Sample records for deep coal mining

  1. Method for gasification of deep, thin coal seams. [DOE patent

    DOEpatents

    Gregg, D.W.

    1980-08-29

    A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face is given. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

  2. Method for gasification of deep, thin coal seams

    DOEpatents

    Gregg, David W.

    1982-01-01

    A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

  3. Deep-coal potential in the Appalachian Coal Basin, USA: The Kentucky model

    USGS Publications Warehouse

    Haney, D.C.; Chesnut, D.R.

    1997-01-01

    The Eastern Kentucky Coal Field is located in the Appalachian Basin of the United States and occupies an area of approximately 15,000 square kilometers. The coal beds range from a few centimeters to several meters in thickness and consist of high-grade bituminous coal. Currently the amount of coal mined by surface methods exceeds underground extraction; however, there is a steady and gradual shift toward underground mining. In the future, as near-surface resources are depleted, this trend toward increased underground mining will continue. Knowledge about deeper coals is essential for future economic development of resources. Preliminary investigations indicate that coal-bearing strata with deep-mining potential exist in several parts of eastern Kentucky, especially along the Eastern Kentucky Syncline. Eastern Kentucky coals are Westphalian A through D; however, current production is from major beds of Westphalian A and B. Because coals that occur above drainage are more easily accessible and are generally of better quality, most of the current mining takes place in formations that are at or near the surface. In the future, however, due to environmental regulations and increased demands, it will be necessary to attempt to utilize deeper coals about which little is known. Future development of deep resources will require data from boreholes and high-resolution geophysical-logging techniques. There is also potential for coal-bed methane from the deeper coals which could be an important resource in the Appalachian Coal Basin where a natural gas distribution system already exists.

  4. 2006 SME annual meeting & 7th ICARD, March 26-29, 2006, St. Louis, Missouri. Pre-prints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2006-07-01

    Subjects covered by the papers include: enhanced coalbed methane through carbon sequestration, application of laser surface coatings for raw coal screen wear resistance enhancement, application of cross-flow teeter-bed separator in the US coal industry, arsenic removal from drinking water, modelling of fire spread along combustibles in a mine entry, coal's role in sustaining society, real time characterisation of frother bubble thin films, diesel emissions, overcoming stress measurements form underground coal amines, dry jigging coal, estimation of roof strata strength, improving screen bowl centrifuge performance, installation of ventilation shaft at a New Mexico coal mine, evaluation of feasibility of CO{sub 2}more » sequestration in deep coal, robot-human control interaction in mining operations, small mine and contractor safety, coal dust explosibility meter, US coal mine fatalities versus age of mine, and water and slurry bulkheads in underground coal mines.« less

  5. Numerical Study on 4-1 Coal Seam of Xiaoming Mine in Ascending Mining

    PubMed Central

    Tianwei, Lan; Hongwei, Zhang; Sheng, Li; Weihua, Song; Batugin, A. C.; Guoshui, Tang

    2015-01-01

    Coal seams ascending mining technology is very significant, since it influences the safety production and the liberation of dull coal, speeds up the construction of energy, improves the stability of stope, and reduces or avoids deep hard rock mining induced mine disaster. Combined with the Xiaoming ascending mining mine 4-1, by numerical calculation, the paper analyses ascending mining 4-1 factors, determines the feasibility of ascending mining 4-1 coalbed, and proposes roadway layout program about working face, which has broad economic and social benefits. PMID:25866840

  6. GENERAL EXTERIOR VIEW, LOOKING NORTHEAST, OF THE SURFACE PLANT WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL EXTERIOR VIEW, LOOKING NORTHEAST, OF THE SURFACE PLANT WITH CONVEYORS. JIM WALTER RESOURCES INC. MINING DIVISION OPERATES FOUR UNDERGROUND COAL MINES IN THE BLUE CREEK COAL FIELD OF BIRMINGHAM DISTRICT, THREE IN TUSCALOOSA COUNTY AND ONE IN JEFFERSON COUNTY. TOTAL ANNUAL PRODUCTION IS 8,000,000 TONS. AT 2,300 DEEP, JIM WALTER'S BROOKWOOD MINES ARE THE DEEPEST UNDERGROUND COAL MINES IN NORTH AMERICA. THEY PRODUCE A HIGH-GRADE MEDIUM VOLATILE LOW SULPHUR METALLURGICAL COAL. THE BROOKWOOD NO. 5 MINE (PICTURED IN THIS PHOTOGRAPH) EMPLOYS THE LONGWALL MINING TECHNIQUES WITH BELTS CONVEYING COAL FROM UNDERGROUND OPERATIONS TO THE SURFACE. - JIm Walter Resources, Incorporated, Brookwood No. 5 Mine, 12972 Lock 17 Road, Brookwood, Tuscaloosa County, AL

  7. Pillar size optimization design of isolated island panel gob-side entry driving in deep inclined coal seam—case study of Pingmei No. 6 coal seam

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Wang, Xufeng; Fan, Gangwei; Zhang, Dongsheng; Jianbin, Cui

    2018-06-01

    There is a perception that deep roadways are difficult to maintain. To reverse this and to improve the recovery rate of coal resources, gob-side entry driving is widely used in coal mines, especially deep-mining coal mines, in China. Determination of the reasonable pillar size through in situ observation and experimentation plays a vital role for roadway maintenance. Based on the geological conditions of Pingmei No.6 coal seam, a theoretical analysis, numerical simulation, and industrial experiments are carried out to calculate the reasonable width of chain pillars, analyze the lateral support stress distribution law near the gob side, investigate the relationship between the coal pillar stress distribution, roadway surrounding rock stress distribution, roadway surrounding rock deformation and the coal pillar width. The results indicate that 5 m wide coal pillars can ensure that the chain pillars are at a lower stress level and the deformation of roadway surrounding rock is in a more reasonable range. Industrial experiments show that when the chain pillar width is 5 m, the deformation of roadway surrounding rock can meet the requirements of working face safe production. The numerical results agreed well with field measurement and observations, and the industrial experiments results further validated the results of the numerical simulation.

  8. Psycho-social aspects of productivity in underground coal mining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akin, G.

    1981-10-01

    The psychosocial aspects of productivity in underground coal mining were investigated. The following topics were studied: (1) labor productivity in deep mines and the explanations for productivity changes; (2) current concepts and research on psychosocial factors in productivity; (3) a survey of experiments in productivity improvement (4) the impact of the introduction of new technology on the social system and the way that it accomplishes production (5) a clinical study of a coal mining operation, model described how production is actually accomplished by workers at the coal face; and (6) implications and recommendations for new technology design, implementation and ongoingmore » management.« less

  9. Economic and Technological Role of Kuzbass Industry in the Implementation of National Energy Strategy of Russian Federation

    NASA Astrophysics Data System (ADS)

    Zhironkin, S. A.; Khoreshok, A. A.; Tyulenev, M. A.; Barysheva, G. A.; Hellmer, M. C.

    2016-08-01

    This article describes the problems and prospects of development of coal mining in Kuzbass - the center of coal production in Siberia and Russia, in the framework of the major initiatives of the National Energy Strategy for the period until 2035. The structural character of the regional coal industry problems, caused by decline in investment activity, high level of fixed assets depreciation, slow development of deep coal processing and technological reduction of coal mining is shown.

  10. Rock Burst Monitoring by Integrated Microseismic and Electromagnetic Radiation Methods

    NASA Astrophysics Data System (ADS)

    Li, Xuelong; Wang, Enyuan; Li, Zhonghui; Liu, Zhentang; Song, Dazhao; Qiu, Liming

    2016-11-01

    For this study, microseismic (MS) and electromagnetic radiation (EMR) monitoring systems were installed in a coal mine to monitor rock bursts. The MS system monitors coal or rock mass ruptures in the whole mine, whereas the EMR equipment monitors the coal or rock stress in a small area. By analysing the MS energy, number of MS events, and EMR intensity with respect to rock bursts, it has been shown that the energy and number of MS events present a "quiet period" 1-3 days before the rock burst. The data also show that the EMR intensity reaches a peak before the rock burst and this EMR intensity peak generally corresponds to the MS "quiet period". There is a positive correlation between stress and EMR intensity. Buckling failure of coal or rock depends on the rheological properties and occurs after the peak stress in the high-stress concentration areas in deep mines. The MS "quiet period" before the rock burst is caused by the heterogeneity of the coal and rock structures, the transfer of high stress into internal areas, locked patches, and self-organized criticality near the stress peak. This study increases our understanding of coal and rock instability in deep mines. Combining MS and EMR to monitor rock burst could improve prediction accuracy.

  11. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China.

    PubMed

    Kong, Biao; Li, Zenghua; Yang, Yongliang; Liu, Zhen; Yan, Daocheng

    2017-10-01

    In recent years, the ecology, security, and sustainable development of modern mines have become the theme of coal mine development worldwide. However, spontaneous combustion of coal under conditions of oxygen supply and automatic exothermic heating during coal mining lead to coalfield fires. Coal spontaneous combustion (CSC) causes huge economic losses and casualties, with the toxic and harmful gases produced during coal combustion not only polluting the working environment, but also causing great damage to the ecological environment. China is the world's largest coal producer and consumer; however, coal production in Chinese mines is seriously threatened by the CSC risk. Because deep underground mining methods are commonly adopted in Chinese coal mines, coupling disasters are frequent in these mines with the coalfield fires becoming increasingly serious. Therefore, in this study, we analyzed the development mechanism of CSC. The CSC risk assessment was performed from the aspects of prediction, detection, and determination of the "dangerous area" in a coal mine (i.e., the area most susceptible to fire hazards). A new geophysical method for CSC determination is proposed and analyzed. Furthermore, the main methods for CSC fire prevention and control and their advantages and disadvantages are analyzed. To eventually construct CSC prevention and control integration system, future developmental direction of CSC was given from five aspects. Our results can present a reference for the development of CSC fire prevention and control technology and promote the protection of ecological environment in China.

  12. Detecting voids in a 0.6 m coal seam, 7 m deep, using seismic reflection

    USGS Publications Warehouse

    Miller, R.D.; Steeples, D.W.

    1991-01-01

    Surface collapse over abandoned subsurface coal mines is a problem in many parts of the world. High-resolution P-wave reflection seismology was successfully used to evaluate the risk of an active sinkhole to a main north-south railroad line in an undermined area of southeastern Kansas, USA. Water-filled cavities responsible for sinkholes in this area are in a 0.6 m thick coal seam, 7 m deep. Dominant reflection frequencies in excess of 200 Hz enabled reflections from the coal seam to be discerned from the direct wave, refractions, air wave, and ground roll on unprocessed field files. Repetitive void sequences within competent coal on three seismic profiles are consistent with the "room and pillar" mining technique practiced in this area near the turn of the century. The seismic survey showed that the apparent active sinkhole was not the result of reactivated subsidence but probably erosion. ?? 1991.

  13. Jim Walter Resources installs new overland conveyor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiscor, S.

    2008-12-15

    Embarking on a major expansion plan, the company is constructing a new additional overland conveyor coal to a recently refurbished prep plant. Jim Walter Resources recently invested $20 million in a new 5-mile overland conveyor system to haul coal from the No.7 deep coal mine in Alabama to the No.5 coal preparation plant. The size of the No.7 mine was effectively doubled. The article describes how this expansion move was decided upon and describes the design and installation of the new conveyor which spans approximately 5 miles. 4 photos.

  14. Research on solvent-refined coal. Quarterly technical progress report, April 1, 1981-June 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-10-01

    This report describes progress on the Research on Solvent Refined Coal project by The Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory during the second quarter of 1981. Alexander Mine coal was evaluated as a feedstock for major liquefaction facilities and had a yield structure similar to other reactive Pittsburgh seam coals at standard SRC II conditions. Two lots of coal from the Ireland Mine (Pittsburgh seam) were found to be of nearly the same composition and produced essentially the same yields. Two experiments in which coal-derived nonvolatile organic matter was processed without fresh coal feed indicate constant rates ofmore » conversion of SRC to oil and gas. Insoluble organic matter (IOM) remained unconverted. The naphtha and middle distillate products from the deep conversion contained less sulfur but more nitrogen than those from conventional SRC II processing. Encouraging results were obtained when a very small amount of iron oxide dispersed on alumina was added to Kaiparowits coal which cannot be processed at normal SRC II conditions without added catalyst. Subbituminous coals from the McKinley and Edna Mines were processed successfully with added pyrite but would not run when the added catalyst was removed.« less

  15. Mechanism of Rock Burst Occurrence in Specially Thick Coal Seam with Rock Parting

    NASA Astrophysics Data System (ADS)

    Wang, Jian-chao; Jiang, Fu-xing; Meng, Xiang-jun; Wang, Xu-you; Zhu, Si-tao; Feng, Yu

    2016-05-01

    Specially thick coal seam with complex construction, such as rock parting and alternative soft and hard coal, is called specially thick coal seam with rock parting (STCSRP), which easily leads to rock burst during mining. Based on the stress distribution of rock parting zone, this study investigated the mechanism, engineering discriminant conditions, prevention methods, and risk evaluation method of rock burst occurrence in STCSRP through setting up a mechanical model. The main conclusions of this study are as follows. (1) When the mining face moves closer to the rock parting zone, the original non-uniform stress of the rock parting zone and the advancing stress of the mining face are combined to intensify gradually the shearing action of coal near the mining face. When the shearing action reaches a certain degree, rock burst easily occurs near the mining face. (2) Rock burst occurrence in STCSRP is positively associated with mining depth, advancing stress concentration factor of the mining face, thickness of rock parting, bursting liability of coal, thickness ratio of rock parting to coal seam, and difference of elastic modulus between rock parting and coal, whereas negatively associated with shear strength. (3) Technologies of large-diameter drilling, coal seam water injection, and deep hole blasting can reduce advancing stress concentration factor, thickness of rock parting, and difference of elastic modulus between rock parting and coal to lower the risk of rock burst in STCSRP. (4) The research result was applied to evaluate and control the risk of rock burst occurrence in STCSRP.

  16. Prediction and assessment of the disturbances of the coal mining in Kailuan to karst groundwater system

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Wu, Qiang; Liu, Honglei; Jiao, Jian

    Coal resources and water resources play an essential and strategic role in the development of China's social and economic development, being the priority for China's medium and long technological development. As the mining of the coal extraction is increasingly deep, the mine water inrush of high-pressure confined karst water becomes much more a problem. This paper carried out research on the hundred-year old Kailuan coal mine's karst groundwater system. With the help of advanced Visual Modflow software and numerical simulation method, the paper assessed the flow field of karst water area under large-scale exploitation. It also predicted the evolution ofgroundwaterflow field under different mining schemes of Kailuan Corp. The result shows that two cones of depression are formed in the karst flow field of Zhaogezhuang mining area and Tangshan mining area, and the water levels in two cone centers are -270 m and -31 m respectively, and the groundwater generally flows from the northeast to the southwest. Given some potential closed mines in the future, the mine discharge will decrease and the water level of Ordovician limestone will increase slightly. Conversely, given increase of coal yield, the mine drainage will increase, falling depression cone of Ordovician limestone flow field will enlarge. And in Tangshan's urban district, central water level of the depression cone will move slightly towards north due to pumping of a few mines in the north.

  17. Warmth and friendship abound in Siberia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitworth, K.

    1978-08-01

    Despite the harsh climate, 20,000,000 people occupy 6,500,000 square kilometers of land, which contains approximately 60% of all the known fuel resources of the Soviet Union. More than 12% of the world's coal reserves are concentrated in Central Siberia between the Kuznetsk basin and the Yenisei, in an area no more than two percent of the land surface. It is for this reason and knowing that many technological advances in mining had been made in this area that, in discussion with the Soviet Coal Ministry, it was agreed that a WORLD COAL Editor, in pursuant to the agreement made betweenmore » the Soviet coal magazine UGOL and WORLD COAL should visit surface openpit, deep mines and coal preparation plants and prepare this article in the issue specially devoted to Russian coal mining achievements. The trip was undertaken in the short summer months around July when the climate is unbelievably like that of the Mediterranean. Four main areas were visited, Novokusnetsk, Mezdurechensk, Irkutsk and Cheremhovo.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Staunton 1 Reclamation Demonstration Project involves an evaluation of the reclamation process for a deep coal mine refuse system. A typical abandoned midwestern deep coal mine refuse site was selected, final land use was determined, baseline data were collected, engineering plans were developed and implemented, and a post-construction evaluation was begun. The project is a cooperative effort by two state agencies--the Abandoned Mined Land Reclamation Council of Illinois the Illinois Institute for Environmental Quality--and the U.S. Department of Energy through the Land Reclamation Program at Argonne National Laboratory. Current investigations are monitoring groundwater, surface water quality, aquatic ecosystems, revegetation,more » soil characteristics, erosion and runoff, soil microbial and soil fauna populations, wildlife, and economic effects of the reclamation effort. The research is a multidisciplinary approach to the concept of ecosystem response to reclamation.« less

  19. Regional price targets appropriate for advanced coal extraction

    NASA Technical Reports Server (NTRS)

    Terasawa, K. L.; Whipple, D. M.

    1980-01-01

    A methodology is presented for predicting coal prices in regional markets for the target time frames 1985 and 2000 that could subsequently be used to guide the development of an advanced coal extraction system. The model constructed is a supply and demand model that focuses on underground mining since the advanced technology is expected to be developed for these reserves by the target years. Coal reserve data and the cost of operating a mine are used to obtain the minimum acceptable selling price that would induce the producer to bring the mine into production. Based on this information, market supply curves can be generated. Demand by region is calculated based on an EEA methodology that emphasizes demand by electric utilities and demand by industry. The demand and supply curves are then used to obtain the price targets. The results show a growth in the size of the markets for compliance and low sulphur coal regions. A significant rise in the real price of coal is not expected even by the year 2000. The model predicts heavy reliance on mines with thick seams, larger block size and deep overburden.

  20. Results of coal bed methane drilling, Mylan Park, Monongalia County, West Virginia

    USGS Publications Warehouse

    Ruppert, Leslie F.; Fedorko, Nick; Warwick, Peter D.; Grady, William C.; Crangle, Robert D.; Britton, James Q.

    2004-01-01

    The Department of Energy National Energy Technology Laboratory funded drilling of a borehole (39.64378 deg E , -80.04376 deg N) to evaluate the potential for coal bed methane and carbon dioxide sequestration at Mylan Park, Monongalia County, West Virginia. The drilling commenced on September 23, 2002 and was completed on November 14, 2002. The 2,525 ft deep hole contained 1,483.41 ft of Pennsylvanian coal-bearing strata, 739.67 feet of Mississippian strata, and 301.93 ft. of Devonian strata. The drill site was located directly over abandoned Pittsburgh and Sewickley coal mines. Coal cores from remaining mine pillars were cut and retrieved for desorption from both mines. In addition, coals were cored and desorbed from the Pittsburgh Roof, Little Pittsburgh, Elk Lick, Brush Creek, Upper Kittanning, Middle Kittanning, Clarion, Upper Mercer, Lower Mercer, and Quakertown coal beds. All coals are Pennsylvanian in age and are high-volatile-A bituminous in rank. A total of 34.75 ft of coal was desorbed over a maximum period of 662 days, although most of the coal was desorbed for about 275 days. This report is provided in Adobe Acrobat format. Appendix 3 is provided in Excel format.

  1. Robotic complex for the development of thick steeply-inclined coal seams and ore deposits

    NASA Astrophysics Data System (ADS)

    Nikitenko, M. S.; Malakhov, Yu V.; Neogi, Biswarup; Chakraborty, Pritam; Banerjee, Dipesu

    2017-09-01

    Proposal for the formulation of robotic complexes for steeply inclined coal seams as a basis of the supportive-enclosing walking module and power support with a controlled outlet for mining industry has been represented in this literature. In mining industry, the available resource base reserves and mineral deposits are concentrated deep down the earth crust leading towards a complicated geological condition i.e. abrupt ore bedding and steeply inclined strata with the high gas content and fire hazard of thick coal stratum, heading against an unfavorable and sometimes human labor life risk during subversive mining. Prevailing towards the development of effective robotic complexes based on the means of “unmanned technologies” for extraction of minerals from hard-to-reach deposits and make sure the safety of underground staff during sublevel mining technology.

  2. Kansas coal distribution, resources, and potential for coalbed methane

    USGS Publications Warehouse

    Brady, L.L.

    2000-01-01

    100 ft (>30 m)] determined from 32 different coal beds. Strippable coal resources at a depth Kansas has large amounts of bituminous coal both at the surface and in the subsurface of eastern Kansas. Preliminary studies indicate at least 53 billion tons (48 billion MT) of deep coal [>100 ft (>30 m)] determined from 32 different coal beds. Strippable coal resources at a depth < 100 ft (<30 m) total 2.8 billion tons (2.6 billion MT), and this total is determined from 17 coals. Coal beds present in the Cherokee Group (Middle Pennsylvanian) represent most of these coal resource totals. Deep coal beds with the largest resource totals include the Bevier, Mineral, "Aw" (unnamed coal bed), Riverton, and Weir-Pittsburg coals, all within the Cherokee Group. Based on chemical analyses, coals in the southeastern part of the state are generally high volatile A bituminous, whereas coals in the east-central and northeastern part of the state are high-volatile B bituminous coals. The primary concern of coal beds in Kansas for deep mining or development of coalbed methane is the thin nature [<2 ft (0.6 m)] of most coal beds. Present production of coalbed methane is centered mainly in the southern Wilson/northern Montgomery County area of southeastern Kansas where methane is produced from the Mulky, Weir-Pittsburg, and Riverton coals.

  3. Geology of the fushun coalfield, Liaoning Province, People's Republic of China

    USGS Publications Warehouse

    Johnson, E.A.

    1990-01-01

    The Fushun coalfield is located in Liaoning Province 45 km east of Shenyang in a relatively small east-west-trending exposure of Mesozoic and Cenozoic rocks surrounded by Precambrian terrane. The coal is included in a sequence of early Tertiary rocks consisting of Paleocene basalt and tuff, and Eocene coal, oil shale and mudstone. These units have been folded into a syncline that plunges gently to the east. The overturned north limb of this fold has been partly removed by a thrust fault. The principal coal beds are low-sulfur subbituminous and bituminous in rank, are of limnic origin, and are contained in the 55-m-thick Eocene Guchengzi Formation. The field, which has been active since the turn of the century, has both open pit and underground mines. The largest operation is the West Open Pit mine, which measures 2.0 km wide, 6.6 km long, and 300 m deep. Coal is mined by means of power shovels, trucks, and an electric rail system. Oil shale from the Eocene Jijuntun Formation is also mined. ?? 1990.

  4. Predicting temporal changes in total iron concentrations in groundwaters flowing from abandoned deep mines: a first approximation

    NASA Astrophysics Data System (ADS)

    Younger, Paul L.

    2000-06-01

    Discharges of contaminated groundwater from abandoned deep mines are a major environmental problem in many parts of the world. While process-based models of pollutant generation have been successfully developed for certain surface mines and waste rock piles of relatively simple geometry and limited areal extent, such models are not readily applicable to large systems of laterally extensive, interconnected, abandoned deep mines. As a first approximation for such systems, hydrological and lithological factors, which can reasonably be expected to influence pollutant release, have been assessed by empirically assessing data from 81 abandoned deep coal mine discharges in the UK. These data demonstrate that after flooding of a deep mine is complete and groundwater begins to migrate from the mine voids into surface waters or adjoining aquifers, flushing of the mine voids by fresh recharge results in a gradual improvement in the quality of groundwater (principally manifested as decreasing Fe concentrations and stabilisation of pH around 7). Alternative representations of the flushing process have been examined. While elegant analytical solutions of the advection-dispersion equation can be made to mimic the changes in iron concentration, parameterisation is tendentious in practice. Scrutiny of the UK data suggest that to a first approximation, the duration of the main period of flushing can be predicted to endure around four times as long as the foregoing process of mine flooding. Short- and long-term iron concentrations (i.e. at the start of the main period of flushing and after its completion, respectively) can be estimated from the sulphur content of the worked strata. If strata composition data are unavailable, some indication of pollution potential can be obtained from considerations of the proximity of worked strata to marine beds (which typically have high pyrite contents). The long-term concentrations of iron in a particular discharge can also be approximated on the basis of the proximity of the discharge location to the outcrop of the most closely associated coal seam (MCACS) and, thus, to zones of possible ongoing pyrite oxidation. The practical application of these simple predictive techniques is facilitated by means of a flowchart.

  5. Hydrochemical characteristics and quality assessment of deep groundwater from the coal-bearing aquifer of the Linhuan coal-mining district, Northern Anhui Province, China.

    PubMed

    Lin, Man-Li; Peng, Wei-Hua; Gui, He-Rong

    2016-04-01

    There is little information available about the hydrochemical characteristics of deep groundwater in the Linhuan coal-mining district, Northern Anhui Province, China. In this study, we report information about the physicochemical parameters, major ions, and heavy metals of 17 groundwater samples that were collected from the coal-bearing aquifer. The results show that the concentrations of total dissolved solids, electrical conductivity, and potassium and sodium (K(+) + Na(+)) in most of the groundwater samples exceeded the guidelines of the World Health Organization (WHO) and the Chinese National Standards for Drinking Water Quality (GB 5749-2006). The groundwater from the coal-bearing aquifer was dominated by the HCO3·Cl-K + Na and HCO3·SO4-K + Na types. Analysis with a Gibbs plot suggested that the major ion chemistry of the groundwater was primarily controlled by weathering of rocks and that the coal-bearing aquifer in the Linhuan coal-mining district was a relatively closed system. K(+) and Na(+) originated from halite and silicate weathering reactions, while Ca(2+) and Mg(2+) originated from the dissolution of calcite, dolomite, and gypsum or anhydrite. Ion exchange reactions also had an influence on the formation of major ions in groundwater. The concentrations of selected heavy metals decreased in the order Mn > Zn > Cr > Cu > Ni > Pb. In general, the heavy metal concentrations were low; however, the Cr, Mn, and Ni concentrations in some of the groundwater samples exceeded the standards outlined by the WHO, the GB 5749-2006, and the Chinese National Standards for Groundwater (GB/T 14848-93). Analysis by various indices (% Na, SAR, and EC), a USSL diagram, and a Wilcox diagram showed that both the salinity and alkalinity of the groundwater were high, such that the groundwater could not be used for irrigating agricultural land without treatment. These results will be significant for water resource exploiting and utilization in coal mine area.

  6. Chapter 3: Selecting materials for mine soil construction when establishing forests on Appalachian mined lands

    Treesearch

    Jeff Skousen; Carl Zipper; Jim Burger; Christopher Barton; Patrick. Angel

    2017-01-01

    The Forestry Reclamation Approach (FRA), a method for reclaiming coal-mined land to forest (Chapter 2, this volume), is based on research, knowledge, and experience of forest soil scientists and reclamation practitioners. Step 1 of the FRA is to create a suitable rooting medium for good tree growth that is no less than 4 feet deep and consists of topsoil, weathered...

  7. Horizontal hydraulic conductivity estimates for intact coal barriers between closed underground mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mccoy, K.J.; Donovan, J.J.; Leavitt, B.R.

    2006-08-15

    Unmined blocks of coal, called barriers, separate and restrict horizontal leakage between adjacent bituminous coal mines. Understanding the leakage rate across such barriers is important in planning mine closure and strongly affects recharge calculations for postmining flooding. This study presents upper-limit estimates for hydraulic conductivity (K) of intact barriers in two closed mines at moderate depth (75-300 m) in the Pittsburgh coal basin. The estimates are based on pumping rates from these mines for the years ranging from 1992 to 2000. The two mines do not approach the outcrop and are sufficiently deep that vertical infiltration is thought to bemore » negligible. Similarly, there are no saturated zones on the pumped mines' side of shared barriers with other mines, and therefore pumping is the only outflow. Virtually all of the pumping is attributed to leakage across or over the top of barriers shared with upgradient flooded mines. The length of shared barriers totals 24 km for the two mines, and the barriers range in thickness from 15 to 50 m. K values calculated independently for each of the 9 years of the pumping record ranged from 0.037 m/d to 0.18 m/d using an isotropic model of barrier flow. Using an anisotropic model for differential K in the face cleat (K{sub f}) and butt cleat (K{sub b}) directions, results range from 0.074 to 0.34 m/d for K{sub f} and from 0.022 to 0.099 m/d for K{sub b}.« less

  8. A Fiber Bragg Grating-Based Monitoring System for Roof Safety Control in Underground Coal Mining

    PubMed Central

    Zhao, Yiming; Zhang, Nong; Si, Guangyao

    2016-01-01

    Monitoring of roof activity is a primary measure adopted in the prevention of roof collapse accidents and functions to optimize and support the design of roadways in underground coalmines. However, traditional monitoring measures, such as using mechanical extensometers or electronic gauges, either require arduous underground labor or cannot function properly in the harsh underground environment. Therefore, in this paper, in order to break through this technological barrier, a novel monitoring system for roof safety control in underground coal mining, using fiber Bragg grating (FBG) material as a perceived element and transmission medium, has been developed. Compared with traditional monitoring equipment, the developed, novel monitoring system has the advantages of providing accurate, reliable, and continuous online monitoring of roof activities in underground coal mining. This is expected to further enable the prevention of catastrophic roof collapse accidents. The system has been successfully implemented at a deep hazardous roadway in Zhuji Coal Mine, China. Monitoring results from the study site have demonstrated the advantages of FBG-based sensors over traditional monitoring approaches. The dynamic impacts of progressive face advance on roof displacement and stress have been accurately captured by the novel roadway roof activity and safety monitoring system, which provided essential references for roadway support and design of the mine. PMID:27775657

  9. Current experiences in applied underground coal gasification

    NASA Astrophysics Data System (ADS)

    Peters, Justyn

    2010-05-01

    The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is set to become the leading producer of cleaner liquid fuels and other associated products. UCG has now been developed to a point where the commercialisation of the process is no longer questioned, the economics of the process are compelling, and is now seen as a method that resolves energy security for countries that have access to deep coal previously thought to have no economic value.

  10. Elemental composition of native wetland plants in constructed mesocosm treatment wetlands.

    PubMed

    Collins, Beverly S; Sharitz, Rebecca R; Coughlin, Daniel P

    2005-05-01

    Plants that accumulate a small percentage of metals in constructed treatment wetlands can contribute to remediation of acidic, metal contaminated runoff waters from coal mines or processing areas. We examined root and shoot concentrations of elements in four perennial wetland species over two seasons in mesocosm wetland systems designed to remediate water from a coal pile runoff basin. Deep wetlands in each system contained Myriophyllum aquaticum and Nymphaea odorata; shallow wetlands contained Juncus effusus and Pontederia cordata. Shoot elemental concentrations differed between plants of deep and shallow wetlands, with higher Zn, Al, and Fe concentrations in plants in shallow wetlands and higher Na, Mn, and P concentrations in plants in deep wetlands. Root and shoot concentrations of most elements differed between species in each wetland type. Over two seasons, these four common wetland plants did help remediate acidic, metal-contaminated runoff from a coal storage pile.

  11. Preliminary evaluation of the coal resources for part of the Wilcox Group (Paleocene through Eocene), central Texas

    USGS Publications Warehouse

    Warwick, Peter D.; Aubourg, Claire E.; Suitt, Stephen E.; Podwysocki, Steven M.; Schultz, Adam C.

    2002-01-01

    The Wilcox Group of central Texas contains shallow (<500 ft) coal deposits that are mined for use in mine-mouth electric power generating plants. These coal deposits range in apparent rank from lignite to sub-bituminous (Tewalt, 1986), and are similar in rank and composition to shallow coal deposits in the northeast and south Texas areas (fig. 1). The coal zones and associated strata in the central Texas study area generally dip to the southeast toward the Gulf of Mexico coastline and basin center. The central Texas resource assessment area includes parts of eight counties (fig. 2). The assessment area was selected to encompass current mining areas and because of the availability of subsurface stratigraphic data in the area. The assessment area is roughly 160 miles long and 5 to 25 miles wide and generally follows the outcrop of the Paleocene - Eocene Wilcox Group in central Texas (figs. 1 and 2). Approximately 1,800 subsurface stratigraphic records from rotary and core drill holes were used to assess the resources of the central Texas assessment area. Of the 1,800 drill holes, only 168 are public data points and are primarily located in the areas that have been permitted for surface mining (fig. 2; Appendix 1). The remaining 1632 drill holes, which are distributed throughout the assessment area, were provided to the U.S. Geological Survey (USGS) on a confidential basis by various coal companies for use in regional studies. Nine coal zones were identified and assessed in the central Texas assessment area. Several other coal zones (as many as 9 unassessed zones) were identified but were not assessed due to the thinness of the coal beds or the lack of deep stratigraphic data (fig. 3). A total of 7.7 billion short tons of coal was identified in this assessment that excluded the resources within current coal mine lease areas (fig. 2). Corresponding maps were constructed to show the overburden, structure contour of the top of the coal zone, and cumulative coal-zone thickness for each of the nine coal zones. Warwick and Crowley (1995) offer a discussion of the general geologic setting and stratigraphy of the central Texas study area, and Tewalt (1986) presents a discussion of the coal quality aspects of the central Texas study area.

  12. Permeability Prediction in Deep Coal Seam: A Case Study on the No. 3 Coal Seam of the Southern Qinshui Basin in China

    PubMed Central

    2013-01-01

    The coal permeability is an important parameter in mine methane control and coal bed methane (CBM) exploitation, which determines the practicability of methane extraction. Permeability prediction in deep coal seam plays a significant role in evaluating the practicability of CBM exploitation. The coal permeability depends on the coal fractures controlled by strata stress, gas pressure, and strata temperature which change with depth. The effect of the strata stress, gas pressure, and strata temperature on the coal (the coal matrix and fracture) under triaxial stress and strain conditions was studied. Then we got the change of coal porosity with strata stress, gas pressure, and strata temperature and established a coal permeability model under tri-axial stress and strain conditions. The permeability of the No. 3 coal seam of the Southern Qinshui Basin in China was predicted, which is consistent with that tested in the field. The effect of the sorption swelling on porosity (permeability) firstly increases rapidly and then slowly with the increase of depth. However, the effect of thermal expansion and effective stress compression on porosity (permeability) increases linearly with the increase of depth. The most effective way to improve the permeability in exploiting CBM or extracting methane is to reduce the effective stress. PMID:24396293

  13. Development of a novel low frequency GPR system for ultra-deep detection in Mine

    NASA Astrophysics Data System (ADS)

    Xu, Xianlei; Peng, Suping; Yang, Feng

    2016-04-01

    Mine disasters sources is the main source of the underground coal mine accidents in China. This paper describes the development of a novel explosion proof ground penetrating radar (GPR) for mine disasters sources detection, aiming to solve the current problems of the small detection range and low precision in the mine advanced detection in China. A high performance unipolar pulse transmitting unit is developed by using avalanche transistors, and an effective pulse excitation source network. And a new pluggable combined low-frequency antenna involving three frequencies with 12.5MHz, 25 MHz and 50MHz, is designed and developed. The plate-type structure is designed, aiming to enhance the directivity of the antenna, and the achievement of the antenna impedance matching is implemented in the feed point based on the extensions interface design, enhancing the antenna bandwidth and reducing the standing wave interference. Moreover, a high precision stepper delay circuit is designed by transforming the number of the operational amplifier step and using the differential compensation between the metal-oxide semiconductor field effect transistors, aiming to improve the accuracy of the signal acquisition system. In order to adapt to the mine environment, the explosion-proof design is implemented for the GPR system, including the host, transmitter, receiver, battery box, antenna, and other components.Mine detection experiments is carried out and the results show: the novel GPR system can effectively detect the location and depth of the geological disasters source with the depth greater than30 m and the diameter greater than 3m, the maximum detection depth can be up to 80m, which break the current detection depth limitations within 30m, providing an effective technical support for the ultra-deep mine disasters detection and the safety problems in coal mine production.

  14. CO 2 Storage in Shallow Underground and Surface Coal Mines: Challenges and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, Vyacheslav N.; Ackman, Terry E.; Soong, Yee

    2009-02-01

    For coal to be a viable energy source, its excessive CO 2 emissions must be curtailed. Sequestration of CO 2 and other greenhouse gases is a possibility, but success therein is preceded by a significant number of challenges. Perhaps the most onerous is the tradeoff between using deep mines that would better trap CO 2 against using shallower options that are more economical to access. In confronting this issue, a group of U.S. Department of Energy researchers argue that recent advances in the understanding of materials afforded by nanoscale mechanistic models point in a promising direction to develop better sequestrationmore » technologies.« less

  15. Methane Content Estimation in DuongHuy Coal Mine

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Thinh; Mijał, Waldemar; Dang, Vu Chi; Nguyen, Thi Tuyet Mai

    2018-03-01

    Methane hazard has always been considered for underground coal mining as it can lead to methane explosion. In Quang Ninh province, several coal mines such as Mạo Khe coal mine, Khe Cham coal mine, especially Duong Huy mine that have high methane content. Experimental data to examine contents of methane bearing coal seams at different depths are not similar in Duong coal mine. In order to ensure safety, this report has been undertaken to determine a pattern of changing methane contents of coal seams at different exploitation depths in Duong Huy underground coal mine.

  16. Evidence for Methyl-Compound-Activated Life in Coal Bed System 2 km Below Sea Floor

    NASA Astrophysics Data System (ADS)

    Trembath-reichert, E.; Morono, Y.; Dawson, K.; Wanger, G.; Bowles, M.; Heuer, V.; Hinrichs, K. U.; Inagaki, F.; Orphan, V. J.

    2014-12-01

    IODP Expedition 337 set the record for deepest marine scientific drilling down to 2.4 kmbsf. This cruise also had the unique opportunity to retrieve deep cores from the Shimokita coal bed system in Japan with the aseptic and anaerobic conditions necessary to look for deep life. Onboard scientists prepared nearly 1,700 microbiology samples shared among five different countries to study life in the deep biosphere. Samples spanned over 1 km in sampling depths and include representatives of shale, sandstone, and coal lithologies. Findings from previous IODP and deep mine expeditions suggest the genetic potential for methylotrophy in the deep subsurface, but it has yet to be observed in incubations. A subset of Expedition 337 anoxic incubations were prepared with a range of 13C-methyl substrates (methane, methylamine, and methanol) and maintained near in situ temperatures. To observe 13C methyl compound metabolism over time, we monitored the δ13C of the dissolved inorganic carbon (by-product of methyl compound metabolism) over a period of 1.5 years. Elemental analysis (EA), ion chromatograph (IC), 13C volatile fatty acid (VFA), and mineral-associated microscopy data were also collected to constrain initial and endpoint conditions in these incubations. Our geochemical evidence suggests that the coal horizon incubated with 13C-methane showed the highest activity of all methyl incubations. This provides the first known observation of methane-activated metabolism in the deep biosphere, and suggests there are not only active cells in the deeply buried terrigenous coal bed at Shimokita, but the presence of a microbial community activated by methylotrophic compounds.

  17. Discontinuum-Equivalent Continuum Analysis of the Stability of Tunnels in a Deep Coal Mine Using the Distinct Element Method

    NASA Astrophysics Data System (ADS)

    Shreedharan, Srisharan; Kulatilake, Pinnaduwa H. S. W.

    2016-05-01

    An imperative task for successful underground mining is to ensure the stability of underground structures. This is more so for deep excavations which may be under significantly high stresses. In this manuscript, we present stability studies on two tunnels, a horseshoe-shaped and an inverted arch-shaped tunnel, in a deep coal mine in China, performed using the 3DEC distinct element code. The rock mass mechanical property values for the tunnel shapes have been estimated through a back-analysis procedure using available field deformation data. The back-analysis has been carried out through a pseudo-time dependent support installation routine which incorporates the effect of time through a stress-relaxation mechanism. The back-analysis indicates that the rock mass cohesion, tensile strength, uniaxial compressive strength, and elastic modulus values are about 35-45 % of the corresponding intact rock property values. Additionally, the importance of incorporating stress relaxation before support installation has been illustrated through the increased support factor of safety and reduced grout failures. The calibrated models have been analyzed for different supported and unsupported cases to estimate the significance and adequacy of the current supports being used in the mine and to suggest a possible optimization. The effects of supports have been demonstrated using deformations and yield zones around the tunnels, and average factors of safety and grout failures of the supports. The use of longer supports and floor bolting has provided greater stability for the rock masses around the tunnels. Finally, a comparison between the two differently shaped tunnels establishes that the inverted arch tunnel may be more efficient in reducing roof sag and floor heave for the existing geo-mining conditions.

  18. Integrated method of RS and GPR for monitoring the changes in the soil moisture and groundwater environment due to underground coal mining

    NASA Astrophysics Data System (ADS)

    Bian, Zhengfu; Lei, Shaogang; Inyang, Hilary I.; Chang, Luqun; Zhang, Richen; Zhou, Chengjun; He, Xiao

    2009-03-01

    Mining affects the environment in different ways depending on the physical context in which the mining occurs. In mining areas with an arid environment, mining affects plants’ growth by changing the amount of available water. This paper discusses the effects of mining on two important determinants of plant growth—soil moisture and groundwater table (GWT)—which were investigated using an integrated approach involving a field sampling investigation with remote sensing (RS) and ground-penetrating radar (GPR). To calculate and map the distribution of soil moisture for a target area, we initially analyzed four models for regression analysis between soil moisture and apparent thermal inertia and finally selected a linear model for modeling the soil moisture at a depth 10 cm; the relative error of the modeled soil moisture was about 6.3% and correlation coefficient 0.7794. A comparison of mined and unmined areas based on the results of limited field sampling tests or RS monitoring of Landsat 5-thermatic mapping (TM) data indicated that soil moisture did not undergo remarkable changes following mining. This result indicates that mining does not have an effect on soil moisture in the Shendong coal mining area. The coverage of vegetation in 2005 was compared with that in 1995 by means of the normalized difference vegetation index (NDVI) deduced from TM data, and the results showed that the coverage of vegetation in Shendong coal mining area has improved greatly since 1995 because of policy input RMB¥0.4 per ton coal production by Shendong Coal Mining Company. The factor most affected by coal mining was GWT, which dropped from a depth of 35.41 m before mining to a depth of 43.38 m after mining at the Bulianta Coal Mine based on water well measurements. Ground-penetrating radar at frequencies of 25 and 50 MHz revealed that the deepest GWT was at about 43.4 m. There was a weak water linkage between the unsaturated zone and groundwater, and the decline of water table primarily resulted from the well pumping for mining safety rather than the movement of cracking strata. This result is in agreement with the measurements of the water wells. The roots of nine typical plants in the study area were investigated. Populus was found to have the deepest root system with a depth of about 26 m. Based on an assessment of plant growth demands and the effect of mining on environmental factors, we concluded that mining will have less of an effect on plant growth at those sites where the primary GWT depth before mining was deep enough to be unavailable to plants. If the primary GWT was available for plant growth before mining, especially to those plants with deeper roots, mining will have a significant effect on the growth of plants and the mechanism of this effect will include the loss of water to roots and damage to the root system.

  19. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that each...

  20. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that each...

  1. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that each...

  2. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine rescue...

  3. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine rescue...

  4. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that each...

  5. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine rescue...

  6. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine rescue...

  7. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that each...

  8. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine rescue...

  9. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    PubMed Central

    Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737

  10. Implementation of paste backfill mining technology in Chinese coal mines.

    PubMed

    Chang, Qingliang; Chen, Jianhang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application.

  11. Application of ERTS-A imagery to fracture related mine safety hazards in the coal mining industry

    NASA Technical Reports Server (NTRS)

    Wier, C. E.; Wobber, F. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The most important result to date is the demonstration of the special value of repetitive ERTS-1 multiband coverage for detecting previously unknown fracture lineaments despite the presence of a deep glacial overburden. The Illinois Basin is largely covered with glacial drift and few rock outcrops are present. A contribution to the geological understanding of Illinois and Indiana has been made. Analysis of ERTS-1 imagery has provided useful information to the State of Indiana concerning the surface mined lands. The contrast between healthy vegetation and bare ground as imaged by Band 7 is sharp and substantial detail can be obtained concerning the extent of disturbed lands, associated water bodies, large haul roads, and extent of mined lands revegetation. Preliminary results of analysis suggest a reasonable correlation between image-detected fractures and mine roof fall accidents for a few areas investigated. ERTS-1 applications to surface mining operations appear probable, but further investigations are required. The likelihood of applying ERTS-1 derived fracture data to improve coal mine safety in the entire Illinois Basin is suggested from studies conducted in Indiana.

  12. Surface water geochemical and isotopic variations in an area of accelerating Marcellus Shale gas development.

    PubMed

    Pelak, Adam J; Sharma, Shikha

    2014-12-01

    Water samples were collected from 50 streams in an area of accelerating shale gas development in the eastern U.S.A. The geochemical/isotopic characteristics show no correlation with the five categories of Marcellus Shale production. The sub-watersheds with the greatest density of Marcellus Shale development have also undergone extensive coal mining. Hence, geochemical/isotopic compositions were used to understand sources of salinity and effects of coal mining and shale gas development in the area. The data indicates that while some streams appear to be impacted by mine drainage; none appear to have received sustained contribution from deep brines or produced waters associated with shale gas production. However, it is important to note that our interpretations are based on one time synoptic base flow sampling of a few sampling stations and hence do account potential intermittent changes in chemistry that may result from major/minor spills or specific mine discharges on the surface water chemistry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Variability of Mercury Content in Coal Matter From Coal Seams of The Upper Silesia Coal Basin

    NASA Astrophysics Data System (ADS)

    Wierzchowski, Krzysztof; Chećko, Jarosław; Pyka, Ireneusz

    2017-12-01

    The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called "documentary seam samples", which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.

  14. Coal mine bumps as related to geologic features in the northern part of the Sunnyside District, Carbon County, Utah

    USGS Publications Warehouse

    Osterwald, Frank W.; Dunrud, C. Richard; Collins, Donley S.

    1993-01-01

    Coal mine bumps, which are violent, spontaneous, and often catastrophic disruptions of coal and rock, were common in the Sunnyside coal mining district, Utah, before the introduction of protective-engineering methods, modern room-and-pillar retreat mining with continuous mining machines, and particularly modern longwall mining. The coal at Sunnyside, when stressed during mining, fails continuously with many popping, snapping, and banging noises. Although most of the bumps are beneficial because they make mining easier, many of the large ones are dangerous and in the past caused injuries and fatalities, particularly with room- and-pillar mining methods used in the early mining operations. Geologic mapping of underground mine openings revealed many types of deformational features, some pre-mine and some post-mine in age. Stresses resulting from mining are concentrated near the mine openings; if openings are driven at large angles to small pre-mine deformational features, particularly shatter zones in coal, abnormal stress buildups may occur and violent bumps may result. Other geologic features, such as ripple marks, oriented sand grains, intertongued rock contacts, trace fossils, and load casts, also influence the occurrence of bumps by impeding slip of coal and rocks along bedding planes. The stress field in the coal also varies markedly because of the rough ridge and canyon topography. These features may allow excessively large stress components to accumulate. At many places, the stresses that contribute to deformation and failures of mine openings are oriented horizontally. The stratigraphy of the rocks immediately above and below the mined coal bed strongly influences the deformation of the mine openings in response to stress accumulations. Triaxial compressive testing of coal from the Sunnyside No.1 and No.3 Mines indicates that the strength of the coal increases several times as the confining (lateral) stress is increased. Strengths of cores cut from single large blocks of coal vary widely. Although the strengths of coal cores increase slowly at high levels of confining stress, the coal in Sunnyside No. 1 Mine is slightly stronger in laboratory tests than coal in Sunnyside No.3 Mine. The coal in No.1 Mine probably can store larger amounts of stress than coal in the No.3 Mine, which may account for the apparently greater number of violent bumps in No.1 Mine. The strength of coal, and its ability to store stress before failure, may correlate in part with chemical composition, particularly with the amounts of benzene ring compounds in vitrain; coal with relatively large amounts of benzene ring compounds is stronger than coal with lesser amounts of these compounds. Alternatively, the chemical composition of coal may affect its response to stress. Increasing contents of kaolinite in coal appear to reduce its compressive strength at low confining stresses, resulting in easy failures of pillars and ribs in mine openings. Applications of the geologic factors outlined in this report, carefully coupled with advanced modern engineering methods, have markedly reduced the hazards from coal mine bumps and related failures of mine openings at Sunnyside. Similar studies probably could aid in reducing bump-related hazards in other coal mining areas.

  15. Research status and future trends on surface pre-grouting technology in reforming wall rock of vertical shafts in coal mines in China

    NASA Astrophysics Data System (ADS)

    Wang, Hua

    2018-02-01

    In the mine construction, the surface pre-grouting technology is an important method to prevent water blast in excavation process of vertical shaft when the shaft must pass through the thick, water-rich and high water-pressure bedrock aquifer. It has been nearly 60 years since the technology was used to reform wall rock of vertical shaft in coal mine in China for the first time, and the existing technology can basically meet the needs of constructing 1000m deep vertical shaft. Firstly, the article introduces that in view of Magg’s spherical seepage theory and Karol’s spherical seepage theory, Chinese scholars found that the diffusion of grout from borehole into the surrounding strata in horizontal direction is irregular through a lot of research and engineering practice of using the surface pre-grouting technology to reform wall rock of vertical shafts, and put forward the selecting principles of grout’s effective diffusion radius in one grouting engineering; Secondly, according to the shape of the grouting boreholes, surface pre-grouting technology of vertical shaft is divided into two stages: vertical borehole stage and S-type borehole stage. Thirdly, the development status of grouting materials and grouting equipment for the technology is introduced. Fourthly, grouting mode, stage height and pressure of the technology are introduced. Finally, it points out that with the increasing depth of coal mining in China, the technology of reforming wall rock of 1000~2000m deep vertical shafts will face many problems, such as grouting theory, grouting equipment, grouting finishing standard, testing and evaluation of grouting effect, and so on. And it put forward a preliminary approach to solving these problems. This paper points out future research directions of the surface pre-grouting technology in China.

  16. Preliminary Investigations of the Distribution and Resources of Coal in the Kaiparowits Plateau, Southern Utah

    USGS Publications Warehouse

    Hettinger, Robert D.; Roberts, L.N.R.; Biewick, L.R.H.; Kirschbaum, M.A.

    1996-01-01

    EXECUTIVE SUMMARY This report on the coal resources of the Kaiparowits Plateau, Utah is a contribution to the U.S. Geological Survey's (USGS) 'National Coal Resource Assessment' (NCRA), a five year effort to identify and characterize the coal beds and coal zones that could potentially provide the fuel for the Nation's coal-derived energy during the first quarter of the twenty-first century. For purposes of the NCRA study, the Nation is divided into regions. Teams of geoscientists, knowledgeable about each region, are developing the data bases and assessing the coal within each region. The five major coal-producing regions of the United States under investigation are: (1) the Appalachian Basin; (2) the Illinois Basin; (3) the Gulf of Mexico Coastal Plain; (4) the Powder River Basin and the Northern Great Plains; and (5) the Rocky Mountains and the Colorado Plateau. Six areas containing coal deposits in the Rocky Mountain and Colorado Plateau Region have been designated as high priority because of their potential for development. This report on the coal resources of the Kaiparowits Plateau is the first of the six to be completed. The coal quantities reported in this study are entirely 'resources' and represent, as accurately as the data allow, all the coal in the ground in beds greater than one foot thick. These resources are qualified and subdivided by thickness of coal beds, depth to the coal, distance from known data points, and inclination (dip) of the beds. The USGS has not attempted to estimate coal 'reserves' for this region. Reserves are that subset of the resource that could be economically produced at the present time. The coal resources are differentiated into 'identified' and 'hypothetical' following the standard classification system of the USGS (Wood and others, 1983). Identified resources are those within three miles of a measured thickness value, and hypothetical resources are further than three miles from a data point. Coal beds in the Kaiparowits Plateau are laterally discontinuous relative to many other coal bearing regions of the United States. That is, they end more abruptly and are more likely to fragment or split into thinner beds. Because of these characteristics, the data from approximately 160 drill holes and 40 measured sections available for use in this study are not sufficient to determine what proportion of the resources is technologically and economically recoverable. The Kaiparowits Plateau contains an original resource of 62 billion short tons of coal in the ground. Original resource is defined to include all coal beds greater than one foot thick in the area studied. None of the resource is recoverable by surface mining. However, the total resource figure must be regarded with caution because it does not reflect geologic, technological, land-use, and environmental restrictions that may affect the availability and the recoverability of the coal. At least 32 billion tons of coal are unlikely to be mined in the foreseeable future because the coal beds are either too deep, too thin to mine, inclined at more than 12?, or in beds that are too thick to be completely recovered in underground mining. The estimated balance of 30 billion tons of coal resources does not reflect land use or environmental restrictions, does not account for coal that would be bypassed due to mining of adjacent coal beds, does not consider the amount of coal that must remain in the ground for roof support, and does not take into consideration the continuity of beds for mining. Although all of these factors will reduce the amount of coal that could be recovered, there is not sufficient data available to estimate recoverable coal resources. For purposes of comparison, studies of coal resources in the eastern United States have determined that less than 10 percent of the original coal resource, in the areas studied, could be mined economically at today's prices (Rohrbacher and others, 1994).

  17. Coal Mine Roadway Stability in Soft Rock: A Case Study

    NASA Astrophysics Data System (ADS)

    Shen, Baotang

    2014-11-01

    Roadway instability has always been a major concern in deep underground coal mines where the surrounding rock strata and coal seams are weak and the in situ stresses are high. Under the high overburden and tectonic stresses, roadways could collapse or experience excessive deformation, which not only endangers mining personnel but could also reduce the functionality of the roadway and halt production. This paper describes a case study on the stability of roadways in an underground coal mine in Shanxi Province, China. The mine was using a longwall method to extract coal at a depth of approximately 350 m. Both the coal seam and surrounding rock strata were extremely weak and vulnerable to weathering. Large roadway deformation and severe roadway instabilities had been experienced in the past, hence, an investigation of the roadway failure mechanism and new support designs were needed. This study started with an in situ stress measurement programme to determine the stress orientation and magnitude in the mine. It was found that the major horizontal stress was more than twice the vertical stress in the East-West direction, perpendicular to the gateroads of the longwall panel. The high horizontal stresses and low strength of coal and surrounding rock strata were the main causes of roadway instabilities. Detailed numerical modeling was conducted to evaluate the roadway stability and deformation under different roof support scenarios. Based on the modeling results, a new roadway support design was proposed, which included an optimal cable/bolt arrangement, full length grouting, and high pre-tensioning of bolts and cables. It was expected the new design could reduce the roadway deformation by 50 %. A field experiment using the new support design was carried out by the mine in a 100 m long roadway section. Detailed extensometry and stress monitorings were conducted in the experimental roadway section as well as sections using the old support design. The experimental section produced a much better roadway profile than the previous roadway sections. The monitoring data indicated that the roadway deformation in the experimental section was at least 40-50 % less than the previous sections. This case study demonstrated that through careful investigation and optimal support design, roadway stability in soft rock conditions can be significantly improved.

  18. 76 FR 70075 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... proposed rule addressing Proximity Detection Systems for Continuous Mining Machines in Underground Coal... Detection Systems for Continuous Mining Machines in Underground Coal Mines. MSHA conducted hearings on...

  19. 30 CFR 74.5 - Tests of coal mine dust personal sampler units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of coal mine dust personal sampler units. 74.5 Section 74.5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH COAL MINE DUST SAMPLING DEVICES Approval Requirements for Coal Mine Dust...

  20. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As of...

  1. 30 CFR 74.5 - Tests of coal mine dust personal sampler units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of coal mine dust personal sampler units. 74.5 Section 74.5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH COAL MINE DUST SAMPLING DEVICES Approval Requirements for Coal Mine Dust...

  2. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As of...

  3. 30 CFR 72.800 - Single, full-shift measurement of respirable coal mine dust.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coal mine dust. 72.800 Section 72.800 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH HEALTH STANDARDS FOR COAL MINES Miscellaneous § 72.800 Single, full-shift measurement of respirable coal mine dust. The Secretary will use a single, full-shift...

  4. 30 CFR 74.5 - Tests of coal mine dust personal sampler units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of coal mine dust personal sampler units. 74.5 Section 74.5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH COAL MINE DUST SAMPLING DEVICES Approval Requirements for Coal Mine Dust...

  5. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As of...

  6. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As of...

  7. 30 CFR 74.5 - Tests of coal mine dust personal sampler units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of coal mine dust personal sampler units. 74.5 Section 74.5 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH COAL MINE DUST SAMPLING DEVICES Approval Requirements for Coal Mine Dust...

  8. Geochemical Analyses of Surface and Shallow Gas Flux and Composition Over a Proposed Carbon Sequestration Site in Eastern Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Parris; Michael Solis; Kathryn Takacs

    2009-12-31

    Using soil gas chemistry to detect leakage from underground reservoirs (i.e. microseepage) requires that the natural range of soil gas flux and chemistry be fully characterized. To meet this need, soil gas flux (CO{sub 2}, CH{sub 4}) and the bulk (CO{sub 2}, CH{sub 4}) and isotopic chemistry ({delta}{sup 13}C-CO2) of shallow soil gases (<1 m, 3.3 ft) were measured at 25 locations distributed among two active oil and gas fields, an active strip mine, and a relatively undisturbed research forest in eastern Kentucky. The measurements apportion the biologic, atmospheric, and geologic influences on soil gas composition under varying degrees ofmore » human surface disturbance. The measurements also highlight potential challenges in using soil gas chemistry as a monitoring tool where the surface cover consists of reclaimed mine land or is underlain by shallow coals. For example, enrichment of ({delta}{sup 13}C-CO2) and high CH{sub 4} concentrations in soils have been historically used as indicators of microseepage, but in the reclaimed mine lands similar soil chemistry characteristics likely result from dissolution of carbonate cement in siliciclastic clasts having {delta}{sup 13}C values close to 0{per_thousand} and degassing of coal fragments. The gases accumulate in the reclaimed mine land soils because intense compaction reduces soil permeability, thereby impeding equilibration with the atmosphere. Consequently, the reclaimed mine lands provide a false microseepage anomaly. Further potential challenges arise from low permeability zones associated with compacted soils in reclaimed mine lands and shallow coals in undisturbed areas that might impede upward gas migration. To investigate the effect of these materials on gas migration and composition, four 10 m (33 ft) deep monitoring wells were drilled in reclaimed mine material and in undisturbed soils with and without coals. The wells, configured with sampling zones at discrete intervals, show the persistence of some of the aforementioned anomalies at depth. Moreover, high CO{sub 2} concentrations associated with coals in the vadose zone suggest a strong affinity for adsorbing CO{sub 2}. Overall, the low permeability of reclaimed mine lands and coals and CO2 adsorption by the latter is likely to reduce the ability of surface geochemistry tools to detect a microseepage signal.« less

  9. 75 FR 17511 - Coal Mine Dust Sampling Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... Part III Department of Labor Mine Safety and Health Adminisration 30 CFR Parts 18, 74, and 75 Coal Mine Dust Sampling Devices; High-Voltage Continuous Mining Machine Standard for Underground Coal Mines...-AB61 Coal Mine Dust Sampling Devices AGENCY: Mine Safety and Health Administration, Labor. ACTION...

  10. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  11. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipment employed in low coal. 75.1107-11 Section 75.1107-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... § 75.1107-11 Extinguishing agents; requirements on mining equipment employed in low coal. On mining...

  12. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment employed in low coal. 75.1107-11 Section 75.1107-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... § 75.1107-11 Extinguishing agents; requirements on mining equipment employed in low coal. On mining...

  13. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment employed in low coal. 75.1107-11 Section 75.1107-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... § 75.1107-11 Extinguishing agents; requirements on mining equipment employed in low coal. On mining...

  14. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment employed in low coal. 75.1107-11 Section 75.1107-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... § 75.1107-11 Extinguishing agents; requirements on mining equipment employed in low coal. On mining...

  15. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  16. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  17. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  18. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  19. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  20. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  1. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  2. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  3. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  4. 78 FR 79010 - Criteria to Certify Coal Mine Rescue Teams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... to Certify Coal Mine Rescue Teams AGENCY: Mine Safety and Health Administration, Labor. ACTION... updated the coal mine rescue team certification criteria. The Mine Improvement and New Emergency Response... mine operator to certify the qualifications of a coal mine rescue team is that team members are...

  5. Emergence and growth of plant species in coal mine soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, A.D.; Mitchell, G.F.; Tucker, T.C.

    1979-01-01

    Experiments were conducted in the laboratory and greenhouse in Arizona with the following objectives: to evaluate the chemical properties of undisturbed soil, surface-mined coal land (coal mine soil) on the Black Mesa Coal Mine, and Gila loam soil; and to study the emergence of seven plant species in the greenhouse in Gila loam soil and coal mine soil. The pH of coal mine soil (6.2) was lower than the pH of undisturbed soil (7.5) or Gila loam (7.6). The total soluble salts in coal mine soil (3241) and undisturbed soil (4592) were much higher than in Gila loam (378); however,more » coal mine soil was lower in total soluble salts than undisturbed soil. The nitrogen content of coal mine soil was higher than the nitrogen content of undisturbed soil or gila loam. Emergence percentages for seven plant species grown in coal mine soil were similar to emergence percentages for the same species grown in Gila loam. Alfalfa (Medicago sativa L.), barley (Hordeum vulgare L.), and wheat (Triticum aestivum L. em Thell.) had from 84 to 93% emergence in coal mine soil. Indian ricegrass (Oryzopsis hymenoides Roem. and Shult), fourwing saltbush (Atriplex canescens Pursh), yellow sweetclover (Melilotus officinalis Lam.), and winterfat (Euroti lanata Pursh.) emerged <35% in coal mine soil and Gila loam. Plant growth data from forage species grown in the greenhouse indicate that coal mine soil has a lower fertility level than does Gila loam soil. When supplied with optimum soil moisture and plant nutrients, coal mine soil produced approximately the same yields of forage from alfalfa, barley, and wheat as were produced in Gila loam under the same soil-moisture and fertility conditions.« less

  6. Mine Water Treatment in Hongai Coal Mines

    NASA Astrophysics Data System (ADS)

    Dang, Phuong Thao; Dang, Vu Chi

    2018-03-01

    Acid mine drainage (AMD) is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine drainage treatment in Hongai coal mines. In addition, selection and criteria for the design of the treatment systems have been presented.

  7. Coal Mining Machinery Development As An Ecological Factor Of Progressive Technologies Implementation

    NASA Astrophysics Data System (ADS)

    Efremenkov, A. B.; Khoreshok, A. A.; Zhironkin, S. A.; Myaskov, A. V.

    2017-01-01

    At present, a significant amount of energy spent for the work of mining machines and coal mining equipment on coal mines and open pits goes to the coal grinding in the process of its extraction in mining faces. Meanwhile, the increase of small fractions in mined coal does not only reduce the profitability of its production, but also causes a further negative impact on the environment and degrades labor conditions for miners. The countermeasure to the specified processes is possible with the help of coal mining equipment development. However, against the background of the technological decrease of coal mine equipment applied in Russia the negative impact on the environment is getting reinforced.

  8. 30 CFR 817.84 - Coal mine waste: Impounding structures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Impounding structures. 817.84... ACTIVITIES § 817.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 817.81...

  9. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977, shall...

  10. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  11. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal...

  12. 20 CFR 726.203 - Federal Coal Mine Health and Safety Act endorsement.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Federal Coal Mine Health and Safety Act... OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE Insurance Contracts § 726.203 Federal Coal Mine Health and...

  13. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal...

  14. 30 CFR 816.84 - Coal mine waste: Impounding structures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Impounding structures. 816.84... ACTIVITIES § 816.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 816.81...

  15. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977, shall...

  16. 20 CFR 726.203 - Federal Coal Mine Health and Safety Act endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Federal Coal Mine Health and Safety Act... LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE Insurance Contracts § 726.203 Federal Coal Mine Health and Safety Act...

  17. 30 CFR 816.84 - Coal mine waste: Impounding structures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Impounding structures. 816.84... ACTIVITIES § 816.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 816.81...

  18. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977, shall...

  19. 30 CFR 817.84 - Coal mine waste: Impounding structures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Impounding structures. 817.84... ACTIVITIES § 817.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 817.81...

  20. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977, shall...

  1. 30 CFR 816.84 - Coal mine waste: Impounding structures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Impounding structures. 816.84... ACTIVITIES § 816.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 816.81...

  2. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  3. 30 CFR 716.6 - Coal mines in Alaska.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mines in Alaska. 716.6 Section 716.6... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.6 Coal mines in Alaska. (a) Permittees of surface coal mining operations in Alaska from which coal has been mined on or after August 3, 1977, shall...

  4. 30 CFR 817.84 - Coal mine waste: Impounding structures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Impounding structures. 817.84... ACTIVITIES § 817.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 817.81...

  5. 20 CFR 726.203 - Federal Coal Mine Health and Safety Act endorsement.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Federal Coal Mine Health and Safety Act... OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE Insurance Contracts § 726.203 Federal Coal Mine Health and...

  6. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  7. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  8. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal...

  9. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  10. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  11. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  12. 30 CFR 816.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: General requirements. 816.81... ACTIVITIES § 816.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  13. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal...

  14. 30 CFR 817.84 - Coal mine waste: Impounding structures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Impounding structures. 817.84... ACTIVITIES § 817.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 817.81...

  15. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous coal...

  16. 30 CFR 816.84 - Coal mine waste: Impounding structures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Impounding structures. 816.84... ACTIVITIES § 816.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 816.81...

  17. 30 CFR 817.84 - Coal mine waste: Impounding structures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Impounding structures. 817.84... ACTIVITIES § 817.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 817.81...

  18. 30 CFR 816.84 - Coal mine waste: Impounding structures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Impounding structures. 816.84... ACTIVITIES § 816.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 816.81...

  19. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  20. 30 CFR 817.81 - Coal mine waste: General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: General requirements. 817.81... ACTIVITIES § 817.81 Coal mine waste: General requirements. (a) General. All coal mine waste disposed of in an... within a permit area, which are approved by the regulatory authority for this purpose. Coal mine waste...

  1. 77 FR 61406 - Agency Forms Undergoing Paperwork Reduction Act Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... Underground Coal Mining (0920-0835 Expiration 12/31/2012)--Revision--National Institute for Occupational... occupational safety and health problems in the coal mining industry. In recent years, coal mining safety has... health, the U.S. relies on coal mining to meet its electricity needs. For this reason, the coal mining...

  2. 78 FR 68783 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Reopen... coal mines. The U.S. Court of Appeals for the District of Columbia Circuit remanded a training... for refuge alternatives in underground coal mines. On January 13, 2009, the United Mine Workers of...

  3. 30 CFR 77.1000-1 - Filing of plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Ground..., with the MSHA Coal Mine Safety and Health district office for the district in which the mine is located...

  4. 30 CFR 75.1721 - Opening of new underground coal mines, or reopening and reactivating of abandoned or deactivated...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Opening of new underground coal mines, or reopening and reactivating of abandoned or deactivated coal mines, notification by the operator... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75...

  5. 78 FR 73471 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... Refuge Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor... Agency's Request for Information (RFI) on Refuge Alternatives for Underground Coal Mines. This extension...), MSHA published a Request for Information on Refuge Alternatives for Underground Coal Mines. The RFI...

  6. 30 CFR 49.40 - Requirements for large coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Requirements for large coal mines. 49.40 Section 49.40 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.40 Requirements for large coal...

  7. 30 CFR 49.40 - Requirements for large coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Requirements for large coal mines. 49.40 Section 49.40 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.40 Requirements for large coal...

  8. 30 CFR 49.30 - Requirements for small coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Requirements for small coal mines. 49.30 Section 49.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.30 Requirements for small coal...

  9. 30 CFR 49.40 - Requirements for large coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Requirements for large coal mines. 49.40 Section 49.40 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.40 Requirements for large coal...

  10. 30 CFR 49.30 - Requirements for small coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Requirements for small coal mines. 49.30 Section 49.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.30 Requirements for small coal...

  11. 30 CFR 49.40 - Requirements for large coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Requirements for large coal mines. 49.40 Section 49.40 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.40 Requirements for large coal...

  12. 30 CFR 49.40 - Requirements for large coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Requirements for large coal mines. 49.40 Section 49.40 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.40 Requirements for large coal...

  13. 30 CFR 49.30 - Requirements for small coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Requirements for small coal mines. 49.30 Section 49.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.30 Requirements for small coal...

  14. 30 CFR 49.30 - Requirements for small coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Requirements for small coal mines. 49.30 Section 49.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.30 Requirements for small coal...

  15. 30 CFR 49.30 - Requirements for small coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Requirements for small coal mines. 49.30 Section 49.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR EDUCATION AND TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.30 Requirements for small coal...

  16. 78 FR 58567 - Criteria to Certify Coal Mine Rescue Teams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... to Certify Coal Mine Rescue Teams AGENCY: Mine Safety and Health Administration, Labor. ACTION...) is requesting comments on revised instruction guides for coal mine rescue team training. MSHA prescribes training materials through the issuance of instruction guides. Existing standards for coal mine...

  17. Impact of Coal Mining on Self-Rated Health among Appalachian Residents

    PubMed Central

    Woolley, Shannon M.; Bear, Todd M.; Balmert, Lauren C.; Talbott, Evelyn O.; Buchanich, Jeanine M.

    2015-01-01

    Objective. To determine the impact of coal mining, measured as the number of coal mining-related facilities nearby one's residence or employment in an occupation directly related to coal mining, on self-rated health in Appalachia. Methods. Unadjusted and adjusted ordinal logistic regression models calculated odds ratio estimates and associated 95% confidence intervals for the probability of having an excellent self-rated health response versus another response. Covariates considered in the analyses included number of coal mining-related facilities nearby one's residence and employment in an occupation directly related to coal mining, as well as potential confounders age, sex, BMI, smoking status, income, and education. Results. The number of coal mining facilities near the respondent's residence was not a statistically significant predictor of self-rated health. Employment in a coal-related occupation was a statistically significant predictor of self-rated health univariably; however, after adjusting for potential confounders, it was no longer a significant predictor. Conclusions. Self-rated health does not seem to be associated with residential proximity to coal mining facilities or employment in the coal industry. Future research should consider additional measures for the impact of coal mining. PMID:26240577

  18. Effects of coal mine subsidence in the Sheridan, Wyoming, area

    USGS Publications Warehouse

    Dunrud, C. Richard; Osterwald, Frank W.

    1980-01-01

    Analyses of the surface effects of past underground coal mining in the Sheridan, Wyoming, area suggest that underground mining of strippable coal deposits may damage the environment more over long periods of time than would modern surface mining, provided proper restoration procedures are followed after surface mining. Subsidence depressions and pits are a continuing hazard to the environment and to man's activities in the Sheridan, Wyo., area above abandoned underground mines in weak overburden less than about 60 m thick and where the overburden is less than about 10-15 times the thickness of coal mined. In addition, fires commonly start by spontaneous ignition when water and air enter the abandoned mine workings via subsidence cracks and pits. The fires can then spread to unmined coal as they create more cavities, more subsidence, and more cracks and pits through which air can circulate. In modern surface mining operations the total land surface underlain by minable coal is removed to expose the coal. The coal is removed, the overburden and topsoil are replaced, and the land is regraded and revegetated. The land, although disturbed, can be more easily restored and put back into use than can land underlain by abandoned underground mine workings in areas where the overburden is less than about 60 m thick or less than about 10-15 times the thickness of coal mined. The resource recovery of modern surface mining commonly is much greater than that of underground mining procedures. Although present-day underground mining technology is advanced as compared to that of 25-80 years ago, subsidence resulting from underground mining of thick coal beds beneath overburden less than about 60 m thick can still cause greater damage to surface drainage, ground water, and vegetation than can properly designed surface mining operations. This report discusses (11 the geology and surface and underground effects of former large-scale underground coal mining in a 50-km 2 area 5-20 km north of Sheridan, Wyo., (2) a ground and aerial reconnaissance study of a 5-km^2 coal mining area 8-10 km west of Sheridan, and (31 some environmental consequences and problems caused by coal mining.

  19. [Distribution characteristics of soil organic carbon under different forest restoration modes on opencast coal mine dump].

    PubMed

    Wen, Yue-rong; Dang, Ting-hui; Tang, Jun; Li, Jun-chao

    2016-01-01

    The content and storage of soil organic carbon (SOC) were compared in six wood restoration modes and adjacent abandoned land on opencast coal mine dump, and the mechanisms behind the differences and their influencing factors were analyzed. Results showed that the contents of SOC in six wood lands were significantly higher (23.8%-53.2%) than that of abandoned land (1.92 g · kg⁻¹) at 0-10 cm soil depth, the index were significantly higher (5.8%-70.4%) at 10-20 cm soil depth than the abandoned land (1.39 g · kg⁻¹), and then the difference of the contents of SOC in the deep soil (20-100 cm) were not significant. The contents of SOC decreased with increase of soil depth, but the decreasing magnitude of the topsoil (0-20 cm) was higher than that of the deep soil (20-100 cm). Compared with the deep soil, the topsoil significant higer storage of SOC in different woods, the SOC storage decreased with the soil depth. Along the 0-100 cm soil layer, the storage of SOC in six wood lands higher (18.1%-42.4%) than that of the abandoned land (17.52 t · hm⁻²). The SOC storage of Amorpha fruticosa land (24.95 t · hm⁻²) was obviously higher than that in the other wood lands. The SOC storage in the shrub lands was 12.4% higher than that of the arbor woods. There were significantly positive correlations among forest litter, fine root biomass, soil water content and SOC on the dump. Consequently, different plantation restorations significantly improved the SOC level on the dump in 0-100 cm soil, especially the topsoil. But there was still a big gap about SOC level between the wood restoration lands and the original landform. To improve the SOC on opencast coal mine dump, A. fruticosa could be selected as the main wood vegetation.

  20. 78 FR 58264 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... Refuge Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor... Agency's Request for Information (RFI) on Refuge Alternatives for Underground Coal Mines. This extension... Alternatives for Underground Coal Mines. The RFI comment period had been scheduled to close on October 7, 2013...

  1. 30 CFR 71.501 - Sanitary toilet facilities; maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 71.501 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sanitary Toilet Facilities at Surface Worksites of Surface Coal Mines § 71.501 Sanitary...

  2. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special bituminous surface coal mining and... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to any...

  3. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous surface coal mining and... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to any...

  4. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person who...

  5. 30 CFR 785.12 - Special bituminous surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special bituminous surface coal mining and... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL....12 Special bituminous surface coal mining and reclamation operations. (a) This section applies to any...

  6. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person who...

  7. 20 CFR 726.1 - Statutory insurance requirements for coal mine operators.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Statutory insurance requirements for coal... OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE General § 726.1 Statutory insurance requirements for coal mine...

  8. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person who...

  9. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person who...

  10. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person who...

  11. Is there an association of circulatory hospitalizations independent of mining employment in coal-mining and non-coal-mining counties in west virginia?

    PubMed

    Talbott, Evelyn O; Sharma, Ravi K; Buchanich, Jeanine; Stacy, Shaina L

    2015-04-01

    Exposures associated with coal mining activities, including diesel fuel exhaust, products used in coal processing, and heavy metals and other forms of particulate matter, may impact the health of nearby residents. We investigated the relationships between county-level circulatory hospitalization rates (CHRs) in coal and non-coal-mining communities of West Virginia, coal production, coal employment, and sociodemographic factors. Direct age-adjusted CHRs were calculated using West Virginia hospitalizations from 2005 to 2009. Spatial regressions were conducted to explore associations between CHR and total, underground, and surface coal production. After adjustment, neither total, nor surface, nor underground coal production was significantly related to rate of hospitalization for circulatory disease. Our findings underscore the significant role sociodemographic and behavioral factors play in the health and well-being of coal mining communities.

  12. ArcView Coal Evaluation User's Guide

    USGS Publications Warehouse

    Watson, William

    2007-01-01

    Purpose: The objective of the ArcView Coal Evaluation (ACE) is to estimate the amount and location of coal available to be mined by various coal mining technologies, based on the geologic coverages developed in the National Coal Resource Assessment (NCRA) which are the starting coverages used in the Geographic Information Systems (GIS) evaluation of coal resources. The ACE Users Guide provides many examples of how to apply technical limits based upon mining technology. The methods, which are iterative for any given mining technology, should transfer directly by mining technology to other coal beds.

  13. 30 CFR 716.5 - Anthracite coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Anthracite coal mines. 716.5 Section 716.5... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.5 Anthracite coal mines. (a) Permittees of anthracite surface coal mining and reclamation operations in those States where the mines are regulated by...

  14. 30 CFR 716.5 - Anthracite coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Anthracite coal mines. 716.5 Section 716.5... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.5 Anthracite coal mines. (a) Permittees of anthracite surface coal mining and reclamation operations in those States where the mines are regulated by...

  15. 30 CFR 716.5 - Anthracite coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Anthracite coal mines. 716.5 Section 716.5... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.5 Anthracite coal mines. (a) Permittees of anthracite surface coal mining and reclamation operations in those States where the mines are regulated by...

  16. 30 CFR 716.5 - Anthracite coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Anthracite coal mines. 716.5 Section 716.5... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.5 Anthracite coal mines. (a) Permittees of anthracite surface coal mining and reclamation operations in those States where the mines are regulated by...

  17. 30 CFR 716.5 - Anthracite coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Anthracite coal mines. 716.5 Section 716.5... PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.5 Anthracite coal mines. (a) Permittees of anthracite surface coal mining and reclamation operations in those States where the mines are regulated by...

  18. Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport.

    PubMed

    Shahan, M R; Seaman, C E; Beck, T W; Colinet, J F; Mischler, S E

    2017-09-01

    Float coal dust is produced by various mining methods, carried by ventilating air and deposited on the floor, roof and ribs of mine airways. If deposited, float dust is re-entrained during a methane explosion. Without sufficient inert rock dust quantities, this float coal dust can propagate an explosion throughout mining entries. Consequently, controlling float coal dust is of critical interest to mining operations. Rock dusting, which is the adding of inert material to airway surfaces, is the main control technique currently used by the coal mining industry to reduce the float coal dust explosion hazard. To assist the industry in reducing this hazard, the Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health initiated a project to investigate methods and technologies to reduce float coal dust in underground coal mines through prevention, capture and suppression prior to deposition. Field characterization studies were performed to determine quantitatively the sources, types and amounts of dust produced during various coal mining processes. The operations chosen for study were a continuous miner section, a longwall section and a coal-handling facility. For each of these operations, the primary dust sources were confirmed to be the continuous mining machine, longwall shearer and conveyor belt transfer points, respectively. Respirable and total airborne float dust samples were collected and analyzed for each operation, and the ratio of total airborne float coal dust to respirable dust was calculated. During the continuous mining process, the ratio of total airborne float coal dust to respirable dust ranged from 10.3 to 13.8. The ratios measured on the longwall face were between 18.5 and 21.5. The total airborne float coal dust to respirable dust ratio observed during belt transport ranged between 7.5 and 21.8.

  19. Poker Flats Mine - Div. of Mining, Land, and Water

    Science.gov Websites

    Lands Coal Regulatory Program Large Mine Permits Mineral Property and Rights Mining Index Land Fishery Water Resources Factsheets Forms banner image of landscape Poker Flats Mine Home Mining Coal Regulatory Program Poker Flats Mine Mining Coal Regulatory Program Info Chickaloon Chuit Watershed Chuitna

  20. 76 FR 63238 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Detection Systems for Continuous Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health... Agency's proposed rule addressing Proximity Detection Systems for Continuous Mining Machines in... proposed rule for Proximity Detection Systems on Continuous Mining Machines in Underground Coal Mines. Due...

  1. 20 CFR 718.302 - Relationship of pneumoconiosis to coal mine employment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Relationship of pneumoconiosis to coal mine... LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL MINERS... § 718.302 Relationship of pneumoconiosis to coal mine employment. If a miner who is suffering or...

  2. 20 CFR 718.302 - Relationship of pneumoconiosis to coal mine employment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Relationship of pneumoconiosis to coal mine... OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL... Determinations § 718.302 Relationship of pneumoconiosis to coal mine employment. If a miner who is suffering or...

  3. 20 CFR 718.302 - Relationship of pneumoconiosis to coal mine employment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Relationship of pneumoconiosis to coal mine... OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL... Determinations § 718.302 Relationship of pneumoconiosis to coal mine employment. If a miner who is suffering or...

  4. 20 CFR 726.1 - Statutory insurance requirements for coal mine operators.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Statutory insurance requirements for coal..., DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE General § 726.1 Statutory insurance requirements for coal mine...

  5. 20 CFR 718.302 - Relationship of pneumoconiosis to coal mine employment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Relationship of pneumoconiosis to coal mine... OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL... Determinations § 718.302 Relationship of pneumoconiosis to coal mine employment. If a miner who is suffering or...

  6. 20 CFR 718.302 - Relationship of pneumoconiosis to coal mine employment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Relationship of pneumoconiosis to coal mine... OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL... Determinations § 718.302 Relationship of pneumoconiosis to coal mine employment. If a miner who is suffering or...

  7. 42 CFR 37.100 - Coal mine operator plan for medical examinations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Coal mine operator plan for medical examinations... MEDICAL CARE AND EXAMINATIONS SPECIFICATIONS FOR MEDICAL EXAMINATIONS OF COAL MINERS General Requirements § 37.100 Coal mine operator plan for medical examinations. (a) Each coal mine operator must submit and...

  8. 20 CFR 726.1 - Statutory insurance requirements for coal mine operators.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Statutory insurance requirements for coal..., DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE General § 726.1 Statutory insurance requirements for coal mine...

  9. 20 CFR 726.1 - Statutory insurance requirements for coal mine operators.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Statutory insurance requirements for coal..., DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE General § 726.1 Statutory insurance requirements for coal mine...

  10. 20 CFR 726.1 - Statutory insurance requirements for coal mine operators.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Statutory insurance requirements for coal..., DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S INSURANCE General § 726.1 Statutory insurance requirements for coal mine...

  11. Coalbed methane: Clean energy for the world

    USGS Publications Warehouse

    Ahmed, A.-J.; Johnston, S.; Boyer, C.; Lambert, S.W.; Bustos, O.A.; Pashin, J.C.; Wray, A.

    2009-01-01

    Coalbed methane (CBM) has the potential to emerge as a significant clean energy resource. It also has the potential to replace other diminishing hydrocarbon reserves. The latest developments in technologies and methodologies are playing a key role in harnessing this unconventional resource. Some of these developments include adaptations of existing technologies used in conventional oil and gas generations, while others include new applications designed specifically to address coal's unique properties. Completion techniques have been developed that cause less damage to the production mechanisms of coal seams, such as those occurring during cementing operations. Stimulation fluids have also been engineered specifically to enhance CBM production. Deep coal deposits that remain inaccessible by conventional mining operations offer CBM development opportunities.

  12. Publications - GMC 308 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    (Sumitomo Coal Mining Company, Ltd.) Jonesville DDH-01 and DDH-02 holes, Jonesville Coal Mine, Sutton Systems (Sumitomo Coal Mining Company, Ltd.) Jonesville DDH-01 and DDH-02 holes, Jonesville Coal Mine

  13. 30 CFR 819.13 - Auger mining: Coal recovery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Auger mining: Coal recovery. 819.13 Section 819....13 Auger mining: Coal recovery. (a) Auger mining shall be conducted so as to maximize the utilization and conservation of the coal in accordance with § 816.59 of this chapter. (b) Auger mining shall be...

  14. 76 FR 35801 - Examinations of Work Areas in Underground Coal Mines and Pattern of Violations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ..., 1219-AB73 Examinations of Work Areas in Underground Coal Mines and Pattern of Violations AGENCY: Mine... public hearings on the Agency's proposed rules for Examinations of Work Areas in Underground Coal Mines... Underground Coal Mines' submissions, and with ``RIN 1219-AB73'' for Pattern of Violations' submissions...

  15. 78 FR 48591 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Administration 30 CFR Parts 7 and 75 Refuge Alternatives for Underground Coal Mines; Proposed Rules #0;#0;Federal... Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Limited reopening of the... for miners to deploy and use refuge alternatives in underground coal mines. The U.S. Court of Appeals...

  16. 30 CFR 819.13 - Auger mining: Coal recovery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Auger mining: Coal recovery. 819.13 Section 819....13 Auger mining: Coal recovery. (a) Auger mining shall be conducted so as to maximize the utilization and conservation of the coal in accordance with § 816.59 of this chapter. (b) Auger mining shall be...

  17. 30 CFR 819.13 - Auger mining: Coal recovery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Auger mining: Coal recovery. 819.13 Section 819....13 Auger mining: Coal recovery. (a) Auger mining shall be conducted so as to maximize the utilization and conservation of the coal in accordance with § 816.59 of this chapter. (b) Auger mining shall be...

  18. 30 CFR 819.13 - Auger mining: Coal recovery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Auger mining: Coal recovery. 819.13 Section 819....13 Auger mining: Coal recovery. (a) Auger mining shall be conducted so as to maximize the utilization and conservation of the coal in accordance with § 816.59 of this chapter. (b) Auger mining shall be...

  19. 30 CFR 819.13 - Auger mining: Coal recovery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Auger mining: Coal recovery. 819.13 Section 819....13 Auger mining: Coal recovery. (a) Auger mining shall be conducted so as to maximize the utilization and conservation of the coal in accordance with § 816.59 of this chapter. (b) Auger mining shall be...

  20. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of surface coal mining operations pursuant to section 522 of the Act and regulations of this... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as...

  1. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of surface coal mining operations pursuant to section 522 of the Act and regulations of this... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as...

  2. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of surface coal mining operations pursuant to section 522 of the Act and regulations of this... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as...

  3. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of surface coal mining operations pursuant to section 522 of the Act and regulations of this... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as...

  4. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of surface coal mining operations pursuant to section 522 of the Act and regulations of this... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as...

  5. Research on position and orientation measurement method for roadheader based on vision/INS

    NASA Astrophysics Data System (ADS)

    Yang, Jinyong; Zhang, Guanqin; Huang, Zhe; Ye, Yaozhong; Ma, Bowen; Wang, Yizhong

    2018-01-01

    Roadheader which is a kind of special equipment for large tunnel excavation has been widely used in Coal Mine. It is one of the main mechanical-electrical equipment for mine production and also has been regarded as the core equipment for underground tunnel driving construction. With the deep application of the rapid driving system, underground tunnel driving methods with higher automation level are required. In this respect, the real-time position and orientation measurement technique for roadheader is one of the most important research contents. For solving the problem of position and orientation measurement automatically in real time for roadheaders, this paper analyses and compares the features of several existing measuring methods. Then a new method based on the combination of monocular vision and strap down inertial navigation system (SINS) would be proposed. By realizing five degree-of-freedom (DOF) measurement of real-time position and orientation of roadheader, this method has been verified by the rapid excavation equipment in Daliuta coal mine. Experiment results show that the accuracy of orientation measurement is better than 0.1°, the standard deviation of static drift is better than 0.25° and the accuracy of position measurement is better than 1cm. It is proved that this method can be used in real-time position and orientation measurement application for roadheader which has a broad prospect in coal mine engineering.

  6. Microbially-Enhanced Coal Bed Methane: Strategies for Increased Biogenic Production

    NASA Astrophysics Data System (ADS)

    Davis, K.; Barhart, E. P.; Schweitzer, H. D.; Cunningham, A. B.; Gerlach, R.; Hiebert, R.; Fields, M. W.

    2014-12-01

    Coal is the largest fossil fuel resource in the United States. Most of this coal is deep in the subsurface making it costly and potentially dangerous to extract. However, in many of these deep coal seams, methane, the main component of natural gas, has been discovered and successfully harvested. Coal bed methane (CBM) currently accounts for approximately 7.5% of the natural gas produced in the U.S. Combustion of natural gas produces substantially less CO2 and toxic emissions (e.g. heavy metals) than combustion of coal or oil thereby making it a cleaner energy source. In the large coal seams of the Powder River Basin (PRB) in southeast Montana and northeast Wyoming, CBM is produced almost entirely by biogenic processes. The in situ conversion of coal to CBM by the native microbial community is of particular interest for present and future natural gas sources as it provides the potential to harvest energy from coal seams with lesser environmental impacts than mining and burning coal. Research at Montana State University has shown the potential for enhancing the subsurface microbial processes that produce CBM. Long-term batch enrichments have investigated the methane enhancement potential of yeast extract as well as algal and cyanobacterial biomass additions with increased methane production observed with all three additions when compared to no addition. Future work includes quantification of CBM enhancement and normalization of additions. This presentation addresses the options thus far investigated for increasing CBM production and the next steps for developing the enhanced in situ conversion of coal to CBM.

  7. 30 CFR 772.12 - Permit requirements for exploration that will remove more than 250 tons of coal or that will...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mining operations. 772.12 Section 772.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... unsuitable for surface coal mining operations. (a) Exploration permit. Any person who intends to conduct coal...

  8. 78 FR 35974 - Proposed Information Collection; Comment Request; Coal Mine Rescue Teams; Arrangements for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... Request; Coal Mine Rescue Teams; Arrangements for Emergency Medical Assistance and Transportation for... Part 49, Mine Rescue Teams, Subpart B--Mine Rescue Teams for Underground Coal Mines, sets standards related to the availability of mine rescue teams; alternate mine rescue capability for small and remote...

  9. 77 FR 26046 - Proposed Extension of Existing Information Collection; Ground Control for Surface Coal Mines and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... Extension of Existing Information Collection; Ground Control for Surface Coal Mines and Surface Work Areas of Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request for... inspections and investigations in coal or other mines shall be made each year for the purposes of, among other...

  10. 77 FR 51827 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Ground...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... for OMB Review; Comment Request; Ground Control Plans for Surface Coal Mines and Surface Work Areas of Underground Coal Mines ACTION: Notice. SUMMARY: The Department of Labor (DOL) is submitting the Mine Safety... Control Plans for Surface Coal Mines and Surface Work Areas of Underground Coal Mines,'' to the Office of...

  11. Open-pit coal mine production sequencing incorporating grade blending and stockpiling options: An application from an Indian mine

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Chatterjee, Snehamoy

    2017-05-01

    Production scheduling is a crucial aspect of the mining industry. An optimal and efficient production schedule can increase the profits manifold and reduce the amount of waste to be handled. Production scheduling for coal mines is necessary to maintain consistency in the quality and quantity parameters of coal supplied to power plants. Irregularity in the quality parameters of the coal can lead to heavy losses in coal-fired power plants. Moreover, the stockpiling of coal poses environmental and fire problems owing to low incubation periods. This article proposes a production scheduling formulation for open-pit coal mines including stockpiling and blending opportunities, which play a major role in maintaining the quality and quantity of supplied coal. The proposed formulation was applied to a large open-pit coal mine in India. This contribution provides an efficient production scheduling formulation for coal mines after utilizing the stockpile coal within the incubation periods with the maximization of discounted cash flows. At the same time, consistency is maintained in the quality and quantity of coal to power plants through blending and stockpiling options to ensure smooth functioning.

  12. Thin seam miner/trench mining concepts for Illinois Basin surface coal mines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caudle, R.D.; Lall, V.

    1985-07-01

    A hybrid surface/underground mining concept, trench-auger mining is an attempt to increase the depth to which coal seams can be surface mined economically by reducing the amount of overburden which must be removed and reclaimed. In this concept the coal seam is first exposed by digging a series of parallel trenches 400 to 1200 ft apart with conventional surface mining equipment. After surface mining the coal from the bottom of the trench, the coal under the surface between the trenches would be extracted with extended-depth augers, operating from the bottoms of the trenches. The RSV Mining Equipment Co. of Hollandmore » has developed a Thin Seam Miner (TSM). The TSM is essentially a remotely controlled, continuous underground mining machine. The hydraulically driven drum cutter head and coal handling auger flights can be operated from a distance outside the underground mine workings. The purpose of this study is to develop and evaluate Thin Seam Miner/Trench Mining (TSM/TM) concepts for use under conditions existing in the Illinois Coal Basin.« less

  13. A novel method for estimating methane emissions from underground coal mines: The Yanma coal mine, China

    NASA Astrophysics Data System (ADS)

    Ji, Zhong-Min; Chen, Zhi-Jian; Pan, Jie-Nan; Niu, Qing-He

    2017-12-01

    As the world's largest coal producer and consumer, China accounts for a relatively high proportion of methane emissions from coal mines. Several estimation methods had been established for the coal mine methane (CMM) emission. However, with large regional differences, various reservoir formation types of coalbed methane (CBM) and due to the complicated geological conditions in China, these methods may be deficient or unsuitable for all the mining areas (e.g. Jiaozuo mining area). By combing the CMM emission characteristics and considering the actual situation of methane emissions from underground coal mine, we found that the methane pre-drainage is a crucial reason creating inaccurate evaluating results for most estimation methods. What makes it so essential is the extensive pre-drainage quantity and its irrelevance with annual coal production. Accordingly, the methane releases were divided into two categories: methane pre-drainage and methane release during mining. On this basis, a pioneering method for estimating CMM emissions was proposed. Taking the Yanma coal mine in the Jiaozuo mining area as a study case, the evaluation method of the pre-drainage methane quantity was established after the correlation analysis between the pre-drainage rate and time. Thereafter, the mining activity influence factor (MAIF) was first introduced to reflect the methane release from the coal and rock seams around where affected by mining activity, and the buried depth was adopted as the predictor of the estimation for future methane emissions. It was verified in the six coal mines of Jiaozuo coalfield (2011) that the new estimation method has the minimum errors of 12.11%, 9.23%, 5.77%, -5.20%, -8.75% and 4.92% respectively comparing with other methods. This paper gives a further insight and proposes a more accurate evaluation method for the CMM emissions, especially for the coal seams with low permeability and strong tectonic deformation in methane outburst coal mines.

  14. Study on Reuse Strategy of Abandoned Industrial Square - in the case of Jingxi Wang Ping Coal Mine

    NASA Astrophysics Data System (ADS)

    Li, Xiaodan; Chen, Zhiting; Jia, Lijun; Wu, Wei; Zhang, Hailiang; Ma, Tianyi; Wang, Tao

    2018-06-01

    Wangping Coal Mine, whose industrial heritage is of great value, was one of the eight coal mines in Beijing. A large number of field surveys and analysis of the abandoned industrial facilities of Wangping Coal Mine were carried out in this paper. From the perspective of protecting industrial heritage culture and sustainable development, this paper studies the ideas and strategies for reusing the abandoned facilities of the Wangping Coal Mine. In order to protect its industrial heritage as much as possible, it is suggested to reuse the industrial square of Wangping Coal Mine as a community park.

  15. CoalVal-A coal resource valuation program

    USGS Publications Warehouse

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined; operating cost per ton; and discounted cash flow cost per ton to mine and process the resources. Costs are calculated as loaded in a unit train, free-on-board the tipple, at a rate of return prescribed by the evaluator. The recoverable resources (in short tons) may be grouped by incremental cost over any range chosen by the user. For example, in the Gillette coalfield evaluation, the discounted cash flow mining cost (at an 8 percent rate of return) and its associated tonnage may be grouped by any applicable increment (for example, $0.10 per ton, $0.20 per ton, and so on) and using any dollar per ton range that is desired (for example, from $4.00 per ton to $15.00 per ton). This grouping ability allows the user to separate the coal reserves from the nonreserve resources and to construct cost curves to determine the effects of coal market fluctuations on the availability of coal for fuel whether for the generation of electricity or for coal-to-liquids processes. Coking coals are not addressed in this report.

  16. 30 CFR 716.4 - Special bituminous coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those bituminous...

  17. 30 CFR 716.4 - Special bituminous coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those bituminous...

  18. 30 CFR 716.4 - Special bituminous coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those bituminous...

  19. 30 CFR 716.4 - Special bituminous coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those bituminous...

  20. 30 CFR 716.4 - Special bituminous coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous coal mines. 716.4 Section... INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.4 Special bituminous coal mines. (a) Definition. Special bituminous coal surface mines as used in this section means those bituminous...

  1. Research on Occupational Safety, Health Management and Risk Control Technology in Coal Mines.

    PubMed

    Zhou, Lu-Jie; Cao, Qing-Gui; Yu, Kai; Wang, Lin-Lin; Wang, Hai-Bin

    2018-04-26

    This paper studies the occupational safety and health management methods as well as risk control technology associated with the coal mining industry, including daily management of occupational safety and health, identification and assessment of risks, early warning and dynamic monitoring of risks, etc.; also, a B/S mode software (Geting Coal Mine, Jining, Shandong, China), i.e., Coal Mine Occupational Safety and Health Management and Risk Control System, is developed to attain the aforementioned objectives, namely promoting the coal mine occupational safety and health management based on early warning and dynamic monitoring of risks. Furthermore, the practical effectiveness and the associated pattern for applying this software package to coal mining is analyzed. The study indicates that the presently developed coal mine occupational safety and health management and risk control technology and the associated software can support the occupational safety and health management efforts in coal mines in a standardized and effective manner. It can also control the accident risks scientifically and effectively; its effective implementation can further improve the coal mine occupational safety and health management mechanism, and further enhance the risk management approaches. Besides, its implementation indicates that the occupational safety and health management and risk control technology has been established based on a benign cycle involving dynamic feedback and scientific development, which can provide a reliable assurance to the safe operation of coal mines.

  2. Research on Occupational Safety, Health Management and Risk Control Technology in Coal Mines

    PubMed Central

    Zhou, Lu-jie; Cao, Qing-gui; Yu, Kai; Wang, Lin-lin; Wang, Hai-bin

    2018-01-01

    This paper studies the occupational safety and health management methods as well as risk control technology associated with the coal mining industry, including daily management of occupational safety and health, identification and assessment of risks, early warning and dynamic monitoring of risks, etc.; also, a B/S mode software (Geting Coal Mine, Jining, Shandong, China), i.e., Coal Mine Occupational Safety and Health Management and Risk Control System, is developed to attain the aforementioned objectives, namely promoting the coal mine occupational safety and health management based on early warning and dynamic monitoring of risks. Furthermore, the practical effectiveness and the associated pattern for applying this software package to coal mining is analyzed. The study indicates that the presently developed coal mine occupational safety and health management and risk control technology and the associated software can support the occupational safety and health management efforts in coal mines in a standardized and effective manner. It can also control the accident risks scientifically and effectively; its effective implementation can further improve the coal mine occupational safety and health management mechanism, and further enhance the risk management approaches. Besides, its implementation indicates that the occupational safety and health management and risk control technology has been established based on a benign cycle involving dynamic feedback and scientific development, which can provide a reliable assurance to the safe operation of coal mines. PMID:29701715

  3. Occupational safety and health implications of increased coal utilization.

    PubMed Central

    Bridbord, K; Costello, J; Gamble, J; Groce, D; Hutchison, M; Jones, W; Merchant, J; Ortmeyer, C; Reger, R; Wagner, W L

    1979-01-01

    An area of major concern in considering increased coal production and utilization is the health and safety of increased numbers of workers who mine, process, or utilize coal. Hazards related to mining activities in the past have been especially serious, resulting in many mine related accidental deaths, disabling injuries, and disability and death from chronic lung disease. Underground coal mines are clearly less safe than surface mines. Over one-third of currently employed underground miners experience chronic lung disease. Other stresses include noise and extremes of heat and cold. Newly emphasized technologies of the use of diesel powered mining equipment and the use of longwall mining techniques may be associated with serious health effects. Workers at coal-fired power plants are also potentially at risk of occupational diseases. Occupational safety and health aspects of coal mining are understood well enough today to justify implementing necessary and technically feasible and available control measures to minimize potential problems associated with increased coal production and use in the future. Increased emphasis on safety and health training for inexperienced coal miners expected to enter the work force is clearly needed. The recently enacted Federal Mine Safety and Health Act of 1977 will provide impetus for increased control over hazards in coal mining. PMID:540621

  4. Bear's bullish in tight market. [Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, D.

    Bear Coal Co. have re-opened an old mine near Somerset, Colorado, which will produce 300,000 tpy of coal. This is mined from the super section, consisting of two complete sets of production equipment. The mine alternates development and room-and-pillar mining. Coal is crushed and sized at the Terror Creek plant, along with coal from three other mines in the area.

  5. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.

    2013-04-01

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotopemore » mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.« less

  6. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  7. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  8. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  9. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...

  10. 78 FR 25308 - Proposed Collection; Comment Request; Coal Mine Dust Sampling Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ...; Coal Mine Dust Sampling Devices AGENCY: Mine Safety and Health Administration, Labor. ACTION: 60-Day.... Background Continuous Personal Dust Monitors (CPDMs) determine the concentration of respirable dust in coal mines. CPDMs must be designed and constructed for coal miners to wear and operate without impeding their...

  11. 76 FR 25277 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... 1219-AB64 Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust... to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors. This extension gives... Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors. In response...

  12. 77 FR 4834 - Proposed Extension of Existing Information Collection; Refuge Alternatives for Underground Coal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... Extension of Existing Information Collection; Refuge Alternatives for Underground Coal Mines AGENCY: Mine... Underground Coal Mines DATES: Submit comments on or before April 2, 2012. ADDRESSES: Comments must be.... Title: Refuge Alternatives for Underground Coal Mines. OMB Number: 1219-0146. Affected Public: Business...

  13. 75 FR 18500 - Guidance on Improving EPA Review of Appalachian Surface Coal Mining Operations under the Clean...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... of Appalachian Surface Coal Mining Operations under the Clean Water Act, National Environmental... Appalachian Surface Coal Mining Operations under the Clean Water Act, National Environmental Policy Act, and... coal mining operations under the Clean Water Act, National Environmental Policy Act, and the...

  14. Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport

    PubMed Central

    Shahan, M.R.; Seaman, C.E.; Beck, T.W.; Colinet, J.F.; Mischler, S.E.

    2017-01-01

    Float coal dust is produced by various mining methods, carried by ventilating air and deposited on the floor, roof and ribs of mine airways. If deposited, float dust is re-entrained during a methane explosion. Without sufficient inert rock dust quantities, this float coal dust can propagate an explosion throughout mining entries. Consequently, controlling float coal dust is of critical interest to mining operations. Rock dusting, which is the adding of inert material to airway surfaces, is the main control technique currently used by the coal mining industry to reduce the float coal dust explosion hazard. To assist the industry in reducing this hazard, the Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health initiated a project to investigate methods and technologies to reduce float coal dust in underground coal mines through prevention, capture and suppression prior to deposition. Field characterization studies were performed to determine quantitatively the sources, types and amounts of dust produced during various coal mining processes. The operations chosen for study were a continuous miner section, a longwall section and a coal-handling facility. For each of these operations, the primary dust sources were confirmed to be the continuous mining machine, longwall shearer and conveyor belt transfer points, respectively. Respirable and total airborne float dust samples were collected and analyzed for each operation, and the ratio of total airborne float coal dust to respirable dust was calculated. During the continuous mining process, the ratio of total airborne float coal dust to respirable dust ranged from 10.3 to 13.8. The ratios measured on the longwall face were between 18.5 and 21.5. The total airborne float coal dust to respirable dust ratio observed during belt transport ranged between 7.5 and 21.8. PMID:28936001

  15. Application of MIKE SHE to study the impact of coal mining on river runoff in Gujiao mining area, Shanxi, China

    PubMed Central

    Ping, Jianhua; Yan, Shiyan; Gu, Pan; Wu, Zening; Hu, Caihong

    2017-01-01

    Coal mining is one of the core industries that contribute to the economic development of a country but deteriorate the environment. Being the primary source of energy, coal has become essential to meet the energy demand of a country. It is excavated by both opencast and underground mining methods and affects the environment, especially hydrological cycle, by discharging huge amounts of mine water. Natural hydrological processes have been well known to be vulnerable to human activities, especially large scale mining activities, which inevitably generate surface cracks and subsidence. It is therefore valuable to assess the impact of mining on river runoff for the sustainable development of regional economy. In this paper, the impact of coal mining on river runoff is assessed in one of the national key coal mining sites, Gujiao mining area, Shanxi Province, China. The characteristics of water cycle are described, the similarities and differences of runoff formation are analyzed in both coal mining and pre-mining periods. The integrated distributed hydrological model named MIKE SHE is employed to simulate and evaluate the influence of coal mining on river runoff. The study shows that mining one ton of raw coal leads to the reduction of river runoff by 2.87 m3 between 1981 and 2008, of which the surface runoff decreases by 0.24 m3 and the baseflow by 2.63 m3. The reduction degree of river runoff for mining one ton of raw coal shows an increasing trend over years. The current study also reveals that large scale coal mining initiates the formation of surface cracks and subsidence, which intercepts overland flow and enhances precipitation infiltration. Together with mine drainage, the natural hydrological processes and the stream flows have been altered and the river run off has been greatly reduced. PMID:29267313

  16. Application of MIKE SHE to study the impact of coal mining on river runoff in Gujiao mining area, Shanxi, China.

    PubMed

    Ping, Jianhua; Yan, Shiyan; Gu, Pan; Wu, Zening; Hu, Caihong

    2017-01-01

    Coal mining is one of the core industries that contribute to the economic development of a country but deteriorate the environment. Being the primary source of energy, coal has become essential to meet the energy demand of a country. It is excavated by both opencast and underground mining methods and affects the environment, especially hydrological cycle, by discharging huge amounts of mine water. Natural hydrological processes have been well known to be vulnerable to human activities, especially large scale mining activities, which inevitably generate surface cracks and subsidence. It is therefore valuable to assess the impact of mining on river runoff for the sustainable development of regional economy. In this paper, the impact of coal mining on river runoff is assessed in one of the national key coal mining sites, Gujiao mining area, Shanxi Province, China. The characteristics of water cycle are described, the similarities and differences of runoff formation are analyzed in both coal mining and pre-mining periods. The integrated distributed hydrological model named MIKE SHE is employed to simulate and evaluate the influence of coal mining on river runoff. The study shows that mining one ton of raw coal leads to the reduction of river runoff by 2.87 m3 between 1981 and 2008, of which the surface runoff decreases by 0.24 m3 and the baseflow by 2.63 m3. The reduction degree of river runoff for mining one ton of raw coal shows an increasing trend over years. The current study also reveals that large scale coal mining initiates the formation of surface cracks and subsidence, which intercepts overland flow and enhances precipitation infiltration. Together with mine drainage, the natural hydrological processes and the stream flows have been altered and the river run off has been greatly reduced.

  17. 30 CFR 77.1708 - Safety program; instruction of persons employed at the mine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... at the mine. 77.1708 Section 77.1708 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Miscellaneous § 77.1708 Safety program; instruction of persons...

  18. The Application of LANDSAT Multi-Temporal Thermal Infrared Data to Identify Coal Fire in the Khanh Hoa Coal Mine, Thai Nguyen province, Vietnam

    NASA Astrophysics Data System (ADS)

    Trinh, Le Hung; Zablotskii, V. R.

    2017-12-01

    The Khanh Hoa coal mine is a surface coal mine in the Thai Nguyen province, which is one of the largest deposits of coal in the Vietnam. Numerous reasons such as improper mining techniques and policy, as well as unauthorized mining caused surface and subsurface coal fire in this area. Coal fire is a dangerous phenomenon which affects the environment seriously by releasing toxic fumes which causes forest fires, and subsidence of infrastructure surface. This article presents study on the application of LANDSAT multi-temporal thermal infrared images, which help to detect coal fire. The results obtained in this study can be used to monitor fire zones so as to give warnings and solutions to prevent coal fire.

  19. Mining geology of the Pond Creek seam, Pikeville Formation, Middle Pennsylvanian, in part of the Eastern Kentucky Coal Field, USA

    USGS Publications Warehouse

    Greb, S.F.; Popp, J.T.

    1999-01-01

    The Pond Creek seam is one of the leading producers of coal in the Eastern Kentucky Coal Field. The geologic factors that affect mining were investigated in several underground mines and categorized in terms of coal thickness, coal quality, and roof control. The limits of mining and thick coal are defined by splitting along the margin of the coal body. Within the coal body, local thickness variation occurs because of (1) leader coal benches filling narrow, elongated depressions, (2) rider coal benches coming near to or merging with the main bench, (3) overthrust coal benches being included along paleochannel margins, (4) cutouts occuring beneath paleochannels, and (5) very hard and unusual rock partings occuring along narrow, elongated trends. In the study area, the coal is mostly mined as a compliance product: sulfur contents are less than 1% and ash yields are less than 10%. Local increases in sulfur occur beneath sandstones, and are inferred to represent post-depositional migration of fluids through porous sands into the coal. Run-of-mine quality is also affected by several mine-roof conditions and trends of densely concentrated rock partings, which lead to increased in- and out-of-seam dilution and overall ash content of the mined coal. Roof control is largely a function of a heterolithic facies mosaic of coastal-estuarine origin, regional fracture trends, and unloading stress related to varying mine depth beneath the surface. Lateral variability of roof facies is the rule in most mines. The largest falls occur beneath modern valleys and parallel fractures, along paleochannel margins, within tidally affected 'stackrock,' and beneath rider coals. Shale spalling, kettlebottoms, and falls within other more isolated facies also occur. Many of the lithofacies, and falls related to bedding weaknesses within or between lithofacies, occur along northeast-southwest trends, which can be projected in advance of mining. Fracture-related falls occur independently of lithofacies trends along northwest-southeast trends, especially beneath modern valleys where overburden thickness decreases sharply. Differentiating roof falls related to these trends can aid in predicting roof quality in advance of mining.The Pond Creek-Lower Elkhorn seam has been an important exploration target because it typically has very low sulfur contents and ash yields. Geologic research in several large Pond Creek mines suggested variability in roof quality and coal thickness. Due to mine access, geologic problems encountered during mining are documented and described.

  20. Knowledge modeling of coal mining equipments based on ontology

    NASA Astrophysics Data System (ADS)

    Zhang, Baolong; Wang, Xiangqian; Li, Huizong; Jiang, Miaomiao

    2017-06-01

    The problems of information redundancy and sharing are universe in coal mining equipment management. In order to improve the using efficiency of knowledge of coal mining equipments, this paper proposed a new method of knowledge modeling based on ontology. On the basis of analyzing the structures and internal relations of coal mining equipment knowledge, taking OWL as ontology construct language, the ontology model of coal mining equipment knowledge is built with the help of Protégé 4.3 software tools. The knowledge description method will lay the foundation for the high effective knowledge management and sharing, which is very significant for improving the production management level of coal mining enterprises.

  1. Distribution and assessment of Pb in the supergene environment of the Huainan Coal Mining Area, Anhui, China.

    PubMed

    Fang, Ting; Liu, Guijian; Zhou, Chuncai; Yuan, Zijiao; Lam, Paul Kwan Sing

    2014-08-01

    Coal mining area is highly subject to lead (Pb) pollution from coal mining activities. Several decades of coal mining and processing practices in dozens of coal mines in the Huainan Coal Mining Area (HCMA) have led to the accumulation of massive amounts of coal gangue, which piled in dumps. In order to investigate the impacts of coal gangue dumps on Pb level in the supergene media of the HCMA, a systematic sampling campaign comprising coal gangue, soil, wheat, and earthworm samples was conducted. The average Pb content in the coal mining area soil is 24 mg/kg, which is slightly higher than the associated coal gangues (23 mg/kg) and markedly higher than reference region soil (12.6 mg/kg). Soil in the HCMA present a slight to moderate Pb contamination, which might be related to the weathering and leaching of coal gangue dumps. Lateral distribution of Pb in HCMA soil differed among individual coal mines. The soil profile distribution of Pb depends on both natural and anthropogenic contributions. Average Pb content is higher in roots than in stems, leaves, and wheat husks, while the Pb level in seeds exceeded the maximum Pb allowance for foods (Maximum Levels of Contaminants in Foods of China, GB 2762-2012). Earthworms in the selected area are significantly enriched in Pb, suggesting higher bio-available Pb level in soil in the HCMA.

  2. Borehole hydraulic coal mining system analysis

    NASA Technical Reports Server (NTRS)

    Floyd, E. L.

    1977-01-01

    The borehole hydraulic coal mining system accesses the coal seam through a hole drilled in the overburden. The mining device is lowered through the hole into the coal seam where it fragments the coal with high pressure water jets which pump it to the surface as a slurry by a jet pump located in the center of the mining device. The coal slurry is then injected into a pipeline for transport to the preparation plant. The system was analyzed for performance in the thick, shallow coal seams of Wyoming, and the steeply pitching seams of western Colorado. Considered were all the aspects of the mining operation for a 20-year mine life, producing 2,640,000 tons/yr. Effects on the environment and the cost of restoration, as well as concern for health and safety, were studied. Assumptions for design of the mine, the analytical method, and results of the analysis are detailed.

  3. Deformation Failure Characteristics of Coal Body and Mining Induced Stress Evolution Law

    PubMed Central

    Wen, Zhijie; Wen, Jinhao; Shi, Yongkui; Jia, Chuanyang

    2014-01-01

    The results of the interaction between coal failure and mining pressure field evolution during mining are presented. Not only the mechanical model of stope and its relative structure division, but also the failure and behavior characteristic of coal body under different mining stages are built and demonstrated. Namely, the breaking arch and stress arch which influence the mining area are quantified calculated. A systematic method of stress field distribution is worked out. All this indicates that the pore distribution of coal body with different compressed volume has fractal character; it appears to be the linear relationship between propagation range of internal stress field and compressed volume of coal body and nonlinear relationship between the range of outburst coal mass and the number of pores which is influenced by mining pressure. The results provide theory reference for the research on the range of mining-induced stress and broken coal wall. PMID:24967438

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In fiscal 1982, the mine safety record improved in several categories over the previous year, but declined in others. There were 220 mining deaths in fiscal year 1982 compared to 222 fatalities in 1981. In coal mining, there were 160 fatalities in fiscal 1982 compared with 131 the previous year. In metal and nonmetal mining in fiscal 1982, there were 60 fatalities, compared to 91 deaths recorded in fiscal 1981. In coal mining, the fatality rate, which factors in employment variations, was .07 per 200,000 employee-hours worked in fiscal 1982 compared to a .06 rate during the previous year. Inmore » metal and nonmetal mining, the fatality rate per 200,000 employee-hours was .04 in fiscal 1982 compared with .03 the previous year. In both industries, the rates of all injuries declined. On Dec. 7, 1981, an underground coal mine dust explosion took the lives of eight miners at the Adkins Coal Co,'s No. 11 mine at Kite, Knott County, KY. A day later, Dec. 8, 1981, an underground coal mine explosion killed 13 miners at Grundy Mining Co.'s No. 21 mine at Whitwell, Marion County, Tenn. During the following month, on Jan. 20, 1982, another coal mine dust explosion killed seven underground coal miners at the RFH mine in Craynor, Floyd County, KY. 7 figs., 33 tabs.« less

  5. 30 CFR 761.11 - Areas where surface coal mining operations are prohibited or limited.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Areas where surface coal mining operations are....11 Areas where surface coal mining operations are prohibited or limited. You may not conduct surface coal mining operations on the following lands unless you either have valid existing rights, as...

  6. 30 CFR 905.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 905.764 Section 905.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE CALIFORNIA § 905.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...

  7. 30 CFR 761.11 - Areas where surface coal mining operations are prohibited or limited.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Areas where surface coal mining operations are....11 Areas where surface coal mining operations are prohibited or limited. You may not conduct surface coal mining operations on the following lands unless you either have valid existing rights, as...

  8. 75 FR 69617 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... 1219-AB64 Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust... hearings on the proposed rule addressing Lowering Miners' Exposure to Respirable Coal Mine Dust, Including... miners' exposure to respirable coal mine dust by revising the Agency's existing standards on miners...

  9. 78 FR 45566 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Coal Mine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-29

    ... for OMB Review; Comment Request; Coal Mine Dust Sampling Devices ACTION: Notice. SUMMARY: The... information collection request (ICR) titled, ``Coal Mine Dust Sampling Devices,'' to the Office of Management...) determine the concentration of respirable dust in coal mines. CPDMs must be designed and constructed for...

  10. 30 CFR 910.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 910.764 Section 910.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE GEORGIA § 910.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...

  11. 76 FR 10070 - Division of Coal Mine Workers' Compensation; Proposed Extension of Existing Collection; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... DEPARTMENT OF LABOR Office of Workers' Compensation Programs Division of Coal Mine Workers... Rereading (CM-933b), Medical History and Examination for Coal Mine Workers' Pneumoconiosis (CM-988), Report... interpretation of x-rays. When a miner applies for benefits, the Division of Coal Mine Workers' Compensation...

  12. 30 CFR 912.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 912.764 Section 912.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE IDAHO § 912.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...

  13. 76 FR 11187 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety Standards... rule addressing Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health..., and weekly examinations of underground coal mines. This extension gives commenters an additional 30...

  14. 76 FR 2617 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... 1219-AB64 Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust... comment period on the proposed rule addressing Lowering Miners' Exposure to Respirable Coal Mine Dust...), MSHA published a proposed rule, Lowering Miners' Exposure to Respirable Coal Mine Dust, Including...

  15. 30 CFR 761.11 - Areas where surface coal mining operations are prohibited or limited.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Areas where surface coal mining operations are....11 Areas where surface coal mining operations are prohibited or limited. You may not conduct surface coal mining operations on the following lands unless you either have valid existing rights, as...

  16. 30 CFR 903.764 - Process for designating areas unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 903.764 Section 903.764 Mineral Resources OFFICE OF SURFACE MINING... WITHIN EACH STATE ARIZONA § 903.764 Process for designating areas unsuitable for surface coal mining operations. Part 764 of this chapter, State Processes for Designating Areas Unsuitable for Surface Coal...

  17. Mechanised spraying device a novel technology for spraying fire protective coating material in the benches of opencast coal mines for preventing spontaneous combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.V.K. Singh; V.K. Singh

    2004-10-15

    Spontaneous combustion in coal mines plays a vital role in occurrences of fire. Fire in coal, particularly in opencast mines, not only causes irreparable loss of national wealth but damages the surface structure and pollutes the environment. The problem of spontaneous combustion/fire in opencast coal benches is acute. Presently over 75% of the total production of coal in Indian mines is being carried out by opencast mining. Accordingly a mechanised spraying device has been developed for spraying the fire protective coating material for preventing spontaneous combustion in coal benches of opencast mines jointly by Central Mining Research Institute, Dhanbad andmore » M/s Signum Fire Protection (India) Pvt. Ltd., Nagpur under Science & Technology (S&T) project funded by Ministry of Coal, Govt. of India. The objective of this paper is to describe in detail about the mechanised spraying device and its application for spraying fire protective coating material in the benches of opencast coal mines for preventing spontaneous combustion/fire.« less

  18. Study on the transformed strategy of “life field” for aged in coal mine community——A case sstudy of ccommunity rrenewal ddesign of Sihe coal mine in Jincheng, Shanxi

    NASA Astrophysics Data System (ADS)

    Xue, Minghui; Wang, Chenghao; Zhang, Shanshan

    2017-06-01

    Coal mine community is driven by the coal mine industry, and it mainly relies on coal mining enterprises to provide benefits for residents. Under the background of increasing serious global aging problem, the problems in the field of elderly people’s health, life, entertainment, communication, retirement and re-employment and other aspects become more acute and urgently to be solved. So it is necessary to make a more detailed study on how to transform the coal mine community according to the special needs of the elderly miners. This article takes renewal design of SiHe coal mine in JinCheng of ShanXi province as an example and takes the community’s “life field” as a clue, trying to put forward the transformed strategy of “life field” for aged in coal mine community and to come up with a method to update the community throughout the whole atmosphere to the personal space.

  19. Method of underground mining by pillar extraction

    DOEpatents

    Bowen, Ray J.; Bowen, William R.

    1980-08-12

    A method of sublevel caving and pillar and top coal extraction for mining thick coal seams includes the advance mining of rooms and crosscuts along the bottom of a seam to a height of about eight feet, and the retreat mining of the top coal from the rooms, crosscuts and portions of the pillars remaining from formation of the rooms and cross-cuts. In the retreat mining, a pocket is formed in a pillar, the top coal above the pocket is drilled, charged and shot, and then the fallen coal is loaded by a continuous miner so that the operator remains under a roof which has not been shot. The top coal from that portion of the room adjacent the pocket is then mined, and another pocket is formed in the pillar. The top coal above the second pocket is mined followed by the mining of the top coal of that portion of the room adjacent the second pocket, all by use of a continuous miner which allows the operator to remain under a roof portion which has not been shot.

  20. Difference in rockburst hazard in ore and coal mines

    NASA Astrophysics Data System (ADS)

    Lovchikov, AV

    2018-03-01

    In the Russian mining and engineering literature, in most cases, there is no difference in the assessment of the rockburst hazards in metal and coal mines. Nevertheless, it exists, in view of the difference in geological and geotechnical conditions of coal and ore deposits. Since ore deposits occur in the solid magmatic or metamorphic rock masses, the strongest induced earthquakes are much more powerful in ore mines than in coal mines. The main difference of rockbursting lies in the difference of natural stress state: gravity stress state in the coal fields and gravity-and-tectonic stress state in ore mines. The actual stresses are mostly vertical in the first case and horizontal in the second case, which conditions the difference in rockburst hazard in coal and ore mines.

  1. Long Term Monitoring of Ground Motions in Upper Silesia Coal Basin (USCB) Using Satellite Radar Interferometry

    NASA Astrophysics Data System (ADS)

    Graniczny, Marek; Przylucka, Maria; Kowalski, Zbigniew

    2016-08-01

    Subsidence hazard and risk within the USCB are usually connected with the deep coal mining. In such cases, the surface becomes pitted with numerous collapse cavities or basins which depth may even reach tens of meters. The subsidence is particularly dangerous because of causing severe damage to gas and water pipelines, electric cables, and to sewage disposal systems. The PGI has performed various analysis of InSAR data in this area, including all three SAR bands (X, C and L) processed by DInSAR, PSInSAR and SqueeSAR techniques. These analyses of both conventional and advanced DInSAR approaches have proven to be effective to detect the extent and the magnitude of mining subsidence impact on urban areas. In this study an analysis of two series of subsequent differential interferograms obtained in the DInSAR technique are presented. SAR scenes are covering two periods and were acquired by two different satellites: ALOS-P ALSAR data from 22/02/2007- 27/05/2008 and TerraSAR-X data from 05/07/2011-21/06/2012. The analysis included determination of the direction and development of subsidence movement in relation to the mining front and statistic comparison between range and value of maximum subsidence detected for each mining area. Detailed studies were performed for Bobrek-Centrum mining area. They included comparison of mining fronts and location of the extracted coal seams with the observed subsidence on ALOS-P ALSAR InSAR interferograms. The data can help in estimation not only the range of the subsidence events, but also its value, direction of changes and character of the motion.

  2. 78 FR 45972 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; High...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... Coal Mines ACTION: Notice. SUMMARY: The Department of Labor (DOL) is submitting the Mine Safety and... Continuous Mining Machines Standards for Underground Coal Mines,'' to the Office of Management and Budget... continuous mining machines (HVCMM) in underground coal mines by requiring records of testing, examination and...

  3. From in-situ coal to fly ash: A study of coal mines and power plants from Indiana

    USGS Publications Warehouse

    Mastalerz, Maria; Hower, J.C.; Drobniak, A.; Mardon, S.M.; Lis, G.

    2004-01-01

    This paper presents data on the properties of coal and fly ash from two coal mines and two power plants that burn single-source coal from two mines in Indiana. One mine is in the low-sulfur (5%) Springfield Coal Member of the Petersburg Formation (Pennsylvanian). Both seams have comparable ash contents (???11%). Coals sampled at the mines (both raw and washed fractions) were analyzed for proximate/ultimate/sulfur forms/heating value, major oxides, trace elements and petrographic composition. The properties of fly ash from these coals reflect the properties of the feed coal, as well as local combustion and post-combustion conditions. Sulfur and spinel content, and As, Pb and Zn concentrations of the fly ash are the parameters that most closely reflect the properties of the source coal. ?? 2004 Elsevier B.V. All rights reserved.

  4. Virginia big-eared bats (Corynorhinus townsendii virginianus) roosting in abandoned coal mines in West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.B.; Edwards, J.W.; Wood, P.B.

    We surveyed bats at 36 abandoned coal mines during summer 2002 and 47 mines during fall 2002 at New River Gorge National River and Gauley River National Recreation Area, WV. During summer, we captured three federally endangered Virginia big-eared bats at two mine entrances, and 25 were captured at 12 mine entrances during fall. These represent the first documented captures of this species at coal mines in West Virginia. Future survey efforts conducted throughout the range of the Virginia big-eared bat should include abandoned coal mines.

  5. Proceedings of Office of Surface Mining Coal Combustion By-product Government/Regulatory Panel: University of Kentucky international ash utilization symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vories, K.C.

    2003-07-01

    Short papers are given on: the Coal Combustion Program (C2P2) (J. Glenn); regional environmental concerns with disposal of coal combustion wastes at mines (T. FitzGerald); power plant waste mine filling - an environmental perspective (L.G. Evans); utility industry perspective regarding coal combustion product management and regulation (J. Roewer); coal combustion products opportunities for beneficial use (D.C. Goss); state perspective on mine placement of coal combustion by-products (G.E. Conrad); Texas regulations provide for beneficial use of coal combustion ash (S.S. Ferguson); and the Surface Mining Control and Reclamation Act - a response to concerns about placement of CCBs at coal minemore » sites (K.C. Vories). The questions and answers are also included.« less

  6. Characterization of seven United States coal regions. The development of optimal terrace pit coal mining systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wimer, R.L.; Adams, M.A.; Jurich, D.M.

    1981-02-01

    This report characterizes seven United State coal regions in the Northern Great Plains, Rocky Mountain, Interior, and Gulf Coast coal provinces. Descriptions include those of the Fort Union, Powder River, Green River, Four Corners, Lower Missouri, Illinois Basin, and Texas Gulf coal resource regions. The resource characterizations describe geologic, geographic, hydrologic, environmental and climatological conditions of each region, coal ranks and qualities, extent of reserves, reclamation requirements, and current mining activities. The report was compiled as a basis for the development of hypothetical coal mining situations for comparison of conventional and terrace pit surface mining methods, under contract to themore » Department of Energy, Contract No. DE-AC01-79ET10023, entitled The Development of Optimal Terrace Pit Coal Mining Systems.« less

  7. State summaries: Kentucky

    USGS Publications Warehouse

    Greb, S.F.; Anderson, W.H.

    2006-01-01

    Kentucky mines coal, limestone, clay, sand and gravel. Coal mining operations are carried out mainly in the Western Kentucky Coal Field and the Eastern Kentucky Coal field. As to nonfuel minerals, Mississippian limestones are mined in the Mississippian Plateaus Region and along Pine Mountain in southeastern Kentucky. Ordovician and Silurian limestones are mined from the central part of the state. Clay minerals that are mined in the state include common clay, ceramic and ball clays, refractory clay and shale. Just like in 2004, mining activities in the state remain significant.

  8. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  9. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  10. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  11. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  12. 76 FR 25277 - Examinations of Work Areas in Underground Coal Mines and Pattern of Violations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ..., 1219-AB73 Examinations of Work Areas in Underground Coal Mines and Pattern of Violations AGENCY: Mine... four public hearings on the Agency's proposed rules for Examinations of Work Areas in Underground Coal... 1219-AB75'' for Examinations of Work Areas in Underground Coal Mines' submissions, and with ``RIN 1219...

  13. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  14. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  15. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  16. 29 CFR 570.60 - Occupations in connection with mining, other than coal (Order 9).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Occupations in connection with mining, other than coal... Health or Well-Being § 570.60 Occupations in connection with mining, other than coal (Order 9). (a) Finding and declaration of fact. All occupations in connection with mining, other than coal, are...

  17. 26 CFR 1.187-1 - Amortization of certain coal mine safety equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 3 2013-04-01 2013-04-01 false Amortization of certain coal mine safety... Corporations (continued) § 1.187-1 Amortization of certain coal mine safety equipment. (a) Allowance of... coal mine safety equipment (as defined in § 1.187-2), based on a period of 60 months. Such 60-month...

  18. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  19. 26 CFR 1.187-1 - Amortization of certain coal mine safety equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Amortization of certain coal mine safety... Corporations (continued) § 1.187-1 Amortization of certain coal mine safety equipment. (a) Allowance of... coal mine safety equipment (as defined in § 1.187-2), based on a period of 60 months. Such 60-month...

  20. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  1. 26 CFR 1.187-1 - Amortization of certain coal mine safety equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Amortization of certain coal mine safety... Corporations (continued) § 1.187-1 Amortization of certain coal mine safety equipment. (a) Allowance of... coal mine safety equipment (as defined in § 1.187-2), based on a period of 60 months. Such 60-month...

  2. 26 CFR 1.187-1 - Amortization of certain coal mine safety equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Amortization of certain coal mine safety... (continued) § 1.187-1 Amortization of certain coal mine safety equipment. (a) Allowance of deduction—(1) In... respect to the amortization of the adjusted basis (for determining gain) of any certified coal mine safety...

  3. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... removed from the disposal area prior to placement of coal mine waste. Topsoil shall be removed, segregated...

  4. 29 CFR 570.53 - Coal-mine occupations (Order 3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Coal-mine occupations (Order 3). 570.53 Section 570.53... § 570.53 Coal-mine occupations (Order 3). (a) Finding and declaration of fact. All occupations in or about any coal mine, except the occupation of slate or other refuse picking at a picking table or...

  5. 29 CFR 570.60 - Occupations in connection with mining, other than coal (Order 9).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Occupations in connection with mining, other than coal... Health or Well-Being § 570.60 Occupations in connection with mining, other than coal (Order 9). (a) Finding and declaration of fact. All occupations in connection with mining, other than coal, are...

  6. 29 CFR 570.53 - Coal-mine occupations (Order 3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Coal-mine occupations (Order 3). 570.53 Section 570.53... § 570.53 Coal-mine occupations (Order 3). (a) Finding and declaration of fact. All occupations in or about any coal mine, except the occupation of slate or other refuse picking at a picking table or...

  7. 29 CFR 570.53 - Coal-mine occupations (Order 3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Coal-mine occupations (Order 3). 570.53 Section 570.53... § 570.53 Coal-mine occupations (Order 3). (a) Finding and declaration of fact. All occupations in or about any coal mine, except the occupation of slate or other refuse picking at a picking table or...

  8. 26 CFR 1.187-1 - Amortization of certain coal mine safety equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 3 2011-04-01 2011-04-01 false Amortization of certain coal mine safety... Corporations (continued) § 1.187-1 Amortization of certain coal mine safety equipment. (a) Allowance of... coal mine safety equipment (as defined in § 1.187-2), based on a period of 60 months. Such 60-month...

  9. 29 CFR 570.60 - Occupations in connection with mining, other than coal (Order 9).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Occupations in connection with mining, other than coal... Health or Well-Being § 570.60 Occupations in connection with mining, other than coal (Order 9). (a) Finding and declaration of fact. All occupations in connection with mining, other than coal, are...

  10. 29 CFR 570.53 - Coal-mine occupations (Order 3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Coal-mine occupations (Order 3). 570.53 Section 570.53... § 570.53 Coal-mine occupations (Order 3). (a) Finding and declaration of fact. All occupations in or about any coal mine, except the occupation of slate or other refuse picking at a picking table or...

  11. 29 CFR 570.53 - Coal-mine occupations (Order 3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Coal-mine occupations (Order 3). 570.53 Section 570.53... § 570.53 Coal-mine occupations (Order 3). (a) Finding and declaration of fact. All occupations in or about any coal mine, except the occupation of slate or other refuse picking at a picking table or...

  12. 20 CFR 725.202 - Miner defined; condition of entitlement, miner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED CLAIMS FOR BENEFITS UNDER PART C..., preparation, or transportation of coal, and any person who works or has worked in coal mine construction or... transportation of coal while working at the mine site, or in maintenance or construction of the mine site; or (2...

  13. 20 CFR 725.202 - Miner defined; condition of entitlement, miner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED CLAIMS FOR BENEFITS UNDER PART C..., preparation, or transportation of coal, and any person who works or has worked in coal mine construction or... transportation of coal while working at the mine site, or in maintenance or construction of the mine site; or (2...

  14. 20 CFR 725.202 - Miner defined; condition of entitlement, miner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED CLAIMS FOR BENEFITS UNDER PART C OF..., preparation, or transportation of coal, and any person who works or has worked in coal mine construction or... transportation of coal while working at the mine site, or in maintenance or construction of the mine site; or (2...

  15. 20 CFR 725.202 - Miner defined; condition of entitlement, miner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED CLAIMS FOR BENEFITS UNDER PART C..., preparation, or transportation of coal, and any person who works or has worked in coal mine construction or... transportation of coal while working at the mine site, or in maintenance or construction of the mine site; or (2...

  16. 20 CFR 725.202 - Miner defined; condition of entitlement, miner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED CLAIMS FOR BENEFITS UNDER PART C..., preparation, or transportation of coal, and any person who works or has worked in coal mine construction or... transportation of coal while working at the mine site, or in maintenance or construction of the mine site; or (2...

  17. 76 FR 4469 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Records, 09-20-0153, ``Mortality Studies in Coal Mining, Metal and Non-metal Mining and General Industry... Coal Mining, Metal and Non-metal Mining and General Industry, HHS/CDC/NIOSH.'' The purpose of this... Occupational Safety and Health (NIOSH) Mortality Studies in Coal Mining, Metal and Non-Metal Mining and General...

  18. 30 CFR 71.220 - Status change reports.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sampling... status of the mine or designated work position to the MSHA District Office or to any other MSHA office...

  19. 78 FR 64537 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Coal Mine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... for OMB Review; Comment Request; Coal Mine Rescue Teams: Arrangements for Emergency Medical Assistance... Administration (MSHA) sponsored information collection request (ICR) titled, ``Coal Mine Rescue Teams... mine rescue team requirements; reporting to the MSHA alternative mine rescue capability for a small and...

  20. Study on dynamic multi-objective approach considering coal and water conflict in large scale coal group

    NASA Astrophysics Data System (ADS)

    Feng, Qing; Lu, Li

    2018-01-01

    In the process of coal mining, destruction and pollution of groundwater in has reached an imminent time, and groundwater is not only related to the ecological environment, but also affect the health of human life. Similarly, coal and water conflict is still one of the world's problems in large scale coal mining regions. Based on this, this paper presents a dynamic multi-objective optimization model to deal with the conflict of the coal and water in the coal group with multiple subordinate collieries and arrive at a comprehensive arrangement to achieve environmentally friendly coal mining strategy. Through calculation, this paper draws the output of each subordinate coal mine. And on this basis, we continue to adjust the environmental protection parameters to compare the coal production at different collieries at different stages under different attitude of the government. At last, the paper conclude that, in either case, it is the first arrangement to give priority to the production of low-drainage, high-yield coal mines.

  1. Yesterday's forest, tomorrow's savannah? Legacies in the man-made hills of Appalachia

    NASA Astrophysics Data System (ADS)

    Ross, M. R. V.; Nippgen, F.; McGlynn, B. L.; Bernhardt, E. S.

    2017-12-01

    Mountaintop removal coal mines have converted more than 6,000 km2 of the steep forested valleys of Central Appalachian into a landscape of rolling hills covered by shrubby grasslands. These landscapes were created as a byproduct of extracting shallow coal seams from beneath hundreds of meters of overlying bedrock. Once broken apart by explosives, this excess rock overburden is deposited into valley fills and incorporated into reconstructed ridges. The landscapes left behind after mining are flattened and overlies highly fractured fill material that can be 100-fold deeper than natural soil. This fractured bedrock material can store 2-10 years worth of average precipitation, where any stored water is in contact with a reactive mix of unweathered carbonate bedrock and pyrite rich coal and shale residues. As a result, mountaintop mined watersheds have novel hydrologic and biogeochemical regimes with increases in baseflow and extremely rapid weathering that increases salinity by 10-25-fold. To date, little research has characterized the longevity of these impacts. We employed a combination of remote sensing and hydrologic watershed monitoring approaches to examine the long-term and linked changes in vegetation, hydrology, and water quality in a post-mine landscapes that were constructed between 1990 and 2016. We find that forest recovery on mountaintop mines progresses at half the rate of forest regrowth following clearcutting with persistent low canopy-height sections, consistent more with grasslands than forests. These vegetative changes are associated with decreases in runoff ratios as mines age and water moves through flatter, vegetated landscapes. However, vegetation change appears to be uncoupled from biogeochemical processes, with saline mine drainage persisting for decades, even as vegetation regrows. Our work suggests that time-since-mining of a watershed does not predict downstream water quality, while total valley fill volume remains a strong predictor of mean salinity and total weathering rates. This research highlights the importance of understanding how deep changes to a landscape alters the basic hydrology and biogeochemistry over years to decades.

  2. Protective and control relays as coal-mine power-supply ACS subsystem

    NASA Astrophysics Data System (ADS)

    Kostin, V. N.; Minakova, T. E.

    2017-10-01

    The paper presents instantaneous selective short-circuit protection for the cabling of the underground part of a coal mine and central control algorithms as a Coal-Mine Power-Supply ACS Subsystem. In order to improve the reliability of electricity supply and reduce the mining equipment down-time, a dual channel relay protection and central control system is proposed as a subsystem of the coal-mine power-supply automated control system (PS ACS).

  3. Comparison of Mortality Disparities in Central Appalachian Coal- and Non-Coal-Mining Counties.

    PubMed

    Woolley, Shannon M; Meacham, Susan L; Balmert, Lauren C; Talbott, Evelyn O; Buchanich, Jeanine M

    2015-06-01

    Determine whether select cause of death mortality disparities in four Appalachian regions is associated with coal mining or other factors. We calculated direct age-adjusted mortality rates and associated 95% confidence intervals by sex and study group for each cause of death over 5-year time periods from 1960 to 2009 and compared mean demographic and socioeconomic values between study groups via two-sample t tests. Compared with non-coal-mining areas, we found higher rates of poverty in West Virginia and Virginia (VA) coal counties. All-cause mortality rates for males and females were higher in coal counties across all time periods. Virginia coal counties had statistically significant excesses for many causes of death. We found elevated mortality and poverty rates in coal-mining compared with non-coal-mining areas of West Virginia and VA. Future research should examine these findings in more detail at the individual level.

  4. Fate of the naturally occurring radioactive materials during treatment of acid mine drainage with coal fly ash and aluminium hydroxide.

    PubMed

    Madzivire, Godfrey; Maleka, Peane P; Vadapalli, Viswanath R K; Gitari, Wilson M; Lindsay, Robert; Petrik, Leslie F

    2014-01-15

    Mining of coal is very extensive and coal is mainly used to produce electricity. Coal power stations generate huge amounts of coal fly ash of which a small amount is used in the construction industry. Mining exposes pyrite containing rocks to H2O and O2. This results in the oxidation of FeS2 to form H2SO4. The acidic water, often termed acid mine drainage (AMD), causes dissolution of potentially toxic elements such as, Fe, Al, Mn and naturally occurring radioactive materials such as U and Th from the associated bedrock. This results in an outflow of AMD with high concentrations of sulphate ions, Fe, Al, Mn and naturally occurring radioactive materials. Treatment of AMD with coal fly ash has shown that good quality water can be produced which is suitable for irrigation purposes. Most of the potentially toxic elements (Fe, Al, Mn, etc) and substantial amounts of sulphate ions are removed during treatment with coal fly ash. This research endeavours to establish the fate of the radioactive materials in mine water with coal fly ash containing radioactive materials. It was established that coal fly ash treatment method was capable of removing radioactive materials from mine water to within the target water quality range for drinking water standards. The alpha and beta radioactivity of the mine water was reduced by 88% and 75% respectively. The reduced radioactivity in the mine water was due to greater than 90% removal of U and Th radioactive materials from the mine water after treatment with coal fly ash as ThO2 and UO2. No radioisotopes were found to leach from the coal fly ash into the mine water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. 30 CFR 77.207 - Illumination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface Installations § 77.207 Illumination. Illumination sufficient to provide safe working conditions shall be...

  6. 78 FR 26739 - Notice of Final Action on Petition From Earthjustice To List Coal Mines as a Source Category and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... Action on Petition From Earthjustice To List Coal Mines as a Source Category and To Regulate Air Emissions From Coal Mines AGENCY: Environmental Protection Agency (EPA). ACTION: Denial of petition for... Perciasepe, signed a letter denying a petition to add coal mines to the Clean Air Act (CAA) section 111 list...

  7. 75 FR 52355 - A Review of Information Published Since 1995 on Coal Mine Dust Exposures and Associated Health...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... NIOSH-210] A Review of Information Published Since 1995 on Coal Mine Dust Exposures and Associated... Intelligence Bulletin entitled ``A Review of Information Published Since 1995 on Coal Mine Dust Exposures and... document updates and supports the coal mine dust Recommended Exposure Limit (REL) of 1 mg/m\\3\\ that was...

  8. 76 FR 45612 - Notice of Availability of the Buckskin Mine Hay Creek II Coal Lease-by-Application Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... the Wyoming portion of the decertified Powder River Federal Coal Production Region. The BLM is... Properties, Inc., to lease Federal coal near the Buckskin Mine approximately 12 miles north of Gillette... the revision to the Mineral Leasing Act (MLA) mining plan before the Federal coal can be mined. If the...

  9. Detection of Flooding Responses at the River Basin Scale Enhanced by Land use Change

    NASA Technical Reports Server (NTRS)

    McCormick, Brian C.; Eshleman, Keith N.; Griffith, Jeff L.; Townsend, Philip A.

    2009-01-01

    The Georges Creek watershed (area 187.5 sq km) in western Maryland (United States) has experienced land use changes (>17% of area) associated with surface mining of coal. The adjacent Savage River watershed (area 127.2 sq km) is unmined. Moments of flood frequency distributions indicated that climatic variability affected both watersheds similarly. Normalizing annual maximum flows by antecedent streamflow and causative precipitation helped identify trends in flooding response. Analysis of contemporary storm events using Next Generation Weather Radar (NEXRAD) stage III precipitation data showed that Georges Creek floods are characterized by higher peak runoff and a shorter centroid lag than Savage River floods, likely attributable to differences in current land use. Interestingly, Georges Creek produces only two thirds of the storm-flow volume as Savage River, apparently because of infiltration into abandoned deep mine workings and an associated transbasin diversion constructed circa 1900. Empirical trend analysis is thus complicated by both hydroclimatic variability and the legacy of deep mining in the basin.

  10. Oxygen transport and pyrite oxidation in unsaturated coal-mine spoil

    USGS Publications Warehouse

    Guo, Weixing; Cravotta, Charles A.

    1996-01-01

    An understanding of the mechanisms of oxygen (02) transport in unsaturated mine spoil is necessary to design and implement effective measures to exclude 02 from pyritic materials and to control the formation of acidic mine drainage. Partial pressure of oxygen (Po2) in pore gas, chemistry of pore water, and temperature were measured at different depths in unsaturated spoil at two reclaimed surface coal mines in Pennsylvania. At mine 1, where spoil was loose, blocky sandstone, Po2 changed little with depth, decreasing from 21 volume percent (vol%) at the ground surface to a minimum of about 18 vol% at 10 m depth. At mine 2, where spoil was compacted, friable shale, Po2 decreased to less than 2 vol% at depth of about 10 m. Although pore-water chemistry and temperature data indicate that acid-forming reactions were active at both mines, the pore-gas data indicate that mechanisms for 0 2 transport were different at each mine. A numerical model was developed to simulate 02 transport and pyrite oxidation in unsaturated mine spoil. The results of the numerical simulations indicate that differences in 02 transport at the two mines can be explained by differences in the air permeability of spoil. Po2 changes little with depth if advective transport of 02 dominates as at mine 1, but decreases greatly with depth if diffusive transport of 02 dominates, as in mine 2. Model results also indicate that advective transport becomes significant if the air permeability of spoil is greater than 10-9 m2, which is expected for blocky sandstone spoil. In the advective-dominant system, thermally-induced convective air flow, as a consequence of the exothermic oxidation of pyrite, supplies the 02 to maintain high Po2 within the deep unsaturated zone.

  11. Adaptive optimization as a design and management methodology for coal-mining enterprise in uncertain and volatile market environment - the conceptual framework

    NASA Astrophysics Data System (ADS)

    Mikhalchenko, V. V.; Rubanik, Yu T.

    2016-10-01

    The work is devoted to the problem of cost-effective adaptation of coal mines to the volatile and uncertain market conditions. Conceptually it can be achieved through alignment of the dynamic characteristics of the coal mining system and power spectrum of market demand for coal product. In practical terms, this ensures the viability and competitiveness of coal mines. Transformation of dynamic characteristics is to be done by changing the structure of production system as well as corporate, logistics and management processes. The proposed methods and algorithms of control are aimed at the development of the theoretical foundations of adaptive optimization as basic methodology for coal mine enterprise management in conditions of high variability and uncertainty of economic and natural environment. Implementation of the proposed methodology requires a revision of the basic principles of open coal mining enterprises design.

  12. Modified longwall mining with a German coal planer. Progress report 2. Completion of mining in three adjacent panels in Pocahontas No. 4 bed, Helen, West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haley, W.A.; Quenon, H.A.

    1954-01-01

    The progress of mechanical longwall coal mining in the United States is described in which a German coal planer was employed. Operating data of planer mining in three panels at the mine are summarized.

  13. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE...

  14. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE...

  15. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE...

  16. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE...

  17. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR SURFACE...

  18. Monitoring Metal Pollution Levels in Mine Wastes around a Coal Mine Site Using GIS

    NASA Astrophysics Data System (ADS)

    Sanliyuksel Yucel, D.; Yucel, M. A.; Ileri, B.

    2017-11-01

    In this case study, metal pollution levels in mine wastes at a coal mine site in Etili coal mine (Can coal basin, NW Turkey) are evaluated using geographical information system (GIS) tools. Etili coal mine was operated since the 1980s as an open pit. Acid mine drainage is the main environmental problem around the coal mine. The main environmental contamination source is mine wastes stored around the mine site. Mine wastes were dumped over an extensive area along the riverbeds, and are now abandoned. Mine waste samples were homogenously taken at 10 locations within the sampling area of 102.33 ha. The paste pH and electrical conductivity values of mine wastes ranged from 2.87 to 4.17 and 432 to 2430 μS/cm, respectively. Maximum Al, Fe, Mn, Pb, Zn and Ni concentrations of wastes were measured as 109300, 70600, 309.86, 115.2, 38 and 5.3 mg/kg, respectively. The Al, Fe and Pb concentrations of mine wastes are higher than world surface rock average values. The geochemical analysis results from the study area were presented in the form of maps. The GIS based environmental database will serve as a reference study for our future work.

  19. Investigation of Intrinsic and External Factors Contributing to the Occurrence of Coal Bumps in the Mining Area of Western Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, Hongwei; Jiang, Yaodong; Xue, Sheng; Pang, Xufeng; Lin, Zhinan; Deng, Daixin

    2017-04-01

    An investigation has been made to relate the occurrence of coal bumps to specific geological and mining conditions to the mining area of western Beijing. This investigation demonstrates that the high frequency of coal bumps in this area is due to four localized conditions, namely intrinsic coal properties, the presence of overturned strata and thrust faults, high in situ stress and the extraction of coal from island mining faces. Laboratory tests of coal samples indicated that the coals have a short duration of dynamic fracture, high bursting energy and high elastic strain energy, indicating that the coal is intrinsically prone to the occurrence of coal bumps. This investigation has also revealed that there are overturned strata and well-developed large- and medium-scale thrust faults in this area, and the presence of these structures results in plastic flow, severe discontinuities, rapid changes in overburden thickness and dipping of the coal seams. Well-developed secondary fold structures are also present in the axes and limbs of the primary folds. The instability of thrust faults, in combination with large-scale intrusion of igneous rocks, is closely associated with sudden roof breaking and induces sharp variations in electromagnetic radiation (EMR) and micro-seismic signals, which could be used to help predict coal bumps. In situ stress tests in the mining area demonstrate that the maximum and minimum principal stresses are nearly horizontal and that the intermediate principal stress is approximately vertical. The in situ stress level in the area is higher than the average in the Beijing area, North China and mainland China. In addition to the presence of overturned strata and thrust faults and high in situ stress levels, another external factor contributing to the frequency of coal bumps is coal extraction from island mining faces in this area. Island mining faces experience intermittent mining-induced abutment stress when a fault exists at one side of the island mining face due to reactivation of the fault, and this stress redistribution increases the likelihood of coal bumps during coal extraction from island mining faces.

  20. 30 CFR 77.1007 - Drilling; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Ground... each shift by a competent person. Equipment defects affecting safety shall be reported. (b) Equipment...

  1. 30 CFR 77.808 - Disconnecting devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.808 Disconnecting devices. Disconnecting devices shall be installed at the...

  2. ESTIMATE OF GLOBAL METHANE EMISSIONS FROM COAL MINES

    EPA Science Inventory

    Country-specific emissions of methane (CH4) from underground coal mines, surface coal mines, and coal crushing and transport operations are estimated for 1989. Emissions for individual countries are estimated by using two sets of regression equations (R2 values range from 0.56 to...

  3. Application of geostatistics to coal-resource characterization and mine planning. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, P.W.; Walton, D.R.; Martuneac, L.

    1981-12-01

    Geostatistics is a proven method of ore reserve estimation in many non-coal mining areas but little has been published concerning its application to coal resources. This report presents the case for using geostatistics for coal mining applications and describes how a coal mining concern can best utilize geostatistical techniques for coal resource characterization and mine planning. An overview of the theory of geostatistics is also presented. Many of the applications discussed are documented in case studies that are a part of the report. The results of an exhaustive literature search are presented and recommendations are made for needed future researchmore » and demonstration projects.« less

  4. Physical environment and hydrologic characteristics of coal-mining areas in Missouri

    USGS Publications Warehouse

    Vaill, J.E.; Barks, James H.

    1980-01-01

    Hydrologic information for the north-central and western coal-mining regions of Missouri is needed to define the hydrologic system in these areas of major historic and planned coal development. This report describes the physical setting, climate, coal-mining practices, general hydrologic system, and the current (1980) hydrologie data base in these two coal-mining regions. Streamflow in both mining regions is poorly sustained. Stream water quality generally varies with location and the magnitude of coal-mining activity in a watershed. Streams in non coal-mining areas generally have dissolved-solids concentrations less than 400 milligrams per liter. Acid-mine drainage has seriously affected some streams by reducing the pH to less than 4.0 and increasing the dissolved-solids concentrations to greater than 1,000 milligrams per liter. This has resulted in fish kills in some instances. Ground-water movement is impeded both laterally and vertically in both mining regions, especially in western Missouri, because of the low hydraulic conductivity of the rocks of Pennsylvanian age. The quality of ground water varies widely depending on location and depth. Ground water commonly contains high concentrations of iron and sulfate, and dissolved-solids concentrations generally are greater than 1,000 milligrams per liter.

  5. Potential minability and economic viability of the Antaramut-Kurtan-Dzoragukh coal field, north-central Armenia; a prefeasibility study

    USGS Publications Warehouse

    Huber, Douglas W.; Pierce, Brenda S.

    2000-01-01

    The U. S. Geological Survey (USGS) conducted a coal resource assessment of several areas in Armenia from 1997 to 1999. This report, which presents a prefeasibility study of the economic and mining potential of one coal deposit found and studied by the USGS team, was prepared using all data available at the time of the study and the results of the USGS exploratory work, including core drilling, trenching, coal quality analyses, and other ongoing field work. On the basis of information currently available, it is the authors? opinion that a small surface coal mine having about a 20-year life span could be developed in the Antaramut-Kurtan-Dzoragukh coal field, specifically at the Dzoragukh site. The mining organization selected or created to establish the mine will need to conduct necessary development drilling and other work to establish the final feasibility study for the mine. The company will need to be entrepreneurial, profit oriented, and sensitive to the coal consumer; have an analytical management staff; and focus on employee training, safety, and protection of the environment. It is anticipated that any interested parties will be required to submit detailed mining plans to the appropriate Armenian Government agencies. Further development work will be required to reach a final decision regarding the economic feasibility of the mine. However, available information indicates that a small, economic surface mine can be developed at this locality. The small mine suggested is a typical surface-outcropstripping, contour mining operation. In addition, auger mining is strongly suggested, because the recovery of these low-cost mining reserves will help to ensure that the operation will be a viable, economic enterprise. (Auger mining is a system in which large-diameter boreholes are placed horizontally into the coal seam at the final highwall set as the economic limit for the surface mining operation). A special horizontal boring machine, which can be imported from Russia, is required for auger mining. Although auger-mining coal reserves do exist, the necessary development work will further verify the extent of these reserves and all of the other indicated reserves. The following items are based on the detailed study reported in this publication. Initial investment.?Following an investment of US $85,000 over a 12-month period in mine development drilling and other activities, a decision must be taken regarding further investment in an ongoing mining operation. If the new data support the opening of the surface mine, __________________________ 1Consultant, 6024 Morning Dew Drive, Austin, TX 78749. 2 U.S. Geological Survey, 956 National Center, Reston, VA 20192 1 2 MINABILITY AND ECONOMIC VIABILITY, ANTARAMUT-KURTAN-DZORAGUKH COAL FIELD the $85,000 development cost is amortized over the first 10 years of mine production. If the new data do not support the opening of the mine, the $85,000 is considered a business development expense that may be written off against profits from other operations for income or other tax purposes or simply as a business loss. Total capital required.?The equipment costs will reach a total of $900,500 which will be amortized over a 7-year period to establish estimated coal mining costs. Estimated working capital costs are $300,000, which will be borrowed. Surface mining reserves.?Approximately 840,200 metric tonnes of surface minable coal reserves at 9.3 m3 of overburden per metric tonne of minable coal is indicated. Recovery of the minable coal at 85 percent will yield 714,000 recoverable metric tonnes of marketable as-mined coal. Auger mining reserves.?Auger-mining reserves of 576,000 metric tonnes are indicated. Recoverable auger-mining reserves of 202,000 metric tonnes (at 35-percent recovery) can be expected. Auger-mining production will vary according to the hole size being used, but, in either case, augering is a very profitable addition to the mining oper

  6. 30 CFR 77.1001 - Stripping; loose material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....1001 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES... angle of repose, or barriers, baffle boards, screens, or other devices be provided that afford...

  7. 30 CFR 77.1434 - Retirement criteria.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Personnel... corrosion; (e) Distortion of the rope structure; (f) Heat damage from any source; (g) Diameter reduction due...

  8. 30 CFR 77.403-2 - Incorporation by reference.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....403-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL... been prepared by organizations other than the Mine Safety and Health Administration (MSHA), are hereby...

  9. 30 CFR 77.403-2 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....403-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL... been prepared by organizations other than the Mine Safety and Health Administration (MSHA), are hereby...

  10. 30 CFR 77.100 - Certified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Qualified and... independent contractor shall make an application which satisfactorily shows that each such person has had at...

  11. 30 CFR 77.512 - Inspection and cover plates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....512 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES... equipment shall be kept in place at all times except during testing or repairs. ...

  12. Hydrology of area 59, northern Great Plains and Rocky Mountain coal provinces, Colorado and Wyoming

    USGS Publications Warehouse

    Gaggiani, Neville G.; Britton, Linda J.; Minges, Donald R.; Kilpatrick, F.A.; Parker, Randolph S.; Kircher, James E.

    1987-01-01

    Hydrologic information and analysis aid in decisions to lease federally owned coal and to prepare necessary Environmental Assessments and Impact Study reports. This need has become even more critical with the enactment of Public Law 95-87, the "Surface Mining Control and Reclamation Act of 1977." This act requires an appropriate regulatory agency to issue permits, based on the review of permit-application data to assess hydrologic impacts. This report, which partially fulfills this requirement, is one in a series of nationwide coal province reports that present information thematically, through the use of a brief text and accompanying maps, graphs, charts, or other illustrations for single hydrologic topics. The report broadly characterizes the hydrology of Area 59 in north-central Colorado and southeastern Wyoming.The report area, located within the South Platte River basin, covers a 16,000-square-mile area of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics.The South Platte River, the major stream in the area, and most of its tributaries originate in granitic mountains and flow into and through the sedimentary rocks of the Great Plains. Altitudes range from less than 5,000 feet to more than 14,000 feet above sea level. Precipitation in the mountains may exceed 40 inches annually, much of it during the winter, and produces deep snowpacks. Snowmelt during the spring and summer produces most streamflow. Transmountain diversion of water from the streams on the western slope of the mountains also adds to the streamflow. Precipitation in the plains is as little as 10 inches annually. Streams that originate in the plains are ephemeral.Streamflow quality is best in the mountains, where dissolved-solids concentrations are generally small. Concentrations increase in the plains as streams flow through sedimentary basins, and as urbanization and irrigation increase. The quality of some mountain streams is affected by drainage from previous metalmining areas, as indicated by greater trace-element concentrations and smaller pH values. However, the large trace-element concentrations decrease rapidly downstream from the metal-mining areas. Because the climate is semiarid in most of the area, the soils are not adequately leached; therefore, flows in ephemeral streams usually have larger concentrations of dissolved solids than flows in perennial streams.Ground water is available throughout the area; yields range from less than 0.1 gallons per minute in the fractured granite aquifer in the mountains to more than 2,000 gallons per minute in the alluvial aquifer of the South Platte River valley. Major bedrock aquifers in order of decreasing age are the Laramie-Fox Hills, Arapahoe, Denver, and Dawson; these aquifers are used for municipal, domestic, and livestock supplies. Alluvial aquifers supply the high-yield irrigation wells.The best quality ground water is found at the center of the major bedrock aquifers, where dissolved-solids concentrations are less than 200 milligrams per liter. The poorest-quality water is usually found near the edges of these aquifers. Water in the coal-bearing Laramie and Denver Formations is locally affected by coal deposits, causing dissolved-solids concentrations to be relatively large.Only one coal mine is now operating in Area 59, the Coors Energy Company surface coal mine, which produced 100,000 short tons of subbituminous coal from the Upper Cretaceous Laramie Formation in 1982. Past coal-mining operations removed more than 130 million tons of coal and lignite from Area 59,99 percent of which came from underground mines. The largest coal production was in Weld and Boulder Counties, Colorado.Hydrologic problems related to surface mining are erosion, sedimentation, decline in water levels, disruption of aquifers, and degradation of water quality. Because the semiarid mine areas have very little runoff, and the major streams have large buffer and dilution capacities, the effects of mining on surface water is minimal. However, effects on ground water may be much more severe and long-lasting.

  13. 76 FR 4466 - Privacy Act of 1974; Report of Modified or Altered System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Records, 09-20-0149, ``Morbidity Studies in Coal Mining, Metal and Non-metal Mining and General Industry... Coal Mining, Metal and Non-metal Mining and General Industry, HHS/CDC/NIOSH.'' The purpose of this... Institute for Occupational Safety And Health (NIOSH) Morbidity Studies in Coal Mining, Metal and Non-Metal...

  14. The upper pennsylvanian pittsburgh coal bed: Resources and mine models

    USGS Publications Warehouse

    Watson, W.D.; Ruppert, L.F.; Tewalt, S.J.; Bragg, L.J.

    2001-01-01

    The U.S. Geological Survey recently completed a digital coal resource assessment model of the Upper Pennsylvanian Pittsburgh coal bed, which indicates that after subtracting minedout coal, 16 billion short tons (14 billion tonnes) remain of the original 34 billion short tons (31 billion tonnes) of coal. When technical, environmental, and social restrictions are applied to the remaining Pittsburgh coal model, only 12 billion short tons (11 billion tonnes) are available for mining. Our assessment models estimate that up to 0.61 billion short tons (0.55 billion tonnes), 2.7 billion short tons (2.4 billion tonnes), and 8.5 billion short tons (7.7 billion tonnes) could be available for surface mining, continuous mining, and longwall mining, respectively. This analysis is an example of a second-generation regional coal availability study designed to model recoverability characteristics for all the major coal beds in the United States. ?? 2001 International Association for Mathematical Geology.

  15. Tertiary coals in South Texas: Anomalous cannel-like coals of Webb County (Claiborne Group, Eocene) and lignites of Atascosa County (Jackson Group, Eocene) - Geologic setting, character, source-rock and coal-bed methane potential

    USGS Publications Warehouse

    Warwick, Peter D.; Aubourg, Claire E.; Willett, Jason C.

    1999-01-01

    The coal-bearing Gulf of Mexico Coastal Plain of North America contains a variety of depositional settings and coal types. The coal-bearing region extends westward from Alabama and Mississippi, across Louisiana to the northern part of the Mississippi Embayment, and then southward to eastern Arkansas, Texas and northern Mexico (fig. 1). Most of the coal currently mined in Texas is lignite from the upper part of the Wilcox Group (Paleocene-Eocene) and, in Louisiana, lignite is mined from the lower part of the Wilcox (fig. 2). Gulf Coast coal is used primarily as fuel for mine-mouth electric plants. On this field trip we will visit the only two non-Wilcox coal mining intervals in the Texas-Louisiana Coastal Plain; these include the San Pedro - Santo Tomas bituminous cannel-like coal zone of the Eocene Claiborne Group, and the San Miguel lignite coal zone of the Eocene Jackson Group (fig. 2). Other coal-mining areas in northern Mexico are currently producing bituminous coal from the Cretaceous Olmos Formation of the Navaro Group (fig. 2).

  16. 20 CFR 718.203 - Establishing relationship of pneumoconiosis to coal mine employment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... to coal mine employment. 718.203 Section 718.203 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL MINERS' TOTAL DISABILITY OR DEATH DUE TO PNEUMOCONIOSIS Determining Entitlement to Benefits...

  17. 30 CFR 77.313 - Wet-coal feedbins; low-level indicators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Wet-coal feedbins; low-level indicators. 77.313 Section 77.313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND...

  18. 30 CFR 77.313 - Wet-coal feedbins; low-level indicators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Wet-coal feedbins; low-level indicators. 77.313 Section 77.313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND...

  19. 20 CFR 718.203 - Establishing relationship of pneumoconiosis to coal mine employment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... to coal mine employment. 718.203 Section 718.203 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL MINERS' TOTAL DISABILITY OR DEATH DUE TO PNEUMOCONIOSIS Determining Entitlement to Benefits...

  20. 30 CFR 77.313 - Wet-coal feedbins; low-level indicators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Wet-coal feedbins; low-level indicators. 77.313 Section 77.313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND...

  1. 20 CFR 718.203 - Establishing relationship of pneumoconiosis to coal mine employment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to coal mine employment. 718.203 Section 718.203 Employees' Benefits EMPLOYMENT STANDARDS ADMINISTRATION, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL MINERS' TOTAL DISABILITY OR DEATH DUE TO PNEUMOCONIOSIS Determining Entitlement to Benefits...

  2. 30 CFR 77.313 - Wet-coal feedbins; low-level indicators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wet-coal feedbins; low-level indicators. 77.313 Section 77.313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND...

  3. 30 CFR 77.313 - Wet-coal feedbins; low-level indicators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Wet-coal feedbins; low-level indicators. 77.313 Section 77.313 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND...

  4. 43 CFR 3480.0-6 - Responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Federal Coal Mine Health and Safety Act of 1969, as amended (83 Stat. 742), and the coal mine health and... licenses for unleased Federal coal, the issuance of licenses to mine, and the issuance, readjustment, modification, termination, cancellation, and/or approval of transfers of Federal coal leases pursuant to MLA...

  5. 43 CFR 3480.0-6 - Responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Federal Coal Mine Health and Safety Act of 1969, as amended (83 Stat. 742), and the coal mine health and... licenses for unleased Federal coal, the issuance of licenses to mine, and the issuance, readjustment, modification, termination, cancellation, and/or approval of transfers of Federal coal leases pursuant to MLA...

  6. 30 CFR 773.4 - Requirements to obtain permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER... a State, no person shall engage in or carry out any surface coal mining operations, unless such... (b) of this section. A permittee need not renew the permit if no surface coal mining operations will...

  7. 30 CFR 773.4 - Requirements to obtain permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER... a State, no person shall engage in or carry out any surface coal mining operations, unless such... (b) of this section. A permittee need not renew the permit if no surface coal mining operations will...

  8. 30 CFR 773.4 - Requirements to obtain permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER... a State, no person shall engage in or carry out any surface coal mining operations, unless such... (b) of this section. A permittee need not renew the permit if no surface coal mining operations will...

  9. 30 CFR 773.4 - Requirements to obtain permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER... a State, no person shall engage in or carry out any surface coal mining operations, unless such... (b) of this section. A permittee need not renew the permit if no surface coal mining operations will...

  10. 30 CFR 77.1905 - Hoist safeguards; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....1905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES... when fully loaded. (b) When persons are transported by a hoist, a second person familiar with and...

  11. 30 CFR 72.510 - Miner health training.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Miner health training. 72.510 Section 72.510 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH HEALTH STANDARDS FOR COAL MINES Diesel Particulate Matter-Underground Areas of Underground Coal Mines...

  12. 30 CFR 72.510 - Miner health training.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Miner health training. 72.510 Section 72.510 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH HEALTH STANDARDS FOR COAL MINES Diesel Particulate Matter-Underground Areas of Underground Coal Mines...

  13. 30 CFR 72.510 - Miner health training.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Miner health training. 72.510 Section 72.510 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH HEALTH STANDARDS FOR COAL MINES Diesel Particulate Matter-Underground Areas of Underground Coal Mines...

  14. 30 CFR 72.510 - Miner health training.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Miner health training. 72.510 Section 72.510 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH HEALTH STANDARDS FOR COAL MINES Diesel Particulate Matter-Underground Areas of Underground Coal Mines...

  15. 30 CFR 72.510 - Miner health training.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Miner health training. 72.510 Section 72.510 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH HEALTH STANDARDS FOR COAL MINES Diesel Particulate Matter-Underground Areas of Underground Coal Mines...

  16. 30 CFR 71.209 - Respirable dust samples; transmission by operator.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operator. 71.209 Section 71.209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sampling Procedures § 71.209 Respirable dust samples; transmission by...

  17. 30 CFR 71.209 - Respirable dust samples; transmission by operator.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operator. 71.209 Section 71.209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sampling Procedures § 71.209 Respirable dust samples; transmission by...

  18. 30 CFR 71.209 - Respirable dust samples; transmission by operator.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operator. 71.209 Section 71.209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sampling Procedures § 71.209 Respirable dust samples; transmission by...

  19. 30 CFR 75.381 - Escapeways; anthracite mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....381 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.381 Escapeways; anthracite... by 5 feet high. If the pitch or thickness of the coal seam does not permit these dimensions to be...

  20. 30 CFR 75.1 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES General § 75.1 Scope. This part 75 sets forth safety standards compliance with which is mandatory in each underground coal mine subject to the Federal Mine Safety and Health Act...

  1. 30 CFR 75.1 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES General § 75.1 Scope. This part 75 sets forth safety standards compliance with which is mandatory in each underground coal mine subject to the Federal Mine Safety and Health Act...

  2. 30 CFR 75.1 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES General § 75.1 Scope. This part 75 sets forth safety standards compliance with which is mandatory in each underground coal mine subject to the Federal Mine Safety and Health Act...

  3. 30 CFR 75.1 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES General § 75.1 Scope. This part 75 sets forth safety standards compliance with which is mandatory in each underground coal mine subject to the Federal Mine Safety and Health Act...

  4. 30 CFR 75.1 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES General § 75.1 Scope. This part 75 sets forth safety standards compliance with which is mandatory in each underground coal mine subject to the Federal Mine Safety and Health Act...

  5. 30 CFR 77.1800 - Cutout switches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Trolley... be provided with cutout switches at intervals of not more than 2,000 feet and near the beginning of...

  6. 30 CFR 77.1906 - Hoists; daily inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....1906 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES... shall be run by the hoist operator through one complete cycle of operation before any person is...

  7. 30 CFR 33.1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.1... with rock drilling in coal mines to procure their certification as permissible for use in coal mines...

  8. 30 CFR 33.1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.1... with rock drilling in coal mines to procure their certification as permissible for use in coal mines...

  9. 30 CFR 33.1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.1... with rock drilling in coal mines to procure their certification as permissible for use in coal mines...

  10. 30 CFR 33.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.1... with rock drilling in coal mines to procure their certification as permissible for use in coal mines...

  11. 30 CFR 33.1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General Provisions § 33.1... with rock drilling in coal mines to procure their certification as permissible for use in coal mines...

  12. Coal resources, reserves and peak coal production in the United States

    USGS Publications Warehouse

    Milici, Robert C.; Flores, Romeo M.; Stricker, Gary D.

    2013-01-01

    In spite of its large endowment of coal resources, recent studies have indicated that United States coal production is destined to reach a maximum and begin an irreversible decline sometime during the middle of the current century. However, studies and assessments illustrating coal reserve data essential for making accurate forecasts of United States coal production have not been compiled on a national basis. As a result, there is a great deal of uncertainty in the accuracy of the production forecasts. A very large percentage of the coal mined in the United States comes from a few large-scale mines (mega-mines) in the Powder River Basin of Wyoming and Montana. Reported reserves at these mines do not account for future potential reserves or for future development of technology that may make coal classified currently as resources into reserves in the future. In order to maintain United States coal production at or near current levels for an extended period of time, existing mines will eventually have to increase their recoverable reserves and/or new large-scale mines will have to be opened elsewhere. Accordingly, in order to facilitate energy planning for the United States, this paper suggests that probabilistic assessments of the remaining coal reserves in the country would improve long range forecasts of coal production. As it is in United States coal assessment projects currently being conducted, a major priority of probabilistic assessments would be to identify the numbers and sizes of remaining large blocks of coal capable of supporting large-scale mining operations for extended periods of time and to conduct economic evaluations of those resources.

  13. Assessment of coal geology, resources, and reserves in the Montana Powder River Basin

    USGS Publications Warehouse

    Haacke, Jon E.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Gunderson, Jay A.

    2013-01-01

    The purpose of this report is to summarize geology, coal resources, and coal reserves in the Montana Powder River Basin assessment area in southeastern Montana. This report represents the fourth assessment area within the Powder River Basin to be evaluated in the continuing U.S. Geological Survey regional coal assessment program. There are four active coal mines in the Montana Powder River Basin assessment area: the Spring Creek and Decker Mines, both near Decker; the Rosebud Mine, near Colstrip; and the Absaloka Mine, west of Colstrip. During 2011, coal production from these four mines totaled approximately 36 million short tons. A fifth mine, the Big Sky, had significant production from 1969-2003; however, it is no longer in production and has since been reclaimed. Total coal production from all five mines in the Montana Powder River Basin assessment area from 1968 to 2011 was approximately 1.4 billion short tons. The Rosebud/Knobloch coal bed near Colstrip and the Anderson, Dietz 2, and Dietz 3 coal beds near Decker contain the largest deposits of surface minable, low-sulfur, subbituminous coal currently being mined in the assessment area. A total of 26 coal beds were identified during this assessment, 18 of which were modeled and evaluated to determine in-place coal resources. The total original coal resource in the Montana Powder River Basin assessment area for the 18 coal beds assessed was calculated to be 215 billion short tons. Available coal resources, which are part of the original coal resource remaining after subtracting restrictions and areas of burned coal, are about 162 billion short tons. Restrictions included railroads, Federal interstate highways, urban areas, alluvial valley floors, state parks, national forests, and mined-out areas. It was determined that 10 of the 18 coal beds had sufficient areal extent and thickness to be evaluated for recoverable surface resources ([Roland (Baker), Smith, Anderson, Dietz 2, Dietz 3, Canyon, Werner/Cook, Pawnee, Rosebud/Knobloch, and Flowers-Goodale]). These 10 coal beds total about 151 billion short tons of the 162 billion short tons of available resource; however, after applying a strip ratio of 10:1 or less, only 39 billion short tons remains of the 151 billion short tons. After mining and processing losses are subtracted from the 39 billion short tons, 35 billion short tons of coal were considered as a recoverable resource. Coal reserves (economically recoverable coal) are the portion of the recoverable coal resource that can be mined, processed, and marketed at a profit at the time of the economic evaluation. The surface coal reserve estimate for the 10 coal beds evaluated for the Montana Powder River assessment area is 13 billion short tons. It was also determined that about 42 billion short tons of underground coal resource exists in the Montana Powder River Basin assessment area; about 34 billion short tons (80 percent) are within 500-1,000 feet of the land surface and another 8 billion short tons are 1,000-2,000 feet beneath the land surface.

  14. Lung disease and coal mining: what pulmonologists need to know.

    PubMed

    Go, Leonard H T; Krefft, Silpa D; Cohen, Robert A; Rose, Cecile S

    2016-03-01

    Coal mine workers are at risk for a range of chronic respiratory diseases including coal workers' pneumoconiosis, diffuse dust-related fibrosis, and chronic obstructive pulmonary disease. The purpose of this review is to describe coal mining processes and associated exposures to inform the diagnostic evaluation of miners with respiratory symptoms. Although rates of coal workers' pneumoconiosis declined after regulations were enacted in the 1970s, more recent data shows a reversal in this downward trend. Rapidly progressive pneumoconiosis with progressive massive fibrosis (complicated coal workers' pneumoconiosis) is being observed with increased frequency in United States coal miners, with histologic findings of silicosis and mixed-dust pneumoconiosis. There is increasing evidence of decline in lung function in individuals with pneumoconiosis. Multiple recent cohort studies suggest increased risk of lung cancer in coal miners. A detailed understanding of coal mining methods and processes allows clinicians to better evaluate and confirm chronic lung diseases caused by inhalational hazards in the mine atmosphere.

  15. Restoring Forests and Associated Ecosystem Services on Appalachian Coal Surface Mines

    NASA Astrophysics Data System (ADS)

    Zipper, Carl E.; Burger, James A.; Skousen, Jeffrey G.; Angel, Patrick N.; Barton, Christopher D.; Davis, Victor; Franklin, Jennifer A.

    2011-05-01

    Surface coal mining in Appalachia has caused extensive replacement of forest with non-forested land cover, much of which is unmanaged and unproductive. Although forested ecosystems are valued by society for both marketable products and ecosystem services, forests have not been restored on most Appalachian mined lands because traditional reclamation practices, encouraged by regulatory policies, created conditions poorly suited for reforestation. Reclamation scientists have studied productive forests growing on older mine sites, established forest vegetation experimentally on recent mines, and identified mine reclamation practices that encourage forest vegetation re-establishment. Based on these findings, they developed a Forestry Reclamation Approach (FRA) that can be employed by coal mining firms to restore forest vegetation. Scientists and mine regulators, working collaboratively, have communicated the FRA to the coal industry and to regulatory enforcement personnel. Today, the FRA is used routinely by many coal mining firms, and thousands of mined hectares have been reclaimed to restore productive mine soils and planted with native forest trees. Reclamation of coal mines using the FRA is expected to restore these lands' capabilities to provide forest-based ecosystem services, such as wood production, atmospheric carbon sequestration, wildlife habitat, watershed protection, and water quality protection to a greater extent than conventional reclamation practices.

  16. Assessing the Impact of Removing Select Materials from Coal Mine Overburden, Central Appalachia Region, USA

    EPA Science Inventory

    The exposure of readily soluble components of overburden materials from surface coal mining to air and water results in mineral oxidation and carbonate mineral dissolution, thus increasing coal mine water conductivity. A conductivity benchmark of 300 µS/cm for mine water dischar...

  17. 30 CFR 90.220 - Status change reports.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Procedures § 90.201 Sampling; general and technical requirements. (a) An approved coal mine dust personal sampler unit (CMDPSU) shall be used to take samples of the concentration of respirable coal mine dust in...

  18. 30 CFR 71.220 - Status change reports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sampling Procedures § 71.220 Status change reports. (a) If there is a change in operational status that affects the...

  19. 76 FR 11284 - Agency Information Collection Activities; Submission for OMB Review; Comment Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... for OMB Review; Comment Request; Comparability of Current Work to Coal Mine Employment ACTION: Notice... mine work subsequent to coal mine employment, the miner or the miner's survivor is asked to complete Form CM-913 to compare coal mine work to non- [[Page 11285

  20. 30 CFR 77.1436 - Drum end attachment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Personnel... making one full turn around the shaft, if the drum is fixed to the shaft; or (3) By properly assembled...

  1. 30 CFR 71.404 - Application for waiver of surface facilities requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements. 71.404 Section 71.404 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS... Facilities at Surface Coal Mines § 71.404 Application for waiver of surface facilities requirements. (a...

  2. 30 CFR 77.502-2 - Electric equipment; frequency of examination and testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and testing. 77.502-2 Section 77.502-2 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Electrical Equipment-General § 77.502-2 Electric equipment...

  3. 30 CFR 77.1 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES General § 77.1 Scope. This..., pursuant to section 101(i) of the Federal Mine Safety and Health Act of 1977. [36 FR 9364, May 22, 1971, as...

  4. 30 CFR 77.209 - Surge and storage piles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface... a reclaiming area or in any other area at or near a surge or storage pile where the reclaiming...

  5. 30 CFR 77.213 - Draw-off tunnel escapeways.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES... horizontal it shall be equipped with a ladder which runs the full length of the inclined portion of the...

  6. 78 FR 28242 - Proposed Information Collection; Cleanup Program for Accumulations of Coal and Float Coal Dusts...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Program for Accumulations of Coal and Float Coal Dusts, Loose Coal, and Other Combustibles AGENCY: Mine... collection for developing and updating a cleanup program for accumulations of coal and float coal dusts, loose coal, and other combustibles in underground coal mines. DATES: All comments must be postmarked or...

  7. Hospitalization patterns associated with Appalachian coal mining.

    PubMed

    Hendryx, Michael; Ahern, Melissa M; Nurkiewicz, Timothy R

    2007-12-01

    The goal of this study was to test whether the volume of coal mining was related to population hospitalization risk for diseases postulated to be sensitive or insensitive to coal mining by-products. The study was a retrospective analysis of 2001 adult hospitalization data (n = 93,952) for West Virginia, Kentucky, and Pennsylvania, merged with county-level coal production figures. Hospitalization data were obtained from the Health Care Utilization Project National Inpatient Sample. Diagnoses postulated to be sensitive to coal mining by-product exposure were contrasted with diagnoses postulated to be insensitive to exposure. Data were analyzed using hierarchical nonlinear models, controlling for patient age, gender, insurance, comorbidities, hospital teaching status, county poverty, and county social capital. Controlling for covariates, the volume of coal mining was significantly related to hospitalization risk for two conditions postulated to be sensitive to exposure: hypertension and chronic obstructive pulmonary disease (COPD). The odds for a COPD hospitalization increased 1% for each 1462 tons of coal, and the odds for a hypertension hospitalization increased 1% for each 1873 tons of coal. Other conditions were not related to mining volume. Exposure to particulates or other pollutants generated by coal mining activities may be linked to increased risk of COPD and hypertension hospitalizations. Limitations in the data likely result in an underestimate of associations.

  8. A comparative analysis of health-related quality of life for residents of U.S. counties with and without coal mining.

    PubMed

    Zullig, Keith J; Hendryx, Michael

    2010-01-01

    We compared health-related quality of life (HRQOL) in mining and non-mining counties in and out of Appalachia using the 2006 Behavioral Risk Factor Surveillance System (BRFSS) survey. Dependent variables included self-rated health, the number of poor physical and mental health days, the number of activity limitation days (in the last 30 days), and the Centers for Disease Control and Prevention Healthy Days Index. Independent variables included the presence of coal mining, Appalachian region residence, metropolitan status, primary care physician supply, and BRFSS behavioral (e.g., smoking, body mass index, and alcohol consumption) and demographic (e.g., age, gender, race, and income) variables. We compared dependent variables across a four-category variable: Appalachia (yes/ no) and coal mining (yes/no). We used SUDAAN Multilog and multiple linear regression models with post-hoc least-squares means to test for Appalachian coal-mining effects after adjusting for covariates. Residents of coal-mining counties inside and outside of Appalachia reported significantly fewer healthy days for both physical and mental health, and poorer self-rated health (p < 0.0005) when compared with referent U.S. non-coal-mining counties, but disparities were greatest for people residing in Appalachian coal-mining areas. Furthermore, results remained consistent in separate analyses by gender and age. Coal-mining areas are characterized by greater socioeconomic disadvantage, riskier health behaviors, and environmental degradation that are associated with reduced HRQOL.

  9. Research of land resources comprehensive utilization of coal mining in plain area based on GIS: case of Panyi Coal Mine of Huainan Mining Group Corp.

    NASA Astrophysics Data System (ADS)

    Dai, Chunxiao; Wang, Songhui; Sun, Dian; Chen, Dong

    2007-06-01

    The result of land use in coalfield is important to sustainable development in resourceful city. For surface morphology being changed by subsidence, the mining subsidence becomes the main problem to land use with the negative influence of ecological environment, production and steadily develop in coal mining areas. Taking Panyi Coal Mine of Huainan Mining Group Corp as an example, this paper predicted and simulated the mining subsidence in Matlab environment on the basis of the probability integral method. The change of land use types of early term, medium term and long term was analyzed in accordance with the results of mining subsidence prediction with GIS as a spatial data management and spatial analysis tool. The result of analysis showed that 80% area in Panyi Coal Mine be affected by mining subsidence and 52km2 perennial waterlogged area was gradually formed. The farmland ecosystem was gradually turned into wetland ecosystem in most study area. According to the economic and social development and natural conditions of mining area, calculating the ecological environment, production and people's livelihood, this paper supplied the plan for comprehensive utilization of land resource. In this plan, intervention measures be taken during the coal mining and the mining subsidence formation and development, and this method can solve the problems of Land use at the relative low cost.

  10. Rational Use of Land Resource During the Implementation of Transportless System of Coal Strata Surface Mining

    NASA Astrophysics Data System (ADS)

    Gvozdkova, T.; Tyulenev, M.; Zhironkin, S.; Trifonov, V. A.; Osipov, Yu M.

    2017-01-01

    Surface mining and open pits engineering affect the environment in a very negative way. Among other pollutions that open pits make during mineral deposits exploiting, particular problem is the landscape changing. Along with converting the land into pits, surface mining is connected with pilling dumps that occupy large ground. The article describes an analysis of transportless methods of several coal seams strata surface mining, applied for open pits of South Kuzbass coal enterprises (Western Siberia, Russia). To improve land-use management of open pit mining enterprises, the characteristics of transportless technological schemes for several coal seams strata surface mining are highlighted and observed. These characteristics help to systematize transportless open mining technologies using common criteria that characterize structure of the bottom part of a strata and internal dumping schemes. The schemes of transportless systems of coal strata surface mining implemented in South Kuzbass are given.

  11. The Fox Guarding the Chicken Coop: Monitoring Exposure to Respirable Coal Mine Dust, 1969–2000

    PubMed Central

    Weeks, James L.

    2003-01-01

    Following passage of the Coal Mine Health and Safety Act of 1969, underground coal mine operators were required to take air samples in order to monitor compliance with the exposure limit for respirable dust, a task essential for the prevention of pneumoconiosis among coal workers. Miners objected, claiming that having the mine operators perform this task was like “having the fox guard the chicken coop.” This article is a historical narrative of mining industry corruption and of efforts to reform the program of monitoring exposure to coal mine dust. Several important themes common to the practice of occupational health are illustrated; most prominently, that employers should not be expected to regulate themselves. PMID:12893602

  12. Determination of Destress Blasting Effectiveness Using Seismic Source Parameters

    NASA Astrophysics Data System (ADS)

    Wojtecki, Łukasz; Mendecki, Maciej J.; Zuberek, Wacaław M.

    2017-12-01

    Underground mining of coal seams in the Upper Silesian Coal Basin is currently performed under difficult geological and mining conditions. The mining depth, dislocations (faults and folds) and mining remnants are responsible for rockburst hazard in the highest degree. This hazard can be minimized by using active rockburst prevention, where destress blastings play an important role. Destress blastings in coal seams aim to destress the local stress concentrations. These blastings are usually performed from the longwall face to decrease the stress level ahead of the longwall. An accurate estimation of active rockburst prevention effectiveness is important during mining under disadvantageous geological and mining conditions, which affect the risk of rockburst. Seismic source parameters characterize the focus of tremor, which may be useful in estimating the destress blasting effects. Investigated destress blastings were performed in coal seam no. 507 during its longwall mining in one of the coal mines in the Upper Silesian Coal Basin under difficult geological and mining conditions. The seismic source parameters of the provoked tremors were calculated. The presented preliminary investigations enable a rapid estimation of the destress blasting effectiveness using seismic source parameters, but further analysis in other geological and mining conditions with other blasting parameters is required.

  13. Lightweight monitoring and control system for coal mine safety using REST style.

    PubMed

    Cheng, Bo; Cheng, Xin; Chen, Junliang

    2015-01-01

    The complex environment of a coal mine requires the underground environment, devices and miners to be constantly monitored to ensure safe coal production. However, existing coal mines do not meet these coverage requirements because blind spots occur when using a wired network. In this paper, we develop a Web-based, lightweight remote monitoring and control platform using a wireless sensor network (WSN) with the REST style to collect temperature, humidity and methane concentration data in a coal mine using sensor nodes. This platform also collects information on personnel positions inside the mine. We implement a RESTful application programming interface (API) that provides access to underground sensors and instruments through the Web such that underground coal mine physical devices can be easily interfaced to remote monitoring and control applications. We also implement three different scenarios for Web-based, lightweight remote monitoring and control of coal mine safety and measure and analyze the system performance. Finally, we present the conclusions from this study and discuss future work. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. A coal mine multi-point fiber ethylene gas concentration sensor

    NASA Astrophysics Data System (ADS)

    Wei, Yubin; Chang, Jun; Lian, Jie; Liu, Tongyu

    2015-03-01

    Spontaneous combustion of the coal mine goaf is one of the main disasters in the coal mine. The detection technology based on symbolic gas is the main means to realize the spontaneous combustion prediction of the coal mine goaf, and ethylene gas is an important symbol gas of spontaneous combustion in the coal accelerated oxidation stage. In order to overcome the problem of current coal ethylene detection, the paper presents a mine optical fiber multi-point ethylene concentration sensor based on the tunable diode laser absorption spectroscopy. Based on the experiments and analysis of the near-infrared spectrum of ethylene, the system employed the 1.62 μm (DFB) wavelength fiber coupled distributed feedback laser as the light source. By using the wavelength scanning technique and developing a stable fiber coupled Herriot type long path gas absorption cell, a ppm-level high sensitivity detecting system for the concentration of ethylene gas was realized, which could meet the needs of coal mine fire prevention goaf prediction.

  15. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Interests in underground or surface coal... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks, bonds...

  16. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...

  17. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Interests in underground or surface coal... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks, bonds...

  18. 75 FR 51488 - Division of Coal Mine Workers' Compensation; Proposed Extension of Information Collection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... DEPARTMENT OF LABOR Office of Workers' Compensation Programs Division of Coal Mine Workers...). SUPPLEMENTARY INFORMATION: I. Background: The Division of Coal Mine Workers' Compensation administers the Black Lung Benefits Act (30 U.S.C. 901 et seq.), which provides benefits to coal miners totally disabled due...

  19. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...

  20. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Interests in underground or surface coal... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks, bonds...

  1. 78 FR 72717 - Division of Coal Mine Workers' Compensation; Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... DEPARTMENT OF LABOR Office of Workers' Compensation Programs Division of Coal Mine Workers... proposed collection: Comparability of Current Work to Coal Mine Employment (CM-913). A copy of the proposed...., provides for the payment of benefits to coal miners who are totally disabled by black lung disease arising...

  2. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...

  3. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...

  4. 30 CFR 75.501-1 - Coal seams above the water table.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Coal seams above the water table. 75.501-1 Section 75.501-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501...

  5. [Contamination Assessment and Sources Analysis of Soil Heavy Metals in Opencast Mine of East Junggar Basin in Xinjiang].

    PubMed

    Liu, Wei; Yang, Jian-jun; Wang, Jun; Wang, Guo; Cao, Yue-e

    2016-05-15

    The opencast mine of East Junggar Basin in Xinjiang is the largest self-contained coalfield in China, and the ecological environment of the opencast is very fragile because of its arid climate and poor soil. In this study, 50 soil samples (from 0 to 30 cm depth soil at intervals of 10 cm) in opencast Mine of East Junggar Basin in Xinjiang were collected in order to explore the heavy metals contamination of the coal mining. The contents of zinc (Zn), copper (Cu), cadmium (Cr), lead (Pb), mercury (Hg) and arsenic (As) were measured and the degree of pollution was assessed by Nemerow index, geo-accumulation (Igeo) index and potential ecological risk index. In addition, the layered comparison, dust fall and the distance between coal mine and samples location were used to analyze the source of heavy metals contamination. The results showed that value of As surpassed the Chinese soil quality standard class I (GB 15618-1995) mostly severely, followed by Cr, a relatively lower surpass was obtained by Hg and Cu, while Zn and Pb did not surpass the standard. According to the standard, the soil heavy metals content of research region was in light pollution status and the pollution index for each heavy metal followed the order of As (2.07) > Cr (0.95) > Cu (0.55) > Zn (0.48) > Hg (0.45) > Pb (0.38), which demonstrated a heavy pollution of As and clean status of others. Additionally, an Igeo value of 1.14 for Hg reflected a moderated pollution. The major contribution factor was Hg with a risk index of 251.40. The source analysis showed that the content of Pb in the surface soil (10-20 cm) was different from that in the deep layer (20-30 cm), which may be caused by coal combustion and other human activities. The sources of Hg and As were similar and may come from coal combustion. The distance to the mining area was not the major factor affecting the diffusion of heavy metals, other candidate factors included terrain, aspect and wind direction, etc.

  6. Automatic Coal-Mining System

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1985-01-01

    Coal cutting and removal done with minimal hazard to people. Automatic coal mine cutting, transport and roof-support movement all done by automatic machinery. Exposure of people to hazardous conditions reduced to inspection tours, maintenance, repair, and possibly entry mining.

  7. Costs of abandoned coal mine reclamation and associated recreation benefits in Ohio.

    PubMed

    Mishra, Shruti K; Hitzhusen, Frederick J; Sohngen, Brent L; Guldmann, Jean-Michel

    2012-06-15

    Two hundred years of coal mining in Ohio have degraded land and water resources, imposing social costs on its citizens. An interdisciplinary approach employing hydrology, geographic information systems, and a recreation visitation function model, is used to estimate the damages from upstream coal mining to lakes in Ohio. The estimated recreational damages to five of the coal-mining-impacted lakes, using dissolved sulfate as coal-mining-impact indicator, amount to $21 Million per year. Post-reclamation recreational benefits from reducing sulfate concentrations by 6.5% and 15% in the five impacted lakes were estimated to range from $1.89 to $4.92 Million per year, with a net present value ranging from $14.56 Million to $37.79 Million. A benefit costs analysis (BCA) of recreational benefits and coal mine reclamation costs provides some evidence for potential Pareto improvement by investing limited resources in reclamation projects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. In Brief: Coal mining regulations

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-12-01

    The U.S. Department of the Interior (DOI) announced on 18 November measures to strengthen the oversight of state surface coal mining programs and to promulgate federal regulations to protect streams affected by surface coal mining operations. DOI's Office of Surface Mining Reclamation and Enforcement (OSM) is publishing an advance notice of a proposed rule about protecting streams from adverse impacts of surface coal mining operations. A rule issued by the Bush administration in December 2008 allows coal mine operators to place excess excavated materials into streams if they can show it is not reasonably possible to avoid doing so. “We are moving as quickly as possible under the law to gather public input for a new rule, based on sound science, that will govern how companies handle fill removed from mountaintop coal seams,” according to Wilma Lewis, assistant secretary for Land and Minerals Management at DOI.

  9. The research of distributed interactive simulation based on HLA in coal mine industry inherent safety

    NASA Astrophysics Data System (ADS)

    Dou, Zhi-Wu

    2010-08-01

    To solve the inherent safety problem puzzling the coal mining industry, analyzing the characteristic and the application of distributed interactive simulation based on high level architecture (DIS/HLA), a new method is proposed for developing coal mining industry inherent safety distributed interactive simulation adopting HLA technology. Researching the function and structure of the system, a simple coal mining industry inherent safety is modeled with HLA, the FOM and SOM are developed, and the math models are suggested. The results of the instance research show that HLA plays an important role in developing distributed interactive simulation of complicated distributed system and the method is valid to solve the problem puzzling coal mining industry. To the coal mining industry, the conclusions show that the simulation system with HLA plays an important role to identify the source of hazard, to make the measure for accident, and to improve the level of management.

  10. Appalachian basin bituminous coal: sulfur content and potential sulfur dioxide emissions of coal mined for electrical power generation: Chapter G.5 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Trippi, Michael H.; Ruppert, Leslie F.; Attanasi, E.D.; Milici, Robert C.; Freeman, P.A.

    2014-01-01

    Data from 157 counties in the Appalachian basin of average sulfur content of coal mined for electrical power generation from 1983 through 2005 show a general decrease in the number of counties where coal mining has occurred and a decrease in the number of counties where higher sulfur coals (>2 percent sulfur) were mined. Calculated potential SO2 emissions (assuming no post-combustion SO2 removal) show a corresponding decrease over the same period of time.

  11. The History of the Coal Mining Industry and Mining Accidents in the World and Turkey

    PubMed Central

    Atalay, Figen

    2015-01-01

    Three per thousand of the world’s coal reserves and 2% of lignite reserves exist in Turkey. Coal mining is the highest ranking industry for accidents and deaths per capita. For this reason, continuous monitoring and more attention should be gıven to the mining industry. In this review, the basic statistical data related to Turkey’s mining and mining disasters are summarized. PMID:29404107

  12. Economic baselines for current underground coal mining technology

    NASA Technical Reports Server (NTRS)

    Mabe, W. B.

    1979-01-01

    The cost of mining coal using a room pillar mining method with continuous miner and a longwall mining system was calculated. Costs were calculated for the years 1975 and 2000 time periods and are to be used as economic standards against which advanced mining concepts and systems will be compared. Some assumptions were changed and some internal model stored data was altered from the original calculations procedure chosen, to obtain a result that more closely represented what was considered to be a standard mine. Coal seam thicknesses were varied from one and one-half feet to eight feet to obtain the cost of mining coal over a wide range. Geologic conditions were selected that had a minimum impact on the mining productivity.

  13. 30 CFR 77.1713 - Daily inspection of surface coal mine; certified person; reports of inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... more often if necessary for safety, each active working area and each active surface installation shall...; certified person; reports of inspection. 77.1713 Section 77.1713 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES...

  14. 30 CFR 77.100 - Certified person.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Certified person. 77.100 Section 77.100 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Qualified and Certified Persons § 77.100 Certified...

  15. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compressed air and boilers; general. 77.411 Section 77.411 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment ...

  16. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air and boilers; general. 77.411 Section 77.411 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment ...

  17. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressed air and boilers; general. 77.411 Section 77.411 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment ...

  18. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressed air and boilers; general. 77.411 Section 77.411 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment ...

  19. 30 CFR 77.411 - Compressed air and boilers; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air and boilers; general. 77.411 Section 77.411 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Safeguards for Mechanical Equipment ...

  20. Black Thunder reaches new highs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiscor, S.

    After successfully merging North Rochelle mine with Black Thunder mine, Arch Coal set its sights on reopening Coal Creek. Coal Creek mine was idled in 2000. An annual production of 15 million tons is targeted. The article describes operations at Black Thunder opencast mine and talks about the integration of North Rochelle. 2 figs., 2 photos.

  1. The Mechanization of Mining.

    ERIC Educational Resources Information Center

    Marovelli, Robert L.; Karhnak, John M.

    1982-01-01

    Mechanization of mining is explained in terms of its effect on the mining of coal, focusing on, among others, types of mining, productivity, machinery, benefits to retired miners, fatality rate in underground coal mines, and output of U.S. mining industry. (Author/JN)

  2. Environmental impacts of coal mine and thermal power plant to the surroundings of Barapukuria, Dinajpur, Bangladesh.

    PubMed

    Hossain, Md Nazir; Paul, Shitangsu Kumar; Hasan, Md Muyeed

    2015-04-01

    The study was carried out to analyse the environmental impacts of coal mine and coal-based thermal power plant to the surrounding environment of Barapukuria, Dinajpur. The analyses of coal, water, soil and fly ash were carried out using standard sample testing methods. This study found that coal mining industry and coal-based thermal power plant have brought some environmental and socio-economic challenges to the adjacent areas such as soil, water and air pollution, subsidence of agricultural land and livelihood insecurity of inhabitants. The pH values, heavy metal, organic carbon and exchangeable cations of coal water treated in the farmland soil suggest that coal mining deteriorated the surrounding water and soil quality. The SO4(2-) concentration in water samples was beyond the range of World Health Organisation standard. Some physico-chemical properties such as pH, conductivity, moisture content, bulk density, unburned carbon content, specific gravity, water holding capacity, liquid and plastic limit were investigated on coal fly ash of Barapukuria thermal power plant. Air quality data provided by the Barapukuria Coal Mining Company Limited were contradictory with the result of interview with the miners and local inhabitants. However, coal potentially contributes to the development of economy of Bangladesh but coal mining deteriorates the environment by polluting air, water and soil. In general, this study includes comprehensive baseline data for decision makers to evaluate the feasibility of coal power industry at Barapukuria and the coalmine itself.

  3. Origin and influence of coal mine drainage on streams of the United States

    USGS Publications Warehouse

    Powell, J.D.

    1988-01-01

    Degradation of water quality related to oxidation of iron disulfide minerals associated with coal is a naturally occurring process that has been observed since the late seventeenth century, many years before commencement of commercial coal mining in the United States. Disturbing coal strata during mining operations accelerates this natural deterioration of water quality by exposing greater surface areas of reactive minerals to the weathering effects of the atmosphere, hydrosphere, and biosphere. Degraded water quality in the temperate eastern half of the United States is readily detected because of the low mineralization of natural water. Maps are presented showing areas in the eastern United States where concentrations of chemical constituents in water affected by coal mining (pH, dissolved sulfate, total iron, total manganese) exceed background values and indicate effects of coal mining. Areas in the East most affected by mine drainage are in western Pennsylvania, southern Ohio, western Maryland, West Virginia, southern Illinois, western Kentucky, northern Missouri, and southern Iowa. Effects of coal mining on water quality in the more arid western half of the United States are more difficult to detect because of the high degree of mineralization of natural water. Normal background concentrations of constituents are not useful in evaluating effects of coal mine drainage on streams in the more arid West. Three approaches to reduce the effects of coal mining on water quality are: (1) exclusion of oxygenated water from reactive minerals, (2) neutralization of the acid produced, (3) retardation of acid-producing bacteria population in spoil material, by application of detergents that do not produce byproducts requiring disposal. These approaches can be used to help prevent further degradation of water quality in streams by future mining. ?? 1988 Springer-Verlag New York Inc.

  4. Analysis of the current rib support practices and techniques in U.S. coal mines

    PubMed Central

    Mohamed, Khaled M.; Murphy, Michael M.; Lawson, Heather E.; Klemetti, Ted

    2016-01-01

    Design of rib support systems in U.S. coal mines is based primarily on local practices and experience. A better understanding of current rib support practices in U.S. coal mines is crucial for developing a sound engineering rib support design tool. The objective of this paper is to analyze the current practices of rib control in U.S. coal mines. Twenty underground coal mines were studied representing various coal basins, coal seams, geology, loading conditions, and rib control strategies. The key findings are: (1) any rib design guideline or tool should take into account external rib support as well as internal bolting; (2) rib bolts on their own cannot contain rib spall, especially in soft ribs subjected to significant load—external rib control devices such as mesh are required in such cases to contain rib sloughing; (3) the majority of the studied mines follow the overburden depth and entry height thresholds recommended by the Program Information Bulletin 11-29 issued by the Mine Safety and Health Administration; (4) potential rib instability occurred when certain geological features prevailed—these include draw slate and/or bone coal near the rib/roof line, claystone partings, and soft coal bench overlain by rock strata; (5) 47% of the studied rib spall was classified as blocky—this could indicate a high potential of rib hazards; and (6) rib injury rates of the studied mines for the last three years emphasize the need for more rib control management for mines operating at overburden depths between 152.4 m and 304.8 m. PMID:27648341

  5. A big picture look at big coal: Teaching students to link societal and environmental issues

    NASA Astrophysics Data System (ADS)

    Sojka, S. L.

    2014-12-01

    The environmental impact of coal mining and burning of coal is evident and generally easy to understand. However, students often struggle to understand the social impacts of coal mining. A jigsaw activity culminating in a mock town hall meeting helps students link social, economic and environmental impacts of coal mining. Students are divided into four groups and assigned the task of researching the environmental, social, economic or health impacts of coal mining in West Virginia. When students have completed the research, they are assigned a role for the town hall. Roles include local community members, direct employees of the coal industry, business owners from industries related to coal mining, and environmentalists. One student from each research area is assigned to each role, forcing students to consider environmental, social, health and economic aspects of coal mining in choosing an appropriate position for their role. Students have 30 minutes to prepare their positions and then present for 2-5 minutes in the simulated town hall. We then have open class discussion and review the positions. Finally, students are required to write a letter to the editor of the local paper. The specific topic for the town hall and letters can be varied based on current events and could include new regulations on power plants, mine safety, government funding of alternative energy supplies or a range of other topics. This approach forces students to consider all aspects of the issue. In addition, because students have to assume a role, they are more aware of the direct impact that coal mining has on individuals' lives.

  6. 30 CFR 701.4 - Responsibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR GENERAL PERMANENT... responsibility for regulation of coal exploration and surface coal mining and reclamation operations during the... mining and reclamation operations, approval of coal exploration which substantially disturbs the natural...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgson, H. E.

    The 1977 Symposium on the Geology of Rocky Mountain Coal was held May 9 and 10 on the campus of the Colorado School of Mines in Golden, Colorado. The 1977 Symposium was sponsored by the Colorado Geological Survey and the US Geological Survey. The 1977 Symposium consisted of four technical sessions: Depositional Models for Coal Exploration in the Rocky Mountain Cretaceous; Stratigraphy and Depositional Environments of Rocky Mountain Tertiary Coal Deposits; Depositional Models for Coal Exploration in non-Rocky Mountain Regions; and Application of Geology to Coal Mining and Coal Mine Planning. Several papers discuss geophysical survey and well logging techniquesmore » applied to the exploration of coal deposits and for mine planning. Fouteen papers have been entered individually into EDB and ERA. (LTN)« less

  8. Atmospheric particulate matter size distribution and concentration in West Virginia coal mining and non-mining areas.

    PubMed

    Kurth, Laura M; McCawley, Michael; Hendryx, Michael; Lusk, Stephanie

    2014-07-01

    People who live in Appalachian areas where coal mining is prominent have increased health problems compared with people in non-mining areas of Appalachia. Coal mines and related mining activities result in the production of atmospheric particulate matter (PM) that is associated with human health effects. There is a gap in research regarding particle size concentration and distribution to determine respiratory dose around coal mining and non-mining areas. Mass- and number-based size distributions were determined with an Aerodynamic Particle Size and Scanning Mobility Particle Sizer to calculate lung deposition around mining and non-mining areas of West Virginia. Particle number concentrations and deposited lung dose were significantly greater around mining areas compared with non-mining areas, demonstrating elevated risks to humans. The greater dose was correlated with elevated disease rates in the West Virginia mining areas. Number concentrations in the mining areas were comparable to a previously documented urban area where number concentration was associated with respiratory and cardiovascular disease.

  9. 75 FR 63864 - Division of Coal Mine Workers' Compensation; Proposed Extension of Existing Collection; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... DEPARTMENT OF LABOR Office of Workers' Compensation Programs Division of Coal Mine Workers... comments concerning the proposed collection: Comparability of Current Work to Coal Mine Employment (CM-913... Benefits Act of 1977, as amended, 30 U.S.C. 901 et seq., provides for the payment of benefits to coal...

  10. Development of a Universal Safety Behavior Management System for Coal Mine Workers

    PubMed Central

    LI, Jizu; LI, Yuejiao; LIU, Xiaoguang

    2015-01-01

    Background: In China, over 80% of all work-related deaths in the mining industry occur in coal mines and human factors constitute 85% of the direct causes of coal mine accidents, which indicates that significant shortcomings currently exist in the safety behavior management of Chinese coal mine workers. We aimed to verify the impact of human psychological behavior in coal mine accidents systematically through experimental study, theoretical analysis and management application. Methods: Four test instruments (Sensory and cognitive capacity test, Sixteen-Personal Factor Questionnaire, Symptom Checklist 90 Questionnaire and the supervisors’ evaluation) were employed from November 2013 to June 2014 to identify unsafe behavior factors, the self-established Questionnaire of Safety Behavior Norms (QSBN) was also used to propose the safety behavior countermeasures of coal mine employees. Results: The mental health of most coal mine workers’ is relatively poor. The sensory and cognitive capacity of those in different work posts varies greatly, as does the sense of responsibility. Workers are susceptible to external influences, and score low in site management. When the 16-PF and SCL-90 sensory and cognitive assessments were combined, the psychological index predictive power was greatest for estimating sense of efficiency and degree of satisfaction in internal evaluations, while at the same time lowest for estimating control of introversion-extroversion and stress character. Conclusion: The psychological indicators can predict part of employee safety behavior, and assist a coal mine enterprise to recruit staff, develop occupational safety norms and improve the working environment. PMID:26258088

  11. Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines

    NASA Astrophysics Data System (ADS)

    Borowski, Marek; Kuczera, Zbigniew

    2018-03-01

    Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions. History of coal mining shows that methane released from the rock mass to the longwall area was responsible for numerous mining disasters. The main source of methane are coal deposits because it is autochthonous gas and is closely related with carbonification and forming of coal deposits. Degree of methane saturation in coal deposits depends on numerous factors; mainly on presence or lack of insulating layers in cover deposit that allow or do not on degasification and easily methane outflow into surroundings. Hence in coal mining there are coal deposits that contain only low degree of methane saturation in places where is lack of insulating layers till high in methane coal deposits occurring in insulating claystones or in shales. Conducting mining works in coal deposits of high methane hazard without using of special measures to combat (ventilation, methane drainage) could be impossible. Control of methane hazard depends also on other co-occuring natural dangers for which used preventive actions eliminate methane hazard. Safety in mines excavating coal deposits saturated with methane depends on the correct estimation of methane hazard, drawn up forecasts, conducted observations, hazard control as well as undertaken prevention measures. Methane risk prevention includes identification and control methods of methane hazards as well as means of combating the explosive accumulation of methane in longwall workings. The main preventive actions in underground coal mines are: effective ventilation that prevents forming of methane fuses or placed methane accumulation in headings ventilated by airflow created by main fans and in headings with auxiliary ventilation, methane drainage using drain holes that are drilled from underground headings or from the surface, methanometry control of methane concentration in the air; location of the sensors is defined by law, additional ventilation equipment used in places of lower intensity of ventilation and places where methane is concentrated.

  12. Hydroseeding on anthracite coal-mine spoils

    Treesearch

    Miroslaw M. Czapowskyj; Ross Writer

    1970-01-01

    A study was made of the performance of selected species of legumes, grasses, and trees hydroseeded on anthracite coal-mine spoils in a slurry of lime, fertilizer, and mulch. Hydroseeding failed on coal-breaker refuse, but was partially successful on strip-mine spoils.

  13. 30 CFR 784.10 - Information collection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS UNDERGROUND MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 784.10... requires applicants for permits for underground coal mines to prepare and submit an operation and...

  14. 20 CFR 726.301 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S... Director means the Director, Division of Coal Mine Workers' Compensation, Office of Workers' Compensation...

  15. 20 CFR 726.301 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S... Director means the Director, Division of Coal Mine Workers' Compensation, Office of Workers' Compensation...

  16. 20 CFR 726.301 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR'S... Director means the Director, Division of Coal Mine Workers' Compensation, Office of Workers' Compensation...

  17. Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia

    PubMed Central

    Strager, Michael P.; Strager, Jacquelyn M.; Evans, Jeffrey S.; Dunscomb, Judy K.; Kreps, Brad J.; Maxwell, Aaron E.

    2015-01-01

    Predicting the locations of future surface coal mining in Appalachia is challenging for a number of reasons. Economic and regulatory factors impact the coal mining industry and forecasts of future coal production do not specifically predict changes in location of future coal production. With the potential environmental impacts from surface coal mining, prediction of the location of future activity would be valuable to decision makers. The goal of this study was to provide a method for predicting future surface coal mining extents under changing economic and regulatory forecasts through the year 2035. This was accomplished by integrating a spatial model with production demand forecasts to predict (1 km2) gridded cell size land cover change. Combining these two inputs was possible with a ratio which linked coal extraction quantities to a unit area extent. The result was a spatial distribution of probabilities allocated over forecasted demand for the Appalachian region including northern, central, southern, and eastern Illinois coal regions. The results can be used to better plan for land use alterations and potential cumulative impacts. PMID:26090883

  18. Coal Data Browser

    EIA Publications

    The Coal Data Browser gives users easy access to coal information from EIA's electricity and coal surveys as well as data from the Mine Safety and Health Administration and trade information from the U.S. Census Bureau. Users can also see the shipment data from individual mines that deliver coal to the U.S. electric power fleet, have the ability to track supplies delivered to a given power plant, and to see which mines serve each particular plant.

  19. Total Factor Productivity Growth, Technical Progress & Efficiency Change in Vietnam Coal Industry - Nonparametric Approach

    NASA Astrophysics Data System (ADS)

    Phuong, Vu Hung

    2018-03-01

    This research applies Data Envelopment Analysis (DEA) approach to analyze Total Factor Productivity (TFP) and efficiency changes in Vietnam coal mining industry from 2007 to 2013. The TFP of Vietnam coal mining companies decreased due to slow technological progress and unimproved efficiency. The decadence of technical efficiency in many enterprises proved that the coal mining industry has a large potential to increase productivity through technical efficiency improvement. Enhancing human resource training, technology and research & development investment could help the industry to improve efficiency and productivity in Vietnam coal mining industry.

  20. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES...

  1. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES...

  2. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES...

  3. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES...

  4. Respiratory Diseases Caused by Coal Mine Dust

    PubMed Central

    Laney, A. Scott; Weissman, David N.

    2015-01-01

    Objective To provide an update on respiratory diseases caused by coal mine dust. Methods This article presents the results of a literature review initially performed for an International Conference on Occupational and Environmental Lung Disease held in summer 2013. Results Coal mine dust causes a spectrum of lung diseases collectively termed coal mine dust lung disease (CMDLD). These include Coal Workers’ Pneumoconiosis, silicosis, mixed dust pneumoconiosis, dust-related diffuse fibrosis (which can be mistaken for idiopathic pulmonary fibrosis), and chronic obstructive pulmonary disease. CMDLD continues to be a problem in the United States, particularly in the central Appalachian region. Treatment of CMDLD is symptomatic. Those with end-stage disease are candidates for lung transplantation. Because CMDLD cannot be cured, prevention is critical. Conclusions Coal mine dust remains a relevant occupational hazard and miners remain at risk for CMDLD. PMID:25285970

  5. Injury experience in coal mining, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reich, R.B.; Hugler, E.C.

    1994-05-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries,more » summary reference tabulations are included at the end of both the operator and the contractor sections of this report.« less

  6. Injury experience in coal mining, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1991-01-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1990. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries,more » summary reference tabulations are included at the end of both the operator and the contractor sections of this report.« less

  7. Appraisement of environment remote sensing method in mining area

    NASA Astrophysics Data System (ADS)

    Yang, Fengjie; Zhen, Han; Jiang, Tao; Lei, Liqing; Gong, Cailan

    1998-08-01

    Coal mining is attached great importance by society as a key profession of environmental pollution. The monitor and protection of coal-mine environment is a developing profession in China. The sulfur dioxide, carbon dioxide, carbon monoxide and other waste gases, which are put out by the spontaneous combustion or weathering of gangue are an important pollution resource of atmosphere. The stack of gangue held down many farmlands. Smoke, coal dust and powder coal ash pollute the environment of mining area and surroundings though the affection of monsoon. The pH value of water which coal mine drained off is low, and the drinking, farming and animal husbandry water where it flowed are affected. The surface subsidence which mining caused is a typical destruction of ground environment. The people pay attention to remote sensing as a method of rapidly, cheaply regional environment investigation. The paper tires making an appraisement of mining area environment monitor by many kind methods of remote sensing from the characteristic of mining area environment.

  8. 30 CFR 735.1 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... State programs for the regulation and control of surface coal mining and reclamation operations; (b) Administer and enforce State programs for the regulation and control of surface coal mining and reclamation operations; and (c) Administer cooperative agreements for State regulation of surface coal mining and...

  9. 30 CFR 735.1 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... State programs for the regulation and control of surface coal mining and reclamation operations; (b) Administer and enforce State programs for the regulation and control of surface coal mining and reclamation operations; and (c) Administer cooperative agreements for State regulation of surface coal mining and...

  10. 30 CFR 735.1 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... State programs for the regulation and control of surface coal mining and reclamation operations; (b) Administer and enforce State programs for the regulation and control of surface coal mining and reclamation operations; and (c) Administer cooperative agreements for State regulation of surface coal mining and...

  11. Assessment of coal geology, resources, and reserves in the northern Wyoming Powder River Basin

    USGS Publications Warehouse

    Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Rohrbacher, Timothy J.

    2010-01-01

    The abundance of new borehole data from recent coal bed natural gas development in the Powder River Basin was utilized by the U.S. Geological Survey for the most comprehensive evaluation to date of coal resources and reserves in the Northern Wyoming Powder River Basin assessment area. It is the second area within the Powder River Basin to be assessed as part of a regional coal assessment program; the first was an evaluation of coal resources and reserves in the Gillette coal field, adjacent to and south of the Northern Wyoming Powder River Basin assessment area. There are no active coal mines in the Northern Wyoming Powder River Basin assessment area at present. However, more than 100 million short tons of coal were produced from the Sheridan coal field between the years 1887 and 2000, which represents most of the coal production within the northwestern part of the Northern Wyoming Powder River Basin assessment area. A total of 33 coal beds were identified during the present study, 24 of which were modeled and evaluated to determine in-place coal resources. Given current technology, economic factors, and restrictions to mining, seven of the beds were evaluated for potential reserves. The restrictions included railroads, a Federal interstate highway, urban areas, and alluvial valley floors. Other restrictions, such as depth, thickness of coal beds, mined-out areas, and areas of burned coal, were also considered. The total original coal resource in the Northern Wyoming Powder River Basin assessment area for all 24 coal beds assessed, with no restrictions applied, was calculated to be 285 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 263 billion short tons (92.3 percent of the original coal resource). Recoverable coal, which is that portion of available coal remaining after subtracting mining and processing losses, was determined for seven coal beds with a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 50 billion short tons of recoverable coal was calculated. Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Northern Wyoming Powder River Basin assessment area is 1.5 billion short tons of coal (1 percent of the original resource total) for the seven coal beds evaluated.

  12. Potential effects of surface coal mining on the hydrology of the Corral Creek area, Hanging Woman Creek coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.

    1984-01-01

    The Corral Creek area of the Hanging Woman Creek coal field, 9 miles east of the Decker coal mines near the Tongue River, contains large reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic systems and to study assess potential impacts of surface coal mining on local water resources. Hydrogeologic data collected indicate that aquifers are coal and sandstone beds within the Tongue River Member of the Fort Union Formation (Paleocene age) and sand and gravel in valley alluvium (Pleistocene and Holocene age). Surface-water resources are limited to a few spring-fed stock ponds in the higher parts of the area and the intermittent flow of Corral Creek near the mouth. Most of the stock ponds in the area become dry by midsummer. Mining of the Anderson coal bed would remove three stock wells and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Corral Creek and South Fork would be removed. Although mining would alter the existing hydrologic systems and remove several shallow wells, alternative ground-water supplies are available that could be developed to replace those lost by mining. (USGS)

  13. 30 CFR 731.14 - Content requirements for program submissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regulations directly affecting the regulation of coal exploration and surface coal mining and reclamation operations, and amendments to such other laws or regulations which affect the regulation of coal exploration... the regulation of coal exploration and surface coal mining and reclamation operations; (6...

  14. 30 CFR 731.14 - Content requirements for program submissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... regulations directly affecting the regulation of coal exploration and surface coal mining and reclamation operations, and amendments to such other laws or regulations which affect the regulation of coal exploration... the regulation of coal exploration and surface coal mining and reclamation operations; (6...

  15. 30 CFR 731.14 - Content requirements for program submissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... regulations directly affecting the regulation of coal exploration and surface coal mining and reclamation operations, and amendments to such other laws or regulations which affect the regulation of coal exploration... the regulation of coal exploration and surface coal mining and reclamation operations; (6...

  16. 30 CFR 731.14 - Content requirements for program submissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... regulations directly affecting the regulation of coal exploration and surface coal mining and reclamation operations, and amendments to such other laws or regulations which affect the regulation of coal exploration... the regulation of coal exploration and surface coal mining and reclamation operations; (6...

  17. 30 CFR 731.14 - Content requirements for program submissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... regulations directly affecting the regulation of coal exploration and surface coal mining and reclamation operations, and amendments to such other laws or regulations which affect the regulation of coal exploration... the regulation of coal exploration and surface coal mining and reclamation operations; (6...

  18. Estimates and Predictions of Coal Workers’ Pneumoconiosis Cases among Redeployed Coal Workers of the Fuxin Mining Industry Group in China: A Historical Cohort Study

    PubMed Central

    Han, Bing; Liu, Hongbo; Zhai, Guojiang; Wang, Qun; Liang, Jie; Zhang, Mengcang; Cui, Kai; Shen, Fuhai; Yi, Hongbo; Li, Yuting; Zhai, Yuhan; Sheng, Yang; Chen, Jie

    2016-01-01

    This research was aimed at estimating possible Coal workers’ pneumoconiosis (CWP) cases as of 2012, and predicting future CWP cases among redeployed coal workers from the Fuxin Mining Industry Group. This study provided the scientific basis for regulations on CWP screening and diagnosis and labor insurance policies for redeployed coal workers of resource-exhausted mines. The study cohort included 19,116 coal workers. The cumulative incidence of CWP was calculated by the life-table method. Possible CWP cases by occupational category were estimated through the average annual incidence rate of CWP and males’ life expectancy. It was estimated that 141 redeployed coal workers might have suffered from CWP as of 2012, and 221 redeployed coal workers could suffer from CWP in the future. It is crucial to establish a set of feasible and affordable regulations on CWP screening and diagnosis as well as labor insurance policies for redeployed coal workers of resource-exhausted coal mines in China. PMID:26845337

  19. Estimates and Predictions of Coal Workers' Pneumoconiosis Cases among Redeployed Coal Workers of the Fuxin Mining Industry Group in China: A Historical Cohort Study.

    PubMed

    Han, Bing; Liu, Hongbo; Zhai, Guojiang; Wang, Qun; Liang, Jie; Zhang, Mengcang; Cui, Kai; Shen, Fuhai; Yi, Hongbo; Li, Yuting; Zhai, Yuhan; Sheng, Yang; Chen, Jie

    2016-01-01

    This research was aimed at estimating possible Coal workers' pneumoconiosis (CWP) cases as of 2012, and predicting future CWP cases among redeployed coal workers from the Fuxin Mining Industry Group. This study provided the scientific basis for regulations on CWP screening and diagnosis and labor insurance policies for redeployed coal workers of resource-exhausted mines. The study cohort included 19,116 coal workers. The cumulative incidence of CWP was calculated by the life-table method. Possible CWP cases by occupational category were estimated through the average annual incidence rate of CWP and males' life expectancy. It was estimated that 141 redeployed coal workers might have suffered from CWP as of 2012, and 221 redeployed coal workers could suffer from CWP in the future. It is crucial to establish a set of feasible and affordable regulations on CWP screening and diagnosis as well as labor insurance policies for redeployed coal workers of resource-exhausted coal mines in China.

  20. Attitudes toward Women Coal Miners in an Appalachian Coal Community.

    ERIC Educational Resources Information Center

    Trent, Roger B.; Stout-Wiegand, Nancy

    1987-01-01

    In a coal mining community, a survey revealed that the level of negative sentiment toward women coal miners was substantial and varied by gender role. Male coal miners were negative toward female co-workers, but they supported women's right to coal mine jobs, while female homemakers did not. (Author/CH)

  1. Coal and Open-pit surface mining impacts on American Lands (COAL)

    NASA Astrophysics Data System (ADS)

    Brown, T. A.; McGibbney, L. J.

    2017-12-01

    Mining is known to cause environmental degradation, but software tools to identify its impacts are lacking. However, remote sensing, spectral reflectance, and geographic data are readily available, and high-performance cloud computing resources exist for scientific research. Coal and Open-pit surface mining impacts on American Lands (COAL) provides a suite of algorithms and documentation to leverage these data and resources to identify evidence of mining and correlate it with environmental impacts over time.COAL was originally developed as a 2016 - 2017 senior capstone collaboration between scientists at the NASA Jet Propulsion Laboratory (JPL) and computer science students at Oregon State University (OSU). The COAL team implemented a free and open-source software library called "pycoal" in the Python programming language which facilitated a case study of the effects of coal mining on water resources. Evidence of acid mine drainage associated with an open-pit coal mine in New Mexico was derived by correlating imaging spectrometer data from the JPL Airborne Visible/InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG), spectral reflectance data published by the USGS Spectroscopy Laboratory in the USGS Digital Spectral Library 06, and GIS hydrography data published by the USGS National Geospatial Program in The National Map. This case study indicated that the spectral and geospatial algorithms developed by COAL can be used successfully to analyze the environmental impacts of mining activities.Continued development of COAL has been promoted by a Startup allocation award of high-performance computing resources from the Extreme Science and Engineering Discovery Environment (XSEDE). These resources allow the team to undertake further benchmarking, evaluation, and experimentation using multiple XSEDE resources. The opportunity to use computational infrastructure of this caliber will further enable the development of a science gateway to continue foundational COAL research.This work documents the original design and development of COAL and provides insight into continuing research efforts which have potential applications beyond the project to environmental data science and other fields.

  2. An indicative method for determination of the most hazardous changes in slopes of the subsidence basins in underground coal mining area in Ostrava (Czech Republic).

    PubMed

    Marschalko, Marian; Yilmaz, Isik; Křístková, Veronika; Fuka, Matěj; Kubečka, Karel; Bouchal, Tomáš

    2013-01-01

    Considering growing population and decreasing mineral resource reserves, the issue of undermining has been and shall remain very topical. This study aims to identify the mutual connections between mined out panels of a deposit and the final manifestations on the ground surface related to deep black coal mining. On the grounds of the identified connections, the study describes a method to simplify a common evaluation of undermined areas according to building site categories. Within the study, a demarcation of the areas was conducted in two localities in Czech Republic influenced by the effects of undermining in the Upper-Silesian Basin. In the allotment of the CSM Mine, an area unsuitable for founding structures was defined from the centre of the worked out workings to the distance of 175 m from the panel's edge, for which the corresponding break angle is 78.3°. Similarly, in the allotment of the Paskov Mine, an area unsuitable for founding structures was determined to the distance of 500 m from the panel's edge, for which the corresponding break angle is 50.2°. This demarcation may be implemented prior to deposit mining being aware of several physical-mechanical parameters of rocks in the deposit's overburden. Having mined out a particular section of a deposit, it is recommended to verify the values of break angle using the method described herein. The study may be applied as a relatively fast and effective method to evaluate future land use for planning.

  3. Memorandum of Understanding on Surface Coal Mining Operations Resulting in Placement of Excess Spoil Fills in the Waters of the United States

    EPA Pesticide Factsheets

    MOU on Surface Coal Mining Operations establishes a process for improving coordination in the review of permit applications required for surface coal mining and reclamation in waters of the United States

  4. 30 CFR 937.700 - Oregon Federal program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Federal program. (c) The rules in this part apply to all surface coal mining operations in Oregon... more stringent environmental control and regulation of surface coal mining operations than do the... extent they provide for regulation of surface coal mining and reclamation operations which are exempt...

  5. 30 CFR 77.1437 - End attachment retermination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 77.1437 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL... at an attachment; (b) Improper installation of an attachment; (c) Slippage at an attachment; or (d...

  6. Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: Environmental impact and risk assessment.

    PubMed

    Fdez-Ortiz de Vallejuelo, Silvia; Gredilla, Ainara; da Boit, Kátia; Teixeira, Elba C; Sampaio, Carlos H; Madariaga, Juan Manuel; Silva, Luis F O

    2017-02-01

    Soils around coal mining are important reservoir of hazardous elements (HEs), nanominerals, and ultrafine compounds. This research reports and discusses the soil concentrations of HEs (As, Cd, Cr, Cu, Ni, Pb, and Zn) in coal residues of abandoned mines. To assess differences regarding environmental impact and risk assessment between coal abandoned mines from the Santa Catarina state, eighteen coal cleaning rejects with different mineralogical and chemical composition, from eight abandoned mines were collected. Nanominerals and ultra-fine minerals from mining-contaminated areas were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and high-resolution transmission electron microscope (HR-TEM), providing new information on the mineralogy and nano-mineralogy of these coal residues. The total contents of 57 elements (HEs, alkali metals, and rare earth elements) were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The calculation of NWACs (Normalized Average Weighted Concentration), together with the chemometric analysis by Principal component analysis (PCA) confirmed the variability of the samples regarding their city and their mine of origin. Moreover, the results confirmed the existence of hotspots in mines near urban areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effects of coal spoil amendment on heavy metal accumulation and physiological aspects of ryegrass (Lolium perenne L.) growing in copper mine tailings.

    PubMed

    Chu, Zhaoxia; Wang, Xingming; Wang, Yunmin; Liu, Guijian; Dong, Zhongbing; Lu, Xianwen; Chen, Guangzhou; Zha, Fugeng

    2017-12-21

    Copper mine tailings pose many threats to the surrounding environment and human health, and thus, their remediation is fundamental. Coal spoil is the waste by-product of coal mining and characterized by low levels of metals, high content of organic matter, and many essential microelements. This study was designed to evaluate the role of coal spoil on heavy uptake and physiological responses of Lolium perenne L. grown in copper mine tailings amended with coal spoil at rates of 0, 0.5, 1, 5, 10, and 20%. The results showed that applying coal spoil to copper mine tailings decreased the diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Cu, Pb, and Zn contents in tailings and reduced those metal contents in both roots and shoots of the plant. However, application of coal spoil increased the DTPA-extractable Cr concentration in tailings and also increased Cr uptake and accumulation by Lolium perenne L. The statistical analysis of physiological parameters indicated that chlorophyll and carotenoid increased at the lower amendments of coal spoil followed by a decrease compared to their respective controls. Protein content was enhanced at all the coal spoil amendments. When treated with coal spoil, the activities of superoxide dismutases (SOD), peroxidase (POD), and catalase (CAT) responded differently. CAT activity was inhibited, but POD activity was increased with increasing amendment ratio of coal spoil. SOD activity increased up to 1% coal spoil followed by a decrease. Overall, the addition of coal spoil decreased the oxidative stress in Lolium perenne L., reflected by the reduction in malondialdehyde (MDA) contents in the plant. It is concluded that coal spoil has the potential to stabilize most metals studied in copper mine tailings and ameliorate the harmful effects in Lolium perenne L. through changing the physiological attributes of the plant grown in copper mine tailings.

  8. 30 CFR 75.389 - Mining into inaccessible areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mining into inaccessible areas. 75.389 Section 75.389 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.389 Mining into...

  9. 30 CFR 75.389 - Mining into inaccessible areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mining into inaccessible areas. 75.389 Section 75.389 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.389 Mining into...

  10. Ground penetrating radar coal measurements demonstration at the U.S. Bureau of Mines Research Center, Pittsburgh, Pennsylvania. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, D.; Guerrier, J.; Martinez, M.

    1994-01-04

    In situ and near real-time measurements of coal seam thickness have been identified by industry as a highly desirable component of robotic mining systems. With it, a continuous mining machine can be guided close to the varying boundary of the seam while the cutting operation is underway. This provides the mining operation the ability to leave behind the high-sulfur, high-particulate coal which is concentrated near the seam boundary. The result is near total recovery of high quality coal resources, an increase in mining efficiency, and opportunities for improved safety through reduction in personnel in the most hazardous coal cutting areas.more » In situ, real-time coal seam measurements using the Special Technologies Laboratory (STL) ground penetrating radar (GPR) technology were shown feasible by a demonstration in a Utah coal mine on April 21, 1994. This report describes the October 18, 1994 in situ GPR measurements of coal seam thickness at the US Bureau of Mines (USBM) robotic mining testing laboratory. In this report, an overview of the measurements at the USBM Laboratory is given. It is followed by a description of the technical aspects of the STL frequency modulated-continuous wave (FM-CW) GPR system. Section 4 provides a detailed description of the USBM Laboratory measurements and the conditions under which they were taken. Section 5 offers conclusions and possibilities for future communications.« less

  11. Hydrogeology, groundwater flow, and groundwater quality of an abandoned underground coal-mine aquifer, Elkhorn Area, West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; McCoy, Kurt J.; Britton, James Q.; Blake, B.M.

    2017-01-01

    The Pocahontas No. 3 coal seam in southern West Virginia has been extensively mined by underground methods since the 1880’s. An extensive network of abandoned mine entries in the Pocahontas No. 3 has since filled with good-quality water, which is pumped from wells or springs discharging from mine portals (adits), and used as a source of water for public supplies. This report presents results of a three-year investigation of the geology, hydrology, geochemistry, and groundwater flow processes within abandoned underground coal mines used as a source of water for public supply in the Elkhorn area, McDowell County, West Virginia. This study focused on large (> 500 gallon per minute) discharges from the abandoned mines used as public supplies near Elkhorn, West Virginia. Median recharge calculated from base-flow recession of streamflow at Johns Knob Branch and 12 other streamflow gaging stations in McDowell County was 9.1 inches per year. Using drainage area versus mean streamflow relationships from mined and unmined watersheds in McDowell County, the subsurface area along dip of the Pocahontas No. 3 coal-mine aquifer contributing flow to the Turkey Gap mine discharge was determined to be 7.62 square miles (mi2), almost 10 times larger than the 0.81 mi2 surface watershed. Results of this investigation indicate that groundwater flows down dip beneath surface drainage divides from areas up to six miles east in the adjacent Bluestone River watershed. A conceptual model was developed that consisted of a stacked sequence of perched aquifers, controlled by stress-relief and subsidence fractures, overlying a highly permeable abandoned underground coal-mine aquifer, capable of substantial interbasin transfer of water. Groundwater-flow directions are controlled by the dip of the Pocahontas No. 3 coal seam, the geometry of abandoned mine workings, and location of unmined barriers within that seam, rather than surface topography. Seven boreholes were drilled to intersect abandoned mine workings in the Pocahontas No. 3 coal seam and underlying strata in various structural settings of the Turkey Gap and adjacent down-dip mines. Geophysical logging and aquifer testing were conducted on the boreholes to locate the coal- mine aquifers, characterize fracture geometry, and define permeable zones within strata overlying and underlying the Pocahontas No. 3 coal-mine aquifer. Water levels were measured monthly in the wells and showed a relatively static phreatic zone within subsided strata a few feet above the top of or within the Pocahontas No. 3 coal-mine aquifer (PC3MA). A groundwater-flow model was developed to verify and refine the conceptual understanding of groundwater flow and to develop groundwater budgets for the study area. The model consisted of four layers to represent overburden strata, the Pocahontas No. 3 coal-mine aquifer, underlying fractured rock, and fractured rock below regional drainage. Simulation of flow in the flooded abandoned mine entries using highly conductive layers or zones within the model, was unable to realistically simulate interbasin transfer of water. Therefore it was necessary to represent the coal-mine aquifer as an internal boundary condition rather than a contrast in aquifer properties. By representing the coal-mine aquifer with a series of drain nodes and optimizing input parameters with parameter estimation software, model errors were reduced dramatically and discharges for Elkhorn Creek, Johns Knob Branch, and other tributaries were more accurately simulated. Flow in the Elkhorn Creek and Johns Knob Branch watersheds is dependent on interbasin transfer of water, primarily from up dip areas of abandoned mine workings in the Pocahontas No. 3 coal-mine aquifer within the Bluestone River watershed to the east. For the 38th, 70th, and 87th percentile flow duration of streams in the region, mean measured groundwater discharge was estimated to be 1.30, 0.47, and 0.39 cubic feet per square mile (ft3/s/mi2

  12. Research on preventive technologies for bed-separation water hazard in China coal mines

    NASA Astrophysics Data System (ADS)

    Gui, Herong; Tong, Shijie; Qiu, Weizhong; Lin, Manli

    2018-03-01

    Bed-separation water is one of the major water hazards in coal mines. Targeted researches on the preventive technologies are of paramount importance to safe mining. This article studied the restrictive effect of geological and mining factors, such as lithological properties of roof strata, coal seam inclination, water source to bed separations, roof management method, dimensions of mining working face, and mining progress, on the formation of bed-separation water hazard. The key techniques to prevent bed-separation water-related accidents include interception, diversion, destructing the buffer layer, grouting and backfilling, etc. The operation and efficiency of each technique are corroborated in field engineering cases. The results of this study will offer reference to countries with similar mining conditions in the researches on bed-separation water burst and hazard control in coal mines.

  13. Study of terrestrial carbon cycling as impacted by mountaintop coal mining in the Southern Appalachian forest region using carbon elemental and isotopic data and remote sensing of land cover change

    NASA Astrophysics Data System (ADS)

    Fox, J. F.; Campbell, J. E.; Martin, D.

    2008-12-01

    The need to quantify the impact of human disturbance upon carbon flux and storage has been recently highlighted in order to more accurately budget carbon. One understudied but critical area of research is surface coal mining's impact on terrestrial carbon storage and sediment carbon transport processes-which has been identified as potentially important to understanding fluxes in global carbon budgeting. While national attention has focused on U.S. coal production to maintain a vibrant economy, scientists are concerned that increased coal production could have unforeseen environmental implications if the relationship between coal mining practices and the environment is not better understood. This issue is particularly important to the coal mining region of the Southern Appalachian forest region, which has been responsible for 23.3% of the coal produced in the United States over the past twenty years and seen approximately 300,000 ha of forested land disturbed by surface coal mining during that time period. Our presentation provides results that focus upon terrestrial carbon cycling as impacted by mountaintop coal mining in the Southern Appalachian forest region. In order to study carbon redistribution due to the mining disturbance, our methods make use of measurements of total organic carbon, total organic nitrogen, and carbon and nitrogen stable isotopes of soils and eroded sediments collected in the region as well as published data, consultation with experts and remote sensing of land cover change. It was found that disturbed terrestrial carbon, including soil C, non-soil or plant C, and geogenic C, is approximately 10% of the carbon emitted to the atmosphere during coal combusting and transportation and mining of coal. Quantification of the fate of terrestrial carbon in different pools is provided and discussed including the fate atmosphere during recovery of the terrestrial system; newly deposited coal fragments within the terrestrial soil reservoir; and carbon that is eroded to streams in mined watersheds with different levels of disturbance.

  14. Geochemical processes in ground water resulting from surface mining of coal at the Big Sky and West Decker Mine areas, southeastern Montana

    USGS Publications Warehouse

    Clark, D.W.

    1995-01-01

    A potential hydrologic effect of surface mining of coal in southeastern Montana is a change in the quality of ground water. Dissolved-solids concen- trations in water in spoils aquifers generally are larger than concentrations in water in the coal aquifers they replaced; however, laboratory experiments have indicated that concentrations can decrease if ground water flows from coal-mine spoils to coal. This study was conducted to determine if decreases in concentrations occur onsite and, if so, which geochemical processes caused the decreases. Solid-phase core samples of spoils, unmined over- burden, and coal, and ground-water samples were collected from 16 observation wells at two mine areas. In the Big Sky Mine area, changes in ground- water chemistry along a flow path from an upgradient coal aquifer to a spoils aquifer probably were a result of dedolomitization. Dissolved-solids concentrations were unchanged as water flowed from a spoils aquifer to a downgradient coal aquifer. In the West Decker Mine area, dissolved-solids concentrations apparently decreased from about 4,100 to 2,100 milligrams per liter as water moved along an inferred flow path from a spoils aquifer to a downgradient coal aquifer. Geochemical models were used to analyze changes in water chemistry on the basis of results of solid-phase and aqueous geochemical characteristics. Geochemical processes postulated to result in the apparent decrease in dissolved-solids concentrations along this inferred flow path include bacterial reduction of sulfate, reverse cation exchange within the coal, and precipitation of carbonate and iron-sulfide minerals.

  15. 30 CFR 75.200 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Scope. 75.200 Section 75.200 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY... controlling roof, face and ribs, including coal or rock bursts, in underground coal mines. Roof control...

  16. 30 CFR 75.200 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Scope. 75.200 Section 75.200 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY... controlling roof, face and ribs, including coal or rock bursts, in underground coal mines. Roof control...

  17. 30 CFR 75.200 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Scope. 75.200 Section 75.200 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY... controlling roof, face and ribs, including coal or rock bursts, in underground coal mines. Roof control...

  18. 30 CFR 75.200 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Scope. 75.200 Section 75.200 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY... controlling roof, face and ribs, including coal or rock bursts, in underground coal mines. Roof control...

  19. 30 CFR 75.200 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Scope. 75.200 Section 75.200 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY... controlling roof, face and ribs, including coal or rock bursts, in underground coal mines. Roof control...

  20. 30 CFR 773.14 - Eligibility for provisionally issued permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... 773.14 Section 773.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... surface coal mining and reclamation operation with— (1) A notice of violation issued under § 843.12 of...

  1. 78 FR 48593 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... conduct research and tests concerning the use of refuge chambers in underground coal mines, and to report... of Information MSHA will post all comments and information on the Internet without change, including... actions. NIOSH finalized its Research Report on Refuge Alternatives for Underground Coal Mines (NIOSH...

  2. 20 CFR 726.2 - Purpose and scope of this part.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 726.2 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR... and controlling the circumstances under which a coal mine operator shall fulfill his insurance...

  3. 20 CFR 726.2 - Purpose and scope of this part.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 726.2 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR... and controlling the circumstances under which a coal mine operator shall fulfill his insurance...

  4. 20 CFR 726.2 - Purpose and scope of this part.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 726.2 Employees' Benefits OFFICE OF WORKERS' COMPENSATION PROGRAMS, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE OPERATOR... and controlling the circumstances under which a coal mine operator shall fulfill his insurance...

  5. Pathological study of the prevalence of silicosis among coal miners in Iran: A case history

    NASA Astrophysics Data System (ADS)

    Zare Naghadehi, Masoud; Sereshki, Farhang; Mohammadi, F.

    2014-02-01

    One of the most hazardous diseases that is commonly associated with the coal mining industry is Silicosis which caused by dust inhalation. This disease occurs as a result of prolonged breathing of dust containing silica (quartz). The generation of coal mine dust during underground and surface coal mining is the most significant source of coal dust exposure. Silica dust develops scar tissue inside the lungs which reduces the lungs ability to extract oxygen from the air. All miners working in underground and surface coal mines are at risk of being exposed to mine dust containing silica. In this study, cases with pathologic diagnosis of silicosis during seven years period between 2000 and 2007 were retrieved, from the pathologic file of Department of Pathology, Massih Daneshvary Hospital in Iran. Results of this case study showed the great effects of dust exposure and inhalation from the viewpoint of symptoms especially between the miners.

  6. Upper Cretaceous bituminous coal deposits of the Olmos Formation, Maverick County, Texas

    USGS Publications Warehouse

    Hook, Robert W.; Warwick, Peter D.; SanFilipo, John R.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.

    2011-01-01

    This report describes the bituminous coal deposits of the Olmos Formation (Navarro Group, Upper Cretaceous; Figures 1, 2) of Maverick County in south Texas. Although these were not evaluated quantitatively as part of the current Gulf Coastal Plain coal-resource assessment, a detailed review is presented in this chapter.Prior to the late 1920s, these coal beds were mined underground on a large scale in the vicinity of Eagle Pass, Texas (Figure 1). Since the 1970s, Olmos Formation coals have been mined extensively in both underground and surface mines in nearby Coahuila, Mexico, to supply mine-mouth fuel for power generation at a plant nearby. A tract northeast of Eagle Pass was permitted in the late 1990s for surface mining. In east-central Maverick County, a coalbed methane field is being developed in coal beds of the lower part of the Olmos Formation (Barker et al., 2002; Scott, 2003).

  7. Similar simulation study on the characteristics of the electric potential response to coal mining

    NASA Astrophysics Data System (ADS)

    Niu, Yue; Li, Zhonghui; Kong, Biao; Wang, Enyuan; Lou, Quan; Qiu, Liming; Kong, Xiangguo; Wang, Jiali; Dong, Mingfu; Li, Baolin

    2018-02-01

    An electric potential (EP) can be generated during the failure process of coal and rock. In this article, a similar physical model of coal rock was built and the characteristics of the EP responding to the process of coal mining were studied. The results showed that, at the early mining stage, the structure of coal rock strata were stable in the simulation model, the support stress of overlying coal rock strata was low and the maximum subsidence was little, while the EP change was less. With the advancement of the working face, the support stress of the overlying coal rock strata in the mined-out area changed dramatically, the maximum subsidence increased constantly, the deformation and destruction were aggravated, and cracks expanded continuously. Meanwhile, the EP response was significant with fluctuation. When significant macro damage appeared in coal rock strata, the EP signal fluctuation was violent. The overlying coal rock strata were influenced by gravity and mining activity. During the mining process, the crack growth and the friction, together with slip between coal and rock particles, resulted in the response of EP. The change in EP was closely related to the damage state and stress distribution of the coal rock strata. EP monitoring has the advantages of accurate reflection and strong anti-interference in the field. Therefore, with further study, an EP monitoring method could be applied for monitoring and early warning of coal and rock dynamic disaster, and risk evaluation in the future. The strength of the EP and its fluctuation degree could serve as the key discrimination indexes.

  8. Model of environmental life cycle assessment for coal mining operations.

    PubMed

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. 30 CFR 780.27 - Reclamation plan: Surface mining near underground mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RECLAMATION AND OPERATION PLAN § 780.27 Reclamation plan: Surface mining near underground mining. For surface... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Reclamation plan: Surface mining near... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL...

  10. 30 CFR 780.27 - Reclamation plan: Surface mining near underground mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Reclamation plan: Surface mining near underground mining. 780.27 Section 780.27 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL...

  11. 78 FR 27442 - Coal Mine Dust Sampling Devices; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... DEPARTMENT OF LABOR Mine Safety and Health Administration Coal Mine Dust Sampling Devices; Correction AGENCY: Mine Safety and Health Administration, Labor. ACTION: Notice; correction. SUMMARY: On April 30, 2013, Mine Safety and Health Administration (MSHA) published a notice in the Federal Register...

  12. Assessment of pore pressures and specific storage within sedimentary strata overlying underground mines

    NASA Astrophysics Data System (ADS)

    Timms, W.; David, K.; Barbour, L. S.

    2016-12-01

    Realistic values of specific storage (Ss) for groundwater systems are important to determine the spatial extent and timing of c pore pressure changes when the groundwater system is stressed. However, numerical groundwater models of underground excavations typically assume constant literature values of Ss. One part of our research program utilised high frequency pore pressure data to evaluate variability and changes in Ss within sedimentary strata overlying a longwall coal mine. Pore pressure data from a vertical series of 6 vibrating wire piezometers (50 to 278 m depth) recording at hourly intervals were compared with barometric pressure data over a period of several years, including data before and during mining. The site was located near the centre of a longwall panel that extracted 3 m of coal at a depth of 330 m. The data was processed to calculate loading efficiency and Ss values by multi-method analyses of barometric and earth tide responses. In situ Ss results varied over one to two orders of magnitude and indicated that Ss changed before and after excavation of underlying coal seams. The vertical leakage of groundwater within the constrained zone ( 10 to 150 m depth) was found to be limited, although some degree of vertical hydraulic connectivity was observed. Depressurization was evident in the fractured zone directly overlying the coal seam, and Ss changes at 250 m depth indicated this confined aquifer may have become unconfined. Our results demonstrate that high frequency pore pressure data can provide realistic Ss values. In situ Ss values were an order of magnitude lower than Ss measured by geomechnical tests of cores, and were significantly different to textbook values set in most local groundwater models. The timing and extent of groundwater level drawdown predicted by models may therefore be underestimated. We have shown, for the first time, that variability of Ss can be significant, and that these changes can provide important insights into how shallow and deep groundwater systems respond to underground mining.

  13. A study of leakage rates through mine seals in underground coal mines

    PubMed Central

    Schatzel, Steven J.; Krog, Robert B.; Mazzella, Andrew; Hollerich, Cynthia; Rubinstein, Elaine

    2015-01-01

    The National Institute for Occupational Safety and Health conducted a study on leakage rates through underground coal mine seals. Leakage rates of coal bed gas into active workings have not been well established. New seal construction standards have exacerbated the knowledge gap in our understanding of how well these seals isolate active workings near a seal line. At a western US underground coal mine, we determined seal leakage rates ranged from about 0 to 0.036 m3/s for seven 340 kPa seals. The seal leakage rate varied in essentially a linear manner with variations in head pressure at the mine seals. PMID:26322119

  14. Geotechnical approaches to coal ash content control in mining of complex structure deposits

    NASA Astrophysics Data System (ADS)

    Batugin, SA; Gavrilov, VL; Khoyutanov, EA

    2017-02-01

    Coal deposits having complex structure and nonuniform quality coal reserves require improved processes of production quality control. The paper proposes a method to present coal ash content as components of natural and technological dilution. It is chosen to carry out studies on the western site of Elginsk coal deposit, composed of four coal beds of complex structure. The reported estimates of coal ash content in the beds with respect to five components point at the need to account for such data in confirmation exploration, mine planning and actual mining. Basic means of analysis and control of overall ash content and its components are discussed.

  15. Potential effects of surface coal mining on the hydrology of the Greenleaf-Miller area, Ashland coal field, southeastern Montana

    USGS Publications Warehouse

    Levings, G.W.

    1982-01-01

    The Greenleaf-Miller area of the Ashland coal field contains reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the potential lease area in 1981 to describe the existing hydrologic system and to assess potential impacts of surface coal mining on local water resources. The hydrologic data collected from wells, test holes, and springs were used to identify aquifers in the alluvium (Pleistocene and Holocene age) and the Tongue River member of the Fort Union Formation (Paleocene age). Coal, clinker, and sandstone beds comprise the aquifers in the Tongue River Member. Most streams are ephemeral and flow only as a result of precipitation. The only perennial surface-water flow in the study area is along short reaches downstream from springs. A mine plan for the area is not available; thus, the location of mine cuts, direction and rate of the mine expansion, and duration of mining are unknown. The mining of the Sawyer and Knoblock coal beds in the Tonge River Member would effect ground-water flow in the area. Declines in the potentiometric surface would be caused by dewatering where the mine pits intersect the water table. Wells and springs would be removed in the mine area; however, deeper aquifers are available as replacement sources of water. The chemical quality of the ground water would change after moving through the spoils. The change would be an increase in the concentration of dissolved solids. (USGS)

  16. Application and Prospects of High-strength Lightweight Materials used in Coal mine

    NASA Astrophysics Data System (ADS)

    He, Pan

    2017-09-01

    This paper describes some high-strength lightweight materials used in coal mine, and if their performance can meet the requirements of underground safety for explosion-proof, anti-static, friction sparks mine; and reviewed the species, characteristic, preparation process of high-strength lightweight materials for having inspired lightweight high-strength performance by modifying or changing the synthesis mode used in coal mine equipment.

  17. 77 FR 59667 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Respirable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... for OMB Review; Comment Request; Respirable Coal Mine Dust Sampling ACTION: Notice. SUMMARY: The... information collection request (ICR) titled, ``Respirable Coal Mine Dust Sampling,'' to the Office of... operator to protect miners from exposure to excessive dust levels. The respirable coal mine dust sampling...

  18. 30 CFR 732.15 - Criteria for approval or disapproval of State programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... programs. 732.15 Section 732.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... laws and regulations pertaining to coal exploration and surface coal mining and reclamation operations... system consistent with the regulations of subchapter G of this chapter and prohibit surface coal mining...

  19. 30 CFR 71.208 - Bimonthly sampling; designated work positions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bimonthly sampling; designated work positions... COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Sampling Procedures § 71.208 Bimonthly sampling; designated work positions. (a) Each...

  20. 30 CFR 75.1106-3 - Storage of liquefied and nonliquefied compressed gas cylinders; requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES...; requirements. (a) Liquefied and nonliquefied compressed gas cylinders stored in an underground coal mine shall... falling material, contact with power lines and energized electrical equipment, heat from welding, cutting...

  1. 30 CFR 77.1402-1 - Maximum load; posting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....1402-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL... number of men permitted to ride on each hoist or elevator at one time; this limit shall be posted on each...

  2. Automated Coal-Mining System

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Isenberg, L.; Lewis, E. V.

    1985-01-01

    Proposed system offers safety and large return on investment. System, operating by year 2000, employs machines and processes based on proven principles. According to concept, line of parallel machines, connected in groups of four to service modules, attacks face of coal seam. High-pressure water jets and central auger on each machine break face. Jaws scoop up coal chunks, and auger grinds them and forces fragments into slurry-transport system. Slurry pumped through pipeline to point of use. Concept for highly automated coal-mining system increases productivity, makes mining safer, and protects health of mine workers.

  3. USA's Black Thunder mine: a truck and shovel operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorling, I.

    During 1966/1967, ARCO obtained over 2,631 hectares (6,500 acres) of federal and state coal leases, and initial exploration was started. A total of 312 coal core holes were drilled and logged to determine the reserves and quality of the coal. The results indicated that a large surface mine could be developed to exploit the substantial reserves. The application procedure for permits was started early in 1974. Thunder Basin Coal Company is mining the Wyodak-Anderson Seam where the coal is about 21 meters (69 feet) thick. It has been estimated that a total of 750,000,000 tons of coal exist with amore » 0.3 to 0.4 percent sulfur content and a heating value of about 8,600 Btu per pound. The seam is mined in one lift using electric shovels and trucks. There are many factors which govern the choice of either a dragline or a truck and shovel operation for removing overburden. At the Black Thunder mine the conditions which favored the choice of the truck and shovel method were topography and pit geometry. The run-of-mine coal is dumped into two 540-ton hoppers. Underground vibrating grizzly feeders (2,500 tph capacity) pass the coal into 2,500 tph primary single-roll crushers, where the ROM coal is reduced to minus 8 inches. A 72-inch-wide elevating conveyor carries the coal to a 110-ton surge hopper, and is then fed into two secondary crushers where the coal is further reduced to minus-2 inches. The system is able to handle 5,000 tons of ROM coal per hour. The total production of coal from the mine in 1978 is expected to be about 3,000,000 tons, depending on customer requirements. It is expected that in 1979 the output will rise to 8,000,000 tons, and by 1983 the full planned production of 20,000,000 tons a year will be reached. (LTN)« less

  4. Accidents in Coal Mining from Perspective of Risk Theory

    NASA Astrophysics Data System (ADS)

    Khamidullina, E. A.; Timofeeva, S. S.; Smirnov, G. I.

    2017-11-01

    Introduction. The indicators of the safety system quality in the technosphere include risk indicators. The purpose of this work is to assess the social risk of coal mining since coal mining is associated with specific working conditions, and any emergency situation immediately jeopardizes thelives of many people at the same time. Methods. The work is based on the analysis of statistical information. Results and discussion. The F/N curve of coal mining for the 70-year period (1943-2012) was constructed, and the normative values of the social risk of Russia and other industrialized countries were discussed. Judging by the F/N diagram, only the frequency of accidents with a large number of deaths can correspond to the normative level indicating an exceptionally high level of coal mining risk.

  5. Methodology of Estimation of Methane Emissions from Coal Mines in Poland

    NASA Astrophysics Data System (ADS)

    Patyńska, Renata

    2014-03-01

    Based on a literature review concerning methane emissions in Poland, it was stated in 2009 that the National Greenhouse Inventory 2007 [13] was published. It was prepared firstly to meet Poland's obligations resulting from point 3.1 Decision no. 280/2004/WE of the European Parliament and of the Council of 11 February 2004, concerning a mechanism for monitoring community greenhouse gas emissions and for implementing the Kyoto Protocol and secondly, for the United Nations Framework Convention on Climate Change (UNFCCC) and Kyoto Protocol. The National Greenhouse Inventory states that there are no detailed data concerning methane emissions in collieries in the Polish mining industry. That is why the methane emission in the methane coal mines of Górnośląskie Zagłębie Węglowe - GZW (Upper Silesian Coal Basin - USCB) in Poland was meticulously studied and evaluated. The applied methodology for estimating methane emission from the GZW coal mining system was used for the four basic sources of its emission. Methane emission during the mining and post-mining process. Such an approach resulted from the IPCC guidelines of 2006 [10]. Updating the proposed methods (IPCC2006) of estimating the methane emissions of hard coal mines (active and abandoned ones) in Poland, assumes that the methane emission factor (EF) is calculated based on methane coal mine output and actual values of absolute methane content. The result of verifying the method of estimating methane emission during the mining process for Polish coal mines is the equation of methane emission factor EF.

  6. Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions.

    PubMed

    Hendryx, Michael; Zullig, Keith J

    2009-11-01

    This study analyzes the U.S. 2006 Behavioral Risk Factor Surveillance System survey data (N=235,783) to test whether self-reported cardiovascular disease rates are higher in Appalachian coal mining counties compared to other counties after control for other risks. Dependent variables include self-reported measures of ever (1) being diagnosed with cardiovascular disease (CVD) or with a specific form of CVD including (2) stroke, (3) heart attack, or (4) angina or coronary heart disease (CHD). Independent variables included coal mining, smoking, BMI, drinking, physician supply, diabetes co-morbidity, age, race/ethnicity, education, income, and others. SUDAAN Multilog models were estimated, and odds ratios tested for coal mining effects. After control for covariates, people in Appalachian coal mining areas reported significantly higher risk of CVD (OR=1.22, 95% CI=1.14-1.30), angina or CHD (OR=1.29, 95% CI=1.19-1.39) and heart attack (OR=1.19, 95% CI=1.10-1.30). Effects were present for both men and women. Cardiovascular diseases have been linked to both air and water contamination in ways consistent with toxicants found in coal and coal processing. Future research is indicated to assess air and water quality in coal mining communities in Appalachia, with corresponding environmental programs and standards established as indicated.

  7. 30 CFR 701.4 - Responsibility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... responsibility for regulation of coal exploration and surface coal mining and reclamation operations during the... regulatory authority has responsibility for review of and decisions on permits and bonding for surface coal mining and reclamation operations, approval of coal exploration which substantially disturbs the natural...

  8. Assessment of geo-environmental problems of the Zonguldak province (NW Turkey)

    NASA Astrophysics Data System (ADS)

    Turer, D.; Nefeslioglu, H. A.; Zorlu, K.; Gokceoglu, C.

    2008-09-01

    The Zonguldak province is a coastal settlement area that has been suffering from serious natural and human-induced environmental problems sourced by its geology and geomorphology. Since the province locates at the heart of a coal-producing basin, the geo-environmental problems related to mining activities such as esthetic degradation, disposal of mining wastes and subsidence of the abandoned coal galleries are badly affecting every day life in Zonguldak province. Disposal of municipal wastes is also a big problem since only one municipality out of 32 has a sanitary disposal area. The rest of the municipalities dispose their solid wastes to rivers or to the sea. The province has also some health problems, which are pointed out in the literature, related to coal mining and geologic environment. These are cytogenetic damage in peripheral lymphocytes and pheumoconiosis (most commonly seen at coal workers), goiter and cancer. Landslides are the most important hazards in the area since 13% of the total surface of the Zonguldak is affected by landslides. In this study, considering the hazard potential special attention is given to deep landslides and using the stepwise forward conditional logistic regression technique, the landslide susceptibility map for the Zonguldak province is produced. The results showed that the most important independent variables governing the landslides are slope gradient, volcanic, and sedimentary rocks of Eocene and clastic and carbonate units of Cretaceous. The landslide map is used as a base map for the production of geo-hazard reconnaissance map on which areas subjected to other important geo-hazards (flood, earthquake and subsidence) are also shown to provide guidance for both existing settlement areas to take the necessary preventive measures and for new developing settlement areas to avoid the problematic areas.

  9. Mining influence on underground water resources in arid and semiarid regions

    NASA Astrophysics Data System (ADS)

    Luo, A. K.; Hou, Y.; Hu, X. Y.

    2018-02-01

    Coordinated mining of coal and water resources in arid and semiarid regions has traditionally become a focus issue. The research takes Energy and Chemical Base in Northern Shaanxi as an example, and conducts statistical analysis on coal yield and drainage volume from several large-scale mines in the mining area. Meanwhile, research determines average water volume per ton coal, and calculates four typical years’ drainage volume in different mining intensity. Then during mining drainage, with the combination of precipitation observation data in recent two decades and water level data from observation well, the calculation of groundwater table, precipitation infiltration recharge, and evaporation capacity are performed. Moreover, the research analyzes the transforming relationship between surface water, mine water, and groundwater. The result shows that the main reason for reduction of water resources quantity and transforming relationship between surface water, groundwater, and mine water is massive mine drainage, which is caused by large-scale coal mining in the research area.

  10. Indonesian coal mining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2008-11-15

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  11. Mössbauer study of the inorganic sulfur removal from coals

    NASA Astrophysics Data System (ADS)

    Reyes Caballero, F.; Martínez Ovalle, S. A.

    2014-01-01

    Mössbauer Spectroscopy (MS) was applied to study the occurrence and behavior of the iron-sulfur-containing minerals in coal and coal fractions obtained by different separation methods: hydrocyclonic, flotation and chemical removal process. Samples of one high sulfur coal from Guachinte mine (Valle, Colombia) and three low sulfur coals from the El Salitre zone (Paipa-Boyacá, Colombia) were analyzed. MS evidenced only the presence of pyrite in Esmeralda and Las Casitas coals, while it identified pyrite and siderite on Cerezo coal. MS and SEM- EDX confirm the inorganic sulfur removal on Guachinte coal submitted to hydrocyclonic removal process. MS of the precipitated coal fraction from Las Casitas mine obtained by flotation in water showed the presence of ferrous sulfate because of coal-weathering process. Treatment with hot diluted HNO3 equal to 27 acid on raw coal sample from Las Casitas mine showed that almost all of the pyrite in raw coal was removed.

  12. Coal availability in the Hilight Quadrangle, Powder River Basin, Wyoming; a prototype study in a western coal field

    USGS Publications Warehouse

    Molnia, Carol L.; Biewick, Laura; Blake, Dorsey; Tewalt, Susan J.; Carter, M. Devereaux; Gaskill, Charlie

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management (BLM), Geological Survey of Wyoming, and U.S. Bureau of Mines (USBM), has produced an estimate of the amount of available coal in an area about 35 miles south of Gillette, Wyo., where the Wyodak coal bed is, in places, more than 100 ft thick. Available coal is the quantity of the total coal resource that is accessible for mine development under current regulatory, land-use, and technologic constraints. This first western coal availability study, of the Hilight 7 1/2-minute quadrangle, indicates that approximately 60 percent (2.7 billion short tons) of the total 4.4 billion tons of coal in-place in the quadrangle is available for development. (There has been no commercial mining in the Hilight quadrangle.) Approximately 67 percent (1.9 billion tons) of the Main Wyodak coal bed is considered available. All tonnage measurements in this report are given in short tons. Coal-development considerations in the quadrangle include dwellings, railroads, pipelines, power lines, wildlife habitat (eagles), alluvial valley floors, cemeteries, and the Hilight oil and gas field and gas plant. Some of these considerations could be mitigated so that surface mining of the coal may proceed; others could not be mitigated and would preclude mining in their vicinity. Other technological constraints that influence the availability of the coal include overburden thickness, coal beds too thin, and areas of clinker.

  13. 30 CFR 77.1200 - Mine map.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Maps § 77.1200 Mine... elevation of any body of water dammed or held back in any portion of the mine: Provided, however, Such bodies of water may be shown on overlays or tracings attached to the mine maps; (g) All prospect drill...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasmer, O.; Ulusay, R.

    One of the major problems in surface mining of coal is the stability of disposed overburden materials. Geotechnical considerations are thus very important in rational planning for disposal, reclamation, treatment, and utilization of mine waste material. The subject of this study is the stability of spoil piles at open pit coal mines located in the Central Anatolia, Turkey. The coal is produced from two adjacent open pits. While a large portion of the spoil piles dumped at the Central Pit has experienced slope failure, no spoil pile instability has been experienced at the South Pit. This article outlines the resultsmore » of field and laboratory investigations to describe the mechanism of the spoil pile failure in the Central Pit and the geotechnical design considerations for the spoil piles at the South Pit based on the experience gained from the previous spoil failures. Limit equilibrium analysis carried out for the large-scale spoil failure indicated that deep-seated sliding along the interface between underclay and dragline spoil piles and rotational slip through the overburden spoil material may be all occurring simultaneously as water migrates through these areas. Sensitivity analyses revealed that spoil pile instability is not expected at the South Pit when the current spoil placement method is used as long as the generation of high water pressures in the spoil piles is not permitted. Comparisons between the results of finite element analysis and long-term monitoring data also confirmed the results of sensitivity analyses and indicated a vertical deformation associated with compaction of the spoil material.« less

  15. 30 CFR 874.12 - Eligible coal lands and water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Eligible coal lands and water. 874.12 Section... INTERIOR ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.12 Eligible coal lands and water. Coal lands and water are eligible for reclamation activities if— (a) They were mined for coal or...

  16. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory...

  17. 30 CFR 874.12 - Eligible coal lands and water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Eligible coal lands and water. 874.12 Section... INTERIOR ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.12 Eligible coal lands and water. Coal lands and water are eligible for reclamation activities if— (a) They were mined for coal or...

  18. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. [Statutory...

  19. 30 CFR 874.12 - Eligible coal lands and water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Eligible coal lands and water. 874.12 Section... INTERIOR ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.12 Eligible coal lands and water. Coal lands and water are eligible for reclamation activities if— (a) They were mined for coal or...

  20. 30 CFR 874.12 - Eligible coal lands and water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Eligible coal lands and water. 874.12 Section... INTERIOR ABANDONED MINE LAND RECLAMATION GENERAL RECLAMATION REQUIREMENTS § 874.12 Eligible coal lands and water. Coal lands and water are eligible for reclamation activities if— (a) They were mined for coal or...

Top