth/brine rejection in the local coastal polynyas. In 2005, two seals occupied the continental shelf break near the grounded icebergs at the northern end of the Mertz Glacier Tongue for several weeks from the end of February. One of the seals migrated west to the Dibble Ice Tongue, apparently utilising the Antarctic Slope Front current near the continental shelf break. In 2010, immediately after that year's calving of the Mertz Glacier Tongue, two seals migrated to the same region but penetrated much further southwest across the Adélie Depression and sampled the Commonwealth Bay polynya from March through April. Here we present observations of the regional oceanography during the summer-fall transition, in particular (i) the zonal distribution of modified Circumpolar Deep Water exchange across the shelf break, (ii) the upper ocean stratification across the Adélie Depression, including alongside iceberg C-28 that calved from the Mertz Glacier and (iii) the convective overturning of the deep remnant seasonal mixed layer in Commonwealth Bay from sea ice growth. Heat and freshwater budgets to 200-300 m are used to estimate the ocean heat content (400→50 MJ m-2), flux (50-200 W m-2 loss) and sea ice growth rates (maximum of 7.5-12.5 cm day-1). Mean seal-derived sea ice growth rates were within the range of satellite-derived estimates from 1992-2007 using ERA-Interim data. We speculate that the continuous foraging by the seals within Commonwealth Bay during the summer/fall transition was due to favorable feeding conditions resulting from the convective overturning of the deep seasonal mixed layer and chlorophyll maximum that is a reported feature of this location.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35.3702C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35.3702C"><span>The light absorption by suspended particles, phytoplankton and dissolved organic matter in deep-and coastal waiters of the Black Sea impact on algorithms for remote sensing of chlorophyll -a-.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Churilova, T.; Suslin, V.; Berseneva, G.; Georgieva, L.</p> <p></p> <p>At present time for the analysis and prediction of marine ecosystem state Chlorophyll and Primary production models based on optical satellite data are widely used. However, the SeaWiFS algorithms providing the transformation of color images to chlorophyll maps give inaccurate estimation of chlorophyll "a" (Chl "a") concentration in the Black Sea - an overestimation approximately two times in summer and an underestimation - ~1,5 times during the large diatom bloom in winter-spring. A development of the regional Chl "a" algorithm requires an estimation of spectral characteristics of all light absorbing components and their relationships with Chl "a" concentration. With this aim bio-optical monitoring was organized in two fixed stations in deep-water central western part of the Black Sea and in shelf waters near the Crimea. The weekly monitoring in deep-waters region allowed to determine phytoplankton community succession: seasonal dynamics of size and taxonomic structure, development of large diatoms blooming in March and coccolithophores - in June. The significant variability in pigment concentration and species content of phytoplankton is accompanied by high variability in shape of the phytoplankton absorption spectra and in values of chl a-specific absorption coefficients. This variability had seasonal character depending mostly on the optical status of phytoplankton cells and partly on taxonomic structure of phytoplankton. The pigment packaging parameter fluctuated from 0.64-0.68 (October-December) to 0.95-0.97 (April-May). The package effect depended on intracellular pigment concentration and the size and geometry of cells, which change significantly over the year, because of extremely different environmental conditions. The relationships between phytoplankton specific absorption coefficients (at 412, 443, 490, 510, 555, 678 nm) and Chl "a" concentration have been described by power functions. The contribution of detritus to total particulate absorption significantly varied and correlated with Chl "a" concentration. The main light-absorbing component in the Black Sea is colored dissolved organic matter (CDOM), its absorption at 443 nm is 50-70 % to total particulate and CDOM absorption. Special attention should be given to shelf regions. The comparison of bio-optical data for the open part with those for the shelf region showed pronounced differences: a) the relationships between phytoplankton specific absorption coefficients and Chl "a" concentrations (at 412, 443, 490, 510, 555 nm) are different; b) in the shelf waters relative absorption by detritus was higher and weakly correlated with Chl "a" in comparison with deep-water part of the Sea. Obtained relationships have been used for development of regional algorithms to estimate Chl "a" concentration. The new regional algorithm allowed to get more correct values of Chl "a" in comparison with standard SeaWiFS algorithm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983AdSpR...3..273H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983AdSpR...3..273H"><span>Red edge measurements for remotely sensing plant chlorophyll content</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horler, D. N. H.; Dockray, M.; Barber, J.; Barringer, A. R.</p> <p></p> <p>The feasibility of using the wavelength of the maximum slope of the red edge of leaf reflectance spectra (λre) as an indication of plant chlorophyll status was examined in the laboratory for single leaves of several species. λre for each sample was determined by derivative reflectance spectroscopy. A high positive correlation was found between λre and leaf chlorophyll content for all species, although there were some differences in the quantitative nature of the relationship for plants of different types. The position of the red edge was found to be unaffected by simulated change in ground cover, but multiple leaf layers produced a shift in its position. Appropriate spectral measurements and processing for obtaining useful information from the red edge are discussed, and the potential of the red edge in relation to other spectral measurements is considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031842','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031842"><span>Seasonal nutrient and plankton dynamics in a physical-biological model of Crater Lake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Fennel, K.; Collier, R.; Larson, G.; Crawford, G.; Boss, E.</p> <p>2007-01-01</p> <p>A coupled 1D physical-biological model of Crater Lake is presented. The model simulates the seasonal evolution of two functional phytoplankton groups, total chlorophyll, and zooplankton in good quantitative agreement with observations from a 10-year monitoring study. During the stratified period in summer and early fall the model displays a marked vertical structure: the phytoplankton biomass of the functional group 1, which represents diatoms and dinoflagellates, has its highest concentration in the upper 40 m; the phytoplankton biomass of group 2, which represents chlorophyta, chrysophyta, cryptomonads and cyanobacteria, has its highest concentrations between 50 and 80 m, and phytoplankton chlorophyll has its maximum at 120 m depth. A similar vertical structure is a reoccurring feature in the available data. In the model the key process allowing a vertical separation between biomass and chlorophyll is photoacclimation. Vertical light attenuation (i.e., water clarity) and the physiological ability of phytoplankton to increase their cellular chlorophyll-to-biomass ratio are ultimately determining the location of the chlorophyll maximum. The location of the particle maxima on the other hand is determined by the balance between growth and losses and occurs where growth and losses equal. The vertical particle flux simulated by our model agrees well with flux measurements from a sediment trap. This motivated us to revisit a previously published study by Dymond et al. (1996). Dymond et al. used a box model to estimate the vertical particle flux and found a discrepancy by a factor 2.5-10 between their model-derived flux and measured fluxes from a sediment trap. Their box model neglected the exchange flux of dissolved and suspended organic matter, which, as our model and available data suggests is significant for the vertical exchange of nitrogen. Adjustment of Dymond et al.'s assumptions to account for dissolved and suspended nitrogen yields a flux estimate that is consistent with sediment trap measurements and our model. ?? 2007 Springer Science+Business Media B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70185037','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70185037"><span>Integrating seasonal information on nutrients and benthic algal biomass into stream water quality monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Konrad, Christopher P.; Munn, Mark D.</p> <p>2016-01-01</p> <p>Benthic chlorophyll a (BChl a) and environmental factors that influence algal biomass were measured monthly from February through October in 22 streams from three agricultural regions of the United States. At-site maximum BChl a ranged from 14 to 406 mg/m2 and generally varied with dissolved inorganic nitrogen (DIN): 8 out of 9 sites with at-site median DIN >0.5 mg/L had maximum BChl a >100 mg/m2. BChl aaccrued and persisted at levels within 50% of at-site maximum for only one to three months. No dominant seasonal pattern for algal biomass accrual was observed in any region. A linear model with DIN, water surface gradient, and velocity accounted for most of the cross-site variation in maximum chlorophyll a(adjusted R2 = 0.7), but was no better than a single value of DIN = 0.5 mg/L for distinguishing between low and high-biomass sites. Studies of nutrient enrichment require multiple samples to estimate algal biomass with sufficient precision given the magnitude of temporal variability of algal biomass. An effective strategy for regional stream assessment of nutrient enrichment could be based on a relation between maximum BChl a and DIN based on repeat sampling at sites selected to represent a gradient in nutrients and application of the relation to a larger number of sites with synoptic nutrient information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012OcScD...9.3567C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012OcScD...9.3567C"><span>From the chlorophyll a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cherkasheva, A.; Bracher, A.; Nöthig, E.-M.; Bauerfeind, E.; Melsheimer, C.</p> <p>2012-11-01</p> <p>Current estimates of global marine primary production range over a factor of two. At high latitudes, the uncertainty is even larger than globally because here in-situ data and ocean color observations are scarce, and the phytoplankton absorption shows specific characteristics due to the low-light adaptation. The improvement of the primary production estimates requires an accurate knowledge on the chlorophyll vertical profile, which is the basis for most primary production models. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer did not include the Arctic region or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the Arctic regions where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S Merian cruises combined with data of the ARCSS-PP database (Arctic primary production in-situ database) for the years 1957-2010. The profiles were categorized according to their mean concentration in the surface layer and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll exceeding 0.7 mg C m-3 showed a clear seasonal cycle with values gradually decreasing from April to August. Chlorophyll profiles maxima moved from lower depths in spring towards the surface in late summer. Profiles with smallest surface values always showed a subsurface chlorophyll maximum with its median magnitude reaching up to three times the surface concentration. While the variability in April, May and June of the Greenland Sea season is following the global non-monthly resolved relationship of the chlorophyll profile to surface chlorophyll concentrations described by the model of Morel and Berthon (1989), it deviates significantly from that in other months (July-September) where the maxima of the chlorophyll are at quite different depths. The Greenland Sea dimensionless monthly median profiles intersect roughly at one common depth within each category. Finally, by applying a Gaussian fitting with 0.1 mg C m-3 surface chlorophyll steps to the median monthly resolved chlorophyll profiles of the defined categories, mathematical approximations have been determined. These will be used as the input to the satellite-based primary production models estimating primary production in Arctic regions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25430015','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25430015"><span>Eutrophic water purification efficiency using a combination of hydrodynamic cavitation and ozonation on a pilot scale.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Wei-Xin; Tang, Chuan-Dong; Wu, Zhi-Lin; Wang, Wei-Min; Zhang, Yu-Feng; Zhao, Yi; Cravotto, Giancarlo</p> <p>2015-04-01</p> <p>This paper presents the purification of eutrophic water using a combination of hydrodynamic cavitation (HC) and ozonation (O3) at a continuous flow of 0.8 m(3) h(-1) on a pilot scale. The maximum removal rate of chlorophyll a using O3 alone and the HC/O3 combination was 62.3 and 78.8%, respectively, under optimal conditions, where the ozone utilization efficiency was 64.5 and 94.8% and total energy consumption was 8.89 and 8.25 kWh m(-3), respectively. Thus, the removal rate of chlorophyll a and the ozone utilization efficiency were improved by 26.5% and 46.9%, respectively, by using the combined technique. Meanwhile, total energy consumption was reduced by 7.2%. Turbidity linearly decreased with chlorophyll a removal rate, but no linear relationship exists between the removal of COD or UV254 and chlorophyll a. As expected, the suction-cavitation-assisted O3 exhibited higher energy efficiency than the extrusion-cavitation-assisted O3 and O3 alone methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..121c2039N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..121c2039N"><span>Cyanobacterial bloom in the world largest freshwater lake Baikal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Namsaraev, Zorigto; Melnikova, Anna; Ivanov, Vasiliy; Komova, Anastasia; Teslyuk, Anton</p> <p>2018-02-01</p> <p>Lake Baikal is a UNESCO World Heritage Site and holds 20% of the world’s freshwater reserves. On July 26, 2016, a cyanobacterial bloom of a green colour a few kilometers in size with a bad odor was discovered by local people in the Barguzinsky Bay on the eastern shore of Lake Baikal. Our study showed very high concentration of chlorophyll a (41.7 g/m3) in the sample of bloom. We found that the bloom was dominated by a nitrogen-fixing heterocystous cyanobacteria of the genus Dolichospermum. The mass accumulation of cyanobacteria in the lake water with an extremely high chlorophyll a concentration can be explained by a combination of several factors: the discharge of biologicaly-available nutrients, including phosphorus, into the water of Lake Baikal; low wind speed and weak water mixing; buoyant cyanobacterial cells on the lake surface, which drifted towards the eastern coast, where the maximum concentration of chlorophyll a was recorded. In the center of the Barguzinsky Bay and in the open part of Lake Baikal, according to satellite data, the chlorophyll a concentration is several orders of magnitude lower than at the shoreline.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25069575','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25069575"><span>Combined effects of lead and acid rain on photosynthesis in soybean seedlings.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Huiqing; Wang, Lihong; Liao, Chenyu; Fan, Caixia; Zhou, Qing; Huang, Xiaohua</p> <p>2014-10-01</p> <p>To explore how lead (Pb) and acid rain simultaneously affect plants, the combined effects of Pb and acid rain on the chlorophyll content, chlorophyll fluorescence reaction, Hill reaction rate, and Mg(2+)-ATPase activity in soybean seedlings were investigated. The results indicated that, when soybean seedlings were treated with Pb or acid rain alone, the chlorophyll content, Hill reaction rate, Mg(2+)-ATPase activity, and maximal photochemical efficiency (F(v)/F(m)) were decreased, while the initial fluorescence (F 0) and maximum quantum yield (Y) were increased, compared with those of the control. The combined treatment with Pb and acid rain decreased the chlorophyll content, Hill reaction rate, Mg(2+)-ATPase activity, F(v)/F(m), and Y and increased F 0 in soybean seedlings. Under the combined treatment with Pb and acid rain, the two factors showed additive effects on the chlorophyll content in soybean seedlings and exhibited antagonistic effects on the Hill reaction rate. Under the combined treatment with high-concentration Pb and acid rain, the two factors exhibited synergistic effects on the Mg(2+)-ATPase activity, F 0, F v/F m, as well as Y. In summary, the inhibition of the photosynthetic process is an important physiological basis for the simultaneous actions of Pb and acid rain in soybean seedlings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9680E..5XZ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9680E..5XZ"><span>The correlation of the maximum intensity of fluorescence with pigment characteristics of leaves of Betula pendula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zavoruev, V. V.; Zavorueva, E. N.</p> <p>2015-11-01</p> <p>Using fluorimeter Junior PAM (Heinz Walz GmbH, Germany) the fluorescence parameters of leaves of Betula pendula are investigated. A linear dependence of the maximum fluorescence (Fm) of leaves from the ratio of total chlorophylls concentration to concentration of carotenoids is obtained. Such dependence is found for samples collected during the period of vegetation and for simultaneous selection of colored leaves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BGeo....7..151N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BGeo....7..151N"><span>Optical Characterization of an Eddy-induced Diatom Bloom West of the Island of Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nencioli, F.; Chang, G.; Twardowski, M.; Dickey, T. D.</p> <p>2010-01-01</p> <p>Optical properties were collected along a transect across cyclonic eddy Opal in the lee of Hawaii during the E-Flux III field experiment (10-27 March 2005). The eddy was characterized by an intense doming of isopycnal surfaces, and by an enhanced Deep Chlorophyll Maximum Layer (DCML) within its core. The phytoplankton bloom was diatom dominated, evidencing an eddy-induced shift in ecological community. Four distinct regions were identified throughout the water column at Opal's core: a surface mixed layer dominated by small phytoplankton; a layer dominated by "senescent" diatoms between the bottom of the upper mixed layer and the DCML; the DCML; and a deep layer characterized by decreasing phytoplankton activity. We focused on two parameters, the ratio of chlorophyll concentration to particulate beam attenuation coefficient, [chl]/cp, and the backscattering ratio (the particle backscattering to particle scattering ratio), b<span style="position: relative; top: -.5em; left: -.65em;">~<i style=" margin-left:-.7em">bp, and tested their sensitivity to the changes in particle composition observed through the water column at the eddy center. Our results show that [chl]/cp is not a good indicator. Despite the shift in ecological community, the ratio remains controlled primarily by the variation in chlorophyll concentration per cell with depth (photoadaptation), so that its values increase throughout the DCML. Steeper increase of [chl]/cp below the DCML suggest that remineralization might be another important controlling factor. On the other hand, b<span style="position: relative; top: -.5em; left: -.65em;">~<i style=" margin-left:-.7em">bp clearly indicates a shift from a small phytoplankton to a diatom dominated community. Below an upper layer characterized by constant values, the b<span style="position: relative; top: -.5em; left: -.65em;">~<i style=" margin-left:-.7em">bp showed a rapid decrease to a broad minimum within the DCML. The higher values below the DCML are consistent with enhanced remineralization below the eddy-induced bloom. Both the "senescent" and the "healthy" diatom layers are characterized by similar optical properties, indicating some possible limitations in using optical measurements to fully characterize the composition of suspended material in the water column. The inverse relationship between b<span style="position: relative; top: -.5em; left: -.65em;">~<i style=" margin-left:-.7em">bp, reported by others for Case II waters, is observed neither for the background conditions, nor in the presence of the eddy-induced diatom bloom. Between the two parameters, only the backscattering ratio showed the potential to be a successful indicator for changes in particle composition in Case I waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS23A1179W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS23A1179W"><span>Testing the Role of Microbial Ecology, Redox-Mediated Deep Water Production and Hypersalinity on TEX86: Lipids and 16s Sequences from Archaea and Bacteria in the Water Column and Sediments of Orca Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Warren, C.; Romero, I.; Ellis, G.; Goddard, E.; Krishnan, S.; Nigro, L. M.; Super, J. R.; Zhang, Y.; Zhuang, G.; Hollander, D. J.; Pagani, M.</p> <p>2014-12-01</p> <p>Mesophilic marine archaea and bacteria are known to substantially contribute to the oceanic microbial biomass and play critical roles in global carbon, nitrogen and nutrient cycles. The Orca Basin, a 2400 meter deep bathymetric depression on the continental slope of the north-central Gulf of Mexico, is an ideal environment to examine how redox-dependent biochemical processes control the input and cycling of bacterial and archaea-derived lipid compounds from formation in near-surface water, through secondary recycling processes operating at the redox-transition in the water column, to sedimentary diagenetic processes operating in oxic to anoxic zones within the basin. The lowermost 180 meters of the Orca Basin is characterized by an anoxic, hypersaline brine that is separated from the overlying oxic seawater by a well-defined redox sequence associated with a systematic increasing in salinity from 35 - 250‰. While surface water conditions are viewed as normal marine with a seasonally productive water column, the sub-oxic to anoxic transition zones within the deep-water column and the sediment spans over 200 m allowing the unique opportunity for discrete sampling of resident organisms and lipids. Here we present 16s rRNA sequence data of Bacteria and Archaea collected parallel to GDGT lipid profiles and in situ environmental measurements from the sediment and overlying water column in the intermediate zone of the basin, where movements of chemical transition zones are preserved. We evaluated GDGTs and corresponding taxa across the surface water, chlorophyll maximum, thermocline, and the deep redox boundary, including oxygenation, denitrification, manganese, iron and sulfate reduction zones, to determine if GDGTs are being produced under these conditions and how surface-derived GDGT lipids and the TEX86 signal may be altered. The results have implications for the application of the TEX86 paleotemperature proxy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20873608','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20873608"><span>[Effects of acid rain stress on Eleocarpus glabripetalus seedlings leaf chlorophyll fluorescence characteristics and growth].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yin, Xiu-Min; Yu, Shu-Quan; Jiang, Hong; Liu, Mei-Hu</p> <p>2010-06-01</p> <p>A pot experiment was conducted to study the Eleocarpus glabripetalus seedlings leaf chlorophyll fluorescence characteristics and growth in different seasons under simulated acid rain stress (heavy, pH = 2. 5; moderate, pH = 4.0; and control, pH = 5.6). In the same treatments, the leaf relative chlorophyll content (SPAD), maximum PS II photochemical efficiency (F(v)/F(m)), actual PSII photochemical quantum yield (phi(PS II)), plant height, and stem diameter in different seasons were all in the order of October > July > April > January. In the same seasons, all the parameters were in the order of heavy acid rain > moderate acid rain > control. The interactions between different acid rain stress and seasons showed significant effects on the SPAD, F(v)/F(m), plant height, and stem diameter, but lesser effects on phi(PS II), qp and qN.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4023968','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4023968"><span>A Unimodal Species Response Model Relating Traits to Environment with Application to Phytoplankton Communities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jamil, Tahira; Kruk, Carla; ter Braak, Cajo J. F.</p> <p>2014-01-01</p> <p>In this paper we attempt to explain observed niche differences among species (i.e. differences in their distribution along environmental gradients) by differences in trait values (e.g. volume) in phytoplankton communities. For this, we propose the trait-modulated Gaussian logistic model in which the niche parameters (optimum, tolerance and maximum) are made linearly dependent on species traits. The model is fitted to data in the Bayesian framework using OpenBUGS (Bayesian inference Using Gibbs Sampling) to identify according to which environmental variables there is niche differentiation among species and traits. We illustrate the method with phytoplankton community data of 203 lakes located within four climate zones and associated measurements on 11 environmental variables and six morphological species traits of 60 species. Temperature and chlorophyll-a (with opposite signs) described well the niche structure of all species. Results showed that about 25% of the variance in the niche centres with respect to chlorophyll-a were accounted for by traits, whereas niche width and maximum could not be predicted by traits. Volume, mucilage, flagella and siliceous exoskeleton are found to be the most important traits to explain the niche centres. Species were clustered in two groups with different niches structures, group 1 high temperature-low chlorophyll-a species and group 2 low temperature-high chlorophyll-a species. Compared to group 2, species in group 1 had larger volume but lower surface area, had more often flagella but neither mucilage nor siliceous exoskeleton. These results might help in understanding the effect of environmental changes on phytoplankton community. The proposed method, therefore, can also apply to other aquatic or terrestrial communities for which individual traits and environmental conditioning factors are available. PMID:24835582</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014DSRI...94..173T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014DSRI...94..173T"><span>Oxygen distribution and aerobic respiration in the north and south eastern tropical Pacific oxygen minimum zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tiano, Laura; Garcia-Robledo, Emilio; Dalsgaard, Tage; Devol, Allan H.; Ward, Bess B.; Ulloa, Osvaldo; Canfield, Donald E.; Peter Revsbech, Niels</p> <p>2014-12-01</p> <p>Highly sensitive STOX O2 sensors were used for determination of in situ O2 distribution in the eastern tropical north and south Pacific oxygen minimum zones (ETN/SP OMZs), as well as for laboratory determination of O2 uptake rates of water masses at various depths within these OMZs. Oxygen was generally below the detection limit (few nmol L-1) in the core of both OMZs, suggesting the presence of vast volumes of functionally anoxic waters in the eastern Pacific Ocean. Oxygen was often not detectable in the deep secondary chlorophyll maximum found at some locations, but other secondary maxima contained up to 0.4 μmol L-1. Directly measured respiration rates were high in surface and subsurface oxic layers of the coastal waters, reaching values up to 85 nmol L-1 O2 h-1. Substantially lower values were found at the depths of the upper oxycline, where values varied from 2 to 33 nmol L-1 O2 h-1. Where secondary chlorophyll maxima were found the rates were higher than in the oxic water just above. Incubation times longer than 20 h, in the all-glass containers, resulted in highly increased respiration rates. Addition of amino acids to the water from the upper oxycline did not lead to a significant initial rise in respiration rate within the first 20 h, indicating that the measurement of respiration rates in oligotrophic Ocean water may not be severely affected by low levels of organic contamination during sampling. Our measurements indicate that aerobic metabolism proceeds efficiently at extremely low oxygen concentrations with apparent half-saturation concentrations (Km values) ranging from about 10 to about 200 nmol L-1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70042197','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70042197"><span>Seasonal zooplankton dynamics in Lake Michigan: disentangling impacts of resource limitation, ecosystem engineering, and predation during a critical ecosystem transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Vanderploeg, Henry A.; Pothoven, Steven A.; Fahnenstiel, Gary L.; Cavaletto, Joann F.; Liebig, James R.; Stow, Craig Stow; Nalepa, Thomas F.; Madenjian, Charles P.; Bunnell, David B.</p> <p>2012-01-01</p> <p>We examined seasonal dynamics of zooplankton at an offshore station in Lake Michigan from 1994 to 2003 and 2007 to 2008. This period saw variable weather, declines in planktivorous fish abundance, the introduction and expansion of dreissenid mussels, and a slow decline in total phosphorus concentrations. After the major expansion of mussels into deep water (2007–2008), chlorophyll in spring declined sharply, Secchi depth increased markedly in all seasons, and planktivorous fish biomass declined to record-low levels. Overlaying these dramatic ecosystem-level changes, the zooplankton community exhibited complex seasonal dynamics between 1994–2003 and 2007–2008. Phenology of the zooplankton maximum was affected by onset of thermal stratification, but there was no other discernable effect due to temperature. Interannual variability in zooplankton biomass during 1994 and 2003 was strongly driven by planktivorous fish abundance, particularly age-0 and age-1 alewives. In 2007–2008, there were large decreases in Diacyclops thomasi and Daphnia mendotae possibly caused by food limitation as well as increased predation and indirect negative effects from increases in Bythotrephes longimanus abundance and in foraging efficiency associated with increased light penetration. The Bythotrephes increase was likely driven in part by decreased predation from yearling and older alewife. While there was a major decrease in epilimnetic–metalimnetic herbivorous cladocerans in 2007–2008, there was an increase in large omnivorous and predacious calanoid copepods, especially those in the hypolimnion. Thus, changes to the zooplankton community are the result of cascading, synergistic interactions, including a shift from vertebrate to invertebrate planktivory and mussel ecosystem impacts on light climate and chlorophyll.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CSR...143..311L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CSR...143..311L"><span>Interannual (2009-2013) variability of winter-spring phytoplankton in the open South Adriatic Sea: Effects of deep convection and lateral advection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ljubimir, Stijepo; Jasprica, Nenad; Čalić, Marijeta; Hrustić, Enis; Dupčić Radić, Iris; Car, Ana; Batistić, Mirna</p> <p>2017-07-01</p> <p>The South Adriatic (SA) is an entry point for water masses originating from the Ionian Sea (IS) and a place of dense water formation for the eastern Mediterranean deep circulation cell. Water masses, entering the SA in larger amount during the winter, show decadal variability explained by different circulating regimes (cyclonic and anticyclonic) in the IS, referred to as "Bimodal Oscillating System" (BiOS). Sampling station was situated in the South Adriatic Pit (SAP) with depth of 1200 m. Micro- and nano-phytoplankton abundances, community structure, chlorophyll a concentrations, physical and chemical properties are presented in the winter and spring months for five consecutive years (2009-2013) during different circulating regimes of BiOS. Vertical convective mixing was regularly observed in winter except in 2011 which had effect on nutrient availability and consequently on biomass of primary producers. Effect of strong vertical mixing in February 2012 resulted with exceptionally high phytoplankton abundance and chlorophyll a concentrations in March of 2012. Strong convective mixing resulted in higher diatom abundances, comparing to winter when mixing did not occur. No such bloom was observed during investigated spring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033489','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033489"><span>Top predators in relation to bathymetry, ice and krill during austral winter in Marguerite Bay, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ribic, C.A.; Chapman, E.; Fraser, William R.; Lawson, G.L.; Wiebe, P.H.</p> <p>2008-01-01</p> <p>A key hypothesis guiding the US Southern Ocean Global Ocean Ecosystems Dynamics (US SO GLOBEC) program is that deep across-shelf troughs facilitate the transport of warm and nutrient-rich waters onto the continental shelf of the Western Antarctic Peninsula, resulting in enhanced winter production and prey availability to top predators. We tested aspects of this hypothesis during austral winter by assessing the distribution of the resident pack-ice top predators in relation to these deep across-shelf troughs and by investigating associations between top predators and their prey. Surveys were conducted July-August 2001 and August-September 2002 in Marguerite Bay, Antarctica, with a focus on the main across-shelf trough in the bay, Marguerite Trough. The common pack-ice seabird species were snow petrel (Pagodroma nivea, 1.2 individuals km-2), Antarctic petrel (Thalassoica antarctica, 0.3 individuals km-2), and Ade??lie penguin (Pygoscelis adeliae, 0.5 individuals km-2). The most common pack-ice pinniped was crabeater seal (Lobodon carcinophagus). During both winters, snow and Antarctic petrels were associated with low sea-ice concentrations independent of Marguerite Trough, while Ade??lie penguins occurred in association with this trough. Krill concentrations, both shallow and deep, also were associated with Ade??lie penguin and snow petrel distributions. During both winters, crabeater seal occurrence was associated with deep krill concentrations and with regions of lower chlorophyll concentration. The area of lower chlorophyll concentrations occurred in an area with complex bathymetry close to land and heavy ice concentrations. Complex or unusual bathymetry via its influence on physical and biological processes appears to be one of the keys to understanding how top predators survive during the winter in this Antarctic region. ?? 2007 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014DSRI...89...56G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014DSRI...89...56G"><span>Factors influencing particulate lipid production in the East Atlantic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gašparović, B.; Frka, S.; Koch, B. P.; Zhu, Z. Y.; Bracher, A.; Lechtenfeld, O. J.; Neogi, S. B.; Lara, R. J.; Kattner, G.</p> <p>2014-07-01</p> <p>Extensive analyses of particulate lipids and lipid classes were conducted to gain insight into lipid production and related factors along the biogeochemical provinces of the Eastern Atlantic Ocean. Data are supported by particulate organic carbon (POC), chlorophyll a (Chl a), phaeopigments, Chl a concentrations and carbon content of eukaryotic micro-, nano- and picophytoplankton, including cell abundances for the latter two and for cyanobacteria and prokaryotic heterotrophs. We focused on the productive ocean surface (2 m depth and deep Chl a maximum (DCM). Samples from the deep ocean provided information about the relative reactivity and preservation potential of particular lipid classes. Surface and DCM particulate lipid concentrations (3.5-29.4 μg L-1) were higher than in samples from deep waters (3.2-9.3 μg L-1) where an increased contribution to the POC pool was observed. The highest lipid concentrations were measured in high latitude temperate waters and in the North Atlantic Tropical Gyral Province (13-25°N). Factors responsible for the enhanced lipid synthesis in the eastern Atlantic appeared to be phytoplankton size (micro, nano, pico) and the low nutrient status with microphytoplankton having the most expressed influence in the surface and eukaryotic nano- and picophytoplankton in the DCM layer. Higher lipid to Chl a ratios suggest enhanced lipid biosynthesis in the nutrient poorer regions. The various lipid classes pointed to possible mechanisms of phytoplankton adaptation to the nutritional conditions. Thus, it is likely that adaptation comprises the replacement of membrane phospholipids by non-phosphorus containing glycolipids under low phosphorus conditions. The qualitative and quantitative lipid compositions revealed that phospholipids were the most degradable lipids, and their occurrence decreased with increasing depth. In contrast, wax esters, possibly originating from zooplankton, survived downward transport probably due to the fast sinking rate of particles (fecal pellets). The important contribution of glycolipids in deep waters reflected their relatively stable nature and degradation resistance. A lipid-based proxy for the lipid degradative state (Lipolysis Index) suggests that many lipid classes were quite resistant to degradation even in the deep ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180001301','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180001301"><span>Assessing the Skill of Chlorophyll Forecasts: Latest Development and Challenges Ahead Using the Case of the Equatorial Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rousseaux, Cecile S.; Gregg, Watson W.</p> <p>2018-01-01</p> <p>Using a global ocean biogeochemical model combined with a forecast of physical oceanic and atmospheric variables from the NASA Global Modeling and Assimilation Office, we assess the skill of a chlorophyll concentrations forecast in the Equatorial Pacific for the period 2012-2015 with a focus on the forecast of the onset of the 2015 El Nino event. Using a series of retrospective 9-month hindcasts, we assess the uncertainties of the forecasted chlorophyll by comparing the monthly total chlorophyll concentration from the forecast with the corresponding monthly ocean chlorophyll data from the Suomi-National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (S-NPP VIIRS) satellite. The forecast was able to reproduce the phasing of the variability in chlorophyll concentration in the Equatorial Pacific, including the beginning of the 2015-2016 El Nino. The anomaly correlation coefficient (ACC) was significant (p less than 0.05) for forecast at 1-month (R=0.33), 8-month (R=0.42) and 9-month (R=0.41) lead times. The root mean square error (RMSE) increased from 0.0399 microgram chl L(exp -1) for the 1-month lead forecast to a maximum of 0.0472 microgram chl L(exp -1) for the 9-month lead forecast indicating that the forecast of the amplitude of chlorophyll concentration variability was getting worse. Forecasts with a 3-month lead time were on average the closest to the S-NPP VIIRS data (23% or 0.033 microgram chl L(exp -1)) while the forecast with a 9-month lead time were the furthest (31% or 0.042 microgram chl L(exp -1)). These results indicate the potential for forecasting chlorophyll concentration in this region but also highlights various deficiencies and suggestions for improvements to the current biogeochemical forecasting system. This system provides an initial basis for future applications including the effects of El Nino events on fisheries and other ocean resources given improvements identified in the analysis of these results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ESSD....7..261S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ESSD....7..261S"><span>Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.</p> <p>2015-10-01</p> <p>In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms has led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted into phytoplankton biomass (i.e., chlorophyll a concentration) and size-based community composition (i.e., microphytoplankton, nanophytoplankton and picophytoplankton), using a method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over 5 decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from the surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available on open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: <a href="http://doi.pangaea.de/10.1594/PANGAEA.844212" target="_blank">http://doi.pangaea.de/10.1594/PANGAEA.844212</a> and Phytoplankton biomass and community composition: <a href="http://doi.pangaea.de/10.1594/PANGAEA.844485" target="_blank">http://doi.pangaea.de/10.1594/PANGAEA.844485</a></p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29291196','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29291196"><span>Forecasting Ocean Chlorophyll in the Equatorial Pacific.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rousseaux, Cecile S; Gregg, Watson W</p> <p>2017-01-01</p> <p>Using a global ocean biogeochemical model combined with a forecast of physical oceanic and atmospheric variables from the NASA Global Modeling and Assimilation Office, we assess the skill of a chlorophyll concentrations forecast in the Equatorial Pacific for the period 2012-2015 with a focus on the forecast of the onset of the 2015 El Niño event. Using a series of retrospective 9-month hindcasts, we assess the uncertainties of the forecasted chlorophyll by comparing the monthly total chlorophyll concentration from the forecast with the corresponding monthly ocean chlorophyll data from the Suomi-National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (S-NPP VIIRS) satellite. The forecast was able to reproduce the phasing of the variability in chlorophyll concentration in the Equatorial Pacific, including the beginning of the 2015-2016 El Niño. The anomaly correlation coefficient (ACC) was significant ( p < 0.05) for forecast at 1-month ( R = 0.33), 8-month ( R = 0.42) and 9-month ( R = 0.41) lead times. The root mean square error (RMSE) increased from 0.0399 μg chl L -1 for the 1-month lead forecast to a maximum of 0.0472 μg chl L -1 for the 9-month lead forecast indicating that the forecast of the amplitude of chlorophyll concentration variability was getting worse. Forecasts with a 3-month lead time were on average the closest to the S-NPP VIIRS data (23% or 0.033 μg chl L -1 ) while the forecast with a 9-month lead time were the furthest (31% or 0.042 μg chl L -1 ). These results indicate the potential for forecasting chlorophyll concentration in this region but also highlights various deficiencies and suggestions for improvements to the current biogeochemical forecasting system. This system provides an initial basis for future applications including the effects of El Niño events on fisheries and other ocean resources given improvements identified in the analysis of these results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26582993','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26582993"><span>Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren</p> <p>2015-01-01</p> <p>Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0-21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15246344','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15246344"><span>Acclimation of Haslea ostrearia to light of different spectral qualities - confirmation of 'chromatic adaptation' in diatoms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mouget, Jean-Luc; Rosa, Philippe; Tremblin, Gérard</p> <p>2004-07-19</p> <p>The marine diatom Haslea ostrearia was cultured under light of different qualities, white (WL), blue (BL), green (GL), yellow (YL), red (RL), and far-red (FRL) and at two irradiance levels, low and high (20 and 100 micromolphotonsm(-2)s(-1), respectively). The effects of the different light regimes were studied on growth, pigment content, and photosynthesis, estimated by the modulated fluorescence of chlorophyll, as relative electron transport rate (rETR). For all the light qualities studied, growth rates were higher at high irradiance. Compared to the corresponding WL controls, growth was higher in BL and lower in YL at low irradiance, and lower in YL and GL at high irradiance. Except for YL, almost all the pigment contents of the cells were lower at high irradiance. At low irradiance, cell pigment contents (chlorophyll a and c, fucoxanthin) and pigment ratios (in function of chlorophyll a) were lower in YL, RL, and FRL. Whatever the irradiance level, the maximum PSII quantum efficiency (F(v)/F(m) remained almost constant for WL, BL, and GL. Other fluorescence parameters (photochemical quenching, rETR(max), and alpha, the maximum light utilization coefficient) were lower in GL, YL, RL, and FRL, at low irradiance. Although not statistically significant, BL caused an increase in these fluorescence parameters. These findings are interpreted as evidence that inverse chromatic acclimation occurs in diatoms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040065851&hterms=herbicide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dherbicide','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040065851&hterms=herbicide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dherbicide"><span>Leaf Optical Properties in Higher Plants: Linking Spectral Characteristics with Plant Stress</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carter, Gregory A.; Knapp, Alan K.</p> <p>1999-01-01</p> <p>A number of studies have addressed responses of leaf spectral reflectance, transmittance, or absorptance to physiological stress. Stressors included dehydration, ozone, herbicides, disease, insufficient mycorrhizae and N fertilization, flooding and insects. Species included conifers, grasses, and broadleaved trees. Increased reflectance with maximum responses near 700 nm wavelength occurred in all cases. Varying the chlorophyll content in leaves or pigment extracts can simulate this effect. Thus, common optical responses to stress result from decreases in leaf chlorophyll contents or the capacity of chloroplasts to absorb light. Leaf optic can be quite sensitive to any stressor that alters soil-plant-atmosphere processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5751253','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5751253"><span>Synergistic Effects of Bacillus amyloliquefaciens (GB03) and Water Retaining Agent on Drought Tolerance of Perennial Ryegrass</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Su, An-Yu; Niu, Shu-Qi; Liu, Yuan-Zheng; He, Ao-Lei; Zhao, Qi; Li, Meng-Fei; Han, Qing-Qing; Ali Khan, Sardar</p> <p>2017-01-01</p> <p>Water retaining agent (WRA) is widely used for soil erosion control and agricultural water saving. Here, we evaluated the effects of the combination of beneficial soil bacterium Bacillus amyloliquefaciens strain GB03 and WRA (the compound is super absorbent hydrogels) on drought tolerance of perennial ryegrass (Lolium perenne L.). Seedlings were subjected to natural drought for maximum 20 days by stopping watering and then rewatered for seven days. Plant survival rate, biomass, photosynthesis, water status and leaf cell membrane integrity were measured. The results showed that under severe drought stress (20-day natural drought), compared to control, GB03, WRA and GB03+WRA all significantly improved shoot fresh weight, dry weight, relative water content (RWC) and chlorophyll content and decreased leaf relative electric conductivity (REC) and leaf malondialdehyde (MDA) content; GB03+WRA significantly enhanced chlorophyll content compared to control and other two treatments. Seven days after rewatering, GB03, WRA and GB03+WRA all significantly enhanced plant survival rate, biomass, RWC and maintained chlorophyll content compared to control; GB03+WRA significantly enhanced plant survival rate, biomass and chlorophyll content compared to control and other two treatments. The results established that GB03 together with water retaining agent promotes ryegrass growth under drought conditions by improving survival rate and maintaining chlorophyll content. PMID:29232909</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29232909','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29232909"><span>Synergistic Effects of Bacillus amyloliquefaciens (GB03) and Water Retaining Agent on Drought Tolerance of Perennial Ryegrass.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Su, An-Yu; Niu, Shu-Qi; Liu, Yuan-Zheng; He, Ao-Lei; Zhao, Qi; Paré, Paul W; Li, Meng-Fei; Han, Qing-Qing; Ali Khan, Sardar; Zhang, Jin-Lin</p> <p>2017-12-11</p> <p>Water retaining agent (WRA) is widely used for soil erosion control and agricultural water saving. Here, we evaluated the effects of the combination of beneficial soil bacterium Bacillus amyloliquefaciens strain GB03 and WRA (the compound is super absorbent hydrogels) on drought tolerance of perennial ryegrass ( Lolium perenne L.). Seedlings were subjected to natural drought for maximum 20 days by stopping watering and then rewatered for seven days. Plant survival rate, biomass, photosynthesis, water status and leaf cell membrane integrity were measured. The results showed that under severe drought stress (20-day natural drought), compared to control, GB03, WRA and GB03+WRA all significantly improved shoot fresh weight, dry weight, relative water content (RWC) and chlorophyll content and decreased leaf relative electric conductivity (REC) and leaf malondialdehyde (MDA) content; GB03+WRA significantly enhanced chlorophyll content compared to control and other two treatments. Seven days after rewatering, GB03, WRA and GB03+WRA all significantly enhanced plant survival rate, biomass, RWC and maintained chlorophyll content compared to control; GB03+WRA significantly enhanced plant survival rate, biomass and chlorophyll content compared to control and other two treatments. The results established that GB03 together with water retaining agent promotes ryegrass growth under drought conditions by improving survival rate and maintaining chlorophyll content.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25682391','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25682391"><span>Fluctuations in coral health of four common inshore reef corals in response to seasonal and anthropogenic changes in water quality.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Browne, Nicola K; Tay, Jason K L; Low, Jeffrey; Larson, Ole; Todd, Peter A</p> <p>2015-04-01</p> <p>Environmental drivers of coral condition (maximum quantum yield, symbiont density, chlorophyll a content and coral skeletal growth rates) were assessed in the equatorial inshore coastal waters of Singapore, where the amplitude of seasonal variation is low, but anthropogenic influence is relatively high. Water quality variables (sediments, nutrients, trace metals, temperature, light) explained between 52 and 83% of the variation in coral condition, with sediments and light availability as key drivers of foliose corals (Merulina ampliata, Pachyseris speciosa), and temperature exerting a greater influence on a branching coral (Pocillopora damicornis). Seasonal reductions in water quality led to high chlorophyll a concentrations and maximum quantum yields in corals, but low growth rates. These marginal coral communities are potentially vulnerable to climate change, hence, we propose water quality thresholds for coral growth with the aim of mitigating both local and global environmental impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17029968','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17029968"><span>Comparison between fluorimetry and oximetry techniques to measure photosynthesis in the diatom Skeletonema costatum cultivated under simulated seasonal conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lefebvre, Sébastien; Mouget, Jean-Luc; Loret, Pascale; Rosa, Philippe; Tremblin, Gérard</p> <p>2007-02-01</p> <p>This study reports comparison of two techniques measuring photosynthesis in the ubiquitous diatom Skeletonema costatum, i.e., the classical oximetry and the recent modulated fluorimetry. Microalgae in semi-continuous cultures were exposed to five different environmental conditions simulating a seasonal effect with co-varying temperature, photoperiod and incident light. Photosynthesis was assessed by gross rate of oxygen evolution (P(B)) and the electron transport rate (ETR) measurements. The two techniques were linearly related within seasonal treatments along the course of the P/E curves. The light saturation intensity parameters (Ek and Ek(ETR)), and the maximum electron transport rate increased significantly with the progression of the season while the maximum light utilization efficiency for ETR (alpha(ETR)) was constant. By contrast, the maximum gross oxygen photosynthetic capacity (Pmax(B)) and the maximum light utilization efficiency for P(B) (alpha(B)) increased from December to May treatment but decreased from May to July treatment. Both techniques showed clear photoacclimation in microalgae with the progression of the season, as illustrated by changes in photosynthetic parameters. The relationship between the two techniques changed when high temperature, photoperiod and incident light were combined, possibly due to an overestimation of the PAR--averaged chlorophyll-specific absorption cross-section. Despite this change, our results illustrate the strong suitability of in vivo chlorophyll fluorimetry to estimate primary production in the field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27882483','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27882483"><span>Effect of CO2 Concentration on Growth and Biochemical Composition of Newly Isolated Indigenous Microalga Scenedesmus bajacalifornicus BBKLP-07.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Patil, Lakkanagouda; Kaliwal, Basappa</p> <p>2017-05-01</p> <p>Photosynthetic mitigation of CO 2 through microalgae is gaining great importance due to its higher photosynthetic ability compared to plants, and the biomass can be commercially exploited for various applications. CO 2 fixation capability of the newly isolated freshwater microalgae Scenedesmus bajacalifornicus BBKLP-07 was investigated using a 1-l photobioreactor. The cultivation was carried at varying concentration of CO 2 ranging from 5 to 25%, and the temperature and light intensities were kept constant. A maximum CO 2 fixation rate was observed at 15% CO 2 concentration. Characteristic growth parameters such as biomass productivity, specific growth rate, and maximum biomass yield, and biochemical parameters such as carbohydrate, protein, lipid, chlorophyll, and carotenoid were determined and discussed. It was observed that the effect of CO 2 concentration on growth and biochemical composition was quite significant. The maximum biomass productivity was 0.061 ± 0.0007 g/l/day, and the rate of CO 2 fixation was 0.12 ± 0.002 g/l/day at 15% CO 2 concentration. The carbohydrate and lipid content were maximum at 25% CO 2 with 26.19 and 25.81% dry cell weight whereas protein, chlorophyll, and carotenoid contents were 32.89% dry cell weight, 25.07 μg/ml and 6.15 μg/ml respectively at 15% CO 2 concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPP14A0538W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPP14A0538W"><span>Seasonal Variation of Phytoplankton and Primary Production in the Thames River, Southeastern Connecticut</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wainright, S. C.</p> <p>2016-02-01</p> <p>A year-long study was performed to investigate seasonal changes in the phytoplankton biomass and primary production in the Thames River, a salt wedge estuary that empties into Long Island Sound in southeastern CT. Chlorophyll measurements were made on discrete filtered samples collected above and below the 1-3 m deep pycnocline at a 5-meter deep station. Surface chlorophyll concentrations, primarily from diatoms, averaged approx. 2 mg m-3, with maxima (up to 10 mg m-3) during summer months (Jun to Aug) and minima during October through March (as low as 0.3 mg m-3). The lower water layer had nearly the same annual average but a smaller range (0.7-3.3 mg m-3) and a winter/spring bloom (Jan-Apr) that was not seen in surface water. During most of the winter, chlorophyll concentrations were higher in the lower layer. Primary production, as measured by 13C uptake in bottle incubations, averaged 67 mgC m-3 h-1 in surface water [range 0.1 (Jan 2012) to 800 mgC m-3 h-1 (Aug 2011)], and 3 mgC m-3 h-1 [range 0.04 (Jan 2012) to 17 mgC m-3 h-1 (Aug 2011)] in the lower layer. On most occasions, deep water incubated near the surface had a higher primary production rate than surface water incubated at the surface; apparently the light-limited phytoplankton in the lower layer were released from light-limitation during these incubations. During the study period there were over a dozen heavy wind or heavy rain events, including Hurricane Irene in August and a freak Nor'easter snow storm in October 2011. Hurricane Irene was associated with a large decline in phytoplankton biomass and primary production. With significant storms as frequent as the rate of sampling, it is difficult to separate a "storm effect" from a background seasonal pattern. The study reveals that phytoplankton, especially those in the lower layer, are light-limited in the Thames River estuary, and that the effects of significant storm events are superimposed on significant seasonal variation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/962145','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/962145"><span>Algae Tile Data: 2004-2007, BPA-51; Preliminary Report, October 28, 2008.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Holderman, Charles</p> <p></p> <p>Multiple files containing 2004 through 2007 Tile Chlorophyll data for the Kootenai River sites designated as: KR1, KR2, KR3, KR4 (Downriver) and KR6, KR7, KR9, KR9.1, KR10, KR11, KR12, KR13, KR14 (Upriver) were received by SCS. For a complete description of the sites covered, please refer to http://ktoi.scsnetw.com. To maintain consistency with the previous SCS algae reports, all analyses were carried out separately for the Upriver and Downriver categories, as defined in the aforementioned paragraph. The Upriver designation, however, now includes three additional sites, KR11, KR12, and the nutrient addition site, KR9.1. Summary statistics and information on the four responses,more » chlorophyll a, chlorophyll a Accrual Rate, Total Chlorophyll, and Total Chlorophyll Accrual Rate are presented in Print Out 2. Computations were carried out separately for each river position (Upriver and Downriver) and year. For example, the Downriver position in 2004 showed an average Chlorophyll a level of 25.5 mg with a standard deviation of 21.4 and minimum and maximum values of 3.1 and 196 mg, respectively. The Upriver data in 2004 showed a lower overall average chlorophyll a level at 2.23 mg with a lower standard deviation (3.6) and minimum and maximum values of (0.13 and 28.7, respectively). A more comprehensive summary of each variable and position is given in Print Out 3. This lists the information above as well as other summary information such as the variance, standard error, various percentiles and extreme values. Using the 2004 Downriver Chlorophyll a as an example again, the variance of this data was 459.3 and the standard error of the mean was 1.55. The median value or 50th percentile was 21.3, meaning 50% of the data fell above and below this value. It should be noted that this value is somewhat different than the mean of 25.5. This is an indication that the frequency distribution of the data is not symmetrical (skewed). The skewness statistic, listed as part of the first section of each analysis, quantifies this. In a symmetric distribution, such as a Normal distribution, the skewness value would be 0. The tile chlorophyll data, however, shows larger values. Chlorophyll a, in the 2004 Downriver example, has a skewness statistic of 3.54, which is quite high. In the last section of the summary analysis, the stem and leaf plot graphically demonstrates the asymmetry, showing most of the data centered around 25 with a large value at 196. The final plot is referred to as a normal probability plot and graphically compares the data to a theoretical normal distribution. For chlorophyll a, the data (asterisks) deviate substantially from the theoretical normal distribution (diagonal reference line of pluses), indicating that the data is non-normal. Other response variables in both the Downriver and Upriver categories also indicated skewed distributions. Because the sample size and mean comparison procedures below require symmetrical, normally distributed data, each response in the data set was logarithmically transformed. The logarithmic transformation, in this case, can help mitigate skewness problems. The summary statistics for the four transformed responses (log-ChlorA, log-TotChlor, and log-accrual ) are given in Print Out 4. For the 2004 Downriver Chlorophyll a data, the logarithmic transformation reduced the skewness value to -0.36 and produced a more bell-shaped symmetric frequency distribution. Similar improvements are shown for the remaining variables and river categories. Hence, all subsequent analyses given below are based on logarithmic transformations of the original responses.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28884168','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28884168"><span>AUC-Maximized Deep Convolutional Neural Fields for Protein Sequence Labeling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Sheng; Sun, Siqi; Xu, Jinbo</p> <p>2016-09-01</p> <p>Deep Convolutional Neural Networks (DCNN) has shown excellent performance in a variety of machine learning tasks. This paper presents Deep Convolutional Neural Fields (DeepCNF), an integration of DCNN with Conditional Random Field (CRF), for sequence labeling with an imbalanced label distribution. The widely-used training methods, such as maximum-likelihood and maximum labelwise accuracy, do not work well on imbalanced data. To handle this, we present a new training algorithm called maximum-AUC for DeepCNF. That is, we train DeepCNF by directly maximizing the empirical Area Under the ROC Curve (AUC), which is an unbiased measurement for imbalanced data. To fulfill this, we formulate AUC in a pairwise ranking framework, approximate it by a polynomial function and then apply a gradient-based procedure to optimize it. Our experimental results confirm that maximum-AUC greatly outperforms the other two training methods on 8-state secondary structure prediction and disorder prediction since their label distributions are highly imbalanced and also has similar performance as the other two training methods on solvent accessibility prediction, which has three equally-distributed labels. Furthermore, our experimental results show that our AUC-trained DeepCNF models greatly outperform existing popular predictors of these three tasks. The data and software related to this paper are available at https://github.com/realbigws/DeepCNF_AUC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5584645','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5584645"><span>AUC-Maximized Deep Convolutional Neural Fields for Protein Sequence Labeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Sheng; Sun, Siqi</p> <p>2017-01-01</p> <p>Deep Convolutional Neural Networks (DCNN) has shown excellent performance in a variety of machine learning tasks. This paper presents Deep Convolutional Neural Fields (DeepCNF), an integration of DCNN with Conditional Random Field (CRF), for sequence labeling with an imbalanced label distribution. The widely-used training methods, such as maximum-likelihood and maximum labelwise accuracy, do not work well on imbalanced data. To handle this, we present a new training algorithm called maximum-AUC for DeepCNF. That is, we train DeepCNF by directly maximizing the empirical Area Under the ROC Curve (AUC), which is an unbiased measurement for imbalanced data. To fulfill this, we formulate AUC in a pairwise ranking framework, approximate it by a polynomial function and then apply a gradient-based procedure to optimize it. Our experimental results confirm that maximum-AUC greatly outperforms the other two training methods on 8-state secondary structure prediction and disorder prediction since their label distributions are highly imbalanced and also has similar performance as the other two training methods on solvent accessibility prediction, which has three equally-distributed labels. Furthermore, our experimental results show that our AUC-trained DeepCNF models greatly outperform existing popular predictors of these three tasks. The data and software related to this paper are available at https://github.com/realbigws/DeepCNF_AUC. PMID:28884168</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007BGD.....4.3267B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007BGD.....4.3267B"><span>Calcite production by Coccolithophores in the South East Pacific Ocean: from desert to jungle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beaufort, L.; Couapel, M.; Buchet, N.; Claustre, H.</p> <p>2007-09-01</p> <p>BIOSOPE cruise achieved an oceanographic transect from the Marquise Islands to the Peru-Chili upwelling (PCU) via the centre of the South Pacific Gyre (SPG). Water samples from 6 depths in the euphotic zone were collected at 20 stations. The concentrations of suspended calcite particles, coccolithophores cells and detached coccoliths were estimated together with size and weight using an automatic polarizing microscope, a digital camera, and a collection of softwares performing morphometry and pattern recognition. Some of these softwares are new and described here for the first time. The coccolithophores standing stocks are usually low and reach maxima west of the PCU. The coccoliths of Emiliania huxleyi, Gephyrocapsa spp. and Crenalithus spp. (Order Isochrysidales) represent 50% of all the suspended calcite particles detected in the size range 0.1-46 μm (21% of PIC in term of the calcite weight). The latter species are found to grow preferentially in the Chlorophyll maximum zone. In the SPG their maximum concentrations was found to occur between 150 and 200 m, which is very deep for these taxa. The weight and size of coccoliths and coccospheres are correlated. Large and heavy coccoliths and coccospheres are found in the regions with relative higher fertility in the Marquises Island and in the PCU. Small and light coccoliths and coccospheres are found west of the PCU. This distribution may correspond to that of the concentration of calcium and carbonate ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17111604','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17111604"><span>[Semi-analysis algorithm to retrieve pigment concentrations in the red tide area of the East China Sea].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qiu, Zhong-Feng; Xi, Hong-Yan; He, Yi-Jun; Chen, Jay-Chung; Jian, Wei-Jun</p> <p>2006-08-01</p> <p>For the purpose of detecting and forecasting research of red tides to reduce the loss, a semi-analytic algorithm to retrieve chlorophyll-a concentrations was established in the area where red tides often brought out, according to the data collected during the red tides cruise in the East China Sea in April 2002. In the algorithm, empirical equations were made based on the coefficients from the in-situ data, including the optical properties of the research area. The in-situ data were used to validate the algorithm. The discrepancy of chlorophyll-a absorption coefficients and concentrations are mainly located in the region of 30%. The root mean deviation of the chlorophyll-a concentrations between the observed and the calculated is 0.24, the maximum relative deviation 40.93%, the mean relative deviation 18.83% and the correlation coefficient 0.83. The results show that the precision of the algorithm is high and the algorithm is fit for the research area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29353944','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29353944"><span>Enhancement of phytoplankton chlorophyll by submesoscale frontal dynamics in the North Pacific Subtropical Gyre.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Xiao; Levine, Naomi M</p> <p>2016-02-28</p> <p>Subtropical gyres contribute significantly to global ocean productivity. As the climate warms, the strength of these gyres as a biological carbon pump is predicted to diminish due to increased stratification and depleted surface nutrients. We present results suggesting that the impact of submesoscale physics on phytoplankton in the oligotrophic ocean is substantial and may either compensate or exacerbate future changes in carbon cycling. A new statistical tool was developed to quantify surface patchiness from sea surface temperatures. Chlorophyll concentrations in the North Pacific Subtropical Gyre were shown to be enhanced by submesoscale frontal dynamics with an average increase of 38% (maximum of 83%) during late winter. The magnitude of this enhancement is comparable to the observed decline in chlorophyll due to a warming of ~1.1°C. These results highlight the need for an improved understanding of fine-scale physical variability in order to predict the response of marine ecosystems to projected climate changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.1651L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.1651L"><span>Enhancement of phytoplankton chlorophyll by submesoscale frontal dynamics in the North Pacific Subtropical Gyre</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Xiao; Levine, Naomi M.</p> <p>2016-02-01</p> <p>Subtropical gyres contribute significantly to global ocean productivity. As the climate warms, the strength of these gyres as a biological carbon pump is predicted to diminish due to increased stratification and depleted surface nutrients. We present results suggesting that the impact of submesoscale physics on phytoplankton in the oligotrophic ocean is substantial and may either compensate or exacerbate future changes in carbon cycling. A new statistical tool was developed to quantify surface patchiness from sea surface temperatures. Chlorophyll concentrations in the North Pacific Subtropical Gyre were shown to be enhanced by submesoscale frontal dynamics with an average increase of 38% (maximum of 83%) during late winter. The magnitude of this enhancement is comparable to the observed decline in chlorophyll due to a warming of ~1.1°C. These results highlight the need for an improved understanding of fine-scale physical variability in order to predict the response of marine ecosystems to projected climate changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMS...175...24G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMS...175...24G"><span>Controlling effects of mesoscale eddies on thermohaline structure and in situ chlorophyll distribution in the western North Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Wei; Wang, Zhenyan; Zhang, Kainan</p> <p>2017-11-01</p> <p>Based on the conductivity, temperature and depth (CTD) data collected at 93 hydrographic stations during a marine cruise and on contemporary satellite altimeter observations, a series of eddies have been observed passing over the stratified upper water of the Parece Vela Basin. The results from hydrographic measurements and in situ chlorophyll fluorescence measurements have revealed that these eddies exerted significant controlling effects on the thermohaline structure and chlorophyll distribution, especially on the prevalent subsurface chlorophyll maximum layer (SCML). Based on these observations and particulate beam attenuation coefficient (cp) data, the in situ phytoplankton bloom around the pycnocline can be largely attributable to the formation of a well-developed SCML in the studied system. The uplift of the cold subsurface water within the cyclone, shoaling the pycnocline to a shallower layer, resulted in a low-temperature anomaly and different salinity anomalies at different depths. This uplift in the cyclone further caused the SCML to appear at a shallower depth with a higher in situ chlorophyll concentration than that in the normal domain. Conversely, the sinking of the warm surface water to the subsurface layer within the anticyclone depressed the pycnocline to a deeper layer and generated a high-temperature anomaly and opposite salinity anomalies compared with the cyclone. The sinking of the pycnocline within the anticyclone considerably influenced the characteristics of the SCML, which had a deeper depth and a lower in situ chlorophyll concentration than that of the normal sea. This study contributes rare quasi-synchronous CTD observations capturing mesoscale eddies and provides valuable descriptions of the variations in the SCML under the influence of mesoscale eddies based on in situ optical measurements from the seldom-discussed western North Pacific.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19726181','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19726181"><span>Enhancement of lipase catalyzed-fatty acid methyl esters production from waste activated bleaching earth by nullification of lipase inhibitors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dwiarti, Lies; Ali, Ehsan; Park, Enoch Y</p> <p>2010-01-01</p> <p>This study sought to identify inhibitory factors of lipase catalyzed-fatty acid methyl esters (FAME) production from waste activated bleaching earth (wABE). During the vegetable oil refinery process, activated bleaching earth (ABE) is used for removing the impure compounds, but adsorbs vegetable oil up to 35-40% as on a weight basis, and then the wABE is discarded as waste material. The impurities were extracted from the wABE with methanol and evaluated by infra-red (IR) spectroscopy, which revealed that some were chlorophyll-plant pigments. The chlorophylls inhibited the lipase during FAME conversion from wABE. The inhibition by a mixture of chlorophyll a and b was found to be competitive. The inhibition of the enzymatic hydrolysis of waste vegetable oil contained in wABE by chlorophyll a alone was competitive, while the inhibition by chlorophyll b alone was non-competitive. Furthermore, the addition of a small amount of alkali nullified this inhibitory effect and accelerated the FAME production rate. When 0.9% KOH (w/w wABE) was added to the transesterification reaction with only 0.05% lipase (w/w wABE), the maximum FAME production rate improved 120-fold, as compared to that without the addition of KOH. The alkali-combined lipase significantly enhanced the FAME production rate from wABE, in spite of the presence of the plant pigments, and even when a lower amount of lipase was used as a catalyst.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090016176','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090016176"><span>An Empirical Approach to Ocean Color Data: Reducing Bias and the Need for Post-Launch Radiometric Re-Calibration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gregg, Watson W.; Casey, Nancy W.; O'Reilly, John E.; Esaias, Wayne E.</p> <p>2009-01-01</p> <p>A new empirical approach is developed for ocean color remote sensing. Called the Empirical Satellite Radiance-In situ Data (ESRID) algorithm, the approach uses relationships between satellite water-leaving radiances and in situ data after full processing, i.e., at Level-3, to improve estimates of surface variables while relaxing requirements on post-launch radiometric re-calibration. The approach is evaluated using SeaWiFS chlorophyll, which is the longest time series of the most widely used ocean color geophysical product. The results suggest that ESRID 1) drastically reduces the bias of ocean chlorophyll, most impressively in coastal regions, 2) modestly improves the uncertainty, and 3) reduces the sensitivity of global annual median chlorophyll to changes in radiometric re-calibration. Simulated calibration errors of 1% or less produce small changes in global median chlorophyll (less than 2.7%). In contrast, the standard NASA algorithm set is highly sensitive to radiometric calibration: similar 1% calibration errors produce changes in global median chlorophyll up to nearly 25%. We show that 0.1% radiometric calibration error (about 1% in water-leaving radiance) is needed to prevent radiometric calibration errors from changing global annual median chlorophyll more than the maximum interannual variability observed in the SeaWiFS 9-year record (+/- 3%), using the standard method. This is much more stringent than the goal for SeaWiFS of 5% uncertainty for water leaving radiance. The results suggest ocean color programs might consider less emphasis of expensive efforts to improve post-launch radiometric re-calibration in favor of increased efforts to characterize in situ observations of ocean surface geophysical products. Although the results here are focused on chlorophyll, in principle the approach described by ESRID can be applied to any surface variable potentially observable by visible remote sensing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CSR...151...84S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CSR...151...84S"><span>Impacts of the Changjiang diluted water on sinking processes of particulate organic matters in the East China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sukigara, Chiho; Mino, Yoshihisa; Tripathy, Sarat Chandra; Ishizaka, Joji; Matsuno, Takeshi</p> <p>2017-12-01</p> <p>Intensive surveys with repeated CTD and microstructure turbulent observations, water and sediments sampling as well as onboard incubation and sediment trap experiments were conducted to reveal the nitrogen budget in the center of the East China Sea (ECS) during July 2010 and 2011. Low salinity water (Changjiang Diluted Water, CDW) covered the study area in 2010, but not in 2011. Higher chlorophyll a (chl. a) concentration, primary productivity, and downward particle flux in the upper layer were observed in 2010 than those in 2011. Existence of the CDW resulted in a steep pycnocline and an associated subsurface chl. a maximum (SCM) layer directly beneath the CDW. From chemical analyses of particulate carbon and nitrogen contents and isotope ratios, it became apparent that the particles sunk out the euphotic zone in 2010 was primarily originated in the CDW layer and secondly in the SCM layer. Whereas, in 2011, sinking particles were originated in the surface layer but a part of them were decomposed in the bottom of pycnocline. Our findings indicate that the CDW would supply particles into the deep layer and contribute to the downward transport of materials and the efficiency of biological pump in the ECS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29330538','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29330538"><span>Flux of the biogenic volatiles isoprene and dimethyl sulfide from an oligotrophic lake.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steinke, Michael; Hodapp, Bettina; Subhan, Rameez; Bell, Thomas G; Martin-Creuzburg, Dominik</p> <p>2018-01-12</p> <p>Biogenic volatile organic compounds (BVOCs) affect atmospheric chemistry, climate and regional air quality in terrestrial and marine atmospheres. Although isoprene is a major BVOC produced in vascular plants, and marine phototrophs release dimethyl sulfide (DMS), lakes have been widely ignored for their production. Here we demonstrate that oligotrophic Lake Constance, a model for north temperate deep lakes, emits both volatiles to the atmosphere. Depth profiles indicated that highest concentrations of isoprene and DMS were associated with the chlorophyll maximum, suggesting that their production is closely linked to phototrophic processes. Significant correlations of the concentration patterns with taxon-specific fluorescence data, and measurements from algal cultures confirmed the phototrophic production of isoprene and DMS. Diurnal fluctuations in lake isoprene suggested an unrecognised physiological role in environmental acclimation similar to the antioxidant function of isoprene that has been suggested for marine biota. Flux estimations demonstrated that lakes are a currently undocumented source of DMS and isoprene to the atmosphere. Lakes may be of increasing importance for their contribution of isoprene and DMS to the atmosphere in the arctic zone where lake area coverage is high but terrestrial sources of BVOCs are small.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14965970','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14965970"><span>Recovery of photosynthesis in 1-year-old needles of unfertilized and fertilized Norway spruce (Picea abies (L.) Karst.) during spring.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Strand, M; Lundmark, T</p> <p>1995-03-01</p> <p>Photosynthetic O(2) evolution and chlorophyll a fluorescence were measured in 1-year-old needles of unfertilized and fertilized trees of Norway spruce (Picea abies (L.) Karst.) during recovery of photosynthesis from winter inhibition in northern Sweden. Measurements were made under laboratory conditions at 20 degrees C. In general, the CO(2)-saturated rate of O(2) evolution was higher in needles of fertilized trees than in needles of unfertilized trees over a wide range of incident photon flux densities. Furthermore, the maximum photochemical efficiency of photosystem (PS) II, as indicated by the ratio of variable to maximum fluorescence (F(V)/F(M)) was higher in needles of fertilized trees than in needles of unfertilized trees. The largest differences in F(V)/F(M) between the two treatments occurred before the main recovery of photosynthesis from winter inhibition in late May. The rate of O(2) evolution was higher in needles of north-facing branches than in needles of south-facing branches in the middle of May. Simultaneous measurements of O(2) exchange and chlorophyll fluorescence indicated that differences in the rate of O(2) evolution between the two treatments were paralleled by differences in the rate of PS II electron transport determined by chlorophyll fluorescence. We suggest that, during recovery of photosynthesis from winter inhibition, the balance between carbon assimilation and PS II electron transport was maintained largely by adjustments in the nonphotochemical dissipation of excitation energy within PS II.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19494846','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19494846"><span>Seasonality and vertical structure of microbial communities in an ocean gyre.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Treusch, Alexander H; Vergin, Kevin L; Finlay, Liam A; Donatz, Michael G; Burton, Robert M; Carlson, Craig A; Giovannoni, Stephen J</p> <p>2009-10-01</p> <p>Vertical, seasonal and geographical patterns in ocean microbial communities have been observed in many studies, but the resolution of community dynamics has been limited by the scope of data sets, which are seldom up to the task of illuminating the highly structured and rhythmic patterns of change found in ocean ecosystems. We studied vertical and temporal patterns in the microbial community composition in a set of 412 samples collected from the upper 300 m of the water column in the northwestern Sargasso Sea, on cruises between 1991 and 2004. The region sampled spans the extent of deep winter mixing and the transition between the euphotic and the upper mesopelagic zones, where most carbon fixation and reoxidation occurs. A bioinformatic pipeline was developed to de-noise, normalize and align terminal restriction fragment length polymorphism (T-RFLP) data from three restriction enzymes and link T-RFLP peaks to microbial clades. Non-metric multidimensional scaling statistics resolved three microbial communities with distinctive composition during seasonal stratification: a surface community in the region of lowest nutrients, a deep chlorophyll maximum community and an upper mesopelagic community. A fourth microbial community was associated with annual spring blooms of eukaryotic phytoplankton that occur in the northwestern Sargasso Sea as a consequence of winter convective mixing that entrains nutrients to the surface. Many bacterial clades bloomed in seasonal patterns that shifted with the progression of stratification. These richly detailed patterns of community change suggest that highly specialized adaptations and interactions govern the success of microbial populations in the oligotrophic ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28585420','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28585420"><span>Quantitative biogeography of picoprasinophytes establishes ecotype distributions and significant contributions to marine phytoplankton.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Limardo, Alexander J; Sudek, Sebastian; Choi, Chang Jae; Poirier, Camille; Rii, Yoshimi M; Blum, Marguerite; Roth, Robyn; Goodenough, Ursula; Church, Matthew J; Worden, Alexandra Z</p> <p>2017-08-01</p> <p>Bathycoccus and Ostreococcus are broadly distributed marine picoprasinophyte algae. We enumerated small phytoplankton using flow cytometry and qPCR assays for phylogenetically distinct Bathycoccus clades BI and BII and Ostreococcus clades OI and OII. Among 259 photic-zone samples from transects and time-series, Ostreococcus maxima occurred in the North Pacific coastal upwelling for OI (36 713 ± 1485 copies ml -1 ) and the Kuroshio Front for OII (50 189 ± 561 copies ml -1 ) and the two overlapped only in frontal regions. The Bathycoccus overlapped more often with maxima along Line-P for BI (10 667 ± 1299 copies ml -1 ) and the tropical Atlantic for BII (4125 ± 339 copies ml -1 ). Only BII and OII were detected at warm oligotrophic sites, accounting for 34 ± 13% of 1589 ± 448 eukaryotic phytoplankton cells ml -1 (annual average) at Station ALOHA's deep chlorophyll maximum. Significant distributional and molecular differences lead us to propose that Bathycoccus clade BII represents a separate species which tolerates higher temperature oceanic conditions than Bathycoccus prasinos (BI). Morphological differences were not evident, but quick-freeze deep-etch electron microscopy provided insight into Bathycoccus scale formation. Our results highlight the importance of quantitative seasonal abundance data for inferring ecological distributions and demonstrate significant, differential picoprasinophyte contributions in mesotrophic and open-ocean waters. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28119165','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28119165"><span>Influence of the tidal front on the three-dimensional distribution of spring phytoplankton community in the eastern Yellow Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Choi, Byoung-Ju; Lee, Jung A; Choi, Jae-Sung; Park, Jong-Gyu; Lee, Sang-Ho; Yih, Wonho</p> <p>2017-04-01</p> <p>Hydrographic observation and biological samplings were conducted to assess the distribution of phytoplankton community over the sloping shelf of the eastern Yellow Sea in May 2012. The concentration of chlorophyll a was determined and phytoplankton was microscopically examined to conduct quantitative and cluster analyses. A cluster analysis of the phytoplankton species and abundance along four observation lines revealed the three-dimensional structure of the phytoplankton community distribution: the coastal group in the mixed region, the offshore upper layer group preferring stable water column, and the offshore lower layer group. The subsurface maximum of phytoplankton abundance and chlorophyll a concentration appeared as far as 64 km away from the tidal front through the middle layer intrusion. The phytoplankton abundance was high in the shore side of tidal front during the spring tide. The phytoplankton abundance was relatively high at 10-m depth in the mixed region while the concentration of chlorophyll a was high below the depth. The disparity between the profiles of the phytoplankton abundance and the chlorophyll a concentration in the mixed region was related to the depth-dependent species change accompanied by size-fraction of the phytoplankton community. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24617137','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24617137"><span>Biochemical changes in some deciduous tree species around Talcher thermal power station, Odisha, India.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nayak, Rekha; Biswal, Debasis; Sett, Rupnarayan</p> <p>2013-05-01</p> <p>The present study was conducted to evaluate biochemical traits in leaves to assess the air pollution impact on plants caused by thermal power plant emissions. Ten species of deciduous trees were selected from study sites in different seasons. pH, chlorophyll, phenols, total soluble sugar content and proline content in fresh leaf was analyzed. The leaf wash pH content reveals moderately acidic (4.5-5.0) to highly acidic (3.5-4.5) range. Significant differences (p < 0.01) were observed in chlorophyll content according to the seasons and sites. Maximum reduction in chlorophyll was noticed at 2.5 km and 5.0 km west from the power plant. Greater reduction in chloropohyll 'b' than chlorophyll 'a' was noticed. An increase in total soluble sugars and phenols was observed at sites closer to thermal power plant in comparison to control. Highest concentration of total phenols was found in summer season in Dalbergia sissoo (1.52%), Butea monosperma (1.12%), Mangifera indica (1.2%), Tectona grandis (1.26%) and Acacia leucophloea (1.16%) at 2.5 km north from the source. Highest concentration of soluble sugar was found in Dalbergia sissoo (7.75%) during winter season. There was about 10-20 fold increase in proline content of leaves in comparison to the control.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014262','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014262"><span>The vertical attenuation of light in Charlotte Harbor, a shallow, subtropical estuary, south-western Florida</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McPherson, B.F.; Miller, R.L.</p> <p>1987-01-01</p> <p>The relative contribution of different components to the attenuation of photosynthetically active radiation was determined in the Charlotte Harbor estuarine system based on laboratory and in situ measurements. Agreement between laboratory and in situ measurements of the attenuation coefficient (kt) was good (r2 = 0??92). For all in situ measurements (n = 100), suspended, non-chlorophyll matter accounted for an average of 72% of kt, dissolved matter accounted for 21%, suspended chlorophyll for 4%, and water for the remaining 3%. For individual determinations, suspended non-chlorophyll matter, dissolved matter, suspended chlorophyll, and water, each accounted for as much as 99%, 79%, 21%, and 18% of kt. Attenuation by suspended matter was greatest near the mouth of the northern tidal rivers and was variable over the rest of the estuarine system. Attenuation by dissolved matter was greatest in the brackish tidal rivers and decreased with increasing salinity. Attenuation due to dissolved matter was positively correlated with water color. The source of the color was basin runoff. Wavelength transmittance changed along the salinity gradient. Maximum transmittance shifted from 500 to 600 nm in gulf waters to 650 to 700 nm in colored, brackish waters. Dissolved matter was primarily responsible for the large attenuation at short wavelengths (400-500 nm). ?? 1987.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CSR...141...26G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CSR...141...26G"><span>Reproductive patterns in demersal crustaceans from the upper boundary of the OMZ off north-central Chile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallardo, María de los Ángeles; González López, Andrés E.; Ramos, Marcel; Mujica, Armando; Muñoz, Praxedes; Sellanes, Javier; Yannicelli, Beatriz</p> <p>2017-06-01</p> <p>Pleuroncodes monodon (Crustacea: Munididae) supports one of the main trawling fisheries over the continental shelf off Chile between 25°S and 37°S within the upper boundary of the oxygen minimum zone (OMZ). Although the reproductive cycle of P. monodon has been described, the relationship between this key biological process and the variability of the OMZ has not been comprehensibly addressed neither for P. monodon nor for other OMZ resident species. In this study a set of 14 quasi-monthly oceanographic cruises carried out between June 2010 and November 2011 were conducted over the continental shelf off Coquimbo (30°S) to investigate the temporal variability of: i) dissolved oxygen concentration, temperature and chlorophyll-a at relevant depths ii) the presence and proportion of occurrence of P. monodon ovigerous females and juveniles from benthic trawls; iii) the presence of different stage larvae in the plankton, and iv) similar biological data for other species from the OMZ and shallower depths crustaceans. During summer months oxygen levels and bottom temperature were lower than in winter, while chlorophyll-a concentration was maximum in summer coinciding with an active (but not maximum) upwelling season. P. monodon maximum egg carrying occurred in winter during periods of increased oxygenation. Egg carrying females were never found at depths where oxygen concentration was below 0.5 ml L-1, while over 50% of the autumn and spring cohorts of juveniles occurred at oxygen concentrations below that level. The depth range occupied by ovigerous females was more restricted than the rest of the population and their depth of occurrence followed the variability of the upper OMZ. The larval release period of OMZ resident species extends over late winter and spring, and its main peak precedes that of coastal species (spring) and the spring-summer chlorophyll-a maximum. We propose that for OMZ resident species, brood carrying during warmer and more oxygenated conditions in the adult benthic environment, might favor embryonic development, so OMZ seasonal variability could be acting as a selective pressure to synchronize reproductive periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5703455','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5703455"><span>Growth, ammonium metabolism, and photosynthetic properties of Ulva australis (Chlorophyta) under decreasing pH and ammonium enrichment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fernandez, Pamela A.; Leal, Pablo P.; Noisette, Fanny; McGraw, Christina M.; Revill, Andrew T.; Hurd, Catriona L.; Kübler, Janet E.</p> <p>2017-01-01</p> <p>The responses of macroalgae to ocean acidification could be altered by availability of macronutrients, such as ammonium (NH4+). This study determined how the opportunistic macroalga, Ulva australis responded to simultaneous changes in decreasing pH and NH4+ enrichment. This was investigated in a week-long growth experiment across a range of predicted future pHs with ambient and enriched NH4+ treatments followed by measurements of relative growth rates (RGR), NH4+ uptake rates and pools, total chlorophyll, and tissue carbon and nitrogen content. Rapid light curves (RLCs) were used to measure the maximum relative electron transport rate (rETRmax) and maximum quantum yield of photosystem II (PSII) photochemistry (Fv/Fm). Photosynthetic capacity was derived from the RLCs and included the efficiency of light harvesting (α), slope of photoinhibition (β), and the light saturation point (Ek). The results showed that NH4+ enrichment did not modify the effects of pH on RGRs, NH4+ uptake rates and pools, total chlorophyll, rETRmax, α, β, Fv/Fm, tissue C and N, and the C:N ratio. However, Ek was differentially affected by pH under different NH4+ treatments. Ek increased with decreasing pH in the ambient NH4+ treatment, but not in the enriched NH4+ treatment. NH4+ enrichment increased RGRs, NH4+ pools, total chlorophyll, rETRmax, α, β, Fv/Fm, and tissue N, and decreased NH4+ uptake rates and the C:N ratio. Decreased pH increased total chlorophyll content, rETRmax, Fv/Fm, and tissue N content, and decreased the C:N ratio. Therefore, the results indicate that U. australis growth is increased with NH4+ enrichment and not with decreasing pH. While decreasing pH influenced the carbon and nitrogen metabolisms of U. australis, it did not result in changes in growth. PMID:29176815</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5398680','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5398680"><span>Abundance of the iron containing biomolecule, heme b, during the progression of a spring phytoplankton bloom in a mesocosm experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bellworthy, Jessica; Esposito, Mario; Achterberg, Eric P.</p> <p>2017-01-01</p> <p>Concentrations of heme b were determined in a mesocosm experiment situated in Gullmar Fjord off Sweden. The mesocosm experiment lasted for ca. one hundred days and was characterised by the growth of a primary nutrient replete and a secondary nutrient deplete phytoplankton bloom. Heme b varied between 40 ± 10 pmol L-1 in the prebloom period up to a maximum of 700 ± 400 pmol L-1 just prior to the time of the primary chlorophyll a maximum. Thereafter, heme b concentrations decreased again to an average of 120 ± 60 pmol L-1. When normalised to total particulate carbon, heme b was most abundant during the initiation of the nutrient replete spring bloom, when ratios reached 52 ± 24 μmol mol-1; ten times higher than values observed both pre and post the primary bloom. Concentrations of heme b correlated with those of chlorophyll a. Nevertheless, differences were observed in the relative concentrations of the two parameters, with heme b concentrations increasing relative to chlorophyll a during the growth of the primary bloom, decreasing over the period of the secondary bloom and increasing again through the latter period of the experiment. Heme b abundance was therefore influenced by nutrient concentrations and also likely by changing community composition. In half of the mesocosms, pCO2 was elevated and maintained at ca.1000 μatm, however we observed no significant differences between heme b in plus or ambient pCO2 mesocosms, either in absolute terms, or relative to total particulate carbon and chlorophyll a. The results obtained in this study contribute to our understanding of the distribution of this significant component of the biogenic iron pool, and provide an iron replete coastal water end member that aids the interpretation of the distributions of heme b in more iron deplete open ocean waters. PMID:28426768</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007WRR....43.3435L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007WRR....43.3435L"><span>Cost-effective water quality assessment through the integration of monitoring data and modeling results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lobuglio, Joseph N.; Characklis, Gregory W.; Serre, Marc L.</p> <p>2007-03-01</p> <p>Sparse monitoring data and error inherent in water quality models make the identification of waters not meeting regulatory standards uncertain. Additional monitoring can be implemented to reduce this uncertainty, but it is often expensive. These costs are currently a major concern, since developing total maximum daily loads, as mandated by the Clean Water Act, will require assessing tens of thousands of water bodies across the United States. This work uses the Bayesian maximum entropy (BME) method of modern geostatistics to integrate water quality monitoring data together with model predictions to provide improved estimates of water quality in a cost-effective manner. This information includes estimates of uncertainty and can be used to aid probabilistic-based decisions concerning the status of a water (i.e., impaired or not impaired) and the level of monitoring needed to characterize the water for regulatory purposes. This approach is applied to the Catawba River reservoir system in western North Carolina as a means of estimating seasonal chlorophyll a concentration. Mean concentration and confidence intervals for chlorophyll a are estimated for 66 reservoir segments over an 11-year period (726 values) based on 219 measured seasonal averages and 54 model predictions. Although the model predictions had a high degree of uncertainty, integration of modeling results via BME methods reduced the uncertainty associated with chlorophyll estimates compared with estimates made solely with information from monitoring efforts. Probabilistic predictions of future chlorophyll levels on one reservoir are used to illustrate the cost savings that can be achieved by less extensive and rigorous monitoring methods within the BME framework. While BME methods have been applied in several environmental contexts, employing these methods as a means of integrating monitoring and modeling results, as well as application of this approach to the assessment of surface water monitoring networks, represent unexplored areas of research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004PhDT.......300S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004PhDT.......300S"><span>The aquatic optics of Lake Tahoe, California-Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Swift, Theodore John</p> <p></p> <p>The causes of visual clarity decline and variability in Lake Tahoe, USA, were investigated within the framework of hydrologic optics theory. Ultra-oligotrophic subalpine (1898 m elevation) Lake Tahoe is among the world's clearest, deepest (499 m) and largest (500 km2), representing a unique environmental and economic resource. University of California Davis has documented a ˜0.3 m y-1 trend of decreasing Secchi depth, with ˜3 m interannual variations. Previous work strongly suggested two seasonal modes due to independent processes: A June minimum is due primarily to tributary sediment discharge during snowmelt. A December minimum is due to the deepening mixed layer bringing up phytoplankton and other particles that form a deep particle maximum (DCM) well below the summer mixed layer and Secchi depth stratum. SEM and elemental analysis confirmed as much as 60 percent of near-surface suspended particles were of terrestrial inorganic origin in summer, with inorganic particles minimal (˜20 percent) in winter. Chromophoric dissolved organic matter (CDOM) light absorption in Tahoe is extremely low, comparable to pelagic marine waters, and plays a minor role in clarity loss in Tahoe. However, CDOM reduces ultraviolet light penetration. Mean absorption is 0.040 +/- 0.003 m-1 at 400 nm with 0.023 +/- 0.004 nm-1 exponential slope. The CDOM appears to be autochthonous (phytoplankton), rather than allocthonous (terrestrial humic substances). Chlorophyll-specific particulate absorption is similar to that found for temperate oceans, implying that ocean color models can be successfully applied to Lake Tahoe. Chlorophyll-specific diffuse attenuation along with increased scattering by sediments has caused an upward shift of the DCM from 60--90 m (early 1970s) to 40--70 m recently. Increased attenuation will reduce benthic relative to pelagic primary production. Since measurements in 1971, the lake's color has shifted slightly from blue towards green, though more seasonal measurements are needed to fully quantify the recent range of variation. A clarity model was developed that predicts Secchi depth and diffuse attenuation from inorganic particle and chlorophyll concentration. While organic particles are generally the numerical majority, inorganic particles cause ˜60% of clarity loss, algal-derived particles contribute ˜25%, with the remainder due to CDOM and pure water absorption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013InAgr..27..265I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013InAgr..27..265I"><span>Optimization of pre-sowing magnetic field doses through RSM in pea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iqbal, M.; Ahmad, I.; Hussain, S. M.; Khera, R. A.; Bokhari, T. H.; Shehzad, M. A.</p> <p>2013-09-01</p> <p>Seed pre-sowing magnetic field treatment was reported to induce biochemical and physiological changes. In the present study, response surface methodology was used for deduction of optimal magnetic field doses. Improved growth and yield responses in the pea cultivar were achieved using a rotatable central composite design and multivariate data analysis. The growth parameters such as root and shoot fresh masses and lengths as well as yield were enhanced at a certain magnetic field level. The chlorophyll contents were also enhanced significantly vs. the control. The low magnetic field strength for longer duration of exposure/ high strength for shorter exposure were found to be optimal points for maximum responses in root fresh mass, chlorophyll `a' contents, and green pod yield/plant, respectively and a similar trend was observed for other measured parameters. The results indicate that the magnetic field pre-sowing seed treatment can be used practically to enhance the growth and yield in pea cultivar and response surface methodology was found an efficient experimental tool for optimization of the treatment level to obtain maximum response of interest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24793781','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24793781"><span>Satellite-observed variability of phytoplankton size classes associated with a cold eddy in the South China Sea.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Junfang; Cao, Wenxi; Wang, Guifen; Hu, Shuibo</p> <p>2014-06-15</p> <p>Ocean-color remote sensing has been used as a tool to detect phytoplankton size classes (PSCs). In this study, a three-component model of PSC was reparameterized using seven years of pigment measurements acquired in the South China Sea (SCS). The model was then used to infer PSC in a cyclonic eddy which was observed west of Luzon Island from SeaWiFS chlorophyll-a (chla) and sea-surface height anomaly (SSHA) products. Enhanced productivity and a shift in the PSC were observed, which were likely due to upwelling of nutrient-rich water into the euphotic zone. The supply of nutrients promoted the growth of larger cells (micro- and nanoplankton), and the PSC shifted to greater sizes. However, the picoplankton were still important and contributed ∼48% to total chla concentration. In addition, PSC time series revealed a lag period of about three weeks between maximum eddy intensity and maximum chlorophyll, which may have been related to phytoplankton growth rate and duration of eddy intensity. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5325205','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5325205"><span>Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Peng; Shen, Hai-long; Salahuddin</p> <p>2017-01-01</p> <p>Nitrogen and phosphorous are critical determinants of plant growth and productivity, and both plant growth and root morphology are important parameters for evaluating the effects of supplied nutrients. Previous work has shown that the growth of Acer mono seedlings is retarded under nursery conditions; we applied different levels of N (0, 5, 10, and 15 g plant-1) and P (0, 4, 6 and 8 g plant-1) fertilizer to investigate the effects of fertilization on the growth and root morphology of four-year-old seedlings in the field. Our results indicated that both N and P application significantly affected plant height, root collar diameter, chlorophyll content, and root morphology. Among the nutrient levels, 10 g N and 8 g P were found to yield maximum growth, and the maximum values of plant height, root collar diameter, chlorophyll content, and root morphology were obtained when 10 g N and 8 g P were used together. Therefore, the present study demonstrates that optimum levels of N and P can be used to improve seedling health and growth during the nursery period. PMID:28234921</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16585032','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16585032"><span>Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kenzo, Tanaka; Ichie, Tomoaki; Watanabe, Yoko; Yoneda, Reiji; Ninomiya, Ikuo; Koike, Takayoshi</p> <p>2006-07-01</p> <p>Variations in leaf photosynthetic, morphological and biochemical properties with increasing plant height from seedlings to emergent trees were investigated in five dipterocarp species in a Malaysian tropical rain forest. Canopy openness increased significantly with tree height. Photosynthetic properties, such as photosynthetic capacity at light saturation, light compensation point, maximum rate of carboxylation and maximum rate of photosynthetic electron transport, all increased significantly with tree height. Leaf morphological and biochemical traits, such as leaf mass per area, palisade layer thickness, nitrogen concentration per unit area, chlorophyll concentration per unit dry mass and chlorophyll to nitrogen ratio, also changed significantly with tree height. Leaf properties had simple and significant relationships with tree height, with few intra- and interspecies differences. Our results therefore suggest that the photosynthetic capacity of dipterocarp trees depends on tree height, and that the trees adapt to the light environment by adjusting their leaf morphological and biochemical properties. These results should aid in developing models that can accurately estimate carbon dioxide flux and biomass production in tropical rain forests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4895795','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4895795"><span>North Atlantic Deep Water Production during the Last Glacial Maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Howe, Jacob N. W.; Piotrowski, Alexander M.; Noble, Taryn L.; Mulitza, Stefan; Chiessi, Cristiano M.; Bayon, Germain</p> <p>2016-01-01</p> <p>Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial–interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ13C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters. PMID:27256826</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010OcScD...7.1913W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010OcScD...7.1913W"><span>Upper ocean stratification and sea ice growth rates during the summer-fall transition, as revealed by Elephant seal foraging in the Adélie Depression, East Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, G. D.; Hindell, M.; Houssais, M.-N.; Tamura, T.; Field, I. C.</p> <p>2010-11-01</p> <p>Southern elephant seals (Mirounga leonina), fitted with Conductivity-Temperature-Depth sensors at Macquarie Island in January 2005 and 2010, collected unique oceanographic observations of the Adélie and George V Land continental shelf (140-148° E) during the summer-fall transition (late February through April). This is a key region of dense shelf water formation from enhanced sea ice growth/brine-rejection in the local coastal polynyas. In 2005 two seals occupied the continental shelf break near the grounded icebergs at the northern end of the Mertz Glacier Tongue for nearly two weeks at the onset of sea ice growth. One of the seals migrated north thereafter and the other headed west, possibly utilising the Antarctic Slope Front current near the continental shelf break. In 2010, after that years calving of the Mertz Glacier Tongue, two seals migrated to the same region but penetrated much further southwest across the Adélie Depression and occupied the Commonwealth Bay polynya from March through April. Here we present unique observations of the regional oceanography during the summer-fall transition, in particular (a) the zonal distribution of modified Circumpolar Deep Water exchange across the shelf break, (b) the upper ocean stratification across the Adélie Depression, including alongside iceberg C-28 that calved from the Mertz Glacier and (c) the convective overturning of the deep remnant seasonal mixed layer in Commonwealth Bay from sea ice growth (7.5-12.5 cm s-1). Heat and freshwater budgets to 200-300 m are used to estimate the ocean heat content, heat flux and sea ice growth rates. We speculate that the continuous foraging by the seals within Commonwealth Bay during the summer-fall transition was due to favorable feeding conditions resulting from the convective overturning of the deep seasonal mixed layer and chlorophyll maximum that is a reported feature of this location.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4631832','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4631832"><span>Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Caroselli, Erik; Falini, Giuseppe; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren</p> <p>2015-01-01</p> <p>Balanophyllia europaea is a shallow water solitary zooxanthellate coral, endemic to the Mediterranean Sea. Extensive field studies across a latitudinal temperature gradient highlight detrimental effects of rising temperatures on its growth, demography, and skeletal characteristics, suggesting that depression of photosynthesis at high temperatures might cause these negative effects. Here we test this hypothesis by analyzing, by means of pulse amplitude modulation fluorometry, the photosynthetic efficiency of B. europaea specimens exposed in aquaria to the annual range of temperatures experienced in the field (13, 18, and 28°C), and two extreme temperatures expected for 2100 as a consequence of global warming (29 and 32°C). The indicators of photosynthetic performance analyzed (maximum and effective quantum yield) showed that maximum efficiency was reached at 20.0–21.6°C, slightly higher than the annual mean temperature in the field (18°C). Photosynthetic efficiency decreased from 20.0 to 13°C and even more strongly from 21.6 to 32°C. An unusual form of bleaching was observed, with a maximum zooxanthellae density at 18°C that strongly decreased from 18 to 32°C. Chlorophyll a concentration per zooxanthellae cell showed an opposite trend as it was minimal at 18°C and increased from 18 to 32°C. Since the areal chlorophyll concentration is the product of the zooxanthellae density and its cellular content, these trends resulted in a homogeneous chlorophyll concentration per coral surface across temperature treatments. This confirms that B. europaea photosynthesis is progressively depressed at temperatures >21.6°C, supporting previous hypotheses raised by the studies on growth and demography of this species. This study also confirms the threats posed to this species by the ongoing seawater warming. PMID:26582993</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16850879','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16850879"><span>Seasonal pattern of metal bioaccumulation and their toxicity on Sphagnum squarrosum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Saxena, Anuj</p> <p>2006-01-01</p> <p>Present study was undertaken as an attempt to study the effect of pollutants on biological responses of Sphagnum growing at Kainchi, Kumaon hills (Uttranchal). Sphagnum plants of almost identical size, collected from the marked sites of Kainchi in different seasons viz., monsoon, winter, summer and again in monsoon, were analysed for chlorophyll, protein, shoot length and nitrate reductase and peroxidase activities. Maximum chlorophyll, protein, shoots length and nitrate reductase activities were observed during the monsoon while minimum in summers. The abundance of Sphagnum and two other bryophytes, Marchantia and Plagiochasma was also higher in monsoon than in other seasons. The study also indicated that Sphagnum has more bioaccumulation and tolerance potential for heavy metals than Marchantia and Plagiochasma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998GBioC..12..429B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998GBioC..12..429B"><span>Atmospheric iron supply and enhanced vertical carbon flux in the NE subarctic Pacific: Is there a connection?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boyd, P. W.; Wong, C. S.; Merrill, J.; Whitney, F.; Snow, J.; Harrison, P. J.; Gower, J.</p> <p>1998-09-01</p> <p>Recent studies have confirmed the relationship between iron supply and phytoplankton growth rates in all three high-nitrate low-chlorophyll (HNLC) oceanic provinces. However, there is little evidence, so far, of the role of iron in altering the efficiency of the biological pump via increased downward export of particulate organic carbon (POC). The NE subarctic Pacific is unique among HNLC regions in that long time series pelagic observations and deep-moored sediment trap records exist which may provide the best opportunity thus far to test aspects of the iron hypothesis. Episodic elevated levels of chlorophyll a (> 2.0 μg L-1) were observed 6 times between 1964 and 1976 at the former site of Ocean Station Papa (OSP). In addition, between 1984 and 1990 on at least three occasions, concurrent pulses of POC and biogenic silica were recorded in deep-moored traps at OSP. Possible explanations for these events, such as lateral advection of more productive waters, iron-mediated blooms, or grazing by salp swarms are discussed and tested using an existing downward POC flux model. Owing to the episodic nature of such events, no available data are sufficiently comprehensive to unequivocally rule out any of these explanations. Nevertheless, from the data available, the occurrence of pelagic or deep water pulses, approximately once every 3 years, are most consistent with iron-mediated diatom blooms, and of the sinking of POC and biogenic silica (from such a bloom) to depth, respectively. A comparison of the timing of these iron-mediated pulses with that of the transport probabilities of atmospheric dust supply from Asia and Alaska provides an opportunity to assess the likelihood of a coupling between the atmosphere and the ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.B34A0341S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.B34A0341S"><span>Effect of deep water nutrient enrichment on plankton metabolism in the N and S Atlantic gyres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Serret, P.; Jose, L.; Harris, C.; Lange, P. K.; Tarran, G.; Thomas, R.; Zubkov, M.</p> <p>2016-02-01</p> <p>Observations indicate that the metabolic balance in the epipelagic N and S Atlantic gyres differ as a result of regional differences in both photosynthesis (P) and respiration (R) rates. However, the trophic and biogeochemical processes causing these patterns are mostly unknown. With the aim to explore if regional differences exist in the response of epipelagic communities to nutrient enrichment, we carried out two microcosm (20L) experiments in the N (19° 51 N; 29° 08 W) and S (18° 33 S; 25° 04 W) Atlantic gyres. 1, 2, 3 and 4 L of deep (ca. 220 m depth) seawater were added to surface seawater samples (2 m depth) up to final volumes of 20L, and were incubated during 8 (N Gyre) or 5 (S gyre) days, together with untreated controls, in a deck incubator refrigerated with surface seawater. In both the N and S gyres, P and chlorophyll a concentration increased rapidly after the addition of deep seawater, especially in the pico- and nanophytoplankton. Increases in R rates were slower and smaller than for P. This changed the community metabolism from marginally heterotrophic at the beginning of the experiments (-0.32 ± 0.21, -0.19 ± 0.14 mmol O2 m-3 d-1 in the N and S gyre, respectively) to net autotrophic (up to ca. 2 and 4 mmol O2 m-3 d-1 on days 5 and 8 in the +3L and +4L treatments of the N and S gyre experiments, respectively). Here we analyze the response of community P and R rates, together with the dynamics of nutrient concentration, size-fractionated chlorophyll a concentration, and abundance of Prochlorococcus, Synechococcus, total bacteria and viruses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ESASP.734E..50P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ESASP.734E..50P"><span>Global Lakes Sentinel Services: Monitoring Water Quality Trends in Deep, Clear Lakes to Detect Causes and Effects of Changes in Trophic Status</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poser, Kathrin; Peters, Steef; Hommersom, Annelies; Giardino, Claudia; Bresciani, Mariano; Cazzaniga, Ilaria; Schenk, Karin; Heege, Thomas; Philipson, Petra; Ruescas, Ana; Bottcher, Martin; Stelzer, Kerstin</p> <p>2015-12-01</p> <p>The GLaSS project develops a prototype infrastructure to ingest and process large amounts of Sentinel-2 and Sentinel-3 data for lakes and reservoirs. To demonstrate the value of satellite observations for the management of aquatic ecosystems, global case studies are performed addressing different types of lakes with their respective problems and management questions. One of these case studies is concentrating on deep clear lakes worldwide. The aim of this case study is to evaluate trends of chlorophyll-a concentrations (Chl-a) as a proxy of the trophic status based on the MERIS full resolution data archive. Some preliminary results of this case study are presented here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24054244','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24054244"><span>Quality evaluation of the edible blue-green alga Nostoc flagelliforme using a chlorophyll fluorescence parameter and several biochemical markers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gao, Xiang; Yang, Yiwen; Ai, Yufeng; Luo, Hongyi; Qiu, Baosheng</p> <p>2014-01-15</p> <p>Nostoc flagelliforme is an edible blue-green alga with herbal and dietary values. Due to the diminishing supply of natural N. flagelliforme and the large investment on the development of its cultivation technology, it is anticipated that artificially cultured N. flagelliforme will soon sustain the market supply. Once this change occurs, the storage-associated quality problem will become the focus of attention for future trade. In this paper, we used a chlorophyll fluorescence parameter, maximum quantum efficiency of Photosystem II (Fv/Fm), and several biomarkers to evaluate the quality of several N. flagelliforme samples. It was found that longer storage times resulted in darker coloured solutions (released pigments) and decreased amounts of chlorophyll a (Chl a) and water-soluble sugars (WSS). Additionally, a higher Fv/Fm value suggests better physiological recovery and quality. In actual application, determination of Fv/Fm would be the first step for evaluating the quality of N. flagelliforme, and the biochemical indexes would serve as good secondary markers. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9370C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9370C"><span>A Spectrally Selective Attenuation Mechanism-Based Kpar Algorithm for Biomass Heating Effect Simulation in the Open Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Jun; Zhang, Xiangguang; Xing, Xiaogang; Ishizaka, Joji; Yu, Zhifeng</p> <p>2017-12-01</p> <p>Quantifying the diffuse attenuation coefficient of the photosynthetically available radiation (Kpar) can improve our knowledge of euphotic depth (Zeu) and biomass heating effects in the upper layers of oceans. An algorithm to semianalytically derive Kpar from remote sensing reflectance (Rrs) is developed for the global open oceans. This algorithm includes the following two portions: (1) a neural network model for deriving the diffuse attention coefficients (Kd) that considers the residual error in satellite Rrs, and (2) a three band depth-dependent Kpar algorithm (TDKA) for describing the spectrally selective attenuation mechanism of underwater solar radiation in the open oceans. This algorithm is evaluated with both in situ PAR profile data and satellite images, and the results show that it can produce acceptable PAR profile estimations while clearly removing the impacts of satellite residual errors on Kpar estimations. Furthermore, the performance of the TDKA algorithm is evaluated by its applicability in Zeu derivation and mean temperature within a mixed layer depth (TML) simulation, and the results show that it can significantly decrease the uncertainty in both compared with the classical chlorophyll-a concentration-based Kpar algorithm. Finally, the TDKA algorithm is applied in simulating biomass heating effects in the Sargasso Sea near Bermuda, with new Kpar data it is found that the biomass heating effects can lead to a 3.4°C maximum positive difference in temperature in the upper layers but could result in a 0.67°C maximum negative difference in temperature in the deep layers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA160040','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA160040"><span>Bibliography of Research on Ocean Fronts, 1964-1984</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1985-08-01</p> <p>water masses which exhibit notable differences in temperature, salinity , chlorophyll and other properties. One example of an ocean front is the...Phil. Trans. R. Soc. Lond. A302: 617-634. Amos, A.F., M.G. Langseth and R.G. Markl. 1972. Visible oceanic saline fronts, p. 49-62. In A.L. Gordon...On the mechanism of the deep mixed layer formation during MEDOC 1969. Cahiers Oceanogr. XXII: 427-442. Anderson, F.E. 1980. The variation in</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA566240','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA566240"><span>Physical, Nutrient, and Biological Measurements of Coastal Waters off Central California in March 2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-10-01</p> <p>Salinity Scale, 1978 ( UNESCO , 1981). Dissolved oxygen (Winkler) samples were collected at CTD stations 2, 6, 10, 16, 17, and 19. These were...the Farallones. Deep-Sea Res. II 47: 907- 946. UNESCO . Background papers and supporting data on the Practical Salinity Scale, 1978. 1981... UNESCO Tech. Pap. In: Mar. Sci. 37. Venrick, E. L., and T. L. Hayward. 1984. Determining chlorophyll on the 1984 CalCOFI surveys. CalCOFI Rep</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMS...182...56C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMS...182...56C"><span>Phytoplankton response to the contrasting physical regimes in the eastern Arabian Sea during north east monsoon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chndrasekhararao, A. V.; Kurian, Siby; Vidya, P. J.; Gauns, Mangesh; Shenoy, Damodar M.; Mulla, Amara; Naik, Hema; Reddy, T. Venugopal; Naqvi, S. W. A.</p> <p>2018-06-01</p> <p>Phytoplankton abundance and composition in two contrasting physical regimes - convective mixing in the northeastern Arabian Sea (NEAS) and Arabian Sea mini warm pool (ASMWP) in the southeastern Arabian Sea (SEAS) - were investigated during the northeast monsoon (NEM) of 2015 and 2017. Observations in 2015 were carried out late during the season, and only one station in the north (at 21°N latitude) fell within the zone of convective mixing where microplankton was dominated by diatoms. In 2017, convective mixing occurred even at 16°N latitude, but the microplankton contribution was low, presumably due to low Si/N ratios. Within the convective mixing regime of the NEAS, chlorophyll (Chl) a concentrations were higher in 2015 (maximum 1080 ng L-1; average 493 ng L-1) than in 2017 (maximum 673 ng L-1; average 263 ng L-1). In contrast, picophytoplankton were dominant in the ASMWP of the SEAS with peak abundance associated with the subsurface chlorophyll maximum. A warm core eddy was present in 2015 in the SEAS where four times higher Prochlorococcus counts were found within the core of the eddy than at its periphery. This study provides the first description of the phytoplankton community in the ASMWP. Our results clearly demonstrate phytoplankton response to the contrasting physical conditions, highlighting the role of bio-physical coupling in the productivity of the Arabian Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC54D1366K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC54D1366K"><span>The Role of Model Complexity in Determining Patterns of Chlorophyll Variability in the Coastal Northwest North Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuhn, A. M.; Fennel, K.; Bianucci, L.</p> <p>2016-02-01</p> <p>A key feature of the North Atlantic Ocean's biological dynamics is the annual phytoplankton spring bloom. In the region comprising the continental shelf and adjacent deep ocean of the northwest North Atlantic, we identified two patterns of bloom development: 1) locations with cold temperatures and deep winter mixed layers, where the spring bloom peaks around April and the annual chlorophyll cycle has a large amplitude, and 2) locations with warmer temperatures and shallow winter mixed layers, where the spring bloom peaks earlier in the year, sometimes indiscernible from the fall bloom. These patterns result from a combination of limiting environmental factors and interactions among planktonic groups with different optimal requirements. Simple models that represent the ecosystem with a single phytoplankton (P) and a single zooplankton (Z) group are challenged to reproduce these ecological interactions. Here we investigate the effect that added complexity has on determining spatio-temporal chlorophyll. We compare two ecosystem models, one that contains one P and one Z group, and one with two P and three Z groups. We consider three types of changes in complexity: 1) added dependencies among variables (e.g., temperature dependent rates), 2) modified structural pathways, and 3) added pathways. Subsets of the most sensitive parameters are optimized in each model to replicate observations in the region. For computational efficiency, the parameter optimization is performed using 1D surrogates of a 3D model. We evaluate how model complexity affects model skill, and whether the optimized parameter sets found for each model modify the interpretation of ecosystem functioning. Spatial differences in the parameter sets that best represent different areas hint at the existence of different ecological communities or at physical-biological interactions that are not represented in the simplest model. Our methodology emphasizes the combined use of observations, 1D models to help identifying patterns, and 3D models able to simulate the environment modre realistically, as a means to acquire predictive understanding of the ocean's ecology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.7200C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.7200C"><span>Black Sea spectral bio-optical models based on satellite data and their applications for assessment of spatial and temporal variability in waters transparency, chlorophyll a content and primary production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Churilova, T.; Suslin, V.</p> <p>2012-04-01</p> <p>Satellite observations of ocean color provide a unique opportunity in oceanography to assess productivity of the sea on different spatial and temporal scales. However it has been shown that the standard SeaWiFS algorithm generally overestimates summer chlorophyll concentration and underestimates pigment content during spring phytoplankton bloom in comparison with in situ measurements. It is required to develop regional algorithms which are based on biooptical characteristics typical for the Sea and consequently could be used for correct transformation of spectral features of water-leaving radiance to chlorophyll a concentrations (Chl), light absorption features of suspended and dissolved organic matter (CDM), downwelling light attenuation coefficient/euphotic zone depth (PAR1%) and rate of primary synthesis of organic substances (PP). The numerous measurements of light absorption spectra of phytoplankton, non-algal particles and coloured dissolved organic matter carried out since 1996 in different seasons and regions of the Black Sea allowed to make a parameterization of the light absorption by all optically active components. Taking into account regional peculiarities of the biooptical parameters, their difference between seasons, shallow and deep-waters, their depth-dependent variability within photosynthetic zone regional spectral models for estimation of chlorophyll a concentration (Chl Model), colored dissolved and suspended organic matter absorption (CDM Model), downwelling irradiance (PAR Model) and primary production (PP Model) have been developed based on satellite data. Test of validation of models showed appropriate accuracy of the models. The developed models have been applied for estimation of spatial/temporal variability of chlorophyll a, dissolved organic matter concentrations, waters transparency, euphotic zone depth and primary production based on SeaWiFS data. Two weeks averaged maps of spatial distribution of these parameters have been composed for period from 1998 to 2009 (most of them presented on site http://blackseacolor.com/browser3.html). Comparative analysis of long-term series (since 1998) of these parameters with subsurface water temperature (SST) and solar radiance of the sea surface (PAR-0m) revealed the key factors determining the seasonal and inter-annual variations of Chl, PAR1%, CDM, PP. The seasonal dynamics of these parameters were more pronounced compared with inter-annual variability. The later was related to climate effect. In deep-waters region relatively lower SST during cold winters were forcing more intensive winter-spring phytoplankton bloom. In north-western shelf inter-annual variability in river (Danube) run off, which was related to climate change as well, determined year-to-year changing in Chl, CDM, PAR1%, and PP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70187568','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70187568"><span>Concentration and biochemical gradients of seston in Lake Ontario</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kelly, Patrick T.; Weidel, Brian C.; Paufve, Matthew R.; O'Malley, Brian P.; Watkins, James M.; Rudstam, Lars G.; Jones, Stuart E.</p> <p>2017-01-01</p> <p>Spatial variability in resource quantity and quality may have important implications for the distribution and productivity of primary consumers. In Lake Ontario, ecosystem characteristics suggest the potential for significant spatial heterogeneity in seston quantity and quality, particularly due to the potential for nearshore-offshore gradients in allochthonous nutrient supply, and the formation of a deep chlorophyll layer (DCL) in July. We assessed total and zooplankton food particle size-fractionated chlorophyll a concentrations, as well as carbon-to-phosphorus stoichiometry and essential fatty acid composition of seston across a distance-from-shore and depth transect. We observed time, sampling depth, and distance from shore to be the best predictors of chlorophyll a concentration. Resource quality was much more homogenous in space, but there were strong patterns through time, as both stoichiometric and fatty acid qualities in general were greatest in May, and lowest in July/August. We did observe a peak in essential fatty acid concentration near the DCL in during time of formation, possibly due to differences in phytoplankton community composition between the DCL and epilimnion. These results suggest the potential for a spatially and temporally dynamic resource base for consumers in Lake Ontario, which may be important in developing a broader understanding of variable consumer productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15172809','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15172809"><span>Minor improvement for intertidal seaweeds and invertebrates after acid mine drainage diversion at Britannia Beach, Pacific Canada.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zis, Thalia; Ronningen, Vera; Scrosati, Ricardo</p> <p>2004-06-01</p> <p>In December 2001, acid mine drainage (AMD) from an abandoned copper mine at Britannia Beach (British Columbia, Canada) was diverted to flow from Britannia Creek into an outfall at 30 m depth in Howe Sound. Britannia Beach was studied in early 2003 to determine whether AMD diversion resulted in improved conditions for intertidal organisms. Species number and abundance have increased at the intertidal zone since AMD diversion, although they were still lower than at an unpolluted control site nearby (Furry Creek). Survivorship and growth rates of transplanted Mytilus trossulus (mussel) have increased since AMD diversion, although they were still significantly lower than at the control site. Transplanted Fucus gardneri (seaweed) performed better than before the AMD diversion; at Britannia Beach the chlorophyll a concentration in tissues was not significantly different from that at the control site, although the concentration of chlorophyll c in tissues and the chlorophyll c to a ratio was lower than at the control site six weeks after transplantation. Britannia Beach is still subject to leaching of metals from surrounding soils, low levels of AMD coming down the creek, and AMD discharge from the deep outfall. Although there has been an improvement, the intertidal environment at Britannia Beach still seems unable to support normal growth and survival of organisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27088991','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27088991"><span>Physical-Biological Coupling in the Western South China Sea: The Response of Phytoplankton Community to a Mesoscale Cyclonic Eddy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Lei; Huang, Bangqin; Chiang, Kuo-Ping; Liu, Xin; Chen, Bingzhang; Xie, Yuyuan; Xu, Yanping; Hu, Jianyu; Dai, Minhan</p> <p>2016-01-01</p> <p>It is widely recognized that the mesoscale eddies play an important part in the biogeochemical cycle in ocean ecosystem, especially in the oligotrophic tropical zones. So here a heterogeneous cyclonic eddy in its flourishing stage was detected using remote sensing and in situ biogeochemical observation in the western South China Sea (SCS) in early September, 2007. The high-performance liquid chromatography method was used to identify the photosynthetic pigments. And the CHEMical TAXonomy (CHEMTAX) was applied to calculate the contribution of nine phytoplankton groups to the total chlorophyll a (TChl a) biomass. The deep chlorophyll a maximum layer (DCML) was raised to form a dome structure in the eddy center while there was no distinct enhancement for TChl a biomass. The integrated TChl a concentration in the upper 100 m water column was also constant from the eddy center to the surrounding water outside the eddy. However the TChl a biomass in the surface layer (at 5 m) in the eddy center was promoted 2.6-fold compared to the biomass outside the eddy (p < 0.001). Thus, the slight enhancement of TChl a biomass of euphotic zone integration within the eddy was mainly from the phytoplankton in the upper mixed zone rather than the DCML. The phytoplankton community was primarily contributed by diatoms, prasinophytes, and Synechococcus at the DCML within the eddy, while less was contributed by haptophytes_8 and Prochlorococcus. The TChl a biomass for most of the phytoplankton groups increased at the surface layer in the eddy center under the effect of nutrient pumping. The doming isopycnal within the eddy supplied nutrients gently into the upper mixing layer, and there was remarkable enhancement in phytoplankton biomass at the surface layer with 10.5% TChl a biomass of water column in eddy center and 3.7% at reference stations. So the slight increasing in the water column integrated phytoplankton biomass might be attributed to the stimulated phytoplankton biomass at the surface layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23657718','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23657718"><span>The negative effects of cadmium on Bermuda grass growth might be offset by submergence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tan, Shuduan; Huang, Huang; Zhu, Mingyong; Zhang, Kerong; Xu, Huaqin; Wang, Zhi; Wu, Xiaoling; Zhang, Quanfa</p> <p>2013-10-01</p> <p>Revegetation in the water-level-fluctuation zone (WLFZ) could stabilize riverbanks, maintain local biodiversity, and improve reservoir water quality in the Three Gorges Reservoir Region (TGRR). However, submergence and cadmium (Cd) may seriously affect the survival of transplantations. Bermuda grass (Cynodon dactylon) is a stoloniferous and rhizomatous prostrate weed displaying high growth rate. A previous study has demonstrated that Bermuda grass can tolerate deep submergence and Cd stress, respectively. In the present study, we further analyzed physiological responses of Bermuda grass induced by Cd-and-submergence stress. The ultimate goal was to explore the possibility of using Bermuda grass for revegetation in the WLFZ of China's TGRR and other riparian areas. The Cd-and-submergence-treated plants had higher malondialdehyde contents and peroxidase than control, and both increased with the Cd concentration increase. All treated plants catalase activity increased with the experimental duration increases, and their superoxide dismutase also gradually increased with the Cd concentration from 1 day to 15 days. Total biomass of the same Cd-and-submergence plants increased along the experimental duration as well. Plants exposed to Cd-and-submergence stress showed shoot elongation. The heights of all treated plants were taller than those of the control. Leaf chlorophyll contents, maximum leaf length, and soluble sugars contents of all the Cd-and-submergence-treated plants were more than those of the untreated control. Although Cd inhibits plants growth, decreases chlorophyll and biomass content, and with the submergence induced the leaf and shoot elongation, more part of the Cd-and-submergence stress plants appeared in the air, exhibited fast growth with maintenance of leaf color, which guaranteed the plants' photosynthesis, and ensured the total biomass and carbohydrate sustainability, further promoting Cd-and-submergence tolerance. The results imply that the negative effects of cadmium on Bermuda grass growth might be offset by submergence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24676338','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24676338"><span>Variation in chlorophyll content per unit leaf area in spring wheat and implications for selection in segregating material.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hamblin, John; Stefanova, Katia; Angessa, Tefera Tolera</p> <p>2014-01-01</p> <p>Reduced levels of leaf chlorophyll content per unit leaf area in crops may be of advantage in the search for higher yields. Possible reasons include better light distribution in the crop canopy and less photochemical damage to leaves absorbing more light energy than required for maximum photosynthesis. Reduced chlorophyll may also reduce the heat load at the top of canopy, reducing water requirements to cool leaves. Chloroplasts are nutrient rich and reducing their number may increase available nutrients for growth and development. To determine whether this hypothesis has any validity in spring wheat requires an understanding of genotypic differences in leaf chlorophyll content per unit area in diverse germplasm. This was measured with a SPAD 502 as SPAD units. The study was conducted in series of environments involving up to 28 genotypes, mainly spring wheat. In general, substantial and repeatable genotypic variation was observed. Consistent SPAD readings were recorded for different sampling positions on leaves, between different leaves on single plant, between different plants of the same genotype, and between different genotypes grown in the same or different environments. Plant nutrition affected SPAD units in nutrient poor environments. Wheat genotypes DBW 10 and Transfer were identified as having consistent and contrasting high and low average SPAD readings of 52 and 32 units, respectively, and a methodology to allow selection in segregating populations has been developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AcSpA.170..234V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AcSpA.170..234V"><span>Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vítek, Petr; Novotná, Kateřina; Hodaňová, Petra; Rapantová, Barbora; Klem, Karel</p> <p>2017-01-01</p> <p>The effects of herbicides from three mode-of-action groups - inhibitors of protoporphyrinogen oxidase (carfentrazone-ethyl), inhibitors of carotenoid biosynthesis (mesotrione, clomazone, and diflufenican), and inhibitors of acetolactate synthase (amidosulfuron) - were studied in sunflower plants (Helianthus annuus). Raman spectroscopy, chlorophyll fluorescence (ChlF) imaging, and UV screening of ChlF were combined to evaluate changes in pigment composition, photosystem II (PSII) photochemistry, and non-photochemical quenching in plant leaves 6 d after herbicide application. The Raman signals of phenolic compounds, carotenoids, and chlorophyll were evaluated and differences in their intensity ratios were observed. Strongly augmented relative content of phenolic compounds was observed in the case of amidosulfuron-treated plants, with a simultaneous decrease in the chlorophyll/carotenoid intensity ratio. The results were confirmed by in vivo measurement of flavonols using UV screening of ChlF. Herbicides from the group of carotenoid biosynthesis inhibitors significantly decreased both the maximum quantum efficiency of PSII and non-photochemical quenching as determined by ChlF. Resonance Raman imaging (mapping) data with high resolution (150,000-200,000 spectra) are presented, showing the distribution of carotenoids in H. annuus leaves treated by two of the herbicides acting as inhibitors of carotenoid biosynthesis (clomazone or diflufenican). Clear signs were observed that the treatment induced carotenoid depletion within sunflower leaves. The depletion spatial pattern registered differed depending on the type of herbicide applied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3121992','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3121992"><span>Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mishra, Anamika; Höermiller, Imke I; Heyer, Arnd G; Nedbal, Ladislav</p> <p>2011-01-01</p> <p>Non-invasive, high-throughput screening methods are valuable tools in breeding for abiotic stress tolerance in plants. Optical signals such as chlorophyll fluorescence emission can be instrumental in developing new screening techniques. In order to examine the potential of chlorophyll fluorescence to reveal plant tolerance to low temperatures, we used a collection of nine Arabidopsis thaliana accessions and compared their fluorescence features with cold tolerance quantified by the well established electrolyte leakage method on detached leaves. We found that, during progressive cooling, the minimal chlorophyll fluorescence emission rose strongly and that this rise was highly dependent on the cold tolerance of the accessions. Maximum quantum yield of PSII photochemistry and steady state fluorescence normalized to minimal fluorescence were also highly correlated to the cold tolerance measured by the electrolyte leakage method. In order to further increase the capacity of the fluorescence detection to reveal the low temperature tolerance, we applied combinatorial imaging that employs plant classification based on multiple fluorescence features. We found that this method, by including the resolving power of several fluorescence features, can be well employed to detect cold tolerance already at mild sub-zero temperatures. Therefore, there is no need to freeze the screened plants to the largely damaging temperatures of around −15°C. This, together with the method's easy applicability, represents a major advantage of the fluorescence technique over the conventional electrolyte leakage method. PMID:21427532</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070035765','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070035765"><span>Sampling Biases in MODIS and SeaWiFS Ocean Chlorophyll Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gregg, Watson W.; Casey, Nancy W.</p> <p>2007-01-01</p> <p>Although modem ocean color sensors, such as MODIS and SeaWiFS are often considered global missions, in reality it takes many days, even months, to sample the ocean surface enough to provide complete global coverage. The irregular temporal sampling of ocean color sensors can produce biases in monthly and annual mean chlorophyll estimates. We quantified the biases due to sampling using data assimilation to create a "truth field", which we then sub-sampled using the observational patterns of MODIS and SeaWiFS. Monthly and annual mean chlorophyll estimates from these sub-sampled, incomplete daily fields were constructed and compared to monthly and annual means from the complete daily fields of the assimilation model, at a spatial resolution of 1.25deg longitude by 0.67deg latitude. The results showed that global annual mean biases were positive, reaching nearly 8% (MODIS) and >5% (SeaWiFS). For perspective the maximum interannual variability in the SeaWiFS chlorophyll record was about 3%. Annual mean sampling biases were low (<3%) in the midlatitudes (between -40deg and 40deg). Low interannual variability in the global annual mean sampling biases suggested that global scale trend analyses were valid. High latitude biases were much higher than the global annual means, up to 20% as a basin annual mean, and over 80% in some months. This was the result of the high solar zenith angle exclusion in the processing algorithms. Only data where the solar angle is <75deg are permitted, in contrast to the assimilation which samples regularly over the entire area and month. High solar zenith angles do not facilitate phytoplankton photosynthesis and consequently low chlorophyll concentrations occurring here are missed by the data sets. Ocean color sensors selectively sample in locations and times of favorable phytoplankton growth, producing overestimates of chlorophyll. The biases derived from lack of sampling in the high latitudes varied monthly, leading to artifacts in the apparent seasonal cycle from ocean color sensors. A false secondary peak in chlorophyll occurred in May-August, which resulted from lack of sampling in the Antarctic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B51A1779G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B51A1779G"><span>Drought is Coming: Monitoring Vegetation Response to Water Scarcity through Variable Chlorophyll a Fluorescence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guadagno, C. R.; Beverly, D.; Pleban, J. R.; Speckman, H. N.; Ewers, B. E.; Weinig, C.</p> <p>2017-12-01</p> <p>Aridity is one of the most pronounced environmental limits to plant survival, and understanding how plants respond to drought and recovery is crucial for predicting impacts on managed and natural ecosystems. Changes in soil moisture conditions induce a suite of physiological responses from the cell to ecosystem scale, complicating the assessment of drought effects. Characterizing early indicators of water scarcity across species can inform biophysical models with improved understanding of plant hydraulics. While indexes exist for drought monitoring across scales, many are unable to identify imminent vegetative drought. We explore a method of early diagnosis using leaf-level and kinetic imaging measures of variable chlorophyll a fluorescence. This is a fast and reliable tool capturing leaf physiological changes in advance of changes in NDVI or passive solar induced fluorescence. Both image and leaf level Pulse Amplitude Method (PAM) measurements illustrate the utility of variable chlorophyll a fluorescence for monitoring vegetative drought. Variable fluorescence was monitored across populations of crops, desert shrubs, montane conifers and riparian deciduous trees under variable water regimes. We found a strong correlation (R = 0.85) between the maximum efficiency of photosystem II measured using variable fluorescence (Fv'Fm') and leaf level electrolyte leakage, a proximal cause of drought stress induced by cellular damage in leaves. This association was confirmed in two gymnosperm species (Picea engelmannii and Pinus contorta) and for diverse varieties of the crop species Brassica rapa. The use of chlorophyll a fluorescence per image also allowed for early detection of drought in aspen (Populus tremuloides). These results provide evidence that variable chlorophyll fluorescence decreases between 25% and 70% in mild and severely droughted twigs with respect to ones collected from trees in wet soil conditions. While current systems for monitoring variable fluorescence are limited in scale, chlorophyll fluorescence comprises an indicator of drought stress across multiple spatial scales, from leaf to ecosystem level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28446247','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28446247"><span>Difference in oxidative stress tolerance between rice cultivars estimated with chlorophyll fluorescence analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kasajima, Ichiro</p> <p>2017-04-26</p> <p>Oxidative stress is considered to be involved in growth retardation of plants when they are exposed to a variety of biotic and abiotic stresses. Despite its potential importance in improving crop production, comparative studies on oxidative stress tolerance between rice (Oryza sativa L.) cultivars are limited. This work describes the difference in term of oxidative stress tolerance between 72 rice cultivars. 72 rice cultivars grown under naturally lit greenhouse were used in this study. Excised leaf discs were subjected to a low concentration of methyl viologen (paraquat), a chemical reagent known to generate reactive oxygen species in chloroplast. Chlorophyll fluorescence analysis using a two-dimensional fluorescence meter, ion leakage analysis as well as the measurement of chlorophyll contents were used to evaluate the oxidative stress tolerance of leaf discs. Furthermore, fluorescence intensities were finely analyzed based on new fluorescence theories that we have optimized. Treatment of leaf discs with methyl viologen caused differential decrease of maximum quantum yield of photosystem II (Fv/Fm) between cultivars. Decrease of Fv/Fm was also closely correlated with increase of ion leakage and decrease of chlorophyll a/b ratio. Fv/Fm was factorized into photochemical and non-photochemical parameters to classify rice cultivars into sensitive and tolerant ones. Among the 72 compared rice cultivars, the traditional cultivar Co13 was identified as the most tolerant to oxidative stress. Koshihikari, a dominant modern Japonica cultivar in Japan as well as IR58, one of the modern Indica breeding lines exhibited a strong tolerance to oxidative stress. Close correlation between Fv/Fm and chlorophyll a/b ratio provides a simple method to estimate oxidative stress tolerance, without measurement of chlorophyll fluorescence with special equipment. The fact that modern cultivars, especially major cultivars possessed tolerance to oxidative stress suggests that oxidative stress tolerance is one of the agricultural traits prerequisite for improvement of modern rice cultivars. Data presented in this study would enable breeding of rice cultivars having strong tolerance to oxidative stress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005ECSS...64..323O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005ECSS...64..323O"><span>Impact of the river Liffey discharge on nutrient and chlorophyll concentrations in the Liffey estuary and Dublin Bay (Irish Sea)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Higgins, T. G.; Wilson, J. G.</p> <p>2005-08-01</p> <p>Temperature, salinity, nutrients (total oxidised nitrogen (TON), ammonium (NH 4) and orthophosphate (PO 4)) and chlorophyll a were monitored in the Liffey estuary and Dublin Bay from June 2000 to June 2003. Four groups of sites were defined comprising the upper estuary (Gp. I), the outer estuary (Gp. III) with a small set (Gp. II) of sites between Groups I and III heavily influenced by the sewage treatment works outflow, and the Bay proper (Gp. IV). Riverine inputs of TON and PO 4 were calculated at an average of 826 t N y -1 and 31 t P y -1, respectively, and were largely controlled by flow rate. The sewage treatment works were identified as a major source of PO 4 and NH 4 to the system. Mixing in the upper estuary of nutrient limited saline waters with hypernutrified river water regularly (i.e. annually) produced relatively high concentrations of chlorophyll a (>10 mg chl a m -3), and also sporadic blooms with extremely high chlorophyll a values (max. 121.6 mg chl a m -3). These latter phytoplankton blooms occurred in high salinity waters and were due to mixing of nutrient limited saline waters and nutrient rich river waters. The mean annual flux of phytoplankton carbon from the river Liffey was calculated at 23.5 t C y -1, of which half was accumulated or remineralised in the estuary and did not enter the Bay. In the Bay proper (Gp. IV) summer nutrient concentrations dropped below detection limits, and chlorophyll a concentrations followed the classic pattern with a spring bloom maximum of 5.5 mg chl a m -3. This pattern in nutrients and chlorophyll a came from the advection of waters into the Bay from an offshore source. Overall while there was considerable evidence for eutrophication in the estuary, the bay itself showed little biological response to nutrient loading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRII.134..157C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRII.134..157C"><span>Mesozooplankton grazing during spring sea-ice conditions in the eastern Bering Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campbell, Robert G.; Ashjian, Carin J.; Sherr, Evelyn B.; Sherr, Barry F.; Lomas, Michael W.; Ross, Celia; Alatalo, Philip; Gelfman, Celia; Keuren, Donna Van</p> <p>2016-12-01</p> <p>Mesozooplankton (copepods and euphausiids) grazing rates and prey preferences were determined during a series of three research cruises to the eastern Bering Sea in spring 2008, 2009, and 2010. Chlorophyll was dominated by large cells (>5 μm), especially at bloom locations where they usually comprised greater than 90% of the total chlorophyll biomass. The relative importance of microzooplankton to the prey field biomass decreased with increasing chlorophyll concentration, and was less than 10% of the total prey biomass in ice-edge bloom regions. Overall, microzooplankton was the preferred prey of the mesozooplankton, although phytoplankton/ice algae were the dominant component of the diet because of their much greater biomass, especially during blooms. There were differences between mesozooplankton species in their prey preferences: Metridia pacifica, Pseudocalanus spp. and Calanus spp. had the strongest preference for microzooplankton prey, while euphausiids (Thysanoessa spp.) and Neocalanus flemingeri/plumchrus appeared to feed non-selectively on all prey items. Mesozooplankton exhibited a saturating feeding response to chlorophyll concentration (Holling's type II) that could be modeled by Michaelis-Menten equations. Taxa-specific maximum ingestion rates generally followed allometric theory, with smaller zooplankton having higher feeding rates than larger zooplankton, and ranged from about 4-30% body carbon day-1. Trophic cascades during grazing experiments could result in a substantial underestimate of chlorophyll ingestion rates, especially for those taxa that had a strong preference for microzooplankton. Grazing impacts by mesozooplankton on the integrated chlorophyll biomass and primary production were 2.7±4.4 and 26±48% day-1, respectively. Impacts increased significantly with increasing mesozooplankton biomass, which increased from early to late spring. However, grazing impacts were extremely low in ice-edge bloom regions. Our findings suggest that even when grazing by microzooplankton is included in our grazing impact estimates, about 50% of the primary production in phytoplankton blooms during spring on the eastern Bering Sea shelf is not grazed and is available for direct export to the benthic community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11299015','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11299015"><span>Does elevated CO2 ameliorate the impact of O3 on chlorophyll content and photosynthesis in potato (Solanum tuberosum)?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Donnelly, Alison; Craigon, Jim; Black, Colin R.; Colls, Jeremy J.; Landon, Geoff</p> <p>2001-04-01</p> <p>This study examined the impact of season-long exposure to elevated carbon dioxide (CO2) and ozone (O3), individually and in combination, on leaf chlorophyll content and gas exchange characteristics in potato (Solanum tuberosum L. cv. Bintje). Plants grown in open-top chambers were exposed to three CO2 (ambient, 550 and 680 µmol mol-1) and two O3 treatments (ambient and elevated; 25 and 65 nmol mol-1, 8 h day-1 means, respectively) between crop emergence and maturity; plants were also grown in unchambered field plots. Non-destructive measurements of chlorophyll content and visible foliar injury were made for all treatments at 2-week intervals between 43 and 95 days after emergence. Gas exchange measurements were made for all except the intermediate 550 µmol mol-1 CO2 treatment. Season-long exposure to elevated O3 under ambient CO2 reduced chlorophyll content and induced extensive visible foliar damage, but had little effect on net assimilation rate or stomatal conductance. Elevated CO2 had no significant effect on chlorophyll content, but greatly reduced the damaging impact of O3 on chlorophyll content and visible foliar damage. Light-saturated assimilation rates for leaves grown under elevated CO2 were consistently lower when measured under either elevated or ambient CO2 than in equivalent leaves grown under ambient CO2. Analysis of CO2 response curves revealed that CO2-saturated assimilation rate, maximum rates of carboxylation and electron transport and respiration decreased with time. CO2-saturated assimilation rate was reduced by elevated O3 during the early stages of the season, while respiration was significantly greater under elevated CO2 as the crop approached maturity. The physiological origins of these responses and their implications for the performance of potato in a changing climate are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5271374','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5271374"><span>Mutation in Mg-Protoporphyrin IX Monomethyl Ester Cyclase Decreases Photosynthesis Capacity in Rice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Xuexia; Huang, Rongfeng; Quan, Ruidang</p> <p>2017-01-01</p> <p>In photosynthesis, the pigments chlorophyll a/b absorb light energy to convert to chemical energy in chloroplasts. Though most enzymes of chlorophyll biosynthesis from glutamyl-tRNA to chlorophyll a/b have been identified, the exact composition and regulation of the multimeric enzyme Mg-protoporphyrin IX monomethyl ester cyclase (MPEC) is largely unknown. In this study, we isolated a rice pale-green leaf mutant m167 with yellow-green leaf phenotype across the whole lifespan. Chlorophyll content decreases 43–51% and the granal stacks of chloroplasts becomes thinner in m167. Chlorophyll fluorescence parameters, including Fv/Fm (the maximum quantum efficiency of PSII) and quantum yield of PSII (Y(II)), were lower in m167 than those in wild type plants (WT), and photosynthesis rate decreases 40% in leaves of m167 mutant compared with WT plants, which lead to yield reduction in m167. Genetic analysis revealed that yellow-green leaf phenotype of m167 is controlled by a single recessive genetic locus. By positional cloning, a single mutated locus, G286A (Alanine 96 to Threonine in protein), was found in the coding sequence of LOC_Os01g17170 (Rice Copper Response Defect 1, OsCRD1), encoding a putative subunit of MPEC. Expression profile analysis demonstrated that OsCRD1 is mainly expressed in green tissues of rice. Sequence alignment analysis of CRD1 indicated that Alanine 96 is very conserved in all green plants and photosynthetic bacteria. OsCRD1 protein mainly locates in chloroplast and the point mutation A96T in OsCRD1 does not change its location. Therefore, Alanine96 of OsCRD1 might be fundamental for MPEC activity, mutation of which leads to deficiency in chlorophyll biosynthesis and chloroplast development and decreases photosynthetic capacity in rice. PMID:28129387</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9227L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9227L"><span>Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Craig; Rainville, Luc; Perry, Mary Jane</p> <p>2016-04-01</p> <p>The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kgm-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE21A..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE21A..06L"><span>Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, C.; Rainville, L.; Perry, M. J.</p> <p>2016-02-01</p> <p>The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kg m-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMOS52C0236G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMOS52C0236G"><span>Short-Term Variability on the Scotian Shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Greenan, B.; Petrie, B.; Harrison, G.; Oakey, N.; Strain, P.</p> <p>2002-12-01</p> <p>The traditional view of the production cycle on the continental shelf of Nova Scotia features a spring bloom followed by a period of low production and a less intense fall bloom. The annual cycle of primary productivity thus has a large, low frequency component. However, there is increasing evidence that the production cycle has significant variability on shorter time scales. Physical, chemical and biological variability on the Scotian Shelf is examined on a daily to weekly timescale. This is accomplished through the use of a newly developed mooring platform (SeaHorse) that uses surface wave energy to enable the instrument to climb down the mooring wire and then float upwards while sampling the water column. This provides bi-hourly profiles of temperature, salinity, pressure and chlorophyll at one location over month-long periods. Results from the three-week deployment in October 2000 indicate a subsurface chlorophyll maximum below the pycnocline during the first part of the time series. An event occurred in mid-October during which the temperature, salinity and density iso-surfaces rose approximately 25 m. During this event, a small bloom, with peak chlorophyll concentrations of about 2 mg m-3 and duration of several days, began as nutrients were brought into the upper part of the water column by upwelling-favorable winds. SeaWiFS ocean color satellite images were valuable in providing a spatial context for chlorophyll concentrations, however, the lack of temporal resolution due to poor quality images means that this data set provided limited information for short-term chlorophyll variability. Gradient Richardson Numbers were estimated for 2 m vertical bins using SeaHorse CTD data and nearby ADCP current measurements. A trend of decreasing Ri in the ocean mixed layer with increasing surface wind stress is suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20030127','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20030127"><span>[Effects of simulated acid rain on Quercus glauca seedlings photosynthesis and chlorophyll fluorescence].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Jia; Jiang, Hong; Yu, Shu-quan; Jiang, Fu-wei; Yin, Xiu-min; Lu, Mei-juan</p> <p>2009-09-01</p> <p>Taking the seedlings of Quercus glauca, a dominant evergreen broadleaf tree species in subtropical area, as test materials, this paper studied their photosynthesis, chlorophyll fluorescence, and chlorophyll content under effects of simulated acid rain with pH 2.5, 4.0, and 5.6 (CK). After 2-year acid rain stress, the net photosynthetic rate of Q. glauca increased significantly with decreasing pH of acid rain. The acid rain with pH 2.5 and 4.0 increased the stomatal conductance and transpiration rate, and the effect was more significant under pH 2.5. The intercellular CO2 concentration decreased in the order of pH 2.5 > pH 5.6 > pH 4.0. The maximum photosynthetic rate, light compensation point, light saturation point, and dark respiration rate were significantly higher under pH 2.5 and 4.0 than under pH 5.6, while the apparent quantum yield was not sensitive to acid rain stress. The maximal photochemical efficiency of PS II and the potential activity of PS II under pH 2.5 and 4.0 were significantly higher than those under pH 5.6. The relative chlorophyll content was in the order of pH 2.5 > pH 5.6 > pH 4.0, and there was a significant difference between pH 2.5 and 4.0. All the results suggested that the photosynthesis and chlorophyll fluorescence of Q. glauca increased under the effects of acid rain with pH 2.5 and 4.0, and the acid rain with pH 2.5 had more obvious effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28287658','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28287658"><span>Variability in chlorophyll fluorescence spectra of eggplant fruit grown under different light environments: a case study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ospina Calvo, Brian; Parapugna, Tamara L; Lagorio, M Gabriela</p> <p>2017-05-17</p> <p>The main goal of the present work was to clarify physiological strategies in plants whose chloroplasts were developed under different light environments. The specific objective was to elucidate the influence of the spectral distribution of light on the chlorophyll fluorescence ratio and on photosynthetic parameters. To achieve this purpose, three species of eggplant fruit (black, purple and white striped and white) were used as a case study and their chlorophyll fluorescence was analyzed in detail. Spectra of the non-variable fluorescence in each part of the fruit were corrected for distortions by light reabsorption processes using a physical model. The main conclusion of this work was that the corrected fluorescence ratio was dependent on the contribution of each photosystem to the fluorescence and consequently on the environmental lighting conditions, becoming higher when illumination was rich in long wavelengths. Variable chlorophyll fluorescence, similar to that observed from plant leaves, was detected for the pulp of the black eggplant, for the pulp of the purple and white striped eggplant and for the intact fruit of the black eggplant. The maximum quantum efficiency of photosystem II in the light-adapted state (F' v /F' m ), the quantum efficiency of photosystem II (Φ PSII ), and the photochemical and non-photochemical quenching coefficients (qP and qNP/NPQ respectively) were determined in each case. The results could be explained very interestingly, in relation with the proportion of exciting light reaching each photosystem (I and II). The photochemical parameters obtained from variable chlorophyll fluorescence, allowed us to monitor non-destructively the physiological state of the black fruit during storage under both chilled or room-temperature conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/961978','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/961978"><span>Lake Roosevelt Fisheries Evaluation Program, Part B; Limnology, Primary Production, and Zooplankton in Lake Roosevelt, Washington, 1998 Annual Report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shields, John; Spotts, Jim; Underwood, Keith</p> <p>2002-11-01</p> <p>The Lake Roosevelt Fisheries Evaluation Program is the result of a merger between two projects, the Lake Roosevelt Monitoring Program (BPA No. 8806300) and the Lake Roosevelt Data Collection Project (BPA No. 9404300). These projects were merged in 1996 to continue work historically completed under the separate projects, and is now referred to as the Lake Roosevelt Fisheries Evaluation Program. The 1998 Annual Report, Part B. Limnology, Primary Production, and Zooplankton in Lake Roosevelt, Washington examined the limnology, primary production, and zooplankton at eleven locations throughout the reservoir. The 1998 research protocol required a continuation of the more complete examinationmore » of limnological parameters in Lake Roosevelt that began in 1997. Phytoplankton and periphyton speciation, phytoplankton and periphyton chlorophyll a analysis, complete zooplankton biomass analysis by taxonomic group, and an increased number of limnologic parameters (TDG, TDS, etc.) were examined and compared with 1997 results. Total dissolved gas levels were greatly reduced in 1998, compared with 1997, likely resulting from the relatively normal water year experienced in 1998. Mean water temperatures were similar to what was observed in past years, with a maximum of 22.7 C and a minimum of 2.6 C. Oxygen concentrations were also relatively normal, with a maximum of 16.6 mg/L, and a minimum of 0.9 mg/L. Phytoplankton in Lake Roosevelt was primarily composed of microplankton (29.6%), Cryptophyceae (21.7%), and Bacillriophyceae (17.0 %). Mean total phytoplankton chlorophyll a maximum concentration occurred in May (3.53 mg/m{sup 3}), and the minimum in January (0.39 mg/m{sup 3}). Phytoplankton chlorophyll a concentrations appear to be influenced by hydro-operations and temperature. Trophic status as indicated by phytoplankton chlorophyll a concentrations place Lake Roosevelt in the oligomesotrophic range. Periphyton colonization rates and biovolume were significantly greater at a depth of 1.5 m (5 ft) when compared with a 4.6 m (15 ft) depth, and during the shorter incubation periods (two and four weeks). Mean zooplankton densities were greatest for Copepoda (88 %), then Daphnia spp. (10%) and other Cladocera (2.1%), while the zooplankton biomass assessment indicated Daphnia spp. had the greatest biomass (53.6%), then Copepoda (44.0%) and other Cladocera (2.5%). Mean overall zooplankton densities were the lowest observed since 1991. The cause was unclear, but may have been an artifact of human error. It seems unlikely that hydro-operations played a significant part in the reduction of zooplankton in light of the relatively friendly water year of 1998.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://archive.org/details/nasa_techdoc_19710067013','USGSPUBS'); return false;" href="https://archive.org/details/nasa_techdoc_19710067013"><span>Airborne fluorometer applicable to marine and estuarine studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stoertz, George E.; Hemphill, William R.; Markle, David A.</p> <p>1969-01-01</p> <p>An experimental Fraunhofer line discriminator detected solar-stimulated yellow fluorescence (5890 A) emitted by Rhodamine WT dye in aqueous solutions. Concentration of 1 part per billion was detected in tap water 1/2-meter deep. In extremely turbid San Francisco Bay, dye was monitored in concentrations of less than 5 parts per billion from helicopter and ship. Applications include studies of current dynamics and dispersion. Potential applications of the technique could include sensing oil spills, fish oils, lignin sulfonates, other fluorescent pollutants, and chlorophyll fluorescence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/513359-photosynthesis-regulation-rubisco-activity-net-phytoplankton-from-delaware-bay','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/513359-photosynthesis-regulation-rubisco-activity-net-phytoplankton-from-delaware-bay"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>MacIntyre, H.L.; Geider, R.J.; McKay, R.M.</p> <p></p> <p>Net phytoplankton (>20 {mu}m) comprised 51 {plus_minus} 9% of the total chlorophyll (Chl) in a Skeletonema costatum-dominated spring bloom in Delaware Bay. The net phytoplankton had low C:N and high protein:carbohydrate ratios, indicating that their growth was nutrient-replete. Their photosynthetic responses were characterized by low specific absorption, low light-limited and light-saturated rates of photosynthesis, and high quantum yields, indicative of acclimation to low irradiance and internal self-shading. High fucoxanthin: Chl ratios also indicated low light acclimation, but high photoprotective xanthophyll: Chl ratios suggested a high capacity for photoprotective energy dissipation. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) could be activated and deactivated in responsemore » to changes in irradiance and was fully activated at the surface of the water column and fully deactivated in aphotic deep water. Maximum Rubisco activity was correlated with Rubisco content and bulk protein content of the phytoplankton and with light-saturated rates of photosynthesis measured in short (<20-min) incubations. Long (60-min) incubations caused a decrease in the light-saturated rate of photosynthesis, possibly because of feedback limitation. While feedback limitation is unlikely to occur in the water column it should be considered when estimating productivity in well-mixed waters from fixed light-depth incubations. 90 refs., 7 figs., 2 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SPIE.7825E..06A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SPIE.7825E..06A"><span>Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alawadi, Fahad</p> <p>2010-10-01</p> <p>Quantifying ocean colour properties has evolved over the past two decades from being able to merely detect their biological activity to the ability to estimate chlorophyll concentration using optical satellite sensors like MODIS and MERIS. The production of chlorophyll spatial distribution maps is a good indicator of plankton biomass (primary production) and is useful for the tracing of oceanographic currents, jets and blooms, including harmful algal blooms (HABs). Depending on the type of HABs involved and the environmental conditions, if their concentration rises above a critical threshold, it can impact the flora and fauna of the aquatic habitat through the introduction of the so called "red tide" phenomenon. The estimation of chlorophyll concentration is derived from quantifying the spectral relationship between the blue and the green bands reflected from the water column. This spectral relationship is employed in the standard ocean colour chlorophyll-a (Chlor-a) product, but is incapable of detecting certain macro-algal species that float near to or at the water surface in the form of dense filaments or mats. The ability to accurately identify algal formations that sometimes appear as oil spill look-alikes in satellite imagery, contributes towards the reduction of false-positive incidents arising from oil spill monitoring operations. Such algal formations that occur in relatively high concentrations may experience, as in land vegetation, what is known as the "red-edge" effect. This phenomena occurs at the highest reflectance slope between the maximum absorption in the red due to the surrounding ocean water and the maximum reflectance in the infra-red due to the photosynthetic pigments present in the surface algae. A new algorithm termed the surface algal bloom index (SABI), has been proposed to delineate the spatial distributions of floating micro-algal species like for example cyanobacteria or exposed inter-tidal vegetation like seagrass. This algorithm was specifically modelled to adapt to the marine habitat through its inclusion of ocean-colour sensitive bands in a four-band ratio-based relationship. The algorithm has demonstrated high stability against various environmental conditions like aerosol and sun glint.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999AcSSn..12..647X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999AcSSn..12..647X"><span>The relationship between the deep-level structure in crust and brewing of strong earthquakes in Xingtai area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, Lan-Xi; Zhu, Yuan-Qing; Zhang, Shao-Quan; Liu, Xu; Guo, Yu</p> <p>1999-11-01</p> <p>In this paper, crust medium is treated as Maxwell medium, and crust model includes hard inclusion, soft inclusion, deep-level fault. The stress concentration and its evolution with time are obtained by using three-dimensional finite element method and differential method. The conclusions are draw as follows: (1) The average stress concentration and maximum shear stress concentration caused by non-heterogeneous of crust are very high in hard inclusion and around the deep fault. With the time passing by, the concentration of average stress in the model gradually trends to uniform. At the same time, the concentration of maximum shear stress in hard inclusion increases gradually. This character is favorable to transfer shear strain energy from soft inclusion to hard inclusion. (2) When the upper mantle beneath the inclusion upheave at a certain velocity of 1 cm/a, the changes of average stress concentration with time become complex, and the boundary of the hard and soft inclusion become unconspicuous, but the maximum shear stress concentration increases much more in the hard inclusion with time at a higher velocity. This feature make for transformation of energy from the soft inclusion to the hard inclusion. (3) The changes of average stress concentration and maximum shear stress concentration with time around the deep-level fault result in further accumulation of maximum shear stress concentration and finally cause the deep-level fault instable and accelerated creep along fault direction. (4) The changes of vertical displacement on the surface of the model, which is caused by the accelerated creep of the deep-level fault, is similar to that of the observation data before Xingtai strong earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5111892','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5111892"><span>Pico and nanoplankton abundance and carbon stocks along the Brazilian Bight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lopes dos Santos, Adriana; Marie, Dominique; Helena Pellizari, Vivian; Pereira Brandini, Frederico; Vaulot, Daniel</p> <p>2016-01-01</p> <p>Pico and nanoplankton communities from the Southwest Atlantic Ocean along the Brazilian Bight are poorly described. The hydrography in this region is dominated by a complex system of layered water masses, which includes the warm and oligotrophic Tropical Water (TW), the cold and nutrient rich South Atlantic Central Water (SACW) and the Coastal Water (CW), which have highly variable properties. In order to assess how pico- and nanoplankton communities are distributed in these different water masses, we determined by flow cytometry the abundance of heterotrophic bacteria, Prochlorococcus, Synechococcus and autotrophic pico and nanoeukaryotes along three transects, extending from 23°S to 31°S and 39°W to 49°W. Heterotrophic bacteria (including archaea, maximum of 1.5 × 106 cells mL−1) were most abundant in Coastal and Tropical Water whereas Prochlorococcus was most abundant in open-ocean oligotrophic waters (maximum of 300 × 103 cells mL−1). Synechococcus(up to 81 × 103 cells mL−1), as well as autotrophic pico and nanoeukaryotes seemed to benefit from the influx of nutrient-rich waters near the continental slope. Autotrophic pico and nanoeukaryotes were also abundant in deep chlorophyll maximum (DCM) layers from offshore waters, and their highest abundances were 20 × 103 cells mL−1 and 5 × 103 cells mL−1, respectively. These data are consistent with previous observations in other marine areas where Synechococcus and autotrophic eukaryotes dominate mesotrophic waters, whereas Prochlorococcus dominate in more oligotrophic areas. Regardless of the microbial community structure near the surface, the carbon stock dominance by autotrophic picoeukaryotes near the DCM is possibly linked to vertical mixing of oligotrophic surface waters with the nutrient-rich SACW and their tolerance to lower light levels. PMID:27867760</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989AtmEn..23..763A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989AtmEn..23..763A"><span>Phytomonitoring of air pollution around a thermal power plant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Agrawal, M.; Agrawal, S. B.</p> <p></p> <p>This study was undertaken in order to assess the impact of air pollutants on vegetation around Obra thermal power plant (1550 M W capacity) in the Mirzapur district of Uttar Pradesh. For this purpose, Mangifera indica, Citrus medico and Bouganvillaea spectabilis plants, most common at all sites, were selected as test plants. Five study sites were selected northeast (prevailing wind) of the thermal power plant. A control site was also selected at a distance of 30 km north of Obra. Responses of plants to pollutants in terms of presence of foliar injury symptoms and changes in chlorophyll, ascorbic acid and S content were measured. These changes were correlated with ambient SO 2 and suspended particulate matter (SPM) concentrations and the amount of dust settled on leaf surfaces. The SO 2 and SPM concentrations were quite high in the immediate vicinity of the power plant. There also exists a direct relationship between the concentration of SPM in air and amount of dust deposited on leaf surfaces. Maximum dust deposition was observed on M. indica plants. The levels of foliar injury, chlorophyll and ascorbic acid were found to decrease and that of S increase in plants around the power plant in comparison to those growing at a control site. The magnitude of such changes was maximum in M. indica and minimum in C. medica. A species specific direct relationship between the increase in the amount of S and decrease in chlorophyll content was observed. The study suggests that differential sensitivity of plants to SO 2 may be used in evaluating the air pollution impact around emission sources and M. indica plants can be used as an indicator plant for quantifying biological changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28025729','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28025729"><span>Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jumrani, Kanchan; Bhatia, Virender Singh; Pandey, Govind Prakash</p> <p>2017-03-01</p> <p>High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2 °C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO 2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28 °C, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACPD...1321573O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACPD...1321573O"><span>Primary productivity and its variability in the equatorial South China Sea during the northeast monsoon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ooi, S. H.; Samah, A. A.; Braesicke, P.</p> <p>2013-08-01</p> <p>Near coastal areas of the equatorial South China Sea (SCS) are one of the world's regions with highest primary productivity (phytoplankton growth). Concentrations of phytoplankton in the SCS depend significantly on atmospheric forcings and the oceanic state, in particular during the northeast (winter) monsoon season from November to March. Aided by new ocean-observing satellite data, we present a climatological overview of recent surface atmospheric and oceanic features in the equatorial SCS during the northeast monsoon to identify the dominant air-sea processes influencing and modulating the primary productivity of the region. Measured chlorophyll a concentrations are used as a proxy for phytoplankton amounts and the spatial and temporal variations are characterized according to meteorological conditions. Converging northeasterly surface winds support high chlorophyll a concentrations along East Malaysia's coastline in conjunction with a continual nutrient supply from the bottom of the continental shelf by vertical mixing. The mixing can be enhanced due to increased turbulence by wind-generated high waves when they approach shallow water from the deep basin during strong cold surges and monsoon disturbances. Intraseasonal variability during the winter monsoon is characterized by a coastal increase of chlorophyll a starting in November and peaking in January. A general decrease is observed in March. Interannual variability of chlorophyll a concentrations is influenced by ENSO (due to the known modulation of cold surge occurrences), with decreases during El Niño and increases during La Niña in early winter along the shore of East Malaysia. As an example, we discuss an enhanced phytoplankton growth event that occurred due to a typical cold surge-induced Borneo vortex event in January 2010.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35.2776F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35.2776F"><span>The optical and physiological properties of phytoplankton - base of model for estimation of primary production in the sea from satellite data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finenko, Z. Z.; Churilova, T. Ya.</p> <p></p> <p>An assessment of the spatial and temporal variation in the photo physiological parameters and chlorophyll-specific absorption coefficients of marine phytoplankton is essential for estimate of global primary production by satellite data. Relationships of photosynthesis rate on light intensity have been used for estimation of two photosynthetic parameters of phytoplankton in the Black Sea: light saturated photosynthesis intensity (Pb/max, mgC mg Chl-1 h-1) and photosynthesis efficiency (alpha/b mgC mg Chl -1 h-1/ W m-2). The results have shown that variability of photosynthetic parameters of surface phytoplankton during the year varied by one order of values: Pb/max - from 1 to 11 mg C mg Chl-1 h-1 and (alpha/b - from 0.04 to 0.35 mg C mg Chl-1 h-1/Wm-2. Temporal dynamics was characterised by increasing of the values from winter to summer and decreasing to the end of the year. The vertical profiles of Pb/max and alpha/b had opposite character of change: values of Pb/max decreased with depth, alpha/b - increased. Photosynthetic parameters changed with depth more significantly at time of stratification, than - without stratification. The influence of temperature, nitrate concentration and light intensity on Pb/max rather evidence, but temperature and optical depth effect on Pb/max more significantly. Depth-dependent variability of photosynthesis efficiency is generally effected of nutrient concentration. Vertical uniformity of maximum quantum yield of photosynthesis (Fm) and spectral mean absorption coefficient of phytoplankton (aph) in euphotic zone were obtained for cold period of year. In summer - Fm increased from surface to bottom of euphotic zone, aph - decrease. Fm and aph values of surface phytoplankton depended on chlorophyll concentration but their changes had opposite direction: Fm - increased and aph - decreased when chlorophyll concentration grew. As a result Pb/max = Z Fm aph Ik T and alpha/b = Z Fm aph T (where Z - a dimensional constant equal to the atomic mass of carbon, Ik - the photon flux density at which photosynthesis rate becomes light saturated, (mol photons m-2 s-1; T - a constant value for transition from seconds by one hour) change in 2-3 times for the range of chlorophyll concentration (0.05-10.0 mg m-3 ). Pb/max and alpha/b have been approximated by one-peaked curve with maximum at 3 mg m -3 Chl a concentration. These relationships could be used for modeling of Pb/max and alpha/b based on surface chlorophyll concentrations from satellite colour images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMS...169..111C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMS...169..111C"><span>Assessing spatial and temporal variability of phytoplankton communities' composition in the Iroise Sea ecosystem (Brittany, France): A 3D modeling approach. Part 2: Linking summer mesoscale distribution of phenotypic diversity to hydrodynamism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cadier, Mathilde; Sourisseau, Marc; Gorgues, Thomas; Edwards, Christopher A.; Memery, Laurent</p> <p>2017-05-01</p> <p>Tidal front ecosystems are especially dynamic environments usually characterized by high phytoplankton biomass and high primary production. However, the description of functional microbial diversity occurring in these regions remains only partially documented. In this article, we use a numerical model, simulating a large number of phytoplankton phenotypes to explore the three-dimensional spatial patterns of phytoplankton abundance and diversity in the Iroise Sea (western Brittany). Our results suggest that, in boreal summer, a seasonally marked tidal front shapes the phytoplankton species richness. A diversity maximum is found in the surface mixed layer located slightly west of the tidal front (i.e., not strictly co-localized with high biomass concentrations) which separates tidally mixed from stratified waters. Differences in phenotypic composition between sub-regions with distinct hydrodynamic regimes (defined by vertical mixing, nutrients gradients and light penetration) are discussed. Local growth and/or physical transport of phytoplankton phenotypes are shown to explain our simulated diversity distribution. We find that a large fraction (64%) of phenotypes present during the considered period of September are ubiquitous, found in the frontal area and on both sides of the front (i.e., over the full simulated domain). The frontal area does not exhibit significant differences between its community composition and that of either the well-mixed region or an offshore Deep Chlorophyll Maximum (DCM). Only three phenotypes (out of 77) specifically grow locally and are found at substantial concentration only in the surface diversity maximum. Thus, this diversity maximum is composed of a combination of ubiquitous phenotypes with specific picoplankton deriving from offshore, stratified waters (including specific phenotypes from both the surface and the DCM) and imported through physical transport, completed by a few local phenotypes. These results are discussed in light of the three-dimensional general circulation at frontal interfaces. Processes identified by this study are likely to be common in tidal front environments and may be generalized to other shallow, tidally mixed environments worldwide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23035526','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23035526"><span>[Investigation of exciting light and plant leaves age effects on chlorophyll fluorescense of radish plants].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nesterenko, T V; Tikhomirov, A A; Shikhov, V N</p> <p>2012-01-01</p> <p>The effect of exciting light intensity and leaves age on characteristics of slow stage of chlorophyll fluorescence induction (CFI) of radish leaves has been investigated. Light dependence of the relationship of maximum fluorescence intensity in the peak P and the stationary fluorescence level (F(P)/F(S)) and also light dependence of temporal characteristics of CFI (T0.5 - half decrease of chlorophyll fluorescence intensity during slow stage of fluorescence induction and tmin - summarized CFI characteristics derived by calculating via integral proportional to variable part of illuminated in the result of chlorophyll fluorescence energy during slow stage of CFI) have been studied. Plants were grown in controlled conditions of light culture at 100 Wt/m2 of photosynthetic active radiation (PAR). It has been shown that variability of the characteristics under study, associated with the effect of leaves age, significantly decreases at exciting light intensity equal to 40 Wt/m2 of PAR and more. The lowest effect of leaves age on the value of fluorescence characteristics for T0.5 and tmin and also for F(P)/F(S) ratio was observed at the intensity of exciting fluorescence light of 60 Wt/m2 of PAR. In the researched range of light intensities the temporal characteristics of T0.5 and tmin for uneven-aged radish leaves appeared to be by an order less responsive to the intensity changes of exciting fluorescence light as compared with F(P)/F(S) ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29207354','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29207354"><span>Biomonitoring chromium III or VI soluble pollution by moss chlorophyll fluorescence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Yang-Er; Mao, Hao-Tian; Ma, Jie; Wu, Nan; Zhang, Chao-Ming; Su, Yan-Qiu; Zhang, Zhong-Wei; Yuan, Ming; Zhang, Huai-Yu; Zeng, Xian-Yin; Yuan, Shu</p> <p>2018-03-01</p> <p>We systematically compared the impacts of four Cr salts (chromic chloride, chromic nitrate, potassium chromate and potassium bichromate) on physiological parameters and chlorophyll fluorescence in indigenous moss Taxiphyllum taxirameum. Among the four Cr salts, K 2 Cr 2 O 7 treatment resulted in the most significant decrease in photosynthetic efficiency and antioxidant enzymes, increase in reactive oxygen species (ROS), and obvious cell death. Different form the higher plants, although hexavalent Cr(VI) salt treatments resulted in higher accumulation levels of Cr and were more toxic than Cr(III) salts, Cr(III) also induced significant changes in moss physiological parameters and chlorophyll fluorescence. Our results showed that Cr(III) and Cr(VI) could be monitored distinguishably according to the non-photochemical quenching (NPQ) fluorescence of sporadic purple and sporadic lavender images respectively. Then, the valence states and concentrations of Cr contaminations could be evaluated according to the image of maximum efficiency of PSII photochemistry (Fv/Fm) and the quantum yield of PSII electron transport (ΦPSII). Therefore, this study provides new ideas of moss's sensibility to Cr(III) and a new method to monitor Chromium contaminations rapidly and non-invasively in water. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2011/5217/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2011/5217/"><span>Water-quality conditions near the confluence of the Snake and Boise Rivers, Canyon County, Idaho</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wood, Molly S.; Etheridge, Alexandra</p> <p>2011-01-01</p> <p>Total Maximum Daily Loads (TMDLs) have been established under authority of the Federal Clean Water Act for the Snake River-Hells Canyon reach, on the border of Idaho and Oregon, to improve water quality and preserve beneficial uses such as public consumption, recreation, and aquatic habitat. The TMDL sets targets for seasonal average and annual maximum concentrations of chlorophyll-a at 14 and 30 micrograms per liter, respectively. To attain these conditions, the maximum total phosphorus concentration at the mouth of the Boise River in Idaho, a tributary to the Snake River, has been set at 0.07 milligrams per liter. However, interactions among chlorophyll-a, nutrients, and other key water-quality parameters that may affect beneficial uses in the Snake and Boise Rivers are unknown. In addition, contributions of nutrients and chlorophyll-a loads from the Boise River to the Snake River have not been fully characterized. To evaluate seasonal trends and relations among nutrients and other water-quality parameters in the Boise and Snake Rivers, a comprehensive monitoring program was conducted near their confluence in water years (WY) 2009 and 2010. The study also provided information on the relative contribution of nutrient and sediment loads from the Boise River to the Snake River, which has an effect on water-quality conditions in downstream reservoirs. State and site-specific water-quality standards, in addition to those that relate to the Snake River-Hells Canyon TMDL, have been established to protect beneficial uses in both rivers. Measured water-quality conditions in WY2009 and WY2010 exceeded these targets at one or more sites for the following constituents: water temperature, total phosphorus concentrations, total phosphorus loads, dissolved oxygen concentration, pH, and chlorophyll-a concentrations (WY2009 only). All measured total phosphorus concentrations in the Boise River near Parma exceeded the seasonal target of 0.07 milligram per liter. Data collected during the study show seasonal differences in all measured parameters. In particular, surprisingly high concentrations of chlorophyll-a were measured at all three main study sites in winter and early spring, likely due to changes in algal populations. Discharge conditions and dissolved orthophosphorus concentrations are key drivers for chlorophyll-a on a seasonal and annual basis on the Snake River. Discharge conditions and upstream periphyton growth are most likely the key drivers for chlorophyll-a in the Boise River. Phytoplankton growth is not limited or driven by nutrient availability in the Boise River. Lower discharges and minimal substrate disturbance in WY2010 in comparison with WY2009 may have caused prolonged and increased periphyton and macrophyte growth and a reduced amount of sloughed algae in suspension in the summer of WY2010. Chlorophyll-a measured in samples commonly is used as an indicator of sestonic algae biomass, but chlorophyll-a concentrations and fluorescence may not be the most appropriate surrogates for algae growth, eutrophication, and associated effects on beneficial uses. Assessment of the effects of algae growth on beneficial uses should evaluate not only sestonic algae, but also benthic algae and macrophytes. Alternatively, continuous monitoring of dissolved oxygen detects the influence of aquatic plant respiration for all types of algae and macrophytes and is likely a more direct measure of effects on beneficial uses such as aquatic habitat. Most measured water-quality parameters in the Snake River were statistically different upstream and downstream of the confluence with the Boise River. Higher concentrations and loads were measured at the downstream site (Snake River at Nyssa) than the upstream site (Snake River near Adrian) for total phosphorus, dissolved orthophosphorus, total nitrogen, dissolved nitrite and nitrate, suspended sediment, and turbidity. Higher dissolved oxygen concentrations and pH were measured at the upstream site (Snake River near Adrian) than the downstream site (Snake River at Nyssa). Contributions from the Boise River measured at Parma do not constitute all of the increase in nutrient and sediment loads in the Snake River between the upstream and downstream sites. Surrogate models were developed using a combination of continuously monitored variables to estimate concentrations of nutrients and suspended sediment when samples were not possible. The surrogate models explained from 66 to 95 percent of the variability in nutrient and suspended sediment concentrations, depending on the site and model. Although the surrogate models could not always represent event-based changes in modeled parameters, they generally were successful in representing seasonal and annual patterns. Over a longer period, the surrogate models could be a useful tool for measuring compliance with state and site-specific water-quality standards and TMDL targets, for representing daily and seasonal variability in constituents, and for assessing effects of phosphorus reduction measures within the watershed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70185114','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70185114"><span>Effects of food web changes on Mysis diluviana diet in Lake Ontario</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>O'Malley, Brian P.; Rudstam, Lars G.; Watkins, James M.; Holda, Toby J.; Weidel, Brian C.</p> <p>2017-01-01</p> <p>Mysids are important benthic-pelagic omnivores in many deep-lake food webs, yet quantitative data on their diet are limited. We explored the trophic role of Mysis diluviana in offshore Lake Ontario using samples collected in May, July, and September 2013 with a focus on seasonal and ontogenetic patterns in herbivory and zooplanktivory using two approaches. We hypothesized that Mysis diet in 2013 differs from the last investigation in 1995 in response to changes in pelagic prey over 1995 to 2013. Gut fluorescence indicated high grazing by adult and juvenile Mysis in May 2013. In July, smaller mysids were more herbivorous than larger individuals, a pattern that was less pronounced in September. Microscopic gut analysis showed copepods, including Limnocalanus, were common in diets of both size groups in May. In July, mainly cladocerans were consumed, including Cercopagis pengoi which represents a change from a past investigation that preceded Cercopagis invasion in the lake. Our results are consistent with earlier observations of a larger proportion of algae in mysid diets in spring, transitioning to relatively more zooplanktivory and use of cladocerans in the summer and fall. Higher chlorophyll content in small mysids in July than in September may be associated with the presence of a deep chlorophyll layer in July that had largely dissipated by September. Overall, Mysis in Lake Ontario continues to be a generalist omnivore, incorporating new prey items and exhibiting higher herbivory in spring.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014856','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014856"><span>Biomass and productivity of three phytoplankton size classes in San Francisco Bay.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cole, B.E.; Cloern, J.E.; Alpine, A.E.</p> <p>1986-01-01</p> <p>The 5-22 mu m size accounted for 40-50% of annual production in each embayment, but production by phytoplanton >22 mu m ranged from 26% in the S reach to 54% of total phytoplankton production in the landward embayment of the N reach. A productivity index is derived that predicts daily productivity for each size class as a function of ambient irradiance and integrated chlorophyll a in the photic zone. For the whole phytoplankton community and for each size class, this index was constant at approx= 0.76 g C m-2 (g chlorophyll a Einstein)-1. The annual means of maximum carbon assimilation numbers were usually similar for the three size classes. Spatial and temporal variations in size-fractionated productivity are primarily due to differences in biomass rather than size-dependent carbon assimilation rates. -from Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016InAgr..30...77S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016InAgr..30...77S"><span>Ultrasound-assisted extraction of bioactive compounds from lemon balm and peppermint leaves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Šic Žlabur, Jana; Voća, Sandra; Dobričević, Nadica; Pliestić, Stjepan; Galić, Ante; Boričević, Ana; Borić, Nataša</p> <p>2016-01-01</p> <p>The aim of this study was to investigate the influence of conventional and ultrasound-assisted extraction (frequency, time, temperature) on the content of bioactive compounds as well as on the antioxidant activity of aqueous extracts from fresh lemon balm and peppermint leaves. Total phenols, flavonoids, non-flavonoids, total chlorophylls, total carotenoids, and radical scavenging capacity were determined. Moreover, the relationship between bioactive compounds and antioxidant capacity was studied by linear regression. A significant increase in all studied bioactive compounds during ultrasonic extraction for 5 to 20 min was found. With the classical extraction method, the highest amounts of total phenols, flavonoids, and antioxidant activity were determined, and the maximum amounts of total chlorophylls and carotenoids were determined during 20 min ultrasonic extraction. The correlation analysis revealed a strong, positive relationship between antioxidant activity and total phenolic compounds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhB...50p2001D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhB...50p2001D"><span>The fine tuning of carotenoid-chlorophyll interactions in light-harvesting complexes: an important requisite to guarantee efficient photoprotection via triplet-triplet energy transfer in the complex balance of the energy transfer processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Di Valentin, Marilena; Carbonera, Donatella</p> <p>2017-08-01</p> <p>Triplet-triplet energy transfer (TTET) from the chlorophyll to the carotenoid triplet state is the process exploited by photosynthetic systems to protect themselves from singlet oxygen formation under light-stress conditions. A deep comprehension of the molecular strategies adopted to guarantee TTET efficiency, while at the same time maintaining minimal energy loss and efficient light-harvesting capability, is still lacking. The paramagnetic nature of the triplet state makes electron paramagnetic resonance (EPR) the method of choice when investigating TTET. In this review, we focus on our extended comparative study of two photosynthetic antenna complexes, the Peridinin-chlorophyll a-protein of dinoflagellates and the light-harvesting complex II of higher plants, in order to point out important aspects of the molecular design adopted in the photoprotection strategy. We have demonstrated that a proper analysis of the EPR data allows one to identify the pigments involved in TTET and, consequently, gain an insight into the structure of the photoprotective sites. The structural information has been complemented by a detailed description of the electronic structure provided by hyperfine spectroscopy. All these elements represent the fundamental building blocks toward a deeper understanding of the requirements for efficient photoprotection, which is fundamental to guarantee the prolonged energy conversion action of photosynthesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Sci...359..900B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Sci...359..900B"><span>Breakup of last glacial deep stratification in the South Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F.; Molina-Kescher, Mario; Pahnke, Katharina</p> <p>2018-02-01</p> <p>Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO2 through upwelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSR...126...37G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSR...126...37G"><span>Condition and biochemical profile of blue mussels (Mytilus edulis L.) cultured at different depths in a cold water coastal environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallardi, Daria; Mills, Terry; Donnet, Sebastien; Parrish, Christopher C.; Murray, Harry M.</p> <p>2017-08-01</p> <p>The growth and health of cultured blue mussels (Mytilus edulis) are affected by environmental conditions. Typically, culture sites are situated in sheltered areas near shore (i.e., < 1 km distance from land, < 20 m depth); however, land runoff, user conflicts and environmental impact in coastal areas are concerns and interest in developing deep water (> 20 m depth) mussel culture has been growing. This study evaluated the effect of culture depth on blue mussels in a cold water coastal environment (Newfoundland, Canada). Culture depth was examined over two years from September 2012 to September 2014; mussels from three shallow water (5 m) and three deep water (15 m) sites were compared for growth and biochemical composition; culture depths were compared for temperature and chlorophyll a. Differences between the two years examined were noted, possibly due to harsh winter conditions in the second year of the experiment. In both years shallow and deep water mussels presented similar condition; in year 2 deep water mussels had a significantly better biochemical profile. Lipid and glycogen analyses showed seasonal variations, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a significantly higher content of omega-3 s (20:5ω3; EPA) and lower content of bacterial fatty acids in deep water sites in year 2. Everything considered, deep water appeared to provide a more favorable environment for mussel growth than shallow water under harsher weather conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2008/5201/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2008/5201/"><span>Water Quality Conditions in Upper Klamath and Agency Lakes, Oregon, 2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lindenberg, Mary K.; Hoilman, Gene; Wood, Tamara M.</p> <p>2008-01-01</p> <p>The U.S. Geological Survey Upper Klamath Lake water quality monitoring program gathered information from multiparameter continuous water quality monitors, physical water samples, dissolved oxygen production and consumption experiments, and meteorological stations during the June-October 2006 field season. The 2006 study area included Agency Lake and all of Upper Klamath Lake. Seasonal patterns in water quality were similar to those observed in 2005, the first year of the monitoring program, and were closely related to bloom dynamics of the cyanobacterium (blue-green alga) Aphanizomenon flos-aquae (AFA) in the two lakes. High dissolved oxygen and pH conditions in both lakes before the bloom declined in July, which coincided with seasonal high temperatures and resulted in seasonal lows in dissolved oxygen and decreased pH. Dissolved oxygen and pH in Upper Klamath and Agency Lakes increased again after the bloom recovered. Seasonal low dissolved oxygen and decreased pH coincided with seasonal highs in ammonia and orthophosphate concentrations. Seasonal maximum daily average temperatures were higher and minimum dissolved oxygen concentrations were lower in 2006 than in 2005. Conditions potentially harmful to fish were influenced by seasonal patterns in bloom dynamics and bathymetry. Potentially harmful low dissolved oxygen and high un-ionized ammonia concentrations occurred mostly at the deepest sites in the Upper Klamath Lake during late July, coincident with a bloom decline. Potentially harmful pH conditions occurred mostly at sites outside the deepest parts of the lake in July and September, coincident with a heavy bloom. Instances of possible gas bubble formation, inferred from dissolved oxygen data, were estimated to occur frequently in shallow areas of Upper Klamath and Agency Lakes simultaneously with potentially harmful pH conditions. Comparison of the data from monitors in nearshore areas and monitors near the surface of the water column in the open waters of Upper Klamath Lake revealed few differences in water quality dynamics. Median daily temperatures were higher in nearshore areas, and dissolved oxygen concentrations were periodically higher as well during periods of high AFA bloom. Differences between the two areas in water quality conditions potentially harmful to fish were not statistically significant (p < 0.05). Chlorophyll a concentrations varied temporally and spatially throughout Upper Klamath Lake. Chlorophyll a concentrations indicated an algal bloom in late June and early July that was followed by an algae bloom decline in late July and early August and a subsequent recovery in mid-August. Sites in the deepest part of the lake, where some of the highest chlorophyll a concentrations were observed, were the same sites where the lowest dissolved oxygen concentrations and the highest un-ionized ammonia concentrations were recorded during the bloom decline, indicating cell senescence. Total phosphorus concentrations limited the initial algal bloom in late June and early July. The rate of net dissolved oxygen production (that is, production in excess of community respiration) and consumption (due to community respiration) in the lake water column as measured in light and dark bottles, respectively, ranged from 2.79 to -2.14 milligrams of oxygen per liter per hour. Net production rate generally correlated positively with chlorophyll a concentration, except episodically at a few sites where high chlorophyll a concentrations resulted in self-shading that inhibited photosynthesis. The depth of photic zone was inversely correlated with chlorophyll a concentration. Calculations of a 24-hour change in dissolved oxygen concentration indicated that oxygen-consuming processes predominated at the deep trench sites and oxygen-producing processes predominated at the shallow sites. In addition, calculations of the 24-hour change in dissolved oxygen indicate that oxygen-consuming processes in the water column di</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6490W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6490W"><span>Significance of the Autumn Bloom within the Seasonal Cycle of Primary Production in a Temperate Continental Shelf Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wihsgott, Juliane U.; Sharples, Jonathan; Hopkins, Joanne; Woodward, Malcolm; Greenwood, Naomi; Sivyer, Dave; Hull, Tom</p> <p>2017-04-01</p> <p>Autumnal phytoplankton blooms are considered characteristic features of the seasonal cycle of primary productivity in most temperate and subpolar oceans. While observations of their occurrence and strength have been documented extensively, their significance within the seasonal cycle of primary production is not well quantified. Our aim is to establish the role the autumn bloom plays within the seasonal cycle and estimate its contribution to the annual primary production of a temperate continental shelf. In particular, we will illustrate that the autumn bloom has the potential to be as productive as the well-studied summer sub-surface chlorophyll maximum (SCM) and the capacity to significantly contribute to the drawdown of atmospheric CO2. We do this by combining long-term, high resolution observations of water column structure, meteorological forcing, nitrate and chlorophyll fluorescence over the entire seasonal cycle observed in a temperate shelf sea. We present a new series of continuous measurements spanning 17 months (March 2014 - July 2015), which were collected in a temperate shelf sea on the North West European Shelf. A long-term mooring array recorded full depth vertical density structure, dynamics and meteorological data as well as surface chlorophyll fluorescence biomass and inorganic nutrient data over a full seasonal cycle at a station 120 km north-east from the continental shelf break. Eight process cruises supplied additional full depth profiles of chlorophyll fluorescence biomass and macronutrients. The breakdown of stratification in 2014 commenced in early October due to increased winds compared to summer months, and a predominantly negative net heat flux (the ocean lost heat to the overlying atmosphere). Vertical mixing in autumn not only transformed the vertical density structure but also the vertical structure of chlorophyll biomass and surface nutrients. The SCM became eroded and instead a vertically homogeneous profile of chlorophyll biomass established itself above the pycnocline. This increased mixing also led to replenishment of surface nutrients and drove enhanced growth, which was almost 4 times stronger than observed during the summer months: We find an increase in depth integrated chlorophyll biomass of ˜50 mg m-2 in autumn 2014 compared to values of ˜20 mg m-2 during the summers of 2014 and 2015.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..113a2084H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..113a2084H"><span>Numerical simulation of phenomenon on zonal disintegration in deep underground mining in case of unsupported roadway</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Han, Fengshan; Wu, Xinli; Li, Xia; Zhu, Dekang</p> <p>2018-02-01</p> <p>Zonal disintegration phenomenon was found in deep mining roadway surrounding rock. It seriously affects the safety of mining and underground engineering and it may lead to the occurrence of natural disasters. in deep mining roadway surrounding rock, tectonic stress in deep mining roadway rock mass, horizontal stress is much greater than the vertical stress, When the direction of maximum principal stress is parallel to the axis of the roadway in deep mining, this is the main reasons for Zonal disintegration phenomenon. Using ABAQUS software to numerical simulation of the three-dimensional model of roadway rupture formation process systematically, and the study shows that when The Direction of maximum main stress in deep underground mining is along the roadway axial direction, Zonal disintegration phenomenon in deep underground mining is successfully reproduced by our numerical simulation..numerical simulation shows that using ABAQUA simulation can reproduce Zonal disintegration phenomenon and the formation process of damage of surrounding rock can be reproduced. which have important engineering practical significance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040065950','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040065950"><span>A Passive Method for Detecting Vegetation Stress from Orbit: Chlorophyll Fluorescence Spectra from Fraunhofer Lines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Theisen, Arnold F.</p> <p>2000-01-01</p> <p>Solar-stimulated chlorophyll fluorescence measured with the Fraunhofer line depth method has correlated well with vegetation stress in previous studies. However, the instruments used in those studies were limited to a single solar absorption line (e.g. 656.3 nm), obviating the red/far-red ratio (R/FR) method. Optics and detector technology have reached the level whereby multiple, very narrow Fraunhofer lines are resolvable. Thirteen such lines span the visible spectrum in the red to far-red region where chlorophyll fluorescence occurs. Fluorescence intensities at the 13 Fraunhofer line wavelengths were used to model emission spectra. The source data were collected for summer and fall bean crops (Phaseolus vulgaris L.) subjected to various levels of nitrogen fertilization. The intensities were adjusted to account for Fraunhofer line depth and atmospheric transmittance. Multiple R/FR fluorescence ratios, calculated from the modeled fluorescence spectra, correlated strongly with leaf chlorophyll concentration and well with applied nitrogen. The ratio yielding the best correlation with chlorophyll utilized red fluorescence at the 694.5 nm Fraunhofer line and farred fluorescence at the 755.6 nm Fraunhofer line. Twenty R/FR ratios, each evaluated for the maximum differential between low and high (optimal) nitrogen treatments, ranked higher in some cases and lower in others, possibly related to the time of year the crops were grown and the stage of growth of the crops. Ratios with 728.9 nm and 738.9 nm in the denominator consistently ranked in the lowest and next lowest quartile, respectively. Ratios of the 656.3 nm Fraunhofer line and the 755.6 nm line consistently ranked highest for the summer crop. Ratios with 755.6 nm in the denominator ranked in the upper quartile for 10 out of 12 measurement dates. Differences in ratio ranking indicate that physiological conditions may be estimated using selected ratios of Fraunhofer lines within the context of R/FR analysis. A passive instrument designed to monitor R/FR chlorophyll fluorescence (i.e. vegetation stress) from orbit could be built today.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25427104','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25427104"><span>Estimating trans-seasonal variability in water column biomass for a highly migratory, deep diving predator.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>O'Toole, Malcolm D; Lea, Mary-Anne; Guinet, Christophe; Hindell, Mark A</p> <p>2014-01-01</p> <p>The deployment of animal-borne electronic tags is revolutionizing our understanding of how pelagic species respond to their environment by providing in situ oceanographic information such as temperature, salinity, and light measurements. These tags, deployed on pelagic animals, provide data that can be used to study the ecological context of their foraging behaviour and surrounding environment. Satellite-derived measures of ocean colour reveal temporal and spatial variability of surface chlorophyll-a (a useful proxy for phytoplankton distribution). However, this information can be patchy in space and time resulting in poor correspondence with marine animal behaviour. Alternatively, light data collected by animal-borne tag sensors can be used to estimate chlorophyll-a distribution. Here, we use light level and depth data to generate a phytoplankton index that matches daily seal movements. Time-depth-light recorders (TDLRs) were deployed on 89 southern elephant seals (Mirounga leonina) over a period of 6 years (1999-2005). TDLR data were used to calculate integrated light attenuation of the top 250 m of the water column (LA(250)), which provided an index of phytoplankton density at the daily scale that was concurrent with the movement and behaviour of seals throughout their entire foraging trip. These index values were consistent with typical seasonal chl-a patterns as measured from 8-daySea-viewing Wide Field-of-view Sensor (SeaWiFs) images. The availability of data recorded by the TDLRs was far greater than concurrent remotely sensed chl-a at higher latitudes and during winter months. Improving the spatial and temporal availability of phytoplankton information concurrent with animal behaviour has ecological implications for understanding the movement of deep diving predators in relation to lower trophic levels in the Southern Ocean. Light attenuation profiles recorded by animal-borne electronic tags can be used more broadly and routinely to estimate lower trophic distribution at sea in relation to deep diving predator foraging behaviour.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5061432','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5061432"><span>High-Frequency Patterns in the Abundance of Benthic Species near a Cold-Seep – An Internet Operated Vehicle Application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Doya, Carolina; Thomsen, Laurenz; Purser, Autun; Aguzzi, Jacopo</p> <p>2016-01-01</p> <p>Three benthic megafaunal species (i.e. sablefish Anoplopoma fimbria; pacific hagfish Eptatretus stoutii and a group of juvenile crabs) were tested for diel behavioral patterns at the methane hydrates site of Barkley Canyon (890 m depth), off Vancouver Island (BC, Canada). Fluctuations of animal counts in linear video-transects conducted with the Internet Operated Deep-Sea Crawler “Wally” in June, July and December of 2013, were used as proxy of population activity rhythms. Count time series and environmental parameters were analyzed under the hypothesis that the environmental conditioning of activity rhythms depends on the life habits of particular species (i.e. movement type and trophic level). Non-linear least squares modeling of biological time series revealed significant diel periods for sablefish in summer and for hagfish and crabs in December. Combined cross-correlation and redundancy (RDA) analyses showed strong relationships among environmental fluctuations and detected megafauna. In particular, sablefish presence during summer months was related to flow magnitude, while the activity of pacific hagfish and juvenile crabs in December correlated with change in chemical parameters (i.e. chlorophyll and oxygen concentrations, respectively). Waveform analyses of animal counts and environmental variables confirmed the phase delay during the 24 h cycle. The timing of detection of sablefish occurred under low flow velocities, a possible behavioral adaptation to the general hypoxic conditions. The proposed effect of chlorophyll concentrations on hagfish counts highlights the potential role of phytodetritus as an alternative food source for this opportunistic feeder. The juvenile crabs seemed to display a cryptic behavior, possibly to avoid predation, though this was suppressed when oxygen levels were at a minimum. Our results highlight the potential advantages such mobile observation platforms offer in multiparametric deep-sea monitoring in terms of both spatial and temporal resolution and add to the vastly understudied field of diel rhythms of deep-sea megafauna. PMID:27732626</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27732626','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27732626"><span>High-Frequency Patterns in the Abundance of Benthic Species near a Cold-Seep - An Internet Operated Vehicle Application.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chatzievangelou, Damianos; Doya, Carolina; Thomsen, Laurenz; Purser, Autun; Aguzzi, Jacopo</p> <p>2016-01-01</p> <p>Three benthic megafaunal species (i.e. sablefish Anoplopoma fimbria; pacific hagfish Eptatretus stoutii and a group of juvenile crabs) were tested for diel behavioral patterns at the methane hydrates site of Barkley Canyon (890 m depth), off Vancouver Island (BC, Canada). Fluctuations of animal counts in linear video-transects conducted with the Internet Operated Deep-Sea Crawler "Wally" in June, July and December of 2013, were used as proxy of population activity rhythms. Count time series and environmental parameters were analyzed under the hypothesis that the environmental conditioning of activity rhythms depends on the life habits of particular species (i.e. movement type and trophic level). Non-linear least squares modeling of biological time series revealed significant diel periods for sablefish in summer and for hagfish and crabs in December. Combined cross-correlation and redundancy (RDA) analyses showed strong relationships among environmental fluctuations and detected megafauna. In particular, sablefish presence during summer months was related to flow magnitude, while the activity of pacific hagfish and juvenile crabs in December correlated with change in chemical parameters (i.e. chlorophyll and oxygen concentrations, respectively). Waveform analyses of animal counts and environmental variables confirmed the phase delay during the 24 h cycle. The timing of detection of sablefish occurred under low flow velocities, a possible behavioral adaptation to the general hypoxic conditions. The proposed effect of chlorophyll concentrations on hagfish counts highlights the potential role of phytodetritus as an alternative food source for this opportunistic feeder. The juvenile crabs seemed to display a cryptic behavior, possibly to avoid predation, though this was suppressed when oxygen levels were at a minimum. Our results highlight the potential advantages such mobile observation platforms offer in multiparametric deep-sea monitoring in terms of both spatial and temporal resolution and add to the vastly understudied field of diel rhythms of deep-sea megafauna.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B53K..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B53K..04S"><span>Dissolved Rare Earth Elements in the US GEOTRACES North Atlantic Section</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shiller, A. M.</p> <p>2016-12-01</p> <p>The rare earth elements (REEs) are a unique chemical set wherein there are systematic changes in geochemical behavior across the series. Furthermore, while most REEs are in the +III oxidation state, Ce and Eu can be in other oxidation states leading to distinct characteristics of those elements. Thus, the geochemical properties of the REEs make them particularly useful tools for inquiring into various geochemical processes. As part of the US GEOTRACES effort, we determined dissolved REEs and Y at 32 stations across the North Atlantic during US cruises GT10 and GT11 along a meridional transect from Lisbon to the Cape Verde Islands and a zonal transect from Cape Cod to the Mauritanian coast. While profiles are similar to previous reports, the high spatial resolution of the section allows for better elucidation of processes. Light rare earths (LREEs) show removal in the upper water column with a minimum at the chlorophyll maximum. LREE concentrations then increase into the oxygen minimum followed by a slight decrease and fairly constant concentrations in the mid-water column followed by an increase into the deep and bottom waters. Heavy rare earths (HREEs) show a more monotonic increase with depth. We also take advantage of a previously published water mass analysis for the section to estimate that most of the deep water changes can be explained by conservative mixing of waters with different pre-formed REE concentrations. Nonetheless, the pattern of LREE shallow water removal followed by regeneration, possible re-scavenging, and then deep water input is still preserved. Other features of note include an increase in LREEs in the strong oxygen minimum zone off Mauritania, consistent with an association of REE cycling with the redox cycles of Fe and Mn. Also along the eastern margin, but below the oxygen minimum, a small but distinct increase in the cerium and europium anomalies is observed, consistent with terrigenous input. In hydrothermally influenced waters along the mid-Atlantic Ridge, there are increases in Ce/Ce*, Eu/Eu*, and Y/Ho but a decrease in Nd/Yb and in REE concentrations. Surface water distributions are more consistent with elements influenced by margin inputs than with atmospheric input.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013DSRI...79...50N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013DSRI...79...50N"><span>Internal solitary waves on the Saya de Malha bank of the Mascarene Plateau: SAR observations and interpretation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>New, A. L.; Magalhaes, J. M.; da Silva, J. C. B.</p> <p>2013-09-01</p> <p>Energetic Internal Solitary Waves (ISWs) were recently discovered radiating from the central region of the Mascarene Plateau in the south-western Indian Ocean (da Silva et al., 2011). SAR imagery revealed the two-dimensional structure of the waves which propagated for several hundred kilometres in deep water both to the east and west of a sill, located near 12.5°S, 61°E between the Saya de Malha and Nazareth banks. These waves were presumed to originate from the disintegration of a large lee wave formed on the western side of the sill at the time of maximum barotropic flow to the west. In the present paper we focus instead on ISWs propagating in the shallow water above the Saya da Malha (SM) bank (to the north of the sill), rather than on those propagating in deep water (here denominated as type-I or -II waves if propagating to the west or east respectively). Analysis of an extended SAR image dataset reveals strong sea surface signatures of complex patterns of ISWs propagating over the SM bank arising from different sources. We identify three distinct types of waves, and propose suitable generation mechanisms for them using synergy from different remotely sensed datasets, together with analyses of linear phase speeds (resulting from local stratification and bathymetry). In particular, we find a family of ISWs (termed here A-type waves) which results from the disintegration of a lee wave which forms on the western slopes of SM. We also identify two further wave trains (B- and C-type waves) which we suggest result from refraction of the deep water type-I and -II waves onto the SM bank. Therefore, both B- and C-type waves can be considered to result from the same generation source as the type-I and -II waves. Finally, we consider the implications of the ISWs for mixing and biological production over the SM bank, and provide direct evidence, from ocean colour satellite images, of enhanced surface chlorophyll over a shallow topographic feature on the bank, which is consistent with the breaking of the ISWs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JGR...106.2517K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JGR...106.2517K"><span>Seasonal and nonseasonal variability of satellite-derived chlorophyll and colored dissolved organic matter concentration in the California Current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kahru, Mati; Mitchell, B. Greg</p> <p>2001-02-01</p> <p>Time series of surface chlorophyll a concentration (Chl) and colored dissolved organic matter (CDOM) derived from the Ocean Color and Temperature Sensor and Sea-Viewing Wide Field-of-View Sensor were evaluated for the California Current area using regional algorithms. Satellite data composited for 8-day periods provide the ability to describe large-scale changes in surface parameters. These changes are difficult to detect based on in situ observations alone that suffer from undersampling the large temporal and spatial variability, especially in Chl. We detected no significant bias in satellite Chl estimates compared with ship-based measurements. The variability in CDOM concentration was significantly smaller than that in Chl, both spatially and temporally. While being subject to large interannual and short-term variations, offshore waters (100-1000 km from the shore) have an annual cycle of Chl and CDOM with a maximum in winter-spring (December-March) and a minimum in late summer. For inshore waters the maximum is more likely in spring (April-May). We detect significant increase in both Chl and CDOM off central and southern California during the La Niña year of 1999. The trend of increasing Chl and CDOM from October 1996 to June 2000 is statistically significant in many areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011DSRII..58..808P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011DSRII..58..808P"><span>The response of phytoplankton to iron enrichment in Sub-Antarctic HNLCLSi waters: Results from the SAGE experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peloquin, Jill; Hall, Julie; Safi, Karl; Smith, Walker O., Jr.; Wright, Simon; van den Enden, Rick</p> <p>2011-03-01</p> <p>Areas of high nutrients and low chlorophyll a comprise nearly a third of the world's oceans, including the equatorial Pacific, the Southern Ocean and the Sub-Arctic Pacific. The SOLAS Sea- Air Gas Exchange (SAGE) experiment was conducted in late summer, 2004, off the east coast of the South Island of New Zealand. The objective was to assess the response of phytoplankton in waters with low iron and silicic acid concentrations to iron enrichment. We monitored the quantum yield of photochemistry ( Fv/ Fm) with pulse amplitude modulated fluorometry, chlorophyll a, primary productivity, and taxonomic composition. Measurements of Fv/ Fm indicated that the phytoplankton within the amended patch were relieved from iron stress ( Fv/ Fm approached 0.65). Although there was no significant difference between IN and OUT stations at points during the experiment, the eventual enhancement in chlorophyll a and primary productivity was twofold by the end of the 15-day patch occupation. However, no change in particulate carbon or nitrogen pools was detected. Enhancement in primary productivity and chlorophyll a were approximately equal for all phytoplankton size classes, resulting in a stable phytoplankton size distribution. Initial seed stocks of diatoms were extremely low, <1% of the assemblage based on HPLC pigment analysis, and did not respond to iron enrichment. The most dominant groups before and after iron enrichment were type 8 haptophytes and prasinophytes that were associated with ˜75% of chlorophyll a. Twofold enhancement of biomass estimated by flow cytometry was detected only in eukaryotic picoplankton, likely prasinophytes, type 8 haptophytes and/or pelagophytes. These results suggest that factors other than iron, such as silicic acid, light or physical disturbance limited the phytoplankton assemblage during the SAGE experiment. Furthermore, these results suggest that additional iron supply to the Sub-Antarctic under similar seasonal conditions and seed stock will most likely favor phytoplankton <2 μm. This implies that any iron-mediated gain of fixed carbon will most likely be remineralized in shallow water rather than sink and be sequestered in the deep ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMED12A..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMED12A..03D"><span>Using NASA DICCE GIOVANNI to Prepare Pre-service STEM Teachers to Teach Climate Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dorsey, W. C.</p> <p>2014-12-01</p> <p>The Deep Horizon oil spill incident on April 20, 2010 potentially compromised the Gulf Coast's ecosystem and human health through the marine food chain. One of the mitigation strategies to impede oil migration to the Gulf Coast's shorelines was to burn off crude oil, which resulted in the production of polycyclic aromatic hydrocarbon (PAH) emissions such as, benzo[a]anthracene, benzo[a]pyrene, and benzo[b]fluoranthene compounds. Noticeable high deaths of marine animals and a decline in phytoplankton productivity have been linked to PAH- and dispersant-toxicity. Phytoplankton plays a pivotal role in natural food chains, production of O2, and capture of CO2. Grambling State University's Water Quality Management students used the University of New Hampshire's Student Climate Data website and the NASA DICCE data portal in learning activities to understand impacts of spill mitigation on chlorophyll a concentrations. Students used NASA Giovanni data and spectral satellite images to examine phytoplankton productivity around coastal shorelines, including Texas, Louisiana, Mississippi, Alabama, and the Florida pan-handle. Area-averaged time series from Giovanni indicated that June was the peak month for chlorophyll a from 2007 to 2012. Spectral images showed that chlorophyll a concentrations between 2.5-30mg/m3 were widely distributed around the shorelines of Louisiana, Mississippi, and the Florida pan-handle from June 2007 to June 2008. Students then examined chlorophyll a concentrations in April 2010 and May 2010. Data obtained from spectral images by students showed phytoplankton blooms with a 2.5mg/m3 concentration dramatically decreased from that of April 2010. Next students examined phytoplankton productivity from 0.08-30mg/m3 in the month of June for 2010, 2011, and 2012. In June 2010, a pattern of movement in phytoplankton blooms was observed toward southwest Louisiana and Texas shorelines. Comparative data from June 2011 and June 2012 demonstrated a low concentration of chlorophyll a of 10mg/m3 around the shorelines of Texas, Louisiana, Mississippi, Alabama, and the Florida pan-handle, indicating a decline in phytoplankton productivity. Students believed that phytoplankton movement and low productivity was caused by exposure to PAH- and dispersant-toxicity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17412948','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17412948"><span>Atlantic meridional overturning circulation during the Last Glacial Maximum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lynch-Stieglitz, Jean; Adkins, Jess F; Curry, William B; Dokken, Trond; Hall, Ian R; Herguera, Juan Carlos; Hirschi, Joël J-M; Ivanova, Elena V; Kissel, Catherine; Marchal, Olivier; Marchitto, Thomas M; McCave, I Nicholas; McManus, Jerry F; Mulitza, Stefan; Ninnemann, Ulysses; Peeters, Frank; Yu, Ein-Fen; Zahn, Rainer</p> <p>2007-04-06</p> <p>The circulation of the deep Atlantic Ocean during the height of the last ice age appears to have been quite different from today. We review observations implying that Atlantic meridional overturning circulation during the Last Glacial Maximum was neither extremely sluggish nor an enhanced version of present-day circulation. The distribution of the decay products of uranium in sediments is consistent with a residence time for deep waters in the Atlantic only slightly greater than today. However, evidence from multiple water-mass tracers supports a different distribution of deep-water properties, including density, which is dynamically linked to circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20376524','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20376524"><span>Photosynthesis in chlorolichens: the influence of the habitat light regime.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Piccotto, Massimo; Tretiach, Mauro</p> <p>2010-11-01</p> <p>The hypothesis that CO(2) gas exchange and chlorophyll a fluorescence (ChlaF) of lichens vary according to the light regimes of their original habitat, as observed in vascular plants, was tested by analysing the photosynthetic performance of 12 populations of seven dorsoventral, foliose lichens collected from open, south-exposed rocks to densely shaded forests. Light response curves were induced at optimum thallus water content and ChlaF emission curves at the species-specific photon flux at which the quantum yield of CO(2) assimilation is the highest and is saturating the photosynthetic process. Photosynthetic pigments were quantified in crude extracts. The results confirm that the maximum rate of gross photosynthesis is correlated with the chlorophyll content of lichens, which is influenced by light as well as by nitrogen availability. Like leaves, shade tolerant lichens emit more ChlaF than sun-loving ones, whereas the photosynthetic quantum conversion is higher in the latter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27493605','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27493605"><span>Visual Analysis for Detection and Quantification of Pseudomonas cichorii Disease Severity in Tomato Plants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rajendran, Dhinesh Kumar; Park, Eunsoo; Nagendran, Rajalingam; Hung, Nguyen Bao; Cho, Byoung-Kwan; Kim, Kyung-Hwan; Lee, Yong Hoon</p> <p>2016-08-01</p> <p>Pathogen infection in plants induces complex responses ranging from gene expression to metabolic processes in infected plants. In spite of many studies on biotic stress-related changes in host plants, little is known about the metabolic and phenotypic responses of the host plants to Pseudomonas cichorii infection based on image-based analysis. To investigate alterations in tomato plants according to disease severity, we inoculated plants with different cell densities of P. cichorii using dipping and syringe infiltration methods. High-dose inocula (≥ 10(6) cfu/ml) induced evident necrotic lesions within one day that corresponded to bacterial growth in the infected tissues. Among the chlorophyll fluorescence parameters analyzed, changes in quantum yield of PSII (ΦPSII) and non-photochemical quenching (NPQ) preceded the appearance of visible symptoms, but maximum quantum efficiency of PSII (Fv/Fm) was altered well after symptom development. Visible/near infrared and chlorophyll fluorescence hyperspectral images detected changes before symptom appearance at low-density inoculation. The results of this study indicate that the P. cichorii infection severity can be detected by chlorophyll fluorescence assay and hyperspectral images prior to the onset of visible symptoms, indicating the feasibility of early detection of diseases. However, to detect disease development by hyperspectral imaging, more detailed protocols and analyses are necessary. Taken together, change in chlorophyll fluorescence is a good parameter for early detection of P. cichorii infection in tomato plants. In addition, image-based visualization of infection severity before visual damage appearance will contribute to effective management of plant diseases.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24830928','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24830928"><span>Spatial variation of biogenic sulfur in the south Yellow Sea and the East China Sea during summer and its contribution to atmospheric sulfate aerosol.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Sheng-Hui; Yang, Gui-Peng; Zhang, Hong-Hai; Yang, Jian</p> <p>2014-08-01</p> <p>Spatial distributions of biogenic sulfur compounds including dimethylsulfide (DMS), dissolved and particulate dimethylsulfoniopropionate (DMSPd and DMSPp) were investigated in the South Yellow Sea (SYS) and the East China Sea (ECS) in July 2011. The concentrations of DMS and DMSPp were significantly correlated with the levels of chlorophyll a in the surface water. Simultaneously, relatively high ratio values of DMSP/chlorophyll a and DMS/chlorophyll a occurred in the areas where the phytoplankton community was dominated by dinoflagellates. The DMSPp and chlorophyll a size-fractionation showed that larger nanoplankton (5-20 μm) was the most important producer of DMSPp in the study area. The vertical profiles of DMS and DMSP were characterized by a maximum at the upper layer and the bottom concentrations were also relatively higher compared with the overlying layer of the bottom. In addition, a positive linear correlation was observed between dissolved dimethylsulfoxide (DMSOd) and DMS concentrations in the surface waters. The sea-to-air fluxes of DMS in the study area were estimated to be from 0.03 to 102.35 μmol m(-2) d(-1) with a mean of 16.73 μmol m(-2) d(-1) and the contribution of biogenic non-sea-salt SO4(2-) (nss-SO4(2-)) to the measured total nss-SO4(2-) in the atmospheric aerosol over the study area varied from 1.42% to 30.98%, with an average of 8.2%. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28972142','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28972142"><span>The C21-formyl group in chlorophyll f originates from molecular oxygen.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Garg, Harsh; Loughlin, Patrick C; Willows, Robert D; Chen, Min</p> <p>2017-11-24</p> <p>Chlorophylls (Chls) are the most important cofactors for capturing solar energy to drive photosynthetic reactions. Five spectral types of Chls have been identified to date, with Chl f having the most red-shifted absorption maximum because of a C2 1 -formyl group substitution of Chl f However, the biochemical provenance of this formyl group is unknown. Here, we used a stable isotope labeling technique ( 18 O and 2 H) to determine the origin of the C2 1 -formyl group of Chl f and to verify whether Chl f is synthesized from Chl a in the cyanobacterial species Halomicronema hongdechloris. In the presence of either H 2 18 O or 18 O 2 , the origin of oxygen atoms in the newly synthesized chlorophylls was investigated. The pigments were isolated with HPLC, followed by MS analysis. We found that the oxygen atom of the C2 1 -formyl group originates from molecular oxygen and not from H 2 O. Moreover, we examined the kinetics of the labeling of Chl a and Chl f from H. hongdechloris grown in 50% D 2 O-seawater medium under different light conditions. When cells were shifted from white light D 2 O-seawater medium to far-red light H 2 O-seawater medium, the observed deuteration in Chl f indicated that Chl(ide) a is the precursor of Chl f Taken together, our results advance our understanding of the biosynthesis pathway of the chlorophylls and the formation of the formyl group in Chl f . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29274989','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29274989"><span>Effect of ionic liquids with different cations and anions on photosystem and cell structure of Scenedesmus obliquus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xia, Yilu; Liu, Dingdong; Dong, Ying; Chen, Jiazheng; Liu, Huijun</p> <p>2018-03-01</p> <p>The rapid increase in the production and practical application of ionic liquids (ILs) could pose potential threats to aquatic systems. In this study, we investigated the effects of four ILs with different cations and anions, including 1-hexyl-3-methylimidazolium nitrate ([HMIM]NO 3 ), 1-hexyl-3-methylimidazolium chloride ([HMIM]Cl), N-hexyl-3-metylpyridinium chloride ([HMPy]Cl), and N-hexyl-3-metylpyridinium bromide ([HMPy]Br), on photosystem and cellular structure of Scenedesmus obliquus. The results indicated that ILs are phytotoxic to S. obliquus. The contents of chlorophyll a, chlorophyll b and total chlorophyll decreased with increasing ILs concentrations. The chlorophyll fluorescence parameters of photosynthetic system II (PSII), including minimal fluorescence yield (F 0 ), potential efficiency of PSII (F v /F o ), maximum quantum efficiency of PSII photochemistry (F v /F m ), yield of photochemical quantum [Y(II)], and non-photochemical quenching coefficient without measuring F 0 ' (NPQ), were all affected. This indicates that ILs could damage PSII, inhibit the primary reaction of photosynthesis, interdict the process of electron-transfer and lead to loss of heat-dissipating ability. ILs also increased cell membrane permeability of S. obliquus, influenced the cellular ultrastructure, changed the morphology of algae cells and destroyed the cell wall, cell membrane and organelles. The results indicated that imidazolium ILs had greater effect than pyridinium ILs, NO 3 - -IL and Br - -IL had greater effect than Cl - -IL. To minimize threats to the environment, the structure of ILs should be taken into consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6928L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6928L"><span>Application of Low cost Spirulina growth medium using Deep sea water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lim, Dae-hack; Kim, Bong-ju; Lee, Sung-jae; Choi, Nag-chul; Park, Cheon-young</p> <p>2017-04-01</p> <p>Deep-sea water has a relatively constant temperature, abundant nutrients such as calcium, magnesium, nitrates, and phosphates, etc., and stable water quality, even though there might be some variations of their compositions according to collection places. Thus, deep-sea water would be a good substrate for algal growth and biomass production since it contains various nutrients, including a fluorescent red pigment, and β-carotene, etc. The aim of this study was to investigate the economics of a culture condition through comparative analysis to Spirulina platensis growth characteristic under various medium conditions for cost-effective production of Spirulina sp.. Growth experiments were performed with S. platensis under various culture medium conditions (deep sea water + SP medium). Growth tests for culture medium demonstrated that the deep sea water to SP medium ratio of 50:50(W/W) was effective in S. platensis with the maximum biomass (1.35g/L) and minimum medium making cost per production mass (133.28 KRW/g). Parameter estimation of bio-kinetics (maximum growth rate and yield) for low cost medium results showed that the maximum growth rate and yield of N, P, K were obtained under deep sea water to SP medium ratio of 50:50(W/W) of 0.057 1/day and 0.151, 0.076, 0.123, respectively. Acknowledgment : "This research was a part of the project titled 'Development of microalgae culture technique for cosmetic materials based on ocean deep sea water(20160297)', funded by the Ministry of Oceans and Fisheries, Korea."</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3203437','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3203437"><span>Identification of the 7-Hydroxymethyl Chlorophyll a Reductase of the Chlorophyll Cycle in Arabidopsis[W</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Meguro, Miki; Ito, Hisashi; Takabayashi, Atsushi; Tanaka, Ryouichi; Tanaka, Ayumi</p> <p>2011-01-01</p> <p>The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation. PMID:21934147</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27755566','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27755566"><span>Effects of Dihydroartemisinin and Artemether on the Growth, Chlorophyll Fluorescence, and Extracellular Alkaline Phosphatase Activity of the Cyanobacterium Microcystis aeruginosa.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Shoubing; Xu, Ziran</p> <p>2016-01-01</p> <p>Increased eutrophication in the recent years has resulted in considerable research focus on identification of methods for preventing cyanobacterial blooms that are rapid and efficient. The objectives of this study were to investigate the effects of dihydroartemisinin and artemether on the growth of Microcystis aeruginosa and to elucidate its mode of action. Variations in cell density, chlorophyll a, soluble protein, malondialdehyde, extracellular alkaline phosphatase activity (APA), and chlorophyll fluorescence parameters (Fv/Fm, ΦPSII, ETR, rapid light curves, fast chlorophyll fluorescence curves on fluorescence intensity, and relative variable fluorescence) were evaluated by lab-cultured experiments. Our results demonstrated that both dihydroartemisinin and artemether inhibited the growth of M.aeruginosa by impairing the photosynthetic center in photosystem II and reducing extracellular APA, with a higher sensitivity exhibited toward artemether. The inhibitory effects of dihydroartemisinin on M.aeruginosa increased with concentration, and the maximum growth inhibitory rate was 42.17% at 24 mg·L-1 after 120h exposure, whereas it was 55.72% at 6 mg·L-1 artemetherafter 120h exposure. Moreover, the chlorophyll fluorescence was significantly inhibited (p<0.05) after 120h exposure to 12 and 24 mg·L-1 dihydroartemisinin. Furthermore, after 120h exposure to 6 mg·L-1 artemether, Fv/Fm, ΦPSII, ETR and rETRmax showed a significant decrease (p<0.01) from initial values of 0.490, 0.516, 17.333, and 104.800, respectively, to 0. One-way analysis of variance showed that 6 mg·L-1 artemether and 24 mg·L-1 dihydroartemisinin had significant inhibitory effects on extracellular APA (p<0.01). The results of this study would be useful to further studies to validate the feasibility of dihydroartemisinin and artemether treatment to inhibit overall cyanobacterial growth in water bodies, before this can be put into practice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29472480','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29472480"><span>Breakup of last glacial deep stratification in the South Pacific.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F; Molina-Kescher, Mario; Pahnke, Katharina</p> <p>2018-02-23</p> <p>Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO 2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO 2 through upwelling. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..62..265W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..62..265W"><span>High performance of chlorophyll-a prediction algorithms based on simulated OLCI Sentinel-3A bands in cyanobacteria-dominated inland waters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watanabe, Fernanda Sayuri Yoshino; Alcântara, Enner; Stech, José Luiz</p> <p>2018-07-01</p> <p>In this research, we have investigated whether the chlorophyll-a (chl a) retrieval algorithms based on OLCI Sentinel-3A bands are suitable for cyanobacteria-dominated waters. Phytoplankton assemblages model optical properties of the water, influencing the performance of bio-optical algorithms. Understanding these processes is important to improve the prediction of photoactive pigments in order to use them as a proxy for trophic state and harmful algal bloom. So that, both empirical and semi-analytical approaches designed for different inland waters were tested. In addition, empirical models were tuned based on dataset collected in situ. The study was conducted in the Funil hydroelectric reservoir, where chl a ranged from 2.33 to 208.68 mg m-3 in May 2012 (austral fall) and 4.37 to 306.03 mg m-3 in October 2012 (austral spring). OLCI Sentinel-3A bands were tested in existing algorithms developed for other sensors and new band combinations were compared to analyze the errors produced. Normalized Difference Chlorophyll Index (NDCI) exhibited the best performance, with a Normalized Root Mean Square Error (NRMSE) of 9.30%. Result showed that wavelength at 665 nm is adequate to estimate chl a, although the maximum pigment absorption band is shifted due to phycocyanin fluorescence at approximately 650 nm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=159245','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=159245"><span>Chlorophyll Fluorescence as a Possible Tool for Salinity Tolerance Screening in Barley (Hordeum vulgare L.).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Belkhodja, R.; Morales, F.; Abadia, A.; Gomez-Aparisi, J.; Abadia, J.</p> <p>1994-01-01</p> <p>The application of chlorophyll fluorescence measurements to screening barley (Hordeum vulgare L.) genotypes for salinity tolerance has been investigated. Excised barley leaves were cut under water and incubated with the cut end immersed in water or in a 100-mM NaCl solution, either in the dark or in high light. Changes in rapid fluorescence kinetics occurred in excised barley leaves exposed to the saline solution only when the incubation was carried out in the presence of high light. Fluorescence changes consisted of decreases in the variable to maximum fluorescence ratio and in increases in the relative proportion of variable fluorescence leading to point I in the Kautsky fluorescence induction curve. These relative increases in fluorescence at point I appeared to arise from a delayed plastoquinone reoxidation in the dark, since they disappeared after short, far-red illumination, which is known to excite photosystem I preferentially. We show that a significant correlation existed between some fluorescence parameters, measured after a combined salt and high-light treatment, and other independent measurements of salinity tolerance. These results suggest that chlorophyll fluorescence, and especially the relative fluorescence at point I in the Kautsky fluorescence induction curve, could be used for the screening of barley genotypes for salinity tolerance. PMID:12232117</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013DSRII..93...44P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013DSRII..93...44P"><span>Temporal dynamics of phytoplankton and heterotrophic protists at station ALOHA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pasulka, Alexis L.; Landry, Michael R.; Taniguchi, Darcy A. A.; Taylor, Andrew G.; Church, Matthew J.</p> <p>2013-09-01</p> <p>Pico- and nano-sized autotrophic and heterotrophic unicellular eukaryotes (protists) are an important component of open-ocean food webs. To date, however, no direct measurements of cell abundance and biomass of these organisms have been incorporated into our understanding of temporal variability in the North Pacific Subtropical Gyre (NPSG). Based primarily on epifluoresence microscopy augmented with flow cytometry, we assessed the abundance and biomass of autotrophs and heterotrophic protists at Station ALOHA between June 2004 and January 2009. Autotrophic eukaryotes (A-EUKS) were more abundant in both the upper euphotic zone and deep chlorophyll maximum layer (DCML) during winter months, driven mostly by small flagellates. A higher ratio of A-EUKS to heterotrophic protists (A:H ratio) and a structural shift in A-EUKS to smaller cells during the winter suggests a seasonal minimum in grazing pressure. Although Prochlococcus spp. comprised between 30% and 50% of autotrophic biomass in both the upper and lower euphotic zone for most of the year, the community structure and seasonality of nano- and micro-phytoplankon differed between the two layers. In the upper layer, Trichodesmium spp. was an important contributor to total biomass (20-50%) in the late summer and early fall. Among A-EUKS, prymnesiophytes and other small flagellates were the dominant contributors to total biomass in both layers regardless of season (10-20% and 13-39%, respectively). Based on our biomass estimates, community composition was less seasonally variable in the DCML relative to the upper euphotic zone. In surface waters, mean estimates of C:Chl a varied with season—highest in the summer and lowest in the winter (means=156±157 and 89±32, respectively); however, there was little seasonal variability of C:Chl a in the DCML (100 m mean=29.9±9.8). Biomass of heterotrophic protists peaked in the summer and generally declined monotonically with depth without a deep maximum. Anomalous patterns of A:H variability during summer 2006 (low mesozooplankton, high A-EUKS and H-dinoflagellates) suggest that top-down forcing is strong enough to impact lower trophic levels in the NPSG. Continued studies of community abundance and biomass relationships are needed for adequate representations of plankton dynamics in ecosystem models and for developing a predictive understanding of both intra- and inter-lower trophic level responses to climate variability in the NPSG.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA509417','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA509417"><span>Layered Organization in the Coastal Ocean: Acoustical Data Acquisition Analyses and Synthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-11-04</p> <p>associated with such trophic exchange processes as are enabled by the presence of the seasonal chlorophyll maximum and horizontal patchiness. The presence...dependence of acoustic volume scattering strength in a coastal environment during different seasons allows designers to do a better job and operations...completed well before sunrise, even as early as 0300 PDT (local time). Sunrise was typically at ca. 0630 PDT during the LOCO field seasons . Our joint</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Natur.551..242B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Natur.551..242B"><span>Nutrient co-limitation at the boundary of an oceanic gyre</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Browning, Thomas J.; Achterberg, Eric P.; Rapp, Insa; Engel, Anja; Bertrand, Erin M.; Tagliabue, Alessandro; Moore, C. Mark</p> <p>2017-11-01</p> <p>Nutrient limitation of oceanic primary production exerts a fundamental control on marine food webs and the flux of carbon into the deep ocean. The extensive boundaries of the oligotrophic sub-tropical gyres collectively define the most extreme transition in ocean productivity, but little is known about nutrient limitation in these zones. Here we present the results of full-factorial nutrient amendment experiments conducted at the eastern boundary of the South Atlantic gyre. We find extensive regions in which the addition of nitrogen or iron individually resulted in no significant phytoplankton growth over 48 hours. However, the addition of both nitrogen and iron increased concentrations of chlorophyll a by up to approximately 40-fold, led to diatom proliferation, and reduced community diversity. Once nitrogen-iron co-limitation had been alleviated, the addition of cobalt or cobalt-containing vitamin B12 could further enhance chlorophyll a yields by up to threefold. Our results suggest that nitrogen-iron co-limitation is pervasive in the ocean, with other micronutrients also approaching co-deficiency. Such multi-nutrient limitations potentially increase phytoplankton community diversity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRI..115...74R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRI..115...74R"><span>To what extent can specialized species succeed in the deep sea? The biology and trophic ecology of deep-sea spiny eels (Notacanthidae) in the Mediterranean Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Romeu, Oriol Rodríguez; Cartes, Joan E.; Solé, Montse; Carrassón, Maite</p> <p>2016-09-01</p> <p>The population structure, reproductive biology and feeding ecology of the two notacanthids inhabiting the deep Mediterranean, Notacanthus bonapartei and Polyacanthonotus rissoanus, were analyzed in the Balearic Basin at depths from 579 to 2233 m (mainly pristine depths or subjected to low fishing impact), including seasonal variations. Preferred average depths (Centres of Gravity, CoG) of Notacanthusbonapartei were situated over the middle slope (942 m) and of P. rissoanus on the lower slope (1680 m). For both species, bigger individuals collected at the deepest depths had the highest values of a gonadosomatic index (GSI), suggesting that in reproductive periods adults migrate into deeper waters. The reproductive season for N. bonapartei was late summer and autumn; that of P. rissoanus was narrower, restricted to summer. N. bonapartei exploited benthic prey, among identified prey mainly echinoderms (e.g., Penilpidia ludwigi, Hymenodiscus coronata) and sessile benthic organisms (e.g., actinians and polyps of the bamboo coral Isidella elongata). Consumption of bamboo coral polyps by N. bonapartei constitutes a unique specialized trophic strategy and a direct link with such corals. Some differences in the diet composition related to depth were observed, as were a few differences related to periods of water-column stratification and homogenization. Gut fullness (F) of this species was mainly correlated with surface Chlorophyll a recorded 2-3 months before sampling date and somewhat but less so with river discharges 1 month before sampling. That suggests that vertical flux of organic matter was the food source for prey exploited by N. bonapartei. Diet of P. rissoanus was based on epibenthic-suprabenthic crustaceans, e.g. tanaids (Apseudes spp.), isopods (Munnopsurus atlanticus) and amphipods (Rhachotropis caeca) and on polychaetes (Polynoidae, Harmothoe spp.), all these prey more mobile than consumed by N. bonapartei. No significant differences in diet composition were found related with either depth or homogenization/stratification of the water column. This lack of changes in diet is probably attributable to the greater stability of the lower slope where P. rissoanus lives. Gut fullness was mainly correlated with surface Chlorophyll a recorded simultaneously with the fish sampling. Lactate dehydrogenase (LDH) activity was similar in the muscle of the two notacanthids (N. bonapartei=3.72-8.75 μmol/min/mg prot; P. rissoanus=7.56 μmol/min/mg prot). Values for N. bonapartei were the highest found compared to other deep-sea fish in the deep Mediterranean. This could be related with the special feeding behaviour of this species when it removes sessile prey from substrate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMOS53C1324B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMOS53C1324B"><span>Does Terrestrial Carbon Explain Lake Superior Model-Data pCO2 Discrepancy?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bennington, V.; McKinley, G. A.; Atilla, N.; Kimura, N.; Urban, N.; Wu, C.; Desai, A.</p> <p>2008-12-01</p> <p>As part of the CyCLeS project, a three-dimensional hydrodynamic model (MITgcm) was coupled to a medium- complexity ecosystem model and applied to Lake Superior in order to constrain the seasonal cycle of lake pCO2 and air-lake fluxes of CO2. Previous estimates of CO2 emissions from the lake, while very large, were based on field measurements of very limited spatial and temporal extent. The model allows a more realistic extrapolation from the limited data by incorporation of lake-wide circulation and food web dynamics. A large discrepancy (200 uatm) between observations and model-predicted pCO2 during spring suggests a significant input of terrestrial carbon into the lake. The physical model has 10-km horizontal resolution with 29 vertical layers, ten of which are in the top 50 m of the water column. The model is forced by interpolated meteorological data obtained from land-based weather stations, buoys, and other measurements. Modeled surface temperatures compare well to satellite- based surface water temperature images derived from NOAA AVHRR (Advanced Very High Resolution Radiometer), though there are regional patterns of bias that suggest errors in the heat flux forcing. Growth of two classes of phytoplankton is modeled as a function of temperature, light, and nutrients. One grazer preys upon all phytoplankton. The cycles of carbon and phosphorous are explicitly modeled throughout the water column. The model is able to replicate the observed seasonal cycle of lake chlorophyll and the deep chlorophyll maximum. The model is unable to capture the magnitude of observed CO2 super-saturation during spring without considering external carbon inputs to the lake. Simple box model results suggest that the estimated pool of terrestrial carbon in the lake (17 TgC) must remineralize with a timescale of months during spring in order to account for the model/data pCO2 difference. River inputs and enhanced remineralization in spring due to photo-oxidation are other mechanisms considered to explain the discrepancy between model predictions and observations of pCO2. Model results suggest that year-round and lake-wide direct measurements of pCO2 would help to better constrain the lake carbon cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4835056','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4835056"><span>Physical-Biological Coupling in the Western South China Sea: The Response of Phytoplankton Community to a Mesoscale Cyclonic Eddy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Lei; Huang, Bangqin; Chiang, Kuo-Ping; Liu, Xin; Chen, Bingzhang; Xie, Yuyuan; Xu, Yanping; Hu, Jianyu; Dai, Minhan</p> <p>2016-01-01</p> <p>It is widely recognized that the mesoscale eddies play an important part in the biogeochemical cycle in ocean ecosystem, especially in the oligotrophic tropical zones. So here a heterogeneous cyclonic eddy in its flourishing stage was detected using remote sensing and in situ biogeochemical observation in the western South China Sea (SCS) in early September, 2007. The high-performance liquid chromatography method was used to identify the photosynthetic pigments. And the CHEMical TAXonomy (CHEMTAX) was applied to calculate the contribution of nine phytoplankton groups to the total chlorophyll a (TChl a) biomass. The deep chlorophyll a maximum layer (DCML) was raised to form a dome structure in the eddy center while there was no distinct enhancement for TChl a biomass. The integrated TChl a concentration in the upper 100 m water column was also constant from the eddy center to the surrounding water outside the eddy. However the TChl a biomass in the surface layer (at 5 m) in the eddy center was promoted 2.6-fold compared to the biomass outside the eddy (p < 0.001). Thus, the slight enhancement of TChl a biomass of euphotic zone integration within the eddy was mainly from the phytoplankton in the upper mixed zone rather than the DCML. The phytoplankton community was primarily contributed by diatoms, prasinophytes, and Synechococcus at the DCML within the eddy, while less was contributed by haptophytes_8 and Prochlorococcus. The TChl a biomass for most of the phytoplankton groups increased at the surface layer in the eddy center under the effect of nutrient pumping. The doming isopycnal within the eddy supplied nutrients gently into the upper mixing layer, and there was remarkable enhancement in phytoplankton biomass at the surface layer with 10.5% TChl a biomass of water column in eddy center and 3.7% at reference stations. So the slight increasing in the water column integrated phytoplankton biomass might be attributed to the stimulated phytoplankton biomass at the surface layer. PMID:27088991</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PrOce.142...72P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PrOce.142...72P"><span>Seasonality, phytoplankton succession and the biogeochemical impacts of an autumn storm in the northeast Atlantic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Painter, Stuart C.; Finlay, Madelaine; Hemsley, Victoria S.; Martin, Adrian P.</p> <p>2016-03-01</p> <p>Phytoplankton chemotaxonomic distributions are examined in conjunction with taxon specific particulate biomass concentrations and phytoplankton abundances to investigate the biogeochemical consequences of the passage of an autumn storm in the northeast Atlantic Ocean. Chemotaxonomy indicated that the phytoplankton community was dominated by nanoplankton (2-20 μm), which on average represented 75 ± 8% of the community. Microplankton (20-200 μm) and picoplankton (<2 μm) represented 21 ± 7% and 4 ± 3% respectively with the microplankton group composed of almost equal proportions of diatoms (53 ± 17%) and dinoflagellates (47 ± 17%). Total chlorophyll-a (TCHLa = CHLa + Divinyl CHLa) concentrations ranged from 22 to 677 ng L-1, with DvCHLa making minor contributions of between <1% and 13% to TCHLa. Higher DvCHLa contributions were seen during the storm, which deepened the surface mixed layer, increased mixed layer nutrient concentrations and vertically mixed the phytoplankton community leading to a post-storm increase in surface chlorophyll concentrations. Picoplankton were rapid initial respondents to the changing conditions with pigment markers showing an abrupt 4-fold increase in proportion but this increase was not sustained post-storm. 19‧-HEX, a chemotaxonomic marker for prymnesiophytes, was the dominant accessory pigment pre- and post-storm with concentrations of 48-435 ng L-1, and represented 44% of total carotenoid concentrations. Accompanying scanning electron microscopy results support the pigment-based analysis but also provide detailed insight into the nano- and microplankton communities, which proved to be highly variable between pre-storm and post-storm sampling periods. Nanoplankton remained the dominant size class pre- and post-storm but the microplankton proportion peaked during the period of maximum nutrient and chlorophyll concentrations. Classic descriptions of autumn blooms resulting from storm driven eutrophication events promoting phytoplankton growth in surface waters should be tempered with greater understanding of the role of storm driven vertical reorganization of the water column and of resident phytoplankton communities. Crucially, in this case we observed no change in integrated chlorophyll, particulate organic carbon or biogenic silica concentrations despite also observing a ∼50% increase in surface chlorophyll concentrations which indicated that the surface enhancement in chlorophyll concentrations was most likely fed from below rather than resulting from in situ growth. Though not measured directly there was no evidence of enhanced export fluxes associated with this storm. These observations have implications for the growing practice of using chlorophyll fluorescence from remote platforms to determine ocean productivity late in the annual productivity period and in response to storm mixing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BGeo...15.2961M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BGeo...15.2961M"><span>Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moutin, Thierry; Wagener, Thibaut; Caffin, Mathieu; Fumenia, Alain; Gimenez, Audrey; Baklouti, Melika; Bouruet-Aubertot, Pascale; Pujo-Pay, Mireille; Leblanc, Karine; Lefevre, Dominique; Helias Nunige, Sandra; Leblond, Nathalie; Grosso, Olivier; de Verneil, Alain</p> <p>2018-05-01</p> <p>Surface waters (0-200 m) of the western tropical South Pacific (WTSP) were sampled along a longitudinal 4000 km transect (OUTPACE cruise, DOI: 10.17600/15000900) during the austral summer (stratified) period (18 February to 3 April 2015) between the Melanesian Archipelago (MA) and the western part of the SP gyre (WGY). Two distinct areas were considered for the MA, the western MA (WMA), and the eastern MA (EMA). The main carbon (C), nitrogen (N), and phosphorus (P) pools and fluxes provide a basis for the characterization of the expected trend from oligotrophy to ultra-oligotrophy, and the building of first-order budgets at the daily and seasonal timescales (using climatology). Sea surface chlorophyll a well reflected the expected oligotrophic gradient with higher values obtained at WMA, lower values at WGY, and intermediate values at EMA. As expected, the euphotic zone depth, the deep chlorophyll maximum, and nitracline depth deepen from west to east. Nevertheless, phosphaclines and nitraclines did not match. The decoupling between phosphacline and nitracline depths in the MA allows for excess P to be locally provided in the upper water by winter mixing. We found a significant biological <q>soft tissue</q> carbon pump in the MA sustained almost exclusively by dinitrogen (N2) fixation and essentially controlled by phosphate availability in this iron-rich environment. The MA appears to be a net sink for atmospheric CO2, while the WGY is in quasi-steady state. We suggest that the necessary excess P, allowing the success of nitrogen fixers and subsequent carbon production and export, is mainly brought to the upper surface by local deep winter convection at an annual timescale rather than by surface circulation. While the origin of the decoupling between phosphacline and nitracline remains uncertain, the direct link between local P upper water enrichment, N2 fixation, and organic carbon production and export, offers a possible shorter timescale than previously thought between N input by N2 fixation and carbon export. The low iron availability in the SP gyre and P availability in the MA during the stratified period may appear as the ultimate control of N input by N2 fixation. Because of the huge volume of water to consider, and because the SP Ocean is the place of intense denitrification in the east (N sink) and N2 fixation in the west (N source), precise seasonal C, N, P, and iron (Fe) budgets would be of prime interest to understand the efficiency, at the present time and in the future, of the oceanic biological carbon pump.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhDT.......172M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhDT.......172M"><span>Responses of Pseudokirchneriella subcapitata and algal assembly to photocatalytic titanium dioxide nanoparticles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Metzler, David M.</p> <p></p> <p>Development and use of nanomaterials has increased significantly over the past decade. This trend is expected to continue for the foreseeable future, which have led some to call this new industrial revolution. One aspect of these materials that make them special is their unique properties that are different from the bulk material. These unique properties have not been investigated to determine to what extent they will impact the environment. This work was undertaken to understand how nanoparticles could impact algae. For the determination of nanoparticle toxicity, dose-response experiments were run for similar sized Al2O3, TiO2, and SiO2. Additional, a wide range of nanoparticle sizes (d1) were tested at 100 and 1000 mg/L for Al2O3, TiO 2, and SiO2. Results of different nanoparticles and similar d1 dose-response data show increased toxicity with increased surface charge of the nanoparticle. Various d1 of Al2O 3 effect the population and chlorophyll a but not lipid peroxidation. Various d1 of SiO2 and TiO2 effect the population, chlorophyll a, and lipid peroxidation. Of all TiO2 d1 tested 42 nm had the greatest effect on population, chlorophyll a, and lipid peroxidation. The effect of light intensity, algal age, and body burden was examined. The body burden was adjusted by varying the initial algal cell population while keeping the nanoparticle concentration constant. Decreased body burden decreased the effect on population. The chlorophyll a and lipid peroxidation varied with the initial decreased with decreased body burden. This trend was reversed at low body burden, the chlorophyll a and lipid peroxidation increased 3 -- 4 times greater than control values. The algal cell age was controlled by the hydraulic retention time of the pre-exposure continuously stirred tank reactors. As the age of the algae increased the effect of population increased. At algae age great then 10 days the effect on population reminded constant. Titanium dioxide effect on chlorophyll a varied with algal age and TiO 2 concentration. Finally, the effect of light intensity was examined for both visible and UV wavelengths. The greatest effect was for 1000 mg/L of TiO2 under varying light. Peak maximums occurred for chlorophyll a and lipid peroxidation. Peak minimums occurred for population. Varying UV light intensity resulted in decreased population for 100 and 1000 mg/L of TiO2. Additionally, chlorophyll a reached a maximum at 17 and 5 x the control values under 66% UV light for 100 and 1000 mg/L of TiO 2, respectively. The effect of copper and phenol to P. subcapitata was examined in the presence of TiO2. Copper in the presence of TiO 2 increased both chlorophyll a and lipid peroxidation greater than in the presence of TiO2 alone. Optimum conditions were observed for both endpoints. When algae were exposed to Cu and TiO2 the compounds acted independently of each other, having an additive effect on population. The TiO2 acted as a protective barrier against phenol toxicity at low phenol concentrations. At high phenol concentrations the toxicity of both phenol and TiO2 increased. Both compounds acted to disrupt the cell wall stability as seen with microscopy imaging. This was presumed to be through destruction of the Ca-pectinate within the cell wall, as indicated by increased soluble Ca correlated with phenol concentrations. The effect of TiO2 on cell barriers and natural algal assemblage was investigated. SEM images reveal that algae exposed to TiO2 have DNA external to the cell. Under hypotonic stress the loss of electrolytes was less controlled when the total number of nanoparticles was 1010 in the sample, at d1 less than 46 nm. At d1 greater than 46 nm no effect on electrolyte regulation was noted. Natural algal assemblages exposed to TiO2 varied there fatty acid (FA) content. This could be due to selective growth resistant reactive oxygen species (ROS) organisms or the percentages of certain FAs were decreased because of sensitivity to ROS. (Abstract shortened by UMI.)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21615278','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21615278"><span>Estimation of proximate composition, micronutrients and phytochemical compounds in traditional vegetables from Andaman and Nicobar Islands.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Singh, Shrawan; Singh, D R; Salim, K M; Srivastava, Amit; Singh, L B; Srivastava, R C</p> <p>2011-11-01</p> <p>In present study, 10 preferred traditional vegetables from Andaman and Nicobar Islands, India, were analysed for nutritional profiles. Moisture content in their edible parts ranged from 83.43 to 94.78%. Maximum ash content was recorded in Portulaca oleracea, crude protein in Colocasia esculenta, crude fibre in Eryngium foetidum and fat in E. foetidum. Phosphorus was maximum in Ipomea aquatica, potassium in C. esculenta, zinc, calcium and manganese in Centella asiatica, copper in Sauropus androgynous, sodium and iron in P. oleracea, magnesium in Amaranthus viridi and cobalt in C. esculenta. Maximum polyphenol was recorded in Hibiscus sabdariffa, carotenoids in A. viridi, ascorbic acid in Saursops androgynus, anthocyanin in C. esculenta and chlorophyll in S. androgynus. Antioxidant activity was maximum in P. oleracea. Positive correlation was observed between polyphenol and tannin content and also between antioxidant activity and photochemicals. The developed nutritional profiles is being used in health and nutrition related schemes in Islands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24417104','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24417104"><span>[Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensis leaves].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Xu-Xin; Liu, Bing-Xiang; Guo, Zhi-Tao; Chang, Yue-Xia; He, Lei; Chen, Fang; Lu, Bing-She</p> <p>2013-09-01</p> <p>By using fast chlorophyll fluorescence induction dynamics analysis technique (JIP-test), this paper studied the photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of 1-year old Pistacia chinensis seedlings under the stress of NaCl at the concentrations 0% (CK), 0.15%, 0.3%, 0.45%, and 0.6%. With the increasing concentration of NaCl, the contents of Chl a, Chl b, and Chl (a+b) in the seedlings leaves decreased, the Chl a/b ratio decreased after an initial increase, and the carotenoid content increased. The net photosynthetic rate (P(n)) and stomatal conductance (g(s)) decreased gradually with increasing NaCl concentration. The decrease of P(n) was mainly attributed to the stomatal limitation when the NaCl concentration was lower than 0.3%, and to the non-stomatal limitation when the NaCl concentration was higher than 0.3%. The trapped energy flux per RC (TR0/CS0), electron transport flux per RC (ET0/CS0), density of RCs (RC/CS0), and yield or flux ratio (psi(0) or phi(E0)) decreased, but the absorption flux per CS (ABS/CS0) and the K phase (W(k)) and J phase (V) in the O-J-I-P chlorophyll fluorescence induction curves increased distinctly, indicating that NaCl stress damaged the leaf oxygen-evolving complex (OEC), donor sides, and PS II reaction centers. When the NaCl concentration reached 0.3%, the maximum photochemical efficiency (F(v)/F(m)) and performance index (PI(ABS)) decreased 17.7% and 36.6%, respectively, as compared with the control.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.B13C0594X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.B13C0594X"><span>A 3-D ecosystem model in the Pacific Ocean and its simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Y.; Ba, Q.</p> <p>2011-12-01</p> <p>A simple 3-D ecosystem model with nutrient, phytoplankton, zooplankton and detritus is coupled into the basinwide ocean general circulation (OGCM) of the Pacific Ocean that has been examined by the passive tracer such as tritium. The model was integrated for 500 years under the forcing of climatological monthly mean fields. The model generates similar distribution patterns of ecosystem variables to the estimates based on satellite-derived chlorophyll maps by vertically generalized production model with low water-column NPP values in the subtropical region and high values in the subarctic region and equatorial upwelling region. But the area and strength of oligotrophic gyre is much larger than that indicated in the observations. Compared with the observations, seasonal variations of surface chlorophyll concentrations and top 200-m average zooplankton biomass in the mid-high latitude regions are well simulated in the model. Because of the restoring term near the northern boundary used in the model, a false phytoplankton bloom can occur nearby 50N during winter time. An unrealistic maximum value in the vertical profile of chlorophyll near ocean weather station Papa is generated by our model. In terms of modification of model structure and sensitivity test of the associated parameters, the simulated results can be well improved. Although the division of nutrient into nitrate and ammonium and inclusion of DON in the model can alleviate the low-NPP problem in the subtropical region, modification of the sinking rate and decomposition rate of detritus in the model can be more effective. Introduction of the influence of mixed layer on the ecosystem process and modification of restraint of nutrients near the northern boundary can overcome the shortcomings of simulation of both spring bloom near 50N and vertical profile of chlorophyll at Papa to some extent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19484365','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19484365"><span>Monsoon-induced changes in the size-fractionated phytoplankton biomass and production rate in the estuarine and coastal waters of southwest coast of India.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Madhu, N V; Jyothibabu, R; Balachandran, K K</p> <p>2010-07-01</p> <p>Changes in the autotrophic pico- (0.2-2 microm), nano- (2-20 microm), and microplankton (>20 microm) biomass (chlorophyll a) and primary production were measured in the estuarine and coastal waters off Cochin, southwest coast of India during the onset and establishment of a monsoon. During this period, the estuary was dominated by nutrient-rich freshwater, whereas the coastal waters were characterized with higher salinity values (>30 psu) and less nutrients. The average surface chlorophyll a concentrations and primary production rates were higher in the estuary (average 13.7 mg m(-3) and 432 mgC m(-3) day(-1)) as compared to the coastal waters (5.3 mg m(-3) and 224 mgC m(-3) day(-1)). The nanoplankton community formed the major fraction of chlorophyll a and primary production, both in the estuary (average 85 +/- SD 8.3% and 81.2 +/- SD 3.2%) and the coastal waters (average 73.2 +/- SD 17.2% and 81.9 +/- 15.7%). Nanoplankton had the maximum photosynthetic efficiency in the coastal waters (average 4.8 +/- SD 3.9 mgC mgChl a m(-3) h(-1)), whereas in the estuary, the microplankton had higher photosynthetic efficiency (average 7.4 +/- 7 mgC mgChl a m(-3) h(-1)). The heavy cloud cover and increased water column turbidity not only limit the growth of large-sized phytoplankton in the Cochin estuary and coastal waters but also support the proliferation of nanoplankton community during the monsoon season, even though large variation in nanoplankton chlorophyll a and production exists between these two areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A41J3199S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A41J3199S"><span>Tying Biological Activity to Changes in Sea Spray Aerosol Chemical Composition via Single Particle Analyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sultana, C. M.; Lee, C.; Collins, D. B.; Axson, J. L.; Laskina, O.; Grandquist, J. R.; Grassian, V. H.; Prather, K. A.</p> <p>2014-12-01</p> <p>In remote marine environments, sea spray aerosols (SSA) often represent the greatest aerosol burden, thus having significant impacts on direct radiative interactions and cloud processes. Previous studies have shown that SSA is a complex mixture of inorganic salts and an array of dissolved and particulate organic components. Enrichment of SSA organic content is often correlated to seawater chlorophyll concentrations, a measure of oceanic biological activity. As the physical and chemical properties of aerosols control their radiative effects, recent studies conducted by the Center for Aerosol Impacts on Climate and the Environment have endeavored to further elucidate the ties between marine biological activity and primary SSA chemical composition using highly time resolved single particle analyses. A series of experiments performed in the recently developed Marine Aerosol Reference Tank evaluated the effect of changing marine microbial populations on SSA chemical composition, which was monitored via an aerosol time-of-flight mass spectrometer and a variety of offline spectroscopic and microscopic techniques. Each experiment was initiated using unfiltered and untreated seawater, thus maintaining a high level of biogeochemical complexity. This study is the first of its kind to capture daily changes in the primary SSA mixing state over the growth and death of a natural phytoplankton bloom. Increases in organic aerosol types (0.4-3 μm), internally and externally mixed with sea salt, could not be correlated to chlorophyll concentrations. Maximum production of these populations occurred two to four days after the in vivo chlorophyll fluorescence peaked in intensity. This work is in contrast to the current paradigm of correlating SSA organic content to seawater chlorophyll concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25854898','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25854898"><span>Ecotoxicity of two organophosphate pesticides chlorpyrifos and dichlorvos on non-targeting cyanobacteria Microcystis wesenbergii.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Kai-Feng; Xu, Xiang-Rong; Duan, Shun-Shan; Wang, You-Shao; Cheng, Hao; Zhang, Zai-Wang; Zhou, Guang-Jie; Hong, Yi-Guo</p> <p>2015-10-01</p> <p>Organophosphate pesticides (OPs), as a replacement for the organochlorine pesticides, are generally considered non-toxic to plants and algae. Chlorpyrifos and dichlorvos are two OPs used for pest control all over the world. In this study, the dose-response of cyanobacteria Microcystis wesenbergii on OPs exposure and the stimulating effect of OPs with and without phosphorus source were investigated. The results showed that high concentrations of chlorpyrifos and dichlorvos caused significant decrease of chlorophyll a content. The median inhibitory concentrations (EC50) of chlorpyrifos and dichlorvos at 96 h were 15.40 and 261.16 μmol L(-1), respectively. Growth of M. wesenbergii under low concentration of OPs (ranged from 1/10,000 to 1/20 EC50), was increased by 35.85 % (chlorpyrifos) and 41.83 % (dichlorvos) at 120 h, respectively. Correspondingly, the highest enhancement on the maximum quantum yield (F v/F m) was 4.20 % (24 h) and 9.70 % (48 h), respectively. Chlorophyll fluorescence kinetics, known as O-J-I-P transients, showed significant enhancements in the O-J, J-I, and I-P transients under low concentrations of dichlorvos at 144 h, while enhancements of chlorophyll fluorescence kinetics induced by low concentrations of chlorpyrifos were only observed in the J-I transient at 144 h. Significant decreases of chlorophyll content, F v/F m and O-J-I-P transients with OPs as sole phosphorus source were found when they were compared with inorganic phosphate treatments. The results demonstrated an evidently hormetic dose-response of M. wesenbergii to both chlorpyrifos and dichlorvos, where high dose (far beyond environmental concentrations) exposure caused growth inhibition and low dose exposure induced enhancement on physiological processes. The stimulating effect of two OPs on growth of M. wesenbergii was negligible under phosphate limitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21777563','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21777563"><span>Fluorescence of the various red antenna states in photosystem I complexes from cyanobacteria is affected differently by the redox state of P700.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schlodder, Eberhard; Hussels, Martin; Cetin, Marianne; Karapetyan, Navassard V; Brecht, Marc</p> <p>2011-11-01</p> <p>Photosystem I of cyanobacteria contains different spectral pools of chlorophylls called red or long-wavelength chlorophylls that absorb at longer wavelengths than the primary electron donor P700. We measured the fluorescence spectra at the ensemble and the single-molecule level at low temperatures in the presence of oxidized and reduced P700. In accordance with the literature, it was observed that the fluorescence is quenched by P700(+). However, the efficiency of the fluorescence quenching by oxidized P700(+) was found to be extremely different for the various red states in PS I from different cyanobacteria. The emission of the longest-wavelength absorbing antenna state in PS I trimers from Thermosynechococcus elongatus (absorption maximum at 5K: ≈ 719nm; emission maximum at 5K: ≈ 740nm) was found to be strongly quenched by P700(+) similar to the reddest state in PS I trimers from Arthrospira platensis emitting at 760nm at 5K. The fluorescence of these red states is diminished by more than a factor of 10 in the presence of oxidized P700. For the first time, the emission of the reddest states in A. platensis and T. elongatus has been monitored using single-molecule fluorescence techniques. 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990DSRA...37...27M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990DSRA...37...27M"><span>Distribution and potential sources and sinks of copper chelators in the Sargasso Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moffett, J. W.; Zika, R. G.; Brand, L. E.</p> <p>1990-01-01</p> <p>Copper speciation has been studied at an oligotrophic station in the southwestern Sargasso Sea to determine the distribution of Cu binding ligands and evaluate their potential sources and sinks. Speciation was studied using a ligand exchange/liquid-liquid partition procedure used in a previous study in Florida coastal waters [ MOFFET and ZIKA (1987a) Marine Chemistry, 21, 301-313]. Copper speciation was dominated by organic complexation at all depths studied (16-950 m). Complexation was greatest in the region of the chlorophyll maximum. In this region, speciation was dominated by two ligands or ligand classes; L 1, with K cond. = 10 13.2, concentration = 2 nM, and a weaker but more abundant ligand class, L 2 with Kincond. = 10 9.7, concentration = 80 nM. From 140 to 16 m, [Cu(II)] free/[Cu(II)] total increases by a factor of 20, due to a decrease in [L 1] to a value below the ambient Cu concentration. Exposure of water from 140 m to sunlight indicated that photochemical decomposition of L 1 may account for the decrease. Below the chlorophyll maximum there is a gradual increase in [Cu(II)] free/[Cu(II)] total suggesting that the ligands are of recent biological origin rather than derived from refractory materials. Cultures of a ubiquitous marine cyanobacterium, Synechococcus sp. produced a ligand with K cond. comparable to L 1, indicating that a biological source is plausible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=158344','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=158344"><span>Physiological and Biochemical Response of the Photosynthetic Apparatus of Two Marine Diatoms to Fe Stress.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>McKay, R. M. L.; Geider, R. J.; LaRoche, J.</p> <p>1997-01-01</p> <p>Flavodoxin is a small electron-transfer protein capable of replacing ferredoxin during periods of Fe deficiency. When evaluating the suitability of flavodoxin as a diagnostic indicator for Fe limitation of phytoplankton growth, we examined its expression in two marine diatoms we cultured using trace-metal-buffered medium. Thalassio-sira weissflogii and Phaeodactylum tricornutum were cultured in ethylenediaminetetraacetic acid-buffered Sargasso Sea water containing from 10 to 1000 nM added Fe. Trace-metal-buffered cultures of each diatom maintained high growth rates across the entire range of Fe additions. Similarly, declines in chlorophyll/cell and in the ratio of photosystem II variable-to-maximum fluorescence were negligible (P. tricornutum) to moderate (T. weissflogii; 54% decline in chlorophyll/cell and 22% decrease in variable-to-maximum fluorescence). Moreover, only minor variations in photosynthetic parameters were observed across the range of additions. In contrast, flavodoxin was expressed to high levels in low-Fe cultures. Despite the inverse relationship between flavodoxin expression and Fe content of the medium, its expression was seemingly independent of any of the indicators of cell physiology that were assayed. It appears that flavodoxin is expressed as an early-stage response to Fe stress and that its accumulation need not be intimately connected to limitations imposed by Fe on the growth rate of these diatoms. PMID:12223732</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004GBioC..18.3003S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004GBioC..18.3003S"><span>Response of ocean ecosystems to climate warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarmiento, J. L.; Slater, R.; Barber, R.; Bopp, L.; Doney, S. C.; Hirst, A. C.; Kleypas, J.; Matear, R.; Mikolajewicz, U.; Monfray, P.; Soldatov, V.; Spall, S. A.; Stouffer, R.</p> <p>2004-09-01</p> <p>We examine six different coupled climate model simulations to determine the ocean biological response to climate warming between the beginning of the industrial revolution and 2050. We use vertical velocity, maximum winter mixed layer depth, and sea ice cover to define six biomes. Climate warming leads to a contraction of the highly productive marginal sea ice biome by 42% in the Northern Hemisphere and 17% in the Southern Hemisphere, and leads to an expansion of the low productivity permanently stratified subtropical gyre biome by 4.0% in the Northern Hemisphere and 9.4% in the Southern Hemisphere. In between these, the subpolar gyre biome expands by 16% in the Northern Hemisphere and 7% in the Southern Hemisphere, and the seasonally stratified subtropical gyre contracts by 11% in both hemispheres. The low-latitude (mostly coastal) upwelling biome area changes only modestly. Vertical stratification increases, which would be expected to decrease nutrient supply everywhere, but increase the growing season length in high latitudes. We use satellite ocean color and climatological observations to develop an empirical model for predicting chlorophyll from the physical properties of the global warming simulations. Four features stand out in the response to global warming: (1) a drop in chlorophyll in the North Pacific due primarily to retreat of the marginal sea ice biome, (2) a tendency toward an increase in chlorophyll in the North Atlantic due to a complex combination of factors, (3) an increase in chlorophyll in the Southern Ocean due primarily to the retreat of and changes at the northern boundary of the marginal sea ice zone, and (4) a tendency toward a decrease in chlorophyll adjacent to the Antarctic continent due primarily to freshening within the marginal sea ice zone. We use three different primary production algorithms to estimate the response of primary production to climate warming based on our estimated chlorophyll concentrations. The three algorithms give a global increase in primary production of 0.7% at the low end to 8.1% at the high end, with very large regional differences. The main cause of both the response to warming and the variation between algorithms is the temperature sensitivity of the primary production algorithms. We also show results for the period between the industrial revolution and 2050 and 2090.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28690669','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28690669"><span>Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tschiersch, Henning; Junker, Astrid; Meyer, Rhonda C; Altmann, Thomas</p> <p>2017-01-01</p> <p>Automated plant phenotyping has been established as a powerful new tool in studying plant growth, development and response to various types of biotic or abiotic stressors. Respective facilities mainly apply non-invasive imaging based methods, which enable the continuous quantification of the dynamics of plant growth and physiology during developmental progression. However, especially for plants of larger size, integrative, automated and high throughput measurements of complex physiological parameters such as photosystem II efficiency determined through kinetic chlorophyll fluorescence analysis remain a challenge. We present the technical installations and the establishment of experimental procedures that allow the integrated high throughput imaging of all commonly determined PSII parameters for small and large plants using kinetic chlorophyll fluorescence imaging systems (FluorCam, PSI) integrated into automated phenotyping facilities (Scanalyzer, LemnaTec). Besides determination of the maximum PSII efficiency, we focused on implementation of high throughput amenable protocols recording PSII operating efficiency (Φ PSII ). Using the presented setup, this parameter is shown to be reproducibly measured in differently sized plants despite the corresponding variation in distance between plants and light source that caused small differences in incident light intensity. Values of Φ PSII obtained with the automated chlorophyll fluorescence imaging setup correlated very well with conventionally determined data using a spot-measuring chlorophyll fluorometer. The established high throughput operating protocols enable the screening of up to 1080 small and 184 large plants per hour, respectively. The application of the implemented high throughput protocols is demonstrated in screening experiments performed with large Arabidopsis and maize populations assessing natural variation in PSII efficiency. The incorporation of imaging systems suitable for kinetic chlorophyll fluorescence analysis leads to a substantial extension of the feature spectrum to be assessed in the presented high throughput automated plant phenotyping platforms, thus enabling the simultaneous assessment of plant architectural and biomass-related traits and their relations to physiological features such as PSII operating efficiency. The implemented high throughput protocols are applicable to a broad spectrum of model and crop plants of different sizes (up to 1.80 m height) and architectures. The deeper understanding of the relation of plant architecture, biomass formation and photosynthetic efficiency has a great potential with respect to crop and yield improvement strategies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BGeo....7.3139M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BGeo....7.3139M"><span>The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morel, A.; Claustre, H.; Gentili, B.</p> <p>2010-10-01</p> <p>The cores of the subtropical anticyclonic gyres are characterized by their oligotrophic status and minimal chlorophyll concentration, compared to that of the whole ocean. These zones are unambiguously detected by space borne ocean color sensors thanks to their typical spectral reflectance, which is that of extremely clear and deep blue waters. Not only the low chlorophyll (denoted [Chl]) level, but also a reduced amount of colored dissolved organic matter (CDOM or "yellow substance") account for this clarity. The oligotrophic waters of the North and South Pacific gyres, the North and South Atlantic gyres, and the South Indian gyre have been comparatively studied with respect to both [Chl] and CDOM contents, by using 10-year data (1998-2007) of the Sea-viewing Wide field-of-view Sensor (SeaWiFS, NASA). Albeit similar these oligotrophic zones are not identical regarding their [Chl] and CDOM contents, as well as their seasonal cycles. According to the zone, the averaged [Chl] value varies from 0.026 to 0.059 mg m-3, whereas the ay(443) average (the absorption coefficient due to CDOM at 443 nm) is between 0.0033 and 0.0072 m-1. The CDOM-to-[Chl] relative proportions also differ between the zones. The clearest waters, corresponding to the lowest [Chl] and CDOM concentrations, are found near Easter Island and near Mariana Islands in the western part of the North Pacific Ocean. In spite of its low [Chl], the Sargasso Sea presents the highest CDOM content amongst the six zones studied. Except in the North Pacific gyre (near Mariana and south of Hawaii islands), a conspicuous seasonality appears to be the rule in the other 4 gyres and affects both [Chl] and CDOM; both quantities vary in a ratio of about 2 (maximum-to-minimum). Coinciding [Chl] and CDOM peaks occur just after the local winter solstice, which is also the period of the maximal mixed layer depth in these latitudes. It is hypothesized that the vertical transport of unbleached CDOM from the subthermocline layers is the main process enhancing the CDOM concentration within the upper layer in winter. In summer, the CDOM experiences its minimum which is delayed with respect to the [Chl] minimum; apparently, the solar photo-bleaching of CDOM is a slower process than the post-bloom algal Chl decay. Where they exist, the seasonal cycles are repeated without notable change from year to year. Long term (10 y) trends have not been detected in these zones. These oligotrophic gyres can conveniently be used for in-flight calibration and comparison of ocean color sensors, provided that their marked seasonal variations are accounted for.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BGD.....7.5047M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BGD.....7.5047M"><span>The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morel, A.; Claustre, H.; Gentili, B.</p> <p>2010-07-01</p> <p>The cores of the subtropical anticyclonic gyres are characterized by their oligotrophic status and minimal chlorophyll concentration, compared to that of the whole ocean. These zones are unambiguously detected by space borne ocean color sensors thanks to their typical spectral reflectance, which is that of extremely clear and deep blue waters. Not only the low chlorophyll (denoted [Chl]) level, but also a reduced amount of colored dissolved organic matter (CDOM or "yellow substance") account for this clarity. The oligotrophic waters of the North and South Pacific gyres, the North and South Atlantic gyres, and the South Indian gyre have been comparatively studied with respect to both [Chl] and CDOM contents, by using 10-year data (1998-2007) of the Sea-viewing Wide field-of-view Sensor (SeaWiFS, NASA). Albeit similar these oligotrophic zones are not identical regarding their [Chl] and CDOM contents, as well as their seasonal cycles. According to the zone, the averaged [Chl] value varies from 0.026 to 0.059 mg m-3, whereas the ay(443) average (the absorption coefficient due to CDOM at 443 nm) is comprised between 0.0033 and 0.0072 m-1. The CDOM-to-[Chl] relative proportions also differ between the zones. The clearest waters, corresponding to the lowest [Chl] and CDOM concentrations, are found near Easter Island and near Mariana Islands in the western part of the North Pacific Ocean. In spite of its low [Chl], the Sargasso Sea presents the highest CDOM content amongst the six zones studied. Except in the North Pacific gyre (near Mariana and south of Hawaii islands), a conspicuous seasonality appears to be the rule in the other 4 gyres and affects both [Chl] and CDOM; both quantities vary in a ratio of about 2 (maximum-to-minimum). Coinciding [Chl] and CDOM peaks occur just after the local winter solstice, which is also the period of the maximal mixed layer depth in these latitudes. It is hypothesized that the vertical transport of unbleached CDOM from the subthermocline layers is the main process enhancing the CDOM concentration within the upper layer in winter. In summer, the CDOM experiences its minimum which is delayed with respect to the [Chl] minimum; apparently, the solar photo-bleaching of CDOM is a slower process than the post-bloom algal Chl decay. Where they exist, the seasonal cycles are repeated without notable change from year to year; long term (10 years) trends have not been detected in these zones. These oligotrophic gyres can conveniently be used for in-flight calibration and comparison of ocean color sensors, provided that their marked seasonal variations are accounted for.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19593588','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19593588"><span>Physiological responses to nitrogen and sulphur addition and raised temperature in Sphagnum balticum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Granath, Gustaf; Wiedermann, Magdalena M; Strengbom, Joachim</p> <p>2009-09-01</p> <p>Sphagnum, the main genus which forms boreal peat, is strongly affected by N and S deposition and raised temperature, but the physiological mechanisms behind the responses are largely unknown. We measured maximum photosynthetic rate (NP(max)), maximum efficiency of photosystem II [variable fluorescence (F (v))/maximum fluorescence yield (F (m))] and concentrations of N, C, chlorophyll and carotenoids as responses to N and S addition and increased temperature in Sphagnum balticum (a widespread species in the northern peatlands) in a 12-year factorial experiment. NP(max) did not differ between control (0.2 g N m(-2) year(-1)) and high N (3.0 g N m(-2) year(-1)), but was higher in the mid N treatment (1.5 g N m(-2) year(-1)). N, C, carotenoids and chlorophyll concentration increased in shoot apices after N addition. F (v)/F (m) did not differ between N treatments. Increased temperature (+3.6 degrees C) had a small negative effect on N concentration, but had no significant effect on NP(max) or F (v)/F (m). Addition of 2 g S m(-2) year(-1) showed a weak negative effect on NP(max) and F (v)/F (m). Our results suggest a unimodal response of NP(max) to N addition and tissue N concentration in S. balticum, with an optimum N concentration for photosynthetic rate of ~13 mg N g(-1). In conclusion, high S deposition may reduce photosynthetic capacity in Sphagnum, but the negative effects may be relaxed under high N availability. We suggest that previously reported negative effects on Sphagnum productivity under high N deposition are not related to negative effects on the photosynthetic apparatus, but differences in optimum N concentration among Sphagnum species may affect their competitive ability under different N deposition regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..116a2021K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..116a2021K"><span>Impact of Monsoon to Aquatic Productivity and Fish Landing at Pesawaran Regency Waters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kunarso; Zainuri, Muhammad; Ario, Raden; Munandar, Bayu; Prayogi, Harmon</p> <p>2018-02-01</p> <p>Monsoon variability influences the productivity processes in the ocean and has different responses in each waters. Furthermore, variability of marine productivity affects to the fisheries resources fluctuation. This research has conducted using descriptive method to investigate the consequences of monsoon variability to aquatic productivity, sea surface temperature (SST), fish catches, and fish season periods at Pesawaran Regency waters, Lampung. Variability of aquatic productivity was determined based on chlorophyll-a indicator from MODIS satellite images. Monsoon variability was governed based on wind parameters and fish catches from fish landing data of Pesawaran fish market. The result showed that monsoon variability had affected to aquatic productivity, SST, and fish catches at Pesawaran Regency waters. Maximum wind speed and lowest SST occurred twice in a year, December to March and August to October, which the peaks were on January (2.55 m/s of wind speed and 29.66°C of SST) and September (2.44 m/s of wind speed and 29.06°C of SST). Also, Maximum aquatic productivity happened on January to March and July to September, which it was arisen simultaneously with maximum wind speed and the peaks was 0.74 mg/m3 and 0.78 mg/m3, on February and August respectively. The data showed that fish catches decreased along with strong wind speed and low SST. However, when weak wind speed and high SST occurred, fish catches increased. The correlation between Catch per Unit Effort (CPUE) with SST, wind speed, and chlorophyll-a was at value 0.76, -0.67, and -0.70, respectively. The high rate fish catches in Pesawaran emerged on March-May and September-December.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvC..97c4623H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvC..97c4623H"><span>Origin of a maximum of the astrophysical S factor in heavy-ion fusion reactions at deep subbarrier energies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hagino, K.; Balantekin, A. B.; Lwin, N. W.; Thein, Ei Shwe Zin</p> <p>2018-03-01</p> <p>The hindrance phenomenon of heavy-ion fusion cross sections at deep subbarrier energies often accompanies a maximum of an astrophysical S factor at a threshold energy for fusion hindrance. We argue that this phenomenon can naturally be explained when the fusion excitation function is fitted with two potentials, with a larger (smaller) logarithmic slope at energies lower (higher) than the threshold energy. This analysis clearly suggests that the astrophysical S factor provides a convenient tool to analyze the deep subbarrier hindrance phenomenon, even though the S factor may have a strong energy dependence for heavy-ion systems unlike that for astrophysical reactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29937531','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29937531"><span>Four Major South Korea's Rivers Using Deep Learning Models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Sangmok; Lee, Donghyun</p> <p>2018-06-24</p> <p>Harmful algal blooms are an annual phenomenon that cause environmental damage, economic losses, and disease outbreaks. A fundamental solution to this problem is still lacking, thus, the best option for counteracting the effects of algal blooms is to improve advance warnings (predictions). However, existing physical prediction models have difficulties setting a clear coefficient indicating the relationship between each factor when predicting algal blooms, and many variable data sources are required for the analysis. These limitations are accompanied by high time and economic costs. Meanwhile, artificial intelligence and deep learning methods have become increasingly common in scientific research; attempts to apply the long short-term memory (LSTM) model to environmental research problems are increasing because the LSTM model exhibits good performance for time-series data prediction. However, few studies have applied deep learning models or LSTM to algal bloom prediction, especially in South Korea, where algal blooms occur annually. Therefore, we employed the LSTM model for algal bloom prediction in four major rivers of South Korea. We conducted short-term (one week) predictions by employing regression analysis and deep learning techniques on a newly constructed water quality and quantity dataset drawn from 16 dammed pools on the rivers. Three deep learning models (multilayer perceptron, MLP; recurrent neural network, RNN; and long short-term memory, LSTM) were used to predict chlorophyll-a, a recognized proxy for algal activity. The results were compared to those from OLS (ordinary least square) regression analysis and actual data based on the root mean square error (RSME). The LSTM model showed the highest prediction rate for harmful algal blooms and all deep learning models out-performed the OLS regression analysis. Our results reveal the potential for predicting algal blooms using LSTM and deep learning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GPC...144..213C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GPC...144..213C"><span>Lake Vanda: A sentinel for climate change in the McMurdo Sound Region of Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Castendyk, Devin N.; Obryk, Maciej K.; Leidman, Sasha Z.; Gooseff, Michael; Hawes, Ian</p> <p>2016-09-01</p> <p>Lake Vanda is a perennially ice-covered, meromictic, endorheic lake located in the McMurdo Dry Valleys of Antarctica, and an exceptional sentinel of climate change within the region. Lake levels rose 15 m over the past 68 years in response to climate-driven variability in ice-cover sublimation, meltwater production, and annual discharge of the Onyx River, the main source of water to the lake. Evidence from a new bathymetric map and water balance model combined with annual growth laminations in benthic mats suggest that the most recent filling trend began abruptly 80 years ago, in the early 1930s. This change increased lake volume by > 50%, triggered the formation of a new, upper, thermohaline convection cell, and cooled the lower convection cell by at least 2 °C and the bottom-most waters by at > 4 °C. Additionally, the depth of the deep chlorophyll a maximum rose by > 2 m, and deep-growing benthic algal mats declined while shallow benthic mats colonized freshly inundated areas. We attribute changes in hydrology to regional variations in air flow related to the strength and position of the Amundsen Sea Low (ASL) pressure system which have increased the frequency of down-valley, föhn winds associated with surface air temperature warming in the McMurdo Dry Valleys. The ASL has also been implicated in the recent warming of the Antarctic Peninsula, and provides a common link for climate-related change on opposite sides of the continent. If this trend persists, Lake Vanda should continue to rise and cool over the next 200 years until a new equilibrium lake level is achieved. Most likely, future lake rise will lead to isothermal conditions not conducive to thermohaline convection, resulting in a drastically different physical, biogeochemical, and biological structure than observed today.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DSRI..116...77S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DSRI..116...77S"><span>Dissolved low-molecular weight thiol concentrations from the U.S. GEOTRACES North Atlantic Ocean zonal transect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Swarr, Gretchen J.; Kading, Tristan; Lamborg, Carl H.; Hammerschmidt, Chad R.; Bowman, Katlin L.</p> <p>2016-10-01</p> <p>Low-molecular weight thiols, including cysteine and glutathione, are biomolecules involved in a variety of metabolic pathways and act as important antioxidant and metal buffering agents. In this last capacity, they represent a potential mechanism for modulating the bioavailability and biogeochemistry of many trace elements in the ocean, particularly for chalcophilic elements (e.g., Cu, Zn, Cd, Ag and Hg). For this reason, and in the context of the international GEOTRACES program that seeks to understand the biogeochemistry of trace elements in the ocean, we measured the concentration of individual dissolved low-molecular weight thiols during the U.S. GEOTRACES North Atlantic Zonal Transect (USGNAZT). Only two thiols were identified, cysteine and glutathione, in contrast to results from the northeast subarctic Pacific Ocean, where the dipeptides glycine-cysteine and arginine-cysteine were also present and γ-glutamylcysteine was dominant. Concentrations of cysteine and glutathione in the North Atlantic Ocean were lower than in the Pacific and ranged from below detection ( 0.01 nM) to 0.61 nM of cysteine and up to 1.0 nM of glutathione, with cysteine generally more abundant than glutathione. Vertical profiles of cysteine and glutathione were broadly consistent with their biological production, being more abundant in surface water and usually below detection at depths greater than about 200 m. Subsurface concentration maxima, often co-incident with the deep chlorophyll maximum, were frequently observed but not universal. We conclude that cysteine and glutathione do not make up significant portions of complexation capacity for Cu and Zn in the upper open ocean but could be important for Cd, Hg, and potentially other chalcophiles. Extremely low concentrations of cysteine and glutathione in deep water suggest that higher molecular-weight thiols are a more important ligand class for chalcophiles in that portion of the ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GBioC..32..187E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GBioC..32..187E"><span>Insights Into the Biogeochemical Cycling of Iron, Nitrate, and Phosphate Across a 5,300 km South Pacific Zonal Section (153°E-150°W)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ellwood, Michael J.; Bowie, Andrew R.; Baker, Alex; Gault-Ringold, Melanie; Hassler, Christel; Law, Cliff S.; Maher, William A.; Marriner, Andrew; Nodder, Scott; Sander, Sylvia; Stevens, Craig; Townsend, Ashley; van der Merwe, Pier; Woodward, E. Malcolm S.; Wuttig, Kathrin; Boyd, Philip W.</p> <p>2018-02-01</p> <p>Iron, phosphate, and nitrate are essential nutrients for phytoplankton growth, and hence, their supply into the surface ocean controls oceanic primary production. Here we present a GEOTRACES zonal section (GP13; 30-33°S, 153°E-150°W) extending eastward from Australia to the oligotrophic South Pacific Ocean gyre outlining the concentrations of these key nutrients. Surface dissolved iron concentrations are elevated at >0.4 nmol L-1 near continental Australia (west of 165°E) and decreased eastward to ≤0.2 nmol L-1 (170°W-150°W). The supply of dissolved iron into the upper ocean (<100 m) from the atmosphere and vertical diffusivity averaged 11 ± 10 nmol m-2 d-1. In the remote South Pacific Ocean (170°W-150°W), atmospherically sourced iron is a significant contributor to the surface dissolved iron pool with average supply contribution of 23 ± 17% (range 3% to 55%). Surface water nitrate concentrations averaged 5 ± 4 nmol L-1 between 170°W and 150°W, while surface water phosphate concentrations averaged 58 ± 30 nmol L-1. The supply of nitrogen into the upper ocean is primarily from deeper waters (24-1647 μmol m-2 d-1) with atmospheric deposition and nitrogen fixation contributing <1% to the overall flux along the eastern part of the transect. The deep water N:P ratio averaged 14.5 ± 0.5 but declined to <1 above the deep chlorophyll maximum (DCM) indicating a high N:P assimilation ratio by phytoplankton leading to almost quantitative removal of nitrate. The supply stoichiometry for iron and nitrogen relative to phosphate at and above the DCM declines eastward leading to two biogeographical provinces: one with diazotroph production and the other without diazotroph production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3114783','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3114783"><span>The Effects of Natural Iron Fertilisation on Deep-Sea Ecology: The Crozet Plateau, Southern Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wolff, George A.; Billett, David S. M.; Bett, Brian J.; Holtvoeth, Jens; FitzGeorge-Balfour, Tania; Fisher, Elizabeth H.; Cross, Ian; Shannon, Roger; Salter, Ian; Boorman, Ben; King, Nicola J.; Jamieson, Alan; Chaillan, Frédéric</p> <p>2011-01-01</p> <p>The addition of iron to high-nutrient low-chlorophyll (HNLC) oceanic waters stimulates phytoplankton, leading to greater primary production. Large-scale artificial ocean iron fertilization (OIF) has been proposed as a means of mitigating anthropogenic atmospheric CO2, but its impacts on ocean ecosystems below the photic zone are unknown. Natural OIF, through the addition of iron leached from volcanic islands, has been shown to enhance primary productivity and carbon export and so can be used to study the effects of OIF on life in the ocean. We compared two closely-located deep-sea sites (∼400 km apart and both at ∼4200 m water depth) to the East (naturally iron fertilized; +Fe) and South (HNLC) of the Crozet Islands in the southern Indian Ocean. Our results suggest that long-term geo-engineering of surface oceanic waters via artificial OIF would lead to significant changes in deep-sea ecosystems. We found that the +Fe area had greater supplies of organic matter inputs to the seafloor, including polyunsaturated fatty acid and carotenoid nutrients. The +Fe site also had greater densities and biomasses of large deep-sea animals with lower levels of evenness in community structuring. The species composition was also very different, with the +Fe site showing similarities to eutrophic sites in other ocean basins. Moreover, major differences occurred in the taxa at the +Fe and HNLC sites revealing the crucial role that surface oceanic conditions play in changing and structuring deep-sea benthic communities. PMID:21695118</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20719528','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20719528"><span>Early stage de-etiolation increases the ferulic acid content in winter triticale seedlings under full sunlight conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hura, Tomasz; Hura, Katarzyna; Grzesiak, Maciej</p> <p>2010-12-02</p> <p>In the presented work an attempt has been made to estimate the phenolics content and its implication for the protection of the photosynthetic apparatus in course of a plant's de-etiolation. The experiments were carried out on two genotypes of winter triticale varying in their resistance to drought. The activity of the photosynthetic apparatus was monitored by taking measurements of chlorophyll fluorescence and chlorophyll/carotenoids content. Analyses of the total pool of phenolic compounds and ferulic acid as well as l-phenylalanine ammonia lyase activity were completed. The first illuminations of etiolated seedlings induced a chlorophyll synthesis, which was followed by the increasing activity of the photosynthetic apparatus in both studied genotypes. Piano exhibited a higher values of the maximum quantum efficiency of photosystem II primary photochemistry during de-etiolation than Imperial. These results may just indicate that for Imperial, the delivery of photons to the reaction centres exceeded the capacity of the photosynthetic apparatus to transduce this energy via electron transport. An increase in the content of ferulic acid was more noticeable for Piano and seems to be a consequence of adaptation to the new light conditions. It should be taken into account, that an increase of ferulic acid content during early stage of de-etiolation, may limit the photoinhibition of photosynthesis whenever radiation is excessive for the photosynthetic apparatus. Copyright © 2010 Elsevier B.V. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JARS...10b6003O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JARS...10b6003O"><span>Assessment of remotely sensed chlorophyll-a concentration in Guanabara Bay, Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oliveira, Eduardo N.; Fernandes, Alexandre M.; Kampel, Milton; Cordeiro, Renato C.; Brandini, Nilva; Vinzon, Susana B.; Grassi, Renata M.; Pinto, Fernando N.; Fillipo, Alessandro M.; Paranhos, Rodolfo</p> <p>2016-04-01</p> <p>The Guanabara Bay (GB) is an estuarine system in the metropolitan region of Rio de Janeiro (Brazil), with a surface area of ˜346 km2 threatened by anthropogenic pressure. Remote sensing can provide frequent data for studies and monitoring of water quality parameters, such as chlorophyll-a concentration (Chl-a). Different combination of Medium Resolution Imaging Spectrometer (MERIS) remote sensing reflectance band ratios were used to estimate Chl-a. Standard algorithms such as Ocean Color 3-band, Ocean Color-4 band, fluorescence line height, and maximum chlorophyll index were also tested. The MERIS Chl-a estimates were statistically compared with a dataset of in situ Chl-a (2002 to 2012). Good correlations were obtained with the use of green, red, and near-infrared bands. The best performing algorithm was based on the red (665 nm) and green (560 nm) band ratio, named "RG3" algorithm (r2=0.71, chl-a=62,565*x1.6118). The RG3 was applied to a time series of MERIS images (2003- to 2012). The GB has a high temporal and spatial variability of Chl-a, with highest values found in the wet season (October to March) and in some of the most internal regions of the estuary. Lowest concentrations are found in the central circulation channel due to the flushing of ocean water masses promoted by pumping tide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4148306','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4148306"><span>Photosynthetic Physiological Response of Radix Isatidis (Isatis indigotica Fort.) Seedlings to Nicosulfuron</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ning, Na; Wen, Yinyuan; Dong, Shuqi; Yin, Meiqiang; Guo, Meijun; Wang, Binqiang; Feng, Lei; Guo, Pingyi</p> <p>2014-01-01</p> <p>Radix Isatidis (Isatis indigotica Fort.) is one of the most important traditional Chinese medicine plants. However, there is no suitable herbicide used for weed control in Radix Isatidis field during postemergence stage. To explore the safety of sulfonylurea herbicide nicosulfuron on Radix Isatidis (Isatis indigotica Fort.) seedlings and the photosynthetic physiological response of the plant to the herbicide, biological mass, leaf area, photosynthetic pigment content, photosynthetic rate, chlorophyll fluorescence characteristics, and P700 parameters of Radix Isatidis seedlings were analyzed 10 d after nicosulfuron treatment at 5th leaf stage in this greenhouse research. The results showed that biological mass, total chlorophyll, chlorophyll a, and carotenoids content, photosynthetic rate, stomatal conductance, PS II maximum quantum yield, PS II effective quantum yield, PS II electron transport rate, photochemical quenching, maximal P700 change, photochemical quantum yield of PS I, and PS I electron transport rate decreased with increasing herbicide concentrations, whereas initial fluorescence, quantum yield of non-regulated energy dissipation in PS II and quantum yield of non-photochemical energy dissipation due to acceptor side limitation in PS I increased. It suggests that nicosulfuron ≥1 mg L−1 causes the damage of chloroplast, PS II and PS I structure. Electron transport limitations in PS I receptor side, and blocked dark reaction process may be the main cause of the significantly inhibited growth and decreased photosynthetic rate of Radix Isatidis seedlings. PMID:25165819</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26292199','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26292199"><span>Imaging of fast chlorophyll fluorescence induction curve (OJIP) parameters, applied in a screening study with wild barley (Hordeum spontaneum) genotypes under heat stress.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jedmowski, Christoph; Brüggemann, Wolfgang</p> <p>2015-10-01</p> <p>We quantified the influence of heat stress (HS) on PSII by imaging of parameters of the fast chlorophyll fluorescence (CF) induction (OJIP) kinetic of 20 genotypes of wild barley (Hordeum spontaneum) covering a broad geographical spectrum. We developed a standardised screening procedure, allowing a repetitive fluorescence measurement of leaf segments. The impact of HS was quantified by calculating a Heat Resistance Index (HRI), derived from the decrease of the Performance Index (PI) caused by HS treatment and following recovery. For the genotype showing the lowest HRI, reduced maximum quantum yield (φP0) and increased relative variable fluorescence of the O-J phase (K-Peak) were detected after HS, whereas the basal fluorescence (F0) remained stable. An additional feature was a lowered fraction of active (QA-reducing) reaction centres (RCs). The disturbances disappeared after one day of recovery. Spatial heterogeneities of fluorescence parameters were detected, as the negative effect of HS was stronger in the leaf areas close to the leaf tip. The results of this study prove that chlorophyll fluorescence imaging (CFI) is suitable for the detection of HS symptoms and that imaging of JIP-Test parameters should be considered in future screening and phenotyping studies aiming for the characterisation of plant genotypes. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20522183','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20522183"><span>Strategies of leaf expansion in Ficus carica under semiarid conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>González-Rodríguez, A M; Peters, J</p> <p>2010-05-01</p> <p>Leaf area expansion, thickness and inclination, gas exchange parameters and relative chlorophyll content were analysed in field-grown fig (Ficus carica L.) leaves over time, from emergence until after full leaf expansion (FLE). Ficus carica leaves showed a subtle change in shape during the early stages of development, and FLE was reached within ca. 30 days after emergence. Changes in leaf thickness and inclination after FLE demonstrated good adaptation to environmental conditions during summer in areas with a Mediterranean climate. Changes in gas exchange parameters and relative chlorophyll content showed that F. carica is a delayed-greening species, reaching maximum values 20 days after FLE. Correlation analysis of datasets collected during leaf expansion, confirmed dependence among structural and functional traits in F. carica. Pn was directly correlated with stomatal conductance (Gs), transpiration (E), leaf area (LA) and relative chlorophyll content up to FLE. The effect of pruning on leaf expansion, a cultural technique commonly applied in this fruit tree, was also evaluated. Although leaf development in pruned branches gave a significantly higher relative leaf area growth rate (RGR(l)) and higher LA than non-pruned branches, no significant differences were found in other morphological and physiological traits, indicating no pruning effect on leaf development. All studied morphological and physiological characteristics indicate that F. carica is well adapted to semiarid conditions. The delayed greening strategy of this species is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMS...180...59V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMS...180...59V"><span>Spatiotemporal variation of vertical particle fluxes and modelled chlorophyll a standing stocks in the Benguela Upwelling System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vorrath, Maria-Elena; Lahajnar, Niko; Fischer, Gerhard; Libuku, Viktor Miti; Schmidt, Martin; Emeis, Kay-Christian</p> <p>2018-04-01</p> <p>Marine particle fluxes from high productive coastal upwelling systems return upwelled CO2 and nutrients to the deep ocean and sediments and have a substantial impact on the global carbon cycle. This study examines relations between production regimes on the shelf and over the continental margin of the Benguela Upwelling System (BUS) in the SE Atlantic Ocean. Data of composition and timing of vertical particle flux come from sediment trap time series (deployed intermittently between 1988 and 2014) in the regions Walvis Ridge, Walvis Bay, Luederitz and Orange River. We compare their seasonal variability to modelled patterns of chlorophyll concentrations in a 3-D ecosystem model. Both modelled seasonal chlorophyll a standing stocks and sampled particle flux patterns are highly correspondent with a bimodal seasonal cycle offshore the BUS. The material in the particle flux in offshore traps is dominantly carbonate (40-70%), and flux peaks in offshore particle flux originate from two independent events: in austral autumn thermocline shoaling and vertical mixing are decoupled from coastal upwelling, while fluxes in spring coincide with the upwelling season, indicated by slightly elevated biogenic opal values at some locations. Coastal particle fluxes are characterized by a trimodal pattern and are dominated by biogenic opal (22-35%) and organic matter (30-60%). The distinct seasonality in observed fluxes on the shelf is caused by high variability in production, sinking behaviour, wind stress, and hydrodynamic processes. We speculate that global warming will increase ocean stratification and alter coastal upwelling, so that consequences for primary production and particle flux in the BUS are inevitable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194260','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194260"><span>Hydrodynamic control of phytoplankton loss to the benthos in an estuarine environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jones, Nicole L.; Thompson, Janet K.; Arrigo, Kevin R.; Monismith, Stephen G.</p> <p>2009-01-01</p> <p>Field experiments were undertaken to measure the influence of hydrodynamics on the removal of phytoplankton by benthic grazers in Suisun Slough, North San Francisco Bay. Chlorophyll a concentration boundary layers were found over beds inhabited by the active suspension feeders Corbula amurensis and Corophium alienense and the passive suspension feeders Marenzellaria viridis and Laonome sp. Benthic losses of phytoplankton were estimated via both the control volume and the vertical flux approach, in which chlorophyll a concentration was used as a proxy for phytoplankton biomass. The rate of phytoplankton loss to the bed was positively correlated to the bed shear stress. The maximum rate of phytoplankton loss to the bed was five times larger than estimated by laboratory-derived pumping rates for the active suspension feeders. Reasons for this discrepancy are explored including a physical mechanism whereby phytoplankton is entrained in a near-bed fluff layer where aggregation is mediated by the presence of mucus produced by the infaunal community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://swrcb2.swrcb.ca.gov/waterrights/water_issues/programs/bay_delta/deltaflow/docs/exhibits/sfwc/spprt_docs/sfwc_exh3_jones.pdf','USGSPUBS'); return false;" href="http://swrcb2.swrcb.ca.gov/waterrights/water_issues/programs/bay_delta/deltaflow/docs/exhibits/sfwc/spprt_docs/sfwc_exh3_jones.pdf"><span>Hydrodynamic control of phytoplankton loss to the benthos in an estuarine environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jones, N.L.; Thompson, J.K.; Arrigo, K.R.; Monismith, Stephen G.</p> <p>2009-01-01</p> <p>Field experiments were undertaken to measure the influence of hydrodynamics on the removal of phytoplankton by benthic grazers in Suisun Slough, North San Francisco Bay. Chlorophyll a concentration boundary layers were found over beds inhabited by the active suspension feeders Corbula amurensis and Corophium alienense and the passive suspension feeders Marenzellaria viridis and Laonome sp. Benthic losses of phytoplankton were estimated via both the control volume and the vertical flux approach, in which chlorophyll a concentration was used as a proxy for phytoplankton biomass. The rate of phytoplankton loss to the bed was positively correlated to the bed shear stress. The maximum rate of phytoplankton loss to the bed was five times larger than estimated by laboratory-derived pumping rates for the active suspension feeders. Reasons for this discrepancy are explored including a physical mechanism whereby phytoplankton is entrained in a near-bed fluff layer where aggregation is mediated by the presence of mucus produced by the infaunal community. ?? 2009, by the American Society of Limnology and Oceanography, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....5310188J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....5310188J"><span>Using Survey Data to Determine a Numeric Criterion for Nutrient Pollution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jakus, Paul M.; Nelson, Nanette; Ostermiller, Jeffrey</p> <p>2017-12-01</p> <p>We present a scientific replication of a benthic algae nuisance threshold study originally conducted in Montana, but we do so using a different sampling methodology in a different state. Respondents are asked to rate eight photographs that depict varying algae conditions. Our initial results show that Utah resident preferences for benthic algae levels are quite similar to those of Montana residents, thus replicating the Montana study. For the full Utah sample, though, Cronbach's α indicated poor internal consistency in rating the photographs, so a "monotonicity rule" was used to identify respondents providing monotonic preferences with respect to chlorophyll a densities. Simple graphical analyses are combined with ordered probit analysis to determine the maximum desirable density of chlorophyll a (Chl a). Our analysis indicates that Chl a levels in excess of 150 mg Chl a/m2 are undesirable, but the regression model suggests that those with strictly monotonic preferences were far more likely favor a more stringent standard.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcDyn..67..813D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcDyn..67..813D"><span>Modification of the deep salinity-maximum in the Southern Ocean by circulation in the Antarctic Circumpolar Current and the Weddell Gyre</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Donnelly, Matthew; Leach, Harry; Strass, Volker</p> <p>2017-07-01</p> <p>The evolution of the deep salinity-maximum associated with the Lower Circumpolar Deep Water (LCDW) is assessed using a set of 37 hydrographic sections collected over a 20-year period in the Southern Ocean as part of the WOCE/CLIVAR programme. A circumpolar decrease in the value of the salinity-maximum is observed eastwards from the North Atlantic Deep Water (NADW) in the Atlantic sector of the Southern Ocean through the Indian and Pacific sectors to Drake Passage. Isopycnal mixing processes are limited by circumpolar fronts, and in the Atlantic sector, this acts to limit the direct poleward propagation of the salinity signal. Limited entrainment occurs into the Weddell Gyre, with LCDW entering primarily through the eddy-dominated eastern limb. A vertical mixing coefficient, κV of (2.86 ± 1.06) × 10-4 m2 s-1 and an isopycnal mixing coefficient, κI of (8.97 ± 1.67) × 102 m2 s-1 are calculated for the eastern Indian and Pacific sectors of the Antarctic Circumpolar Current (ACC). A κV of (2.39 ± 2.83) × 10-5 m2 s-1, an order of magnitude smaller, and a κI of (2.47 ± 0.63) × 102 m2 s-1, three times smaller, are calculated for the southern and eastern Weddell Gyre reflecting a more turbulent regime in the ACC and a less turbulent regime in the Weddell Gyre. In agreement with other studies, we conclude that the ACC acts as a barrier to direct meridional transport and mixing in the Atlantic sector evidenced by the eastward propagation of the deep salinity-maximum signal, insulating the Weddell Gyre from short-term changes in NADW characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OptMa..58..260W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OptMa..58..260W"><span>Excellent deep-blue emitting materials based on anthracene derivatives for non-doped organic light-emitting diodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Zhiqiang; Liu, Wei; Xu, Chen; Ji, Baoming; Zheng, Caijun; Zhang, Xiaohong</p> <p>2016-08-01</p> <p>Two deep-blue emitting materials 2-tert-butyl-9,10-bis(3,5-diphenylphenyl)anthracene (An-1) and 2-tert-butyl-9,10-bis(3,5-diphenylbiphenyl-4‧-yl)anthracene (An-2) were successfully synthesized by the Pd-catalyzed Suzuki coupling reaction. Both of these compounds have high thermal stabilities and show strong deep-blue emission as solid-state film as well as in n-hexane solution. Two non-doped electroluminescent devices employing An-1 and An-2 as emitting layers were fabricated by vacuum vapor deposition. These devices exhibited highly efficient and stable deep-blue emission with high color purity. The CIE coordinate and maximum EQE of An-1 based device are 4.2% and (0.16, 0.06), respectively. Device based on An-2 achieved a maximum EQE of 4.0% and a CIE coordinate of (0.16, 0.10).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27334004','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27334004"><span>Unique chlorophylls in picoplankton Prochlorococcus sp. "Physicochemical properties of divinyl chlorophylls, and the discovery of monovinyl chlorophyll b as well as divinyl chlorophyll b in the species Prochlorococcus NIES-2086".</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Komatsu, Hirohisa; Wada, Katsuhiro; Kanjoh, Terumitsu; Miyashita, Hideaki; Sato, Mayumi; Kawachi, Masanobu; Kobayashi, Masami</p> <p>2016-12-01</p> <p>In this review, we introduce our recent studies on divinyl chlorophylls functioning in unique marine picoplankton Prochlorococcus sp. (1) Essential physicochemical properties of divinyl chlorophylls are compared with those of monovinyl chlorophylls; separation by normal-phase and reversed-phase high-performance liquid chromatography with isocratic eluent mode, absorption spectra in four organic solvents, fluorescence information (emission spectra, quantum yields, and life time), circular dichroism spectra, mass spectra, nuclear magnetic resonance spectra, and redox potentials. The presence of a mass difference of 278 in the mass spectra between [M+H] + and the ions indicates the presence of a phytyl tail in all the chlorophylls. (2) Precise high-performance liquid chromatography analyses show divinyl chlorophyll a' and divinyl pheophytin a as the minor key components in four kinds of Prochlorococcus sp.; neither monovinyl chlorophyll a' nor monovinyl pheophytin a is detected, suggesting that the special pair in photosystem I and the primary electron acceptor in photosystem II are not monovinyl but divinyl-type chlorophylls. (3) Only Prochlorococcus sp. NIES-2086 possesses both monovinyl chlorophyll b and divinyl chlorophyll b, while any other monovinyl-type chlorophylls are absent in this strain. Monovinyl chlorophyll b is not detected at all in the other three strains. Prochlorococcus sp. NIES-2086 is the first example that has both monovinyl chlorophyll b as well as divinyl chlorophylls a/b as major chlorophylls.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4254739','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4254739"><span>Identification of Genes Associated with Chlorophyll Accumulation in Flower Petals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ohmiya, Akemi; Hirashima, Masumi; Yagi, Masafumi; Tanase, Koji; Yamamizo, Chihiro</p> <p>2014-01-01</p> <p>Plants have an ability to prevent chlorophyll accumulation, which would mask the bright flower color, in their petals. In contrast, leaves contain substantial amounts of chlorophyll, as it is essential for photosynthesis. The mechanisms of organ-specific chlorophyll accumulation are unknown. To identify factors that determine the chlorophyll content in petals, we compared the expression of genes related to chlorophyll metabolism in different stages of non-green (red and white) petals (very low chlorophyll content), pale-green petals (low chlorophyll content), and leaves (high chlorophyll content) of carnation (Dianthus caryophyllus L.). The expression of many genes encoding chlorophyll biosynthesis enzymes, in particular Mg-chelatase, was lower in non-green petals than in leaves. Non-green petals also showed higher expression of genes involved in chlorophyll degradation, including STAY-GREEN gene and pheophytinase. These data suggest that the absence of chlorophylls in carnation petals may be caused by the low rate of chlorophyll biosynthesis and high rate of degradation. Similar results were obtained by the analysis of Arabidopsis microarray data. In carnation, most genes related to chlorophyll biosynthesis were expressed at similar levels in pale-green petals and leaves, whereas the expression of chlorophyll catabolic genes was higher in pale-green petals than in leaves. Therefore, we hypothesize that the difference in chlorophyll content between non-green and pale-green petals is due to different levels of chlorophyll biosynthesis. Our study provides a basis for future molecular and genetic studies on organ-specific chlorophyll accumulation. PMID:25470367</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28816440','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28816440"><span>High Quantities of Microplastic in Arctic Deep-Sea Sediments from the HAUSGARTEN Observatory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bergmann, Melanie; Wirzberger, Vanessa; Krumpen, Thomas; Lorenz, Claudia; Primpke, Sebastian; Tekman, Mine B; Gerdts, Gunnar</p> <p>2017-10-03</p> <p>Although mounting evidence suggests the ubiquity of microplastic in aquatic ecosystems worldwide, our knowledge of its distribution in remote environments such as Polar Regions and the deep sea is scarce. Here, we analyzed nine sediment samples taken at the HAUSGARTEN observatory in the Arctic at 2340-5570 m depth. Density separation by MicroPlastic Sediment Separator and treatment with Fenton's reagent enabled analysis via Attenuated Total Reflection FTIR and μFTIR spectroscopy. Our analyses indicate the wide spread of high numbers of microplastics (42-6595 microplastics kg -1 ). The northernmost stations harbored the highest quantities, indicating sea ice as a possible transport vehicle. A positive correlation between microplastic abundance and chlorophyll a content suggests vertical export via incorporation in sinking (ice-) algal aggregates. Overall, 18 different polymers were detected. Chlorinated polyethylene accounted for the largest proportion (38%), followed by polyamide (22%) and polypropylene (16%). Almost 80% of the microplastics were ≤25 μm. The microplastic quantities are among the highest recorded from benthic sediments. This corroborates the deep sea as a major sink for microplastics and the presence of accumulation areas in this remote part of the world, fed by plastics transported to the North via the Thermohaline Circulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25176411','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25176411"><span>Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Airs, R L; Temperton, B; Sambles, C; Farnham, G; Skill, S C; Llewellyn, C A</p> <p>2014-10-16</p> <p>We report production of chlorophyll f and chlorophyll d in the cyanobacterium Chlorogloeopsis fritschii cultured under near-infrared and natural light conditions. C. fritschii produced chlorophyll f and chlorophyll d when cultured under natural light to a high culture density in a 20 L bubble column photobioreactor. In the laboratory, the ratio of chlorophyll f to chlorophyll a changed from 1:15 under near-infrared, to an undetectable level of chlorophyll f under artificial white light. The results provide support that chlorophylls f and d are both red-light inducible chlorophylls in C. fritschii. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890040618&hterms=Phytoplankton&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DPhytoplankton','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890040618&hterms=Phytoplankton&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DPhytoplankton"><span>Three color laser fluorometer for studies of phytoplankton fluorescence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Phinney, David A.; Yentsch, C. S.; Rohrer, J.</p> <p>1988-01-01</p> <p>A three-color laser fluorometer has been developed for field work operations. Using two tunable dye lasers (excitation wavelengths at 440 nm and 530 nm), broadband wavelength optical filters were selected to obtain maximum fluorescence sensitivity at wavelengths greater than 675 nm (chlorophyll) and 575 + or - 15 nm (phycoerythrin). The laser fluorometer permits the measurement of phytoplankton pigments under static or flowing conditions and more closely resembles the time scales (ns) and energy levels (mW) of other laser-induced fluorescence instruments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15997134','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15997134"><span>Selective enhancement of scopadulcic acid B production in the cultured tissues of Scoparia dulcis by methyl jasmonate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nkembo, Kasidimoko Marguerite; Lee, Jung-Bum; Hayashi, Toshimitsu</p> <p>2005-07-01</p> <p>The effects of methyl jasmonate (MeJA) on isoprenoid production were evaluated in cultured tissues of Scoparia dulcis. It was found that MeJA suppressed the accumulation of chlorophylls, carotenoids, phytol and beta-sitosterol in the tissues. MeJA, however, remarkably enhanced the production of scopadulcic acid B (SDB), with 10 microM being optimal observed concentration for stimulation of SDB production. The maximum concentration of SDB was observed 6 d after MeJA treatment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/1340484','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/1340484"><span>[Chlorophyll synthesis in cotyledons after gamma ray irradiation of black pine seeds].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bogdanović, M; Jelić, G</p> <p>1992-01-01</p> <p>The radiosensitivity of the greening system of Pinus nigra Arn. cotyledons has been studied in this paper. An exponential relation exists between the effect and dose for chlorophyll synthesis in the dark. Chlorophyll synthesis in the light roughly parallels that of chlorophyll synthesis in the dark. The restoration of chlorophyll was observed both in the light and in the dark. A stimulative effect of low doses of gamma radiation on chlorophyll synthesis was noticed. The radiosensitivity of chlorophyll a and chlorophyll b synthesis varied with the experimental conditions, suggesting that chlorophyll b synthesis might occur independently of chlorophyll a synthesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004DSRII..51...85H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004DSRII..51...85H"><span>Investigation of different coastal processes in Indonesian waters using SeaWiFS data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hendiarti, Nani; Siegel, Herbert; Ohde, Thomas</p> <p>2004-01-01</p> <p>SeaWiFS data were applied to investigate coastal processes in Indonesian waters around the most populated island of Java. Coastal processes due to wind forcing were studied the first time using SeaWiFS-derived chlorophyll and TSM concentrations in combination with AVHRR-derived SST in the period from September 1997 to December 2001. Upwelling events were studied along the southern coast of Java during the southeast monsoon (June to September). Satellite-derived chlorophyll concentrations higher than 0.8 mg/ m3 and sea-surface temperatures lower than 28°C are indications of upwelling. Upwelling events influence the distribution and growth of phytoplankton and provide by that good feeding condition for zooplankton, larvae, juvenile and adult of pelagic fish. Coastal discharge into the western Java Sea contains organic and inorganic materials originating from different sources. Diffuse impacts, particularly from fish farms and aquaculture, as well as coastal erosion influence large coastal areas during the rainy season (December to March), and to a lesser extent during the dry season. Strong Citarum river discharge was observed during the transition phase from the rainy to the dry season (March and April), when the maximum amount of transported material reaches the sea. The river plume is evident from chlorophyll concentrations higher than 2.5 mg/ m3, and suspended particulate matter concentrations of more than 8 mg/dm3. The Sunda Strait is seasonally influenced by water transport from the Java Sea and from the Indian Ocean. The satellite data show that water transport from the Java Sea occurs during the pre-dominantly easterly winds period (June to September). This is characterized by warm water (SST higher than 29.5°C) and chlorophyll concentrations higher than 0.5 mg/ m3. This water transport influences the fish abundance in the Sunda Strait. High fish catches coincide with the presence of Java Sea water, while the surface currents lead to the migration of pelagic fish. Conversely, during the dominant westerly winds period, oceanic waters from the Indian Ocean with low chlorophyll concentrations influence the Sunda Strait water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B53I0623L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B53I0623L"><span>Leaf Chlorophyll Content as a Proxy for Photosynthetic Parameters for Estimating Carbon and Water Fluxes at a Forest Site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luo, X.; Croft, H.; Chen, J.; Bartlett, P. A.; Staebler, R. M.; Froelich, N.</p> <p>2016-12-01</p> <p>Chlorophyll is the main light-harvesting pigment in leaves to support photosynthesis and also reflects the seasonal variations in the supply of nitrogen for photosynthetic enzymes. In this study, we explore the feasibility of using leaf chlorophyll content (Chlleaf) as a proxy for the leaf maximum carbonxylation rate at 25 °C ( ) for the purpose of improving carbon and water cycle estimation. Measurements of Chlleaf and were made in a decidous forest stand near Borden in Northern Ontario, Canada, which was equiped with eddy covariance instruments for measuring carbon and water fluxes. Based on the measurements from four broadleaf deciduous species, a linear relationship is develoepd between Chlleaf and . Compared to the prescribed constant values, derived from Chlleaf shows pronounced seasonal variations and improves the simulations of GPP and ET by 5% and 3%, respectively. The most significant improvements are found in spring and fall, when the errors in modelled GPP are reduced from 4.71 to 0.69 g/m2/day and from 2.4 to 1.16 g/m2/day, respecively. Errors in ET estimation are correspondingly reduced from 0.85 to 0.61 mm/day and from 0.40 to 0.33 mm/day in spring and autumn, respectively. A two-leaf upscaling scheme was used to account for the uneven distribution of incoming solar irradiance inside canopies and the accompanied physiological differences between leaves. One μg/cm2 of Chlleaf corresponds to 1.3 and 0.77 μmol/m2/s of in sunlit leaves and shaded leaves, respectively. The seasonal average rate of photosynthesis, transpiration, water use efficiency and light use efficiency of sunlit leaves are 2.7, 15, 0.19 and 0.3 times those of shaded leaves. For the first time, this sutdy incorporates chlorophyll in terrestrial biosphere models at a forest stand. Since it is feasible to derive leaf chlorophyll information using remote sensing means, this study would have profound implications on large-scale carbon and water fluxes estimation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984DSRA...31.1415O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984DSRA...31.1415O"><span>Star-shaped feeding traces produced by echiuran worms on the deep-sea floor of the Bay of Bengal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohta, Suguru</p> <p>1984-12-01</p> <p>Many star-shaped foraging traces were observed in bottom photographs of the deep-sea floor taken in the Bay of Bengal between the depths of 5025 and 2635 m. They were classified into 10 types according to their dimensions, aspect ratios (length/width) of their spokes, features of the central structure, and possible production mechanisms. The proboscis of a deep-sea bonellid echiuran worm was photographed at a depth of 2635 m in the act of producing one of the star-shaped foraging traces. On the basis of photographic observations and observations of shallow-water forms, several types of the feeding traces can be ascribed to the foraging of deep-sea echiuran worms on surface detritus. At least four types of the star-shaped trace are probably produced by deep-sea bonellid worms, and a linear correlation could be found between the aspect ratios of the spokes and maximum number of spokes around the central hole. A geometrical model experiment stimulating the feeding behavior of a bonellid worm suggested simple behavioral principles which afford maximum utilization of the surface area around a central hole with least expenditure of energy. The prediction of the maximum number of spokes for a given aspect of spokes by the model experiment agreed well with those observed, both utilizing about 76% of the fresh sediment surface within the span of the probiscis around a central hole. This efficient feeding pattern may have adaptive value in deep-sea environments such as the central part of the Bay of Bengal, where energy input is limited.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4291108','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4291108"><span>Colonization of the deep sea by fishes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Priede, I G; Froese, R</p> <p>2013-01-01</p> <p>Analysis of maximum depth of occurrence of 11 952 marine fish species shows a global decrease in species number (N) with depth (x; m): log10N = −0·000422x + 3·610000 (r2 = 0·948). The rate of decrease is close to global estimates for change in pelagic and benthic biomass with depth (−0·000430), indicating that species richness of fishes may be limited by food energy availability in the deep sea. The slopes for the Classes Myxini (−0·000488) and Actinopterygii (−0·000413) follow this trend but Chondrichthyes decrease more rapidly (−0·000731) implying deficiency in ability to colonize the deep sea. Maximum depths attained are 2743, 4156 and 8370 m for Myxini, Chondrichthyes and Actinopterygii, respectively. Endemic species occur in abundance at 7–7800 m depth in hadal trenches but appear to be absent from the deepest parts of the oceans, >9000 m deep. There have been six global oceanic anoxic events (OAE) since the origin of the major fish taxa in the Devonian c. 400 million years ago (mya). Colonization of the deep sea has taken place largely since the most recent OAE in the Cretaceous 94 mya when the Atlantic Ocean opened up. Patterns of global oceanic circulation oxygenating the deep ocean basins became established coinciding with a period of teleost diversification and appearance of the Acanthopterygii. Within the Actinopterygii, there is a trend for greater invasion of the deep sea by the lower taxa in accordance with the Andriashev paradigm. Here, 31 deep-sea families of Actinopterygii were identified with mean maximum depth >1000 m and with >10 species. Those with most of their constituent species living shallower than 1000 m are proposed as invasive, with extinctions in the deep being continuously balanced by export of species from shallow seas. Specialized families with most species deeper than 1000 m are termed deep-sea endemics in this study; these appear to persist in the deep by virtue of global distribution enabling recovery from regional extinctions. Deep-sea invasive families such as Ophidiidae and Liparidae make the greatest contribution to fish fauna at depths >6000 m. PMID:24298950</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27810676','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27810676"><span>Chlorophyll a is a favorable substrate for Chlamydomonas Mg-dechelatase encoded by STAY-GREEN.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Matsuda, Kaori; Shimoda, Yousuke; Tanaka, Ayumi; Ito, Hisashi</p> <p>2016-12-01</p> <p>Mg removal from chlorophyll by Mg-dechelatase is the first step of chlorophyll degradation. Recent studies showed that in Arabidopsis, Stay Green (SGR) encodes Mg-dechelatase. Though the Escherichia coli expression system is advantageous for investigating the properties of Mg-dechelatase, Arabidopsis Mg-dechelatase is not successfully expressed in E. coli. Chlamydomonas reinhardtii SGR (CrSGR) has a long, hydrophilic tail, suggesting that active CrSGR can be expressed in E. coli. After the incubation of chlorophyll a with CrSGR expressed in E. coli, pheophytin a accumulated, indicating that active CrSGR was expressed in E. coli. Substrate specificity of CrSGR against chlorophyll b and an intermediate molecule of the chlorophyll b degradation pathway was examined. CrSGR exhibited no activity against chlorophyll b and low activity against 7-hydroxymethyl chlorophyll a, consistent with the fact that chlorophyll b is degraded only after conversion to chlorophyll a. CrSGR exhibited low activity against divinyl chlorophyll a and chlorophyll a', and no activity against chlorophyllide a, protochlorophyll a, chlorophyll c 2 , and Zn-chlorophyll a. These observations indicate that chlorophyll a is the most favorable substrate for CrSGR. When CrSGR was expressed in Arabidopsis cells, the chlorophyll content decreased, further confirming that SGR has Mg-dechelating activity in chloroplasts. Copyright © 2016 Elsevier Masson SAS. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29655182','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29655182"><span>Acquiring High-Performance Deep-Blue OLED Emitters through an Unexpected Blueshift Color-Tuning Effect Induced by Electron-Donating -OMe Substituents.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peng, Song; Zhao, Yihuan; Fu, Caixia; Pu, Xuemei; Zhou, Liang; Huang, Yan; Lu, Zhiyun</p> <p>2018-06-07</p> <p>A series of blue-emissive 7-(diphenylamino)-4-phenoxycoumarin derivatives bearing -CF 3 , -OMe, or -N(Me) 2 substituents on the phenoxy subunit were synthesized. Although both the -CF 3 and -N(Me) 2 modifications were found to trigger redshifted fluorescence, the -OMe substitution was demonstrated to exert an unexpected blueshift color-tuning effect toward the deep-blue region. The reason is that the moderate electron-donating -OMe group can endow coumarins with unaltered HOMO but elevated LUMO energy levels. Moreover, the -OMe substitution was found to be beneficial to the thermal stability of these coumarins. Therefore, the trimethoxy-substituted objective compound can act as a high-performance deep-blue organic light-emitting diode (OLED) emitter, and OLED based on it emits deep-blue light with CIE coordinates of (0.148, 0.084), maximum luminance of 7800 cd m -2 , and maximum external quantum efficiency of 5.1 %. These results not only shed light on the molecular design strategy for high-performance deep-blue OLED emitters through color-tuning, but also show the perspective of coumarin derivatives as deep-blue OLED emitters. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27794335','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27794335"><span>Temporal and spatial variation of beaked and sperm whales foraging activity in Hawai'i, as determined with passive acoustics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Giorli, Giacomo; Neuheimer, Anna; Copeland, Adrienne; Au, Whitlow W L</p> <p>2016-10-01</p> <p>Beaked and sperm whales are top predators living in the waters off the Kona coast of Hawai'i. Temporal and spatial analyses of the foraging activity of these two species were studied with passive acoustics techniques. Three passive acoustics recorders moored to the ocean floor were used to monitor the foraging activity of these whales in three locations along the Kona coast of the island of Hawaii. Data were analyzed using automatic detector/classification systems: M3R (Marine Mammal Monitoring on Navy Ranges), and custom-designed Matlab programs. The temporal variation in foraging activity was species-specific: beaked whales foraged more at night in the north, and more during the day-time off Kailua-Kona. No day-time/night-time preference was found in the southern end of the sampling range. Sperm whales foraged mainly at night in the north, but no day-time/night-time preference was observed off Kailua-Kona and in the south. A Generalized Linear Model was then applied to assess whether location and chlorophyll concentration affected the foraging activity of each species. Chlorophyll concentration and location influenced the foraging activity of both these species of deep-diving odontocetes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16038945','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16038945"><span>Effect of an acid mine drainage effluent on phytoplankton biomass and primary production at Britannia Beach, Howe Sound, British Columbia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Levings, C D; Varela, D E; Mehlenbacher, N M; Barry, K L; Piercey, G E; Guo, M; Harrison, P J</p> <p>2005-12-01</p> <p>We investigated the effect of acid mine drainage (AMD) from an abandoned copper mine at Britannia Beach (Howe Sound, BC, Canada) on primary productivity and chlorophyll a levels in the receiving waters of Howe Sound before, during, and after freshet from the Squamish River. Elevated concentrations of copper (integrated average through the water column >0.050 mgl(-1)) in nearshore waters indicated that under some conditions a small gyre near the mouth of Britannia Creek may have retained the AMD from Britannia Creek and from a 30-m deep water outfall close to shore. Regression and correlation analyses indicated that copper negatively affected primary productivity during April (pre-freshet) and November (post-freshet). Negative effects of copper on primary productivity were not supported statistically for July (freshet), possibly because of additional effects such as turbidity from the Squamish River. Depth-integrated average and surface chlorophyll a were correlated to copper concentrations in April. During this short study we demonstrated that copper concentrations from the AMD discharge can negatively affect both primary productivity and the standing stock of primary producers in Howe Sound.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890009730','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890009730"><span>Multi-property modeling of ocean basin carbon fluxes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Volk, Tyler</p> <p>1988-01-01</p> <p>The objectives of this project were to elucidate the causal mechanisms in some of the most important features of the global ocean/atomsphere carbon system. These included the interaction of physical and biological processes in the seasonal cycle of surface water pCo2, and links between productivity, surface chlorophyll, and the carbon cycle that would aid global modeling efforts. In addition, several other areas of critical scientific interest involving links between the marine biosphere and the global carbon cycle were successfully pursued; specifically, a possible relation between phytoplankton emitted DMS and climate, and a relation between the location of calcium carbonate burial in the ocean and metamorphic source fluxes of CO2 to the atmosphere. Six published papers covering the following topics are summarized: (1) Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary; (2) Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial; (3) Controls on CO2 sources and sinks in the earthscale surface ocean; (4) pre-anthropogenic, earthscale patterns of delta pCO2 between ocean and atmosphere; (5) Effect on atmospheric CO2 from seasonal variations in the high latitude ocean; and (6) Limitations or relating ocean surface chlorophyll to productivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015249','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015249"><span>The phytoplankton component of seston in San Francisco Bay</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wienke, S.M.; Cloern, J.E.</p> <p>1987-01-01</p> <p>Phytoplankton biomass (as carbon) was estimated from chlorophyll a concentrations (Chla) and a mean value for the ratio of phytoplankton carbon to chlorophyll a in San Francisco Bay. The ratio was determined as the slope of a Model II regression of POC' against (Chla), where POC' is total particulate organic carbon minus sediment-associated non-phytoplankton carbon. Samples from 30 fixed sites in the channel and lateral shoals of San Francisco Bay were collected once or twice a month from April to November 1980, and at irregular intervals in South Bay during 1984 and 1985. For all data the calculated mean value of phytoplankton C:Chla was 51 (95% confidence interval = 47-54). No significant differences were found in the C:Chla ratio between shallow and deep sites (where light availability differs) or between northern and southern San Francisco Bay (where phytoplankton community composition differs). Using the mean C:Chla ratio of 51, we calculated that phytoplankton biomass constitutes about one third of seston carbon under most circumstances, but this fraction ranges from about 95% during phytoplankton blooms to less than 20% during spring periods of low phytoplankton biomass and high suspended sediment concentration. ?? 1987.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26368874','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26368874"><span>Strain and mechanical properties of the VCM multilayer sheet and their composites using the digital speckle correlation method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Dehai; Xie, Guizhong; Li, Yanqin; Liu, Jianxiu</p> <p>2015-09-01</p> <p>The digital speckle correlation method (DSCM) is introduced to solve the challenging problems in the related geometric measurement. Theoretical calculations of strain are deduced using the DSCM. Corresponding strains along x and y directions are obtained from uniaxial tension experiments and digital speckle measurements, using the VCM nondeep drawing multilayer sheet, the VCM deep-drawing multilayer sheet, clad films, nondeep drawing substrate, and deep-drawing substrate sheet as the targeted experimental objects. The results show that the maximum strains along the x direction of the VCM nondeep drawing multilayer sheet, the VCM deep-drawing multilayer sheet, clad film, nondeep drawing substrate, and deep-drawing substrate sheet are 68.473%, 48.632%, 91.632%, 50.784% and 40.068%, respectively, while the maximum strains along the y direction are -2.657%, -15.381%, 2.826%, -9.780% and -7.783%, respectively. The mechanical properties of the VCM multilayer sheet are between those of the substrate and clad film, while mechanical properties of the VCM deep-drawing multilayer sheet are superior to those of the VCM nondeep drawing multi-layer sheet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850024160','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850024160"><span>A numerical analysis of transient planetary waves and the vertical structure in a meso-strato-troposphere model, part 1.4A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhang, K. S.; Sasamori, T.</p> <p>1984-01-01</p> <p>The structure of unstable planetary waves is computed by a quasi-geostrophic model extending from the surface up to 80 km by means of eigenvalue-eigenfunction techniques in spherical coordinates. Three kinds of unstable modes of distinct phase speeds and vertical structures are identified in the winter climate state: (1) the deep Green mode with its maximum amplitude in the stratosphere; (2) the deep Charney mode with its maximum amplitude in the troposphere: and (3) the shallow Charney mode which is largely confined to the troposphere. Both the Green mode and the deep Charney mode are characterized by very slow phase speeds. They are mainly supported by upward wave energy fluxes, but the local baroclinic energy conversion within the stratosphere also contributes in supporting these deep modes. The mesosphere and the troposphere are dynamically independent in the summer season decoupled by the deep stratospheric easterly. The summer mesosphere supports the easterly unstable waves 1-4. Waves 3 and 4 are identified with the observed mesospheric 2-day wave and 1.7-day wave, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21747815','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21747815"><span>Non-random assembly of bacterioplankton communities in the subtropical north pacific ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eiler, Alexander; Hayakawa, Darin H; Rappé, Michael S</p> <p>2011-01-01</p> <p>The exploration of bacterial diversity in the global ocean has revealed new taxa and previously unrecognized metabolic potential; however, our understanding of what regulates this diversity is limited. Using terminal restriction fragment length polymorphism (T-RFLP) data from bacterial small-subunit ribosomal RNA genes we show that, independent of depth and time, a large fraction of bacterioplankton co-occurrence patterns are non-random in the oligotrophic North Pacific subtropical gyre (NPSG). Pair-wise correlations of all identified operational taxonomic units (OTUs) revealed a high degree of significance, with 6.6% of the pair-wise co-occurrences being negatively correlated and 20.7% of them being positive. The most abundant OTUs, putatively identified as Prochlorococcus, SAR11, and SAR116 bacteria, were among the most correlated OTUs. As expected, bacterial community composition lacked statistically significant patterns of seasonality in the mostly stratified water column except in a few depth horizons of the sunlit surface waters, with higher frequency variations in community structure apparently related to populations associated with the deep chlorophyll maximum. Communities were structured vertically into epipelagic, mesopelagic, and bathypelagic populations. Permutation-based statistical analyses of T-RFLP data and their corresponding metadata revealed a broad range of putative environmental drivers controlling bacterioplankton community composition in the NPSG, including concentrations of inorganic nutrients and phytoplankton pigments. Together, our results suggest that deterministic forces such as environmental filtering and interactions among taxa determine bacterioplankton community patterns, and consequently affect ecosystem functions in the NPSG.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4712841','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4712841"><span>ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kurihara, Daisuke; Mizuta, Yoko; Sato, Yoshikatsu; Higashiyama, Tetsuya</p> <p>2015-01-01</p> <p>Imaging techniques for visualizing and analyzing precise morphology and gene expression patterns are essential for understanding biological processes during development in all organisms. With the aid of chemical screening, we developed a clearing method using chemical solutions, termed ClearSee, for deep imaging of morphology and gene expression in plant tissues. ClearSee rapidly diminishes chlorophyll autofluorescence while maintaining fluorescent protein stability. By adjusting the refractive index mismatch, whole-organ and whole-plant imaging can be performed by both confocal and two-photon excitation microscopy in ClearSee-treated samples. Moreover, ClearSee is applicable to multicolor imaging of fluorescent proteins to allow structural analysis of multiple gene expression. Given that ClearSee is compatible with staining by chemical dyes, the technique is useful for deep imaging in conjunction with genetic markers and for plant species not amenable to transgenic approaches. This method is useful for whole imaging for intact morphology and will help to accelerate the discovery of new phenomena in plant biological research. PMID:26493404</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=304150','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=304150"><span>Relationship between chlorophyll density and SPAD chlorophyll meter reading for Jerusalem artichoke (Helianthus tuberosus L.)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Chlorophyll is an indicator of crop health and productivity. Measuring chlorophyll is usually done directly and requires significant time and resources. Indirect measurement of chlorophyll density using a handheld portable chlorophyll meter can reduce time. However, this information is very limit...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040090326&hterms=colorimetry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcolorimetry','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040090326&hterms=colorimetry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcolorimetry"><span>Inherent limitations of nondestructive chlorophyll meters: a comparison of two types of meters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Monje, O. A.; Bugbee, B.</p> <p>1992-01-01</p> <p>Two types of nondestructive chlorophyll meters were compared with a standard, destructive chlorophyll measurement technique. The nondestructive chlorophyll meters were 1) a custom built, single-wavelength meter, and 2) the recently introduced, dual-wavelengh, chlorophyll meter from Minolta (model SPAD-502). Data from both meters were closely correlated with destructive measurements of chlorophyll (r2 = 0.90 and 0.93; respectively) for leaves with chlorophyll concentrations ranging from 100 to 600 mg m-2, but both meters consistently overestimated chlorophyll outside this range. Although the dual-wavelength meter was slightly more accurate than the single-wavelength meter (higher r2), the light-scattering properties of leaf cells and the nonhomogeneous distribution of chlorophyll in leaves appear to limit the ability of all meters to estimate in vivo chlorophyll concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29390011','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29390011"><span>Characterization of chlorophyll binding to LIL3.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mork-Jansson, Astrid Elisabeth; Eichacker, Lutz Andreas</p> <p>2018-01-01</p> <p>The light harvesting like protein 3 (LIL 3) from higher plants, has been linked to functions in chlorophyll and tocopherol biosynthesis, photo-protection and chlorophyll transfer. However, the binding of chlorophyll to LIL3 is unclear. We present a reconstitution protocol for chlorophyll binding to LIL3 in DDM micelles. It is shown in the absence of lipids and carotenoids that reconstitution of chlorophyll binding to in vitro expressed LIL3 requires pre-incubation of reaction partners at room temperature. We show chlorophyll a but not chlorophyll b binding to LIL3 at a molar ratio of 1:1. Neither dynamic light scattering nor native PAGE, enabled a discrimination between binding of chlorophyll a and/or b to LIL3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO24D2983E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO24D2983E"><span>Resuspension and Shelf-Deep Ocean Exchange in the Northern California Current: New Insights From Underwater Gliders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Erofeev, A.; Barth, J. A.; Shearman, R. K.; Pierce, S. D.</p> <p>2016-02-01</p> <p>Shelf-deep ocean exchange is dominated by wind-driven upwelling and downwelling in the northern California Current. The interaction of strong, along-shelf jets with coastline and bottom topographic features can also create significant cross-margin exchange. We are using data from over 60,000 kilometers of autonomous underwater glider tracks to understand the temporal and spatial distribution of shelf-deep ocean exchange off central Oregon. Year-round glider observations of temperature, salinity, depth-averaged currents, chlorophyll fluorescence, light backscatter, and colored dissolved organic matter fluorescence from a single cross-margin transect are used to examine shelf-deep ocean exchange mechanisms. During summer, cross-margin exchange is dominated by wind-driven upwelling and the relaxation or reversal of the dominant southward winds. This process has been fairly well observed and studied due to the relatively low sea states and winds during summer. There is far less data from fall and winter off Oregon, a time of strong winds and large waves. We use autonomous underwater gliders to sample during the winter, including through the fall and spring transitions. Glider observations of suspended material detected via light backscatter, show time-space variations in resuspension in the bottom boundary layer due to winds, waves and currents. Examples of shelf-deep ocean exchange are shown by layers with high light backscatter separating from the bottom near the shelf break and extending into the interior along isopycnals. We describe these features and events in relationship to wind-forcing, along-shelf flows, and other forcing mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5794176','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5794176"><span>Characterization of chlorophyll binding to LIL3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mork-Jansson, Astrid Elisabeth</p> <p>2018-01-01</p> <p>The light harvesting like protein 3 (LIL 3) from higher plants, has been linked to functions in chlorophyll and tocopherol biosynthesis, photo-protection and chlorophyll transfer. However, the binding of chlorophyll to LIL3 is unclear. We present a reconstitution protocol for chlorophyll binding to LIL3 in DDM micelles. It is shown in the absence of lipids and carotenoids that reconstitution of chlorophyll binding to in vitro expressed LIL3 requires pre-incubation of reaction partners at room temperature. We show chlorophyll a but not chlorophyll b binding to LIL3 at a molar ratio of 1:1. Neither dynamic light scattering nor native PAGE, enabled a discrimination between binding of chlorophyll a and/or b to LIL3. PMID:29390011</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24683336','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24683336"><span>Allocation of secondary metabolites, photosynthetic capacity, and antioxidant activity of Kacip Fatimah (Labisia pumila Benth) in response to CO2 and light intensity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E; Karimi, Ehsan; Ghasemzadeh, Ali</p> <p>2014-01-01</p> <p>A split plot 3 by 4 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites, soluble sugar, phenylalanine ammonia lyase (PAL; EC 4.3.1.5) activity, leaf gas exchange, chlorophyll content, antioxidant activity (DPPH), and lipid peroxidation under three levels of CO2 (400, 800, and 1200 μ mol/mol) and four levels of light intensity (225, 500, 625, and 900 μ mol/m(2)/s) over 15 weeks in Labisia pumila. The production of plant secondary metabolites, sugar, chlorophyll content, antioxidant activity, and malondialdehyde content was influenced by the interactions between CO2 and irradiance. The highest accumulation of secondary metabolites, sugar, maliondialdehyde, and DPPH activity was observed under CO2 at 1200 μ mol/mol + light intensity at 225 μ mol/m(2)/s. Meanwhile, at 400 μ mol/mol CO2 + 900 μ mol/m(2)/s light intensity the production of chlorophyll and maliondialdehyde content was the highest. As CO2 levels increased from 400 to 1200 μ mol/mol the photosynthesis, stomatal conductance, f v /f m (maximum efficiency of photosystem II), and PAL activity were enhanced. The production of secondary metabolites displayed a significant negative relationship with maliondialdehyde indicating lowered oxidative stress under high CO2 and low irradiance improved the production of plant secondary metabolites that simultaneously enhanced the antioxidant activity (DPPH), thus improving the medicinal value of Labisia pumila under this condition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4622620','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4622620"><span>PsbS is required for systemic acquired acclimation and post-excess-light-stress optimization of chlorophyll fluorescence decay times in Arabidopsis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ciszak, Kamil; Kulasek, Milena; Barczak, Anna; Grzelak, Justyna; Maćkowski, Sebastian; Karpiński, Stanisław</p> <p>2015-01-01</p> <p>Systemic acquired acclimation (SAA) is an important light acclimatory mechanism that depends on the global adjustments of non-photochemical quenching and chloroplast retrograde signaling. As the exact regulation of these processes is not known, we measured time-resolved fluorescence of chlorophyll a in Arabidopsis thaliana leaves exposed to excess light, in leaves undergoing SAA, and in leaves after excess light episode. We compare the behavior induced in wild-type plants with null mutant of non-photochemical quenching (npq4–1). The wild type rosettes exhibit a small reduction of fluorescence decay times in leaves directly exposed to excess light and in leaves undergoing SAA in ambient low light. However in npq4–1 exposition to excess light results in much faster fluorescence decay, which is insensitive to excitation power. At the same time npq4–1 leaves undergoing SAA displayed intermediate fluorescence decay. The npq4–1 plants also lost the ability to optimize florescence decay, and thus chlorophyll a dynamics up to 2 h after excess light episode. The fluorescence decay dynamics in both WT and npq4–1 can be described by a set of 3 maximum decay times. Based on the results, we concluded that functional PsbS is required for optimization of absorbed photon fate and optimal light acclimatory responses such as SAA or after excess light stress. PMID:25654166</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70179078','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70179078"><span>Contrasts between channels and backwaters in a large, floodplain river: Testing our understanding of nutrient cycling, phytoplankton abundance, and suspended solids dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Houser, Jeff N.</p> <p>2016-01-01</p> <p>In floodplain rivers, variability in hydraulic connectivity interacts with biogeochemistry to determine the distribution of suspended and dissolved substances. Nutrient, chlorophyll a, and suspended solids data spanning longitudinal (5 study reaches across 1300 river km), lateral (main channel and backwaters), and temporal (1994–2011) gradients in the Upper Mississippi River (UMR) were used to examine the extent to which observed differences between the main channel and backwaters were consistent with expectations based on current understanding of biogeochemical processes in large rivers. For N and P, the results largely conformed to expectations. N concentrations were greater in the main channel than in the backwaters in 82 to 96% of the observations across river reaches. Maximum TP concentrations generally occurred in backwaters during summer, when backwater TP often exceeded that of the main channel. Flux of P from sediments may be a substantial source of water-column P in UMR backwaters in summer. The data for suspended solids and chlorophyll a suggest that some refinements are needed of our understanding of ecosystem processes in large rivers. During low-discharge conditions, concentrations of inorganic suspended solids often were greater in backwaters than in the main channel, suggesting the importance of sediment resuspension. Chlorophyll a concentrations were usually greater in backwaters than in the main channel, but exceptions indicate that phytoplankton abundance in the main channel of the UMR can sometimes be greater than is typically expected for large rivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSOD24A2450C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSOD24A2450C"><span>Improving the knowledge about dissolved oxygen and chlorophyll variability at ESTOC by using autonomous vehicles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cianca, A.; Caudet, E.; Vega, D.; Barrera, C.; Hernandez Brito, J.</p> <p>2016-02-01</p> <p>The European Station for Time Series in the Ocean, Canary Islands "ESTOC" is located in the Eastern Subtropical North Atlantic Gyre (29'10ºN, 15'30ºW). ESTOC started operations in 1994 based on a monthly ship-based sampling, in addition to hydrographic and sediment trap moorings. Since 2002, ESTOC is part of the European network for deep sea ocean observatories through several projects, among others ANIMATE (Atlantic Network of Interdisciplinary Moorings and Time-series for Europe), EuroSITES (European Ocean Observatory Network) and Fixed point Open Ocean Observatory network (FixO3). The main purpose of these projects was to improve the time-resolution of the biogeochemical measurements through moored biogeochemical sensors. Additionally, ESTOC is included in the Marine-Maritime observational network of the Macaronesian region, which is supported by the European overseas territories programs since 2009. This network aims to increase the quantity and quality of marine environmental observations. The goal is to understand phenomena which impact in the environment, and consequently at the socio-economy of the region to attempt their prediction. With this purpose, ESTOC has included the use of autonomous vehicles "glider" in order to increase the observational resolution and, by comparison with the parallel observational programs, to study the biogeochemical processes at different time scale resolutions. This study investigates the time variability of the dissolved oxygen and chlorophyll distributions in the water column focusing on the diel cycle, looking at the relevance of this variability in the already known seasonal distributions. Our interest is assessing net community production and remineralization rates through the use of oxygen variations, establishing the relationship between the DO anomalies values and those from the chlorophyll distribution in the water column.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.4466V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.4466V"><span>Chlorophyll induced fluorescence retrieved from GOME2 for improving gross primary productivity estimates of vegetation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Leth, Thomas C.; Verstraeten, Willem W.; Sanders, Abram F. J.</p> <p>2014-05-01</p> <p>Mapping terrestrial chlorophyll fluorescence is a crucial activity to obtain information on the functional status of vegetation and to improve estimates of light-use efficiency (LUE) and global primary productivity (GPP). GPP quantifies carbon fixation by plant ecosystems and is therefore an important parameter for budgeting terrestrial carbon cycles. Satellite remote sensing offers an excellent tool for investigating GPP in a spatially explicit fashion across different scales of observation. The GPP estimates, however, still remain largely uncertain due to biotic and abiotic factors that influence plant production. Sun-induced fluorescence has the ability to enhance our knowledge on how environmentally induced changes affect the LUE. This can be linked to optical derived remote sensing parameters thereby reducing the uncertainty in GPP estimates. Satellite measurements provide a relatively new perspective on global sun-induced fluorescence, enabling us to quantify spatial distributions and changes over time. Techniques have recently been developed to retrieve fluorescence emissions from hyperspectral satellite measurements. We use data from the Global Ozone Monitoring Instrument 2 (GOME2) to infer terrestrial fluorescence. The spectral signatures of three basic components atmospheric: absorption, surface reflectance, and fluorescence radiance are separated using reference measurements of non-fluorescent surfaces (desserts, deep oceans and ice) to solve for the atmospheric absorption. An empirically based principal component analysis (PCA) approach is applied similar to that of Joiner et al. (2013, ACP). Here we show our first global maps of the GOME2 retrievals of chlorophyll fluorescence. First results indicate fluorescence distributions that are similar with that obtained by GOSAT and GOME2 as reported by Joiner et al. (2013, ACP), although we find slightly higher values. In view of optimizing the fluorescence retrieval, we will show the effect of the references selection procedure on the retrieval product.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27384948','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27384948"><span>The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Conway, Tim M; Hoffmann, Linn J; Breitbarth, Eike; Strzepek, Robert F; Wolff, Eric W</p> <p>2016-01-01</p> <p>Relief of iron (Fe) limitation in the surface Southern Ocean has been suggested as one driver of the regular glacial-interglacial cycles in atmospheric carbon dioxide (CO2). The proposed cause is enhanced deposition of Fe-bearing atmospheric dust to the oceans during glacial intervals, with consequent effects on export production and the carbon cycle. However, understanding the role of enhanced atmospheric Fe supply in biogeochemical cycles is limited by knowledge of the fluxes and 'bioavailability' of atmospheric Fe during glacial intervals. Here, we assess the effect of Fe fertilization by dust, dry-extracted from the Last Glacial Maximum portion of the EPICA Dome C Antarctic ice core, on the Antarctic diatom species Eucampia antarctica and Proboscia inermis. Both species showed strong but differing reactions to dust addition. E. antarctica increased cell number (3880 vs. 786 cells mL-1), chlorophyll a (51 vs. 3.9 μg mL-1) and particulate organic carbon (POC; 1.68 vs. 0.28 μg mL-1) production in response to dust compared to controls. P. inermis did not increase cell number in response to dust, but chlorophyll a and POC per cell both strongly increased compared to controls (39 vs. 15 and 2.13 vs. 0.95 ng cell-1 respectively). The net result of both responses was a greater production of POC and chlorophyll a, as well as decreased Si:C and Si:N incorporation ratios within cells. However, E, antarctica decreased silicate uptake for the same nitrate and carbon uptake, while P. inermis increased carbon and nitrate uptake for the same silicate uptake. This suggests that nutrient utilization changes in response to Fe addition could be driven by different underlying mechanisms between different diatom species. Enhanced supply of atmospheric dust to the surface ocean during glacial intervals could therefore have driven nutrient-utilization changes which could permit greater carbon fixation for lower silica utilization. Additionally, both species responded more strongly to lower amounts of direct Fe chloride addition than they did to dust, suggesting that not all the Fe released from dust was in a bioavailable form available for uptake by diatoms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4934930','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4934930"><span>The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hoffmann, Linn J.; Breitbarth, Eike; Strzepek, Robert F.; Wolff, Eric W.</p> <p>2016-01-01</p> <p>Relief of iron (Fe) limitation in the surface Southern Ocean has been suggested as one driver of the regular glacial-interglacial cycles in atmospheric carbon dioxide (CO2). The proposed cause is enhanced deposition of Fe-bearing atmospheric dust to the oceans during glacial intervals, with consequent effects on export production and the carbon cycle. However, understanding the role of enhanced atmospheric Fe supply in biogeochemical cycles is limited by knowledge of the fluxes and ‘bioavailability’ of atmospheric Fe during glacial intervals. Here, we assess the effect of Fe fertilization by dust, dry-extracted from the Last Glacial Maximum portion of the EPICA Dome C Antarctic ice core, on the Antarctic diatom species Eucampia antarctica and Proboscia inermis. Both species showed strong but differing reactions to dust addition. E. antarctica increased cell number (3880 vs. 786 cells mL-1), chlorophyll a (51 vs. 3.9 μg mL-1) and particulate organic carbon (POC; 1.68 vs. 0.28 μg mL-1) production in response to dust compared to controls. P. inermis did not increase cell number in response to dust, but chlorophyll a and POC per cell both strongly increased compared to controls (39 vs. 15 and 2.13 vs. 0.95 ng cell-1 respectively). The net result of both responses was a greater production of POC and chlorophyll a, as well as decreased Si:C and Si:N incorporation ratios within cells. However, E, antarctica decreased silicate uptake for the same nitrate and carbon uptake, while P. inermis increased carbon and nitrate uptake for the same silicate uptake. This suggests that nutrient utilization changes in response to Fe addition could be driven by different underlying mechanisms between different diatom species. Enhanced supply of atmospheric dust to the surface ocean during glacial intervals could therefore have driven nutrient-utilization changes which could permit greater carbon fixation for lower silica utilization. Additionally, both species responded more strongly to lower amounts of direct Fe chloride addition than they did to dust, suggesting that not all the Fe released from dust was in a bioavailable form available for uptake by diatoms. PMID:27384948</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS43B2056W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS43B2056W"><span>Predicting the spatiotemporal distributions of marine fish species utilizing earth system data in a maximum entropy modeling framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, L.; Kerr, L. A.; Bridger, E.</p> <p>2016-12-01</p> <p>Changes in species distributions have been widely associated with climate change. Understanding how ocean conditions influence marine fish distributions is critical for elucidating the role of climate in ecosystem change and forecasting how fish may be distributed in the future. Species distribution models (SDMs) can enable estimation of the likelihood of encountering species in space or time as a function of environmental conditions. Traditional SDMs are applied to scientific-survey data that include both presences and absences. Maximum entropy (MaxEnt) models are promising tools as they can be applied to presence-only data, such as those collected from fisheries or citizen science programs. We used MaxEnt to relate the occurrence records of marine fish species (e.g. Atlantic herring, Atlantic mackerel, and butterfish) from NOAA Northeast Fisheries Observer Program to environmental conditions. Environmental variables from earth system data, such as sea surface temperature (SST), sea bottom temperature (SBT), Chlorophyll-a, bathymetry, North Atlantic oscillation (NAO), and Atlantic multidecadal oscillation (AMO), were matched with species occurrence for MaxEnt modeling the fish distributions in Northeast Shelf area. We developed habitat suitability maps for these species, and assessed the relative influence of environmental factors on their distributions. Overall, SST and Chlorophyll-a had greatest influence on their monthly distributions, with bathymetry and SBT having moderate influence and climate indices (NAO and AMO) having little influence. Across months, Atlantic herring distribution was most related to SST 10th percentile, and Atlantic mackerel and butterfish distributions were most related to previous month SST. The fish distributions were most affected by previous month Chlorophyll-a in summer months, which may indirectly indicate the accumulative impact of primary productivity. Results highlighted the importance of spatial and temporal scales when using SDMs to investigate the habitat suitability and distributions of a focal species. MaxEnt models have the potential to provide hindcasts of where species might have been in the past in relation to historical environmental conditions, nowcasts in relation to current conditions, or forecasts of future species distributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710983B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710983B"><span>One year of Seaglider dissolved oxygen concentration profiles at the PAP site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Binetti, Umberto; Kaiser, Jan; Heywood, Karen; Damerell, Gillian; Rumyantseva, Anna</p> <p>2015-04-01</p> <p>Oxygen is one of the most important variables measured in oceanography, influenced both by physical and biological factors. During the OSMOSIS project, 7 Seagliders were used in 3 subsequent missions to measure a multidisciplinary suite of parameters at high frequency in the top 1000 m of the water column for one year, from September 2012 to September 2013. The gliders were deployed at the PAP time series station (nominally at 49° N 16.5° W) and surveyed the area following a butterfly-shaped path. Oxygen concentration was measured by Aanderaa optodes and calibrated using ship CTD O2 profiles during 5 deployment and recovery cruises, which were in turn calibrated by Winkler titration of discrete samples. The oxygen-rich mixed layer deepens in fall and winter and gets richer in oxygen when the temperature decreases. The spring bloom did not happen as expected, but instead the presence of a series of small blooms was measured throughout spring and early summer. During the summer the mixed layer become very shallow and oxygen concentrations decreased. A Deep Oxygen Maximum (DOM) developed along with a deep chlorophyll maximum during the summer and was located just below the mixed layer . At this depth, phytoplankton had favourable light and nutrient conditions to grow and produce oxygen, which was not subject to immediate outgassing. The oxygen concentration in the DOM was not constant, but decreased, then increased again until the end of the mission. Intrusions of oxygen rich water are also visible throughout the mission. These are probably due to mesoscale events through the horizontal transport of oxygen and/or nutrients that can enhance productivity, particularly at the edge of the fronts. We calculate net community production (NCP) by analysing the variation in oxygen with time. Two methods have been proposed. The classical oxygen budget method assumes that changes in oxygen are due to the sum of air-sea flux, isopycnal advection, diapycnal mixing and NCP. ERA-Interim provides climatological data to calculate air-sea gas exchange fluxes based on wind-speed parameterisations of the gas exchange coefficient. The second method exploits the high frequency of the measurements to determine the increment of oxygen over time during daylight hours to measure NCP. Together with the O2 concentration decrease during the night (due to community respiration), this method also allows us to derive gross oxygen production rates. The results of these two methods are compared.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21906679','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21906679"><span>Effect of light quality on the C-phycoerythrin production in marine cyanobacteria Pseudanabaena sp. isolated from Gujarat coast, India.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mishra, Sanjiv K; Shrivastav, Anupama; Maurya, Rahulkumar R; Patidar, Shailesh K; Haldar, Soumya; Mishra, Sandhya</p> <p>2012-01-01</p> <p>The isolated cyanobacterium containing biopigments like chlorophyll-a, phycoerythrin, phycocyanin, and carotenoid was cultured under different quality of light modes to ascertain biomass and pigment productivity. On the basis of 16S rRNA gene sequence, the isolate was identified as Pseudanabaena sp. Maximum biomass concentration obtained in white-, blue-, and green-light was 0.82, 0.94, and 0.89 g/L, respectively. It was observed that maximum phycoerythrin production was in green light (39.2 mg/L), ensued by blue light (32.2 mg/L), while phycocyanin production was maximum in red light (10.9 mg/L). In yellow light, pigment production as well as the growth rate gradually declined after 12 days. Carotenoid production decreased in blue-, white-, and red-light after 15 days, while in green light it had increased gradually. The present communication suggests that Pseudanabaena sp. can be used for commercial production of phycoerythrin when grown under green light. Copyright © 2011 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850065032&hterms=SCENEDESMUS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DSCENEDESMUS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850065032&hterms=SCENEDESMUS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DSCENEDESMUS"><span>Algal culture studies related to a closed ecological life support system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Radmer, R.; Behrens, P.; Fernandez, E.; Ollinger, O.; Howell, C.</p> <p>1984-01-01</p> <p>Studies on the steady-state long-term (4 month) culture of Scenedesmus obliquus algae, maintained in an annular air-lift column operated as a turbidostat, were carried out to evaluate the life-supporting possibilities of this system. Chlorophyll production and cell number as functions of the dry weight were linear at constant illumination. Productivity (measured as the product of dry weight, mg/ml, and the growth rate, ml/hr) vs. dry weight rose linearly until the cell density reached a level at which light became limiting (89 percent absorption of the photosynthetically active radiation). In the initial, linear portion of the curve, the productivity was limited by cell growth at the given light intensity. The maximum dilution rate of the system corresponded to the doubling time of 13.4 hr, about half the maximum rate, with a productivity of 80 percent of the maximum theoretical productivity. The high light utilization efficiencies were contributed by the low (10 percent of full sunlight) incident intensities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSME24F0767O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSME24F0767O"><span>A Three Year Study of Four Species of Baleen Whales Occurrence in Faial-Pico Islands of the Azores and its Relation to Satellite-derived Surface Biophysical Products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olio, M.; Peres dos Santos, R.; Tepsich, P.; Martins, A. M.</p> <p>2016-02-01</p> <p>In this study, data on the distribution of blue whales (Balaenoptera musculus), fin whales (Balaenoptera physalus), sei whales (Balaenoptera borealis) and humpback whales (Megaptera novaeangliae) in the waters around Faial and Pico islands (Azores archipelago, NE Atlantic) were collected during three years (2012 to 2014) for the months of March to July. During this period of time, we recorded 518 encounters with these species, being 73 in 2012, 86 in 2013 and 359 in 2014. Recordings were made during whale watching trips from two whale watching companies in those islands. In an attempt to understand better the different yearly occurrences, we used MODIS/AQUA-derived Sea Surface Temperature (SST) and Ocean Colour (chlorophyll a) to calculate weekly, bi-weekly, monthly, seasonal and yearly averages. Seasonal effects were removed from the data as well, to infer possible trends with time (2011 to 2014). Climatological anomalies were also calculated using MODIS data from 2003 to 2014. Results show that both years 2011 and 2012 present SST and OC negative anomalies through out the whole years. Higher chlorophyll a positive anomalies are observed during the spring of 2014. Maximum SST and chlorophyll a values ranged between 15.4 to 24.0 C and from 0.0 to 0.3 mg m-3, respectively. Sea surface tempature minimum and maxima anomalies ranged from -1.023 and 1.008 both for 2012, and -0.138 and 0.144 for chlorophyll a (for 2012 and 2014, respectively). Preliminary results suggest that phytoplankton concentration may explain the distribution of some whales species, particulary in 2014 where whale records were highest. These results are being further developed looking at mesoscale variability episodical occurrences on weekly to yearly data. Key words: baleen whales, whale watching, spatial and temporal distribution, remote sensing, mesoscale variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25631737','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25631737"><span>Analysis on biomass and productivity of epilithic algae and their relations to environmental factors in the Gufu River basin, Three Gorges Reservoir area, China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ge, Jiwen; Wu, Shuyuan; Touré, Dado; Cheng, Lamei; Miao, Wenjie; Cao, Huafen; Pan, Xiaoying; Li, Jianfeng; Yao, Minmin; Feng, Liang</p> <p>2017-12-01</p> <p>The main purpose of this study conducted from August 2010 was to find biomass and productivity of epilithic algae and their relations to environmental factors and try to explore the restrictive factors affecting the growth of algae in the Gufu River, the one of the branches of Xiangxi River located in the Three Gorges Reservoir of the Yangtze River, Hubei Province, Central China. An improved method of in situ primary productivity measurement was utilized to estimate the primary production of the epilithic algae. It was shown that in rivers, lakes, and reservoirs, algae are the main primary producers and have a central role in the ecosystem. Chlorophyll a concentration and ash-free dry mass (AFDM) were estimated for epilithic algae of the Gufu River basin in Three Gorges Reservoir area. Environmental factors in the Gufu River ecosystem highlighted differences in periphyton chlorophyll a ranging from 1.49 mg m -2 (origin) to 69.58 mg m -2 (terminal point). The minimum and maximum gross primary productivity of epilithic algae were 96.12 and 1439.89 mg C m -2  day -1 , respectively. The mean net primary productivity was 290.24 mg C m -2  day -1 . The mean autotrophic index (AFDM:chlorophyll a) was 407.40. The net primary productivity, community respiration ratio (P/R ratio) ranged from 0.98 to 9.25 with a mean of 2.76, showed that autotrophic productivity was dominant in the river. Relationship between physicochemical characteristics and biomass was discussed through cluster and stepwise regression analysis which indicated that altitude, total nitrogen (TN), NO 3 - -N, and NH 4 + -N were significant environmental factors affecting the biomass of epilithic algae. However, a negative logarithmic relationship between altitude and the chlorophyll a of epilithic algae was high. The results also highlighted the importance of epilithic algae in maintaining the Gufu River basin ecosystems health.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950029623&hterms=coastal+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcoastal%2Bzone','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950029623&hterms=coastal+zone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcoastal%2Bzone"><span>A numerical analysis of shipboard and coastal zone color scanner time series of new production within Gulf Stream cyclonic eddies in the South Atlantic Bight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pribble, J. Raymond; Walsh, John J.; Dieterle, Dwight A.; Mueller-Karger, Frank E.</p> <p>1994-01-01</p> <p>Eddy-induced upwelling occurs along the western edge of the Gulf Stream between Cape Canaveral, Florida, and Cape Hatteras, North Carolina, in the South Atlantic Bight (SAB). Coastal zone color scanner images of 1-km resolution spanning the period April 13-21, 1979, were processed to examine these eddy features in relation to concurrent shipboard and current/temperature measurements at moored arrays. A quasi-one-dimensional (z), time dependent biological model, using only nitrate as a nutrient source, has been combined with a three-dimensional physical model in an attempt to replicate the observed phytoplankton field at the northward edge of an eddy. The model is applicable only to the SAB south of the Charleston Bump, at approximately 31.5 deg N, since no feature analogous to the bump exists in the model bathymetry. The modeled chlorophyll, nitrate, and primary production fields of the euphotic zone are very similar to those obtained from the satellite and shipboard data at the leading edges of the observed eddies south of the Charleston Bump. The horizontal and vertical simulated fluxes of nitrate and chlorophyll show that only approximately 10% of the upwelled nitrate is utilized by the phytoplankton of the modeled grid box on the northern edge of the cyclone, while approximately 75% is lost horizontally, with the remainder still in the euphotic zone after the 10-day period of the model. Loss of chlorophyll due to sinking is very small in this strong upwelling region of the cyclone. The model is relatively insensitive to variations in the sinking parameterization and the external nitrate and chlorophyll fields but is very sensitive to a reduction of the maximum potential growth rate to half that measured. Given the success of this model in simulating the new production of the selcted upwelling region, other upwelling regions for which measurements or successful models of physical and biological quantities and rates exist could be modeled similarly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25509066','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25509066"><span>[Effects of simulating acid rain on photosynthesis and chlorophyll fluorescence parameters of Quercus glauca Quercus glauca].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Sai; Yi, Li-Ta; Yu, Shu-Quan; Zhang, Chao; Shi, Jing-Jing</p> <p>2014-08-01</p> <p>At three levels of simulated acid rainfall intensities with pH values of 2.5 (severe), 40 (medium) and 5.6 (light) respectively, the responses of chlorophyll fluorescence and photosynthetic parameters of Quercus glauca seedlings were studied in three acid rainfall treatments, i. e. only the aboveground of seedlings exposed to acid rain (T1), both of the seedlings and soil exposed to acid rain (T2), only the soil exposed to acid rain (T3) compared with blank control (CK). Under the severe acid rainfall, T1 significantly inhibited chlorophyll synthesis, and thus reduced the primary photochemical efficiency of PS II ( F(v)/F(m)), potential activity of PS II (F(v)/F(o)) , apparent quantum (Y), net photosynthetic rate (P(n)), and transpiration rate (T(r)), but increased the light compensation point (LCP) and dark respiration rate (R(d)) of Q. glauca seedlings. T2 inhibited, but T3 played a little enhancement on the aforementioned parameters of Q. glauca seedlings. Under the conditions of medium and light acid rainfall intensities, the above parameters in the three treatments were higher than that of CK, except with lower R(d). The chlorophyll fluorescence and photosynthetic parameters showed a similar tendency in the three treatments, i. e. T2>T3 >T1. It indicated that T1 had the strongest inhibition on seedlings in condition of the severe acid rainfall, while T2 had the most dramatic facilitating effect on seedlings under the medium and light acid rainfall. Intensity of acid rainfall had significant influences on SPAD, F(v)/F(m), F(v)/F(o), Y, P(n), T(r), and maximum photosynthetic rate (A(max)), whereas treatments of acid rainfall affected SPAD, F(v)/F(m), Y, P(n), T(r), A(max) and light saturation point (LSP). The interaction of acid rainfall intensities and treatments played significant effects on SPAD, F(v)/F(m), Y, P(n) and A(max).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014IJAEO..26...88N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014IJAEO..26...88N"><span>Hyperspectral and multispectral satellite sensors for mapping chlorophyll content in a Mediterranean Pinus sylvestris L. plantation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Navarro-Cerrillo, Rafael Mª; Trujillo, Jesus; de la Orden, Manuel Sánchez; Hernández-Clemente, Rocío</p> <p>2014-02-01</p> <p>A new generation of narrow-band hyperspectral remote sensing data offers an alternative to broad-band multispectral data for the estimation of vegetation chlorophyll content. This paper examines the potential of some of these sensors comparing red-edge and simple ratio indices to develop a rapid and cost-effective system for monitoring Mediterranean pine plantations in Spain. Chlorophyll content retrieval was analyzed with the red-edge R750/R710 index and the simple ratio R800/R560 index using the PROSPECT-5 leaf model and the Discrete Anisotropic Radiative Transfer (DART) and experimental approach. Five sensors were used: AHS, CHRIS/Proba, Hyperion, Landsat and QuickBird. The model simulation results obtained with synthetic spectra demonstrated the feasibility of estimating Ca + b content in conifers using the simple ratio R800/R560 index formulated with different full widths at half maximum (FWHM) at the leaf level. This index yielded a r2 = 0.69 for a FWHM of 30 nm and r2 = 0.55 for a FWHM of 70 nm. Experimental results compared the regression coefficients obtained with various multispectral and hyperspectral images with different spatial resolutions at the stand level. The strongest relationships where obtained using high-resolution hyperspectral images acquired with the AHS sensor (r2 = 0.65) while coarser spatial and spectral resolution images yielded a lower root mean square error (QuickBird r2 = 0.42; Landsat r2 = 0.48; Hyperion r2 = 0.56; CHRIS/Proba r2 = 0.57). This study shows the need to estimate chlorophyll content in forest plantations at the stand level with high spatial and spectral resolution sensors. Nevertheless, these results also show the accuracy obtained with medium-resolution sensors when monitoring physiological processes. Generating biochemical maps at the stand level could play a critical rule in the early detection of forest decline processes enabling their use in precision forestry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21284176','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21284176"><span>[Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL models].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Xi-guang; Fan, Wen-yi; Yu, Ying</p> <p>2010-11-01</p> <p>The forest canopy chlorophyll content directly reflects the health and stress of forest. The accurate estimation of the forest canopy chlorophyll content is a significant foundation for researching forest ecosystem cycle models. In the present paper, the inversion of the forest canopy chlorophyll content was based on PROSPECT and SAIL models from the physical mechanism angle. First, leaf spectrum and canopy spectrum were simulated by PROSPECT and SAIL models respectively. And leaf chlorophyll content look-up-table was established for leaf chlorophyll content retrieval. Then leaf chlorophyll content was converted into canopy chlorophyll content by Leaf Area Index (LAD). Finally, canopy chlorophyll content was estimated from Hyperion image. The results indicated that the main effect bands of chlorophyll content were 400-900 nm, the simulation of leaf and canopy spectrum by PROSPECT and SAIL models fit better with the measured spectrum with 7.06% and 16.49% relative error respectively, the RMSE of LAI inversion was 0. 542 6 and the forest canopy chlorophyll content was estimated better by PROSPECT and SAIL models with precision = 77.02%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70073401','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70073401"><span>Changes in North Atlantic deep-sea temperature during climatic fluctuations of the last 25,000 years based on ostracode Mg/Ca ratios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dwyer, Gary S.; Cronin, Thomas M.; Baker, Paul A.; Rodriguez-Lazaro, Julio</p> <p>2000-01-01</p> <p>We reconstructed three time series of last glacial-to-present deep-sea temperature from deep and intermediate water sediment cores from the western North Atlantic using Mg/Ca ratios of benthic ostracode shells. Although the Mg/Ca data show considerable variability (“scatter”) that is common to single-shell chemical analyses, comparisons between cores, between core top shells and modern bottom water temperatures (BWT), and comparison to other paleo-BWT proxies, among other factors, suggest that multiple-shell average Mg/Ca ratios provide reliable estimates of BWT history at these sites. The BWT records show not only glacial-to-interglacial variations but also indicate BWT changes during the deglacial and within the Holocene interglacial stage. At the deeper sites (4500- and 3400-m water depth), BWT decreased during the last glacial maximum (LGM), the late Holocene, and possibly during the Younger Dryas. Maximum deep-sea warming occurred during the latest deglacial and early Holocene, when BWT exceeded modern values by as much as 2.5°C. This warming was apparently most intense around 3000 m, the depth of the modern-day core of North Atlantic deep water (NADW). The BWT variations at the deeper water sites are consistent with changes in thermohaline circulation: warmer BWT signifies enhanced NADW influence relative to Antarctic bottom water (AABW). Thus maximum NADW production and associated heat flux likely occurred during the early Holocene and decreased abruptly around 6500 years B.P., a finding that is largely consistent with paleonutrient studies in the deep North Atlantic. BWT changes in intermediate waters (1000-m water depth) of the subtropical gyre roughly parallel the deep BWT variations including dramatic mid-Holocene cooling of around 4°C. Joint consideration of the Mg/Ca-based BWT estimates and benthic oxygen isotopes suggests that the cooling was accompanied by a decrease in salinity at this site. Subsequently, intermediate waters warmed to modern values that match those of the early Holocene maximum of ∼7°C. Intermediate water BWT changes must also be driven by changes in ocean circulation. These results thus provide independent evidence that supports the hypothesis that deep-ocean circulation is closely linked to climate change over a range of timescales regardless of the mean climate state. More generally, the results further demonstrate the potential of benthic Mg/Ca ratios as a tool for reconstructing past ocean and climate conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28317773','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28317773"><span>Comprehensive chlorophyll composition in the main edible seaweeds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Kewei; Ríos, José Julián; Pérez-Gálvez, Antonio; Roca, María</p> <p>2017-08-01</p> <p>Natural chlorophylls present in seaweeds have been studied regarding their biological activities and health benefit effects. However, detailed studies regarding characterization of the complete chlorophyll profile either qualitatively and quantitatively are scarce. This work deals with the comprehensive spectrometric study of the chlorophyll derivatives present in the five main coloured edible seaweeds. The novel complete MS 2 characterization of five chlorophyll derivatives: chlorophyll c 2 , chlorophyll c 1 , purpurin-18 a, pheophytin d and phytyl-purpurin-18 a has allowed to obtain fragmentation patterns associated with their different structural features. New chlorophyll derivatives have been identified and quantified by first time in red, green and brown seaweeds, including some oxidative structures. Quantitative data of the chlorophyll content comes to achieve significant information for food composition databases in bioactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JMS....17..289F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JMS....17..289F"><span>Microzooplankton biomass distribution in Terra Nova Bay, Ross Sea (Antarctica)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fonda Umani, S.; Monti, M.; Nuccio, C.</p> <p>1998-11-01</p> <p>This work describes the spatial and vertical distribution of microzooplankton (20-200 μm) abundance and biomass of the upper layers (0-100 m), collected during the first oceanographic Italian expedition in Antarctica (1987/1988) in Terra Nova Bay (Ross Sea). Biomass was estimated by using biovolume calculations and literature conversion factors. Sampling was carried out at three depths, surface, 50 and 100 m. The dominant taxa were made up of tintinnid ciliates, ciliates other than tintinnids, larvae of micrometazoa and heterotrophic dinoflagellates. The abundance of the total microplankton fraction had its absolute maximum in the center of Terra Nova Bay at the surface with 31 042 ind. dm -3. The areal and vertical distribution of heterotrophic microplankton biomass differs from that of abundance. On the basis of hydrological conditions, phytoplankton composition and biomass and microzooplankton biomass and structure it is possible to identify three groups of stations: 1—northern coastal stations (intermediate chlorophyll maxima, microphytoplankton prevalence, low microzooplankton biomass); 2—central stations (high surface chlorophyll, nanoplankton prevalence, high abundance of microzooplankton); 3—northern stations (deeper pycnocline, nanoplankton prevalence, high microzooplankton biomass at intermediate depths).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4217239','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4217239"><span>The Epiphytic Fern Elaphoglossum luridum (Fée) Christ. (Dryopteridaceae) from Central and South America: Morphological and Physiological Responses to Water Stress</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Minardi, Bruno Degaspari; Voytena, Ana Paula Lorenzen; Randi, Áurea Maria</p> <p>2014-01-01</p> <p>Elaphoglossum luridum (Fée) Christ. (Dryopteridaceae) is an epiphytic fern of the Atlantic Forest (Brazil). Anatomical and physiological studies were conducted to understand how this plant responds to water stress. The E. luridum frond is coriaceus and succulent, presenting trichomes, relatively thick cuticle, and sinuous cell walls in both abaxial and adaxial epidermis. Three treatments were analyzed: control, water deficit, and abscisic acid (ABA). Physiological studies were conducted through analysis of relative water content (RWC), photosynthetic pigments, chlorophyll a fluorescence, and malate content. No changes in RWC were observed among treatments; however, significant decreases in chlorophyll a content and photosynthetic parameters, including optimal irradiance (I opt) and maximum electron transport rate (ETRmax), were determined by rapid light curves (RLC). No evidence of crassulacean acid metabolism (CAM) pathway was observed in E. luridum in response to either water deficit or exogenous application of ABA. On the other hand, malate content decreased in the E. luridum frond after ABA treatment, seeming to downregulate malate metabolism at night, possibly through tricarboxylic acid (TCA) cycle regulation. PMID:25386618</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032460','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032460"><span>Temporal variability in chlorophyll fluorescence of back-reef corals in Ofu, American Samoa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Piniak, G.A.; Brown, E.K.</p> <p>2009-01-01</p> <p>Change in the yield of chlorophyll a fluorescence is a common indicator of thermal stress in corals. The present study reports temporal variability in quantum yield measurements for 10 coral species in Ofu, American Samoa - a place known to experience elevated and variable seawater temperatures. In winter, the zooxanthellae generally had higher dark-adapted maximum quantum yield (F v/Fm), higher light- adapted effective quantum yield (??F/F'm), and lower relative electron transport rates (rETR) than in the summer. Temporal changes appeared unrelated to the expected bleaching sensitivity of corals. All species surveyed, with the exception of Montipora grisea, demonstrated significant temporal changes in the three fluorescence parameters. Fluorescence responses were influenced by the microhabitat - temporal differences in fluorescence parameters were usually observed in the habitat with a more variable temperature regime (pool 300), while differences in Fv/Fm between species were observed only in the more environmentally stable habitat (pool 400). Such species-specific responses and microhabitat variability should be considered when attempting to determine whether observed in situ changes are normal seasonal changes or early signs of bleaching. ?? 2009 Marine Biological Laboratory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SoPh..293...66P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SoPh..293...66P"><span>Comparison of Travel-Time and Amplitude Measurements for Deep-Focusing Time-Distance Helioseismology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pourabdian, Majid; Fournier, Damien; Gizon, Laurent</p> <p>2018-04-01</p> <p>The purpose of deep-focusing time-distance helioseismology is to construct seismic measurements that have a high sensitivity to the physical conditions at a desired target point in the solar interior. With this technique, pairs of points on the solar surface are chosen such that acoustic ray paths intersect at this target (focus) point. Considering acoustic waves in a homogeneous medium, we compare travel-time and amplitude measurements extracted from the deep-focusing cross-covariance functions. Using a single-scattering approximation, we find that the spatial sensitivity of deep-focusing travel times to sound-speed perturbations is zero at the target location and maximum in a surrounding shell. This is unlike the deep-focusing amplitude measurements, which have maximum sensitivity at the target point. We compare the signal-to-noise ratio for travel-time and amplitude measurements for different types of sound-speed perturbations, under the assumption that noise is solely due to the random excitation of the waves. We find that, for highly localized perturbations in sound speed, the signal-to-noise ratio is higher for amplitude measurements than for travel-time measurements. We conclude that amplitude measurements are a useful complement to travel-time measurements in time-distance helioseismology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28451232','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28451232"><span>Pyrimidine-based twisted donor-acceptor delayed fluorescence molecules: a new universal platform for highly efficient blue electroluminescence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Park, In Seob; Komiyama, Hideaki; Yasuda, Takuma</p> <p>2017-02-01</p> <p>Deep-blue emitters that can harvest both singlet and triplet excited states to give high electron-to-photon conversion efficiencies are highly desired for applications in full-color displays and white lighting devices based on organic light-emitting diodes (OLEDs). Thermally activated delayed fluorescence (TADF) molecules based on highly twisted donor-acceptor (D-A) configurations are promising emitting dopants for the construction of efficient deep-blue OLEDs. In this study, a simple and versatile D-A system combining acridan-based donors and pyrimidine-based acceptors has been developed as a new platform for high-efficiency deep-blue TADF emitters. The designed pre-twisted acridan-pyrimidine D-A molecules exhibit small singlet-triplet energy splitting and high photoluminescence quantum yields, functioning as efficient deep-blue TADF emitters. The OLEDs utilizing these TADF emitters display bright blue electroluminescence with external quantum efficiencies of up to 20.4%, maximum current efficiencies of 41.7 cd A -1 , maximum power efficiencies of 37.2 lm W -1 , and color coordinates of (0.16, 0.23). The design strategy featuring such acridan-pyrimidine D-A motifs can offer great prospects for further developing high-performance deep-blue TADF emitters and TADF-OLEDs.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28743986','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28743986"><span>An extended PROSPECT: Advance in the leaf optical properties model separating total chlorophylls into chlorophyll a and b.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Yao; Huang, Jingfeng; Wang, Fumin; Blackburn, George Alan; Zhang, Hankui K; Wang, Xiuzhen; Wei, Chuanwen; Zhang, Kangyu; Wei, Chen</p> <p>2017-07-25</p> <p>The PROSPECT leaf optical model has, to date, well-separated the effects of total chlorophyll and carotenoids on leaf reflectance and transmittance in the 400-800 nm. Considering variations in chlorophyll a:b ratio with leaf age and physiological stress, a further separation of total plant-based chlorophylls into chlorophyll a and chlorophyll b is necessary for advanced monitoring of plant growth. In this study, we present an extended version of PROSPECT model (hereafter referred to as PROSPECT-MP) that can combine the effects of chlorophyll a, chlorophyll b and carotenoids on leaf directional hemispherical reflectance and transmittance (DHR and DHT) in the 400-800 nm. The LOPEX93 dataset was used to evaluate the capabilities of PROSPECT-MP for spectra modelling and pigment retrieval. The results show that PROSPECT-MP can both simultaneously retrieve leaf chlorophyll a and b, and also performs better than PROSPECT-5 in retrieving carotenoids concentrations. As for the simulation of DHR and DHT, the performances of PROSPECT-MP are similar to that of PROSPECT-5. This study demonstrates the potential of PROSPECT-MP for improving capabilities of remote sensing of leaf photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids) and for providing a framework for future refinements in the modelling of leaf optical properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100024435','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100024435"><span>Evolutionary Scheduler for the Deep Space Network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Guillaume, Alexandre; Lee, Seungwon; Wang, Yeou-Fang; Zheng, Hua; Chau, Savio; Tung, Yu-Wen; Terrile, Richard J.; Hovden, Robert</p> <p>2010-01-01</p> <p>A computer program assists human schedulers in satisfying, to the maximum extent possible, competing demands from multiple spacecraft missions for utilization of the transmitting/receiving Earth stations of NASA s Deep Space Network. The program embodies a concept of optimal scheduling to attain multiple objectives in the presence of multiple constraints.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......227G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......227G"><span>Deep diving odontocetes foraging strategies and their prey field as determined by acoustic techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giorli, Giacomo</p> <p></p> <p>Deep diving odontocetes, like sperm whales, beaked whales, Risso's dolphins, and pilot whales are known to forage at deep depths in the ocean on squid and fish. These marine mammal species are top predators and for this reason are very important for the ecosystems they live in, since they can affect prey populations and control food web dynamics through top-down effects. The studies presented in this thesis investigate deep diving odontocetes. foraging strategies, and the density and size of their potential prey in the deep ocean using passive and active acoustic techniques. Ecological Acoustic Recorders (EAR) were used to monitor the foraging activity of deep diving odontocetes at three locations around the world: the Josephine Seamount High Sea Marine Protected Area (JHSMPA), the Ligurian Sea, and along the Kona coast of the island of Hawaii. In the JHSMPA, sperm whales. and beaked whales. foraging rates do not differ between night-time and day-time. However, in the Ligurian Sea, sperm whales switch to night-time foraging as the winter approaches, while beaked whales alternate between hunting mainly at night, and both at night and at day. Spatial differences were found in deep diving odontocetes. foraging activity in Hawaii where they forage most in areas with higher chlorophyll concentrations. Pilot whales (and false killer whales, clustered together in the category "blackfishes") and Risso's dolphins forage mainly at night at all locations. These two species adjust their foraging activity with the length of the night. The density and size of animals living in deep sea scattering layers was studied using a DIDSON imaging sonar at multiple stations along the Kona coast of Hawaii. The density of animals was affected by location, depth, month, and the time of day. The size of animals was influenced by station and month. The DIDSON proved to be a successful, non-invasive technique to study density and size of animals in the deep sea. Densities were found to be an order of magnitude higher than previously found with trawls, and sizes of animals were found to be 3-4 times larger than in trawl data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991GMS....63..119B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991GMS....63..119B"><span>Analysis of algal chlorophylls and carotenoids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bidigare, Robert R.</p> <p></p> <p>Water samples should be collected with Go-Flo bottles to avoid the contamination problems associated with the latex rubber closure mechanism of Niskin bottles [Williams and Robertson, 1989]. Price et al. [1986] have documented that latex rubber is extremely toxic to marine phytoplankton. It is recommended that only silicone tubing be used to dispense seawater into sample bottles. Seawater is dispensed into opaque Nalgene sample bottles to avoid light shock to deep-living phytoplankton assemblages. If pigment samples are collected to examine the dynamics of the diatoxanthin-diadinoxanthin (DT-DN) xanthophyll cycle, then casts should be performed quickly, i.e. less than 6 minutes, to minimize DT-DN interconversion prior to filtration [Welschmeyer and Hoepffner, in press; Welschmeyer, personal communication, 1990].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988PApGe.128..625W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988PApGe.128..625W"><span>Subduction zone seismicity and the thermo-mechanical evolution of downgoing lithosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wortel, M. J. R.; Vlaar, N. J.</p> <p>1988-09-01</p> <p>In this paper we discuss characteristic features of subduction zone seismicity at depths between about 100 km and 700 km, with emphasis on the role of temperature and rheology in controlling the deformation of, and the seismic energy release in downgoing lithosphere. This is done in two steps. After a brief review of earlier developments, we first show that the depth distribution of hypocentres at depths between 100 km and 700 km in subducted lithosphere can be explained by a model in which seismic activity is confined to those parts of the slab which have temperatures below a depth-dependent critical value T cr. Second, the variation of seismic energy release (frequency of events, magnitude) with depth is addressed by inferring a rheological evolution from the slab's thermal evolution and by combining this with models for the system of forces acting on the subducting lithosphere. It is found that considerable stress concentration occurs in a reheating slab in the depth range of 400 to 650 700 km: the slab weakens, but the stress level strongly increases. On the basis of this stress concentration a model is formulated for earthquake generation within subducting slabs. The model predicts a maximum depth of seismic activity in the depth range of 635 to 760 km and, for deep earthquake zones, a relative maximum in seismic energy release near the maximum depth of earthquakes. From our modelling it follows that, whereas such a maximum is indeed likely to develop in deep earthquake zones, zones with a maximum depth around 300 km (such as the Aleutians) are expected to exhibit a smooth decay in seismic energy release with depth. This is in excellent agreement with observational data. In conclusion, the incoroporation of both depth-dependent forces and depth-dependent rheology provides new insight into the generation of intermediate and deep earthquakes and into the variation of seismic activity with depth. Our results imply that no barrier to slab penetration at a depth of 650 700 km is required to explain the maximum depth of seismic activity and the pattern of seismic energy release in deep earthquake zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17766142','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17766142"><span>Dynamics of short-term acclimation to UV radiation in marine diatoms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fouqueray, Manuela; Mouget, Jean-Luc; Morant-Manceau, Annick; Tremblin, Gérard</p> <p>2007-11-12</p> <p>In order to investigate the dynamics of the acclimation of marine diatoms to ultraviolet radiation (UVR), Amphora coffeaeformis, Odontella aurita and Skeletonema costatum were exposed for 5 h per day to a combination of UVA and UVB (UVBR/UVAR ratio 4.5%) with a total UVR daily dose of 110 kJ m(-2), which is equivalent to that observed in the natural environment. This treatment was applied in the middle of the photoperiod and was repeated on five successive days. During the UVR treatment, chlorophyll fluorescence parameters were monitored, damage and repair constants were calculated from effective quantum yield values (phi(PSII)), and rapid light curves (electron transport rate versus irradiance curves using short light steps of different intensity) were plotted to determine the maximum relative electron transport rate (rETR(max)) and maximum light use efficiency (alpha). In all species the growth rate was lower than control from day 1-3, but increased thereafter, except for S. costatum. The cellular chlorophyll a content increased significantly with repeated daily exposure to UVR for A. coffeaeformis only. In all species, the fluorescence parameters (F(m), the maximum fluorescence level measured in the dark, phi(PSII), rETR(max) and alpha) decreased during UVR exposure, in contrast to F(0) (the minimum fluorescence level measured in the dark). The response to UVR stress was species-specific. S. costatum was very sensitive, and failed to survive for more than three days, whereas A. coffeaeformis and O. aurita were able to acclimate to UVR stress. These two species used different strategies. In A. coffeaeformis, the repair constant was lower than the damage constant, but phi(PSII) values returned to baseline values at the beginning of each experimental day, indicating that an effective active recovery process occurred after stress. In O. aurita, the repair processes took place during the stress, and could account for the UVR tolerance of this species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri024199/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri024199/"><span>Limnology of Blue Mesa, Morrow Point, and Crystal Reservoirs, Curecanti National Recreation area, during 1999, and a 25-year retrospective of nutrient conditions in Blue Mesa Reservoir, Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bauch, Nancy J.; Malick, Matt</p> <p>2003-01-01</p> <p>The U.S. Geological Survey and the National Park Service conducted a water-quality investigation in Curecanti National Recreation Area in Colorado from April through December 1999. Current (as of 1999) limnological characteristics, including nutrients, phytoplankton, chlorophyll-a, trophic status, and the water quality of stream inflows and reservoir outflows, of Blue Mesa, Morrow Point, and Crystal Reservoirs were assessed, and a 25-year retrospective of nutrient conditions in Blue Mesa Reservoir was conducted. The three reservoirs are in a series on the Gunnison River, with an upstream to downstream order of Blue Mesa, Morrow Point, and Crystal Reservoirs. Physical properties and water-quality samples were collected four times during 1999 from reservoir, inflow, and outflow sites in and around the recreation area. Samples were analyzed for nutrients, phytoplankton and chlorophyll-a (reservoir sites only), and suspended sediment (stream inflows only). Nutrient concentrations in the reservoirs were low; median total nitrogen and phosphorus concentrations were less than 0.4 and 0.06 milligram per liter, respectively. During water-column stratification, samples collected at depth had higher nutrient concentrations than photic-zone samples. Phytoplankton community and density were affected by water temperature, nutrients, and water residence time. Diatoms were the dominant phytoplankton throughout the year in Morrow Point and Crystal Reservoirs and during spring and early winter in Blue Mesa Reservoir. Blue-green algae were dominant in Blue Mesa Reservoir during summer and fall. Phytoplankton density was highest in Blue Mesa Reservoir and lowest in Crystal Reservoir. Longer residence times and warmer temperatures in Blue Mesa Reservoir were favorable for phytoplankton growth and development. Shorter residence times and cooler temperatures in the downstream reservoirs probably limited phytoplankton growth and development. Median chlorophyll-a concentrations were higher in Blue Mesa Reservoir than Morrow Point or Crystal Reservoirs. Blue Mesa Reservoir was mesotrophic in upstream areas and oligotrophic downstream. Both Morrow Point and Crystal Reservoirs were oligotrophic. Trophic-state index values were determined for total phosphorus, chlorophyll-a, and Secchi depth for each reservoir by the Carlson method; all values ranged between 29 and 55. Only the upstream areas in Blue Mesa Reservoir had total phosphorus and chlorophyll-a indices above 50, reflecting mesotrophic conditions. Nutrient inflows to Blue Mesa Reservoir, which were derived primarily from the Gunnison River, varied on a seasonal basis, whereas nutrient inflows to Morrow Point and Crystal Reservoirs, which were derived primarily from deep water releases from the respective upstream reservoir, were steady throughout the sampling period. Total phosphorus concentrations were elevated in many stream inflows. A comparison of current (as of 1999) and historical nutrient, chlorophyll-a, and trophic conditions in Blue Mesa Reservoir and its tributaries indicated that the trophic status in Blue Mesa Reservoir has not changed over the last 25 years, and more recent nutrient enrichment has not occurred.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010000391','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010000391"><span>The Use of a Chlorophyll Meter (SPAD-502) for Field Determinations of Red Mangrove (Rhizophora Mangle L.) Leaf Chlorophyll Amount</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Connelly, Xana M.</p> <p>1997-01-01</p> <p>The red mangrove Rhizophora mangle L., is a halophytic woody spermatophyte common to the land-sea interface of tropical and subtropical intertidal zones. It has been reported that 60 to 75% of the coastline of the earth's tropical regions are lined with mangroves. Mangroves help prevent shoreline erosion, provide breeding, nesting and feeding areas for many marine animals and birds. Mangroves are important contributors of primary production in the coastal environment, and this is largely proportional to the standing crop of leaf chlorophylls. Higher intensities of ultraviolet radiation, resulting from stratospheric ozone depletion, can lead to a reduction of chlorophyll in terrestrial plants. Since the most common method for determining chlorophyll concentration is by extraction and this is labor intensive and time consuming, few studies on photosynthetic pigments of mangroves have been reported. Chlorophyll meter readings have been related to leaf chlorophyll content in apples and maples. It has also been correlated to nitrogen status in corn and cotton. Peterson et al., (1993) used a chlorophyll meter to detect nitrogen deficiency in crops and in determining the need for additional nitrogen fertilizer. Efforts to correlate chlorophyll meter measurements to chlorophyll content of mangroves have not been reported. This paper describes the use of a hand-held chlorophyll meter (Minolta SPAD-502) to determine the amount of red mangrove foliar chlorophyll present in the field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.epa.gov/national-aquatic-resource-surveys/indicators-chlorophyll','PESTICIDES'); return false;" href="https://www.epa.gov/national-aquatic-resource-surveys/indicators-chlorophyll"><span>Indicators: Chlorophyll a</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Chlorophyll allows plants (including algae) to photosynthesize, i.e., use sunlight to convert simple molecules into organic compounds. Chlorophyll a is the predominant type of chlorophyll found in green plants and algae.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JCHyd.208....1X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JCHyd.208....1X"><span>Using environmental isotopes along with major hydro-geochemical compositions to assess deep groundwater formation and evolution in eastern coastal China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Naizheng; Gong, Jianshi; Yang, Guoqiang</p> <p>2018-01-01</p> <p>Hydrochemical analysis and environmental isotopic tracing are successfully applied to study groundwater evolution processes. Located in eastern China, the Jiangsu Coastal Plain is characterized by an extensively exploited deep groundwater system, and groundwater salinization has become the primary water environmental problem. This paper provides a case study on the use of a hydrochemical and environmental isotopic approach to assess possible mixing and evolution processes at Yoco Port, Jiangsu Province, China. Hydrochemical and isotopic patterns of deep groundwater allow one to distinguish different origins in deep water systems. HCO3- is the dominant anion in the freshwater samples, whereas Na+ and Cl- are the dominant major ions in the saline samples. According to δ18O, δ2H and 14C dating, the fresh water is derived from precipitation under a colder climate during the Glacial Maximum (Dali Glacial), while the saline groundwater is influenced by glacial-interglacial cycles during the Holocene Hypsithermal. The δ18O, δ2H and 3H data confirm that deep groundwater in some boreholes is mixed with overlying saline water. The deep groundwater reservoir can be divided into a saline water sector and a fresh water sector, and each show distinct hydrochemical and isotopic compositions. The saline groundwater found in the deep aquifer cannot be associated with present seawater intrusion. Since the Last Glacial Maximum in the Late Pleistocene, the deep groundwater flow system has evolved to its current status with the decrease in ice cover and the rising of sea level. However, the hydraulic connection is strengthened by continuous overexploitation, and deep groundwater is mixed with shallow groundwater at some points.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29157733','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29157733"><span>Using environmental isotopes along with major hydro-geochemical compositions to assess deep groundwater formation and evolution in eastern coastal China.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Naizheng; Gong, Jianshi; Yang, Guoqiang</p> <p>2018-01-01</p> <p>Hydrochemical analysis and environmental isotopic tracing are successfully applied to study groundwater evolution processes. Located in eastern China, the Jiangsu Coastal Plain is characterized by an extensively exploited deep groundwater system, and groundwater salinization has become the primary water environmental problem. This paper provides a case study on the use of a hydrochemical and environmental isotopic approach to assess possible mixing and evolution processes at Yoco Port, Jiangsu Province, China. Hydrochemical and isotopic patterns of deep groundwater allow one to distinguish different origins in deep water systems. HCO 3 - is the dominant anion in the freshwater samples, whereas Na + and Cl - are the dominant major ions in the saline samples. According to δ 18 O, δ 2 H and 14 C dating, the fresh water is derived from precipitation under a colder climate during the Glacial Maximum (Dali Glacial), while the saline groundwater is influenced by glacial-interglacial cycles during the Holocene Hypsithermal. The δ 18 O, δ 2 H and 3 H data confirm that deep groundwater in some boreholes is mixed with overlying saline water. The deep groundwater reservoir can be divided into a saline water sector and a fresh water sector, and each show distinct hydrochemical and isotopic compositions. The saline groundwater found in the deep aquifer cannot be associated with present seawater intrusion. Since the Last Glacial Maximum in the Late Pleistocene, the deep groundwater flow system has evolved to its current status with the decrease in ice cover and the rising of sea level. However, the hydraulic connection is strengthened by continuous overexploitation, and deep groundwater is mixed with shallow groundwater at some points. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23098920','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23098920"><span>Hydrophysical correlation and water mass indication of optical physiological parameters of picophytoplankton in Prydz Bay during autumn 2008.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Fang; Ma, Yuxin; Lin, Ling; He, Jianfeng</p> <p>2012-12-01</p> <p>Flow cytometry (FCM) is efficient in detecting both abundance and optical physiological parameters including cell size and cellular carbon content-side scatter (SSC), carotenoids-green and orange fluorescence (FL1 and FL2), and red fluorescence-chlorophylls (FL3) can be obtained by FCM. The utilization of these physiological parameters in indicating water masses in Prydz Bay was investigated for the first time. Picophytoplankton were very sensitive to hydrophysical changes and present distinct characteristics of water masses: Picophytoplankton in water closer to the Amery Ice Shelf were more affected by salinity than by temperature, while temperature became more important than salinity the nearer the picophytoplankton were to the deep sea. The picophytoplankton dealt with declines in light by increasing the size of cells, which increase the fixation of carbon. This can also be increased by high temperature and salinity. Pure water masses can increase the content of chlorophylls and cellular carbon. Generally, the distributions of all the five parameters at upper water depths were less affected by temperature and salinity than by water masses; and these parameters can be as indicators to Summer Surface Water (SSW), Winter Water (WW) and Continental Shelf Water (CSW). Copyright © 2012 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRII.138...63H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRII.138...63H"><span>Controls of primary production in two phytoplankton blooms in the Antarctic Circumpolar Current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoppe, C. J. M.; Klaas, C.; Ossebaar, S.; Soppa, M. A.; Cheah, W.; Laglera, L. M.; Santos-Echeandia, J.; Rost, B.; Wolf-Gladrow, D. A.; Bracher, A.; Hoppema, M.; Strass, V.; Trimborn, S.</p> <p>2017-04-01</p> <p>The Antarctic Circumpolar Current has a high potential for primary production and carbon sequestration through the biological pump. In the current study, two large-scale blooms observed in 2012 during a cruise with R.V. Polarstern were investigated with respect to phytoplankton standing stocks, primary productivity and nutrient budgets. While net primary productivity was similar in both blooms, chlorophyll a -specific photosynthesis was more efficient in the bloom closer to the island of South Georgia (39 °W, 50 °S) compared to the open ocean bloom further east (12 °W, 51 °S). We did not find evidence for light being the driver of bloom dynamics as chlorophyll standing stocks up to 165 mg m-2 developed despite mixed layers as deep as 90 m. Since the two bloom regions differ in their distance to shelf areas, potential sources of iron vary. Nutrient (nitrate, phosphate, silicate) deficits were similar in both areas despite different bloom ages, but their ratios indicated more pronounced iron limitation at 12 °W compared to 39 °W. While primarily the supply of iron and not the availability of light seemed to control onset and duration of the blooms, higher grazing pressure could have exerted a stronger control toward the declining phase of the blooms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010E%26PSL.292..290H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010E%26PSL.292..290H"><span>Deep ocean nutrients during the Last Glacial Maximum deduced from sponge silicon isotopic compositions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hendry, Katharine R.; Georg, R. Bastian; Rickaby, Rosalind E. M.; Robinson, Laura F.; Halliday, Alex N.</p> <p>2010-04-01</p> <p>The relative importance of biological and physical processes within the Southern Ocean for the storage of carbon and atmospheric pCO 2 on glacial-interglacial timescales remains uncertain. Understanding the impact of surface biological production on carbon export in the past relies on the reconstruction of the nutrient supply from upwelling deep waters. In particular, the upwelling of silicic acid (Si(OH) 4) is tightly coupled to carbon export in the Southern Ocean via diatom productivity. Here, we address how changes in deep water Si(OH) 4 concentrations can be reconstructed using the silicon isotopic composition of deep-sea sponges. We report δ30Si of modern deep-sea sponge spicules and show that they reflect seawater Si(OH) 4 concentration. The fractionation factor of sponge δ30Si compared to seawater δ30Si shows a positive relationship with Si(OH) 4, which may be a growth rate effect. Application of this proxy in two down-core records from the Scotia Sea reveals that Si(OH) 4 concentrations in the deep Southern Ocean during the Last Glacial Maximum (LGM) were no different than today. Our result does not support a coupling of carbon and nutrient build up in an isolated deep ocean reservoir during the LGM. Our data, combined with records of stable isotopes from diatoms, are only consistent with enhanced LGM Southern Ocean nutrient utilization if there was also a concurrent reduction in diatom silicification or a shift from siliceous to organic-walled phytoplankton.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27297985','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27297985"><span>Chlorophyll loss associated with heat-induced senescence in bentgrass.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jespersen, David; Zhang, Jing; Huang, Bingru</p> <p>2016-08-01</p> <p>Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat-induced senescence could aid in the development of genotypes with stay-green traits either through marker assisted selection or transgenic approaches. Copyright © 2016. Published by Elsevier Ireland Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=440431','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=440431"><span>A Developmental Study of Photosystem I Peripheral Chlorophyll Proteins 1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mullet, John E.; Burke, John J.; Arntzen, Charles J.</p> <p>1980-01-01</p> <p>An isolated “native” photosystem I (PSI complex) contains three spectral populations of chlorophyll a antennae (Mullet, Burke, Arntzen 1980 Plant Physiol 65: 814-822). It was hypothesized that nearly one-half of these antennae (≃45 Chl/P700) are associated with polypeptides of 21,500 to 24,500 daltons. The present study utilizes two developmental systems to verify this association. Chloroplasts were isolated from a Chl b-less barley mutant and from partially-developed cucumber cotyledons (greened under intermittent illumination [ImL] chloroplasts) and were compared to control chloroplasts isolated from wild-type barley and mature cucumber. Both the mutant and ImL chloroplasts exhibited a long wavelength fluorescence maximum at 724 nanometers at 77 K as compared to 735 to 738 nanometers emission maximum in the respective controls. Both the mutant and ImL chloroplasts were deficient in polypeptides of 21,500 to 24,500 daltons which were present in control membranes and in PSI fractions isolated from control membranes. In light-induced maturation of the ImL cucumbers, the synthesis of polypeptides in the 21,500 to 24,500 molecular weight range paralleled the appearance of PSI Chl species fluorescing at long wavelength (≃735 nm). The PSI spectral properties of the control membranes were retained in isolated PSI particles containing 100 to 120 Chl/P700 (PSI-110). Detergent extraction of PSI-110 removed polypeptides of 21,500 to 24,500 daltons plus ≃ 45 Chl/P700. The antennae-depleted PSI particle mimics PSI properties exhibited by incompletely differentiated mutant or ImL chloroplasts. Images PMID:16661289</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013WRR....49.6933A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013WRR....49.6933A"><span>Optimizing an estuarine water quality monitoring program through an entropy-based hierarchical spatiotemporal Bayesian framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alameddine, Ibrahim; Karmakar, Subhankar; Qian, Song S.; Paerl, Hans W.; Reckhow, Kenneth H.</p> <p>2013-10-01</p> <p>The total maximum daily load program aims to monitor more than 40,000 standard violations in around 20,000 impaired water bodies across the United States. Given resource limitations, future monitoring efforts have to be hedged against the uncertainties in the monitored system, while taking into account existing knowledge. In that respect, we have developed a hierarchical spatiotemporal Bayesian model that can be used to optimize an existing monitoring network by retaining stations that provide the maximum amount of information, while identifying locations that would benefit from the addition of new stations. The model assumes the water quality parameters are adequately described by a joint matrix normal distribution. The adopted approach allows for a reduction in redundancies, while emphasizing information richness rather than data richness. The developed approach incorporates the concept of entropy to account for the associated uncertainties. Three different entropy-based criteria are adopted: total system entropy, chlorophyll-a standard violation entropy, and dissolved oxygen standard violation entropy. A multiple attribute decision making framework is adopted to integrate the competing design criteria and to generate a single optimal design. The approach is implemented on the water quality monitoring system of the Neuse River Estuary in North Carolina, USA. The model results indicate that the high priority monitoring areas identified by the total system entropy and the dissolved oxygen violation entropy criteria are largely coincident. The monitoring design based on the chlorophyll-a standard violation entropy proved to be less informative, given the low probabilities of violating the water quality standard in the estuary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CSR...143..139L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CSR...143..139L"><span>A role of vertical mixing on nutrient supply into the subsurface chlorophyll maximum in the shelf region of the East China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Keunjong; Matsuno, Takeshi; Endoh, Takahiro; Ishizaka, Joji; Zhu, Yuanli; Takeda, Shigenobu; Sukigara, Chiho</p> <p>2017-07-01</p> <p>In summer, Changjiang Diluted Water (CDW) expands over the shelf region of the northern East China Sea. Dilution of the low salinity water could be caused by vertical mixing through the halocline. Vertical mixing through the pycnocline can transport not only saline water, but also high nutrient water from deeper layers to the surface euphotic zone. It is therefore very important to quantitatively evaluate the vertical mixing to understand the process of primary production in the CDW region. We conducted extensive measurements in the region during the period 2009-2011. Detailed investigations of the relative relationship between the subsurface chlorophyll maximum (SCM) and the nitracline suggested that there were two patterns relating to the N/P ratio. Comparing the depths of the nitracline and SCM, it was found that the SCM was usually located from 20 to 40 m and just above the nitracline, where the N/P ratio within the nitracline was below 15, whereas it was located from 10 to 30 m and within the nitracline, where the N/P ratio was above 20. The large value of the N/P ratio in the latter case suggests the influence of CDW. Turbulence measurements showed that the vertical flux of nutrients with vertical mixing was large (small) where the N/P ratio was small (large). A comparison with a time series of primary production revealed a consistency with the pattern of snapshot measurements, suggesting that the nutrient supply from the lower layer contributes considerably to the maintenance of SCM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3814416','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3814416"><span>Chlorophyll Breakdown in Senescent Banana Leaves: Catabolism Reprogrammed for Biosynthesis of Persistent Blue Fluorescent Tetrapyrroles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Vergeiner, Clemens; Banala, Srinivas; Kräutler, Bernhard</p> <p>2013-01-01</p> <p>Chlorophyll breakdown is a visual phenomenon of leaf senescence and fruit ripening. It leads to the formation of colorless chlorophyll catabolites, a group of (chlorophyll-derived bilin-type) linear tetrapyrroles. Here, analysis and structure elucidation of the chlorophyll breakdown products in leaves of banana (Musa acuminata) is reported. In senescent leaves of this monocot all chlorophyll catabolites identified were hypermodified fluorescent chlorophyll catabolites (hmFCCs). Surprisingly, nonfluorescent chlorophyll catabolites (NCCs) were not found, the often abundant and apparently typical final chlorophyll breakdown products in senescent leaves. As a rule, FCCs exist only fleetingly, and they isomerize rapidly to NCCs in the senescent plant cell. Amazingly, in the leaves of banana plants, persistent hmFCCs were identified that accounted for about 80 % of the chlorophyll broken down, and yellow leaves of M. acuminata display a strong blue luminescence. The structures of eight hmFCCs from banana leaves were analyzed by spectroscopic means. The massive accumulation of the hmFCCs in banana leaves, and their functional group characteristics, indicate a chlorophyll breakdown path, the downstream transformations of which are entirely reprogrammed towards the generation of persistent and blue fluorescent FCCs. As expressed earlier in related studies, the present findings call for attention, as to still elusive biological roles of these linear tetrapyrroles. PMID:23946204</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26840491','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26840491"><span>Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jaccard, Samuel L; Galbraith, Eric D; Martínez-García, Alfredo; Anderson, Robert F</p> <p>2016-02-11</p> <p>No single mechanism can account for the full amplitude of past atmospheric carbon dioxide (CO2) concentration variability over glacial-interglacial cycles. A build-up of carbon in the deep ocean has been shown to have occurred during the Last Glacial Maximum. However, the mechanisms responsible for the release of the deeply sequestered carbon to the atmosphere at deglaciation, and the relative importance of deep ocean sequestration in regulating millennial-timescale variations in atmospheric CO2 concentration before the Last Glacial Maximum, have remained unclear. Here we present sedimentary redox-sensitive trace-metal records from the Antarctic Zone of the Southern Ocean that provide a reconstruction of transient changes in deep ocean oxygenation and, by inference, respired carbon storage throughout the last glacial cycle. Our data suggest that respired carbon was removed from the abyssal Southern Ocean during the Northern Hemisphere cold phases of the deglaciation, when atmospheric CO2 concentration increased rapidly, reflecting--at least in part--a combination of dwindling iron fertilization by dust and enhanced deep ocean ventilation. Furthermore, our records show that the observed covariation between atmospheric CO2 concentration and abyssal Southern Ocean oxygenation was maintained throughout most of the past 80,000 years. This suggests that on millennial timescales deep ocean circulation and iron fertilization in the Southern Ocean played a consistent role in modifying atmospheric CO2 concentration.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1939P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1939P"><span>Ocean Chlorophyll as a Precursor of ENSO: An Earth System Modeling Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, Jong-Yeon; Dunne, John P.; Stock, Charles A.</p> <p>2018-02-01</p> <p>Ocean chlorophyll concentration, a proxy for phytoplankton, is strongly influenced by internal ocean dynamics such as those associated with El Niño-Southern Oscillation (ENSO). Observations show that ocean chlorophyll responses to ENSO generally lead sea surface temperature (SST) responses in the equatorial Pacific. A long-term global Earth system model simulation incorporating marine biogeochemical processes also exhibits a preceding chlorophyll response. In contrast to simulated SST anomalies, which significantly lag the wind-driven subsurface heat response to ENSO, chlorophyll anomalies respond rapidly. Iron was found to be the key factor connecting the simulated surface chlorophyll anomalies to the subsurface ocean response. Westerly wind bursts decrease central Pacific chlorophyll by reducing iron supply through wind-driven thermocline deepening but increase western Pacific chlorophyll by enhancing the influx of coastal iron from the maritime continent. Our results mechanistically support the potential for chlorophyll-based indices to inform seasonal ENSO forecasts beyond previously identified SST-based indices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=59834','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=59834"><span>The role of chlorophyll b in photosynthesis: Hypothesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Eggink, Laura L; Park, Hyoungshin; Hoober, J Kenneth</p> <p>2001-01-01</p> <p>Background The physico-chemical properties of chlorophylls b and c have been known for decades. Yet the mechanisms by which these secondary chlorophylls support assembly and accumulation of light-harvesting complexes in vivo have not been resolved. Presentation Biosynthetic modifications that introduce electronegative groups on the periphery of the chlorophyll molecule withdraw electrons from the pyrrole nitrogens and thus reduce their basicity. Consequently, the tendency of the central Mg to form coordination bonds with electron pairs in exogenous ligands, a reflection of its Lewis acid properties, is increased. Our hypothesis states that the stronger coordination bonds between the Mg atom in chlorophyll b and chlorophyll c and amino acid sidechain ligands in chlorophyll a/b- and a/c-binding apoproteins, respectively, enhance their import into the chloroplast and assembly of light-harvesting complexes. Testing Several apoproteins of light-harvesting complexes, in particular, the major protein Lhcb1, are not detectable in leaves of chlorophyll b-less plants. A direct test of the hypothesis – with positive selection – is expression, in mutant plants that synthesize only chlorophyll a, of forms of Lhcb1 in which weak ligands are replaced with stronger Lewis bases. Implications The mechanistic explanation for the effects of deficiencies in chlorophyll b or c points to the need for further research on manipulation of coordination bonds between these chlorophylls and chlorophyll-binding proteins. Understanding these interactions will possibly lead to engineering plants to expand their light-harvesting antenna and ultimately their productivity. PMID:11710960</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25752061','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25752061"><span>[Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han</p> <p>2014-11-01</p> <p>Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMEP23D0993F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMEP23D0993F"><span>­­­­Submarine Mass Wasting on Hovgaard Ridge, Fram Strait, European Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forwick, M.; Laberg, J. S.; Husum, K.; Gales, J. A.</p> <p>2015-12-01</p> <p>Hovgaard Ridge is an 1800 m high bathymetric high in the Fram Strait, the only deep-water gateway between the Arctic Ocean and the other World's oceans. The slopes of the ridge provide evidence of various types of sediment reworking, including 1) up to 12 km wide single and merged slide scars with maximum ~30 m high headwalls and some secondary escarpments; 2) maximum 3 km wide and 130 m deep slide scars with irregular internal morphology, partly narrowing towards the foot of the slope; 3) up to 130 m deep, 1.5 km wide and maximum 8 km long channels/gullies originating from areas of increasing slope angle at the margins of a plateau on top of the ridge. Most slide scars result presumably from retrogressive failure related to weak layers in contourites or ash. The most likely trigger mechanism is seismicity related to tectonic activity within the nearby mid-ocean fracture zone. Gully/channel formation is suggested to result from cascading water masses and/or from sediment gravity flows originating from failure at the slope break after winnowing on the plateau of the ridge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010414','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010414"><span>Modeling an exhumed basin: A method for estimating eroded overburden</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poelchau, H.S.</p> <p>2001-01-01</p> <p>The Alberta Deep Basin in western Canada has undergone a large amount of erosion following deep burial in the Eocene. Basin modeling and simulation of burial and temperature history require estimates of maximum overburden for each gridpoint in the basin model. Erosion can be estimated using shale compaction trends. For instance, the widely used Magara method attempts to establish a sonic log gradient for shales and uses the extrapolation to a theoretical uncompacted shale value as a first indication of overcompaction and estimation of the amount of erosion. Because such gradients are difficult to establish in many wells, an extension of this method was devised to help map erosion over a large area. Sonic A; values of one suitable shale formation are calibrated with maximum depth of burial estimates from sonic log extrapolation for several wells. This resulting regression equation then can be used to estimate and map maximum depth of burial or amount of erosion for all wells in which this formation has been logged. The example from the Alberta Deep Basin shows that the magnitude of erosion calculated by this method is conservative and comparable to independent estimates using vitrinite reflectance gradient methods. ?? 2001 International Association for Mathematical Geology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020080613','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020080613"><span>Subtropical Gyre Variability Observed by Ocean Color Satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McClain, Charles R.; Signorini, Sergio R.; Christian, James R.</p> <p>2002-01-01</p> <p>The subtropical gyres of the world are extensive, coherent regions that occupy about 40% of the surface of the earth. Once thought to be homogeneous and static habitats, there is increasing evidence that mid-latitude gyres exhibit substantial physical and biological variability on a variety of time scales. While biological productivity within these oligotrophic regions may be relatively small, their immense size makes their total contribution significant. Global distributions of dynamic height derived from satellite altimeter data, and chlorophyll concentration derived from satellite ocean color data, show that the dynamic center of the gyres, the region of maximum dynamic height where the thermocline is deepest, does not coincide with the region of minimum chlorophyll concentration. The physical and biological processes by which this distribution of ocean properties is maintained, and the spatial and temporal scales of variability associated with these processes, are analyzed using global surface chlorophyll-a concentrations, sea surface height, sea surface temperature and surface winds from operational satellite and meteorological sources, and hydrographic data from climatologies and individual surveys. Seasonal and interannual variability in the areal extent of the subtropical gyres are examined using 8 months (November 1996 - June 1997) of OCTS and nearly 5 years (September 1997 - June 02) of SeaWiFS ocean color data and are interpreted in the context of climate variability and measured changes in other ocean properties (i.e., wind forcing, surface currents, Ekman pumping, and vertical mixing). The North Pacific and North Atlantic gyres are observed to be shrinking over this period, while the South Pacific, South Atlantic, and South Indian Ocean gyres appear to be expanding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3934534','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3934534"><span>Allocation of Secondary Metabolites, Photosynthetic Capacity, and Antioxidant Activity of Kacip Fatimah (Labisia pumila Benth) in Response to CO2 and Light Intensity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jaafar, Hawa Z. E.; Karimi, Ehsan; Ghasemzadeh, Ali</p> <p>2014-01-01</p> <p>A split plot 3 by 4 experiment was designed to investigate and distinguish the relationships among production of secondary metabolites, soluble sugar, phenylalanine ammonia lyase (PAL; EC 4.3.1.5) activity, leaf gas exchange, chlorophyll content, antioxidant activity (DPPH), and lipid peroxidation under three levels of CO2 (400, 800, and 1200 μmol/mol) and four levels of light intensity (225, 500, 625, and 900 μmol/m2/s) over 15 weeks in Labisia pumila. The production of plant secondary metabolites, sugar, chlorophyll content, antioxidant activity, and malondialdehyde content was influenced by the interactions between CO2 and irradiance. The highest accumulation of secondary metabolites, sugar, maliondialdehyde, and DPPH activity was observed under CO2 at 1200 μmol/mol + light intensity at 225 μmol/m2/s. Meanwhile, at 400 μmol/mol CO2 + 900 μmol/m2/s light intensity the production of chlorophyll and maliondialdehyde content was the highest. As CO2 levels increased from 400 to 1200 μmol/mol the photosynthesis, stomatal conductance, f v/f m (maximum efficiency of photosystem II), and PAL activity were enhanced. The production of secondary metabolites displayed a significant negative relationship with maliondialdehyde indicating lowered oxidative stress under high CO2 and low irradiance improved the production of plant secondary metabolites that simultaneously enhanced the antioxidant activity (DPPH), thus improving the medicinal value of Labisia pumila under this condition. PMID:24683336</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17500033','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17500033"><span>Pigment production in Spirulina fussiformis in different photophysical conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Madhyastha, H K; Vatsala, T M</p> <p>2007-09-01</p> <p>The present investigation makes a comparative investigation of individual light source on the different commercially important pigments in Spirulina fussiformis in photobioreactor culture condition. Continuous culture system was carried out throughout the experimental condition. Initially, seed culture, corresponding to 0.2 g/L on dry weight basis was cultivated in Zarrouks medium with different colored light source in reactor. Maximum daily biomass productivity, 0.8 g/L, 0.75 g/L and 0.69 g/L in white light (WL), blue light (BL) and green light (GL), respectively, conditions was noticed. Pigment content during WL treatment showed the highest accumulation (5.5 microg/mL) of chlorophyll whereas, other pigments roughly remained constant without much change, implying WL intensity is better for chlorophyll synthesis. On the other hand, chlorophyll and phycocyanin content gradually increased up to 7 microg/mL and 2 mg/mL, respectively, at BL intensity. The response to GL was negative to all pigments studied except for phycocyanin; in this case a highest production (2.5 mg/mL) was seen during 18 days experimental period. Additionally, when yellow light (YL) treatment experiments were conducted, the rate of production gradually decreased from 6th day onward in all pigments demonstrating the photobleaching effect of YL. The average rate of pigments production did not show significant accumulation in red light (RL) light treatment except phycoerythrin which showed an increasing trend of production. It is worth to mention here that higher light intensity is better for production of phycocyanin and phycoerythrin in Spirulina.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5014238','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5014238"><span>An assessment of phytoplankton primary productivity in the Arctic Ocean from satellite ocean color/in situ chlorophyll‐a based models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Matrai, Patricia A.; Friedrichs, Marjorie A. M.; Saba, Vincent S.; Antoine, David; Ardyna, Mathieu; Asanuma, Ichio; Babin, Marcel; Bélanger, Simon; Benoît‐Gagné, Maxime; Devred, Emmanuel; Fernández‐Méndez, Mar; Gentili, Bernard; Hirawake, Toru; Kang, Sung‐Ho; Kameda, Takahiko; Katlein, Christian; Lee, Sang H.; Lee, Zhongping; Mélin, Frédéric; Scardi, Michele; Smyth, Tim J.; Tang, Shilin; Turpie, Kevin R.; Waters, Kirk J.; Westberry, Toby K.</p> <p>2015-01-01</p> <p>Abstract We investigated 32 net primary productivity (NPP) models by assessing skills to reproduce integrated NPP in the Arctic Ocean. The models were provided with two sources each of surface chlorophyll‐a concentration (chlorophyll), photosynthetically available radiation (PAR), sea surface temperature (SST), and mixed‐layer depth (MLD). The models were most sensitive to uncertainties in surface chlorophyll, generally performing better with in situ chlorophyll than with satellite‐derived values. They were much less sensitive to uncertainties in PAR, SST, and MLD, possibly due to relatively narrow ranges of input data and/or relatively little difference between input data sources. Regardless of type or complexity, most of the models were not able to fully reproduce the variability of in situ NPP, whereas some of them exhibited almost no bias (i.e., reproduced the mean of in situ NPP). The models performed relatively well in low‐productivity seasons as well as in sea ice‐covered/deep‐water regions. Depth‐resolved models correlated more with in situ NPP than other model types, but had a greater tendency to overestimate mean NPP whereas absorption‐based models exhibited the lowest bias associated with weaker correlation. The models performed better when a subsurface chlorophyll‐a maximum (SCM) was absent. As a group, the models overestimated mean NPP, however this was partly offset by some models underestimating NPP when a SCM was present. Our study suggests that NPP models need to be carefully tuned for the Arctic Ocean because most of the models performing relatively well were those that used Arctic‐relevant parameters. PMID:27668139</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006DSRII..53.1988Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006DSRII..53.1988Y"><span>Surface and mid-water sources of organic carbon by photoautotrophic and chemoautotrophic production in the Black Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yılmaz, Ayşen; Çoban-Yıldız, Yeşim; Telli-Karakoç, Fatma; Bologa, Alexandru</p> <p>2006-08-01</p> <p>The multilayered surface waters of the Black Sea contain aerobic, suboxic and anoxic layers that support both photoautotrophic (PP) and chemoautotrophic (ChP) biological production. During the R/V Knorr cruise in May-June 2001, phytoplankton biomass (represented as chlorophyll- a), photoautotrophic and chemoautotrophic production (ChP) rates were determined in the western Black Sea. Integrated chlorophyll- a concentrations in the euphotic zone were as low as 2.2 mg m -2 in the central gyre, while they were as high as 19.9 mg m -2 in the NW shelf region. Integrated photoautotrophic production rates ranged from 112 to 355 mg C m -2 d -1. The lowest values were determined in the central gyre and the highest values were found at the shelf-break station near the Bosphorus, the NW shelf/shelf-break area and in the Sevastopol eddy. Primary production and chlorophyll- a data revealed that post-bloom conditions existed during this sampling period. Bioassay experiments showed that under optimum light conditions, photoautotrophic production was nitrogen-limited. ChP increased in the redox transition zone and coincided with the lower boundary of the fine particle layer. The maximum values were shallower (at σθ=16.25) in the central gyre and deeper (at σθ=16.5) in the shelf-break region near Sakarya Canyon. Integrated ChP rates were 63 and 1930 mg C m -2 d -1, which were equivalent to 30% and 89% of the overall water-column production for the central gyre and Sakarya Canyon regions, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JGRC..11011016S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JGRC..11011016S"><span>On the relationship between satellite-retrieved surface temperature fronts and chlorophyll a in the western South Atlantic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saraceno, Martin; Provost, Christine; Piola, Alberto R.</p> <p>2005-11-01</p> <p>The time-space distribution of chlorophyll a in the southwestern Atlantic is examined using 6 years (1998-2003) of sea surface color images from Sea-viewing Wide Field of View Sensor (SeaWiFS). Chlorophyll a (chl a) distribution is confronted with sea surface temperature (SST) fronts retrieved from satellite imagery. Histogram analysis of the color, SST, and SST gradient data sets provides a simple procedure for pixel classification from which eight biophysical regions in the SWA are identified, including three new regions with regard to Longhurst (1998) work: Patagonian Shelf Break (PSB), Brazil Current Overshoot, and Zapiola Rise region. In the PSB region, coastal-trapped waves are suggested as a possible mechanism leading to the intraseasonal frequencies observed in SST and chl a. Mesoscale activity associated with the Brazil Current Front and, in particular, eddies drifting southward is probably responsible for the high chl a values observed throughout the Brazil Current Overshoot region. The Zapiola Rise is characterized by a local minimum in SST gradient magnitudes and shows chl a maximum values in February, 3 months later than the austral spring bloom of the surroundings. Significant interannual variability is present in the color imagery. In the PSB, springs and summers with high chl a concentrations seem associated with stronger local northerly wind speed, and possible mechanisms are discussed. Finally, the Brazil-Malvinas front is detected using both SST gradient and SeaWiFS images. The time-averaged position of the front at 54.2°W is estimated at 38.9°S and its alongshore migration of about 300 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005SPIE.5656..139A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005SPIE.5656..139A"><span>Preliminary study of internal wave effects to chlorophyll distribution in the Lombok Strait and adjacent areas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arvelyna, Yessy; Oshima, Masaki</p> <p>2005-01-01</p> <p>This paper studies the effect of internal wave in the Lombok Strait to chlorophyll distribution in the surrounded areas using ERS SAR, ASTER, SeaWiFS and AVHRR-NOAA images data during 1996-2004 periods. The observation results shows that the internal waves were propagated to the south and the north of strait and mostly occurred during transitional season from dry to wet and wet season (rainy season) between September to December when the layers are strongly stratified. Wavelet transform of image using Meyer wavelet analysis is applied for internal wave detection in ERS SAR and ASTER images, for symmetric extension of data at the image boundaries, to prevent discontinuities by a periodic wrapping of data in fast algorithm and space-saving code. Internal wave created elongated pattern in detail and approximation of image from level 2 to 5 and retained value between 2-4.59 times compared to sea surface, provided accuracy in classification over than 80%. In segmentation process, the Canny edge detector is applied on the approximation image at level two to derive internal wave signature in image. The proposed method can extract the internal wave signature, maintain the continuity of crest line while reduce small strikes from noise. The segmentation result, i.e. the length between crest and trough, is used to compute the internal wave induced current using Korteweg-de Vries (KdV) equation. On ERS SAR data contains surface signature of internal wave (2001/8/20), we calculated that internal wave propagation speed was 1.2 m/s and internal wave induced current was 0.56 m/s, respectively. From the observation of ERS SAR and SeaWiFS images data, we found out that the distribution of maximum chlorophyll area at southern coastline off Bali Island when strong internal wave induced current occurred in south of the Lombok Strait was distributed further to westward, i.e. from 9.25°-10.25°LS, 115°-116.25°SE to 8.8°-10.7°LS, 114.5°-116°SE, and surface chlorophyll concentration near coastal area, i.e. area 8.8°-9.25° LS, 114.5°-115°SE, increased. The preliminary result of this study concludes that the internal waves presumably affect chlorophyll distribution to westward (from 9.25°-10.25°LS, 115°-116.25°SE to 8.8°-10.7°LS, 114.5°-116°SE) in the south coast off Bali Island and increase surface chlorophyll concentration near coastal area (8.8°-9.25° LS, 114.5°-115°SE).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC14E1049S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC14E1049S"><span>Characterization of the 3-Dimensional Mississippi River Plume Using a High Resolution Circulation Model Coupled with Ocean Color Imagery and Field Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soto Ramos, I. M.; Arnone, R.; Cambazoglu, M. K.; Jacobs, G. A.; Vandermeulen, R. A.; Howden, S. D.</p> <p>2016-02-01</p> <p>The Mississippi River Plume (MRP) is responsible for creating a highly dynamic environment in the northern Gulf of Mexico (nGoM). It is also responsible for the transport of rich-nutrient waters, physical and biological connectivity between the nGoM coastal waters to the deep ocean and other regions within the Gulf, and in cases of unfortunate events such as the Deep Horizon Oil Spill it may contribute to the transport and fate of hydrocarbons. The main objective of this work is to characterize the 3-Dimensional MRP using modeled salinity data from the 1 km resolution Navy Coastal Ocean Model (NCOM) and ocean color data (e.g., Chlorophyll-a) from the Visible Infrared Imaging Radiometer Suite (VIIRS). Field data from ships and gliders were used to validate the model and satellite data. An initial step for this study was to determine how to define a "river plume". We selected several study cases of 7 to 10 days in which the river plume was visible in the satellite imagery and examined the vertical salinity distribution at selected cross sections along the river plume. Different salinity thresholds were used to define a river plume and characterize the 3-D dilution and dispersion of the MRP during the study cases. The surface response as means of chlorophyll and light availability in relationship to the depth of the river plume was investigated. Our results improved understanding of the formation of the mixed layer depth in the MRP and how we can integrate model and satellite data to delineate the 3D structure of the river plume and better understand the biological surface response observed in the satellite imagery. The output of this study highlights how circulation models and satellite data can be integrated to better understand the connectivity, transport and fate of sediments, nutrients, and pollutants in the Gulf of Mexico.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010DSRII..57.1418F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010DSRII..57.1418F"><span>Phytopigments as biomarkers of selectivity in abyssal holothurians; interspecific differences in response to a changing food supply</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>FitzGeorge-Balfour, Tania; Billett, David S. M.; Wolff, George A.; Thompson, Anu; Tyler, Paul A.</p> <p>2010-08-01</p> <p>Holothurians dominate the abyssal megabenthos. They are key consumers and bioturbators of surficial sediment. Compounds essential for holothurian reproduction, such as carotenoids, are in short supply in the deep ocean. Holothurians cannot synthesise carotenoids de novo; the compounds are supplied with the flux of phytodetritus. Therefore, the supply of these compounds may play an important role in regulating processes on the seafloor. This study examines the link between the diet of abyssal holothurians and their ovarian carotenoid biochemistry. Phytodetritus, surficial sediment, holothurian gut content and ovaries were sampled in June 2004 and in July 2005 at the Porcupine Abyssal Plain (PAP), NE Atlantic. Gut content chlorophyll a concentration showed that Amperima rosea, Peniagone diaphana and Oneirophanta mutabilis fed selectively on fresh organic matter, although when this was scarce, O. mutabilis was outcompeted and fed on more refractory material. All three species display consistent ovarian carotenoid profiles and have relatively high carotenoid concentrations in their ovaries. Psychropotes longicauda, Paroriza prouhoi, Pseudostichopus aemulatus, P. villosus and Molpadia blakei fed less selectively and exhibited low ovarian carotenoid concentrations with inconsistent profiles. The results suggest that abyssal holothurian ovarian biochemistry is a complex function of OM supply, holothurian feeding guild and reproductive adaptation. Changes in upper ocean biogeochemistry, altering the composition of organic matter reaching the deep-sea floor, may favour certain holothurian species, as suggested by the interspecific differences in holothurian ovarian biochemistry. This may lead to large community changes as seen at the PAP, which can alter the reworking rates of sediment, probably affecting carbon burial. The study also demonstrated that using the presence of biomarkers in gut contents to infer feeding selectivity should be used with caution. Only biomarkers in gut contents that are not present in the tissues of the holothurians (e.g., chlorophyll a) should be used to determine their feeding selectivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27097639','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27097639"><span>Chlorophyll metabolism in pollinated vs. parthenocarpic fig fruits throughout development and ripening.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rosianskey, Yogev; Dahan, Yardena; Yadav, Sharawan; Freiman, Zohar E; Milo-Cochavi, Shira; Kerem, Zohar; Eyal, Yoram; Flaishman, Moshe A</p> <p>2016-08-01</p> <p>Expression of 13 genes encoding chlorophyll biosynthesis and degradation was evaluated. Chlorophyll degradation was differentially regulated in pollinated and parthenocarpic fig fruits, leading to earlier chlorophyll degradation in parthenocarpic fruits. Varieties of the common fig typically yield a commercial summer crop that requires no pollination, although it can be pollinated. Fig fruit pollination results in larger fruit size, greener skin and darker interior inflorescence color, and slows the ripening process compared to non-pollinated fruits. We evaluated the effect of pollination on chlorophyll content and levels of transcripts encoding enzymes of the chlorophyll metabolism in fruits of the common fig 'Brown Turkey'. We cloned and evaluated the expression of 13 different genes. All 13 genes showed high expression in the fruit skin, inflorescences and leaves, but extremely low expression in roots. Pollination delayed chlorophyll breakdown in the ripening fruit skin and inflorescences. This was correlated with the expression of genes encoding enzymes in the chlorophyll biosynthesis and degradation pathways. Expression of pheophorbide a oxygenase (PAO) was strongly negatively correlated with chlorophyll levels during ripening in pollinated fruits; along with its high expression levels in yellow leaves, this supports a pivotal role for PAO in chlorophyll degradation in figs. Normalizing expression levels of all chlorophyll metabolism genes in the pollinated and parthenocarpic fruit skin and inflorescences showed three synthesis (FcGluTR1, FcGluTR2 and FcCLS1) and three degradation (FcCLH1, FcCLH2 and FcRCCR1) genes with different temporal expression in the pollinated vs. parthenocarpic fruit skin and inflorescences. FcCAO also showed different expressions in the parthenocarpic fruit skin. Thus, chlorophyll degradation is differentially regulated in the pollinated and parthenocarpic fruit skin and inflorescences, leading to earlier and more sustained chlorophyll degradation in the parthenocarpic fruit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP33B1326C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP33B1326C"><span>A New Multi-Basin Calibration for Estimating Paleo-Temperature Using Mg/Ca from Tests of Neogloboquadrina dutertrei</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Collins, M. S.; Hertzberg, J. E.; Mekik, F.; Schmidt, M. W.</p> <p>2017-12-01</p> <p>Based on the thermodynamics of solid-solution substitution of Mg for Ca in biogenic calcite, magnesium to calcium ratios in planktonic foraminifera have been proposed as a means by which variations in habitat water temperatures can be reconstructed. Doing this accurately has been a problem, however, as we demonstrate that various calibration equations provide disparate temperature estimates from the same Mg/Ca dataset. We examined both new and published data to derive a globally applicable temperature-Mg/Ca relationship and from this relationship to accurately predict habitat depth for Neogloboquadrina dutertrei - a deep chlorophyll maximum dweller. N. dutertrei samples collected from Atlantic core tops were analyzed for trace element compositions at Texas A&M University, and the measured Mg/Ca ratios were used to predict habitat temperatures using multiple pre-existing calibration equations. When combining Atlantic and previously published Pacific Mg/Ca datasets for N. dutertrei, a notable dissolution effect was evident. To overcome this issue, we used the G. menardii Fragmentation Index (MFI) to account for dissolution and generated a multi-basin temperature equation using multiple linear regression to predict habitat temperature. However, the correlations between Mg/Ca and temperature, as well as the calculated MFI percent dissolved, suggest that N. dutertrei Mg/Ca ratios are affected equally by both variables. While correcting for dissolution makes habitat depth estimation more accurate, the lack of a definitively strong correlation between Mg/Ca and temperature is likely an effect of variable habitat depth for this species because most calibration equations have assumed a uniform habitat depth for this taxon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMS...183...63C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMS...183...63C"><span>Physical and biogeochemical variability in Todos Santos Bay, northwestern Baja California, derived from a numerical NPZD model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cruz-Rico, Jorge; Rivas, David</p> <p>2018-07-01</p> <p>A physical-biogeochemical Nitrate-Phytoplankton-Zooplankton-Detritus (NPZD) numerical model is used to study the variability of coastal phytoplankton biomass in northwestern Baja California and the Todos Santos Bay (TSB), a region of high socioeconomic importance located in the southern California Current System. The model reproduces adequately the most important oceanographic features of the study area, like the coastal chlorophyll-a (Chl-a) maxima and thermal gradients in the regions of enhanced coastal upwelling. The variability of Chl-a in the TSB is influenced by the activity of El Niño-Southern Oscillation (ENSO) and decadal modes of the Pacific, e.g., the Pacific Decadal Oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO). From de multi-year model simulation (2004-2011), this large-scale influence is remarkable in two contrasting anomalous years. The year 2006 was anomalously warm and with low Chl-a levels, associated with warm phases of ENSO and PDO and a weakening of the NPGO. These climatic anomalies caused a strong stratification and weak upwelling around the TSB, which induced a poor nutrient input into the Bay and a deep and weak subsurface Chl-a maximum (SCM) during summer. The year 2011, on the other hand, was a cold year with enhanced upwelling during the spring, associated with cold phases of ENSO and PDO and an intensification of the NPGO. These conditions also caused a weak stratification and an intense nutrient transport into the TSB and hence a shallower and stronger SCM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11693365','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11693365"><span>The role of solar UV radiation in the ecology of alpine lakes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sommaruga, R</p> <p>2001-09-01</p> <p>Solar ultraviolet radiation (UVR, 290-400 nm) is a crucial environmental factor in alpine lakes because of the natural increase of the UVR flux with elevation and the high water transparency of these ecosystems. The ecological importance of UVR, however, has only recently been recognized. This review, examines the general features of alpine lakes regarding UVR, summarizes what is known about the role of solar UVR in the ecology of alpine lakes, and identifies future research directions. Unlike the pattern observed in most lowland lakes, variability of UV attenuation in alpine lakes is poorly explained by differences in dissolved organic carbon (DOC) concentrations, and depends mainly on optical characteristics (absorption) of the chromophoric dissolved organic matter (CDOM). Within the water column of lakes with low DOC concentrations (0.2-0.4 mg l(-1)), UV attenuation is influenced by phytoplankton whose development at depth (i.e. the deep chlorophyll maximum) causes important changes in UV attenuation. Alpine aquatic organisms have developed a number of strategies to minimize UV damage. The widespread synthesis or bioaccumulation of different compounds that directly or indirectly absorb UV energy is one such strategy. Although most benthic and planktonic primary producers and crustacean zooplankton are well adapted to high intensities of solar radiation, heterotrophic protists, bacteria, and viruses seem to be particularly sensitive to UVR. Understanding the overall impact of UVR on alpine lakes would need to consider synergistic and antagonistic processes resulting from the pronounced climatic warming, which have the potential to modify the UV underwater climate and consequently the stress on aquatic organisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMS...165..124H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMS...165..124H"><span>The importance of sea ice for exchange of habitat-specific protist communities in the Central Arctic Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hardge, Kristin; Peeken, Ilka; Neuhaus, Stefan; Lange, Benjamin A.; Stock, Alexandra; Stoeck, Thorsten; Weinisch, Lea; Metfies, Katja</p> <p>2017-01-01</p> <p>Sea ice is one of the main features influencing the Arctic marine protist community composition and diversity in sea ice and sea water. We analyzed protist communities within sea ice, melt pond water, under-ice water and deep-chlorophyll maximum water at eight sea ice stations sampled during summer of the 2012 record sea ice minimum year. Using Illumina sequencing, we identified characteristic communities associated with specific habitats and investigated protist exchange between these habitats. The highest abundance and diversity of unique taxa were found in sea ice, particularly in multi-year ice (MYI), highlighting the importance of sea ice as a unique habitat for sea ice protists. Melting of sea ice was associated with increased exchange of communities between sea ice and the underlying water column. In contrast, sea ice formation was associated with increased exchange between all four habitats, suggesting that brine rejection from the ice is an important factor for species redistribution in the Central Arctic. Ubiquitous taxa (e.g. Gymnodinium) that occurred in all habitats still had habitat-preferences. This demonstrates a limited ability to survive in adjacent but different environments. Our results suggest that the continued reduction of sea ice extent, and particularly of MYI, will likely lead to diminished protist exchange and subsequently, could reduce species diversity in all habitats of the Central Arctic Ocean. An important component of the unique sea ice protist community could be endangered because specialized taxa restricted to this habitat may not be able to adapt to rapid environmental changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPP14A0534K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPP14A0534K"><span>The Importance of Subsurface Production for Carbon Export - Evidence from Past Oceans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kemp, A. E. S.</p> <p>2016-02-01</p> <p>The maxim of the geological concept of uniformitarianism is "the present is the key to the past", but in the context of our temporally and spatially minimal observational record of modern ocean biogeochemical processes, ancient ocean sediments may provide critical evidence of the key species involved in carbon flux. Specifically, laminated marine sediments that preserve the seasonal flux cycle represent "palaeo-sediment traps" that vastly expand our knowledge of the operations of the marine biological carbon pump. Several key subsurface-dwelling diatom taxa, hitherto thought to be biogeochemically insignificant, are dominant components of ancient marine sediments. For example, the sapropels and equivalent horizons that have accumulated in the Mediterranean over the past 5 million years, contain abundant rhizosolenid and hemiaulid diatoms. These deposits contain the highest concentrations of organic carbon and there is extensive evidence that this was produced by subsurface production in a deep chlorophyll maximum. The highly stratified conditions that led to this subsurface production and carbon flux are in contrast to prevailing views that have held upwelling systems as those with the highest potential for export in the global ocean. Similarly, studies of ancient "greenhouse" periods such as the Cretaceous, with highly stratified oceans and which are potential analogues for future climate change, show evidence for extensive subsurface production. Together with emerging evidence from stratified regions of the modern ocean, such as the subtropical gyres, insights from these ancient oceans suggest that a reappraisal is required of current views on key phytoplankton producers and their role the operation of the marine biological carbon pump.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014CSR....89...93N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014CSR....89...93N"><span>Distribution of planktonic cnidarians in response to South Atlantic Central Water intrusion in the South Brazilian Bight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nogueira Júnior, Miodeli; Brandini, Frederico P.; Codina, Juan C. U.</p> <p>2014-10-01</p> <p>Five oceanographic cruises were made between November 2005 and June 2006, sampling a cross-shelf transect off the South Brazilian Bight (SBB; 26°46‧S) to follow the seasonal development of the South Atlantic Central Water (SACW) intrusion over the shelf and its influence on the assemblage of planktonic cnidarians. An onshore wind-driven bottom intrusion of the SACW was clearly perceptible, reaching the coast in January. From March onward, the SACW influence was gradually displaced seaward due to wind and tidal mixing. By late June the SACW influence was offshore and the inshore was dominated by low-salinity waters (<34.5). The abundance, distribution, and general taxonomic composition of both medusae and siphonophores were strongly influenced by the onshore intrusion of the SACW. An inshore-offshore gradient was clear. The Canonical Correspondence Analysis suggested that coastal species - dominated by Liriope tetraphylla, actinula larvae and Muggiaea kochi - were mostly related to food availability and a vertically mixed environment inshore, and their abundance and extent were reduced during intrusion periods. In contrast, species with offshore affinities tended to increase their abundance and distribution during intrusion periods, and were mostly related to the presence of thermal stratification and a deep chlorophyll maximum layer. Most of these offshore species, such as Aglaura hemistoma, Rhopalonema velatum and many calycophorans, are associated with the warm upper layer. However, high concentrations of large (>20 mm in diameter) Solmaris corona were observed exclusively in cold waters, suggesting this medusa is a SACW indicator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4817677','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4817677"><span>Global distribution and vertical patterns of a prymnesiophyte–cyanobacteria obligate symbiosis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cabello, Ana M; Cornejo-Castillo, Francisco M; Raho, Nicolas; Blasco, Dolors; Vidal, Montserrat; Audic, Stéphane; de Vargas, Colomban; Latasa, Mikel; Acinas, Silvia G; Massana, Ramon</p> <p>2016-01-01</p> <p>A marine symbiosis has been recently discovered between prymnesiophyte species and the unicellular diazotrophic cyanobacterium UCYN-A. At least two different UCYN-A phylotypes exist, the clade UCYN-A1 in symbiosis with an uncultured small prymnesiophyte and the clade UCYN-A2 in symbiosis with the larger Braarudosphaera bigelowii. We targeted the prymnesiophyte–UCYN-A1 symbiosis by double CARD-FISH (catalyzed reporter deposition-fluorescence in situ hybridization) and analyzed its abundance in surface samples from the MALASPINA circumnavigation expedition. Our use of a specific probe for the prymnesiophyte partner allowed us to verify that this algal species virtually always carried the UCYN-A symbiont, indicating that the association was also obligate for the host. The prymnesiophyte–UCYN-A1 symbiosis was detected in all ocean basins, displaying a patchy distribution with abundances (up to 500 cells ml−1) that could vary orders of magnitude. Additional vertical profiles taken at the NE Atlantic showed that this symbiosis occupied the upper water column and disappeared towards the Deep Chlorophyll Maximum, where the biomass of the prymnesiophyte assemblage peaked. Moreover, sequences of both prymnesiophyte partners were searched within a large 18S rDNA metabarcoding data set from the Tara-Oceans expedition around the world. This sequence-based analysis supported the patchy distribution of the UCYN-A1 host observed by CARD-FISH and highlighted an unexpected homogeneous distribution (at low relative abundance) of B. bigelowii in the open ocean. Our results demonstrate that partners are always in symbiosis in nature and show contrasted ecological patterns of the two related lineages. PMID:26405830</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26405830','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26405830"><span>Global distribution and vertical patterns of a prymnesiophyte-cyanobacteria obligate symbiosis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cabello, Ana M; Cornejo-Castillo, Francisco M; Raho, Nicolas; Blasco, Dolors; Vidal, Montserrat; Audic, Stéphane; de Vargas, Colomban; Latasa, Mikel; Acinas, Silvia G; Massana, Ramon</p> <p>2016-03-01</p> <p>A marine symbiosis has been recently discovered between prymnesiophyte species and the unicellular diazotrophic cyanobacterium UCYN-A. At least two different UCYN-A phylotypes exist, the clade UCYN-A1 in symbiosis with an uncultured small prymnesiophyte and the clade UCYN-A2 in symbiosis with the larger Braarudosphaera bigelowii. We targeted the prymnesiophyte-UCYN-A1 symbiosis by double CARD-FISH (catalyzed reporter deposition-fluorescence in situ hybridization) and analyzed its abundance in surface samples from the MALASPINA circumnavigation expedition. Our use of a specific probe for the prymnesiophyte partner allowed us to verify that this algal species virtually always carried the UCYN-A symbiont, indicating that the association was also obligate for the host. The prymnesiophyte-UCYN-A1 symbiosis was detected in all ocean basins, displaying a patchy distribution with abundances (up to 500 cells ml(-1)) that could vary orders of magnitude. Additional vertical profiles taken at the NE Atlantic showed that this symbiosis occupied the upper water column and disappeared towards the Deep Chlorophyll Maximum, where the biomass of the prymnesiophyte assemblage peaked. Moreover, sequences of both prymnesiophyte partners were searched within a large 18S rDNA metabarcoding data set from the Tara-Oceans expedition around the world. This sequence-based analysis supported the patchy distribution of the UCYN-A1 host observed by CARD-FISH and highlighted an unexpected homogeneous distribution (at low relative abundance) of B. bigelowii in the open ocean. Our results demonstrate that partners are always in symbiosis in nature and show contrasted ecological patterns of the two related lineages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26958844','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26958844"><span>Importance of N2-Fixation on the Productivity at the North-Western Azores Current/Front System, and the Abundance of Diazotrophic Unicellular Cyanobacteria.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Riou, Virginie; Fonseca-Batista, Debany; Roukaerts, Arnout; Biegala, Isabelle C; Prakya, Shree Ram; Magalhães Loureiro, Clara; Santos, Mariana; Muniz-Piniella, Angel E; Schmiing, Mara; Elskens, Marc; Brion, Natacha; Martins, M Ana; Dehairs, Frank</p> <p>2016-01-01</p> <p>To understand the impact of the northwestern Azores Current Front (NW-AzC/AzF) system on HCO3--and N2-fixation activities and unicellular diazotrophic cyanobacteria (UCYN) distribution, we combined geochemical and biological approaches from the oligotrophic surface to upper mesopelagic waters. N2-fixation was observed to sustain 45-85% of the HCO3--fixation in the picoplanktonic fraction performing 47% of the total C-fixation at the deep chlorophyll maximum north and south of the AzF. N2-fixation rates as high as 10.9 μmol N m-3 d-1 and surface nitrate δ15N as low as 2.7‰ were found in the warm (18-24°C), most saline (36.5-37.0) and least productive waters south of the AzF, where UCYN were the least abundant. However, picoplanktonic UCYN abundances up to 55 cells mL-1 were found at 45-200m depths in the coolest nutrient-rich waters north of the AzF. In this area, N2-fixation rates up to 4.5 μmol N m-3 d-1 were detected, associated with depth-integrated H13CO3--fixation rates at least 50% higher than observed south of the AzF. The numerous eddies generated at the NW-AzC/AzF seem to enhance exchanges of plankton between water masses, as well as vertical and horizontal diapycnal diffusion of nutrients, whose increase probably enhances the growth of diazotrophs and the productivity of C-fixers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5410581','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5410581"><span>Deep Sea Actinomycetes and Their Secondary Metabolites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kamjam, Manita; Sivalingam, Periyasamy; Deng, Zinxin; Hong, Kui</p> <p>2017-01-01</p> <p>Deep sea is a unique and extreme environment. It is a hot spot for hunting marine actinomycetes resources and secondary metabolites. The novel deep sea actinomycete species reported from 2006 to 2016 including 21 species under 13 genera with the maximum number from Microbacterium, followed by Dermacoccus, Streptomyces and Verrucosispora, and one novel species for the other 9 genera. Eight genera of actinomycetes were reported to produce secondary metabolites, among which Streptomyces is the richest producer. Most of the compounds produced by the deep sea actinomycetes presented antimicrobial and anti-cancer cell activities. Gene clusters related to biosynthesis of desotamide, heronamide, and lobophorin have been identified from the deep sea derived Streptomyces. PMID:28507537</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012BGeo....9.2177F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012BGeo....9.2177F"><span>Bacterial assemblages of the eastern Atlantic Ocean reveal both vertical and latitudinal biogeographic signatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Friedline, C. J.; Franklin, R. B.; McCallister, S. L.; Rivera, M. C.</p> <p>2012-06-01</p> <p>Microbial communities are recognized as major drivers of the biogeochemical processes in the oceans. However, the genetic diversity and composition of those communities is poorly understood. The aim of this study is to investigate the composition of bacterial assemblages in three different water layer habitats: surface (2-20 m), deep chlorophyll maximum (DCM; 28-90 m), and deep (100-4600 m) at nine stations along the eastern Atlantic Ocean from 42.8° N to 23.7° S. The sampling of three discrete, predefined habitat types from different depths, Longhurstian provinces, and geographical locations allowed us to investigate whether marine bacterial assemblages show spatial variation and to determine if the observed spatial variation is influenced by current environmental conditions, historical/geographical contingencies, or both. The PCR amplicons of the V6 region of the 16S rRNA from 16 microbial assemblages were pyrosequenced, generating a total of 352 029 sequences; after quality filtering and processing, 257 260 sequences were clustered into 2871 normalized operational taxonomic units (OTU) using a definition of 97% sequence identity. Community ecology statistical analyses demonstrate that the eastern Atlantic Ocean bacterial assemblages are vertically stratified and associated with water layers characterized by unique environmental signals (e.g., temperature, salinity, and nutrients). Genetic compositions of bacterial assemblages from the same water layer are more similar to each other than to assemblages from different water layers. The observed clustering of samples by water layer allows us to conclude that contemporary environments are influencing the observed biogeographic patterns. Moreover, the implementation of a novel Bayesian inference approach that allows a more efficient and explicit use of all the OTU abundance data shows a distance effect suggesting the influence of historical contingencies on the composition of bacterial assemblages. Surface bacterial communities displayed a general congruency with the ecological provinces as defined by Longhurst with modest exceptions usually associated with unique hydrographic and biogeochemical features. Collectively, our findings suggest that vertical (habitat) and latitudinal (distance) biogeographic signatures are present and that both environmental parameters and ecological provinces drive the composition of bacterial assemblages in the eastern Atlantic Ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.B34A0335S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.B34A0335S"><span>The biological pump and lower trophic level controls on carbon cycling in Lake Superior: Insights from a multi-pronged study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schreiner, K. M.; Bramburger, A.; Ozersky, T.; Sheik, C.; Steinman, B. A.</p> <p>2016-02-01</p> <p>Lake Superior is the largest freshwater lake in the world, supporting economically important fisheries and providing drinking water to hundreds of thousands of people. In recent decades, summer surface water temperature and the intensity and duration of water column stratification in the lake has increased steadily. These physical changes have resulted in significant perturbations to lower trophic level ecosystem characteristics. Recent observations of Great Lakes plankton assemblages have revealed multi-decadal patterns of community reorganization, with increased relative abundance of taxa characteristic of warmer waters. These changes, coupled with changing nutrient concentrations and colonization by non-native taxa, threaten to shift trophic structure and carbon dynamics at the bottom of the food web. To this end, this study seeks to quantify the impacts of this ecosystem shift on carbon fixation, the biological pump, and organic carbon cycling in Lake Superior. Utilizing a combined sampling approach, in the summer of 2015 we collected water, sediment, and biological samples across a nearshore-to-offshore gradient in the western arm of Lake Superior. Analyses included the community composition of bacteria, archaea, phytoplankton, and zooplankton; water column carbon and nutrient speciation; algal pigments and pigment degradation products; and net primary productivity. The collection of surface sediments allowed for additional assessment of benthic-pelagic coupling. The novel combination of this wide-ranging set of analyses to a locally and globally important water body like Lake Superior allowed us to fully assess the interactions between lower trophic level biology and carbon and nutrient cycling throughout the water column. Preliminary data indicates that microbial community composition was variable across the western arm of Lake Superior and showed signs of stratification at individual stations (>100 m deep). Sample collection occurred soon after lake stratification in July 2015, and the presence of a deep chlorophyll maximum was noted. The results shed light on the functioning of the biological pump and nutrient and carbon dynamics in a changing ecosystem and provides insight on how further change in Lake Superior and other aquatic systems will affect ecosystem function and services.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C41A0639L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C41A0639L"><span>Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.</p> <p>2016-12-01</p> <p>The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong lateral gradients at the MIZ. This presentation will discuss the evolution of the Arctic upper ocean over the summer to the start of freeze up and the relationship of its variability to sea ice extent and atmospheric forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27171912','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27171912"><span>Biosynthesis of Chlorophyll a in a Purple Bacterial Phototroph and Assembly into a Plant Chlorophyll-Protein Complex.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hitchcock, Andrew; Jackson, Philip J; Chidgey, Jack W; Dickman, Mark J; Hunter, C Neil; Canniffe, Daniel P</p> <p>2016-09-16</p> <p>Improvements to photosynthetic efficiency could be achieved by manipulating pigment biosynthetic pathways of photosynthetic organisms in order to increase the spectral coverage for light absorption. The development of organisms that can produce both bacteriochlorophylls and chlorophylls is one way to achieve this aim, and accordingly we have engineered the bacteriochlorophyll-utilizing anoxygenic phototroph Rhodobacter sphaeroides to make chlorophyll a. Bacteriochlorophyll and chlorophyll share a common biosynthetic pathway up to the precursor chlorophyllide. Deletion of genes responsible for the bacteriochlorophyll-specific modifications of chlorophyllide and replacement of the native bacteriochlorophyll synthase with a cyanobacterial chlorophyll synthase resulted in the production of chlorophyll a. This pigment could be assembled in vivo into the plant water-soluble chlorophyll protein, heterologously produced in Rhodobacter sphaeroides, which represents a proof-of-principle for the engineering of novel antenna complexes that enhance the spectral range of photosynthesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1234214','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1234214"><span>Pulse amplitude modulated chlorophyll fluorometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Greenbaum, Elias; Wu, Jie</p> <p>2015-12-29</p> <p>Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BGeo...15.1415C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BGeo...15.1415C"><span>Revisiting chlorophyll extraction methods in biological soil crusts - methodology for determination of chlorophyll a and chlorophyll a + b as compared to previous methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caesar, Jennifer; Tamm, Alexandra; Ruckteschler, Nina; Lena Leifke, Anna; Weber, Bettina</p> <p>2018-03-01</p> <p>Chlorophyll concentrations of biological soil crust (biocrust) samples are commonly determined to quantify the relevance of photosynthetically active organisms within these surface soil communities. Whereas chlorophyll extraction methods for freshwater algae and leaf tissues of vascular plants are well established, there is still some uncertainty regarding the optimal extraction method for biocrusts, where organism composition is highly variable and samples comprise major amounts of soil. In this study we analyzed the efficiency of two different chlorophyll extraction solvents, the effect of grinding the soil samples prior to the extraction procedure, and the impact of shaking as an intermediate step during extraction. The analyses were conducted on four different types of biocrusts. Our results show that for all biocrust types chlorophyll contents obtained with ethanol were significantly lower than those obtained using dimethyl sulfoxide (DMSO) as a solvent. Grinding of biocrust samples prior to analysis caused a highly significant decrease in chlorophyll content for green algal lichen- and cyanolichen-dominated biocrusts, and a tendency towards lower values for moss- and algae-dominated biocrusts. Shaking of the samples after each extraction step had a significant positive effect on the chlorophyll content of green algal lichen- and cyanolichen-dominated biocrusts. Based on our results we confirm a DMSO-based chlorophyll extraction method without grinding pretreatment and suggest the addition of an intermediate shaking step for complete chlorophyll extraction (see Supplement S6 for detailed manual). Determination of a universal chlorophyll extraction method for biocrusts is essential for the inter-comparability of publications conducted across all continents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21138234','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21138234"><span>The biomechanical effects of variation in the maximum forces exerted by trunk muscles on the joint forces and moments in the lumbar spine: a finite element analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, K; Lee, S K; Kim, Y H</p> <p>2010-10-01</p> <p>The weakening of trunk muscles is known to be related to a reduction of the stabilization function provided by the muscles to the lumbar spine; therefore, strengthening deep muscles might reduce the possibility of injury and pain in the lumbar spine. In this study, the effect of variation in maximum forces of trunk muscles on the joint forces and moments in the lumbar spine was investigated. Accordingly, a three-dimensional finite element model of the lumbar spine that included the trunk muscles was used in this study. The variation in maximum forces of specific muscle groups was then modelled, and joint compressive and shear forces, as well as resultant joint moments, which were presumed to be related to spinal stabilization from a mechanical viewpoint, were analysed. The increase in resultant joint moments occurred owing to decrease in maximum forces of the multifidus, interspinales, intertransversarii, rotatores, iliocostalis, longissimus, psoas, and quadratus lumborum. In addition, joint shear forces and resultant joint moments were reduced as the maximum forces of deep muscles were increased. These results from finite element analysis indicate that the variation in maximum forces exerted by trunk muscles could affect the joint forces and joint moments in the lumbar spine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..139a2016W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..139a2016W"><span>Characteristic sediment and water column chlorophyll-a in the sea cucumber’s Paracaudina sp. habitat on the Kenjeran Water, Surabaya</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Widianingsih, W.; Zaenuri, M.; Anggoro, S.; Kusumaningrum, H. P.; Hartati, R.</p> <p>2018-03-01</p> <p>The study of characteristic sediment and water column chlorophyll-a has an important role in the sea cucumber habitat. Sediment chlorophyll-a represents a productivity primer for the benthic community. This research has a purpose to investigate characteristic sediment and water column chlorophyll-a on the Kenjeran water, Surabaya. Sediment samples were collected by the ekman grab for analysis, grain size and nutrient. The sample for sediment chlorophyll-a was taken by core sampler. The water samples were taken with Nansen Bottles. According to the research result, the values of sediment chlorophyll-a at station 10, 11 and 12 were higher than the other stations. In contrast, the value of chlorophyll-a in the column water had almost the same value for each station. The sediment chlorophyll-a value on clay and silt sediment type was higher than the fine sand and coarse sediment type. The suitable habitat characteristic for Paracaudina sp. was clay and silt sediment with sediment chlorophyll concentration ranging from 347.82 mg·m-2 to 1135.52 mg·m-2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890012796','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890012796"><span>AVIRIS spectra of California wetlands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gross, Michael F.; Ustin, Susan L.; Klemas, Vytautas</p> <p>1988-01-01</p> <p>Spectral data gathered by the AVIRIS from wetlands in the Suisun Bay area of California on 13 October 1987 were analyzed. Spectra representing stands of numerous vegetation types (including Sesuvium verrucosum, Scirpus acutus and Scirpus californicus, Xanthium strumarium, Cynadon dactylon, and Distichlis spicata) and soil were isolated. Despite some defects in the data, it was possible to detect vegetation features such as differences in the location of the chlorophyll red absorption maximum. Also, differences in cover type spectra were evident in other spectral regions. It was not possible to determine if the observed features represent noise, variability in canopy architecture, or chemical constituents of leaves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9308D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9308D"><span>Mechanisms behind the estimation of photosynthesis traits from leaf reflectance observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dechant, Benjamin; Cuntz, Matthias; Doktor, Daniel; Vohland, Michael</p> <p>2016-04-01</p> <p>Many studies have investigated the reflectance-based estimation of leaf chlorophyll, water and dry matter contents of plants. Only few studies focused on photosynthesis traits, however. The maximum potential uptake of carbon dioxide under given environmental conditions is determined mainly by RuBisCO activity, limiting carboxylation, or the speed of photosynthetic electron transport. These two main limitations are represented by the maximum carboxylation capacity, V cmax,25, and the maximum electron transport rate, Jmax,25. These traits were estimated from leaf reflectance before but the mechanisms underlying the estimation remain rather speculative. The aim of this study was therefore to reveal the mechanisms behind reflectance-based estimation of V cmax,25 and Jmax,25. Leaf reflectance, photosynthetic response curves as well as nitrogen content per area, Narea, and leaf mass per area, LMA, were measured on 37 deciduous tree species. V cmax,25 and Jmax,25 were determined from the response curves. Partial Least Squares (PLS) regression models for the two photosynthesis traits V cmax,25 and Jmax,25 as well as Narea and LMA were studied using a cross-validation approach. Analyses of linear regression models based on Narea and other leaf traits estimated via PROSPECT inversion, PLS regression coefficients and model residuals were conducted in order to reveal the mechanisms behind the reflectance-based estimation. We found that V cmax,25 and Jmax,25 can be estimated from leaf reflectance with good to moderate accuracy for a large number of species and different light conditions. The dominant mechanism behind the estimations was the strong relationship between photosynthesis traits and leaf nitrogen content. This was concluded from very strong relationships between PLS regression coefficients, the model residuals as well as the prediction performance of Narea- based linear regression models compared to PLS regression models. While the PLS regression model for V cmax,25 was fully based on the correlation to Narea, the PLS regression model for Jmax,25 was not entirely based on it. Analyses of the contributions of different parts of the reflectance spectrum revealed that the information contributing to the Jmax,25 PLS regression model in addition to the main source of information, Narea, was mainly located in the visible part of the spectrum (500-900 nm). Estimated chlorophyll content could be excluded as potential source of this extra information. The PLS regression coefficients of the Jmax,25 model indicated possible contributions from chlorophyll fluorescence and cytochrome f content. In summary, we found that the main mechanism behind the estimation of V cmax,25 and Jmax,25 from leaf reflectance observations is the correlation to Narea but that there is additional information related to Jmax,25 mainly in the visible part of the spectrum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhDT.......130F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhDT.......130F"><span>Harnessing Solar Energy Using Photosynthetic and Organic Pigments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fitzsimons, Toby Ryan</p> <p></p> <p>Fossil fuels are a finite energy resource that must be supplemented or replaced by more stable forms of electrical energy. Solar technology research strives to supplement and provide eventual replacement for fossil fuel technology. This experiment focused on the use of natural pigments as photo-sensitizers in the current generation of solar cells called dye sensitized solar cells (DSSCs). Pigments from purified chlorophyll a, chlorophyll b, chlorophyll a/b, crude spinach (Spinacia oleracea) extract, phycocyanin, and chlorophyllin were used to construct DSSCs and evaluated, along with a control containing no pigment, for solar energy conversion. The anode of the solar cells consisted of titanium dioxide (TiO2) plates soaked in pigment solutions for twenty-four hours. The plates were assembled, along with an electrolyte sandwiched between cells, and a platinum-coated counter plate that functioned as the cathode. A gasket seal was placed between the plates and held together with rubber bands. The DSSCs were each tested for a maximum power (Pmax) point and a resistor was selected that corresponded to the resistance at that point. The cells were randomly placed into a power block assembly located in an environmental chamber with lighting that provided an average of 27,590 lumens at the surface of DSSCs. With appropriate resistors in place, the cells were subjected to twelve-hour days and twelve-hour nights for ten days, and measurements were recorded every ten minutes. Data were collected to obtain values for voltage in millivolts (mV), current in microamps (microA), and power in microwatts (microW), as well as beginning and ending efficiencies in converting light to usable energy. Voltages were substantially higher during the day than at night for all pigments, except for the control, indicating that the pigments functioned as DSSCs. Hence, only daytime values were used for data analysis. Voltage during the ten-day experiment ranged from 3.99 to 274 mV; current ranged from 0.0180 to 41.9 microA, and power ranged from 0.00 to 11.3 microW. Chlorophyllin had the highest peak and least voltage (274 and 161 mV), highest peak and least current (41.9 and 21.8 microA), and highest peak and least power (11.3 and 4.84 microW). The ranking of the pigments for peak voltage was: Chlorophyllin = Crude Extract ≥ Chlorophyll a = Chlorophyll a/b ≥ Phycocyanin = Chlorophyll b > Control. The ranking for least voltage was: Chlorophyllin > Phycocyanin ≥ Chlorophyll a/b ≥ Crude Extract ≥ Chlorophyll b ≥ Chlorophyll a ≥ Control. Ranking for peak and least values were similar for current and power. Solar energy conversion (efficiency in converting light energy to usable energy in watts per square meter) for all treatments ranged from 0.000595 to 0.0217% at the beginning of the experiment, and was highest in cells constructed with chlorophyllin. Based on rankings from peak and ending voltage values, as well as other measurements, it was concluded that DSSCs constructed with chlorophyllin performed the best and lasted the longest as photo-sensitizers, compared to other pigments used in this investigation. The DSSCs constructed with crude extract performed almost as well as those constructed with chlorophyllin at the beginning of the experiment, but degradation of this naturally-made pigment may have prevented these cells from sustaining solar energy conversion for more than a few days. Other pigments demonstrated conversion values higher than those of control DSSCs which contained no pigments. The results from this project provide evidence that DSSCs can produce useable energy. More research is needed to enhance and prolong the efficiency of DSSCs in solar energy conversion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910031501&hterms=satelite&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsatelite','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910031501&hterms=satelite&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsatelite"><span>Cloud and convection frequencies over the southeast United States as related to small-scale geographic features</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gibson, Harold M.; Vonder Haar, Thomas H.</p> <p>1990-01-01</p> <p>Based on relatively high spatial and temporal resolution satelite data collected at 0700 CST and at each hour from 1000 CST to 1700 CST during the summer of 1986, cloud and convection variations over the area from Mississippi east to Georgia and from the Gulf of Mexico north to Tennessee are discussed. The data analyses show an average maximum cloud frequency over the land areas at 1400 local time and a maximum of deep convection one hour later. Both cloudiness and deep convection are found to be at a maximum during the nocturnal hours over the Gulf of Mexico. Cloud frequency shows a strong relationship to small terrain features. Small fresh water bodies have cloud minima relative to the surroundings in the afternoon hours. Higher, steep terrain shows cloud maxima and the adjacent lower terrain exhibits afternoon cloud minima due to a divergence of mountain breeze caused by the valley.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA582754','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA582754"><span>Rethinking Chlorophyll Responses To Stress: Fluorescence and Flectance Remote Sensing in a Coastal Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-11-15</p> <p>fluorescence emission of vegetation for mapping vegetation stress as chlorophyll content and/or carotenoid content changes. 1. REPORT DATE (DD-MM-YYYY...that estimate fluorescence emission of vegetation for mapping vegetation stress as chlorophyll content and/or carotenoid content changes...not related to changes in chlorophyll content or the carotenoids /chlorophyll ratio. PRI is an indicator of chronic salinity stress and may be used as</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3315229','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3315229"><span>STAY-GREEN and Chlorophyll Catabolic Enzymes Interact at Light-Harvesting Complex II for Chlorophyll Detoxification during Leaf Senescence in Arabidopsis[C][W</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sakuraba, Yasuhito; Schelbert, Silvia; Park, So-Yon; Han, Su-Hyun; Lee, Byoung-Doo; Andrès, Céline Besagni; Kessler, Felix; Hörtensteiner, Stefan; Paek, Nam-Chon</p> <p>2012-01-01</p> <p>During leaf senescence, plants degrade chlorophyll to colorless linear tetrapyrroles that are stored in the vacuole of senescing cells. The early steps of chlorophyll breakdown occur in plastids. To date, five chlorophyll catabolic enzymes (CCEs), NONYELLOW COLORING1 (NYC1), NYC1-LIKE, pheophytinase, pheophorbide a oxygenase (PAO), and red chlorophyll catabolite reductase, have been identified; these enzymes catalyze the stepwise degradation of chlorophyll to a fluorescent intermediate, pFCC, which is then exported from the plastid. In addition, STAY-GREEN (SGR), Mendel’s green cotyledon gene encoding a chloroplast protein, is required for the initiation of chlorophyll breakdown in plastids. Senescence-induced SGR binds to light-harvesting complex II (LHCII), but its exact role remains elusive. Here, we show that all five CCEs also specifically interact with LHCII. In addition, SGR and CCEs interact directly or indirectly with each other at LHCII, and SGR is essential for recruiting CCEs in senescing chloroplasts. PAO, which had been attributed to the inner envelope, is found to localize in the thylakoid membrane. These data indicate a predominant role for the SGR-CCE-LHCII protein interaction in the breakdown of LHCII-located chlorophyll, likely to allow metabolic channeling of phototoxic chlorophyll breakdown intermediates upstream of nontoxic pFCC. PMID:22366162</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44..338C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44..338C"><span>Defining the ecologically relevant mixed-layer depth for Antarctica's coastal seas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carvalho, Filipa; Kohut, Josh; Oliver, Matthew J.; Schofield, Oscar</p> <p>2017-01-01</p> <p>Mixed-layer depth (MLD) has been widely linked to phytoplankton dynamics in Antarctica's coastal regions; however, inconsistent definitions have made intercomparisons among region-specific studies difficult. Using a data set with over 20,000 water column profiles corresponding to 32 Slocum glider deployments in three coastal Antarctic regions (Ross Sea, Amundsen Sea, and West Antarctic Peninsula), we evaluated the relationship between MLD and phytoplankton vertical distribution. Comparisons of these MLD estimates to an applied definition of phytoplankton bloom depth, as defined by the deepest inflection point in the chlorophyll profile, show that the maximum of buoyancy frequency is a good proxy for an ecologically relevant MLD. A quality index is used to filter profiles where MLD is not determined. Despite the different regional physical settings, we found that the MLD definition based on the maximum of buoyancy frequency best describes the depth to which phytoplankton can be mixed in Antarctica's coastal seas.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19253006','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19253006"><span>Response of an algal consortium to diesel under varying culture conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chavan, Anal; Mukherji, Suparna</p> <p>2010-03-01</p> <p>A diesel-tolerant sessile freshwater algal consortium obtained from the vicinity of Powai Lake (Mumbai, India) was cultured in the laboratory. The presence of diesel in batch cultures enhanced the maximum specific growth rate of the algal consortium. With decrease in light-dark (L:D) cycle from 20:4 to 4:20 h, the chlorophyll-a levels decreased; however, the removal of diesel was found to be maximum at L:D of 18:6 h with 37.6% degradation over and above controls. In addition to growth in the form of green clumps, white floating biomass was found surrounding the diesel droplets on the surface. This culture predominated at the least L:D ratio of 4:20 h. Studies confirmed the ability of the floating organisms to grow heterotrophically in the dark utilizing diesel as carbon source and also in the presence of light in a medium devoid of organic carbon sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27359061','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27359061"><span>Nitrogen balancing and xylose addition enhances growth capacity and protein content in Chlorella minutissima cultures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Freitas, B C B; Esquível, M G; Matos, R G; Arraiano, C M; Morais, M G; Costa, J A V</p> <p>2016-10-01</p> <p>This study aimed to examine the metabolic changes in Chlorella minutissima cells grown under nitrogen-deficient conditions and with the addition of xylose. The cell density, maximum photochemical efficiency, and chlorophyll and lipid levels were measured. The expression of two photosynthetic proteins, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the beta subunit (AtpB) of adenosine triphosphate synthase, were measured. Comparison of cells grown in medium with a 50% reduction in the nitrogen concentration versus the traditional medium solution revealed that the cells grown under nitrogen-deficient conditions exhibited an increased growth rate, higher maximum cell density (12.7×10(6)cellsmL(-1)), optimal PSII efficiency (0.69) and decreased lipid level (25.08%). This study has taken the first steps toward protein detection in Chlorella minutissima, and the results can be used to optimize the culturing of other microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B13G0724H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B13G0724H"><span>Microbial Communities in the Northeastern Pacific and Responses to Organic Matter Inputs Above the Sediment-Water Interface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harbeitner, R.; Sudek, S.; Choi, C. J.; Bird, L.; Worden, A. Z.</p> <p>2016-12-01</p> <p>We are investigating variability in marine microbial communities in the sunlit photic zone, the mesopelagic "twilight" zone, and the deep sea. To establish an understanding that allows assessment of future change, consistent methods are being used across three North Pacific Ocean cruises. We will characterize vertical distributions and temporal variability by flow cytometry and 16S rRNA gene sequencing (V1-V2 Illumina amplicons). Stations were sampled in the Monterey Bay Canyon, including a shallow depth station (600 m) with relatively high terrestrial input, deeper stations (1000 and 1800 m), and above an offshore seamount (1400 m). At all stations, the cyanobacterium Synechococcus was more abundant than Prochlorococcus in the photic zone and at the shallowest station, photosynthetic eukaryotes dominated. Heterotrophic bacteria abundances were similar (1,132,886 ± 316,914 ml-1) at the chlorophyll maximum in photic zone samples. Within the mesopelagic, at 600 m depth, bacterial abundances were similar (98,632-104,075 ml-1). Below 600 m, the seamount station had lower abundances (49,050 ± 8,473 ml-1) than canyon stations (71,799 ± 10,425 ml-1). We also performed experiments in newly designed gas permeable in situ incubators using water from just above the sediment-seawater interface at canyon sites of 1000 and 1800 m depth. Organic matter (OM)-amended treatments and controls were sampled at 0, 1, 5, and 24 days. Bacteria abundance increased with OM addition after 1 day (e.g. control 68,856 ± 6,826 ml-1, amended 98,088 ± 199 ml-1) and by 24 days increased 6-fold, with no statistical difference between controls and OM treatments. The results that will be presented from these experiments and ongoing diversity analyses are providing new insights into microbial distributions and activities over vertical gradients in the ocean. We are investigating variability in marine microbial communities in the sunlit photic zone, the mesopelagic "twilight" zone, and the deep sea. To establish an understanding that allows assessment of future change, consistent methods are being used across three North Pacific Ocean cruises. We will characterize vertical distributions and temporal variability by flow cytometry and 16S rRNA gene sequencing (V1-V2 Illumina amplicons). Stations were sampled in the Monterey Bay Canyon, including a shallow depth station (600 m) with relatively high terrestrial input, deeper stations (1000 and 1800 m), and above an offshore seamount (1400 m). At all stations, the cyanobacterium Synechococcus was more abundant than Prochlorococcus in the photic zone and at the shallowest station, photosynthetic eukaryotes dominated. Heterotrophic bacteria abundances were similar (1,132,886 ± 316,914 ml-1) at the chlorophyll maximum in photic zone samples. Within the mesopelagic, at 600 m depth, bacterial abundances were similar (98,632-104,075 ml-1). Below 600 m, the seamount station had lower abundances (49,050 ± 8,473 ml-1) than canyon stations (71,799 ± 10,425 ml-1). We also performed experiments in newly designed gas permeable in situ incubators using water from just above the sediment-seawater interface at canyon sites of 1000 and 1800 m depth. Organic matter (OM)-amended treatments and controls were sampled at 0, 1, 5, and 24 days. Bacteria abundance increased with OM addition after 1 day (e.g. control 68,856 ± 6,826 ml-1, amended 98,088 ± 199 ml-1 ) and by 24 days increased 6-fold, with no statistical difference between controls and OM treatments. The results that will be presented from these experiments and ongoing diversity analyses are providing new insights into microbial distributions and activities over vertical gradients in the ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26320415','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26320415"><span>Lil3 dimerization and chlorophyll binding in Arabidopsis thaliana.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mork-Jansson, Astrid Elisabeth; Gargano, Daniela; Kmiec, Karol; Furnes, Clemens; Shevela, Dmitriy; Eichacker, Lutz Andreas</p> <p>2015-10-07</p> <p>The two-helix light harvesting like (Lil) protein Lil3 belongs to the family of chlorophyll binding light harvesting proteins of photosynthetic membranes. A function in tetrapyrrol synthesis and stabilization of geranylgeraniol reductase has been shown. Lil proteins contain the chlorophyll a/b-binding motif; however, binding of chlorophyll has not been demonstrated. We find that Lil3.2 from Arabidopsis thaliana forms heterodimers with Lil3.1 and binds chlorophyll. Lil3.2 heterodimerization (25±7.8 nM) is favored relative to homodimerization (431±59 nM). Interaction of Lil3.2 with chlorophyll a (231±49 nM) suggests that heterodimerization precedes binding of chlorophyll in Arabidopsis thaliana. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.2319D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.2319D"><span>Zooplankton community response to the winter 2013 deep convection process in the NW Mediterranean Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Donoso, Katty; Carlotti, François; Pagano, Marc; Hunt, Brian P. V.; Escribano, Rubén.; Berline, Léo.</p> <p>2017-03-01</p> <p>The Gulf of Lion is an important area of deep convection, where intense winter vertical mixing brings nutrients up from deeper layers, promoting the largest bloom in the Mediterranean at the end of winter/early spring. The DEWEX program conducted cruises in February and April 2013 to investigate the ecosystem level impacts of deep water convection. Zooplankton data were collected through net sampling and imaging with an Underwater Vision Profiler. In winter, low zooplankton abundance and biomass were observed in the Deep Convection Zone (DCZ) and higher values on its periphery. In spring, this pattern reversed with high biomass in the DCZ and lower values on the periphery. On average for the whole area, the potential grazing impact was estimated to increase by one order of magnitude from winter to spring. In April, all areas except the DCZ incurred top-down control by zooplankton on the phytoplankton stock. In the DCZ, the chlorophyll-a values remained high despite the high zooplankton biomass and carbon demand, indicating a sustained bottom-up control. The zooplankton community composition was comparable for both periods, typified by high copepod dominance, but with some differences between the DCZ and peripheral regions. In spring the DCZ was characterized by a strong increase in herbivorous species such as Centropages typicus and Calanus helgolandicus, and an increase in the number of large zooplankton individuals. Our study indicates that the DCZ is likely an area of both enhanced energy transfer to higher trophic levels and organic matter export in the North Western Mediterranean Sea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4528762','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4528762"><span>Chlorophyll Synthase under Epigenetic Surveillance Is Critical for Vitamin E Synthesis, and Altered Expression Affects Tocopherol Levels in Arabidopsis1[OPEN</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Chunyu; Zhang, Wei; Ren, Guodong; Li, Delin; Cahoon, Rebecca E.; Chen, Ming; Zhou, Yongming; Yu, Bin</p> <p>2015-01-01</p> <p>Chlorophyll synthase catalyzes the final step in chlorophyll biosynthesis: the esterification of chlorophyllide with either geranylgeranyl diphosphate or phytyl diphosphate (PDP). Recent studies have pointed to the involvement of chlorophyll-linked reduction of geranylgeranyl by geranylgeranyl reductase as a major pathway for the synthesis of the PDP precursor of tocopherols. This indirect pathway of PDP synthesis suggests a key role of chlorophyll synthase in tocopherol production to generate the geranylgeranyl-chlorophyll substrate for geranylgeranyl reductase. In this study, contributions of chlorophyll synthase to tocopherol formation in Arabidopsis (Arabidopsis thaliana) were explored by disrupting and altering expression of the corresponding gene CHLOROPHYLL SYNTHASE (CHLSYN; At3g51820). Leaves from the homozygous chlysyn1-1 null mutant were nearly devoid of tocopherols, whereas seeds contained only approximately 25% of wild-type tocopherol levels. Leaves of RNA interference lines with partial suppression of CHLSYN displayed marked reductions in chlorophyll but up to a 2-fold increase in tocopherol concentrations. Cauliflower mosaic virus35S-mediated overexpression of CHLSYN unexpectedly caused a cosuppression phenotype at high frequencies accompanied by strongly reduced chlorophyll content and increased tocopherol levels. This phenotype and the associated detection of CHLSYN-derived small interfering RNAs were reversed with CHLSYN overexpression in rna-directed rna polymerase6 (rdr6), which is defective in RNA-dependent RNA polymerase6, a key enzyme in sense transgene-induced small interfering RNA production. CHLSYN overexpression in rdr6 had little effect on chlorophyll content but resulted in up to a 30% reduction in tocopherol levels in leaves. These findings show that altered CHLSYN expression impacts tocopherol levels and also, show a strong epigenetic surveillance of CHLSYN to control chlorophyll and tocopherol synthesis. PMID:26048882</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26048882','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26048882"><span>Chlorophyll Synthase under Epigenetic Surveillance Is Critical for Vitamin E Synthesis, and Altered Expression Affects Tocopherol Levels in Arabidopsis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Chunyu; Zhang, Wei; Ren, Guodong; Li, Delin; Cahoon, Rebecca E; Chen, Ming; Zhou, Yongming; Yu, Bin; Cahoon, Edgar B</p> <p>2015-08-01</p> <p>Chlorophyll synthase catalyzes the final step in chlorophyll biosynthesis: the esterification of chlorophyllide with either geranylgeranyl diphosphate or phytyl diphosphate (PDP). Recent studies have pointed to the involvement of chlorophyll-linked reduction of geranylgeranyl by geranylgeranyl reductase as a major pathway for the synthesis of the PDP precursor of tocopherols. This indirect pathway of PDP synthesis suggests a key role of chlorophyll synthase in tocopherol production to generate the geranylgeranyl-chlorophyll substrate for geranylgeranyl reductase. In this study, contributions of chlorophyll synthase to tocopherol formation in Arabidopsis (Arabidopsis thaliana) were explored by disrupting and altering expression of the corresponding gene CHLOROPHYLL SYNTHASE (CHLSYN; At3g51820). Leaves from the homozygous chlysyn1-1 null mutant were nearly devoid of tocopherols, whereas seeds contained only approximately 25% of wild-type tocopherol levels. Leaves of RNA interference lines with partial suppression of CHLSYN displayed marked reductions in chlorophyll but up to a 2-fold increase in tocopherol concentrations. Cauliflower mosaic virus35S-mediated overexpression of CHLSYN unexpectedly caused a cosuppression phenotype at high frequencies accompanied by strongly reduced chlorophyll content and increased tocopherol levels. This phenotype and the associated detection of CHLSYN-derived small interfering RNAs were reversed with CHLSYN overexpression in rna-directed rna polymerase6 (rdr6), which is defective in RNA-dependent RNA polymerase6, a key enzyme in sense transgene-induced small interfering RNA production. CHLSYN overexpression in rdr6 had little effect on chlorophyll content but resulted in up to a 30% reduction in tocopherol levels in leaves. These findings show that altered CHLSYN expression impacts tocopherol levels and also, show a strong epigenetic surveillance of CHLSYN to control chlorophyll and tocopherol synthesis. © 2015 American Society of Plant Biologists. All Rights Reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=hplc&pg=4&id=EJ297203','ERIC'); return false;" href="https://eric.ed.gov/?q=hplc&pg=4&id=EJ297203"><span>HPLC Analysis of Chlorophyll a, Chlorophyll b, and Beta-Carotene in Collard Greens: A Project for a Problem-Oriented Laboratory Course.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Silveira, Augustine, Jr.; And Others</p> <p>1984-01-01</p> <p>High performance liquid chromatography (HPLC) is used to separate and quantitate beta-carotene, chlorophyll a, and chlorophyll b originating from collard greens. Experimental procedures used and typical results obtained are discussed. (JN)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26467450','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26467450"><span>The Green Gut: Chlorophyll Degradation in the Gut of Spodoptera littoralis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Badgaa, Amarsanaa; Büchler, Rita; Wielsch, Natalie; Walde, Marie; Heintzmann, Rainer; Pauchet, Yannik; Svatos, Ales; Ploss, Kerstin; Boland, Wilhelm</p> <p>2015-11-01</p> <p>Chlorophylls, the most prominent natural pigments, are part of the daily diet of herbivorous insects. The spectrum of ingested and digested chlorophyll metabolites compares well to the pattern of early chlorophyll-degradation products in senescent plants. Intact chlorophyll is rapidly degraded by proteins in the front- and midgut. Unlike plants, insects convert both chlorophyll a and b into the corresponding catabolites. MALDI-TOF/MS imaging allowed monitoring the distribution of the chlorophyll catabolites along the gut of Spodoptera littoralis larvae. The chlorophyll degradation in the fore- and mid-gut is strongly pH dependent, and requires alkaline conditions. Using LC-MS/MS analysis we identified a lipocalin-type protein in the intestinal fluid of S. littoralis homolog to the chlorophyllide a binding protein from Bombyx mori. Widefield and high-resolution autofluorescence microscopy revealed that the brush border membranes are covered with the chlorophyllide binding protein tightly bound via its GPI-anchor to the gut membrane. A function in defense against gut microbes is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006SPIE.6047E..40H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006SPIE.6047E..40H"><span>Study on changing rules of chlorophyll concentration of detached canola leaves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Min; Feng, Lei; He, Yong; Zhu, Zheyan</p> <p>2006-09-01</p> <p>Chlorophyll is important for crops. The chlorophyll concentration is commonly used as the principal symptom of senescence. The objective of this paper was to study the relationship between the chlorophyll concentration and the time after the leaves being separated from the canola to confirm the detached leaves' senescence rate. The chlorophyll meter (SPAD meter) has been used in chlorophyll concentration measurement of fruit trees, sugar maple leaves in forest, corn with varying color and so on. In the experiment, a Minolta SPAD-502 chlorophyll Meter was used for measuring the chlorophyll concentration after picking off the canola leaves for 0 hour, 5 hours, 15 hours, 25 hours and 40 hours, and 25 samples were measured. As a result, the leaf senescence rules were found by observing the changing curves of the leaves' SPAD values. The original detached canola leaves were divided into three kinds of samples, and a certain senescence rule was found for each kind of samples. The results could provide good methods support to delay leaf senescence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8407M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8407M"><span>Color reflectance spectroscopy of profundal lake sediments: a novel moisture-balance proxy for tropical East Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyer, Inka; Van Daele, Maarten; Fiers, Geraldine; Verleyen, Eli; De Batist, Marc; Verschuren, Dirk</p> <p>2016-04-01</p> <p>Investigations of the continuous sediment record from Lake Challa, a deep freshwater crater lake on the eastern slope of Mt. Kilimanjaro, are expanding our knowledge about past climate and environmental changes in equatorial East Africa. During a field campaign in 2005 a 20.65-m long composite sediment sequence was retrieved from the center of the lake, covering the past 25,000 years. Unlike many other East African lakes, Lake Challa never dried out during this period and therefore provides one of the few continuous and high-resolution regional climate-proxy records since before the LGM. Continuously taken digital line-scan images (GeoTek MSCL core logger) revealed systematic colour variation from greenish to yellow-brownish sediments throughout the core sequence. To characterize the origin of these colour variations, high-resolution colour reflectance spectrometry was carried out. The relative absorption band depth (RABD) at different wavelengths was calculated to distinguish between sediment components with distinct absorption/ reflection characteristics. RABD660/670 can be used as a proxy for chlorophyll and its derivates, and RABD610 as a proxy for carotenoids and their derivates. Comparison of RABD660/670 with independent reconstructions of rainfall (the Branched and Isoprenoid Tetraether (BIT) index of bacterial lipids) and seismic lake level reconstructions showed a positive correlation between these proxies. During times of wetter climate and higher lake level, e.g. the early Holocene, the RABD660/670 value is higher than during times of inferred dry conditions and low lake level, e.g. the early late-Glacial period (during which no chlorophyll or its derivates were detected). We attribute this positive correlation to reduced preservation of chlorophyll contained in the settling remains of dead phytoplankton during lowstands, when bottom waters may have been better oxygenated. This data is supported by the variation in fossil pigment concentration and composition analyzed by high performance liquid chromatography (HPLC). During humid/highstand episodes, chlorophyll and carotenoids are more diverse and abundant than during dry/lowstand episodes. Our data confirm the utility of reflectance spectroscopy as a tool for rapid, non-destructive and cost-effective analysis of long sequences of lithological change at high temporal resolution. They also support the previously published BIT-index record of Lake Challa as proxy for regional moisture-balance history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.B31F0363G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.B31F0363G"><span>Comparison of Methods to Determine Algal Concentrations in Freshwater Lakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Georgian, S. E.; Halfman, J. D.</p> <p>2008-12-01</p> <p>Algal populations are extremely important to the ecological health of freshwater lake systems. As lakes become eutrophic (highly productive) through nutrient loading, sediment accumulation rates increase, bottom waters become anoxic in the mid-to late summer, the opacity of the water column decreases, and significantly decreases the lake's potential as a drinking water source and places respiratory stress on aquatic animals. One indicator of eutrophication is increasing algal concentrations over annual time frames. Algal concentrations can be measured by the concentration of chlorophyll a, or less directly by fluorescence, secchi disk depth, and turbidity by backscattering and total suspended solids. Here, we present a comparison of these methods using data collected on Honeoye, Canandaigua, Keuka, Seneca, Cayuga, Owasco, Skaneateles, and Otisco, the largest Finger Lakes of western and central New York State during the 2008 field season. A total of 124 samples were collected from at least two mid-lake, deep-water sites in each lake monthly through the 2008 field season (May-Oct); Seneca Lake was sampled weekly at four sites and Cayuga Lake every two weeks at six sites. Secchi depths, CTD profiles and surface water samples were collected at each site. Chlorophyll a was measured by spectrophotometer in the lab after filtration at 0.45 um and digestion of the residue in acetone. Water samples were also filtered through pre-weighed glass-fiber filters for total suspended solids concentrations. A SBE-25 SeaLogger CTD collected profiles of turbidity and fluorescence with WetLabs ECO FL-NTU. Surface CTD values were used in the comparison. The strongest linear correlations were detected between chlorophyll-a and fluorescence (r2 = 0.65), and total suspended solids and turbidity (r2 = 0.63). Weaker correlations were detected between secchi depths and chlorophyll-a (r2 = 0.42), and secchi depths and turbidity (r2 = 0.46). The weakest correlations were detected between secchi depths and fluorescence (r2 = 0.29), total suspended solids and fluorescence (r2 = 0.29), chlorophyll-a and turbidity (r2 = 0.34) and fluorescence and turbidity (r2 = 0.25). The results suggest that water clarity in these lakes was controlled by both inorganic and organic (algal) suspended matter, and each method typically focuses on either the organic or inorganic fractions of the total suspended sediment population. Interestingly, fluorescence profiles revealed algal peaks at depth in the epilimnion and occasionally in the upper hypolimnion of these lakes. The peak in fluorescence was shallower in algal-rich lakes. Thus, lake monitoring protocols and assessments should include all of these parameters to adequately quantify the type and concentration of suspended matter, and expand from surface samples to integrate the entire water column.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H53H1515S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H53H1515S"><span>The effects of particles and dissolved materials on in situ algal pigment fluorescence sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saraceno, J.; Bergamaschi, B. A.; Downing, B. D.</p> <p>2013-12-01</p> <p>Field deployable sensors that measure algal pigment fluorescence (APF), such as chlorophyll-a (excitation/emission ca. 470/685 nm), and phycocyanin (ca. 590/685 nm), have been used to estimate algal biomass and study food-web dynamics in coastal and oceanic waters for many years. There is also widespread use of these sensors in real time river-observing networks. However, freshwater systems often possess elevated levels of suspended solids and dissolved organic material that can interfere with optical measurements. Data collected under conditions that result in interferences may not be comparable across time and between sites unless the data are appropriately corrected. Using standard reference materials and a surrogate for algal fluorescence (Rhodamine WT), lab experiments were conducted on several commercially available sensors to quantify sensitivity to interferences over a range of naturally occurring surface water conditions (DOC : 0-30 mg/L and turbidity: 0- 1000 FNU ). Chlorophyll-a sensors exhibited a slight but significant positive bias (<1%) at DOC concentrations < 2 mg/L, and a negative, non-linear bias at DOC concentrations >2 mg/L, with signal quenching reaching a maximum of 15% at 30 mg/L DOC. All phycocyanin sensors displayed a positive non-linear bias with DOC concentration, reaching a maximum of 40% difference at 30 mg/L DOC. Both chlorophyll-a and phycocyanin sensors showed a positive linear relationship with suspended solids concentration (as indicated by turbidity).The effect of suspended solids on APF output can be explained by the detection of scattered excitation light (leaking through emission filters). Similar qualitative effects were observed for the sensors tested, though the magnitude of the effect varied among sensor type. This indicates that differences in sensor designs such as geometry, wavelength and signal post processing techniques is related to its sensitivity to interferences. Although sensors exhibited significant cross sensitivity to interferences, our results indicate that simple corrections can largely remove sensor bias. To remove bias due to optical interferences and generate high quality, repeatable APF data, knowledge of the optical properties of the matrix and/or coincident measures of the concentration of suspended solids and dissolved organics (through surrogates such as turbidity and colored dissolved organic matter (cDOM) fluorescence, respectively), are typically needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26598940','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26598940"><span>Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ferreira, V S; Pinto, R F; Sant'Anna, C</p> <p>2016-03-01</p> <p>Chlorophyll is a photosynthetic pigment found in plants and algal organisms and is a bioproduct with human health benefits and a great potential for use in the food industry. The chlorophyll content in microalgae strains varies in response to environmental factors. In this work, we assessed the effect of nitrogen depletion and low light intensity on the chlorophyll content of the Scenedesmus dimorphus microalga. The growth of S. dimorphus under low light intensity led to a reduction in cell growth and volume as well as increased cellular chlorophyll content. Nitrogen starvation led to a reduction in cell growth and the chlorophyll content, changes in the yield and productivity of chlorophylls a and b. Transmission electron microscopy was used to investigate the ultrastructural changes in the S. dimorphus exposed to nitrogen and light deficiency. In contrast to nitrogen depletion, low light availability was an effective mean for increasing the total chlorophyll content of green microalga S. dimorphus. The findings acquired in this work are of great biotechnological importance to extend knowledge of choosing the right culture condition to stimulate the effectiveness of microalgae strains for chlorophyll production purposes. © 2015 The Society for Applied Microbiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=291365','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=291365"><span>Testing deep reticulate evolution in Amaryllidaceae Tribe Hippeastreae (Asparagales) with ITS and chloroplast sequence data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The phylogeny of Amaryllidaceae tribe Hippeastreae was inferred using chloroplast (3’ycf1, ndhF, trnL-F) and nuclear (ITS rDNA) sequence data under maximum parsimony and maximum likelihood frameworks. Network analyses were applied to resolve conflicting signals among data sets and putative scenarios...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015OLEB...45..367T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015OLEB...45..367T"><span>Elucidation of Genetic Backgrounds Necessary for Chlorophyll a Biosynthesis Toward Artificial Creation of Oxygenic Photosynthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsukatani, Yusuke; Masuda, Shinji</p> <p>2015-09-01</p> <p>We succeeded to create the genetically modified purple photosynthetic bacterium capable of synthesizing chlorophyll a. The results indicate that not only chlorophyll synthase, but also an enzyme for galactolipid synthesis and reaction center proteins are required for accumulating chlorophyll a.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1368388-nondestructive-method-estimate-chlorophyll-content-arabidopsis-seedlings','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1368388-nondestructive-method-estimate-chlorophyll-content-arabidopsis-seedlings"><span>A nondestructive method to estimate the chlorophyll content of Arabidopsis seedlings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Liang, Ying; Urano, Daisuke; Liao, Kang-Ling; ...</p> <p>2017-04-14</p> <p>Chlorophyll content decreases in plants under stress conditions, therefore it is used commonly as an indicator of plant health. Arabidopsis thaliana offers a convenient and fast way to test physiological phenotypes of mutations and treatments. But, chlorophyll measurements with conventional solvent extraction are not applicable to Arabidopsis leaves due to their small size, especially when grown on culture dishes. We provide a nondestructive method for chlorophyll measurement whereby the red, green and blue (RGB) values of a color leaf image is used to estimate the chlorophyll content from Arabidopsis leaves. The method accommodates different profiles of digital cameras by incorporatingmore » the ColorChecker chart to make the digital negative profiles, to adjust the white balance, and to calibrate the exposure rate differences caused by the environment so that this method is applicable in any environment. We chose an exponential function model to estimate chlorophyll content from the RGB values, and fitted the model parameters with physical measurements of chlorophyll contents. As further proof of utility, this method was used to estimate chlorophyll content of G protein mutants grown on different sugar to nitrogen ratios. Our method is a simple, fast, inexpensive, and nondestructive estimation of chlorophyll content of Arabidopsis seedlings. This method lead to the discovery that G proteins are important in sensing the C/N balance to control chlorophyll content in Arabidopsis.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16053456','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16053456"><span>Plant pigments (antioxidants) of medicinal plants Malva silvestris L. and Malva moschata L. (Malvaceae).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Redzić, Sulejman; Hodzić, Nizama; Tuka, Mijat</p> <p>2005-05-01</p> <p>Qualitative-quantitative structure of plant pigments in wild plants Malva silvestrs L. and Malva moschata L. (Malvaceae), which were collected in 20 locations in Sarajevo area and surroundings, was tested during spring and summer in 2003. Acetone extracts of both categories were made and rising paper-chromatography done for the purpose of qualitative analysis. Quantitative analysis was done by spectrophotometry. Chlorophyll a, chlorophyll b and xanthophylls presence was confirmed by separation of pigments from acetone extract of these plant species. Spectrophotometric analysis of acetone extracts showed these results (given in mg/L): chlorophyll a 2,386, chlorophyll b 0,332 and carrotenoides 1,037. Data given in mg/g dry substance are: chlorophyll a 1,193x10(-2), chlorophyll b 1,66x10(-3), and carrotenoides 5,185x10(-3). Pigments structure (in mg/L) in species Malva moschata is 1,6 for chlorophyll; 1,419 for chlorophyll b; and 0,364 for carrotenoides. Data given in mg/g are: chlorophyll a 8x10(-3), chlorophyll b 7,09x10(-3), and carrotenoides 1,82x10(-3). Considering that species Malva moschata L. grows on ecologically clear soils as opposed to well-known medicinal species Malva sylvestris L., and considering the production of phytomass, phytochemical structure and pharmacological influence it can be considered very medical and be given advantage over this wider spread category.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26095901','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26095901"><span>Chlorophyll content retrieval from hyperspectral remote sensing imagery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Xiguang; Yu, Ying; Fan, Wenyi</p> <p>2015-07-01</p> <p>Chlorophyll content is the essential parameter in the photosynthetic process determining leaf spectral variation in visible bands. Therefore, the accurate estimation of the forest canopy chlorophyll content is a significant foundation in assessing forest growth and stress affected by diseases. Hyperspectral remote sensing with high spatial resolution can be used for estimating chlorophyll content. In this study, the chlorophyll content was retrieved step by step using Hyperion imagery. Firstly, the spectral curve of the leaf was analyzed, 25 spectral characteristic parameters were identified through the correlation coefficient matrix, and a leaf chlorophyll content inversion model was established using a stepwise regression method. Secondly, the pixel reflectance was converted into leaf reflectance by a geometrical-optical model (4-scale). The three most important parameters of reflectance conversion, including the multiple scattering factor (M 0 ), and the probability of viewing the sunlit tree crown (P T ) and the background (P G ), were estimated by leaf area index (LAI), respectively. The results indicated that M 0 , P T , and P G could be described as a logarithmic function of LAI, with all R (2) values above 0.9. Finally, leaf chlorophyll content was retrieved with RMSE = 7.3574 μg/cm(2), and canopy chlorophyll content per unit ground surface area was estimated based on leaf chlorophyll content and LAI. Chlorophyll content mapping can be useful for the assessment of forest growth stage and diseases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17437253','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17437253"><span>Monitoring the efficacy and metabolism of phenylcarbamates in sugar beet and black nightshade by chlorophyll fluorescence parameters.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abbaspoor, Majid; Streibig, Jens C</p> <p>2007-06-01</p> <p>Desmedipham, phenmedipham and a 50% mixture of the two decreased the maximum quantum efficiency of photosystem II (F(v)/F(m)) and the relative changes at the J step (F(vj)) immediately after spraying in both sugar beet and black nightshade grown in the greenhouse. Sugar beet recovered more rapidly from phenmedipham and the mixture than from desmedipham. Desmedipham and the mixture irreversibly affected F(v)/F(m) and F(vj) in black nightshade at much lower doses than in sugar beet. Black nightshade recovered from phenmedipham injury at the highest dose in the first experiment (120 g AI ha(-1)) but not in the second experiment (500 g AI ha(-1)). The dry matter dose-response relationships and the energy pipeline presentation confirmed the same trend. There was a relatively good correlation between F(vj) taken 1 day after spraying and dry matter taken 2 or 3 weeks after spraying. The differential speed of herbicide metabolism between weed and crop plays an important role in herbicide selectivity and can be studied by using appropriate chlorophyll a fluorescence parameters. Copyright 2007 Society of Chemical Industry.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ISPAr39B7..269B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ISPAr39B7..269B"><span>Seasonal Differences in Spatial Scales of Chlorophyll-A Concentration in Lake TAIHU,CHINA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bao, Y.; Tian, Q.; Sun, S.; Wei, H.; Tian, J.</p> <p>2012-08-01</p> <p>Spatial distribution of chlorophyll-a (chla) concentration in Lake Taihu is non-uniform and seasonal variability. Chla concentration retrieval algorithms were separately established using measured data and remote sensing images (HJ-1 CCD and MODIS data) in October 2010, March 2011, and September 2011. Then parameters of semi- variance were calculated on the scale of 30m, 250m and 500m for analyzing spatial heterogeneity in different seasons. Finally, based on the definitions of Lumped chla (chlaL) and Distributed chla (chlaD), seasonal model of chla concentration scale error was built. The results indicated that: spatial distribution of chla concentration in spring was more uniform. In summer and autumn, chla concentration in the north of the lake such as Meiliang Bay and Zhushan Bay was higher than that in the south of Lake Taihu. Chla concentration on different scales showed the similar structure in the same season, while it had different structure in different seasons. And inversion chla concentration from MODIS 500m had a greater scale error. The spatial scale error changed with seasons. It was higher in summer and autumn than that in spring. The maximum relative error can achieve 23%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Bacteria&id=EJ1036381','ERIC'); return false;" href="https://eric.ed.gov/?q=Bacteria&id=EJ1036381"><span>Integrating Biology into the General Chemistry Laboratory: Fluorometric Analysis of Chlorophyll "a"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Wesolowski, Meredith C.</p> <p>2014-01-01</p> <p>A laboratory experiment that introduces fluorometry of chlorophyll "a" at the general chemistry level is described. The use of thin-layer chromatography to isolate chlorophyll "a" from spirulina and leaf matter enables quantification of small amounts of chlorophyll "a" via fluorometry. Student results were reasonably…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1980CPL....69..121M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1980CPL....69..121M"><span>Characterisation of chlorophyll a solubilised in sodium lauryl sulphate micelles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mukherjee, T.; Sapre, A. V.; Mittal, Jai P.</p> <p>1980-01-01</p> <p>Poisson statistics has been applied to the problem of solubilisation of chlorophyll a in sodium lauryl sulphate micelles. Dilution experiments have been carried out to support the finding that each unit of chlorophyll a contributing to the 740 nm band contains just one chlorophyll a molecule.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5900420','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5900420"><span>Non-destructive Determination of Shikimic Acid Concentration in Transgenic Maize Exhibiting Glyphosate Tolerance Using Chlorophyll Fluorescence and Hyperspectral Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Feng, Xuping; Yu, Chenliang; Chen, Yue; Peng, Jiyun; Ye, Lanhan; Shen, Tingting; Wen, Haiyong; He, Yong</p> <p>2018-01-01</p> <p>The development of transgenic glyphosate-tolerant crops has revolutionized weed control in crops in many regions of the world. The early, non-destructive identification of superior plant phenotypes is an important stage in plant breeding programs. Here, glyphosate-tolerant transgenic maize and its parental wild-type control were studied at 2, 4, 6, and 8 days after glyphosate treatment. Visible and near-infrared hyperspectral imaging and chlorophyll fluorescence imaging techniques were applied to monitor the performance of plants. In our research, transgenic maize, which was highly tolerant to glyphosate, was phenotyped using these high-throughput non-destructive methods to validate low levels of shikimic acid accumulation and high photochemical efficiency of photosystem II as reflected by maximum quantum yield and non-photochemical quenching in response to glyphosate. For hyperspectral imaging analysis, the combination of spectroscopy and chemometric methods was used to predict shikimic acid concentration. Our results indicated that a partial least-squares regression model, built on optimal wavelengths, effectively predicted shikimic acid concentrations, with a coefficient of determination value of 0.79 for the calibration set, and 0.82 for the prediction set. Moreover, shikimic acid concentration estimates from hyperspectral images were visualized on the prediction maps by spectral features, which could help in developing a simple multispectral imaging instrument for non-destructive phenotyping. Specific physiological effects of glyphosate affected the photochemical processes of maize, which induced substantial changes in chlorophyll fluorescence characteristics. A new data-driven method, combining mean fluorescence parameters and featuring a screening approach, provided a satisfactory relationship between fluorescence parameters and shikimic acid content. The glyphosate-tolerant transgenic plants can be identified with the developed discrimination model established on important wavelengths or sensitive fluorescence parameters 6 days after glyphosate treatment. The overall results indicated that both hyperspectral imaging and chlorophyll fluorescence imaging techniques could provide useful tools for stress phenotyping in maize breeding programs and could enable the detection and evaluation of superior genotypes, such as glyphosate tolerance, with a non-destructive high-throughput technique. PMID:29686693</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29686693','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29686693"><span>Non-destructive Determination of Shikimic Acid Concentration in Transgenic Maize Exhibiting Glyphosate Tolerance Using Chlorophyll Fluorescence and Hyperspectral Imaging.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Feng, Xuping; Yu, Chenliang; Chen, Yue; Peng, Jiyun; Ye, Lanhan; Shen, Tingting; Wen, Haiyong; He, Yong</p> <p>2018-01-01</p> <p>The development of transgenic glyphosate-tolerant crops has revolutionized weed control in crops in many regions of the world. The early, non-destructive identification of superior plant phenotypes is an important stage in plant breeding programs. Here, glyphosate-tolerant transgenic maize and its parental wild-type control were studied at 2, 4, 6, and 8 days after glyphosate treatment. Visible and near-infrared hyperspectral imaging and chlorophyll fluorescence imaging techniques were applied to monitor the performance of plants. In our research, transgenic maize, which was highly tolerant to glyphosate, was phenotyped using these high-throughput non-destructive methods to validate low levels of shikimic acid accumulation and high photochemical efficiency of photosystem II as reflected by maximum quantum yield and non-photochemical quenching in response to glyphosate. For hyperspectral imaging analysis, the combination of spectroscopy and chemometric methods was used to predict shikimic acid concentration. Our results indicated that a partial least-squares regression model, built on optimal wavelengths, effectively predicted shikimic acid concentrations, with a coefficient of determination value of 0.79 for the calibration set, and 0.82 for the prediction set. Moreover, shikimic acid concentration estimates from hyperspectral images were visualized on the prediction maps by spectral features, which could help in developing a simple multispectral imaging instrument for non-destructive phenotyping. Specific physiological effects of glyphosate affected the photochemical processes of maize, which induced substantial changes in chlorophyll fluorescence characteristics. A new data-driven method, combining mean fluorescence parameters and featuring a screening approach, provided a satisfactory relationship between fluorescence parameters and shikimic acid content. The glyphosate-tolerant transgenic plants can be identified with the developed discrimination model established on important wavelengths or sensitive fluorescence parameters 6 days after glyphosate treatment. The overall results indicated that both hyperspectral imaging and chlorophyll fluorescence imaging techniques could provide useful tools for stress phenotyping in maize breeding programs and could enable the detection and evaluation of superior genotypes, such as glyphosate tolerance, with a non-destructive high-throughput technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29415702','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29415702"><span>Eco-physiological basis of shade adaptation of Camellia nitidissima, a rare and endangered forest understory plant of Southeast Asia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chai, Shengfeng; Tang, Jianmin; Mallik, Azim; Shi, Yancai; Zou, Rong; Li, Jitao; Wei, Xiao</p> <p>2018-02-07</p> <p>Camellia nitidissima, a rare and endangered shrub is narrowly distributed in South China and North Vietnam occurring in forest understory. Their light tolerance mechanism is unclear. We measured photosynthesis and related parameters on 2-years-old cuttings growing at 10, 30, 50 and 100% sunlight. Our research question was: At what light level are C. nitidissima cuttings responding most favorably, and what is the eco-physiological basis for their response to light? We hypothesized that as a forest understory growth of C. nitidissima would respond most favorably at low to intermediate light by optimizing photosynthetic activity, and high light will affect photosynthetic functions due to photoinhibition, damage of photosynthetic apparatus and concomitant enzyme activity. With increasing light, the maximum net photosynthetic rate (P Nmax ) and apparent quantum yield (AQY) decreased, while the light compensation point increased, and light saturation point first increased followed by a decrease. The P Nmax and AQY under 50 and 100% sunlight were significantly lower than that under 10 and 30% sunlight. The chlorophyll fluorescence parameters F m , F v , F v /F m all decreased under high light (> 50%). The contents of chlorophyll a (Chla), chlorophyll b (Chlb), and carotenoid (Car) decreased with increasing light. Relative conductivity, malondialdehyde (MDA) and proline contents in leaves were significantly increased in high light but we found no significant difference in these indices at 10 and 30% sunlight. We conclude that C. nitidissima is a shade adapted plant with poor adaptability to high light (> 50%). The novelty of this research is the demonstration of the eco-physiological basis of its light tolerance (conversely, shade adaptation) mechanisms indicated by decreased photosynthetic activity, chlorophyll fluorescence, Chla, Chlb and Car contents and concomitant increase in relative conductivity, MDA and proline contents at high light causing photoinhibition. For artificial propagation of C. nitidissima we recommend growing cuttings below 30% sunlight. For in situ conservation of this valuable, rare and endangered shrub it is necessary to protect its natural habitats.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996JGR...10118345M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996JGR...10118345M"><span>Carbon budget of sea-ice algae in spring: Evidence of a significant transfer to zooplankton grazers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michel, C.; Legendre, L.; Ingram, R. G.; Gosselin, M.; Levasseur, M.</p> <p>1996-08-01</p> <p>The fate of ice-bottom algae, before and after release from the first-year sea ice into the water column, was assessed during the period of ice-algal growth and decline in Resolute Passage (Canadian Arctic). During spring 1992 (from April to June), algae in the bottom ice layer and those suspended and sinking in the upper water column (top 15 m) were sampled approximately every 4 days. Ice-bottom chlorophyll a reached a maximum concentration of 160 mg m-2 in mid-May, after which it decreased to lower values. In the water column, chlorophyll a concentrations were low until the period of ice-algal decline (˜0.1 mg m-3), with most biomass in the <5-μm fraction. In both the suspended and sinking material, large increases of algal biomass occurred at the beginning of June, following the release of ice-algae into the water column. The input of ice-algal derived carbon to the upper water column and the proportions exported through sinking or remaining in suspension were assessed using a carbon budget for the two periods of ice-algal growth and decline. For each period the output terms closely balanced the input. The carbon budget showed that most of the biomass introduced into the upper water column remained suspended (>65% of total export) and that ice-algae were ingested by under-ice grazers after release from the ice. These results stress the importance of ice algae for pelagic consumers during the early stages of ice melt and show that the transfer of ice algae to higher trophic levels extends beyond the period of maximum algal production in the ice bottom.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CSR....65...14T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CSR....65...14T"><span>Assessment of MODIS-Aqua chlorophyll-a algorithms in coastal and shelf waters of the eastern Arabian Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tilstone, Gavin H.; Lotliker, Aneesh A.; Miller, Peter I.; Ashraf, P. Muhamed; Kumar, T. Srinivasa; Suresh, T.; Ragavan, B. R.; Menon, Harilal B.</p> <p>2013-08-01</p> <p>The use of ocean colour remote sensing to facilitate the monitoring of phytoplankton biomass in coastal waters is hampered by the high variability in absorption and scattering from substances other than phytoplankton. The eastern Arabian Sea coastal shelf is influenced by river run-off, winter convection and monsoon upwelling. Bio-optical parameters were measured along this coast from March 2009 to June 2011, to characterise the optical water type and validate three Chlorophyll-a (Chla) algorithms applied to Moderate Resolution Imaging Spectroradiometer on Aqua (MODIS-Aqua) data against in situ measurements. Ocean Colour 3 band ratio (OC3M), Garver-Siegel-Maritorena Model (GSM) and Generalized Inherent Optical Property (GIOP) Chla algorithms were evaluated. OC3M performed better than GSM and GIOP in all regions and overall, was within 11% of in situ Chla. GSM was within 24% of in situ Chla and GIOP on average was 55% lower. OC3M was less affected by errors in remote sensing reflectance Rrs(λ) and by spectral variations in absorption coefficient (aCDOM(λ)) of coloured dissolved organic material (CDOM) and total suspended matter (TSM) compared to the other algorithms. A nine year Chla time series from 2002 to 2011 was generated to assess regional differences between OC3M and GSM. This showed that in the north eastern shelf, maximum Chla occurred during the winter monsoon from December to February, where GSM consistently gave higher Chla compared to OC3M. In the south eastern shelf, maximum Chla occurred in June to July during the summer monsoon upwelling, and OC3M yielded higher Chla compared to GSM. OC3M currently provides the most accurate Chla estimates for the eastern Arabian Sea coastal waters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=59502','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=59502"><span>Effects of Solar Ultraviolet Radiation on the Potential Efficiency of Photosystem II in Leaves of Tropical Plants1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Krause, G. Heinrich; Schmude, Claudia; Garden, Hermann; Koroleva, Olga Y.; Winter, Klaus</p> <p>1999-01-01</p> <p>The effects of solar ultraviolet (UV)-B and UV-A radiation on the potential efficiency of photosystem II (PSII) in leaves of tropical plants were investigated in Panama (9°N). Shade-grown tree seedlings or detached sun leaves from the outer crown of mature trees were exposed for short periods (up to 75 min) to direct sunlight filtered through plastic or glass filters that absorbed either UV-B or UV-A+B radiation, or transmitted the complete solar spectrum. Persistent changes in potential PSII efficiency were monitored by means of the dark-adapted ratio of variable to maximum chlorophyll a fluorescence. In leaves of shade-grown tree seedlings, exposure to the complete solar spectrum resulted in a strong decrease in potential PSII efficiency, probably involving protein damage. A substantially smaller decline in the dark-adapted ratio of variable to maximum chlorophyll a fluorescence was observed when UV-B irradiation was excluded. The loss in PSII efficiency was further reduced by excluding both UV-B and UV-A light. The photoinactivation of PSII was reversible under shade conditions, but restoration of nearly full activity required at least 10 d. Repeated exposure to direct sunlight induced an increase in the pool size of xanthophyll cycle pigments and in the content of UV-absorbing vacuolar compounds. In sun leaves of mature trees, which contained high levels of UV-absorbing compounds, effects of UV-B on PSII efficiency were observed in several cases and varied with developmental age and acclimation state of the leaves. The results show that natural UV-B and UV-A radiation in the tropics may significantly contribute to photoinhibition of PSII during sun exposure in situ, particularly in shade leaves exposed to full sunlight. PMID:10594122</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29084280','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29084280"><span>Maximum entropy methods for extracting the learned features of deep neural networks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Finnegan, Alex; Song, Jun S</p> <p>2017-10-01</p> <p>New architectures of multilayer artificial neural networks and new methods for training them are rapidly revolutionizing the application of machine learning in diverse fields, including business, social science, physical sciences, and biology. Interpreting deep neural networks, however, currently remains elusive, and a critical challenge lies in understanding which meaningful features a network is actually learning. We present a general method for interpreting deep neural networks and extracting network-learned features from input data. We describe our algorithm in the context of biological sequence analysis. Our approach, based on ideas from statistical physics, samples from the maximum entropy distribution over possible sequences, anchored at an input sequence and subject to constraints implied by the empirical function learned by a network. Using our framework, we demonstrate that local transcription factor binding motifs can be identified from a network trained on ChIP-seq data and that nucleosome positioning signals are indeed learned by a network trained on chemical cleavage nucleosome maps. Imposing a further constraint on the maximum entropy distribution also allows us to probe whether a network is learning global sequence features, such as the high GC content in nucleosome-rich regions. This work thus provides valuable mathematical tools for interpreting and extracting learned features from feed-forward neural networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.C13A0603O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.C13A0603O"><span>Spatial Heterogeneity of Ice Cover Sediment and Thickness and Its Effects on Photosynthetically Active Radiation and Chlorophyll-a Distribution: Lake Bonney, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Obryk, M.; Doran, P. T.; Priscu, J. C.; Morgan-Kiss, R. M.; Siebenaler, A. G.</p> <p>2012-12-01</p> <p>The perennially ice-covered lakes in the McMurdo Dry Valleys, Antarctica have been extensively studied under the Long Term Ecological Research project. But sampling has been spatially restricted due to the logistical difficulty of penetrating the 3-6 m of ice cover. The ice covers restrict wind-driven turbulence and its associated mixing of water, resulting in a unique thermal stratification and a strong vertical gradient of salinity. The permanent ice covers also shade the underlying water column, which, in turn, controls photosynthesis. Here, we present results of a three-dimensional record of lake processes obtained with an autonomous underwater vehicle (AUV). The AUV was deployed at West Lake Bonney, located in Taylor Valley, Dry Valleys, to further understand biogeochemical and physical properties of the Dry Valley lakes. The AUV was equipped with depth, conductivity, temperature, under water photosynthetically active radiation (PAR), turbidity, chlorophyll-and-DOM fluorescence, pH, and REDOX sensors. Measurements were taken over the course of two years in a 100 x 100 meter spaced horizontal sampling grid (and 0.2 m vertical resolution). In addition, the AUV measured ice thickness and collected 200 images looking up through the ice, which were used to quantify sediment distribution. Comparison with high-resolution satellite QuickBird imagery demonstrates a strong correlation between aerial sediment distribution and ice cover thickness. Our results are the first to show the spatial heterogeneity of lacustrine ecosystems in the McMurdo Dry Valleys, significantly improving our understanding of lake processes. Surface sediment is responsible for localized thinning of ice cover due to absorption of solar radiation, which in turn increases total available PAR in the water column. Higher PAR values are negatively correlated with chlorophyll-a, presenting a paradox; historically, long-term studies of PAR and chlorophyll-a have shown positive trends. We hypothesized that this paradox is a result of short-term photoadaptation of phytoplanktonic communities to spatial and temporal variations of PAR within the water column. To test this hypothesis, we established phytoplankton enrichment cultures from depths of maximum primary production (13 m) and tested whether dry valley lake phytoplankton respond to daily variations in controlled light environment. Laboratory-grown cultures exhibited a strong response at 12 hr:12 hr day:night cycle at the level of both photochemistry and chlorophyll biosynthesis, indicating that Lake Bonney possess the ability to quickly respond to changes in their light environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003GeCoA..67.2027C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003GeCoA..67.2027C"><span>Novel decomposition products of chlorophyll- a in continental shelf (Louisiana shelf) sediments: formation and transformation of carotenol chlorin esters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Nianhong; Bianchi, Thomas S.; Bland, John M.</p> <p>2003-06-01</p> <p>In April 2000, we collected box cores from five stations along a cross-shelf transect on the Louisiana (LA) continental shelf. Novel esters of carotenols and chlorins (carotenoid chlorin esters, CCEs), which are highly specific grazing markers, were identified in surface and deep sediments (>10 cm) from the LA shelf. Chlorophyll- a inventory indicated that CCEs are one of the major decay products of chlorophyll- a in shelf sediments. Abundances of total CCEs (9-18%) in surface sediments along the cross-shelf transect were comparable to the abundance of pheophytin- a, pyropheophytin- a, and total steryl chlorin esters (SCEs). Prior work has identified four CCEs which have dehydrated fucoxanthin/fucoxanthinol as a substitute alcohol of phytol. We report on four newly identified CCEs associated with nondehydrated fuxocanthin/fucoxanthinol esterified to (pyro)pheophorbide- a. These nondehydrated CCEs were generally present in lower concentrations than their dehydrated counterparts, but were detectable by atmospheric pressure chemical ionization (APCI) mass spectrometry coupled with high-performance liquid chromatography (HPLC). We attributed differences between this study and previous work to the time allowed for predepositional decay and grazing processes to occur. The rapid sedimentation of CCEs in the shallow water column (ca. 10 m) on the LA shelf allowed for effective burial of all CCEs compared to the deeper water column regions sampled by previous work. This speculation is supported by the fact that the concentrations of CCEs with nondehydrated fucoxanthin/fucoxanthinol were extremely low in sediments from the site on the outer LA shelf with a deeper (253 m) water column. We also tentatively identified an additional CCE and its isomer as fucoxanthinol didehydrate pyropheophorbide- a ester. We suggest that the formation and transformation of CCEs are primarily controlled by the following three biologically mediated reactions: demethoxycarbonylation, dehydration, and deacetylation. Our laboratory copepod grazing experiment also confirmed that CCEs can be excellent class-specific biomarkers of zooplankton grazing on phytoplankton.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMED51A0565A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMED51A0565A"><span>C-MORE Science Kits: Putting Technology in the Hands of K-12 Teachers and Students</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Achilles, K.; Weersing, K.; Daniels, C.; Puniwai, N.; Matsuzaki, J.; Bruno, B. C.</p> <p>2008-12-01</p> <p>The Center for Microbial Oceanography: Research and Education (C-MORE) is a NSF Science and Technology Center based at the University of Hawaii. The C-MORE education and outreach program offers a variety of resources and professional development opportunities for science educators, including online resources, participation in oceanography research cruises, teacher-training workshops, mini-grants to incorporate microbial oceanography-related content and activities into their classroom and, most recently, C- MORE science kits. C-MORE science kits provide hands-on classroom, field, and laboratory activities related to microbial oceanography for K-12 students. Each kit comes with complete materials and instructions, and is available free of charge to Hawaii's public school teachers. Several kits are available nationwide. C-MORE science kits cover a range of topics and technologies and are targeted at various grade levels. Here is a sampling of some available kits: 1) Marine Murder Mystery: The Case of the Missing Zooxanthellae. Students learn about the effect of climate change and other environmental threats on coral reef destruction through a murder-mystery experience. Participants also learn how to use DNA to identify a suspect. Grades levels: 3-8. 2) Statistical sampling. Students learn basic statistics through an exercise in random sampling, with applications to microbial oceanography. The laptops provided with this kit enable students to enter, analyze, and graph their data using EXCEL. Grades levels: 6-12. 3) Chlorophyll Lab. A research-quality fluorometer is used to measure the chlorophyll content in marine and freshwater systems. This enables students to compare biomass concentrations in samples collected from various locations. Grades levels: 9-12. 4) Conductivity-Temperature-Depth (CTD). Students predict how certain variables (e.g., temperature, pressure, chlorophyll, oxygen) vary with depth. A CTD, attached to a laptop computer, is deployed into deep water off a dock or a ship to collect real-time data and test their hypotheses. Grades levels: 9-12.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5039533','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5039533"><span>A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou</p> <p>2016-01-01</p> <p>Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel. PMID:27618070</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990100666','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990100666"><span>Global Seasonal Climatologies of Ocean Chlorophyll: Blending In situ and Satellite Data for the CZCS Era</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gregg, Watson W.; Conkright, Margarita E.</p> <p>1999-01-01</p> <p>The historical archives of in situ (National Oceanographic Data Center) and satellite (Coastal Zone Color Scanner) chlorophyll data were combined using the blended analysis method of Reynolds [1988] in an attempt to construct an improved climatological seasonal representation of global chlorophyll distributions. The results of the blended analysis differed dramatically from the CZCS representation: global chlorophyll estimates increased 8-35% in the blended analysis depending upon season. Regional differences were even larger, up to 140% in the equatorial Indian Ocean in summer (during the southwest monsoon). Tropical Pacific chlorophyll values increased 25-41%. The results suggested that the CZCS generally underestimates chlorophyll. Regional and seasonal differences in the blended analysis were sufficiently large as to produce a different representation of global chlorophyll distributions than otherwise inferred from CZCS data alone. Analyses of primary production and biogeochemical cycles may be substantially impacted by these results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27618070','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27618070"><span>A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou</p> <p>2016-09-07</p> <p>Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981AIChE..77...22L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981AIChE..77...22L"><span>A novel chlorophyll solar cell</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ludlow, J. C.</p> <p></p> <p>The photosynthetic process is reviewed in order to produce a design for a chlorophyll solar cell. In a leaf, antenna chlorophyll absorbs light energy and conducts it to an energy trap composed of a protein and two chlorophyll molecules, which perform the oxidation-reduction chemistry. The redox potential of the trap changes from 0.4 to -0.6 V, which is sufficient to reduce nearby molecules with redox potentials in that range. The reduction occurs by transfer of an electron, and a chlorophyll solar cell would direct the transferred electron to a current carrier. Chlorophyll antenna and traps are placed on a metallic support immersed in an electron acceptor solution, and resulting electrons from exposure to light are gathered by a metallic current collector. Spinach chlorophyll extracted, purified, and applied in a cell featuring a Pt collector and an octane water emulsion resulted in intensity independent voltages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2965369','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2965369"><span>Chlorophyll Catabolites – Chemical and Structural Footprints of a Fascinating Biological Phenomenon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Moser, Simone; Müller, Thomas; Oberhuber, Michael; Kräutler, Bernhard</p> <p>2009-01-01</p> <p>Twenty years ago, the molecular basis for the seasonal disappearance of chlorophyll was still enigmatic. In the meantime, our knowledge on chlorophyll breakdown has grown considerably. As outlined here, it has been possible to decipher the basic transformations involved in natural chlorophyll breakdown by identification of chlorophyll catabolites in higher plants, and with the help of the synthesis of (putative) catabolic intermediates. In vascular plants, chlorophyll breakdown typically converts the green plant pigments efficiently into colorless and non-fluorescent tetrapyrroles. It involves colored intermediates only fleetingly and in an (elusive) enzyme-bound form. The non-fluorescent chlorophyll catabolites accumulate in the vacuoles of degreened leaves and are considered the products, primarily, of a detoxification process. However, they are effective antioxidants, and may thus also have physiologically beneficial chemical properties.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) PMID:21037946</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011OcScD...8..435J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011OcScD...8..435J"><span>A study on distribution of chlorophyll-a in the coastal waters of Anzali Port, south Caspian Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jamshidi, S.; Abu Bakar, N. Bin</p> <p>2011-02-01</p> <p>Phytoplankton as chlorophyll-containing organisms is the first step of production in most marine processes and food chains. Nutrient enhancement in the seawater due to the discharge of agricultural, industrial, and urban wastes threatens the Caspian Sea environment. Increasing concentrations of chlorophyll-a in seawater, in reaction to the elevation of nutrient supply can have severely damaging effects on the marine environment of the Caspian. In this research, seasonal variability of the chlorophyll-a concentrations in the western part of the southern coastal waters of the Caspian Sea near Iranian coast was examined using field observations. The data showed that the most chlorophyll-a was found below the sea surface. The thermal stratification in water column and outflow of the Anzali Lagoon affect the chlorophyll-a concentrations in the region. Concentrations of chlorophyll-a were recorded in midsummer in a range of 0.2-3.4 mg m-3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4959193','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4959193"><span>Potential Mechanisms for Microbial Energy Acquisition in Oxic Deep-Sea Sediments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Heidelberg, John F.</p> <p>2016-01-01</p> <p>ABSTRACT The South Pacific Gyre (SPG) possesses the lowest rates of sedimentation, surface chlorophyll concentration, and primary productivity in the global oceans. As a direct result, deep-sea sediments are thin and contain small amounts of labile organic carbon. It was recently shown that the entire SPG sediment column is oxygenated and may be representative of up to a third of the global marine environment. To understand the microbial processes that contribute to the removal of the labile organic matter at the water-sediment interface, a sediment sample was collected and subjected to metagenomic sequencing and analyses. Analysis of nine partially reconstructed environmental genomes, which represent approximately one-third of the microbial community, revealed that the members of the SPG surface sediment microbial community are phylogenetically distinct from surface/upper-ocean organisms. These genomes represent a wide distribution of novel organisms, including deep-branching Alphaproteobacteria, two novel organisms within the Proteobacteria, and new members of the Nitrospirae, Nitrospinae, and candidate phylum NC10. These genomes contain evidence for microbially mediated metal (iron/manganese) oxidation and carbon fixation linked to nitrification. Additionally, despite hypothesized energy limitation, members of the SPG microbial community had motility and chemotaxis genes and possessed mechanisms for the degradation of high-molecular-weight organic matter. This study contributes to our understanding of the metabolic potential of microorganisms in deep-sea oligotrophic sediments and their impact on local carbon geochemistry. IMPORTANCE This research provides insight into the microbial metabolic potential of organisms inhabiting oxygenated deep-sea marine sediments. Current estimates suggest that these environments account for up to a third of the global marine sediment habitat. Nine novel deep-sea microbial genomes were reconstructed from a metagenomic data set and expand the limited number of environmental genomes from deep-sea sediment environments. This research provides phylogeny-linked insight into critical metabolisms, including carbon fixation associated with nitrification, which is assignable to members of the marine group 1 Thaumarchaeota, Nitrospinae, and Nitrospirae and neutrophilic metal (iron/manganese) oxidation assignable to a novel proteobacterium. PMID:27208118</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27208118','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27208118"><span>Potential Mechanisms for Microbial Energy Acquisition in Oxic Deep-Sea Sediments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tully, Benjamin J; Heidelberg, John F</p> <p>2016-07-15</p> <p>The South Pacific Gyre (SPG) possesses the lowest rates of sedimentation, surface chlorophyll concentration, and primary productivity in the global oceans. As a direct result, deep-sea sediments are thin and contain small amounts of labile organic carbon. It was recently shown that the entire SPG sediment column is oxygenated and may be representative of up to a third of the global marine environment. To understand the microbial processes that contribute to the removal of the labile organic matter at the water-sediment interface, a sediment sample was collected and subjected to metagenomic sequencing and analyses. Analysis of nine partially reconstructed environmental genomes, which represent approximately one-third of the microbial community, revealed that the members of the SPG surface sediment microbial community are phylogenetically distinct from surface/upper-ocean organisms. These genomes represent a wide distribution of novel organisms, including deep-branching Alphaproteobacteria, two novel organisms within the Proteobacteria, and new members of the Nitrospirae, Nitrospinae, and candidate phylum NC10. These genomes contain evidence for microbially mediated metal (iron/manganese) oxidation and carbon fixation linked to nitrification. Additionally, despite hypothesized energy limitation, members of the SPG microbial community had motility and chemotaxis genes and possessed mechanisms for the degradation of high-molecular-weight organic matter. This study contributes to our understanding of the metabolic potential of microorganisms in deep-sea oligotrophic sediments and their impact on local carbon geochemistry. This research provides insight into the microbial metabolic potential of organisms inhabiting oxygenated deep-sea marine sediments. Current estimates suggest that these environments account for up to a third of the global marine sediment habitat. Nine novel deep-sea microbial genomes were reconstructed from a metagenomic data set and expand the limited number of environmental genomes from deep-sea sediment environments. This research provides phylogeny-linked insight into critical metabolisms, including carbon fixation associated with nitrification, which is assignable to members of the marine group 1 Thaumarchaeota, Nitrospinae, and Nitrospirae and neutrophilic metal (iron/manganese) oxidation assignable to a novel proteobacterium. Copyright © 2016 Tully and Heidelberg.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=329580','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=329580"><span>Calibrations between chlorophyll meter values and chlorophyll contents vary as the result of differences in leaf structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>In order to relate leaf chlorophyll meter values with total leaf chlorophyll contents (µg cm-2), calibration equations are established with measured data on leaves. Many studies have documented differences in calibration equations using different species and using different growing conditions for th...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9808E..29L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9808E..29L"><span>A review of ocean chlorophyll algorithms and primary production models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Jingwen; Zhou, Song; Lv, Nan</p> <p>2015-12-01</p> <p>This paper mainly introduces the five ocean chlorophyll concentration inversion algorithm and 3 main models for computing ocean primary production based on ocean chlorophyll concentration. Through the comparison of five ocean chlorophyll inversion algorithm, sums up the advantages and disadvantages of these algorithm,and briefly analyzes the trend of ocean primary production model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/33726','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/33726"><span>Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Tracy S. Hawkins; Emile S. Gardiner; Greg S. Comer</p> <p>2009-01-01</p> <p>Handheld chlorophyll meters have proven to be useful tools for rapid, nondestructive assessment of chlorophyll and nutrient status in various agricultural and arborescent plant species. We proposed that a SPAD-502 chlorophyll meter would provide valuable information when monitoring life cycle changes and intraspecific variation in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3198771','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3198771"><span>Overexpression of Protochlorophyllide Oxidoreductase C Regulates Oxidative Stress in Arabidopsis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pattanayak, Gopal K.; Tripathy, Baishnab C.</p> <p>2011-01-01</p> <p>Light absorbed by colored intermediates of chlorophyll biosynthesis is not utilized in photosynthesis; instead, it is transferred to molecular oxygen, generating singlet oxygen (1O2). As there is no enzymatic detoxification mechanism available in plants to destroy 1O2, its generation should be minimized. We manipulated the concentration of a major chlorophyll biosynthetic intermediate i.e., protochlorophyllide in Arabidopsis by overexpressing the light-inducible protochlorophyllide oxidoreductase C (PORC) that effectively phototransforms endogenous protochlorophyllide to chlorophyllide leading to minimal accumulation of the photosensitizer protochlorophyllide in light-grown plants. In PORC overexpressing (PORCx) plants exposed to high-light, the 1O2 generation and consequent malonedialdehyde production was minimal and the maximum quantum efficiency of photosystem II remained unaffected demonstrating that their photosynthetic apparatus and cellular organization were intact. Further, PORCx plants treated with 5-aminolevulinicacid when exposed to light, photo-converted over-accumulated protochlorophyllide to chlorophyllide, reduced the generation of 1O2 and malonedialdehyde production and reduced plasma membrane damage. So PORCx plants survived and bolted whereas, the 5-aminolevulinicacid-treated wild-type plants perished. Thus, overexpression of PORC could be biotechnologically exploited in crop plants for tolerance to 1O2-induced oxidative stress, paving the use of 5-aminolevulinicacid as a selective commercial light-activated biodegradable herbicide. Reduced protochlorophyllide content in PORCx plants released the protochlorophyllide-mediated feed-back inhibition of 5-aminolevulinicacid biosynthesis that resulted in higher 5-aminolevulinicacid production. Increase of 5-aminolevulinicacid synthesis upregulated the gene and protein expression of several downstream chlorophyll biosynthetic enzymes elucidating a regulatory net work of expression of genes involved in 5-aminolevulinicacid and tetrapyrrole biosynthesis. PMID:22031838</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5733091','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5733091"><span>Chlorophyll-Derivative Modulation of Rhodopsin Signaling Properties through Evolutionarily Conserved Interaction Pathways</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Woods, Kristina N.; Pfeffer, Jürgen; Klein-Seetharaman, Judith</p> <p>2017-01-01</p> <p>Retinal is the light-absorbing chromophore that is responsible for the activation of visual pigments and light-driven ion pumps. Evolutionary changes in the intermolecular interactions of the retinal with specific amino acids allow for adaptation of the spectral characteristics, referred to as spectral tuning. However, it has been proposed that a specific species of dragon fish has bypassed the adaptive evolutionary process of spectral tuning and replaced it with a single evolutionary event: photosensitization of rhodopsin by chlorophyll derivatives. Here, by using a combination of experimental measurements and computational modeling to probe retinal-receptor interactions in rhodopsin, we show how the binding of the chlorophyll derivative, chlorin-e6 (Ce6) in the intracellular domain (ICD) of the receptor allosterically excites G-protein coupled receptor class A (GPCR-A) conserved long-range correlated fluctuations that connect distant parts of the receptor. These long-range correlated motions are associated with regulating the dynamics and intermolecular interactions of specific amino acids in the retinal ligand-binding pocket that have been associated with shifts in the absorbance peak maximum (λmax) and hence, spectral sensitivity of the visual system. Moreover, the binding of Ce6 affects the overall global properties of the receptor. Specifically, we find that Ce6-induced dynamics alter the thermal stability of rhodopsin by adjusting hydrogen-bonding interactions near the receptor active-site that consequently also influences the intrinsic conformational equilibrium of the receptor. Due to the conservation of the ICD residues amongst different receptors in this class and the fact that all GPCR-A receptors share a common mechanism of activation, it is possible that the allosteric associations excited in rhodopsin with Ce6 binding are a common feature in all class A GPCRs. PMID:29312953</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26897549','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26897549"><span>Towards efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate carboxylase in Arabidopsis thaliana.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kandoi, Deepika; Mohanty, Sasmita; Govindjee; Tripathy, Baishnab C</p> <p>2016-12-01</p> <p>Plants with C4 photosynthesis are efficient in carbon assimilation and have an advantage over C3 photosynthesis. In C4 photosynthesis, the primary CO 2 fixation is catalyzed by phosphoenolpyruvate carboxylase (PEPC). Here, we show that overexpression of Zea mays PEPC cDNA, under the control of 35 S promoter, in Arabidopsis thaliana resulted in ~7-10 fold higher protein abundance and ~7-10 fold increase in PEPC activity in the transgenic lines than that in the vector control. We suggest that overexpression of PEPC played an anaplerotic role to increase the supply of 4-carbon carboxylic acids, which provided carbon skeletons for increased amino acid and protein synthesis. Higher protein content must have been responsible for increased metabolic processes including chlorophyll biosynthesis, photosynthesis, and respiration. Consequently, the PEPC-overexpressed transgenic plants had higher chlorophyll content, enhanced electron transport rate (ETR), lower non-photochemical quenching (NPQ) of chlorophyll a fluorescence, and a higher performance index (PI) than the vector control. Consistent with these observations, the rate of CO 2 assimilation, the starch content, and the dry weight of PEPC-overexpressed plants increased by 14-18 %, 10-18 %, and 6.5-16 %, respectively. Significantly, transgenics were tolerant to salt stress as they had increased ability to synthesize amino acids, including the osmolyte proline. NaCl (150 mM)-treated transgenic plants had higher variable to maximum Chl a fluorescence (F v /F m ) ratio, higher PI, higher ETR, and lower NPQ than the salt-treated vector controls. These results suggest that expression of C4 photosynthesis enzyme(s) in a C3 plant can improve its photosynthetic capacity with enhanced tolerance to salinity stress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007ECSS...75..175P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007ECSS...75..175P"><span>Detecting changes resulting from human pressure in a naturally quick-changing and heterogeneous environment: Spatial and temporal scales of variability in coastal lagoons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I. M.; Barcala, E.; Hegazi, M. I.; Quispe, J.</p> <p>2007-10-01</p> <p>To detect changes in ecosystems due to human impact, experimental designs must include replicates at the appropriate scale to avoid pseudoreplication. Although coastal lagoons, with their highly variable environmental factors and biological assemblages, are relatively well-studied systems, very little is known about their natural scales of variation. In this study, we investigate the spatio-temporal scales of variability in the Mar Menor coastal lagoon (SE Spain) using structured hierarchical sampling designs, mixed and permutational multi-variate analyses of variance, and ordination multi-variate analyses applied to hydrographical parameters, nutrients, chlorophyll a and ichthyoplankton in the water column, and to macrophyte and fish benthic assemblages. Lagoon processes in the Mar Menor show heterogeneous patterns at different temporal and spatial scales. The water column characteristics (including nutrient concentration) showed small-scale spatio-temporal variability, from 10 0 to 10 1 km and from fortnightly to seasonally. Biological features (chlorophyll a concentration and ichthyoplankton assemblage descriptors) showed monthly changes and spatial patterns at the scale of 10 0 (chlorophyll a) - 10 1 km (ichthyoplankton). Benthic assemblages (macrophytes and fishes) showed significant differences between types of substrates in the same locality and between localities, according to horizontal gradients related with confinement in the lagoon, at the scale of 10 0-10 1 km. The vertical zonation of macrophyte assemblages (at scales of 10 1-10 2 cm) overlaps changes in substrata and horizontal gradients. Seasonal patterns in vegetation biomass were not significant, but the significant interaction between Locality and Season indicated that the seasons of maximum and minimum biomass depend on local environmental conditions. Benthic fish assemblages showed no significant patterns at the monthly scale but did show seasonal patterns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2794A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2794A"><span>Investigating the environmental control of planktonic proteobacterial groups during the phytoplankton spring bloom in two contrasting South Coast UK estuaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alshatti, Amani</p> <p>2017-04-01</p> <p>Seasonal changes in bacterioplankton populations in two south coast UK estuaries Southampton Water and Christchurch Harbour have been investigated between March and November 2013. Four different phylogenetic bacterial groups with two alphaproteobacteria clades were quantitatively determined in subsurface water samples by Fluorescence in-situ hybridization (FISH) with oligonucleotide probes during phytoplankton bloom periods. During the spring phytoplankton bloom in Southampton water, extracted chlorophyll-a concentrations of between 6.7 and 7.6 µg L-1 were detected while gammaproteobacteria relative abundances (28.7-32.8%) and alphaproteobacteria (35.0-44.0%) dominated the eubacteria with smaller proportions of betaproteobacteria (6.4-13.0%) under high salinity conditions (27.9-32.7). Gammaproteobacteria abundance was significantly negatively correlated with chlorophyll-a concentration (R =-0.5, p < 0.05). In the Christchurch Harbour estuary, betaproteobacteria (21.2-41.1%) dominated throughout the study period in lower salinity waters (1.3-20.7). A significant relationship with negative trend was detected in both estuaries between salinity and betaproteobacteria (R = - 0.95, p < 0.0001). A higher proportion of gammaproteobacteria (29.7-30.3 %) occurred after the spring bloom chlorophyll-a concentration of 5-44.3 µg L-1 and proportion of alphaproteobacteria was highly variable. Archaea were detected in low percentages throughout the blooming season in both estuaries with maximum detected relative abundances of 10.6% in Southampton water and 8.2% in Christchurch harbour. The variation in salinity range therefore between the two estuaries plus the differences in phytoplankton biomass had a marked influence on the dominance of the different proteobacterial groups detected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5270482','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5270482"><span>Twisting a β-Carotene, an Adaptive Trick from Nature for Dissipating Energy during Photoprotection*</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sobotka, Roman; Kish, Elizabeth; Shukla, Mahendra Kumar; Pascal, Andrew A.; Polívka, Tomáš; Robert, Bruno</p> <p>2017-01-01</p> <p>Cyanobacteria possess a family of one-helix high light-inducible proteins (Hlips) that are homologous to light-harvesting antenna of plants and algae. An Hlip protein, high light-inducible protein D (HliD) purified as a small complex with the Ycf39 protein is evaluated using resonance Raman spectroscopy. We show that the HliD binds two different β-carotenes, each present in two non-equivalent binding pockets with different conformations, having their (0,0) absorption maxima at 489 and 522 nm, respectively. Both populations of β-carotene molecules were in all-trans configuration and the absorption position of the farthest blue-shifted β-carotene was attributed entirely to the polarizability of the environment in its binding pocket. In contrast, the absorption maximum of the red-shifted β-carotene was attributed to two different factors: the polarizability of the environment in its binding pocket and, more importantly, to the conformation of its β-rings. This second β-carotene has highly twisted β-rings adopting a flat conformation, which implies that the effective conjugation length N is extended up to 10.5 modifying the energetic levels. This increase in N will also result in a lower S1 energy state, which may provide a permanent energy dissipation channel. Analysis of the carbonyl stretching region for chlorophyll a excitations indicates that the HliD binds six chlorophyll a molecules in five non-equivalent binding sites, with at least one chlorophyll a presenting a slight distortion to its macrocycle. The binding modes and conformations of HliD-bound pigments are discussed with respect to the known structures of LHCII and CP29. PMID:27994060</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27040752','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27040752"><span>Characterization of the low-temperature triplet state of chlorophyll in photosystem II core complexes: Application of phosphorescence measurements and Fourier transform infrared spectroscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zabelin, Alexey A; Neverov, Konstantin V; Krasnovsky, Alexander A; Shkuropatova, Valentina A; Shuvalov, Vladimir A; Shkuropatov, Anatoly Ya</p> <p>2016-06-01</p> <p>Phosphorescence measurements at 77 K and light-induced FTIR difference spectroscopy at 95 K were applied to study of the triplet state of chlorophyll a ((3)Chl) in photosystem II (PSII) core complexes isolated from spinach. Using both methods, (3)Chl was observed in the core preparations with doubly reduced primary quinone acceptor QA. The spectral parameters of Chl phosphorescence resemble those in the isolated PSII reaction centers (RCs). The main spectral maximum and the lifetime of the phosphorescence corresponded to 955±1 nm and of 1.65±0.05 ms respectively; in the excitation spectrum, the absorption maxima of all core complex pigments (Chl, pheophytin a (Pheo), and β-carotene) were observed. The differential signal at 1667(-)/1628(+)cm(-1) reflecting a downshift of the stretching frequency of the 13(1)-keto C=O group of Chl was found to dominate in the triplet-minus-singlet FTIR difference spectrum of core complexes. Based on FTIR results and literature data, it is proposed that (3)Chl is mostly localized on the accessory chlorophyll that is in triplet equilibrium with P680. Analysis of the data suggests that the Chl triplet state responsible for the phosphorescence and the FTIR difference spectrum is mainly generated due to charge recombination in the reaction center radical pair P680(+)PheoD1(-), and the energy and temporal parameters of this triplet state as well as the molecular environment and interactions of the triplet-bearing Chl molecule are similar in the PSII core complexes and isolated PSII RCs. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27161580','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27161580"><span>Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hazrati, Saeid; Tahmasebi-Sarvestani, Zeinolabedin; Modarres-Sanavy, Seyed Ali Mohammad; Mokhtassi-Bidgoli, Ali; Nicola, Silvana</p> <p>2016-09-01</p> <p>Aloe vera L. is one of the most important medicinal plants in the world. In order to determine the effects of light intensity and water deficit stress on chlorophyll (Chl) fluorescence and pigments of A. vera, a split-plot in time experiment was laid out in a randomized complete block design with four replications in a research greenhouse. The factorial combination of three light intensities (50, 75 and 100% of sunlight) and four irrigation regimes (irrigation after depleting 20, 40, 60 and 80% of soil water content) were considered as main factors. Sampling time was considered as sub factor. The first, second and third samplings were performed 90, 180 and 270 days after imposing the treatments, respectively. The results demonstrated that the highest light intensity and the severe water stress decreased maximum fluorescence (Fm), variable fluorescence (Fv)/Fm, quantum yield of PSII photochemistry (ФPSII), Chl and photochemical quenching (qP) but increased non-photochemical quenching (NPQ), minimum fluorescence (F0) and Anthocyanin (Anth). Additionally, the highest Fm, Fv/Fm, ФPSII and qP and the lowest NPQ and F0 were observed when 50% of sunlight was blocked and irrigation was done after 40% soil water depletion. Irradiance of full sunlight and water deficit stress let to the photoinhibition of photosynthesis, as indicated by a reduced quantum yield of PSII, ФPSII, and qP, as well as higher NPQ. Thus, chlorophyll florescence measurements provide valuable physiological data. Close to half of total solar radiation and irrigation after depleting 40% of soil water content were selected as the most efficient treatments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23844172','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23844172"><span>The effect of calcium chloride on growth, photosynthesis, and antioxidant responses of Zoysia japonica under drought conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Chengbin; Li, Xuemei; Zhang, Lihong</p> <p>2013-01-01</p> <p>Few attempts have been made to study the alleviating effects of signal molecules on zoysiagrass (Zoysiajaponica) under drought stress. Calcium chloride has been shown to ameliorate the adverse effects of drought stress on many plants. It is necessary to investigate how to enhance drought tolerance of zoysiagrass using calcium chloride. The study elucidated the effects of calcium chloride on zoysiagrass under drought conditions by investigating the following parameters: biomass, chlorophyll (Chl) content, net photosynthetic rate (Pn), chlorophyll fluorescence, antioxidant enzymes, proline content, and malondialdehyde (MDA) content. Experimental conditions consisted of an aqueous CaCl2 solution at 5, 10, and 20 mM sprayed on zoysiagrass leaves for 3 d, following by an inducement of drought conditions by withholding water for 16 d. Under drought conditions, all CaCl2 pretreatments were found to increase the above-ground fresh biomass, as well as below-ground fresh and dry biomass. The resulting Chl (a, b, a+b) contents of the 5 and 10 mM CaCl2 pretreatment groups were higher than those of the control. In the later stages of drought conditions, the chlorophyll fluorescence parameter Fv/Fm was higher in leaves treated with 10 mM CaCl2 than in the leaves of the other two treatment groups. Zoysiagrass pretreated with 10 mM CaCl2 possessed both the maximum observed Pn and antioxidant enzyme activities. Meanwhile, lower MDA and proline contents were recorded in the plants pretreated with 5 and 10 mM CaCl2 under drought conditions. As a whole, the drought tolerance of zoysiagrass was improved to some extent by the application of a moderate calcium concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010GBioC..24.3016U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010GBioC..24.3016U"><span>Phytoplankton class-specific primary production in the world's oceans: Seasonal and interannual variability from satellite observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Uitz, Julia; Claustre, Hervé; Gentili, Bernard; Stramski, Dariusz</p> <p>2010-09-01</p> <p>We apply an innovative approach to time series data of surface chlorophyll from satellite observations with SeaWiFS (Sea-viewing Wide Field-of-view Sensor) to estimate the primary production associated with three major phytoplankton classes (micro-, nano-, and picophytoplankton) within the world's oceans. Statistical relationships, determined from an extensive in situ database of phytoplankton pigments, are used to infer class-specific vertical profiles of chlorophyll a concentration from satellite-derived surface chlorophyll a. This information is combined with a primary production model and class-specific photophysiological parameters to compute global seasonal fields of class-specific primary production over a 10-year period from January 1998 through December 2007. Microphytoplankton (mostly diatoms) appear as a major contributor to total primary production in coastal upwelling systems (70%) and temperate and subpolar regions (50%) during the spring-summer season. The contribution of picophytoplankton (e.g., prokaryotes) reaches maximum values (45%) in subtropical oligotrophic gyres. Nanophytoplankton (e.g., prymnesiophytes) provide a ubiquitous, substantial contribution (30-60%). Annual global estimates of class-specific primary production amount to 15 Gt C yr-1 (32% of total), 20 Gt C yr-1 (44%) and 11 Gt C yr-1 (24%) for micro-, nano-, and picophytoplankton, respectively. The analysis of interannual variations revealed large anomalies in class-specific primary production as compared to the 10-year mean cycle in both the productive North Atlantic basin and the more stable equatorial Pacific upwelling. Microphytoplankton show the largest range of variability of the three phytoplankton classes on seasonal and interannual time scales. Our results contribute to an understanding and quantification of carbon cycle in the ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24962705','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24962705"><span>Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto; Rosenqvist, Eva</p> <p>2015-02-01</p> <p>The chlorophyll fluorescence parameter Fv /Fm reflects the maximum quantum efficiency of photosystem II (PSII) photochemistry and has been widely used for early stress detection in plants. Previously, we have used a three-tiered approach of phenotyping by Fv /Fm to identify naturally existing genetic variation for tolerance to severe heat stress (3 days at 40°C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv /Fm value) in terms of growth and photosynthetic traits under moderate heat stress (1 week at 36/30°C day/night temperature in greenhouse) closer to natural heat waves in North-Western Europe. Dry matter accumulation after 7 days of heat stress was positively correlated to Fv /Fm . The high Fv /Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN ) than the low group, accompanied by higher stomatal conductance (gs ), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv /Fm and intracellular CO2 (Ci ) was non-significant under the given heat stress. This study validated that our three-tiered approach of phenotyping by Fv /Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified cultivars may serve as a valuable resource for further studies to understand the physiological mechanisms underlying the genetic variability in heat sensitivity of photosynthesis. © 2014 Scandinavian Plant Physiology Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19069757','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19069757"><span>The distribution of nutrients, dissolved oxygen and chlorophyll a in the upper Gulf of Nicoya, Costa Rica, a tropical estuary.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Palter, Jaime; Coto, Sandra León; Ballestero, Daniel</p> <p>2007-06-01</p> <p>In the Gulf of Nicoya on the Pacific Coast of Costa Rica, nutrient rich equatorial subsurface water (ESW) is upwelled in much of the lower gulf. These offshore waters are often regarded as the major source of nutrients to the gulf. However, for most of the year, the ESW has little influence on the nutrient content of the upper gulf, which has a distinct character from the lower gulf. The upper gulf, extending 40 km north of the restriction between Puntarenas Peninsula and San Lucas Island, is bordered primarily by mangrove swamps, is less than 20 m deep, and is less saline than the lower gulf. We surveyed the upper gulf for dissolved inorganic nitrogen, phosphate, silicate, dissolved oxygen, and chlorophyll in November 2000, January and July 2001. All nutrients are more concentrated in the upper gulf during the rainy and transitional seasons than the dry season, significantly so for phosphate and silicate. Throughout the year, nutrients tend to be much more concentrated in the less saline water of the upper gulf. This trend indicates that discharge from the Tempisque River predominantly controls spatial and temporal nutrient variability in the upper gulf. However, nutrient rich ESW, upwelled offshore and mixed to form a mid-temperature intermediate water, may enter the inner gulf to provide an important secondary source of nutrients during the dry season.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4461922','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4461922"><span>Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei</p> <p>2015-01-01</p> <p>The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants. PMID:26059057</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5240737','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5240737"><span>Identification of a Chlorophyll Dephytylase Involved in Chlorophyll Turnover in Arabidopsis[OPEN</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2016-01-01</p> <p>Chlorophyll turns over in green organs during photosystem repair and is salvaged via de- and rephytylation, but the enzyme involved in dephytylation is unknown. We have identified an Arabidopsis thaliana thylakoid protein with a putative hydrolase domain that can dephytylate chlorophyll in vitro and in vivo. The corresponding locus, CHLOROPHYLL DEPHYTYLASE1 (CLD1), was identified by mapping a semidominant, heat-sensitive, missense allele (cld1-1). CLD1 is conserved in oxygenic photosynthetic organisms, sharing structural similarity with pheophytinase, which functions in chlorophyll breakdown during leaf senescence. Unlike pheophytinase, CLD1 is predominantly expressed in green organs and can dephytylate chlorophyll in vitro. The specific activity is significantly higher for the mutant protein encoded by cld1-1 than the wild-type enzyme, consistent with the semidominant nature of the cld1-1 mutation. Supraoptimal CLD1 activities in cld1-1 mutants and transgenic seedlings led to the proportional accumulation of chlorophyllides derived from chlorophyll dephytylation after heat shock, which resulted in light-dependent cotyledon bleaching. Reducing CLD1 expression diminished thermotolerance and the photochemical efficiency of photosystem II under prolonged moderate heat stress. Taken together, our results suggest that CLD1 is the long-sought enzyme for removing the phytol chain from chlorophyll during its turnover at steady state within the chloroplast. PMID:27920339</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..122a2030M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..122a2030M"><span>The effect of shade on chlorophyll and anthocyanin content of upland red rice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muhidin; Syam'un, E.; Kaimuddin; Musa, Y.; Sadimantara, G. R.; Usman; Leomo, S.; Rakian, T. C.</p> <p>2018-02-01</p> <p>Upland red rice (Oryza sativa) is a staple food and contains anthocyanin, which can act as antioxidants, plays an important role both for the plant itself and for human health. Levels of antioxidants in rice can be affected by the availability of light. The results showed that the difference of shade, cultivar, and interaction both significantly affect the content of chlorophyll a, chlorophyll b and total chlorophyll. The results also showed that shade could increase chlorophyll in all cultivars tested. The highest levels of chlorophyll a were present in the moderate shade level (n2), then decreased at the shelter level (n3) and increased again at high levels (n4). While on chlorophyll content b, it appears that shade increased chlorophyll b in all cultivars tested and this increase was linear to the increase of shade. The shade treatment may increase the anthocyanin content and the increase depending on the type of cultivar. Increased levels of anthocyanin highest due to shade occurred on Jangkobembe cultivar. The original level of anthocyanin on Jangkobembe cultivar averaged 0.096 mg g-1 increased to 2.487 mg g-1 or increased 26 fold. It is concluded that the shade had a significant effect on the chlorophyll and anthocyanin content.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatSR...511108P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatSR...511108P"><span>Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei</p> <p>2015-06-01</p> <p>The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>