Sample records for deep conceptual understanding

  1. Improving Students' Conceptual Understanding of the Greenhouse Effect Using Theory-Based Learning Materials that Promote Deep Learning

    ERIC Educational Resources Information Center

    Reinfried, Sibylle; Aeschbacher, Urs; Rottermann, Benno

    2012-01-01

    Students' everyday ideas of the greenhouse effect are difficult to change. Environmental education faces the challenge of developing instructional settings that foster students' conceptual understanding concept of the greenhouse effect in order to understand global warming. To facilitate students' conceptual development with regard to the…

  2. Supporting Lower-Achieving Seven- and Eight-Year-Old Children with Place Value Understandings

    ERIC Educational Resources Information Center

    Bailey, Judy

    2015-01-01

    Children can sometimes appear to understand a concept such as place value without really having a deep understanding. Judy Bailey stresses the importance of listening carefully to children to identify their current understandings and then building on them systematically, using a range of materials, to promote a deep conceptual understanding. This…

  3. The Development of a Conceptual Framework and Tools to Assess Undergraduates' Principled Use of Models in Cellular Biology

    ERIC Educational Resources Information Center

    Richmond, Gail; Merritt, Brett; Urban-Lurain, Mark; Parker, Joyce

    2010-01-01

    Recent science education reform has been marked by a shift away from a focus on facts toward deep, rich, conceptual understanding. This requires assessment that also focuses on conceptual understanding rather than recall of facts. This study outlines our development of a new assessment framework and tool--a taxonomy--which, unlike existing…

  4. Assessing Students' Deep Conceptual Understanding in Physical Sciences: An Example on Sinking and Floating

    ERIC Educational Resources Information Center

    Shen, Ji; Liu, Ou Lydia; Chang, Hsin-Yi

    2017-01-01

    This paper presents a transformative modeling framework that guides the development of assessment to measure students' deep understanding in physical sciences. The framework emphasizes 3 types of connections that students need to make when learning physical sciences: (1) linking physical states, processes, and explanatory models, (2) integrating…

  5. Professional Development Aligned with AP Chemistry Curriculum: Promoting Science Practices and Facilitating Enduring Conceptual Understanding

    ERIC Educational Resources Information Center

    Herrington, Deborah G.; Yezierski, Ellen J.

    2014-01-01

    The recent revisions to the advanced placement (AP) chemistry curriculum promote deep conceptual understanding of chemistry content over more rote memorization of facts and algorithmic problem solving. For many teachers, this will mean moving away from traditional worksheets and verification lab activities that they have used to address the vast…

  6. Teaching with Procedural Variation: A Chinese Way of Promoting Deep Understanding of Mathematics

    ERIC Educational Resources Information Center

    Lai, Mun Yee; Murray, Sara

    2012-01-01

    In mathematics education, there has been tension between deep learning and repetitive learning. Western educators often emphasize the need for students to construct a conceptual understanding of mathematical symbols and rules before they practise the rules (Li, 2006). On the other hand, Chinese learners tend to be oriented towards rote learning…

  7. Middle school students' understanding of the natural history of the Earth and life on Earth as a function of deep time

    NASA Astrophysics Data System (ADS)

    Pulling, Azalie Cecile

    The purpose of this study was to use deep time, that is geologic time as a mechanism to explore middle school students' understanding of the natural history of the earth and the evolution of life on earth. Geologic time is a logical precursor to middle school students' understanding of biological evolution. This exploratory, mixed model study used qualitative and quantitative methods in each stage of the research to explore sixth grade students, understanding of geologic time, their worldviews (e.g., conceptual ecology), and conceptual change. The study included fifty-nine students in the large group study and four case studies. The primary data collection instrument was the Geologic Timeline Survey. Additional data collection instruments and methods (e.g., concept evaluation statement, journal entries, word associations, interviews, and formal tests) were used to triangulate the study findings. These data were used to create narrative modal profiles of the categories of student thinking that emerged from the large group analysis: Middle School (MS) Scientists (correct science), MS Protoscientists (approaching correct science), MS Prescientists (dinosaur understanding), and MS Pseudoscientists (fundamental religious understanding). Case studies were used to provide a thick description of each category. This study discovered a pattern of student thinking about geologic time that moved along a knowledge continuum from pseudoscience (fundamental creationist understanding) to prescience (everyday-science understanding) to science (correct or approaching correct science). The researcher described the deep-seated misconceptions produced by the prescience thinking level, e.g., dinosaur misconceptions, and cautioned the science education community about using dinosaurs as a glamour-science topic. The most limiting conceptual frameworks found in this study were prescience (a dinosaur focus) and pseudoscience (a fundamental religious focus). An understanding of geologic time as Piaget's system of time (e.g., chronological ordering of events, before and after relationships, duration or evolutionary time) was a necessary conceptual framework for students to develop a scientific understanding of deep time. An examination of students, worldviews and the interface of science and religion indicated that students often successfully applied a demarcation between science and religion in their public thinking (e.g., the formal classroom setting), but in their private thinking, the demarcation was often blurred.

  8. "I Finally Get It!": Developing Mathematical Understanding during Teacher Education

    ERIC Educational Resources Information Center

    Holm, Jennifer; Kajander, Ann

    2012-01-01

    A deep conceptual understanding of elementary mathematics as appropriate for teaching is increasingly thought to be an important aspect of elementary teacher capacity. This study explores preservice teachers' initial mathematical understandings and how these understandings developed during a mathematics methods course for upper elementary…

  9. High-School Students' Conceptual Difficulties and Attempts at Conceptual Change: The Case of Basic Quantum Chemical Concepts

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios; Papaphotis, Georgios

    2009-01-01

    This study tested for deep understanding and critical thinking about basic quantum chemical concepts taught at 12th grade (age 17-18). Our aim was to achieve conceptual change in students. A quantitative study was conducted first (n = 125), and following this 23 selected students took part in semi-structured interviews either individually or in…

  10. Promoting Complex Systems Learning through the Use of Conceptual Representations in Hypermedia

    ERIC Educational Resources Information Center

    Liu, Lei; Hmelo-Silver, Cindy E.

    2009-01-01

    Studying complex systems is increasingly important in many science domains. Many features of complex systems make it difficult for students to develop deep understanding. Our previous research indicated that a function-centered conceptual representation is part of the disciplinary toolbox of biologists, suggesting that it is an appropriate…

  11. Teaching to Promote Deep Understanding and Instigate Conceptual Change

    NASA Astrophysics Data System (ADS)

    Zirbel, Esther

    2006-12-01

    This paper focuses on how to promote deep understanding by making the students to question their inherent conceptual knowledge of how the world works, and on how to correct these views should they be different form the scientifically proven views. This paper reviews the conceptual change model and suggests additional steps. First, the student has to consciously notice and understand what the problem is; second, s/he has to assimilate more information and try to fit it into already existing neural networks; third, s/he has to critically think through all the argumentation in his/her own words and reorganize this thoughts s/he has to accommodate the knowledge and evaluate against his or her prior beliefs; forth s/he has to own the concept and has to consider it her/his personal construct; and finally, s/he has to work towards obtaining fluency in the newly acquired and understood concept so that this concept itself has then becomes a mere building block for future, more advanced concepts. The claim is that during the process of conceptual change what happens in the student’s mind is a reorganization of his or her thoughts, the creation of new neural networks, and the rewiring of old ones. This process is difficult to provoke and requires the student to work hard. Instructors can challenge the student to undergo the process of conceptual change but cannot do it for the student.

  12. Electromagnetic Induction

    ERIC Educational Resources Information Center

    Yochum, Hank; Vinion-Dubiel, Arlene; Granger, Jill; Lindsay, Lynne; Maass, Teresa; Mayhew, Sarah

    2013-01-01

    Engaging children in authentic investigation opens the doors for them to gain deep conceptual understanding in science. As students engage in investigation, they experience the practices employed by scientists and engineers, as highlighted in the Next Generation Science Standards (Achieve Inc. 2013). They also begin to understand the nature of…

  13. Not All the Organelles of Living Cells Are Equal! Or Are They? Engaging Students in Deep Learning and Conceptual Change

    ERIC Educational Resources Information Center

    Cherif, Abour H.; Siuda, JoElla Eaglin; Jedlicka, Dianne M.; Bondoc, Jasper Marc; Movahedzadeh, Farahnaz

    2016-01-01

    The cell is the fundamental basis for understanding biology much like the atom is the fundamental basis for understanding physics. Understanding biology requires the understanding of the fundamental functions performed by components within each cell. These components, or organelles, responsible for both maintenance and functioning of the cell…

  14. A Comparative Study of Learning Strategies Used by Romanian and Hungarian Preuniversity Students in Science Learning

    ERIC Educational Resources Information Center

    Lingvay, Mónika; Timofte, Roxana S.; Ciascai, Liliana; Predescu, Constantin

    2015-01-01

    Development of pupils' deep learning approach is an important goal of education nowadays, considering that a deep learning approach is mediating conceptual understanding and transfer. Different performance at PISA tests of Romanian and Hungarian pupils cause us to commence a study for the analysis of learning approaches employed by these pupils.…

  15. Active Learning Session Based on Didactical Engineering Framework for Conceptual Change in Students' Equilibrium and Stability Understanding

    ERIC Educational Resources Information Center

    Canu, Michael; Duque, Mauricio; de Hosson, Cécile

    2017-01-01

    Engineering students on control courses lack a deep understanding of equilibrium and stability that are crucial concepts in this discipline. Several studies have shown that students find it difficult to understand simple familiar or academic static equilibrium cases as well as dynamic ones from mechanics even if they know the discipline's criteria…

  16. Active Learning session based on Didactical Engineering framework for conceptual change in students' equilibrium and stability understanding

    NASA Astrophysics Data System (ADS)

    Canu, Michael; Duque, Mauricio; de Hosson, Cécile

    2017-01-01

    Engineering students on control courses lack a deep understanding of equilibrium and stability that are crucial concepts in this discipline. Several studies have shown that students find it difficult to understand simple familiar or academic static equilibrium cases as well as dynamic ones from mechanics even if they know the discipline's criteria and formulae. Our aim is to study the impact of a specific and innovative classroom session, containing well-chosen situations that address students' misconceptions. We propose an example of Active Learning experiment based both on the Didactical Engineering methodology and the Conceptual Fields Theory that aims at promoting a conceptual change in students. The chosen methodology allows, at the same time, a proper design of the student learning activities, an accurate monitoring of the students' rational use during the tasks and provides an internal tool for the evaluation of the session's efficiency. Although the expected starting conceptual change was detected, it would require another activity in order to be reinforced.

  17. Preservice Elementary Teachers Use Drawings and Make Sets of Materials to Explain Multiplication and Division by Fractions

    ERIC Educational Resources Information Center

    Rule, Audrey C., Ed.; Hallagan, Jean E., Ed.

    2006-01-01

    Background: Multiplication and division by fractions are among the most troublesome concepts in the elementary mathematics curriculum. Recent studies have shown that preservice elementary teachers in the United States do not have deep understandings of these concepts. Effective ways to improve preservice teachers' conceptual understanding of these…

  18. Can Slope Be Negative in 3-Space? Studying Concept Image of Slope through Collective Definition Construction

    ERIC Educational Resources Information Center

    Moore-Russo, Deborah; Conner, AnnaMarie; Rugg, Kristina I.

    2011-01-01

    Developing deep conceptual understanding of what Ma (1999) calls fundamental mathematics is a well-accepted goal of teacher education. This paper presents a microanalysis of an intriguing episode within a course designed to encourage such understanding. An adaptation of Krummheuer's (1995) elaboration of Toulmin's (1958/2003) diagrams is used to…

  19. Urban High School Students' Critical Science Agency: Conceptual Understandings and Environmental Actions around Climate Change

    ERIC Educational Resources Information Center

    McNeill, Katherine L.; Vaughn, Meredith Houle

    2012-01-01

    This study investigates how the enactment of a climate change curriculum supports students' development of critical science agency, which includes students developing deep understandings of science concepts and the ability to take action at the individual and community levels. We examined the impact of a four to six week urban ecology curriculum…

  20. Developing Deep Understanding and Literacy while Addressing a Gender-Based Literacy Gap

    ERIC Educational Resources Information Center

    Sun, Yanqing; Zhang, Jianwei; Scardamalia, Marlene

    2010-01-01

    Online discourse from a class of 22 students (11 boys and 11 girls) was analysed to assess advances in conceptual understanding and literacy. The students worked over a two-year period (Grades 3-4), during which they contributed notes to an online Knowledge Building environment--Knowledge Forum[R]. Contributions revealed that both boys and girls…

  1. An examination of conceptual change in undergraduate biology majors while learning science concepts including biological evolution

    NASA Astrophysics Data System (ADS)

    McQuaide, Glenn G.

    2006-12-01

    Without adequate understanding of science, we cannot make responsible personal, regional, national, or global decisions about any aspect of life dealing with science. Better understanding how we learn about science can contribute to improving the quality of our educational experiences. Promoting pathways leading to life-long learning and deep understanding in our world should be a goal for all educators. This dissertation project was a phenomenological investigation into undergraduate understanding and acceptance of scientific theories, including biological evolution. Specifically, student descriptions of conceptual change while learning science theory were recorded and analyzed. These qualitative investigations were preceded by a survey that provided a means of selecting students who had a firmer understanding of science theory. Background information and survey data were collected in an undergraduate biology class at a small, Southern Baptist-affiliated liberal arts school located in south central Kentucky. Responses to questions on the MATE (Rutledge and Warden, 1999) instrument were used to screen students for interviews, which investigated the way by which students came to understand and accept scientific theories. This study identifies some ways by which individuals learn complex science theories, including biological evolution. Initial understanding and acceptance often occurs by the conceptual change method described by Posner et al. (1982). Three principle ways by which an individual may reach a level of understanding and acceptance of science theory were documented in this study. They were conceptual change through application of logic and reasoning; conceptual change through modification of religious views; and conceptual change through acceptance of authoritative knowledge. Development of a deeper, richer understanding and acceptance of complex, multi-faceted concepts such as biological evolution occurs in some individuals by means of conceptual enrichment. Conceptual enrichment occurs through addition of new knowledge, and then examining prior knowledge through the perspective of this new knowledge. In the field of science, enrichment reinforces complex concepts when multiple, convergent lines of supporting evidences point to the same rational scientific conclusion.

  2. To master or perform? Exploring relations between achievement goals and conceptual change learning.

    PubMed

    Ranellucci, John; Muis, Krista R; Duffy, Melissa; Wang, Xihui; Sampasivam, Lavanya; Franco, Gina M

    2013-09-01

    Research is needed to explore conceptual change in relation to achievement goal orientations and depth of processing. To address this need, we examined relations between achievement goals, use of deep versus shallow processing strategies, and conceptual change learning using a think-aloud protocol. Seventy-three undergraduate students were assessed on their prior knowledge and misconceptions about Newtonian mechanics, and then reported their achievement goals and participated in think-aloud protocols while reading Newtonian physics texts. A mastery-approach goal orientation positively predicted deep processing strategies, shallow processing strategies, and conceptual change. In contrast, a performance-approach goal orientation did not predict either of the processing strategies, but negatively predicted conceptual change. A performance-avoidance goal orientation negatively predicted deep processing strategies and conceptual change. Moreover, deep and shallow processing strategies positively predicted conceptual change as well as recall. Finally, both deep and shallow processing strategies mediated relations between mastery-approach goals and conceptual change. Results provide some support for Dole and Sinatra's (1998) Cognitive Reconstruction of Knowledge Model of conceptual change but also challenge specific facets with regard to the role of depth of processing in conceptual change. © 2012 The British Psychological Society.

  3. When pretesting fails to enhance learning concepts from reading texts.

    PubMed

    Hausman, Hannah; Rhodes, Matthew G

    2018-05-03

    Prior research suggests that people can learn more from reading a text when they attempt to answer pretest questions first. Specifically, pretests on factual information explicitly stated in a text increases the likelihood that participants can answer identical questions after reading than if they had not answered pretest questions. Yet, a central goal of education is to develop deep conceptual understanding. The present experiments investigated whether conceptual pretests facilitate learning concepts from reading texts. In Experiment 1, participants were given factual or conceptual pretest questions; a control group was not given a pretest. Participants then read a passage and took a final test consisting of both factual and conceptual questions. Some of the final test questions were repeated from the pretest and some were new. Although factual pretesting improved learning for identical factual questions, conceptual pretesting did not enhance conceptual learning. Conceptual pretest errors were significantly more likely to be repeated on the final test than factual pretest errors. Providing correct answers (Experiment 2) or correct/incorrect feedback (Experiment 3) following pretest questions enhanced performance on repeated conceptual test items, although these benefits likely reflect memorization and not conceptual understanding. Thus, pretesting appears to provide little benefit for learning conceptual information. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. Deep Learning and Developmental Learning: Emergence of Fine-to-Coarse Conceptual Categories at Layers of Deep Belief Network.

    PubMed

    Sadeghi, Zahra

    2016-09-01

    In this paper, I investigate conceptual categories derived from developmental processing in a deep neural network. The similarity matrices of deep representation at each layer of neural network are computed and compared with their raw representation. While the clusters generated by raw representation stand at the basic level of abstraction, conceptual categories obtained from deep representation shows a bottom-up transition procedure. Results demonstrate a developmental course of learning from specific to general level of abstraction through learned layers of representations in a deep belief network. © The Author(s) 2016.

  5. How Do We Help Students Build Beliefs That Allow Them to Avoid Critical Learning Barriers and Develop a Deep Understanding of Geology?

    ERIC Educational Resources Information Center

    Dal, Burçkin

    2007-01-01

    Students hold a surprising number of ideas about the Earth's structure and process. This paper begins with a discussion on the nature of understanding in the conceptually confined domain of geosciences. There then follows a report on a study of the ideas about a range of concepts relating to "crystals", "volcanoes",…

  6. Student Interactions in Technology-Rich Classrooms

    ERIC Educational Resources Information Center

    Fonkert, Karen L.

    2010-01-01

    Students are more likely to develop a deep conceptual understanding of mathematics when they interact with and discuss their thoughts with others. The National Council of Teachers of Mathematics (NCTM) (1989, 2000) has recommended that students be active learners--communicating with one another, conjecturing, exploring, and justifying claims by…

  7. Kindergarten Students Solving Mathematical Word Problems

    ERIC Educational Resources Information Center

    Johnson, Nickey Owen

    2013-01-01

    The purpose of this study was to explore problem solving with kindergarten students. This line of inquiry is highly significant given that Common Core State Standards emphasize deep, conceptual understanding in mathematics as well as problem solving in kindergarten. However, there is little research on problem solving with kindergarten students.…

  8. Examining Hip-Hop as Culturally Relevant Pedagogy

    ERIC Educational Resources Information Center

    Kim, Jung; Pulido, Isaura

    2015-01-01

    Culturally relevant pedagogy is a framework that conceptualizes the process of student learning as contingent upon educators' deep understanding of students' cultural backgrounds to co-construct knowledge and develop academic skills. Concurrently, there are a growing number of studies that explore hip-hop as a culturally relevant curriculum for…

  9. A Study of Undergraduate Students' Alternative Conceptions of Earth's Interior Using Drawing Tasks

    ERIC Educational Resources Information Center

    McAllister, Meredith L.

    2014-01-01

    Learning fundamental geoscience topics such as plate tectonics, earthquakes, and volcanoes requires students to develop a deep understanding of the conceptual models geologists use when describing the structure and dynamics of Earth's interior. Despite the importance of these mental models underlying much of the undergraduate geoscience…

  10. Learning style and concept acquisition of community college students in introductory biology

    NASA Astrophysics Data System (ADS)

    Bobick, Sandra Burin

    This study investigated the influence of learning style on concept acquisition within a sample of community college students in a general biology course. There are two subproblems within the larger problem: (1) the influence of demographic variables (age, gender, number of college credits, prior exposure to scientific information) on learning style, and (2) the correlations between prior scientific knowledge, learning style and student understanding of the concept of the gene. The sample included all students enrolled in an introductory general biology course during two consecutive semesters at an urban community college. Initial data was gathered during the first week of the semester, at which time students filled in a short questionnaire (age, gender, number of college credits, prior exposure to science information either through reading/visual sources or a prior biology course). Subjects were then given the Inventory of Learning Processes-Revised (ILP-R) which measures general preferences in five learning styles; Deep Learning; Elaborative Learning, Agentic Learning, Methodical Learning and Literal Memorization. Subjects were then given the Gene Conceptual Knowledge pretest: a 15 question objective section and an essay section. Subjects were exposed to specific concepts during lecture and laboratory exercises. At the last lab, students were given the Genetics Conceptual Knowledge Posttest. Pretest/posttest gains were correlated with demographic variables and learning styles were analyzed for significant correlations. Learning styles, as the independent variable in a simultaneous multiple regression, were significant predictors of results on the gene assessment tests, including pretest, posttest and gain. Of the learning styles, Deep Learning accounted for the greatest positive predictive value of pretest essay and pretest objective results. Literal Memorization was a significant negative predictor for posttest essay, essay gain and objective gain. Simultaneous multiple regression indicated that demographic variables were significant positive predictors for Methodical, Deep and Elaborative Learning Styles. Stepwise multiple regression resulted in number of credits, Read Science and gender (female) as significant predictors of learning styles. The findings of this study emphasize the importance of learning styles in conceptual understanding of the gene and the correlation of nonformal exposure to science information with learning style and conceptual understanding.

  11. A conceptual change analysis of nature of science conceptions: The deep roots and entangled vines of a conceptual ecology

    NASA Astrophysics Data System (ADS)

    Johnston, Adam Thomas

    This research used theories of conceptual change to analyze learners' understandings of the nature of science (NOS). Ideas regarding the NOS have been advocated as vital aspects of science literacy, yet learners at many levels (students and teachers) have difficulty in understanding these aspects in the way that science literacy reforms advocate. Although previous research has shown the inadequacies in learners' NOS understandings and have documented ways by which to improve some of these understandings, little has been done to show how these ideas develop and why learners' preexisting conceptions of NOS are so resistant to conceptual change. The premise of this study, then, was to describe the nature of NOS conceptions and of the conceptual change process itself by deeply analyzing the conceptions of individual learners. Toward this end, 4 individuals enrolled in a physical science course designed for preservice elementary teachers were selected to participate in a qualitative research study. These individuals answered questionnaires, surveys, direct interview questions, and a variety of interview probes (e.g., critical incidents, responses to readings/videos, reflections on coursework, card sorting tasks, etc.) which were administered throughout the duration of a semester. By utilizing these in-depth, qualitative probes, learners' conceptions were not only assessed but also described in great detail, revealing the source of their conceptions as well as identifying many instances in which a learner's directly stated conception was contradictory to that which was reflected by more indirect probes. As a result of this research, implications regarding NOS conceptions and their development have been described. In addition, various descriptions of conceptual change have been further refined and informed. Especially notable, the influence of a learner's conceptual ecology and its extrarational influences on conceptual change have been highlighted. It is argued that conceptual change theory must continue to look at the nature and importance of learners' conceptual ecologies and that the learning of NOS concepts cannot be viewed as purely rational constructions.

  12. Framing Inquiry in High School Chemistry: Helping Students See the Bigger Picture

    ERIC Educational Resources Information Center

    Criswell, Brett

    2012-01-01

    Inquiry has been advocated as an effective pedagogical strategy for promoting deep conceptual understanding and more sophisticated scientific thinking by numerous bodies associated with chemistry (and science) education. To allow inquiry to achieve these goals, the teacher must manage the amount of cognitive load experienced by students while they…

  13. The Problem Solving Studio: An Apprenticeship Environment for Aspiring Engineers

    ERIC Educational Resources Information Center

    Le Doux, Joseph M.; Waller, Alisha A.

    2016-01-01

    This paper describes the problem-solving studio (PSS) learning environment. PSS was designed to teach students how to solve difficult analytical engineering problems without resorting to rote memorization of algorithms, while at the same time developing their deep conceptual understanding of the course topics. There are several key features of…

  14. A Concept-Based Approach to Teaching Speech Acts in the EFL Classroom

    ERIC Educational Resources Information Center

    Nicholas, Allan

    2015-01-01

    While concept-based instruction (CBI), grounded in sociocultural theory, has been the subject of increased attention in recent years, it is still a relatively unknown methodology in language teaching contexts. In this approach, the emphasis is on helping learners develop a deep, conceptual understanding of a skill or knowledge area, so that this…

  15. Back to Basics: Teaching the Statement of Cash Flows

    ERIC Educational Resources Information Center

    Cecil, H. Wayne; King, Teresa T.; Andrews, Christine P.

    2011-01-01

    A conceptual foundation for the Statement of Cash Flows based on the ten elements of financial statements provides students with a deep understanding of core accounting concepts. Traditional methods of teaching the statement of cash flows tend to focus on statement preparation rules, masking the effect of business events on the change in cash.…

  16. Target Inquiry: Changing Chemistry High School Teachers' Classroom Practices and Knowledge and Beliefs about Inquiry Instruction

    ERIC Educational Resources Information Center

    Herrington, Deborah G.; Yezierski, Ellen J.; Luxford, Karen M.; Luxford, Cynthia J.

    2011-01-01

    Inquiry-based instruction requires a deep, conceptual understanding of the process of science combined with a sophisticated knowledge of teaching and learning. This study examines the changes in classroom instructional practices and corresponding changes to knowledge and beliefs about inquiry instruction for eight high school chemistry teachers.…

  17. Reading for Deep Understanding: Knowledge Building and Conceptual Artifacts in Secondary English

    ERIC Educational Resources Information Center

    Nachowitz, Marc

    2012-01-01

    The purpose of this design-based experiment is two-fold: to see if classroom pedagogies can be developed to improve student achievement in English literature as well as prepare them for 21st Century literacies. Applying Bereiter and Scardamalia's theory of Knowledge Building to English curricula, this experiment tracked the progress of a…

  18. Context and Deep Learning Design

    ERIC Educational Resources Information Center

    Boyle, Tom; Ravenscroft, Andrew

    2012-01-01

    Conceptual clarification is essential if we are to establish a stable and deep discipline of technology enhanced learning. The technology is alluring; this can distract from deep design in a surface rush to exploit the affordances of the new technology. We need a basis for design, and a conceptual unit of organization, that are applicable across…

  19. Knowledge dimensions in hypothesis test problems

    NASA Astrophysics Data System (ADS)

    Krishnan, Saras; Idris, Noraini

    2012-05-01

    The reformation in statistics education over the past two decades has predominantly shifted the focus of statistical teaching and learning from procedural understanding to conceptual understanding. The emphasis of procedural understanding is on the formulas and calculation procedures. Meanwhile, conceptual understanding emphasizes students knowing why they are using a particular formula or executing a specific procedure. In addition, the Revised Bloom's Taxonomy offers a twodimensional framework to describe learning objectives comprising of the six revised cognition levels of original Bloom's taxonomy and four knowledge dimensions. Depending on the level of complexities, the four knowledge dimensions essentially distinguish basic understanding from the more connected understanding. This study identifiesthe factual, procedural and conceptual knowledgedimensions in hypothesis test problems. Hypothesis test being an important tool in making inferences about a population from sample informationis taught in many introductory statistics courses. However, researchers find that students in these courses still have difficulty in understanding the underlying concepts of hypothesis test. Past studies also show that even though students can perform the hypothesis testing procedure, they may not understand the rationale of executing these steps or know how to apply them in novel contexts. Besides knowing the procedural steps in conducting a hypothesis test, students must have fundamental statistical knowledge and deep understanding of the underlying inferential concepts such as sampling distribution and central limit theorem. By identifying the knowledge dimensions of hypothesis test problems in this study, suitable instructional and assessment strategies can be developed in future to enhance students' learning of hypothesis test as a valuable inferential tool.

  20. The effect of level of processing on perceptual and conceptual priming: control versus closed-head-injured patients.

    PubMed

    Vakil, E; Sigal, J

    1997-07-01

    Twenty-four closed-head-injured (CHI) and 24 control participants studied two word lists under shallow (i.e., nonsemantic) and deep (i.e., semantic) encoding conditions. They were then tested on free recall, perceptual priming (i.e., perceptual partial word identification) and conceptual priming (i.e., category production) tasks. Previous findings have demonstrated that memory in CHI is characterized by inefficient conceptual processing of information. It was thus hypothesized that the CHI participants would perform more poorly than the control participants on the explicit and on the conceptual priming tasks. On these tasks the CHI group was expected to benefit to a lesser degree from prior deep encoding, as compared to controls. The groups were not expected to significantly differ from each other on the perceptual priming task. Prior deep encoding was not expected to improve the perceptual priming performance of either group. All findings were as predicted, with the exception that a significant effect was not found between groups for deep encoding in the conceptual priming task. The results are discussed (1) in terms of their theoretical contribution in further validating the dissociation between perceptual and conceptual priming; and (2) in terms of the contribution in differentiating between amnesic and CHI patients. Conceptual priming is preserved in amnesics but not in CHI patients.

  1. Flexible and fast: linguistic shortcut affects both shallow and deep conceptual processing.

    PubMed

    Connell, Louise; Lynott, Dermot

    2013-06-01

    Previous research has shown that people use linguistic distributional information during conceptual processing, and that it is especially useful for shallow tasks and rapid responding. Using two conceptual combination tasks, we showed that this linguistic shortcut extends to the processing of novel stimuli, is used in both successful and unsuccessful conceptual processing, and is evident in both shallow and deep conceptual tasks. Specifically, as predicted by the ECCo theory of conceptual combination, people use the linguistic shortcut as a "quick-and-dirty" guide to whether the concepts are likely to combine into a coherent conceptual representation, in both shallow sensibility judgment and deep interpretation generation tasks. Linguistic distributional frequency predicts both the likelihood and the time course of rejecting a novel word compound as nonsensical or uninterpretable. However, it predicts the time course of successful processing only in shallow sensibility judgment, because the deeper conceptual process of interpretation generation does not allow the linguistic shortcut to suffice. Furthermore, the effects of linguistic distributional frequency are independent of any effects of conventional word frequency. We discuss the utility of the linguistic shortcut as a cognitive triage mechanism that can optimize processing in a limited-resource conceptual system.

  2. Nitrate removal in deep sediments of a nitrogen-rich river network: A test of a conceptual model

    USGS Publications Warehouse

    Stelzer, Robert S.; Bartsch, Lynn

    2012-01-01

    Many estimates of nitrogen removal in streams and watersheds do not include or account for nitrate removal in deep sediments, particularly in gaining streams. We developed and tested a conceptual model for nitrate removal in deep sediments in a nitrogen-rich river network. The model predicts that oxic, nitrate-rich groundwater will become depleted in nitrate as groundwater upwelling through sediments encounters a zone that contains buried particulate organic carbon, which promotes redox conditions favorable for nitrate removal. We tested the model at eight sites in upwelling reaches of lotic ecosystems in the Waupaca River Watershed that varied by three orders of magnitude in groundwater nitrate concentration. We measured denitrification potential in sediment core sections to 30 cm and developed vertical nitrate profiles to a depth of about 1 m with peepers and piezometer nests. Denitrification potential was higher, on average, in shallower core sections. However, core sections deeper than 5 cm accounted for 70%, on average, of the depth-integrated denitrification potential. Denitrification potential increased linearly with groundwater nitrate concentration up to 2 mg NO3-N/L but the relationship broke down at higher concentrations (> 5 mg NO3-N/L), a pattern that suggests nitrate saturation. At most sites groundwater nitrate declined from high concentrations at depth to much lower concentrations prior to discharge into the surface water. The profiles suggested that nitrate removal occurred at sediment depths between 20 and 40 cm. Dissolved oxygen concentrations were much higher in deep sediments than in pore water at 5 cm sediment depth at most locations. The substantial denitrification potential in deep sediments coupled with the declines in nitrate and dissolved oxygen concentrations in upwelling groundwater suggest that our conceptual model for nitrate removal in deep sediments is applicable to this river network. Our results suggest that nitrate removal rates can be high in deep sediments of upwelling stream reaches, which may have implications for efforts to understand and quantify nitrogen transport and removal at larger scales.

  3. The Nature of Conceptual Understanding in Biomedicine: The Deep Structure of Complex Ideas and the Development of Misconceptions. Technical Report No. 440.

    ERIC Educational Resources Information Center

    Feltovich, Paul J.; And Others

    This report presents a general framework for studying the acquisition and cognitive representation of biomedical concepts and analyzing the nature and development of misconceptions. The central approach of the report is a selective and highly concentrated analysis of the true nature of clusters of complex concepts and the manner in which they are…

  4. Approaches to Learning and Kolb's Learning Styles of Undergraduates with Better Grades

    NASA Astrophysics Data System (ADS)

    Almeida, Patrícia; Teixeira-Dias, José Joaquim; Martinho, Mariana; Balasooriya, Chinthaka

    The purpose of this study is to investigate if the teaching, learning and assessment strategies conceived and implemented in a higher education chemistry course promote the development of conceptual understanding, as intended. Thus, our aim is to analyse the learning styles and the approaches to learning of chemistry undergraduates with better grades. The overall results show that the students with better grades possess the assimilator learning style, that is usually associated to the archetypal chemist. Moreover, the students with the highest grades revealed a conception of learning emphasising understanding. However, these students diverged both in their learning approaches and in their preferences for teaching strategies. The majority of students adopted a deep approach or a combination of a deep and a strategic approach, but half of them revealed their preference for teaching-centred strategies.

  5. Conceptual compression for pattern recognition in 3D model output

    NASA Astrophysics Data System (ADS)

    Prudden, Rachel; Robinson, Niall; Arribas, Alberto

    2017-04-01

    The problem of data compression is closely related to the idea of comprehension. If you understand a scene at a qualitative level, this should enable you to make reasonable predictions about its contents, meaning that less extra information is needed to encode it precisely. These ideas have already been applied in the field of image compression; see for example the work on conceptual compression by Google DeepMind. Applying similar methods to multidimensional atmospheric data could have significant benefits. Beyond reducing storage demands, the ability to recognise complex features would make it far easier to interpret and search large volumes of meteorological data. Our poster will present some early work in this area.

  6. Re-conceptualizing the origins of life

    NASA Astrophysics Data System (ADS)

    Walker, Sara I.; Packard, N.; Cody, G. D.

    2017-11-01

    Over the last several hundred years of scientific progress, we have arrived at a deep understanding of the non-living world. We have not yet achieved an analogous, deep understanding of the living world. The origins of life is our best chance at discovering scientific laws governing life, because it marks the point of departure from the predictable physical and chemical world to the novel, history-dependent living world. This theme issue aims to explore ways to build a deeper understanding of the nature of biology, by modelling the origins of life on a sufficiently abstract level, starting from prebiotic conditions on Earth and possibly on other planets and bridging quantitative frameworks approaching universal aspects of life. The aim of the editors is to stimulate new directions for solving the origins of life. The present introduction represents the point of view of the editors on some of the most promising future directions. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  7. Social responsibility: conceptualization and embodiment in a school of nursing.

    PubMed

    Kelley, Maureen A; Connor, Ann; Kun, Karen E; Salmon, Marla E

    2008-01-01

    This paper describes how a school of nursing has conceptualized and embodied social responsibility in its core values, curricular design, admission standards, clinical practice, and service learning opportunities. The school's engagement in the process of practicing social responsibility and clarifying its meaning and application has made apparent the natural linkage between social responsibility and professionalism and the deep and complex relationship between social responsibility and nursing itself. It has also revealed how a commitment to social responsibility impacts and determines for whom nurses care. Claiming social responsibility as a core value and working to refine its meaning and place has increased the school's commitment to it, concomitantly impacting education, practice, and recruitment and evaluation of faculty and students. The school views the conceptualization of social responsibility as a deepening and unfolding evolution, rather than as a formulaic understanding, and expects that its ongoing work of claiming social responsibility as a core value will continue to be enriching.

  8. What Can Be Learned from a Laboratory Model of Conceptual Change? Descriptive Findings and Methodological Issues

    ERIC Educational Resources Information Center

    Ohlsson, Stellan; Cosejo, David G.

    2014-01-01

    The problem of how people process novel and unexpected information--"deep learning" (Ohlsson in "Deep learning: how the mind overrides experience." Cambridge University Press, New York, 2011)--is central to several fields of research, including creativity, belief revision, and conceptual change. Researchers have not converged…

  9. Start With What You Know: Using Our Scientific Background in the Classroom

    NASA Astrophysics Data System (ADS)

    Martino, Danielle L.; Prather, E. E.; Barembaum, M. J.; Brissenden, G.

    2007-12-01

    Most "Astro 101” instructors enter their teaching careers as scientists anxious to impart their passion and knowledge of astronomy to the students sitting before them. The reality of the real teaching and learning environment starts when first confronted by non-science majors. Most of these students resist an authentic engagement of learning science and default to the shortest, easiest path to a high grade. Unfortunately this approach is usually unsuccessful in a course designed to measure students’ deep conceptual understanding rather than their declarative knowledge. While it's clear that, by itself, lecturing is insufficient to promote robust or deep learning, it is difficult to create a learning environment that elicits students’ initial ideas on a topic, while confronting and resolving their misconceptions and helping them to resolve their reasoning difficulties. Instructional strategies such as think-pair-share, Lecture-Tutorials, Ranking Tasks, and concept maps can be very successful at elevating students’ intellectual engagement and understanding, even when used in large lecture classrooms. But success will ONLY occur if these strategies are correctly implemented. Mastering the many subtle, and sometimes non-intuitive elements of proper implementation can be so challenging that instructors often abandon an active learning environment and default back to lecture-centered instruction even though they know this results in lower levels of understanding overall. In an effort to improve our teaching, the astronomy faculty of Santiago Canyon College (SCC) have been attending NASA's Center for Astronomy Education Learner-Centered Teaching Excellence workshops. We present our rationale for implementing learner-centered instructional strategies, and the difficulties encountered during implementation. We also present results on how these techniques have promoted meaningful conceptual gains for non-science majors in other equivalent Astro 101 courses. We further report conceptual gains of SCC students, from pre/post testing using the Light, Spectroscopy Concept Inventory, during the 2006-2007 academic school year.

  10. Conceptual Tutoring Software for Promoting Deep Learning: A Case Study

    ERIC Educational Resources Information Center

    Stott, Angela; Hattingh, Annemarie

    2015-01-01

    The paper presents a case study of the use of conceptual tutoring software to promote deep learning of the scientific concept of density among 50 final year pre-service student teachers in a natural sciences course in a South African university. Individually-paced electronic tutoring is potentially an effective way of meeting the students' varied…

  11. The Development of a Conceptual Framework and Tools to Assess Undergraduates' Principled Use of Models in Cellular Biology

    PubMed Central

    Merritt, Brett; Urban-Lurain, Mark; Parker, Joyce

    2010-01-01

    Recent science education reform has been marked by a shift away from a focus on facts toward deep, rich, conceptual understanding. This requires assessment that also focuses on conceptual understanding rather than recall of facts. This study outlines our development of a new assessment framework and tool—a taxonomy— which, unlike existing frameworks and tools, is grounded firmly in a framework that considers the critical role that models play in science. It also provides instructors a resource for assessing students' ability to reason about models that are central to the organization of key scientific concepts. We describe preliminary data arising from the application of our tool to exam questions used by instructors of a large-enrollment cell and molecular biology course over a 5-yr period during which time our framework and the assessment tool were increasingly used. Students were increasingly able to describe and manipulate models of the processes and systems being studied in this course as measured by assessment items. However, their ability to apply these models in new contexts did not improve. Finally, we discuss the implications of our results and the future directions for our research. PMID:21123691

  12. Conceptual and non-conceptual repetition priming in category exemplar generation: Evidence from bilinguals.

    PubMed

    Francis, Wendy S; Fernandez, Norma P; Bjork, Robert A

    2010-10-01

    One measure of conceptual implicit memory is repetition priming in the generation of exemplars from a semantic category, but does such priming transfer across languages? That is, do the overlapping conceptual representations for translation equivalents provide a sufficient basis for such priming? In Experiment 1 (N=96) participants carried out a deep encoding task, and priming between languages was statistically reliable, but attenuated, relative to within-language priming. Experiment 2 (N=96) replicated the findings of Experiment 1 and assessed the contributions of conceptual and non-conceptual processes using a levels-of-processing manipulation. Words that underwent shallow encoding exhibited within-language, but not between-language, priming. Priming in shallow conditions cannot therefore be explained by incidental activation of the concept. Instead, part of the within-language priming effect, even under deep-encoding conditions, is due to increased availability of language-specific lemmas or phonological word forms.

  13. Conceptual and Non-conceptual Repetition Priming in Category Exemplar Generation: Evidence from Bilinguals

    PubMed Central

    Francis, Wendy S.; Fernandez, Norma P.; Bjork, Robert A.

    2010-01-01

    One measure of conceptual implicit memory is repetition priming in the generation of exemplars from a semantic category, but does such priming transfer across languages? That is, do the overlapping conceptual representations for translation equivalents provide a sufficient basis for such priming? In Experiment 1 (N = 96), participants carried out a deep encoding task, and priming between languages was statistically reliable, but attenuated, relative to within-language priming. Experiment 2 (N = 96) replicated the findings of Experiment 1 and assessed the contributions of conceptual and non-conceptual processes using a levels-of-processing manipulation. Words that underwent shallow encoding exhibited within-language, but not between-language, priming. Priming in shallow conditions cannot, therefore, be explained by incidental activation of the concept. Instead, part of the within-language priming effect, even under deep-encoding conditions, is due to increased availability of language-specific lemmas or phonological word forms. PMID:20924951

  14. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    NASA Astrophysics Data System (ADS)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The previous hypothesis that regional groundwater flow from the piedmont groundwater recharge zone predominantly discharges at the coastline may therefore be false. A more reliable alternative might be to conceptualize deep groundwater below the coastal plains a hydrodynamically stagnant zone, responding gradually to landscape and hydrological change on geologic timescales. This study brings a new and original understanding of the groundwater flow system in an important regional basin, in the context of its geometry and evolution over geological timescales. There are important implications for the sustainability of the ongoing high rates of groundwater extraction in the NCB.

  15. A Study Of Undergraduate Students' Alternative Conceptions Of Earth's Interior Using Drawing Tasks

    NASA Astrophysics Data System (ADS)

    McAllister, Meredith L.

    2014-12-01

    Learning fundamental geoscience topics such as plate tectonics, earthquakes, and volcanoes requires students to develop a deep understanding of the conceptual models geologists use when describing the structure and dynamics of Earth's interior. Despite the importance of these mental models underlying much of the undergraduate geoscience curriculum, surprisingly little research related to this complex idea exists in the discipline-based science education research literature. To better understand non-science-majoring undergraduates' conceptual models of Earth's interior, student-generated drawings and interviews were used to probe student understanding of the Earth. Ninety-two semi-structured interviews were conducted with non-science-major college students at the beginning of an entry-level geology course at a large Midwestern university. Students were asked to draw a picture of Earth's interior and provide think-aloud explanations of their drawings. The results reveal that students hold a wide range of alternative conceptions about Earth, with only a small fraction having scientifically accurate ideas. Students' understandings ranged from conceptualizing Earth's interior as consisting of horizontal layers of rock and dirt, to more sophisticated views with Earth's interior being composed of concentric layers with unique physical and chemical characteristics. Processes occurring within Earth, such as "convection," were rarely mentioned or explained. These results provide a first-steps basis from which to further explore college students' thinking and contribute to the growing body of knowledge on earth science teaching and geoscience education research.

  16. Building a Biopsychosocial Conceptual Framework to Explore Pressure Ulcer Pain for Hospitalized Patients.

    PubMed

    Kim, Junglyun; Ahn, Hyochol; Lyon, Debra E; Stechmiller, Joyce

    2016-01-08

    Although pressure ulcers are a prevalent condition, pain associated with pressure ulcers is not fully understood. Indeed, previous studies do not shed light on the association between pressure ulcer stages and the experience of pain. Especially, pain characteristics of suspected deep tissue injury, which is a new category that was recently added by the National Pressure Ulcer Advisory Panel, are yet unknown. This is concerning because the incidence of pressure ulcers in hospitalized patients has increased exponentially over the last two decades, and health care providers are struggling to ensure providing adequate care. Thus, in order to facilitate the development of effective interventions, this paper presents a conceptual framework to explore pressure ulcer pain in hospitalized patients. The concepts were derived from a biopsychosocial model of pain, and the relationships among each concept were identified through a literature review. Major propositions are presented based on the proposed conceptual framework, which integrates previous research on pressure ulcer pain, to ultimately improve understanding of pain in hospitalized patients with pressure ulcers.

  17. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 1: The LBNF and DUNE Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.

    2016-01-22

    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.

  18. Value and benefits of open-book examinations as assessment for deep learning in a post-graduate animal health course.

    PubMed

    Dale, Vicki H M; Wieland, Barbara; Pirkelbauer, Birgit; Nevel, Amanda

    2009-01-01

    This study provides an overview of the perceptions of alumni in relation to their experience of open-book examinations (OBEs) as post-graduate students. This type of assessment was introduced as a way of allowing these adult learners to demonstrate their conceptual understanding and ability to apply knowledge in practice, which in theory would equip them with problem-solving skills required for the workplace. This study demonstrates that alumni-shown to be predominantly deep learners-typically regarded OBEs as less stressful than closed-book examinations, and as an effective way to assess the application of knowledge to real-life problems. Additional staff training and student induction, particularly for international students, are suggested as a means of improving the acceptability and effectiveness of OBEs.

  19. Issues and Design Drivers for Deep Space Habitats

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Anderson, Molly

    2012-01-01

    A cross-disciplinary team of scientists and engineers applied expertise gained in Lunar Lander development to the conceptual design of a long-duration, deep space habitat for Near Earth Asteroid (NEA) missions. The design reference mission involved two launches to assemble 5-modules for a 380-day round trip mission carrying 4 crew members. The conceptual design process yielded a number of interesting debates, some of which could be significant design drivers in a detailed Deep Space Habitat (DSH) design. These issues included: Design to minimize crew radiation exposure, launch loads, communications challenges, docking system and hatch commonality, pointing and visibility, consumables, and design for contingency operations.

  20. Trophic segregation of a fish assemblage along lateral depth gradients in a subtropical coastal lagoon revealed by stable isotope analyses.

    PubMed

    Mont'Alverne, R; Pereyra, P E R; Garcia, A M

    2016-07-01

    Stable isotopes were used to evaluate the hypothesis that fish assemblages occurring in shallow and deep areas of a large coastal lagoon are structured in partially segregated trophic modules with consumers showing contrasting reliance on benthic or pelagic food sources. The results revealed that fishes in deep areas were mainly dependent on particulate organic matter in the sediment (SOM), whereas emergent macrophytes were as important as SOM to fish consumers in shallow areas. Conceptual trophic diagrams depicting relationships among basal food sources and consumers in different regions of the lagoon highlighted the greater use of multiple basal food sources by more feeding mode functional guilds in shallow water compared with the use of predominantly benthic resources (SOM) in deep areas. The findings appear to corroborate the initial hypothesis and offer complementary perspectives in understanding the role of spatial ecology in structuring coastal ecosystem function and productivity. © 2016 The Fisheries Society of the British Isles.

  1. To Master or Perform? Exploring Relations between Achievement Goals and Conceptual Change Learning

    ERIC Educational Resources Information Center

    Ranellucci, John; Muis, Krista R.; Duffy, Melissa; Wang, Xihui; Sampasivam, Lavanya; Franco, Gina M.

    2013-01-01

    Background: Research is needed to explore conceptual change in relation to achievement goal orientations and depth of processing. Aims: To address this need, we examined relations between achievement goals, use of deep versus shallow processing strategies, and conceptual change learning using a think-aloud protocol. Sample and Method:…

  2. Between-language repetition priming in antonym generation: evidence that translation-equivalent adjectives have shared conceptual representations across languages.

    PubMed

    Taylor, Randolph S; Francis, Wendy S

    2017-03-01

    Previous literature has demonstrated conceptual repetition priming across languages in bilinguals. This between-language priming effect is taken as evidence that translation equivalents have shared conceptual representations across languages. However, the vast majority of this research has been conducted using only concrete nouns as stimuli. The present experiment examined conceptual repetition priming within and between languages in adjectives, a part of speech not previously investigated in studies of bilingual conceptual representation. The participants were 100 Spanish-English bilinguals who had regular exposure to both languages. At encoding, participants performed a shallow processing task and a deep-processing task on English and Spanish adjectives. At test, they performed an antonym-generation task in English, in which the target responses were either adjectives presented at encoding or control adjectives not previously presented. The measure of priming was the response time advantage for producing repeated adjectives relative to control adjectives. Significant repetition priming was observed both within and between languages under deep, but not shallow, encoding conditions. The results indicate that the conceptual representations of adjective translation equivalents are shared across languages.

  3. Mechanism of saline groundwater migration under the influence of deep groundwater exploitation in the North China Plain

    NASA Astrophysics Data System (ADS)

    Han, D.; Cao, G.; Currell, M. J.

    2016-12-01

    Understanding the mechanism of salt water transport in response to the exploitation of deep freshwater has long been one of the major regional environmental hydrogeological problems and scientific challenges in the North China Plain. It is also the key to a correct understanding of the sources of deep groundwater pumpage. This study will look at the Hengshui - Cangzhou region as a region with typical vertical salt water distribution, and high levels of groundwater exploitation, integrating a variety of techniques in geology, hydrogeology, geophysics, hydrodynamics, and hydrochemistry - stable isotopes. Information about the problem will be determined using multiple lines of evidence, including field surveys of drilling and water sampling, as well as laboratory experiments and physical and numerical simulations. The project will characterize and depict the migration characteristics of salt water bodies and their relationship with the geological structure and deep ground water resources. The work will reveal the freshwater-saltwater interface shape; determine the mode and mechanism of hydrodynamic transport and salt transport; estimate the vertical migration time of salt water in a thick aquitard; and develop accurate hydrogeological conceptual models. This work will utilize groundwater variable density flow- solute transport numerical models to simulate the water and salt transport processes in vertical one-dimensional (typical bore) and two-dimensional (typical cross-section) space. Both inversion of the downward movement of saltwater caused by groundwater exploitation through history, and examining future saltwater migration trends under groundwater exploitation scenarios will be conducted, to quantitatively evaluate the impact of salt water migration to the deep groundwater body in the North China Plain. The research results will provide a scientific basis for the sustainable utilization of deep groundwater resources in this area.

  4. Addressing secondary students' naïve ideas about freshwater springs in order to develop an instructional tool to promote conceptual reconstruction

    NASA Astrophysics Data System (ADS)

    Reinfried, S.; Tempelmann, S.; Aeschbacher, U.

    2012-02-01

    "Water knowledge" has now become a socio-political and future-orientated necessity. Erroneous notions or preconceptions of hydrology can have a deleterious effect on our understanding of the scientific facts and their interrelations that are of relevance to sustainable water management. This explorative pilot study shows that erroneous and naïve ideas about the origin of freshwater springs are common at the lower secondary level. The purpose of this study was two-fold: (1) to investigate the nature of misconceptions about freshwater springs among 13-year-old students, and (2) to develop an efficient instructional tool that promotes conceptual reconstruction in the learners' minds. To assess students' naïve ideas we conducted interviews, examined student work, and asked students to fill in a questionnaire. The identified naïve ideas were used to construct an instructional tool based on the findings of learning psychology aiming at promoting deep learning, thus facilitating a lasting conceptual reconstruction of the concept of freshwater springs.

  5. Building a Biopsychosocial Conceptual Framework to Explore Pressure Ulcer Pain for Hospitalized Patients

    PubMed Central

    Kim, Junglyun; Ahn, Hyochol; Lyon, Debra E.; Stechmiller, Joyce

    2016-01-01

    Although pressure ulcers are a prevalent condition, pain associated with pressure ulcers is not fully understood. Indeed, previous studies do not shed light on the association between pressure ulcer stages and the experience of pain. Especially, pain characteristics of suspected deep tissue injury, which is a new category that was recently added by the National Pressure Ulcer Advisory Panel, are yet unknown. This is concerning because the incidence of pressure ulcers in hospitalized patients has increased exponentially over the last two decades, and health care providers are struggling to ensure providing adequate care. Thus, in order to facilitate the development of effective interventions, this paper presents a conceptual framework to explore pressure ulcer pain in hospitalized patients. The concepts were derived from a biopsychosocial model of pain, and the relationships among each concept were identified through a literature review. Major propositions are presented based on the proposed conceptual framework, which integrates previous research on pressure ulcer pain, to ultimately improve understanding of pain in hospitalized patients with pressure ulcers. PMID:27417595

  6. Learning to Deflect: Conceptual Change in Physics during Digital Game Play

    ERIC Educational Resources Information Center

    Sengupta, Pratim; Krinks, Kara D.; Clark, Douglas B.

    2015-01-01

    How does deep conceptual change occur when students play well-designed educational games? To answer this question, we present a case study in the form of a microgenetic analysis of a student's processes of knowledge construction as he played a conceptually-integrated digital game (SURGE Next) designed to support learning about Newtonian mechanics.…

  7. Validating a Conceptual Framework for the Core Concept of "Cell-Cell Communication"

    ERIC Educational Resources Information Center

    Michael, Joel; Martinkova, Patricia; McFarland, Jenny; Wright, Ann; Cliff, William; Modell, Harold; Wenderoth, Mary Pat

    2017-01-01

    We have created and validated a conceptual framework for the core physiology concept of "cell-cell communication." The conceptual framework is composed of 51 items arranged in a hierarchy that is, in some instances, four levels deep. We have validated it with input from faculty who teach at a wide variety of institutional types. All…

  8. Addressing secondary school students' everyday ideas about freshwater springs in order to develop an instructional tool to promote conceptual reconstruction

    NASA Astrophysics Data System (ADS)

    Reinfried, S.; Tempelmann, S.; Aeschbacher, U.

    2012-05-01

    "Water knowledge" has now become a socio-political and future-orientated necessity. Everyday ideas or preconceptions of hydrology can have a deleterious effect one people's understanding of the scientific facts and their interrelations that are of relevance to sustainable water management. This explorative pilot study shows that preconceived notions about the origin of freshwater springs are common at the lower secondary school level. The purpose of this study was two-fold: (1) to investigate the nature of everyday ideas about freshwater springs among 81 13-yr-old Swiss students, and (2) to develop an efficient instructional tool that promotes conceptual reconstruction in the learners' minds. To assess students' everyday ideas we conducted interviews, examined student work, and asked students to fill in a questionnaire. The results indicate that half of the students have some basic hydrological knowledge. However, several preconceived notions that can significantly impede the understanding of hydrological concepts have been found. A common preconception concerns the idea that solid rocks cannot be permeable and that large underground cavities constitute a necessary precondition for the formation of springs. While these ideas may well be true for karst springs they inhibit the understanding of the concept of other spring types due to their plausibility and intelligibility. We therefore chose the concept of the hillslope spring to construct an instructional tool that takes into account the findings of the psychology of learning aimed at promoting deep learning, thus facilitating a lasting conceptual reconstruction of the concept of springs.

  9. Development of the biology card sorting task to measure conceptual expertise in biology.

    PubMed

    Smith, Julia I; Combs, Elijah D; Nagami, Paul H; Alto, Valerie M; Goh, Henry G; Gourdet, Muryam A A; Hough, Christina M; Nickell, Ashley E; Peer, Adrian G; Coley, John D; Tanner, Kimberly D

    2013-01-01

    There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task, designed to probe how individuals organize their conceptual knowledge of biology. While modeled on tasks from cognitive psychology, this task is unique in its design to test two hypothesized conceptual frameworks for the organization of biological knowledge: 1) a surface feature organization focused on organism type and 2) a deep feature organization focused on fundamental biological concepts. In this initial investigation of the Biology Card Sorting Task, each of six analytical measures showed statistically significant differences when used to compare the card sorting results of putative biological experts (biology faculty) and novices (non-biology major undergraduates). Consistently, biology faculty appeared to sort based on hypothesized deep features, while non-biology majors appeared to sort based on either surface features or nonhypothesized organizational frameworks. Results suggest that this novel task is robust in distinguishing populations of biology experts and biology novices and may be an adaptable tool for tracking emerging biology conceptual expertise.

  10. Ecohydrological control of deep drainage in arid and semiarid regions

    USGS Publications Warehouse

    Seyfried, M.S.; Schwinning, S.; Walvoord, Michelle Ann; Pockman, W. T.; Newman, B.D.; Jackson, R.B.; Phillips, F.M.

    2005-01-01

    The amount and spatial distribution of deep drainage (downward movement of water across the bottom of the root zone) and groundwater recharge affect the quantity and quality of increasingly limited groundwater in arid and semiarid regions. We synthesize research from the fields of ecology and hydrology to address the issue of deep drainage in arid and semiarid regions. We start with a recently developed hydrological model that accurately simulates soil water potential and geochemical profiles measured in thick (>50 m), unconsolidated vadose zones. Model results indicate that, since the climate change that marked the onset of the Holocene period 10 000–15 000 years ago, there has been no deep drainage in vegetated interdrainage areas and that continuous, relatively low (<−1 MPa) soil water potentials have been maintained at depths of 2–3 m. A conceptual model consistent with these results proposes that the native, xeric‐shrub‐dominated, plant communities that gained dominance during the Holocene generated and maintained these conditions. We present three lines of ecological evidence that support the conceptual model. First, xeric shrubs have sufficiently deep rooting systems with low extraction limits to generate the modeled conditions. Second, the characteristic deep‐rooted soil–plant systems store sufficient water to effectively buffer deep soil from climatic fluctuations in these dry environments, allowing stable conditions to persist for long periods of time. And third, adaptations resulting in deep, low‐extraction‐limit rooting systems confer significant advantages to xeric shrubs in arid and semiarid environments. We then consider conditions in arid and semiarid regions in which the conceptual model may not apply, leading to the expectation that portions of many arid and semiarid watersheds supply some deep drainage. Further ecohydrologic research is required to elucidate critical climatic and edaphic thresholds, evaluate the role of important physiological processes (such as hydraulic redistribution), and evaluate the role of deep roots in terms of carbon costs, nutrient uptake, and whole‐plant development.

  11. What Can Be Learned From a Laboratory Model of Conceptual Change? Descriptive Findings and Methodological Issues

    NASA Astrophysics Data System (ADS)

    Ohlsson, Stellan; Cosejo, David G.

    2014-07-01

    The problem of how people process novel and unexpected information— deep learning (Ohlsson in Deep learning: how the mind overrides experience. Cambridge University Press, New York, 2011)—is central to several fields of research, including creativity, belief revision, and conceptual change. Researchers have not converged on a single theory for conceptual change, nor has any one theory been decisively falsified. One contributing reason is the difficulty of collecting informative data in this field. We propose that the commonly used methodologies of historical analysis, classroom interventions, and developmental studies, although indispensible, can be supplemented with studies of laboratory models of conceptual change. We introduce re- categorization, an experimental paradigm in which learners transition from one definition of a categorical concept to another, incompatible definition of the same concept, a simple form of conceptual change. We describe a re-categorization experiment, report some descriptive findings pertaining to the effects of category complexity, the temporal unfolding of learning, and the nature of the learner's final knowledge state. We end with a brief discussion of ways in which the re-categorization model can be improved.

  12. Deep Borehole Field Test Conceptual Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest L.

    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBDmore » concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.« less

  13. Revealing Conceptual Understanding of International Business

    ERIC Educational Resources Information Center

    Ashley, Sue; Schaap, Harmen; de Bruijn, Elly

    2017-01-01

    This study aims to identify an adequate approach for revealing conceptual understanding in higher professional education. Revealing students' conceptual understanding is an important step towards developing effective curricula, assessment and aligned teaching strategies to enhance conceptual understanding in higher education. Essays and concept…

  14. Promoting Scientific Thinking and Conceptual Change about Alternative Explanations of Climate Change and Other Controversial Socio-scientific Topics

    NASA Astrophysics Data System (ADS)

    Lombardi, D.; Sinatra, G. M.

    2013-12-01

    Critical evaluation and plausibility reappraisal of scientific explanations have been underemphasized in many science classrooms (NRC, 2012). Deep science learning demands that students increase their ability to critically evaluate the quality of scientific knowledge, weigh alternative explanations, and explicitly reappraise their plausibility judgments. Therefore, this lack of instruction about critical evaluation and plausibility reappraisal has, in part, contributed to diminished understanding about complex and controversial topics, such as global climate change. The Model-Evidence Link (MEL) diagram (originally developed by researchers at Rutgers University under an NSF-supported project; Chinn & Buckland, 2012) is an instructional scaffold that promotes students to critically evaluate alternative explanations. We recently developed a climate change MEL and found that the students who used the MEL experienced a significant shift in their plausibility judgments toward the scientifically accepted model of human-induced climate change. Using the MEL for instruction also resulted in conceptual change about the causes of global warming that reflected greater understanding of fundamental scientific principles. Furthermore, students sustained this conceptual change six months after MEL instruction (Lombardi, Sinatra, & Nussbaum, 2013). This presentation will discuss recent educational research that supports use of the MEL to promote critical evaluation, plausibility reappraisal, and conceptual change, and also, how the MEL may be particularly effective for learning about global climate change and other socio-scientific topics. Such instruction to develop these fundamental thinking skills (e.g., critical evaluation and plausibility reappraisal) is demanded by both the Next Generation Science Standards (Achieve, 2013) and the Common Core State Standards for English Language Arts and Mathematics (CCSS Initiative-ELA, 2010; CCSS Initiative-Math, 2010), as well as a society that is equipped to deal with challenges in a way that is beneficial to our national and global community.

  15. The importance of conceptual models in the reactive transport simulation of oxygen ingress in sparsely fractured crystalline rock.

    PubMed

    Macquarrie, K T B; Mayer, K U; Jin, B; Spiessl, S M

    2010-03-01

    Redox evolution in sparsely fractured crystalline rocks is a key, and largely unresolved, issue when assessing the geochemical suitability of deep geological repositories for nuclear waste. Redox zonation created by the influx of oxygenated waters has previously been simulated using reactive transport models that have incorporated a variety of processes, resulting in predictions for the depth of oxygen penetration that may vary greatly. An assessment and direct comparison of the various underlying conceptual models are therefore needed. In this work a reactive transport model that considers multiple processes in an integrated manner is used to investigate the ingress of oxygen for both single fracture and fracture zone scenarios. It is shown that the depth of dissolved oxygen migration is greatly influenced by the a priori assumptions that are made in the conceptual models. For example, the ability of oxygen to access and react with minerals in the rock matrix may be of paramount importance for single fracture conceptual models. For fracture zone systems, the abundance and reactivity of minerals within the fractures and thin matrix slabs between the fractures appear to provide key controls on O(2) attenuation. The findings point to the need for improved understanding of the coupling between the key transport-reaction feedbacks to determine which conceptual models are most suitable and to provide guidance for which parameters should be targeted in field and laboratory investigations. Copyright 2009 Elsevier B.V. All rights reserved.

  16. An ecological approach to learning with technology: responding to tensions within the "wow-effect" phenomenon in teaching practices

    NASA Astrophysics Data System (ADS)

    Herro, Danielle

    2016-12-01

    This review explores Anne Kamstrupp's "The Wow-effect in Science Teacher Education" by examining her theorized "wow-effect" as a teaching enactment that may serve to engage students, but often fails to provide deep understanding of science content. My response extends her perspective of socio-materiality as means to understand the "wow-effect" by suggesting social constructivism provides a more accurate lens to disentangle the phenomenon. I react to her position that tension fields within the phenomenon include the relationship between new and old technologies, boredom and engagement, and active and sedentary learning. In this conversation, I point to a new way of conceptualizing using digital media in the classroom as ecology of learning that may serve to decrease problems associated with the "wow-effect".

  17. Development of the Biology Card Sorting Task to Measure Conceptual Expertise in Biology

    PubMed Central

    Smith, Julia I.; Combs, Elijah D.; Nagami, Paul H.; Alto, Valerie M.; Goh, Henry G.; Gourdet, Muryam A. A.; Hough, Christina M.; Nickell, Ashley E.; Peer, Adrian G.; Coley, John D.; Tanner, Kimberly D.

    2013-01-01

    There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task, designed to probe how individuals organize their conceptual knowledge of biology. While modeled on tasks from cognitive psychology, this task is unique in its design to test two hypothesized conceptual frameworks for the organization of biological knowledge: 1) a surface feature organization focused on organism type and 2) a deep feature organization focused on fundamental biological concepts. In this initial investigation of the Biology Card Sorting Task, each of six analytical measures showed statistically significant differences when used to compare the card sorting results of putative biological experts (biology faculty) and novices (non–biology major undergraduates). Consistently, biology faculty appeared to sort based on hypothesized deep features, while non–biology majors appeared to sort based on either surface features or nonhypothesized organizational frameworks. Results suggest that this novel task is robust in distinguishing populations of biology experts and biology novices and may be an adaptable tool for tracking emerging biology conceptual expertise. PMID:24297290

  18. SMAS Fusion Zones Determine the Subfascial and Subcutaneous Anatomy of the Human Face: Fascial Spaces, Fat Compartments, and Models of Facial Aging.

    PubMed

    Pessa, Joel E

    2016-05-01

    Fusion zones between superficial fascia and deep fascia have been recognized by surgical anatomists since 1938. Anatomical dissection performed by the author suggested that additional superficial fascia fusion zones exist. A study was performed to evaluate and define fusion zones between the superficial and the deep fascia. Dissection of fresh and minimally preserved cadavers was performed using the accepted technique for defining anatomic spaces: dye injection combined with cross-sectional anatomical dissection. This study identified bilaminar membranes traveling from deep to superficial fascia at consistent locations in all specimens. These membranes exist as fusion zones between superficial and deep fascia, and are referred to as SMAS fusion zones. Nerves, blood vessels and lymphatics transition between the deep and superficial fascia of the face by traveling along and within these membranes, a construct that provides stability and minimizes shear. Bilaminar subfascial membranes continue into the subcutaneous tissues as unilaminar septa on their way to skin. This three-dimensional lattice of interlocking horizontal, vertical, and oblique membranes defines the anatomic boundaries of the fascial spaces as well as the deep and superficial fat compartments of the face. This information facilitates accurate volume augmentation; helps to avoid facial nerve injury; and provides the conceptual basis for understanding jowls as a manifestation of enlargement of the buccal space that occurs with age. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  19. Exploring Students' Reflective Thinking Practice, Deep Processing Strategies, Effort, and Achievement Goal Orientations

    ERIC Educational Resources Information Center

    Phan, Huy Phuong

    2009-01-01

    Recent research indicates that study processing strategies, effort, reflective thinking practice, and achievement goals are important factors contributing to the prediction of students' academic success. Very few studies have combined these theoretical orientations within one conceptual model. This study tested a conceptual model that included, in…

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooley, James J.

    Shaffer’s (2010) article reports on the long term impact of less than perfect retention of anthropogenic CO2 stored in deep geologic reservoirs and in the ocean. The central thesis of this article is predicated on two deeply flawed assumptions. The first and most glaring is the implicit assumption that society has only one means of reducing greenhouse gas emissions, carbon dioxide capture and storage (CCS). Secondly, there is absolutely no geophysical nor geomechanical basis for assuming an exponential decay of CO2 stored in deep geologic formations as done by Schaffer. Shaffer’s analysis of the impact of leakage from anthropogenic CO2more » stored in deep geologic reservoirs are based upon two fundamentally flawed assumptions and therefore the reported results as well as the public policy conclusions presented in the paper need to be read with this understanding in mind as far less CO2 stored below ground because society drew upon a broad portfolio of advanced energy technologies over the coming century coupled with a more technically accurate conceptualization of CO2 storage in the deep subsurface and the important role of secondary and tertiary trapping mechanisms would have yield a far less pessimistic view of the potential role that CCS can play in a broader portfolio of societal responses to the very serious threat posed by climate change.« less

  1. Change or Durability? The Contribution of Metaconceptual Awareness in Preservice Early Childhood Teachers' Learning of Science Concepts

    NASA Astrophysics Data System (ADS)

    Saçkes, Mesut; Trundle, Kathy Cabe

    2017-06-01

    This longitudinal study examined the role of metaconceptual awareness in the change and the durability of preservice teachers' conceptual understandings over the course of several months. Sixteen preservice early childhood teachers participated in the study. Semi-structured interviews were conducted to reveal the participants' conceptual understandings of lunar phases (pre, post, and delayed-post) and level of metaconceptual awareness (delayed-post only). Based on the change and stability in participants' conceptual understandings from pre to post and from post to delayed-post interviews, participants' conceptual understandings were assigned into three groups that described the profile of their long-term conceptual understandings: " decay or stability", " continuous growth", and " growth and stability". The results indicated that participants in the " continuous growth" and " growth and stability" groups had significantly higher metaconceptual awareness scores than participants in the " decay or stability" group. The results provided evidence that metaconceptual awareness plays a more decisive role in the restructuring of conceptual understandings than the durability of conceptual understandings.

  2. Understanding Cellular Respiration: An Analysis of Conceptual Change in College Biology.

    ERIC Educational Resources Information Center

    Songer, Catherine J.; Mintzes, Joel J.

    1994-01-01

    Explores and documents the frequencies of conceptual difficulties confronted by college students (n=200) seeking to understand the basic processes of cellular respiration. Findings suggest that novices harbor a wide range of conceptual difficulties that constrain their understanding of cellular respiration and many of these conceptual problems…

  3. Conceptual framework of Tenaga Nasional Berhad (TNB) cost of service (COS) model

    NASA Astrophysics Data System (ADS)

    Zainudin, WNRA; Ishak, WWM; Sulaiman, NA

    2017-09-01

    One of Malaysia Electricity Supply Industry (MESI) objectives is to ensure Tenaga Nasional Berhad (TNB) economic viability based on a fair economic electricity pricing. In meeting such objective, a framework that investigates the effect of cost of service (COS) on revenue is in great need. This paper attempts to present a conceptual framework that illustrate the distribution of the COS among TNB’s various cost centres which are subsequently redistributed in varying quantities among all of its customer categories. A deep understanding on the concepts will ensure optimal allocation of COS elements between different sub activities of energy production processes can be achieved. However, this optimal allocation needs to be achieved with respect to the imposed TNB revenue constraint. Therefore, the methodology used for this conceptual approach is being modelled into four steps. Firstly, TNB revenue requirement is being examined to ensure the conceptual framework addressed the requirement properly. Secondly, the revenue requirement is unbundled between three major cost centres or business units consist of generation, transmission and distribution and the cost is classified based on demand, energy and customers related charges. Finally, the classified costs are being allocated to different customer categories i.e. Household, Commercial, and Industrial. In summary, this paper proposed a conceptual framework on the cost of specific services that TNB currently charging its customers and served as potential input into the process of developing revised electricity tariff rates. On that purpose, the finding of this COS study finds cost to serve customer varies with the voltage level that customer connected to, the timing and the magnitude of customer demand on the system. This COS conceptual framework could potentially be integrated into a particular tariff structure and serve as a useful tool for TNB.

  4. Interdisciplinary Expansion of Conceptual Foundations: Insights from beyond Our Field

    ERIC Educational Resources Information Center

    Ambrose, Don

    2005-01-01

    The field of gifted education is very complex, covering broad and deep conceptual terrain. Insights about giftedness and talent are available from diverse academic disciplines and at multiple levels of analysis. These levels are captured in an interpretive framework that moves from the macrolevels of broad sociopolitical, cultural, and economic…

  5. Evaluation of Soil Moisture, Storm Characteristics, and Their Influence on Storm Runoff and Water Yield at the Panola Mountain Research Watershed, Georgia, U.S.A.

    NASA Astrophysics Data System (ADS)

    Riley, J. W.; Aulenbach, B. T.

    2015-12-01

    Understanding the factors that control runoff processes is important for many aspects of water supply and ecosystem protection, especially during climatic extremes that result in flooding or droughts; potentially impacting human safety. Furthermore, having knowledge of the conditions during which runoff occurs contributes to the conceptual understanding of the hydrologic cycle and may improve parameterization of hydrologic models. We evaluated soil moisture, storm characteristics, and the subsequent runoff and water yield for 297 storms over an eight-year period at Panola Mountain Research Watershed to better understand runoff generation processes. Panola Mountain Research Watershed is a small (41-hectare), relatively undisturbed forested watershed near Atlanta, GA, U.S.A. Strong relations were observed between total precipitation for a given storm, deep (70 cm below surface) antecedent soil moisture content and the volume of runoff. However, the strength of the relations varied based on occurrence during the growing (April - September; 172 storms) or dormant (October - March; 125 storms) period. In general, soil moisture responded at a minimum of 15 cm depth for all but 18 events. In addition, we found storms that initiated a response of deep soil moisture (70 cm below surface) to be an important factor relating to storm runoff and water yield. Seventy percent of the dormant period storms generated a response at 70 cm depth compared to 58% of growing period storms. A stronger relation between soil moisture and water yield was noted during the dormant period and indicated that all storms that produced a water yield >12% occurred when deep pre-event soil moisture was >20%. Similar patterns were also present during the growing season with occasional intense thunderstorms also generating higher water yields even in the absence of high soil moisture. The importance of deep soil moisture likely reflects the overall status of watershed storage conditions.

  6. Evolution of the conceptual model of unsaturated zone hydrology at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Flint, Alan L.; Flint, Lorraine E.; Bodvarsson, Gudmundur S.; Kwicklis, Edward M.; Fabryka-Martin, June

    2001-06-01

    Yucca Mountain is an arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500-1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5-4.5 mm/yr, or 2-3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because of capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to flow. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water in the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data, particularly fracture flow deep in the unsaturated zone. This paper presents the history of the evolution of conceptual models of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada ( Flint, A.L., Flint, L.E., Kwicklis, E.M., Bodvarsson, G.S., Fabryka-Martin, J.M., 2001. Hydrology of Yucca Mountain. Reviews of Geophysics in press). This retrospective is the basis for recommendations for optimizing the efficiency with which a viable and robust conceptual model can be developed for a complex site.

  7. Conceptual Framework to Help Promote Retention and Transfer in the Introductory Chemical Engineering Course

    ERIC Educational Resources Information Center

    Hanyak, Michael E., Jr.

    2015-01-01

    In an introductory chemical engineering course, the conceptual framework of a holistic problem-solving methodology in conjunction with a problem-based learning approach has been shown to create a learning environment that nurtures deep learning rather than surface learning. Based on exam scores, student grades are either the same or better than…

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigali, Mark J.; Pye, Steven; Hardin, Ernest

    This study considers the feasibility of large diameter deep boreholes for waste disposal. The conceptual approach considers examples of deep large diameter boreholes that have been successfully drilled, and also other deep borehole designs proposed in the literature. The objective for large diameter boreholes would be disposal of waste packages with diameters of 22 to 29 inches, which could enable disposal of waste forms such as existing vitrified high level waste. A large-diameter deep borehole design option would also be amenable to other waste forms including calcine waste, treated Na-bonded and Na-bearing waste, and Cs and Sr capsules.

  9. Emotion and the Internet: A Model of Learning

    ERIC Educational Resources Information Center

    Tran, Thuhang T.; Ward, Cheryl B.

    2005-01-01

    This conceptual paper examines the link between emotion and surface-deep learning in the context of the international business curriculum. We propose that 1) emotion and learning have a curvilinear relationship, and 2) the reflective abilities and attitude transformations related to deep-level learning can only arise if the student is emotionally…

  10. Relations between Goals, Self-Efficacy, Critical Thinking and Deep Processing Strategies: A Path Analysis

    ERIC Educational Resources Information Center

    Phan, Huy Phuong

    2009-01-01

    Research exploring students' academic learning has recently amalgamated different motivational theories within one conceptual framework. The inclusion of achievement goals, self-efficacy, deep processing and critical thinking has been cited in a number of studies. This article discusses two empirical studies that examined these four theoretical…

  11. Teaching for clinical reasoning - helping students make the conceptual links.

    PubMed

    McMillan, Wendy Jayne

    2010-01-01

    Dental educators complain that students struggle to apply what they have learnt theoretically in the clinical context. This paper is premised on the assumption that there is a relationship between conceptual thinking and clinical reasoning. The paper provides a theoretical framework for understanding the relationship between conceptual learning and clinical reasoning. A review of current literature is used to explain the way in which conceptual understanding influences clinical reasoning and the transfer of theoretical understandings to the clinical context. The paper argues that the connections made between concepts are what is significant about conceptual understanding. From this point of departure the paper describes teaching strategies that facilitate the kinds of learning opportunities that students need in order to develop conceptual understanding and to be able to transfer knowledge from theoretical to clinical contexts. Along with a variety of teaching strategies, the value of concept maps is discussed. The paper provides a framework for understanding the difficulties that students have in developing conceptual networks appropriate for later clinical reasoning. In explaining how students learn for clinical application, the paper provides a theoretical framework that can inform how dental educators facilitate the conceptual learning, and later clinical reasoning, of their students.

  12. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John R.; Hardin, Ernest

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portionsmore » of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has benefited greatly from review principally by Steve Pye, and also by Paul Eslinger, Dave Sevougian and Jiann Su.« less

  13. Effect of problem type toward students’ conceptual understanding level on heat and temperature

    NASA Astrophysics Data System (ADS)

    Ratnasari, D.; Sukarmin; Suparmi, S.

    2017-11-01

    The aim of this research is to analyze the level of students’ understanding of heat and temperature concept and effect of problem type toward students’ conceptual understanding of heat and temperature. This research is descriptive research with the subjects of the research are 96 students from high, medium, and low categorized school in Surakarta. Data of level of students’ conceptual understanding is from students’ test result using essay instrument (arranged by researcher and arranged by the teacher) and interview. Before being tested in the samples, essay instrument is validated by the experts. Based on the result and the data analysis, students’ conceptual understanding level of 10th grade students on heat and temperature is as follows: (1) Most students have conceptual understanding level at Partial Understanding with a Specific Misconception (PUSM) with percentage 28,85%; (2) Most students are able to solve mathematic problem from teacher, but don’t understand the underlying concept.

  14. Combining numerical modeling and stable isotope values to quantify groundwater recharge from the Chilean Andes to the Pampa del Tamarugal Basin, Atacama Desert, northern Chile

    NASA Astrophysics Data System (ADS)

    Dodd, J. P.; Pollyea, R.

    2014-12-01

    The Atacama Desert of northern Chile is one of the driest regions on Earth and receives less than 5mm of precipitation annually. The Pampa del Tamarugal (PdT) Basin contains the largest aquifer system in the region, yet the mechanisms and timing of aquifer recharge and continental-scale groundwater flux are poorly understood. Although there is little debate that the source of groundwater recharge is the higher elevation regions of the Andean Altiplano to the east of the PdT Basin, there remains much uncertainty surrounding the mechanisms and timing of aquifer recharge and continental-scale groundwater flux. Most recharge models of the PdT focus on surface water runoff and alluvial fan recharge on shorter time scales, but many of these models explicitly neglect deep flow pathways. Previous investigators have combined the thermal aquifer profile and 14C groundwater ages to propose an alternative conceptual model in which cold meteoric water infiltrates deep into the Cordillera before circulating upward into the PdT by thermal convection through fault-controlled migration pathways. Although this conceptual model provides a convincing theoretical argument for deep fluid circulation, it cannot constrain the magnitude of this deep recharge flux. In this work, we revisit deep-flow conceptual model by combining the spatial distribution of hydrogen and oxygen isotope values as groundwater tracers with a non-isothermal model of continental scale groundwater flow through a two-dimensional transect from the Chilean Andes to the PdT Basin. This work provides first-order estimates on the contribution of deep groundwater circulation within the PdT Aquifer, while providing a framework for (1) quantifying boundary conditions for high resolution models of groundwater resources within the PdT Aquifer, (2) assessing the influence of variable future climate scenarios for groundwater availability in the region, and (3) further integrating conservative tracers and numerical models for groundwater resource evaluation in hyperarid environments.

  15. Secondary School Students' Conceptual Understanding of Physical and Chemical Changes

    ERIC Educational Resources Information Center

    Hanson, R.; Twumasi, A. K.; Aryeetey, C.; Sam, A.; Adukpo, G.

    2016-01-01

    In recent years, researchers have shown an interest in understanding students' own ideas about basic chemical principles and guiding them through innovative ways to gain conceptual understanding where necessary. This research was a case study designed to assess 50 first year high school students' conceptual understanding about changes in matter,…

  16. Effect of science magic applied in interactive lecture demonstrations on conceptual understanding

    NASA Astrophysics Data System (ADS)

    Taufiq, Muhammad; Suhandi, Andi; Liliawati, Winny

    2017-08-01

    Research about the application of science magic-assisting Interactive Lecture Demonstrations (ILD) has been conducted. This research is aimed at providing description about the comparison of the improvement of the conceptual understanding of lesson on pressure between students who receive physics lesson through science magic-assisting ILD and students who receive physics lesson through ILD without science magic. This research used a quasi-experiment methods with Control Group Pretest-Posttest Design. The subject of the research is all students of class VIII in one of MTs (Islamic junior high school) in Pekalongan. Research samples were selected using random sampling technique. Data about students' conceptual understanding was collected using test instrument of conceptual understanding in the form of multiple choices. N-gain average calculation was performed in order to determine the improvement of students' conceptual understanding. The result of the research shows that conceptual understanding of students on lesson about pressure who received lesson with ILD using science magic <0.44> is higher than students who received lesson with ILD without science magic <0.25>. Therefore, the conclusion is that the application of science magic ILD is more effective to improve the conceptual understanding of lesson on pressure.

  17. The emergence of understanding in a computer model of concepts and analogy-making

    NASA Astrophysics Data System (ADS)

    Mitchell, Melanie; Hofstadter, Douglas R.

    1990-06-01

    This paper describes Copycat, a computer model of the mental mechanisms underlying the fluidity and adaptability of the human conceptual system in the context of analogy-making. Copycat creates analogies between idealized situations in a microworld that has been designed to capture and isolate many of the central issues of analogy-making. In Copycat, an understanding of the essence of a situation and the recognition of deep similarity between two superficially different situations emerge from the interaction of a large number of perceptual agents with an associative, overlapping, and context-sensitive network of concepts. Central features of the model are: a high degree of parallelism; competition and cooperation among a large number of small, locally acting agents that together create a global understanding of the situation at hand; and a computational temperature that measures the amount of perceptual organization as processing proceeds and that in turn controls the degree of randomness with which decisions are made in the system.

  18. Workstation Designs for a Cis-Lunar Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott

    2014-01-01

    Using the International Standard Payload Rack (ISPR) system, a suite of workstations required for deep space missions have been proposed to fill out habitation functions in an International Space Station (ISS) derived Cis-lunar Deep Space Habitat. This paper introduces the functional layout of the Cis-lunar habitat design, and describes conceptual designs for modular deployable work surfaces, General Maintenance Workstation (GMWS), In-Space Manufacturing Workstation (ISMW), Intra-Vehicular Activity Telerobotics Work Station (IVA-TRWS), and Galley / Wardroom.

  19. EUReKA! A Conceptual Model of Emotion Understanding

    PubMed Central

    Castro, Vanessa L.; Cheng, Yanhua; Halberstadt, Amy G.; Grühn, Daniel

    2015-01-01

    The field of emotion understanding is replete with measures, yet lacks an integrated conceptual organizing structure. To identify and organize skills associated with the recognition and knowledge of emotions, and to highlight the focus of emotion understanding as localized in the self, in specific others, and in generalized others, we introduce the conceptual framework of Emotion Understanding in Recognition and Knowledge Abilities (EUReKA). We then categorize fifty-six existing methods of emotion understanding within this framework to highlight current gaps and future opportunities in assessing emotion understanding across the lifespan. We hope the EUReKA model provides a systematic and integrated framework for conceptualizing and measuring emotion understanding for future research. PMID:27594904

  20. The impact of rigorous mathematical thinking as learning method toward geometry understanding

    NASA Astrophysics Data System (ADS)

    Nugraheni, Z.; Budiyono, B.; Slamet, I.

    2018-05-01

    To reach higher order thinking skill, needed to be mastered the conceptual understanding. RMT is a unique realization of the cognitive conceptual construction approach based on Mediated Learning Experience (MLE) theory by Feurstein and Vygotsky’s sociocultural theory. This was quasi experimental research which was comparing the experimental class that was given Rigorous Mathematical Thinking (RMT) as learning method and control class that was given Direct Learning (DL) as the conventional learning activity. This study examined whether there was different effect of two learning method toward conceptual understanding of Junior High School students. The data was analyzed by using Independent t-test and obtained a significant difference of mean value between experimental and control class on geometry conceptual understanding. Further, by semi-structure interview known that students taught by RMT had deeper conceptual understanding than students who were taught by conventional way. By these result known that Rigorous Mathematical Thinking (RMT) as learning method have positive impact toward Geometry conceptual understanding.

  1. Constructing Conceptual Meaning from a Popular Scientific Paper--The Case of E = mc[superscript 2

    ERIC Educational Resources Information Center

    Kapon, Shulamit

    2013-01-01

    Although high school physics students solve problems using the expression E = mc[superscript 2], the origin of this expression and its deep conceptual meaning are hardly ever discussed due to students' limited prior knowledge. In 1946, a year after the atomic bombs were first dropped, Albert Einstein published a popular scientific paper explaining…

  2. Teaching for Conceptual Understanding

    ERIC Educational Resources Information Center

    Kang, Nam-Hwa; Howren, Carrie

    2004-01-01

    One of the most difficult jobs of elementary school teachers is teaching science for conceptual understanding. Conceptual understanding requires students to organize facts and ideas into a meaningful concept in science. Facts and concepts form webs that can help students make connections between the concepts of science and their experiences.…

  3. The temporal evolution of conceptual object representations revealed through models of behavior, semantics and deep neural networks.

    PubMed

    Bankson, B B; Hebart, M N; Groen, I I A; Baker, C I

    2018-05-17

    Visual object representations are commonly thought to emerge rapidly, yet it has remained unclear to what extent early brain responses reflect purely low-level visual features of these objects and how strongly those features contribute to later categorical or conceptual representations. Here, we aimed to estimate a lower temporal bound for the emergence of conceptual representations by defining two criteria that characterize such representations: 1) conceptual object representations should generalize across different exemplars of the same object, and 2) these representations should reflect high-level behavioral judgments. To test these criteria, we compared magnetoencephalography (MEG) recordings between two groups of participants (n = 16 per group) exposed to different exemplar images of the same object concepts. Further, we disentangled low-level from high-level MEG responses by estimating the unique and shared contribution of models of behavioral judgments, semantics, and different layers of deep neural networks of visual object processing. We find that 1) both generalization across exemplars as well as generalization of object-related signals across time increase after 150 ms, peaking around 230 ms; 2) representations specific to behavioral judgments emerged rapidly, peaking around 160 ms. Collectively, these results suggest a lower bound for the emergence of conceptual object representations around 150 ms following stimulus onset. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. An integrated conceptual framework for evaluating and improving 'understanding' in informed consent.

    PubMed

    Bossert, Sabine; Strech, Daniel

    2017-10-17

    The development of understandable informed consent (IC) documents has proven to be one of the most important challenges in research with humans as well as in healthcare settings. Therefore, evaluating and improving understanding has been of increasing interest for empirical research on IC. However, several conceptual and practical challenges for the development of understandable IC documents remain unresolved. In this paper, we will outline and systematize some of these challenges. On the basis of our own experiences in empirical user testing of IC documents as well as the relevant literature on understanding in IC, we propose an integrated conceptual model for the development of understandable IC documents. The proposed conceptual model integrates different methods for the participatory improvement of written information, including IC, as well as quantitative methods for measuring understanding in IC. In most IC processes, understandable written information is an important prerequisite for valid IC. To improve the quality of IC documents, a conceptual model for participatory procedures of testing, revising, and retesting can be applied. However, the model presented in this paper needs further theoretical and empirical elaboration and clarification of several conceptual and practical challenges.

  5. Upgrading geometry conceptual understanding and strategic competence through implementing rigorous mathematical thinking (RMT)

    NASA Astrophysics Data System (ADS)

    Nugraheni, Z.; Budiyono, B.; Slamet, I.

    2018-03-01

    To reach higher order thinking skill, needed to be mastered the conceptual understanding and strategic competence as they are two basic parts of high order thinking skill (HOTS). RMT is a unique realization of the cognitive conceptual construction approach based on Feurstein with his theory of Mediated Learning Experience (MLE) and Vygotsky’s sociocultural theory. This was quasi-experimental research which compared the experimental class that was given Rigorous Mathematical Thinking (RMT) as learning method and the control class that was given Direct Learning (DL) as the conventional learning activity. This study examined whether there was different effect of two learning model toward conceptual understanding and strategic competence of Junior High School Students. The data was analyzed by using Multivariate Analysis of Variance (MANOVA) and obtained a significant difference between experimental and control class when considered jointly on the mathematics conceptual understanding and strategic competence (shown by Wilk’s Λ = 0.84). Further, by independent t-test is known that there was significant difference between two classes both on mathematical conceptual understanding and strategic competence. By this result is known that Rigorous Mathematical Thinking (RMT) had positive impact toward Mathematics conceptual understanding and strategic competence.

  6. Determining Students' Conceptual Understanding Level of Thermodynamics

    ERIC Educational Resources Information Center

    Saricayir, Hakan; Ay, Selahattin; Comek, Arif; Cansiz, Gokhan; Uce, Musa

    2016-01-01

    Science students find heat, temperature, enthalpy and energy in chemical reactions to be some of the most difficult subjects. It is crucial to define their conceptual understanding level in these subjects so that educators can build upon this knowledge and introduce new thermodynamics concepts. This paper reports conceptual understanding levels of…

  7. Insights into Students' Conceptual Understanding Using Textual Analysis: A Case Study in Signal Processing

    ERIC Educational Resources Information Center

    Goncher, Andrea M.; Jayalath, Dhammika; Boles, Wageeh

    2016-01-01

    Concept inventory tests are one method to evaluate conceptual understanding and identify possible misconceptions. The multiple-choice question format, offering a choice between a correct selection and common misconceptions, can provide an assessment of students' conceptual understanding in various dimensions. Misconceptions of some engineering…

  8. Conceptual Understanding of Multiplicative Properties through Endogenous Digital Game Play

    ERIC Educational Resources Information Center

    Denham, Andre

    2012-01-01

    This study purposed to determine the effect of an endogenously designed instructional game on conceptual understanding of the associative and distributive properties of multiplication. Additional this study sought to investigate if performance on measures of conceptual understanding taken prior to and after game play could serve as predictors of…

  9. Defining Conceptual Understanding for Teaching in International Business

    ERIC Educational Resources Information Center

    Ashley, Sue; Schaap, Harmen; de Bruijn, Elly

    2016-01-01

    The aim of this exploratory study is to develop a definition of conceptual understanding for teaching in international business. In international business, professionals face complex problems like what to produce, where to manufacture, which markets to target, and when to expand abroad. A clear definition of conceptual understanding needed to…

  10. Understanding Early Elementary Children's Conceptual Knowledge of Plant Structure and Function through Drawings

    ERIC Educational Resources Information Center

    Anderson, Janice L.; Ellis, Jane P.; Jones, Alan M.

    2014-01-01

    This study examined children's drawings to explain children's conceptual understanding of plant structure and function. The study explored whether the children's drawings accurately reflect their conceptual understanding about plants in a manner that can be interpreted by others. Drawing, survey, interview, and observational data were collected…

  11. Students Do Not Overcome Conceptual Difficulties after Solving 1000 Traditional Problems.

    ERIC Educational Resources Information Center

    Kim, Eunsook; Pak, Sung-Jae

    2002-01-01

    Investigates the relationship between traditional physics textbook problem solving and conceptual understanding. Reports that students had many of the well-known conceptual difficulties with basic mechanics and that there was little correlation between the number of problems solved and conceptual understanding. (Contains 21 references.)…

  12. Understanding the Conceptual Development Phase of Applied Theory-Building Research: A Grounded Approach

    ERIC Educational Resources Information Center

    Storberg-Walker, Julia

    2007-01-01

    This article presents a provisional grounded theory of conceptual development for applied theory-building research. The theory described here extends the understanding of the components of conceptual development and provides generalized relations among the components. The conceptual development phase of theory-building research has been widely…

  13. Jail Mental Health Resourcing: A Conceptual and Empirical Study of Social Determinants.

    PubMed

    Helms, Ronald; Gutierrez, Ricky S; Reeves-Gutierrez, Debra

    2016-07-01

    U.S. county jails hold large populations of mentally ill inmates but have rarely been researched quantitatively to assess their collective capacity for providing mental health treatment. This research uses ordinal logit and a partial parallel slopes model and a large sample of U.S. counties to assess conceptualized links between local institutional and structural indicators and jail mental health resourcing. Strong church networks and high rates of adult education completion are associated with enhanced jail mental health resourcing. Urbanized areas and areas with deep economic ties to manufacturing appear supportive of a strong jail mental health system. Conversely, conservative political environments and areas with strong medical and mental health networks based in the community are correlated with reduced jail mental health resourcing. Evidence from this research adds to a growing understanding of the need for enhanced community mental health service and diagnostic capabilities in our nation's jails, noting the characteristics and correlates of model program jurisdictions and jurisdictions where program enhancements are most likely in order. © The Author(s) 2015.

  14. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 3: Long-Baseline Neutrino Facility for DUNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strait, James; McCluskey, Elaine; Lundin, Tracy

    2016-01-21

    This volume of the LBNF/DUNE Conceptual Design Report covers the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  15. A happiness degree predictor using the conceptual data structure for deep learning architectures.

    PubMed

    Pérez-Benito, Francisco Javier; Villacampa-Fernández, Patricia; Conejero, J Alberto; García-Gómez, Juan M; Navarro-Pardo, Esperanza

    2017-11-13

    Happiness is a universal fundamental human goal. Since the emergence of Positive Psychology, a major focus in psychological research has been to study the role of certain factors in the prediction of happiness. The conventional methodologies are based on linear relationships, such as the commonly used Multivariate Linear Regression (MLR), which may suffer from the lack of representative capacity to the varied psychological features. Using Deep Neural Networks (DNN), we define a Happiness Degree Predictor (H-DP) based on the answers to five psychometric standardized questionnaires. A Data-Structure driven architecture for DNNs (D-SDNN) is proposed for defining a HDP in which the network architecture enables the conceptual interpretation of psychological factors associated to happiness. Four different neural network configurations have been tested, varying the number of neurons and the presence or absence of bias in the hidden layers. Two metrics for evaluating the influence of conceptual dimensions have been defined and computed: one quantifies the influence weight of the conceptual dimension in absolute terms and the other one pinpoints the direction (positive or negative) of the influence. A cross-sectional survey targeting non-institutionalized adult population residing in Spain was completed by 823 cases. The total of 111 elements of the survey are grouped by socio-demographic data and by five psychometric scales (Brief COPE Inventory, EPQR-A, GHQ-28, MOS-SSS and SDHS) measuring several psychological factors acting one as the outcome (SDHS) and the four others as predictors. Our D-SDNN approach provided a better outcome (MSE: 1.46·10 -2 ) than MLR (MSE: 2.30·10 -2 ), hence improving by 37% the predictive accuracy, and allowing to simulate the conceptual structure. We observe a better performance of Deep Neural Networks (DNN) with respect to traditional methodologies. This demonstrates its capability to capture the conceptual structure for predicting happiness degree through psychological variables assessed by standardized questionnaires. It also permits to estimate the influence of each factor on the outcome without assuming a linear relationship. Copyright © 2017. Published by Elsevier B.V.

  16. TOCUSO: Test of Conceptual Understanding on High School Optics Topics

    ERIC Educational Resources Information Center

    Akarsu, Bayram

    2012-01-01

    Physics educators around the world often need reliable diagnostic materials to measure students' understanding of physics concept in high school. The purpose of this study is to evaluate a new diagnostic tool on High School Optics concept. Test of Conceptual Understanding on High School Optics (TOCUSO) consists of 25 conceptual items that measures…

  17. Enhancing Students' Understanding of Photosynthesis and Respiration in Plant through Conceptual Change Approach

    ERIC Educational Resources Information Center

    Yenilmez, Ayse; Tekkaya, Ceren

    2006-01-01

    This study investigated the effectiveness of combining conceptual change text and discussion web strategies on students' understanding of photosynthesis and respiration in plants. Students' conceptual understanding of photosynthesis and respiration in plants was measured using the two-tier diagnostic test developed by Haslam and Treagust (1987,…

  18. An attribution theory perspective on emotional labour in nurse-patient encounters: a nested cross-sectional study in paediatric settings.

    PubMed

    Golfenshtein, Nadya; Drach-Zahavy, Anat

    2015-05-01

    To understand the role of patients' attributions under the attribution theory framework (locus, controllability, stability) in nurses' performance of surface or deep acting, as they unfold in interactions with different patients. Regulation of emotions at work, or emotional labour, has been conceptualized in terms of two main strategies: surface acting and deep acting. Most prior research tested for between-subject variation in the search for the factors evoking these strategies in nurses, assuming them to be trait-like characteristics. Only scant research has examined how nurses modify their emotional labour strategies in different patient-nurse encounters. A nested cross-sectional design (patients within nurses). Data were collected during 2011-2012 through validated questionnaires from the nursing staff (N = 41) of two paediatric hospital wards and their randomly selected patients (N = 239). Questionnaires were administered to nurses multiple times after encounters with different patients. Analyses were conducted using mixed effects models. In accordance with attribution theory, different combinations of locus, controllability and stability attributions were related to the choice of surface or deep acting. Nurses' perceptions of patients' controllability were associated positively with surface acting and negatively with deep acting. Interaction terms of stability and locus and of controllability and stability, were distinctively associated with deep and surface acting. Findings innovatively introduce the attribution process as an explanatory perspective to nurses' emotional labour and highlight its situational nature, providing a potential tool for emotional labour strategy prediction. Raising nurses' awareness of how they perceive patients may increase control of the strategies employed. © 2015 John Wiley & Sons Ltd.

  19. Theory and practice of chaplain's spiritual care process: A psychiatrist's experiences of chaplaincy and conceptualizing trans-personal model of mindfulness

    PubMed Central

    Parameshwaran, Ramakrishnan

    2015-01-01

    Background: Of various spiritual care methods, mindfulness meditation has found consistent application in clinical intervention and research. “Listening presence,” a chaplain's model of mindfulness and its trans-personal application in spiritual care is least understood and studied. Aim: The aim was to develop a conceptualized understanding of chaplain's spiritual care process based on neuro-physiological principles of mindfulness and interpersonal empathy. Materials and Methods: Current understandings on neuro-physiological mechanisms of mindfulness-based interventions (MBI) and interpersonal empathy such as theory of mind and mirror neuron system are used to build a theoretical framework for chaplain's spiritual care process. Practical application of this theoretical model is illustrated using a carefully recorded clinical interaction, in verbatim, between chaplain and his patient. Qualitative findings from this verbatim are systematically analyzed using neuro-physiological principles. Results and Discussion: Chaplain's deep listening skills to experience patient's pain and suffering, awareness of his emotions/memories triggered by patient's story and ability to set aside personal emotions, and judgmental thoughts formed intra-personal mindfulness. Chaplain's insights on and ability to remain mindfully aware of possible emotions/thoughts in the patient, and facilitating patient to return and re-return to become aware of internal emotions/thoughts helps the patient develop own intra-personal mindfulness leading to self-healing. This form of care involving chaplain's mindfulness of emotions/thoughts of another individual, that is, patient, may be conceptualized as trans-personal model of MBI. Conclusion: Chaplain's approach may be a legitimate form of psychological therapy that includes inter and intra-personal mindfulness. Neuro-physiological mechanisms of empathy that underlie Chaplain's spiritual care process may establish it as an evidence-based clinical method of care. PMID:25657453

  20. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.

  1. Deep Borehole Disposal Concept: Development of Universal Canister Concept of Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigali, Mark J.; Price, Laura L.

    This report documents key elements of the conceptual design for deep borehole disposal of radioactive waste to support the development of a universal canister concept of operations. A universal canister is a canister that is designed to be able to store, transport, and dispose of radioactive waste without the canister having to be reopened to treat or repackage the waste. This report focuses on the conceptual design for disposal of radioactive waste contained in a universal canister in a deep borehole. The general deep borehole disposal concept consists of drilling a borehole into crystalline basement rock to a depth ofmore » about 5 km, emplacing WPs in the lower 2 km of the borehole, and sealing and plugging the upper 3 km. Research and development programs for deep borehole disposal have been ongoing for several years in the United States and the United Kingdom; these studies have shown that deep borehole disposal of radioactive waste could be safe, cost effective, and technically feasible. The design concepts described in this report are workable solutions based on expert judgment, and are intended to guide follow-on design activities. Both preclosure and postclosure safety were considered in the development of the reference design concept. The requirements and assumptions that form the basis for the deep borehole disposal concept include WP performance requirements, radiological protection requirements, surface handling and transport requirements, and emplacement requirements. The key features of the reference disposal concept include borehole drilling and construction concepts, WP designs, and waste handling and emplacement concepts. These features are supported by engineering analyses.« less

  2. Quantum Algorithms for Scientific Computing and Approximate Optimization

    NASA Astrophysics Data System (ADS)

    Hadfield, Stuart Andrew

    Diversity and inclusion has been a concern for the physics community for nearly 50 years. Despite significant efforts including the American Physical Society (APS) Conferences for Undergraduate Women in Physics (CUWiP) and the APS Bridge Program, women, African Americans, and Hispanics continue to be substantially underrepresented in the physics profession. Similar efforts within the field of engineering, whose students make up the majority of students in the introductory calculus-based physics courses, have also met with limited success. With the introduction of research-based instruments such as the Force Concept Inventory (FCI), the Force and Motion Conceptual Evaluation (FMCE), and the Conceptual Survey of Electricity and Magnetism (CSEM), differences in performance by gender began to be reported. Researchers have yet to come to an agreement as to why these "gender gaps" exist in the conceptual inventories that are widely used in physics education research and/or how to reduce the gaps. The "gender gap" has been extensively studied; on average, for the mechanics conceptual inventories, male students outperform female students by 13% on the pretest and by 12% post instruction. While much of the gender gap research has been geared toward the mechanics conceptual inventories, there have been few studies exploring the gender gap in the electricity and magnetism conceptual inventories. Overall, male students outperform female students by 3.7% on the pretest and 8.5% on the post-test; however, these studies have much more variation including one study showing female students outperforming male students on the CSEM. Many factors have been proposed that may influence the gender gap, from differences in background and preparation to various psychological and sociocultural effects. A parallel but largely disconnected set of research has identified gender biased questions within the FCI. This research has produced sporadic results and has only been performed on the FCI. The work performed in this manuscript will seek to synthesize these strands and use large datasets and deep demographic data to understand the persistent differences in male and female performance.

  3. Promoting high school students' conceptual understandings of the particulate nature of matter through multiple representations

    NASA Astrophysics Data System (ADS)

    Adadan, Emine

    This study mainly explored the efficacy of the two instructional interventions, namely Reform-Based Teaching with Multiple Representations (RBTw/MR) and Reform-Based Teaching (RBT) on stimulating change in students' conceptual understandings of the particulate nature of matter (PNM) and maintaining those scientific understandings constructed during the instruction over a three-month period. In this context, this study also examined the RBTw/MR and RBT students' types of conceptual understandings of the PNM before, immediately after and three-months after the interventions. This study was conducted in two introductory level chemistry classes of a suburban high school. The participants of the study included a total of 42 students who were enrolled in one of the two classes of the chemistry teacher who taught both of the classes. Both the RBTw/MR and the RBT group students were engaged in the same activities with the same sequence of experiences. However, the RBTw/MR instruction differed from the RBT instruction in terms of the frequency of using the multiple representations in relationship to the macroscopic phenomenon and the likely actions that occur at the submicroscopic level. A quasi-experimental control group research design with a pretest, posttest, and delayed posttest was employed by incorporating qualitative data collection and analysis methods. In order to assess students' conceptual understanding of the PNM, the open-ended questionnaire, namely Nature of Matter Diagnostic Questions, was administered to both groups just before, immediately after and three months after the instructional interventions. Fifteen of the 42 students were also interviewed following the posttest. The results of the study revealed the positive short- and long-term learning impacts on the RBTw/MR students' conceptual understandings of the PNM. Before the instruction, a majority of students in both groups (82.6%, RBTw/MR; 73.7%, RBT) held nonscientific types of conceptual understandings of the PNM. Immediately following the instruction, 52.1% of the RBTw/MR students held the types of conceptual understandings of either scientific or scientific fragments. Three months after the instruction, 34.8% of the RBTw/MR students held onto their scientific conceptual understandings of the PNM, only 15.8% of the RBT students' conceptual understandings of the PNM differed from their initial type of conceptual understandings.

  4. Conceptual understandings of biology in pre-service science educators and undergraduate biology students at Colorado institutions of higher education

    NASA Astrophysics Data System (ADS)

    Smith, Trenton John

    Pre-service secondary science individuals, future middle or high school instructors training to become teachers, along with both Honors and general first year undergraduate biology students were investigated to determine how they reason about and understand two core topics in Biology: matter and energy flow through biological systems and evolution by natural selection. Diagnostic Question Clusters were used to assess student understanding of the processes by which matter and energy flow through biological systems over spatial scales, from the atomic-molecular to ecosystem levels. Key concepts and identified misconceptions were examined over topics of evolution by natural selection using the multiple-choice Concept Inventory of Natural Selection (CINS) and open-response Assessing COntextual Reasoning about Natural Selection (ACORNS). Pre-service teachers used more scientifically based reasoning than the undergraduate students over the topics of matter and energy flow. The Honors students used more scientific and less improper informal reasoning than the general undergraduates over matter and energy flow. Honors students performed best on both the CINS and ACORNS items over natural selection, while the general undergraduates scored the lowest on the CINS, and the pre-service instructors scored lowest on the ACORNS. Overall, there remain a large proportion of students not consistently using scientific reasoning about these two important concepts, even in future secondary science teachers. My findings are similar to those of other published studies using the same assessments. In general, very few biology students at the college level use scientific reasoning that exhibits deep conceptual understanding. A reason for this could be that instructors fail to recognize deficiencies in student reasoning; they assume their students use principle-based reasoning. Another reason could be that principle-based reasoning is very difficult and our teaching approaches in college promote memorization of content rather than conceptual change. My findings are significant to the work and progression of concept inventories in biology education, as well as to the instructors of students at all levels of biology curriculum, and those of future science teachers.

  5. High School Intervention for Influenza Biology and Epidemics/Pandemics: Impact on Conceptual Understanding among Adolescents

    ERIC Educational Resources Information Center

    Dumais, Nancy; Hasni, Abdelkrim

    2009-01-01

    Understanding real-life issues such as influenza epidemiology may be of particular interest to the development of scientific knowledge and initiation of conceptual changes about viruses and their life cycles for high school students. The goal of this research project was to foster the development of adolescents' conceptual understanding of viruses…

  6. Individual differences in children's understanding of inversion and arithmetical skill.

    PubMed

    Gilmore, Camilla K; Bryant, Peter

    2006-06-01

    Background and aims. In order to develop arithmetic expertise, children must understand arithmetic principles, such as the inverse relationship between addition and subtraction, in addition to learning calculation skills. We report two experiments that investigate children's understanding of the principle of inversion and the relationship between their conceptual understanding and arithmetical skills. A group of 127 children from primary schools took part in the study. The children were from 2 age groups (6-7 and 8-9 years). Children's accuracy on inverse and control problems in a variety of presentation formats and in canonical and non-canonical forms was measured. Tests of general arithmetic ability were also administered. Children consistently performed better on inverse than control problems, which indicates that they could make use of the inverse principle. Presentation format affected performance: picture presentation allowed children to apply their conceptual understanding flexibly regardless of the problem type, while word problems restricted their ability to use their conceptual knowledge. Cluster analyses revealed three subgroups with different profiles of conceptual understanding and arithmetical skill. Children in the 'high ability' and 'low ability' groups showed conceptual understanding that was in-line with their arithmetical skill, whilst a 3rd group of children had more advanced conceptual understanding than arithmetical skill. The three subgroups may represent different points along a single developmental path or distinct developmental paths. The discovery of the existence of the three groups has important consequences for education. It demonstrates the importance of considering the pattern of individual children's conceptual understanding and problem-solving skills.

  7. Homologation chemistry with nucleophilic α-substituted organometallic reagents: chemocontrol, new concepts and (solved) challenges.

    PubMed

    Castoldi, Laura; Monticelli, Serena; Senatore, Raffaele; Ielo, Laura; Pace, Vittorio

    2018-05-31

    The transfer of a reactive nucleophilic CH2X unit into a preformed bond enables the introduction of a fragment featuring the exact and desired degree of functionalization through a single synthetic operation. The instability of metallated α-organometallic species often poses serious questions regarding the practicability of using this conceptually intuitive and simple approach for forming C-C or C-heteroatom bonds. A deep understanding of processes regulating the formation of these nucleophiles is a precious source of inspiration not only for successfully applying theoretically feasible transformations (i.e. determining how to employ a given reagent), but also for designing new reactions which ultimately lead to the introduction of molecular complexity via short experimental sequences.

  8. Evolution of the conceptual model of unsaturated zone hydrology at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, Alan L.; Flint, Lorraine E.; Bodvarsson, Gudmundur S.; Kwicklis, Edward M.; Fabryka-Martin, June

    2001-01-01

    Yucca Mountain is an arid site proposed for consideration as the United States’ first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500–1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5–4.5 mm/yr, or 2–3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because of capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to flow. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water in the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data, particularly fracture flow deep in the unsaturated zone. This paper presents the history of the evolution of conceptual models of hydrology and numerical models of unsaturated zone flow at Yucca Mountain, Nevada (Flint, A.L., Flint, L.E., Kwicklis, E.M., Bodvarsson, G.S., Fabryka-Martin, J.M., 2001. Hydrology of Yucca Mountain. Reviews of Geophysics in press). This retrospective is the basis for recommendations for optimizing the efficiency with which a viable and robust conceptual model can be developed for a complex site.

  9. D.E.E.P. Learning: Promoting Informal STEM Learning through a Popular Gaming Platform

    NASA Astrophysics Data System (ADS)

    Simms, E.; Rohrlick, D.; Layman, C.; Peach, C. L.; Orcutt, J. A.

    2011-12-01

    The research and development of educational games, and the study of the educational value of interactive games in general, have lagged far behind efforts for games created for the purpose of entertainment. But evidence suggests that digital simulations and games have the "potential to advance multiple science learning goals, including motivation to learn science, conceptual understanding, science process skills, understanding of the nature of science, scientific discourse and argumentation, and identification with science and science learning." (NRC, 2011). It is also generally recognized that interactive digital games have the potential to promote the development of valuable learning and life skills, including data processing, decision-making, critical thinking, planning, communication and collaboration (Kirriemuir and MacFarlane, 2006). Video games are now played in 67% of American households (ESA, 2010), and across a broad range of ages, making them a potentially valuable tool for Science, Technology, Engineering and Mathematics (STEM) learning among the diverse audiences associated with informal science education institutions (ISEIs; e.g., aquariums, museums, science centers). We are attempting to capitalize on this potential by developing games based on the popular Microsoft Xbox360 gaming platform and the free Microsoft XNA game development kit. The games, collectively known as Deep-sea Extreme Environment Pilot (D.E.E.P.), engage ISEI visitors in the exploration and understanding of the otherwise remote deep-sea environment. Players assume the role of piloting a remotely-operated vehicle (ROV) to explore ocean observing systems and hydrothermal vent environments, and are challenged to complete science-based objectives in order to earn points under timed conditions. The current games are intended to be relatively brief visitor experiences (on the order of several minutes) that support complementary exhibits and programming, and promote interactive visitor experiences. In addition to creating a unique educational product, our efforts are intended to inform the broader understanding of the key elements of a successful STEM-based game experience at an ISEI. Which characteristics of the ISEI environment (e.g., age and cultural diversity, limited time of engagement) are conducive or inhibitive to learning via digital gaming? Which aspects of game design (e.g., challenge, curiosity, fantasy, personal recognition) are most effective at maximizing both learning and enjoyment? We will share our progress and assessment results to date, and discuss the potential benefits and challenges to interactive gaming as a tool to support STEM literacy at ISEIs.

  10. Retention of ice-associated amphipods: possible consequences for an ice-free Arctic Ocean.

    PubMed

    Berge, J; Varpe, O; Moline, M A; Wold, A; Renaud, P E; Daase, M; Falk-Petersen, S

    2012-12-23

    Recent studies predict that the Arctic Ocean will have ice-free summers within the next 30 years. This poses a significant challenge for the marine organisms associated with the Arctic sea ice, such as marine mammals and, not least, the ice-associated crustaceans generally considered to spend their entire life on the underside of the Arctic sea ice. Based upon unique samples collected within the Arctic Ocean during the polar night, we provide a new conceptual understanding of an intimate connection between these under-ice crustaceans and the deep Arctic Ocean currents. We suggest that downwards vertical migrations, followed by polewards transport in deep ocean currents, are an adaptive trait of ice fauna that both increases survival during ice-free periods of the year and enables re-colonization of sea ice when they ascend within the Arctic Ocean. From an evolutionary perspective, this may have been an adaptation allowing success in a seasonally ice-covered Arctic. Our findings may ultimately change the perception of ice fauna as a biota imminently threatened by the predicted disappearance of perennial sea ice.

  11. Safety-relevant hydrogeological properties of the claystone barrier of a Swiss radioactive waste repository: An evaluation using multiple lines of evidence

    NASA Astrophysics Data System (ADS)

    Gautschi, Andreas

    2017-09-01

    In Switzerland, the Opalinus Clay - a Jurassic (Aalenian) claystone formation - has been proposed as the first-priority host rock for a deep geological repository for both low- and intermediate-level and high-level radioactive wastes. An extensive site and host rock investigation programme has been carried out during the past 30 years in Northern Switzerland, comprising extensive 2D and 3D seismic surveys, a series of deep boreholes within and around potential geological siting regions, experiments in the international Mont Terri Rock Laboratory, compilations of data from Opalinus Clay in railway and motorway tunnels and comparisons with similar rocks. The hydrogeological properties of the Opalinus Clay that are relevant from the viewpoint of long-term safety are described and illustrated. The main conclusions are supported by multiple lines of evidence, demonstrating consistency of conclusions based on hydraulic properties, porewater chemistry, distribution of natural tracers across the Opalinus Clay as well as small- and large-scale diffusion models and the derived conceptual understanding of solute transport.

  12. Using Two-Tier Test to Identify Primary Students' Conceptual Understanding and Alternative Conceptions in Acid Base

    ERIC Educational Resources Information Center

    Bayrak, Beyza Karadeniz

    2013-01-01

    The purpose of this study was to identify primary students' conceptual understanding and alternative conceptions in acid-base. For this reason, a 15 items two-tier multiple choice test administered 56 eighth grade students in spring semester 2009-2010. Data for this study were collected using a conceptual understanding scale prepared to include…

  13. Enhancing Pre-Service Elementary School Teachers' Understanding of Essential Science Concepts through a Reflective Conceptual Change Model

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Brown, Clara Lee

    2010-01-01

    This study explored the impact of a reflective teaching method on pre-service elementary teachers' conceptual understanding of the lunar phases, reasons for seasons, and simple electric circuits. Data were collected from 40 pre-service elementary teachers about their conceptual understanding of the lunar phases, reasons for seasons and day…

  14. Mapping Conceptual Understanding of Algebraic Concepts: An Exploratory Investigation Involving Grade 8 Chinese Students

    ERIC Educational Resources Information Center

    Jin, Haiyue; Wong, Khoon Yoong

    2015-01-01

    Conceptual understanding is a major aim of mathematics education, and concept map has been used in non-mathematics research to uncover the relations among concepts held by students. This article presents the results of using concept map to assess conceptual understanding of basic algebraic concepts held by a group of 48 grade 8 Chinese students.…

  15. The Effect of 7E Learning Model on Conceptual Understandings of Prospective Science Teachers on "de Broglie Matter Waves" Subject

    ERIC Educational Resources Information Center

    Gorecek Baybars, Meryem; Kucukozer, Huseyin

    2018-01-01

    The object of this study is to determine the conceptual understanding that prospective Science teachers have relating "de Broglie: Matter waves" and to investigate the effect of the instruction performed, on the conceptual understanding. This study was performed at a state university located in the western part of Turkey, with the…

  16. Intact and impaired conceptual memory processes in amnesia.

    PubMed

    Keane, M M; Gabrieli, J D; Monti, L A; Fleischman, D A; Cantor, J M; Noland, J S

    1997-01-01

    To examine the status of conceptual memory processes in amnesia, a conceptual memory task with implicit or explicit task instructions was given to amnesic and control groups. After studying a list of category exemplars, participants saw category labels and were asked to generate as many exemplars as possible (an implicit memory task) or to generate exemplars that had been in the prior study list (an explicit memory task). After incidental deep or shallow encoding of exemplars, amnesic patients showed normal implicit memory performance (priming), a normal levels-of-processing effect on priming, and impaired explicit memory performance. After intentional encoding of exemplars, amnesic patients showed impaired implicit and explicit memory performance. Results suggest that although amnesic patients can show impairments on implicit and explicit conceptual memory tasks, their deficit does not generalize to all conceptual memory tasks.

  17. Predicting fifth-grade students' understanding of ecological science concepts with motivational and cognitive variables

    NASA Astrophysics Data System (ADS)

    Alao, Solomon

    The need to identify factors that contribute to students' understanding of ecological concepts has been widely expressed in recent literature. The purpose of this study was to investigate the relationship between fifth grade students' prior knowledge, learning strategies, interest, and learning goals and their conceptual understanding of ecological science concepts. Subject were 72 students from three fifth grade classrooms located in a metropolitan area of the eastern United States. Students completed the goal commitment, interest, and strategy use questionnaire (GISQ), and a knowledge test designed to assess their prior knowledge and conceptual understanding of ecological science concepts. The learning goals scale assessed intentions to try to learn and understand ecological concepts. The interest scale assessed the feeling and value-related valences that students ascribed to science and ecological science concepts. The strategy use scale assessed the use of two cognitive strategies (monitoring and elaboration). The knowledge test assessed students' understanding of ecological concepts (the relationship between living organisms and their environment). Scores on all measures were examined for gender differences; no significant gender differences were observed. The motivational and cognitive variables contributed to students' understanding of ecological concepts. After accounting for interest, learning goals, and strategy use, prior knowledge accounted for 28% of the total variance in conceptual understanding. After accounting for prior knowledge, interest, learning goals, and strategy use explained 7%, 6%, and 4% of the total variance in conceptual understanding, respectively. More importantly, these variables were interrelated to each other and to conceptual understanding. After controlling for prior knowledge, learning goals, and strategy use, interest did not predict the variance in conceptual understanding. After controlling for prior knowledge, interest, and strategy use, learning goals did not predict the variance in conceptual understanding. And, after controlling for prior knowledge, interest, and learning goals, strategy use did not predict the variance in conceptual understanding. Results of this study indicated that prior knowledge, interest, learning goals, and strategy use should be included in theoretical models design to explain and to predict fifth grade students' understanding of ecological concepts. Results of this study further suggested that curriculum developers and science teachers need to take fifth grade students' prior knowledge of ecological concepts, interest in science and ecological concepts; intentions to learn and understand ecological concepts, and use of cognitive strategies into account when designing instructional contexts to support these students' understanding of ecological concepts.

  18. Refined Three-Dimensional Modelling of Thermally-Driven Flow in the Bormio System (Central Italian Alps)

    NASA Astrophysics Data System (ADS)

    Volpi, Giorgio; Riva, Federico; Frattini, Paolo; Battista Crosta, Giovanni; Magri, Fabien

    2016-04-01

    Thermal springs are widespread in the European Alps, where more than 80 geothermal sites are known and exploited. The quantitative assessment of those thermal flow systems is a challenging issue and requires accurate conceptual model and a thorough understanding of thermo-hydraulic properties of the aquifers. Accordingly in the last years, several qualitative studies were carried out to understand the heat and fluid transport processes driving deep fluids from the reservoir to the springs. Our work focused on thermal circulation and fluid outflows of the area around Bormio (Central Italian Alps), where nine geothermal springs discharge from dolomite bodies located close to a regional alpine thrust, called the Zebrù Line. At this site, water is heated in deep circulation systems and vigorously upwells at temperature of about 40°C. The aim of this paper is to explore the mechanisms of heat and fluid transport in the Bormio area by carrying out refined steady and transient three-dimensional finite element simulations of thermally-driven flow and to quantitatively assess the source area of the thermal waters. The full regional model (ca. 700 km2) is discretized with a highly refined triangular finite element planar grid obtained with Midas GTS NX software. The structural 3D features of the regional Zebrù thrust are built by interpolating series of geological cross sections using Fracman. A script was developed to convert and implement the thrust grid into FEFLOW mesh that comprises ca. 4 million elements. The numerical results support the observed discharge rates and temperature field within the simulated domain. Flow and temperature patterns suggest that thermal groundwater flows through a deep system crossing both sedimentary and metamorphic lithotypes, and a fracture network associated to the thrust system. Besides providing a numerical framework to simulate complex fractured systems, this example gives insights into the influence of deep alpine structures on groundwater circulation that underlies the development of many hydrothermal systems.

  19. Investigating High School Students' Understanding of Chemical Equilibrium Concepts

    ERIC Educational Resources Information Center

    Karpudewan, Mageswary; Treagust, David F.; Mocerino, Mauro; Won, Mihye; Chandrasegaran, A. L.

    2015-01-01

    This study investigated the year 12 students' (N = 56) understanding of chemical equilibrium concepts after instruction using two conceptual tests, the "Chemical Equilibrium Conceptual Test 1" ("CECT-1") consisting of nine two-tier multiple-choice items and the "Chemical Equilibrium Conceptual Test 2"…

  20. A selective deficit in imageable concepts: a window to the organization of the conceptual system

    PubMed Central

    Gvion, Aviah; Friedmann, Naama

    2013-01-01

    Nissim, a 64 years old Hebrew-speaking man who sustained an ischemic infarct in the left occipital lobe, exhibited an intriguing pattern. He could hold a deep and fluent conversation about abstract and complex issues, such as the social risks in unemployment, but failed to retrieve imageable words such as ball, spoon, carrot, or giraffe. A detailed study of the words he could and could not retrieve, in tasks of picture naming, tactile naming, and naming to definition, indicated that whereas he was able to retrieve abstract words, he had severe difficulties when trying to retrieve imageable words. The same dissociation also applied for proper names—he could retrieve names of people who have no visual image attached to their representation (such as the son of the biblical Abraham), but could not name people who had a visual image (such as his own son, or Barack Obama). When he tried to produce imageable words, he mainly produced perseverations and empty speech, and some semantic paraphasias. He did not produce perseverations when he tried to retrieve abstract words. This suggests that perseverations may occur when the phonological production system produces a word without proper activation in the semantic lexicon. Nissim evinced a similar dissociation in comprehension—he could understand abstract words and sentences but failed to understand sentences with imageable words, and to match spoken imageable words to pictures or to semantically related imageable words. He was able to understand proverbs with imageable literal meaning but abstract figurative meaning. His comprehension was impaired also in tasks of semantic associations of pictures, pointing to a conceptual, rather than lexical source of the deficit. His visual perception as well as his phonological input and output lexicons and buffers (assessed by auditory lexical decision, word and sentence repetition, and writing to dictation) were intact, supporting a selective conceptual system impairment. He was able to retrieve gestures for objects and pictures he saw, indicating that his access to concepts often sufficed for the activation of the motoric information but did not suffice for access to the entry in the semantic lexicon. These results show that imageable concepts can be selectively impaired, and shed light on the organization of conceptual-semantic system. PMID:23785321

  1. A selective deficit in imageable concepts: a window to the organization of the conceptual system.

    PubMed

    Gvion, Aviah; Friedmann, Naama

    2013-01-01

    Nissim, a 64 years old Hebrew-speaking man who sustained an ischemic infarct in the left occipital lobe, exhibited an intriguing pattern. He could hold a deep and fluent conversation about abstract and complex issues, such as the social risks in unemployment, but failed to retrieve imageable words such as ball, spoon, carrot, or giraffe. A detailed study of the words he could and could not retrieve, in tasks of picture naming, tactile naming, and naming to definition, indicated that whereas he was able to retrieve abstract words, he had severe difficulties when trying to retrieve imageable words. The same dissociation also applied for proper names-he could retrieve names of people who have no visual image attached to their representation (such as the son of the biblical Abraham), but could not name people who had a visual image (such as his own son, or Barack Obama). When he tried to produce imageable words, he mainly produced perseverations and empty speech, and some semantic paraphasias. He did not produce perseverations when he tried to retrieve abstract words. This suggests that perseverations may occur when the phonological production system produces a word without proper activation in the semantic lexicon. Nissim evinced a similar dissociation in comprehension-he could understand abstract words and sentences but failed to understand sentences with imageable words, and to match spoken imageable words to pictures or to semantically related imageable words. He was able to understand proverbs with imageable literal meaning but abstract figurative meaning. His comprehension was impaired also in tasks of semantic associations of pictures, pointing to a conceptual, rather than lexical source of the deficit. His visual perception as well as his phonological input and output lexicons and buffers (assessed by auditory lexical decision, word and sentence repetition, and writing to dictation) were intact, supporting a selective conceptual system impairment. He was able to retrieve gestures for objects and pictures he saw, indicating that his access to concepts often sufficed for the activation of the motoric information but did not suffice for access to the entry in the semantic lexicon. These results show that imageable concepts can be selectively impaired, and shed light on the organization of conceptual-semantic system.

  2. Celestial Pattern Recognition Allowing Autonomous Earth-Surface or Deep-Space Positioning.

    DTIC Science & Technology

    1983-12-01

    viii :% -7 .2 I. INTRODUCTION AND BACKGROUND Background of the Project This research project is conceptual and opportunistic. It is conceptual in that...alternative approaches and the usefulness of a device in different navigation regimes. Both the research and this report have tried to follow these...Packard, Potter, and Viglione (Ref 2; 7; 15; 17; 23) have published papers (most of these 20 years ago) suggesting that some form of star

  3. Challenges and Solutions for the Integration of Structural and Hydrogeological Understanding of Fracture Systems - Insights from the Olkiluoto Site, Finland

    NASA Astrophysics Data System (ADS)

    Hartley, L. J.; Aaltonen, I.; Baxter, S. J.; Cottrell, M.; Fox, A. L.; Hoek, J.; Koskinen, L.; Mattila, J.; Mosley, K.; Selroos, J. O.; Suikkanen, J.; Vanhanarkaus, O.; Williams, T. R. N.

    2017-12-01

    A field site at Olkiluoto in SW Finland has undergone extensive investigations as a location for a deep geological repository for spent nuclear fuel, which is expected to become operational in the early 2020s. Characterisation data comes from 58 deep cored drillholes, a wide variety of geophysical investigations, many outcrops, kilometres of underground mapping and testing in the ONKALO research facility, and groundwater pressure monitoring and sampling in both deep and shallow holes. A primary focus is on the properties of natural fractures and brittle fault zones in the low permeability crystalline rocks at Olkiluoto; an understanding of the flow and transport processes in these features are an essential part of assessing long-term safety of the repository. This presentation will illustrate how different types of source data and cross-disciplinary interpretations are integrated to develop conceptual and numerical models of the fracture system. A model of the brittle fault zones developed from geological and geophysical data provides the hydrostructural backbone controlling the most intense fracturing and dynamic conduits for fluids. Models of ductile deformation and lithology form a tectonic framework for the description of fracture heterogeneity in the background rock, revealing correlations between the intensity and orientation of fractures with geological and spatial properties. The sizes of brittle features are found to be best defined on two scales relating to individual fractures and zones. Inferred fracture-specific from flow logging are correlated with fracture geometric and mechanical properties along with in situ stress measurements to create a hydromechanical description of fracture hydraulic properties. The insights and understandings gained from these efforts help define a discrete fracture network (DFN) model for the Olkiluoto site, with hydrogeological characteristics consistent with monitoring data of hydraulic heads and their disturbances to pumping and underground construction. This work offers ideas and proposed solutions on how some of the challenges in describing fractured rock hydrogeology can be tackled.

  4. Traditional Instruction of Differential Equations and Conceptual Learning

    ERIC Educational Resources Information Center

    Arslan, Selahattin

    2010-01-01

    Procedural and conceptual learning are two types of learning, related to two types of knowledge, which are often referred to in mathematics education. Procedural learning involves only memorizing operations with no understanding of underlying meanings. Conceptual learning involves understanding and interpreting concepts and the relations between…

  5. The ability to understand and use conceptual change pedagogy as a function of prior content learning experience

    NASA Astrophysics Data System (ADS)

    Stofflett, René T.; Stoddart, Trish

    This research examined the relationship between content instruction and the development of elementary teacher candidates' understanding of conceptual change pedagogy. Undergraduate students (n = 27) enrolled in two sections of a science methods course received content instruction through either traditional or conceptual change methods, followed by instruction about conceptual change pedagogy. Candidates were interviewed pre- and postinstruction about their content and pedagogical knowledge and also wrote conceptual change lessons. Twelve of the 27 subjects were videotaped teaching in the field. Results indicate that prior to instruction, most candidates had weak content knowledge and held traditional pedagogical conceptions. After instruction, students in the conceptual change group had significantly larger gains in their content knowledge than those in the traditional group, gave qualitatively stronger pedagogical responses, and used conceptual change strategies more consistently in practice. These results indicate that personal experience of learning science content through conceptual change methods facilitated the development of understanding and use of conceptual change pedagogy in teaching practice. Thus if conceptual change methods are to be incorporated into teacher candidates' repertoire, science content courses that students take prior to teacher education should be taught using conceptual change pedagogy. In addition, courses in science education should use pedagogy more in line with that taught in methods courses.

  6. Succession in the petroleum reservoir microbiome through an oil field production lifecycle.

    PubMed

    Vigneron, Adrien; Alsop, Eric B; Lomans, Bartholomeus P; Kyrpides, Nikos C; Head, Ian M; Tsesmetzis, Nicolas

    2017-09-01

    Subsurface petroleum reservoirs are an important component of the deep biosphere where indigenous microorganisms live under extreme conditions and in isolation from the Earth's surface for millions of years. However, unlike the bulk of the deep biosphere, the petroleum reservoir deep biosphere is subject to extreme anthropogenic perturbation, with the introduction of new electron acceptors, donors and exogenous microbes during oil exploration and production. Despite the fundamental and practical significance of this perturbation, there has never been a systematic evaluation of the ecological changes that occur over the production lifetime of an active offshore petroleum production system. Analysis of the entire Halfdan oil field in the North Sea (32 producing wells in production for 1-15 years) using quantitative PCR, multigenic sequencing, comparative metagenomic and genomic bins reconstruction revealed systematic shifts in microbial community composition and metabolic potential, as well as changing ecological strategies in response to anthropogenic perturbation of the oil field ecosystem, related to length of time in production. The microbial communities were initially dominated by slow growing anaerobes such as members of the Thermotogales and Clostridiales adapted to living on hydrocarbons and complex refractory organic matter. However, as seawater and nitrate injection (used for secondary oil production) delivered oxidants, the microbial community composition progressively changed to fast growing opportunists such as members of the Deferribacteres, Delta-, Epsilon- and Gammaproteobacteria, with energetically more favorable metabolism (for example, nitrate reduction, H 2 S, sulfide and sulfur oxidation). This perturbation has profound consequences for understanding the microbial ecology of the system and is of considerable practical importance as it promotes detrimental processes such as reservoir souring and metal corrosion. These findings provide a new conceptual framework for understanding the petroleum reservoir biosphere and have consequences for developing strategies to manage microbiological problems in the oil industry.

  7. A study of primary school teachers’ conceptual understanding on states of matter and their changes based on their job locations (case study at Ambon island in Moluccas-Indonesia)

    NASA Astrophysics Data System (ADS)

    Banawi, A.; Sopandi, W.; Kadarohman, A.; Solehuddin, M.

    2018-05-01

    The research aims to describe primary school teachers’ conceptual understandings about states of matter and their changes. The method was descriptive which involved 15 primary school teachers from three different school locations. They were from urban school (CS1), sub-urban school (CS2), and rular school (CS3) at Ambon Island on 2016/2017 academic year. The research instrument was a multiple-choice test combined with both essay and confidence level of their answers. The test was used to measure teachers’ understanding levels about states of matter and their changes. They were macroscopic, sub-microscopic and symbolic levels. Teachers’ understanding levels were classified into following categorization, they were understand, partly understand, misconception, and do not understand. The results show that primary school teachers’ conceptual understanding is varied based on their job locations and primary school teachers’ level understanding. Generally, primary school teachers’ conceptual understandings at sub-urban location (CS2) are better than those of both of urban (CS1) and rular locations (CS3). The results suggest that teachers need improvement to make better primary school teachers’ conceptual understanding. It can be on the job training and in service training activities. We also need a further research in order to investigate the program effectiveness.

  8. Building Capacity in Understanding Foundational Biology Concepts: A K-12 Learning Progression in Genetics Informed by Research on Children's Thinking and Learning

    NASA Astrophysics Data System (ADS)

    Elmesky, Rowhea

    2013-06-01

    This article describes the substance, structure, and rationale of a learning progression in genetics spanning kindergarten through twelfth grade (K-12). The learning progression is designed to build a foundation towards understanding protein structure and activity and should be viewed as one possible pathway to understanding concepts of genetics and ultimately protein expression, based on the existing research. The kindergarten through fifth grade segment reflects findings that show children have a rich knowledge base and sophisticated cognitive abilities, and therefore, is designed so that elementary-aged children can learn content in deep and abstract manners, as well as apply scientific explanations appropriate to their knowledge level. The article also details the LP segment facilitating secondary students' understanding by outlining the overlapping conceptual frames which guide student learning from cell structures and functions to cell splitting (both cell division and gamete formation) to genetics as trait transmission, culminating in genetics as protein expression. The learning progression product avoids the use of technical language, which has been identified as a prominent source of student misconceptions in learning cellular biology, and explicit connections between cellular and macroscopic phenomena are encouraged.

  9. The Transition from Traditional Teaching to Web-Assisted Technology

    ERIC Educational Resources Information Center

    Frey, Andy J.; Faul, Anna C.

    2005-01-01

    This research note presents a conceptual model for understanding how students embrace technology, briefly presents results of a pilot study supporting this conceptualization, and makes suggestions for web-assisted teaching and research. The conceptual framework helps the reader understand how instructors' "Marketing strategies" may need to change…

  10. Assessing Undergraduate Students' Conceptual Understanding and Confidence of Electromagnetics

    ERIC Educational Resources Information Center

    Leppavirta, Johanna

    2012-01-01

    The study examines how students' conceptual understanding changes from high confidence with incorrect conceptions to high confidence with correct conceptions when reasoning about electromagnetics. The Conceptual Survey of Electricity and Magnetism test is weighted with students' self-rated confidence on each item in order to infer how strongly…

  11. More than Just "Plug-and-Chug": Exploring How Physics Students Make Sense with Equations

    ERIC Educational Resources Information Center

    Kuo, Eric

    2013-01-01

    Although a large part the Physics Education Research (PER) literature investigates students' conceptual understanding in physics, these investigations focus on qualitative, conceptual reasoning. Even in modeling expert problem solving, attention to conceptual understanding means a focus on initial qualitative analysis of the problem; the equations…

  12. Youth with Autism Spectrum Disorder Comprehend Lexicalized and Novel Primary Conceptual Metaphors

    ERIC Educational Resources Information Center

    Olofson, Eric L.; Casey, Drew; Oluyedun, Olufemi A.; Van Herwegen, Jo; Becerra, Adam; Rundblad, Gabriella

    2014-01-01

    Individuals with autism spectrum disorder (ASD) have difficulty comprehending metaphors. However, no study to date has examined whether or not they understand conceptual metaphors (i.e. mappings between conceptual structures), which could be the building blocks of metaphoric thinking and understanding. We investigated whether 13 participants with…

  13. Analogy-Integrated e-Learning Module: Facilitating Students' Conceptual Understanding

    ERIC Educational Resources Information Center

    Florida, Jennifer

    2012-01-01

    The study deals with the development of an analogy-integrated e-learning module on Cellular Respiration, which is intended to facilitate conceptual understanding of students with different brain hemisphere dominance and learning styles. The module includes eight analogies originally conceptualized following the specific steps used to prepare…

  14. Relationship between using conceptual comprehension of academic material and thinking abstractly about global life issues.

    PubMed

    Westman, A S; Kamoo, R L

    1990-04-01

    The study explored whether more frequent use of conceptual comprehension of academic material generalized to greater use of abstract thinking about global life issues, such as death, goal in life, marriage, AIDS, etc. Undergraduate and graduate students (28 men and 61 women) voluntarily completed a questionnaire which assessed their conceptualizations using three indices. These were an intelligence scale and two learning style indices, namely, Deep Processing and Elaborative Processing of R. R. Schmeck. Also assessed were their levels of abstract thinking about Death Issues and about Other Real Life Issues, and their Denial of Death and their Denial of Dying. All three indices of conceptualization correlated with thinking more abstractly about Other Real Life Issues, but only Elaborative Processing correlated with thinking more abstractly about Death Issues. None of the three indices correlated with Denial of Death or Denial of Dying. It appears conceptualization skills were selectively generalized.

  15. The origins of levels-of-processing effects in a conceptual test: evidence for automatic influences of memory from the process-dissociation procedure.

    PubMed

    Bergerbest, Dafna; Goshen-Gottstein, Yonatan

    2002-12-01

    In three experiments, we explored automatic influences of memory in a conceptual memory task, as affected by a levels-of-processing (LoP) manipulation. We also explored the origins of the LoP effect by examining whether the effect emerged only when participants in the shallow condition truncated the perceptual processing (the lexical-processing hypothesis) or even when the entire word was encoded in this condition (the conceptual-processing hypothesis). Using the process-dissociation procedure and an implicit association-generation task, we found that the deep encoding condition yielded higher estimates of automatic influences than the shallow condition. In support of the conceptual processing hypothesis, the LoP effect was found even when the shallow task did not lead to truncated processing of the lexical units. We suggest that encoding for meaning is a prerequisite for automatic processing on conceptual tests of memory.

  16. A profile of students’ conceptual understanding and selfefficacy of eleventh graders in vocational high schools

    NASA Astrophysics Data System (ADS)

    Nurhilal, P. P. D.; Siahaan, P.; Chandra, D. T.

    2018-05-01

    This study aims to explore a profile of students’ conceptual understanding and self-efficacy of eleventh graders in vocational high schools in Bandung on the concept of dynamic electricity. Data on students’ conceptual understanding and self-efficacy are needed to determine the treatment to be used in subsequent research. The sampling technique used in this research is purposive sampling. The acquisition of the conceptual understanding data through the test, while the self-efficacy through the attitude scale, both equipped with interviews. The conceptual understanding refers to the Bloom Taxonomy Revision, while self-efficacy refers to Baldwin’s instrument. The results show that the percentage of students who have had the ability to understand for the interpreting aspects of 42%, exemplifying aspect of 45%, classifying aspect of 37%, summarizing aspect of 35%, inferring aspect of 38%, comparing aspect of 43%, and explaining aspect of 40%. This shows that the ability to understand only reaches 40% (low category). While the result of the attitude scale and the interview about the students’ self-efficacy, there is uncertainty of their own ability, it shows that the students’ self-efficacy is still low.

  17. The importance of basic factors in innovation processes and their effects on innovation capability of Malaysian-owned manufacturing companies

    NASA Astrophysics Data System (ADS)

    Suradi, Nur Riza Mohd; Omar, Aminuddin; Shahabuddin, Faridatulazna Ahmad

    2015-02-01

    Innovation is the core ingredient in the competitiveness of today's businesses. Any company that cannot innovate will be losing its competitiveness. While the study on innovation at conceptual level is widely available, there is still lack of deep understanding of how innovation factors impact each stage of the processes of innovation that happen in Malaysian companies. This process-factor approach and understanding may help the government focuses its assistance on relevant factors at relevant process according to the size of the company. This study examines how companies are affected by fundamental factors needed in innovation. Based on results of MYTIC Study 2012 on the level of Technological Innovation Capability (TIC) of Malaysian companies using the RDCB framework, the significance of each innovation factor in each innovation process is determined. This study shows that human resource factor gives more impact than other factors in most processes. Also, financial and human resource factors are likely dictated by the size of the company.

  18. In search of the moral-psychological and neuroevolutionary basis of political partisanship

    PubMed Central

    Haase, Vitor Geraldi; Starling-Alves, Isabella

    2017-01-01

    In many countries, a radical political divide brings several socially relevant decisions to a standstill. Could cognitive, affective and social (CAS) neuroscience help better understand these questions? The present article reviews the moral-psychological and neuroevolutionary basis of the political partisanship divide. A non-systematic literature review and a conceptual analysis were conducted. Three main points are identified and discussed: 1) Political partisan behavior rests upon deep moral emotions. It is automatically processed and impervious to contradiction. The moral motifs characterizing political partisanship are epigenetically set across different cultures; 2) partisanship is linked to personality traits, whose neural foundations are associated with moral feelings and judgement; 3) Self-deception is a major characteristic of political partisanship that probably evolved as an evolutionary adaptive strategy to deal with the intragroup-extragroup dynamics of human evolution. CAS neuroscience evidence may not resolve the political divide, but can contribute to a better understanding of its biological foundations. PMID:29213489

  19. Effectiveness of Dry Cell Microscopic Simulation (DCMS) to Promote Conceptual Understanding about Battery

    NASA Astrophysics Data System (ADS)

    Catur Wibowo, Firmanul; Suhandi, Andi; Rusdiana, Dadi; Samsudin, Achmad; Rahmi Darman, Dina; Faizin, M. Noor; Wiyanto; Supriyatman; Permanasari, Anna; Kaniawati, Ida; Setiawan, Wawan; Karyanto, Yudi; Linuwih, Suharto; Fatah, Abdul; Subali, Bambang; Hasani, Aceng; Hidayat, Sholeh

    2017-07-01

    Electricity is a concept that is abstract and difficult to see by eye directly, one example electric shock, but cannot see the movement of electric current so that students have difficulty by students. A computer simulation designed to improve the understanding of the concept of the workings of the dry cell (battery). This study was conducted to 82 students (aged 18-20 years) in the experimental group by learning to use the Dry Cell Microscopic Simulation (DCMS). The result shows the improving of students’ conceptual understanding scores from post test were statistically significantly of the workings of batteries. The implication using computer simulations designed to overcome the difficulties of conceptual understanding, can effectively help students in facilitating conceptual change.

  20. The Disjointed Historical Trajectory of Anorexia Nervosa Before 1970.

    PubMed

    Court, John P M; Kaplan, Allan S

    2016-01-01

    Responses in pre-modern eras to anorexia nervosa (as now understood) varied widely, from religious piety and sanctity through fear and superstition. While noting briefly the limited conceptualizations from pre-modern history this article is primarily focused from the late 19th century, commencing with helpful but tentative formulations of anorexia nervosa for early-modern medicine that were laid out, consistently between themselves, by Lesègue, Gull and Osler. Yet that promising biomedical advent was superseded for more than a half-century by deep, internal divisions and bitter rifts that festered between three medical disciplines: neurology; Freudian psychotherapy; and Kraepelinian biological psychiatry. Mid-20th century developments preceded the 1960-1980s' improved understanding of suffering and movement toward effective remediation introduced by Dr. Hilde Bruch.

  1. Multiple Pathways Linking Racism to Health Outcomes

    PubMed Central

    Harrell, Camara Jules P.; Burford, Tanisha I.; Cage, Brandi N.; Nelson, Travette McNair; Shearon, Sheronda; Thompson, Adrian; Green, Steven

    2012-01-01

    This commentary discusses advances in the conceptual understanding of racism and selected research findings in the social neurosciences. The traditional stress and coping model holds that racism constitutes a source of aversive experiences that, when perceived by the individual, eventually lead to poor health outcomes. Current evidence points to additional psychophysiological pathways linking facets of racist environments with physiological reactions that contribute to disease. The alternative pathways emphasize prenatal experiences, subcortical emotional neural circuits, conscious and preconscious emotion regulation, perseverative cognitions, and negative affective states stemming from racist cognitive schemata. Recognition of these pathways challenges change agents to use an array of cognitive and self-controlling interventions in mitigating racism’s impact. Additionally, it charges policy makers to develop strategies that eliminate deep-seated structural aspects of racism in society. PMID:22518195

  2. Mediating Relationship of Differential Products in Understanding Integration in Introductory Physics

    ERIC Educational Resources Information Center

    Amos, Nathaniel; Heckler, Andrew F.

    2018-01-01

    In the context of introductory physics, we study student conceptual understanding of differentials, differential products, and integrals and possible pathways to understanding these quantities. We developed a multiple choice conceptual assessment employing a variety of physical contexts probing physical understanding of these three quantities and…

  3. 75 FR 63146 - Gulf of Mexico Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... integrated into fisheries science in moving toward ecosystem based fishery management. Various conceptual frameworks and models will be presented. The second day will be devoted to identifying impacts of the Deep...

  4. Enhancing the Conceptual Understanding of Science.

    ERIC Educational Resources Information Center

    Gabel, Dorothy

    2003-01-01

    Describes three levels of understanding science: the phenomena (macroscopic), the particle (microscopic), and the symbolic. Suggests that the objective of science instruction at all levels is conceptual understanding of scientific inquiry. Discusses effective instructional strategies, including analogy, collaborative learning, concept mapping,…

  5. What makes deeply encoded items memorable? Insights into the levels of processing framework from neuroimaging and neuromodulation.

    PubMed

    Galli, Giulia

    2014-01-01

    When we form new memories, their mnestic fate largely depends upon the cognitive operations set in train during encoding. A typical observation in experimental as well as everyday life settings is that if we learn an item using semantic or "deep" operations, such as attending to its meaning, memory will be better than if we learn the same item using more "shallow" operations, such as attending to its structural features. In the psychological literature, this phenomenon has been conceptualized within the "levels of processing" framework and has been consistently replicated since its original proposal by Craik and Lockhart in 1972. However, the exact mechanisms underlying the memory advantage for deeply encoded items are not yet entirely understood. A cognitive neuroscience perspective can add to this field by clarifying the nature of the processes involved in effective deep and shallow encoding and how they are instantiated in the brain, but so far there has been little work to systematically integrate findings from the literature. This work aims to fill this gap by reviewing, first, some of the key neuroimaging findings on the neural correlates of deep and shallow episodic encoding and second, emerging evidence from studies using neuromodulatory approaches such as psychopharmacology and non-invasive brain stimulation. Taken together, these studies help further our understanding of levels of processing. In addition, by showing that deep encoding can be modulated by acting upon specific brain regions or systems, the reviewed studies pave the way for selective enhancements of episodic encoding processes.

  6. Conceptualizing neuropsychiatric diseases with multimodal data-driven meta-analyses – The case of behavioral variant frontotemporal dementia

    PubMed Central

    Schroeter, Matthias L.; Laird, Angela R.; Chwiesko, Caroline; Deuschl, Christine; Schneider, Else; Bzdok, Danilo; Eickhoff, Simon B.; Neumann, Jane

    2014-01-01

    Introduction Uniform coordinate systems in neuroimaging research have enabled comprehensive systematic and quantitative meta-analyses. Such approaches are particularly relevant for neuropsychiatric diseases, the understanding of their symptoms, prediction and treatment. Behavioral variant frontotemporal dementia (bvFTD), a common neurodegenerative syndrome, is characterized by deep alterations in behavior and personality. Investigating this ‘nexopathy’ elucidates the healthy social and emotional brain. Methods Here, we combine three multimodal meta-analyses approaches – anatomical & activation likelihood estimates and behavioral domain profiles – to identify neural correlates of bvFTD in 417 patients and 406 control subjects and to extract mental functions associated with this disease by meta-analyzing functional activation studies in the comprehensive probabilistic functional brain atlas of the BrainMap database. Results The analyses identify the frontomedian cortex, basal ganglia, anterior insulae and thalamus as most relevant hubs, with a regional dissociation between atrophy and hypometabolism. Neural networks affected by bvFTD were associated with emotion and reward processing, empathy and executive functions (mainly inhibition), suggesting these functions as core domains affected by the disease and finally leading to its clinical symptoms. In contrast, changes in theory of mind or mentalizing abilities seem to be secondary phenomena of executive dysfunctions. Conclusions The study creates a novel conceptual framework to understand neuropsychiatric diseases by powerful data-driven meta-analytic approaches that shall be extended to the whole neuropsychiatric spectrum in the future. PMID:24763126

  7. Sensitivity of the ocean overturning circulation to wind and mixing: theoretical scalings and global ocean models

    NASA Astrophysics Data System (ADS)

    Nikurashin, Maxim; Gunn, Andrew

    2017-04-01

    The meridional overturning circulation (MOC) is a planetary-scale oceanic flow which is of direct importance to the climate system: it transports heat meridionally and regulates the exchange of CO2 with the atmosphere. The MOC is forced by wind and heat and freshwater fluxes at the surface and turbulent mixing in the ocean interior. A number of conceptual theories for the sensitivity of the MOC to changes in forcing have recently been developed and tested with idealized numerical models. However, the skill of the simple conceptual theories to describe the MOC simulated with higher complexity global models remains largely unknown. In this study, we present a systematic comparison of theoretical and modelled sensitivity of the MOC and associated deep ocean stratification to vertical mixing and southern hemisphere westerlies. The results show that theories that simplify the ocean into a single-basin, zonally-symmetric box are generally in a good agreement with a realistic, global ocean circulation model. Some disagreement occurs in the abyssal ocean, where complex bottom topography is not taken into account by simple theories. Distinct regimes, where the MOC has a different sensitivity to wind or mixing, as predicted by simple theories, are also clearly shown by the global ocean model. The sensitivity of the Indo-Pacific, Atlantic, and global basins is analysed separately to validate the conceptual understanding of the upper and lower overturning cells in the theory.

  8. Understanding Possibilities and Limitations of Abstract Chemical Representations for Achieving Conceptual Understanding

    ERIC Educational Resources Information Center

    Corradi, David M. J.; Elen, Jan; Schraepen, Beno; Clarebout, Geraldine

    2014-01-01

    When learning with abstract and scientific multiple external representations (MERs), low prior knowledge learners are said to have difficulties in using these MERs to achieve conceptual understanding. Yet little is known about what these limitations precisely entail. In order to understand this, we presented 101 learners with low prior knowledge…

  9. Characterizations of geothermal springs along the Moxi deep fault in the western Sichuan plateau, China

    NASA Astrophysics Data System (ADS)

    Qi, Jihong; Xu, Mo; An, Chengjiao; Wu, Mingliang; Zhang, Yunhui; Li, Xiao; Zhang, Qiang; Lu, Guoping

    2017-02-01

    Abundant geothermal springs occur along the Moxi fault located in western Sichuan Province (the eastern edge of the Qinghai-Tibet plateau), highlighted by geothermal water outflow with an unusually high temperature of 218 °C at 21.5 MPa from a 2010-m borehole in Laoyulin, Kangding. Earthquake activity occurs relatively more frequently in the region and is considered to be related to the strong hydrothermal activity. Geothermal waters hosted by a deep fault may provide evidence regarding the deep underground; their aqueous chemistry and isotopic information can indicate the mechanism of thermal springs. Cyclical variations of geothermal water outflows are thought to work under the effect of solid earth tides and can contribute to understanding conditions and processes in underground geo-environments. This paper studies the origin and variations of the geothermal spring group controlled by the Moxi fault and discusses conditions in the deep ground. Flow variation monitoring of a series of parameters was performed to study the geothermal responses to solid tides. Geothermal reservoir temperatures are evaluated with Na-K-Mg data. The abundant sulfite content, dissolved oxygen (DO) and oxidation-reduction potential (ORP) data are discussed to study the oxidation-reduction states. Strontium isotopes are used to trace the water source. The results demonstrate that geothermal water could flow quickly through the Moxi fault the depth of the geothermal reservoir influences the thermal reservoir temperature, where supercritical hot water is mixed with circulating groundwater and can reach 380 °C. To the southward along the fault, the circulation of geothermal waters becomes shallower, and the waters may have reacted with metamorphic rock to some extent. Our results provide a conceptual deep heat source model for geothermal flow and the reservoir characteristics of the Moxi fault and indicate that the faulting may well connect the deep heat source to shallower depths. The approach of hot spring variation research also has potential benefits for earthquake monitoring and prediction.

  10. Using Interlocking Toy Building Blocks to Assess Conceptual Understanding in Chemistry

    ERIC Educational Resources Information Center

    Geyer, Michael J.

    2017-01-01

    A current emphasis on teaching conceptual chemistry via the particulate nature of matter has led to the need for new, effective ways to assess students' conceptual understanding of this view of chemistry. This article provides a simple, inexpensive way to use interlocking toy building blocks (e.g., LEGOs) in both formative and summative…

  11. Using Memes and Memetic Processes to Explain Social and Conceptual Influences on Student Understanding about Complex Socio-Scientific Issues

    ERIC Educational Resources Information Center

    Yoon, Susan

    2008-01-01

    This study investigated seventh grade learners' decision making about genetic engineering concepts and applications. A social network analyses supported by technology tracked changes in student understanding with a focus on social and conceptual influences. Results indicated that several social and conceptual mechanisms potentially affected how…

  12. The Effect of a Conceptual Change Approach on Understanding of Students' Chemical Equilibrium Concepts

    ERIC Educational Resources Information Center

    Atasoy, Basri; Akkus, Huseyin; Kadayifci, Hakki

    2009-01-01

    The purpose of this study was to compare the effects of a conceptual change approach over traditional instruction on tenth-grade students' conceptual achievement in understanding chemical equilibrium. The study was conducted in two classes of the same teacher with participation of a total of 44 tenth-grade students. In this study, a…

  13. Effect of Technology Enhanced Conceptual Change Texts on Students' Understanding of Buoyant Force

    ERIC Educational Resources Information Center

    Ozkan, Gulbin; Selcuk, Gamze Sezgin

    2015-01-01

    In this study, the effect of technology enhanced conceptual change texts on elementary school students' understanding of buoyant force was investigated. The conceptual change texts (written forms) used in this study are proven for effectiveness and are enriched by using technology support in this study. These texts were tried out on two groups. A…

  14. An overview of conceptual understanding in science education curriculum in Indonesia

    NASA Astrophysics Data System (ADS)

    Widiyatmoko, A.; Shimizu, K.

    2018-03-01

    The purpose of this article is to discuss the term of “conceptual understanding” in science education curriculum in Indonesia. The implementation of 2013 Curriculum focuses on the acquisition of contextual knowledge in respective areas and environments. The curriculum seeks to develop students' evaluation skills in three areas: attitude, technical skills, and scientific knowledge. It is based on two layers of competencies: core and basic competencies. The core competencies in the curriculum 2013 represent the ability level to achieve the gradute competency standards of a students at each grade level. There are four mandatory core competencies for all educational levels and all subjects including science, which are spiritual, social, knowledge and skills competencies. In terms of knowledge competencies, conceptual understanding is an inseparable part of science concept since conceptual understanding is one of the basic competencies in science learning. This competency is a part of science graduation standard indicated in MoEC article number 20 in 2016. Therefore, conceptual understanding is needed by students for learning science successfully.

  15. Physically-based distributed hydrologic modeling of tropical catchments: Hypothesis testing on model formation and runoff generation

    NASA Astrophysics Data System (ADS)

    Abebe, N. A.; Ogden, F. L.

    2011-12-01

    Watersheds vary in their nature based on their geographic location, altitude, climate, geology, soils, and land use/land cover. These variations lead to differences in the conceptualization and formulation of hydrological models intended to represent the expected hydrological processes in a given catchment. Watersheds in the tropics are characterized by intensive and persistent biological activity and a large amount of rainfall. Our study focuses on the Agua Salud project catchments located in the Panama Canal Watershed, Panama, which have steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. These catchments are also highly affected by soil cracks, decayed tree roots and animal burrows that form a network of preferential flow paths. One hypothesis is that these macropores conduct interflow during heavy rainfall, when a transient perched water table forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant flow processes, including overland flow, channel flow, vertical matrix and non-Richards film flow, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer and deep saturated groundwater flow. In our model formulation, we use the model to examine a variety of hydrological processes which we anticipate may occur. Emphasis is given to the modeling of the soil moisture dynamics in the bioturbation layer, development of lateral preferential flow and activation of the macropores and exchange of water at the interface between a bioturbation layer and a second layer below it. We consider interactions between surface water, ground water, channel water and perched water in the riparian zone cells with the aim of understanding likely runoff generation mechanisms. Results show that inclusion of as many different flow processes as possible during conceptualization and during model development helps to reject infeasible scenarios/hypotheses, and suggests further watershed-scale studies to improve our understanding of the hydrologic behavior of these poorly understood catchments.

  16. Integration of orthographic, conceptual, and episodic information on implicit and explicit tests.

    PubMed

    Weldon, M S; Massaro, D W

    1996-03-01

    An experiment was conducted to determine how orthographic and conceptual information are integrated during incidental and intentional retrieval. Subjects studied word lists with either a shallow (counting vowels) or deep (rating pleasantness) processing task, then received either an implicit or explicit word fragment completion (WFC) test. At test, word fragments contained 0, 1, 2, or 4 letters, and were accompanied by 0, 1, 2, or 3 semantically related words. On both the implicit and explicit tests, performance improved with increases in the numbers of letters and words. When semantic cues were presented with the word fragments, the implicit test became more conceptually drive. Still, conceptual processing had a larger effect in intentional than in incidental retrieval. The Fuzzy Logical Model of Perception (FLMP) provided a good description of how orthographic, semantic, and episodic information were combined during retrieval.

  17. Development and validation of a method for measuring depth of understanding in constructivist learning

    NASA Astrophysics Data System (ADS)

    Guarino, Lucia Falsetti

    A method for measuring depth of understanding of students in the middle-level science classroom was developed and validated. A common theme in the literature on constructivism in science education is that constructivist pedagogy, as opposed to objectivist pedagogy, results in a greater depth of understanding. Since few instruments measuring this construct exist at the present time, the development of such a tool to measure this construct was a significant contribution to the current body of assessment technologies in science education. The author's Depth of Understanding Assessment (DUA) evolved from a writing measure originally designed as a history assessment. The study involved 230 eighth grade science students studying a chemical change unit. The main research questions were: (1) What is the relationship between the DUA and each of the following independent variables: recall, application, and questioning modalities as measured by the Cognitive Preference Test; deep, surface, achieving, and deep-achieving approaches as measured by the Learning Process Questionnaire; achievement as measured by the Chemical Change Quiz, and teacher perception of student ability to conceptualize science content? (2) Is there a difference in depth of understanding, as measured by the DUA, between students who are taught by objectivist pedagogy and students who are taught by constructivist pedagogy favoring the constructivist group? (3) Is there a gender difference in depth of understanding as measured by the DUA? (4) Do students who are taught by constructivist pedagogy perceive their learning environment as more constructivist than students who are taught by objectivist pedagogy? Six out of nine hypothesis tests supported the validity of the DUA. The results of the qualitative component of this study which consisted of student interviews substantiated the quantitative results by providing additional information and insights. There was a significant difference in depth of understanding between the two groups favoring the constructivist group, however, since only two teachers and their students participated in the study, the significance of this result is limited. There was a significant gender difference in depth of understanding favoring females. Students in the constructivist group perceived their learning environment to be more constructivist than students in the objectivist group.

  18. Dialogic Framing of Scientific Content for Conceptual and Epistemic Understanding

    ERIC Educational Resources Information Center

    Ford, Michael J.; Wargo, Brian M.

    2012-01-01

    This article draws on M. M. Bakhtin's (1981) notion of dialogism to articulate what it means to understand a scientific idea. In science, understanding an idea is both conceptual and epistemic and is exhibited by an ability to use it in explanation and argumentation. Some distillation of these activities implies that dialogic understanding of a…

  19. Evaluating College Students' Conceptual Knowledge of Modern Physics: Test of Understanding on Concepts of Modern Physics (TUCO-MP)

    ERIC Educational Resources Information Center

    Akarsu, Bayram

    2011-01-01

    In present paper, we propose a new diagnostic test to measure students' conceptual knowledge of principles of modern physics topics. Over few decades since born of physics education research (PER), many diagnostic instruments that measure students' conceptual understanding of various topics in physics, the earliest tests developed in PER are Force…

  20. The Effect of Cooperative Learning Approach Based on Conceptual Change Condition on Students' Understanding of Chemical Equilibrium Concepts

    ERIC Educational Resources Information Center

    Bilgin, Ibrahim; Geban, Omer

    2006-01-01

    The purpose of this study is to investigate the effects of the cooperative learning approach based on conceptual change conditions over traditional instruction on 10th grade students' conceptual understanding and achievement of computational problems related to chemical equilibrium concepts. The subjects of this study consisted of 87 tenth grade…

  1. Long-Term Outcomes of Early Childhood Science Education: Insights from a Cross-National Comparative Case Study on Conceptual Understanding of Science

    ERIC Educational Resources Information Center

    Tao, Ying; Oliver, Mary; Venville, Grady

    2012-01-01

    The purpose of this research was to explore the long-term outcomes of either participating or not participating in early childhood science education on grade 6 students' conceptual understanding of science. The research is situated in a conceptual framework that evokes Piagetian developmental levels as both potential curriculum constraints and…

  2. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics

    NASA Astrophysics Data System (ADS)

    Weltje, G. J.; Prins, M. A.

    2003-04-01

    One of the outstanding problems of palaeoclimate reconstruction from physico-chemical properties of terrigenous deep-sea sediments is the fact that most basin fills are mixtures of sediment populations derived from different sources and transported to the site of deposition by different mechanisms. Conventional approaches to palaeoclimate reconstruction from deep-sea sediments, which ignore this common fact, often fail to recognise the true significance of variations in sediment properties. We formulate a set of requirements that each proposed palaeoenvironmental indicator should fulfil, and focus on the intrinsic coupling between grain size and chemical composition. A critical review of past achievements in grain-size analysis is given to provide a starting point for a conceptual model of spatio-temporal grain-size variation in terms of dynamic populations. Each dynamic population results from a characteristic combination of production and transport mechanisms that corresponds to a distinct subpopulation in the data analysed. The mathematical-statistical equivalent of the conceptual model may be solved by means of the end-member modelling algorithm EMMA. Applications of the model to several ocean basins are discussed, as well as methods to examine the validity of the palaeoclimate reconstructions.

  3. Conceptual astronomy: A novel model for teaching postsecondary science courses

    NASA Astrophysics Data System (ADS)

    Zeilik, Michael; Schau, Candace; Mattern, Nancy; Hall, Shannon; Teague, Kathleen W.; Bisard, Walter

    1997-10-01

    An innovative, conceptually based instructional model for teaching large undergraduate astronomy courses was designed, implemented, and evaluated in the Fall 1995 semester. This model was based on cognitive and educational theories of knowledge and, we believe, is applicable to other large postsecondary science courses. Major components were: (a) identification of the basic important concepts and their interrelationships that are necessary for connected understanding of astronomy in novice students; (b) use of these concepts and their interrelationships throughout the design, implementation, and evaluation stages of the model; (c) identification of students' prior knowledge and misconceptions; and (d) implementation of varied instructional strategies targeted toward encouraging conceptual understanding in students (i.e., instructional concept maps, cooperative small group work, homework assignments stressing concept application, and a conceptually based student assessment system). Evaluation included the development and use of three measures of conceptual understanding and one of attitudes toward studying astronomy. Over the semester, students showed very large increases in their understanding as assessed by a conceptually based multiple-choice measure of misconceptions, a select-and-fill-in concept map measure, and a relatedness-ratings measure. Attitudes, which were slightly positive before the course, changed slightly in a less favorable direction.

  4. Understanding Co-development of Conceptual and Epistemic Understanding through Modeling Practices with Mobile Internet

    NASA Astrophysics Data System (ADS)

    Ryu, Suna; Han, Yuhwha; Paik, Seoung-Hey

    2015-04-01

    The present study explores how engaging in modeling practice, along with argumentation, leverages students' epistemic and conceptual understanding in an afterschool science/math class of 16 tenth graders. The study also explores how students used mobile Internet phones (smart phones) productively to support modeling practices. As the modeling practices became more challenging, student discussion occurred more often, from what to model to providing explanations for the phenomenon. Students came to argue about evidence that supported their model and how the model could explain target and related phenomena. This finding adds to the literature that modeling practice can help students improve conceptual understanding of subject knowledge as well as epistemic understanding.

  5. ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation.

    PubMed

    Hohman, Fred; Hodas, Nathan; Chau, Duen Horng

    2017-05-01

    Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as "black-boxes" due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user's data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.

  6. Esmeralda Energy Company, Final Scientific Technical Report, January 2008. Emigrant Slimhole Drilling Project, DOE GRED III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deymonaz, John; Hulen, Jeffrey B.; Nash, Gregory D.

    2008-01-22

    The Emigrant Slimhole Drilling Project (ESDP) was a highly successful, phased resource evaluation program designed to evaluate the commercial geothermal potential of the eastern margin of the northern Fish Lake Valley pull-apart basin in west-central Nevada. The program involved three phases: (1) Resource evaluation; (2) Drilling and resource characterization; and (3) Resource testing and assessment. Efforts included detailed geologic mapping; 3-D modeling; compilation of a GIS database; and production of a conceptual geologic model followed by the successful drilling of the 2,938 foot deep 17-31 slimhole (core hole), which encountered commercial geothermal temperatures (327⁰ F) and exhibits an increasing, conductive,more » temperature gradient to total depth; completion of a short injection test; and compilation of a detailed geologic core log and revised geologic cross-sections. Results of the project greatly increased the understanding of the geologic model controlling the Emigrant geothermal resource. Information gained from the 17-31 core hole revealed the existence of commercial temperatures beneath the area in the Silver Peak Core Complex which is composed of formations that exhibit excellent reservoir characteristics. Knowledge gained from the ESDP may lead to the development of a new commercial geothermal field in Nevada. Completion of the 17-31 core hole also demonstrated the cost-effectiveness of deep core drilling as an exploration tool and the unequaled value of core in understanding the geology, mineralogy, evolutional history and structural aspects of a geothermal resource.« less

  7. Subject- and Experience-Bound Differences in Teachers' Conceptual Understanding of Sustainable Development

    ERIC Educational Resources Information Center

    Borg, C.; Gericke, N.; Höglund, H.-O.; Bergman, E.

    2014-01-01

    This article describes the results of a nationwide questionnaire study of 3229 Swedish upper secondary school teachers' conceptual understanding of sustainable development in relation to their subject discipline and teaching experience. Previous research has shown that teachers have difficulties understanding the complex concept of sustainable…

  8. Does Conceptual Understanding of Limit Partially Lead Students to Misconceptions?

    NASA Astrophysics Data System (ADS)

    Mulyono, B.; Hapizah

    2017-09-01

    This article talks about the result of preliminary research of my dissertation, which will investigate student’s retention of conceptual understanding. In my preliminary research, I surveyed 73 students of mathematics education program by giving some questions to test their retention of conceptual understanding of limits. Based on the results of analyzing of students’ answers I conclude that most of the students have problems with their retention of conceptual understanding and they also have misconception of limits. The first misconception I identified is that students always used the substitution method to determine a limit of a function at a point, but they did not check whether the function is continue or not at the point. It means that they only use the substitution theorem partially, because they do not consider that the substitution theorem \\mathop{{lim}}\\limits\\text{x\\to \\text{c}}f(x)=f(c) works only if f(x) is defined at χ = c. The other misconception identified is that some students always think there must be available of variables χ in a function to determine the limit of the function. I conjecture that conceptual understanding of limit partially leads students to misconceptions.

  9. The opportunities and challenges of guided inquiry science for students with special needs

    NASA Astrophysics Data System (ADS)

    Miller, Marianne

    Research in science education has been conducted with various goals for instruction. Four outcomes identified include: immediate and delayed recall, literal comprehension, science skills and processes, and conceptual understanding. The promise of developing important thinking skills exists for all students if science instruction is designed to teach students the products of science and the principled process of inquiry. Guided inquiry science seeks to develop conceptual understanding through the pursuit of meaningful questions using scientific problem solving to conduct investigations that are thoughtfully generated and evaluated. Using a social constructivist perspective, this study examines the learning experiences of four students, identified by their teachers as learning disabled or underachieving. Four case studies are presented of the students' participation in a guided inquiry investigation of the behavior of light. Measures of conceptual understanding included pre- and post-instruction assessments, interviews, journal writing, videotapes, and fieldnotes. All four students demonstrated improved conceptual understanding of light. Five patterns of relationships influenced the development of the students' thinking. First, differences in the culture of the two classrooms altered the learning environment, Second, the nature of teacher interaction with the target students affected conceptual understanding. Third, interactions with peers modified the learning experiences for the identified students. Fourth, the conceptual and procedural complexity of the tasks increased the tendency for the students to lose focus. Finally, the literacy requirements of the work were challenging for these students.

  10. Middle school teachers' familiarity with, interest in, performance on, and conceptual and pedagogical knowledge of light

    NASA Astrophysics Data System (ADS)

    Mbewe, Simeon

    The purpose of this study was threefold: Examine middle school teachers' familiarity with, interest in, conceptual knowledge of and performance on light; Examine their ability to identify misconceptions on light and their suggested pedagogical ideas to address the identified misconceptions; and Establish the relationship between the middle school teachers' interest, familiarity, conceptual understanding, performance, misconception identification, and pedagogical ideas for light. Sixty six (66) middle school science teachers enrolled in three math and science teacher professional development projects at Southern Illinois University Carbondale participated in this study. This study used mixed-methods approach to collect and analyze data. The participants responded in writing to four different instruments: Familiarity and Interest Questionnaire, Conceptual Knowledge Test, Two-tier Performance Test, and Misconceptions Identification Questionnaire. Data was analyzed quantitatively by conducting non-parametric (Wilcoxon, Mann-Whitney U, and Kruskal-Wallis) and parametric (paired samples, independent samples, and One-Way ANOVA) tests. Qualitative data was analyzed using thematic analysis and open coding to identify emerging themes and categories. The results showed that the teachers reported high levels of familiarity with and interest in learning more about light concepts. However, they had low conceptual knowledge and performance on light concepts. As such, middle school teachers' perceived knowledge of light concepts was not consistent with their actual knowledge of light. To some extent, the teachers identified students' misconceptions expressed in some scenarios on light and also suggested pedagogical ideas for addressing such misconceptions in middle school science classrooms. However, most teachers did not provide details on their pedagogical ideas for light. Correlations among the four constructs (familiarity, interest, conceptual understanding, and performance) were only significant between performance and conceptual understanding, r (64) = .50, p = .000. There was no significant relationship between conceptual understanding and familiarity, and between performance and familiarity. In view of these findings, it is evident that some teachers did not have sound conceptual understanding and pedagogical ideas to effectively help their students develop the understanding of light concepts accentuated in the US national science education standards. These findings have implications on teacher education and science teaching and learning.

  11. An investigation of the use of microcomputer-based laboratory simulations in promoting conceptual understanding in secondary physics instruction

    NASA Astrophysics Data System (ADS)

    Tomshaw, Stephen G.

    Physics education research has shown that students bring alternate conceptions to the classroom which can be quite resistant to traditional instruction methods (Clement, 1982; Halloun & Hestenes, 1985; McDermott, 1991). Microcomputer-based laboratory (MBL) experiments that employ an active-engagement strategy have been shown to improve student conceptual understanding in high school and introductory university physics courses (Thornton & Sokoloff, 1998). These (MBL) experiments require a specialized computer interface, type-specific sensors (e.g. motion detectors, force probes, accelerometers), and specialized software in addition to the standard physics experimental apparatus. Tao and Gunstone (1997) have shown that computer simulations used in an active engagement environment can also lead to conceptual change. This study investigated 69 secondary physics students' use of computer simulations of MBL activities in place of the hands-on MBL laboratory activities. The average normalized gain in students' conceptual understanding was measured using the Force and Motion Conceptual Evaluation (FMCE). Student attitudes towards physics and computers were probed using the Views About Science Survey (VASS) and the Computer Attitude Scale (CAS). While it may be possible to obtain an equivalent level of conceptual understanding using computer simulations in combination with an active-engagement environment, this study found no significant gains in students' conceptual understanding ( = -0.02) after they completed a series of nine simulated experiments from the Tools for Scientific Thinking curriculum (Thornton & Sokoloff, 1990). The absence of gains in conceptual understanding may indicate that either the simulations were ineffective in promoting conceptual change or problems with the implementation of the treatment inhibited its effectiveness. There was a positive shift in students' attitudes towards physics in the VASS dimensions of structure and reflective thinking, while there was a negative shift in students' attitudes towards computers in the CAS subscales of anxiety and usefulness. The negative shift in attitudes towards computers may be due to the additional time and work required by the students to perform the simulation experiments with no apparent reward in terms of their physics grade. Suggestions for future research include a qualitative element to observe student interactions and alternate formats for the simulations themselves.

  12. A psychometric evaluation of the digital logic concept inventory

    NASA Astrophysics Data System (ADS)

    Herman, Geoffrey L.; Zilles, Craig; Loui, Michael C.

    2014-10-01

    Concept inventories hold tremendous promise for promoting the rigorous evaluation of teaching methods that might remedy common student misconceptions and promote deep learning. The measurements from concept inventories can be trusted only if the concept inventories are evaluated both by expert feedback and statistical scrutiny (psychometric evaluation). Classical Test Theory and Item Response Theory provide two psychometric frameworks for evaluating the quality of assessment tools. We discuss how these theories can be applied to assessment tools generally and then apply them to the Digital Logic Concept Inventory (DLCI). We demonstrate that the DLCI is sufficiently reliable for research purposes when used in its entirety and as a post-course assessment of students' conceptual understanding of digital logic. The DLCI can also discriminate between students across a wide range of ability levels, providing the most information about weaker students' ability levels.

  13. Primary Student-Teachers' Conceptual Understanding of the Greenhouse Effect: A mixed method study

    NASA Astrophysics Data System (ADS)

    Ratinen, Ilkka Johannes

    2013-04-01

    The greenhouse effect is a reasonably complex scientific phenomenon which can be used as a model to examine students' conceptual understanding in science. Primary student-teachers' understanding of global environmental problems, such as climate change and ozone depletion, indicates that they have many misconceptions. The present mixed method study examines Finnish primary student-teachers' understanding of the greenhouse effect based on the results obtained via open-ended and closed-form questionnaires. The open-ended questionnaire considers primary student-teachers' spontaneous ideas about the greenhouse effect depicted by concept maps. The present study also uses statistical analysis to reveal respondents' conceptualization of the greenhouse effect. The concept maps and statistical analysis reveal that the primary student-teachers' factual knowledge and their conceptual understanding of the greenhouse effect are incomplete and even misleading. In the light of the results of the present study, proposals for modifying the instruction of climate change in science, especially in geography, are presented.

  14. Understanding genetics: Analysis of secondary students' conceptual status

    NASA Astrophysics Data System (ADS)

    Tsui, Chi-Yan; Treagust, David F.

    2007-02-01

    This article explores the conceptual change of students in Grades 10 and 12 in three Australian senior high schools when the teachers included computer multimedia to a greater or lesser extent in their teaching of a genetics course. The study, underpinned by a multidimensional conceptual-change framework, used an interpretive approach and a case-based design with multiple data collection methods. Over 4-8 weeks, the students learned genetics in classroom lessons that included BioLogica activities, which feature multiple representations. Results of the online tests and interview tasks revealed that most students improved their understanding of genetics as evidenced in the development of genetics reasoning. However, using Thorley's (1990) status analysis categories, a cross-case analysis of the gene conceptions of 9 of the 26 students interviewed indicated that only 4 students' postinstructional conceptions were intelligible-plausible-fruitful. Students' conceptual change was consistent with classroom teaching and learning. Findings suggested that multiple representations supported conceptual understanding of genetics but not in all students. It was also shown that status can be a viable hallmark enabling researchers to identify students' conceptual change that would otherwise be less accessible. Thorley's method for analyzing conceptual status is discussed.

  15. Developing Physics Textbook Based on Cognitive Conflict for Deeper Conceptual Understanding and Better Characters

    NASA Astrophysics Data System (ADS)

    Linuwih, S.; Lurinda, N. W.; Fianti

    2017-04-01

    These study aims are to develop a textbook based on cognitive conflict approachment, to know theproperness of textbook, the legibility of textbook, and also the effect of using the textbook for increasing the conceptual understanding and improving the character of the students. This study was conducted by research and development method employing non-equivalent control group design to test the product. The subjects wereten-grade students of SMA N 1 Gubug in thesecond semester of 2015/2016. The properness test used properness-questionnaire, while the legibility test used themost closet. The data of conceptual understanding was taken from thepretest-postest result and the data of characters was taken from direct observation. By analysing the data, we concluded that the textbook based on cognitive conflict approachment was very proper to use with high legibility. By applied this textbook, students would be helped to get a deeper conceptual understanding and better characters.

  16. ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohman, Frederick M.; Hodas, Nathan O.; Chau, Duen Horng

    Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as “black-boxes” due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user’s data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.

  17. Preschooler's Understanding of the Role of Mental States and Action in Pretense

    ERIC Educational Resources Information Center

    Ganea, Patricia A.; Lillard, Angeline S.; Turkheimer, Eric

    2004-01-01

    This research investigated 3- to 5-year-old's understanding of the role of intentional states and action in pretense. There are two main perspectives on how children conceptualize pretense. One view is that children understand the mental aspects of pretending (the rich interpretation). The alternative view is that children conceptualize pretense…

  18. Understanding Co-Development of Conceptual and Epistemic Understanding through Modeling Practices with Mobile Internet

    ERIC Educational Resources Information Center

    Ryu, Suna; Han, Yuhwha; Paik, Seoung-Hey

    2015-01-01

    The present study explores how engaging in modeling practice, along with argumentation, leverages students' epistemic and conceptual understanding in an afterschool science/math class of 16 tenth graders. The study also explores how students used mobile Internet phones (smart phones) productively to support modeling practices. As the modeling…

  19. Transition Process of Procedural to Conceptual Understanding in Solving Mathematical Problems

    ERIC Educational Resources Information Center

    Fatqurhohman

    2016-01-01

    This article aims to describe the transition process from procedural understanding to conceptual understanding in solving mathematical problems. Subjects in this study were three students from 20 fifth grade students of SDN 01 Sumberberas Banyuwangi selected based on the results of the students' answers. The transition process from procedural to…

  20. A Conceptual Change Teaching Strategy To Facilitate High School Students' Understanding of Electrochemistry.

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Chacon, Eleazar

    2003-01-01

    Describes a study that used a teaching strategy based on two teaching experiments which could facilitate students' conceptual understanding of electrochemistry. Involves two sections (n=29 and n=28) of 10th grade high school students in Venezuela. Concludes that the teaching experiments facilitated student understanding of electrochemistry.…

  1. Promoting Conceptual Change for Complex Systems Understanding: Outcomes of an Agent-Based Participatory Simulation

    ERIC Educational Resources Information Center

    Rates, Christopher A.; Mulvey, Bridget K.; Feldon, David F.

    2016-01-01

    Components of complex systems apply across multiple subject areas, and teaching these components may help students build unifying conceptual links. Students, however, often have difficulty learning these components, and limited research exists to understand what types of interventions may best help improve understanding. We investigated 32 high…

  2. Validating a conceptual framework for the core concept of "cell-cell communication".

    PubMed

    Michael, Joel; Martinkova, Patricia; McFarland, Jenny; Wright, Ann; Cliff, William; Modell, Harold; Wenderoth, Mary Pat

    2017-06-01

    We have created and validated a conceptual framework for the core physiology concept of "cell-cell communication." The conceptual framework is composed of 51 items arranged in a hierarchy that is, in some instances, four levels deep. We have validated it with input from faculty who teach at a wide variety of institutional types. All items making up the framework were deemed essential to moderately important. However, some of the main ideas were clearly judged to be more important than others. Furthermore, the lower in the hierarchy an item is, the less important it is thought to be. Finally, there was no significant difference in the ratings given by faculty at different types of institutions. Copyright © 2017 the American Physiological Society.

  3. The nature of thinking, shallow and deep

    PubMed Central

    Brase, Gary L.

    2014-01-01

    Because the criteria for success differ across various domains of life, no single normative standard will ever work for all types of thinking. One method for dealing with this apparent dilemma is to propose that the mind is made up of a large number of specialized modules. This review describes how this multi-modular framework for the mind overcomes several critical conceptual and theoretical challenges to our understanding of human thinking, and hopefully clarifies what are (and are not) some of the implications based on this framework. In particular, an evolutionarily informed “deep rationality” conception of human thinking can guide psychological research out of clusters of ad hoc models which currently occupy some fields. First, the idea of deep rationality helps theoretical frameworks in terms of orienting themselves with regard to time scale references, which can alter the nature of rationality assessments. Second, the functional domains of deep rationality can be hypothesized (non-exhaustively) to include the areas of self-protection, status, affiliation, mate acquisition, mate retention, kin care, and disease avoidance. Thus, although there is no single normative standard of rationality across all of human cognition, there are sensible and objective standards by which we can evaluate multiple, fundamental, domain-specific motives underlying human cognition and behavior. This review concludes with two examples to illustrate the implications of this framework. The first example, decisions about having a child, illustrates how competing models can be understood by realizing that different fundamental motives guiding people’s thinking can sometimes be in conflict. The second example is that of personifications within modern financial markets (e.g., in the form of corporations), which are entities specifically constructed to have just one fundamental motive. This single focus is the source of both the strengths and flaws in how such entities behave. PMID:24860542

  4. The nature of thinking, shallow and deep.

    PubMed

    Brase, Gary L

    2014-01-01

    Because the criteria for success differ across various domains of life, no single normative standard will ever work for all types of thinking. One method for dealing with this apparent dilemma is to propose that the mind is made up of a large number of specialized modules. This review describes how this multi-modular framework for the mind overcomes several critical conceptual and theoretical challenges to our understanding of human thinking, and hopefully clarifies what are (and are not) some of the implications based on this framework. In particular, an evolutionarily informed "deep rationality" conception of human thinking can guide psychological research out of clusters of ad hoc models which currently occupy some fields. First, the idea of deep rationality helps theoretical frameworks in terms of orienting themselves with regard to time scale references, which can alter the nature of rationality assessments. Second, the functional domains of deep rationality can be hypothesized (non-exhaustively) to include the areas of self-protection, status, affiliation, mate acquisition, mate retention, kin care, and disease avoidance. Thus, although there is no single normative standard of rationality across all of human cognition, there are sensible and objective standards by which we can evaluate multiple, fundamental, domain-specific motives underlying human cognition and behavior. This review concludes with two examples to illustrate the implications of this framework. The first example, decisions about having a child, illustrates how competing models can be understood by realizing that different fundamental motives guiding people's thinking can sometimes be in conflict. The second example is that of personifications within modern financial markets (e.g., in the form of corporations), which are entities specifically constructed to have just one fundamental motive. This single focus is the source of both the strengths and flaws in how such entities behave.

  5. Integration of Language and Cognition at Pre-Conceptual Level

    DTIC Science & Technology

    2003-10-04

    and cognition at a pre-conceptual level, where conceptual and emotional contents are not differentiated might be interesting for theoretical linguistics and for practical development of understanding-based search engines .

  6. Strategies for Teaching Healthy Behavior Conceptual Knowledge

    ERIC Educational Resources Information Center

    Kloeppel, Tiffany; Kulinna, Pamela Hodges

    2012-01-01

    By definition, conceptual knowledge is rich in relationships and understanding the kind of knowledge that may be transferred between situations. Despite the lack of importance that Conceptual Physical Education has been given in previous physical education reform efforts, research findings have shown that Conceptual Physical Education along with…

  7. Learning science in small groups: The relationship of conversation to conceptual understanding

    NASA Astrophysics Data System (ADS)

    McDonald, James Tarleton

    The purpose of this study was to investigate the relationship between conversation and conceptual understanding of erosion. The objective of this study was to investigate how fifth grade students' conceptions of erosion changed while they used stream tables and worked in groups of four within an inquiry-based curriculum. This study used symbolic interactionism and sociocognitive frameworks to interpret science learning in the elementary classroom. The research focused on the conceptual understanding of the focal group students, their use of classroom discourse to talk about their understandings of erosion, and the expertise that emerged while using stream tables. This study took place over a one-semester long study on erosion. Key informants were eight fifth graders. The data sources consisted of children's journals; transcripts of audiotaped interviews with the key informants before, during, and after the erosion unit; transcripts of videotapes of the students using the stream tables; and field notes recording children's discourse and activity. Individual and group cases were constructed during the study. The knowledge of the eight focal group children was placed on a hierarchy of conceptual understanding that contained 8 components of the erosion process. All four of the students whose ideas were examined in depth gained in their conceptual understanding of erosion. Students' individual expertise enhanced their own conceptual understanding. The contribution of classroom discourse and expertise to conceptual understanding differed between the two focal groups. Group 1 used essential expertise to sustain generative conversations, maximizing their learning opportunities. Students in Group 1 got along with one another, rotated assigned roles and jobs, and were able to start their own generative conversations. Members of Group 1 asked generative questions, connected stream table events to real life situations, and involved everyone in the group. Group 2 engaged in a predominance of procedural discourse and had fewer learning opportunities. Group 2 had two dominant personalities who developed a conflict over roles and jobs, keeping their peers out of the conversation. Students in Group 2 had generative conversations, but these were not sustained due to the lack of acknowledgment of peer expertise and the starting their own generative conversations.

  8. Reasoning in molecular genetics: From a cognitive model to instructional design

    NASA Astrophysics Data System (ADS)

    Duncan, Ravit Golan

    Effective instruction strives to help students construct deep and meaningful understandings in a domain. A key component of designing such instruction is a good understanding of relevant aspects of student cognition in the domain. This entails understanding both the cognitive obstacles to learning and the knowledge elements that are crucial to successful reasoning in the domain. While understandings of student cognition are not a prescription for design, they can nonetheless help instructional-designers and design-researchers focus the design and suggest where and what scaffolding should be incorporated into the instructional sequence and activities. In this dissertation I first discuss my research of the cognitive aspects of reasoning in molecular genetics. By studying both high school and college level students' reasoning about genetic phenomena, I have constructed a conceptual model of reasoning in this domain. The model depicts critical types of domain-specific knowledge, the relationships between them, and their role in facilitating reasoning about genetic phenomena. I then describe the design and evaluation of a high school project-based curricular unit in genetics. The unit was developed by a collaborative team of teachers and a researcher and was enacted in a local public high school. The design process was closely guided by our understandings of student cognition in genetics and the resulting instructional intervention was aimed at scaffolding student engagement with important disciplinary strategies and concepts.

  9. Estimation of Distributed Groundwater Pumping Rates in Yolo County,CA—Intercomparison of Two Modeling Frameworks

    NASA Astrophysics Data System (ADS)

    Maples, S.; Fogg, G. E.; Harter, T.

    2015-12-01

    Accurate estimation of groundwater (GW) budgets and effective management of agricultural GW pumping remains a challenge in much of California's Central Valley (CV) due to a lack of irrigation well metering. CVHM and C2VSim are two regional-scale integrated hydrologic models that provide estimates of historical and current CV distributed pumping rates. However, both models estimate GW pumping using conceptually different agricultural water models with uncertainties that have not been adequately investigated. Here, we evaluate differences in distributed agricultural GW pumping and recharge estimates related to important differences in the conceptual framework and model assumptions used to simulate surface water (SW) and GW interaction across the root zone. Differences in the magnitude and timing of GW pumping and recharge were evaluated for a subregion (~1000 mi2) coincident with Yolo County, CA, to provide similar initial and boundary conditions for both models. Synthetic, multi-year datasets of land-use, precipitation, evapotranspiration (ET), and SW deliveries were prescribed for each model to provide realistic end-member scenarios for GW-pumping demand and recharge. Results show differences in the magnitude and timing of GW-pumping demand, deep percolation, and recharge. Discrepancies are related, in large part, to model differences in the estimation of ET requirements and representation of soil-moisture conditions. CVHM partitions ET demand, while C2VSim uses a bulk ET rate, resulting in differences in both crop-water and GW-pumping demand. Additionally, CVHM assumes steady-state soil-moisture conditions, and simulates deep percolation as a function of irrigation inefficiencies, while C2VSim simulates deep percolation as a function of transient soil-moisture storage conditions. These findings show that estimates of GW-pumping demand are sensitive to these important conceptual differences, which can impact conjunctive-use water management decisions in the CV.

  10. Epistemic Beliefs and Conceptual Understanding in Biotechnology: A Case Study

    NASA Astrophysics Data System (ADS)

    Rebello, Carina M.; Siegel, Marcelle A.; Witzig, Stephen B.; Freyermuth, Sharyn K.; McClure, Bruce A.

    2012-04-01

    The purpose of this investigation was to explore students' epistemic beliefs and conceptual understanding of biotechnology. Epistemic beliefs can influence reasoning, how individuals evaluate information, and informed decision making abilities. These skills are important for an informed citizenry that will participate in debates regarding areas in science such as biotechnology. We report on an in-depth case study analysis of three undergraduate, non-science majors in a biotechnology course designed for non-biochemistry majors. We selected participants who performed above average and below average on the first in-class exam. Data from multiple sources—interviews, exams, and a concept instrument—were used to construct (a) individual profiles and (b) a cross-case analysis of our participants' conceptual development and epistemic beliefs from two different theoretical perspectives—Women's Ways of Knowing and the Reflective Judgment Model. Two independent trained researchers coded all case records independently for both theoretical perspectives, with resultant initial Cohen's kappa values above .715 (substantial agreement), and then reached consensus on the codes. Results indicate that a student with more sophisticated epistemology demonstrated greater conceptual understandings at the end of the course than a student with less sophisticated epistemology, even though the latter performed higher initially. Also a student with a less sophisticated epistemology and low initial conceptual performance does not demonstrate gains in their overall conceptual understanding. Results suggest the need for instructional interventions fostering epistemological development of learners in order to facilitate their conceptual growth.

  11. Primary School Teachers' Understanding of Science Process Skills in Relation to Their Teaching Qualifications and Teaching Experience

    NASA Astrophysics Data System (ADS)

    Shahali, Edy H. M.; Halim, Lilia; Treagust, David F.; Won, Mihye; Chandrasegaran, A. L.

    2017-04-01

    This study investigated the understanding of science process skills (SPS) of 329 science teachers from 52 primary schools selected by random sampling. The understanding of SPS was measured in terms of conceptual and operational aspects of SPS using an instrument called the Science Process Skills Questionnaire (SPSQ) with a Cronbach's alpha reliability of 0.88. The findings showed that the teachers' conceptual understanding of SPS was much weaker than their practical application of SPS. The teachers' understanding of SPS differed by their teaching qualifications but not so much by their teaching experience. Emphasis needs to be given to both conceptual and operational understanding of SPS during pre-service and in-service teacher education to enable science teachers to use the skills and implement inquiry-based lessons in schools.

  12. Examining the Conceptual Understandings of Geoscience Concepts of Students with Visual Impairments: Implications of 3-D Printing

    NASA Astrophysics Data System (ADS)

    Koehler, Karen E.

    The purpose of this qualitative study was to explore the use of 3-D printed models as an instructional tool in a middle school science classroom for students with visual impairments and compare their use to traditional tactile graphics for aiding conceptual understanding of geoscience concepts. Specifically, this study examined if the students' conceptual understanding of plate tectonics was different when 3-D printed objects were used versus traditional tactile graphics and explored the misconceptions held by students with visual impairments related to plate tectonics and associated geoscience concepts. Interview data was collected one week prior to instruction and one week after instruction and throughout the 3-week instructional period and additional ata sources included student journals, other student documents and audio taped instructional sessions. All students in the middle school classroom received instruction on plate tectonics using the same inquiry-based curriculum but during different time periods of the day. One group of students, the 3D group, had access to 3-D printed models illustrating specific geoscience concepts and the group of students, the TG group, had access to tactile graphics illustrating the same geoscience concepts. The videotaped pre and post interviews were transcribed, analyzed and coded for conceptual understanding using constant comparative analysis and to uncover student misconceptions. All student responses to the interview questions were categorized in terms of conceptual understanding. Analysis of student journals and classroom talk served to uncover student mental models and misconceptions about plate tectonics and associated geoscience concepts to measure conceptual understanding. A slight majority of the conceptual understanding before instruction was categorized as no understanding or alternative understanding and after instruction the larger majority of conceptual understanding was categorized as scientific or scientific with fragments. Most of the participants in the study increased their scientific understandings of plate tectonics and other geoscience concepts and held more scientific understandings after instruction than before instruction. All students had misconceptions before the instructional period began, but the number of misconceptions were fewer after the instructional period. Students in the TG group not only had fewer misconceptions than the 3D group before instruction, but also after instruction. Many of the student misconceptions were similar to those held by students with typical vision; however, some were unique to students with visual impairments. One unique aspect of this study was the examination of student mental models, which had not previously been done with students with visual impairments, but is more commonplace in research on students with typical vision. Student mental models were often descriptive rather than explanatory, often incorporating scientific language, but not clearly showing that the student had a complete grasp of the concept. Consistent with prior research, the use of 3-D printed models instead of tactile graphics seemed to make little difference either positively or negatively on student conceptual understanding; however, the participants did interact with the 3-D printed models differently, sometimes gleaning additional information from them. This study also provides additional support for inquiry-based instruction as an effective means of science instruction for students with visual impairments.

  13. The Contribution of Conceptual Change Texts Accompanied by Concept Mapping to Eleventh-Grade Students Understanding of Cellular Respiration Concepts

    ERIC Educational Resources Information Center

    Al khawaldeh, Salem A.; Al Olaimat, Ali M.

    2010-01-01

    The present study conducted to investigate the contribution of conceptual change texts, accompanied by concept mapping instruction to eleventh-grade students' understanding of cellular respiration concepts, and their retention of this understanding. Cellular respiration concepts test was developed as a result of examination of related literature…

  14. Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India): Regolith matric storage buffers the groundwater recharge process

    NASA Astrophysics Data System (ADS)

    Ruiz, Laurent; Varma, Murari R. R.; Kumar, M. S. Mohan; Sekhar, M.; Maréchal, Jean-Christophe; Descloitres, Marc; Riotte, Jean; Kumar, Sat; Kumar, C.; Braun, Jean-Jacques

    2010-01-01

    SummaryAccurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments. In this paper, we propose to assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using a lumped conceptual model (COMFORT). The model is calibrated using a 5 year hydrological monitoring of an experimental watershed under dry deciduous forest in South India (Mule Hole watershed). The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with alternance of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm year -1 and the evapotranspiration was about 900 mm year -1 out of which 100 mm year -1 was uptake from the deep saprolite horizons. The stream flow was 100 mm year -1 while the groundwater underflow was 80 mm year -1. The simulation results suggest that (i) deciduous trees can uptake a significant amount of water from the deep regolith, (ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers and (iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems.

  15. Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code

    NASA Astrophysics Data System (ADS)

    Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia

    2015-04-01

    Keywords: dessication-crack-induced-salinization, preferential flow, conceptual model, numerical model, vadose zone, vertisols, soil water retention function, HYDRUS 2D/3D Vertisols cover a hydrologically very significant area of semi-arid regions often through which water infiltrates to groundwater aquifers. Understanding of water flow and solute accumulation is thus very relevant to agricultural activity and water resources management. Previous works suggest a conceptual model of dessication-crack-induced-salinization where salinization of sediment in the deep section of the vadose zone (up to 4 m) is induced by subsurface evaporation due to convective air flow in the dessication cracks. It suggests that the salinization is induced by the hydraulic gradient between the dry sediment in the vicinity of cracks (low potential) and the relatively wet sediment further from the main cracks (high potential). This paper presents a modified previously suggested conceptual model and a numerical model. The model uses a simple uniform flow approach but unconventionally prescribes the boundary conditions and the hydraulic parameters of soil. The numerical model is bound to one location close to a dairy farm waste lagoon, but the application of the suggested conceptual model could be possibly extended to all semi-arid regions with vertisols. Simulations were conducted using several modeling approaches with an ultimate goal of fitting the simulation results to the controlling variables measured in the field: temporal variation in water content across thick layer of unsaturated clay sediment (>10 m), sediment salinity and salinity the water draining down the vadose zone to the water table. The development of the model was engineered in several steps; all computed as forward solutions by try-and-error approach. The model suggests very deep instant infiltration of fresh water up to 12 m, which is also supported by the field data. The paper suggests prescribing a special atmospheric boundary to the wall of the crack (so that the solute can accumulate due to evaporation on the crack block wall, and infiltrating fresh water can push the solute further down) - in order to do so, HYDRUS 2D/3D code had to be modified by its developers. Unconventionally, the main fitting parameters were: parameter a and n in the soil water retention curve and saturated hydraulic conductivity. The amount of infiltrated water (within a reasonable range), the infiltration function in the crack and the actual evaporation from the crack were also used as secondary fitting parameters. The model supports the previous findings that significant amount (~90%) of water from rain events must infiltrate through the crack. It was also noted that infiltration from the crack has to be increasing with depth and that the highest infiltration rate should be somewhere between 1-3m. This paper suggests a new way how to model vertisols in semi-arid regions. It also supports the previous findings about vertisols: especially, the utmost importance of soil cracks as preferential pathways for water and contaminants and soil cracks as deep evaporators.

  16. Facilitating Conceptual Change in Students' Understanding of Electrochemistry.

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    2002-01-01

    Constructs a teaching strategy to facilitate conceptual change in freshman students' understanding of electrochemistry. Provides students with the correct response along with alternative responses (teaching experiments), producing a conflicting situation that is conducive to an equilibration of their cognitive structures. Concludes that the…

  17. Hydrologic functioning of the deep Critical Zone and contributions to streamflow in a high elevation catchment: testing of multiple conceptual models

    NASA Astrophysics Data System (ADS)

    Dwivedi, R.; Meixner, T.; McIntosh, J. C.; Ferre, T. P. A.; Eastoe, C. J.; Minor, R. L.; Barron-Gafford, G.; Chorover, J.

    2017-12-01

    The composition of natural mountainous waters maintains important control over the water quality available to downstream users. Furthermore, the geochemical constituents of stream water in the mountainous catchments represent the result of the spatial and temporal evolution of critical zone structure and processes. A key problem is that high elevation catchments involve rugged terrain and are subject to extreme climate and landscape gradients; therefore, high density or high spatial resolution hydro-geochemical observations are rare. Despite such difficulties, the Santa Catalina Mountains Critical Zone Observatory (SCM-CZO), Tucson, AZ, generates long-term hydrogeochemical data for understanding not only hydrological processes and their seasonal characters, but also the geochemical impacts of such processes on streamflow chemical composition. Using existing instrumentation and hydrogeochemical observations from the last 9+ years (2009 through 2016 and an initial part of 2017), we employed a multi-tracer approach along with principal component analysis to identify water sources and their seasonal character. We used our results to inform hydrological process understanding (flow paths, residence times, and water sources) for our study site. Our results indicate that soil water is the largest contributor to streamflow, which is ephemeral in nature. Although a 3-dimensional mixing space involving precipitation, soil water, interflow, and deep groundwater end-members could explain most of the streamflow chemistry, geochemical complexity was observed to grow with catchment storage. In terms of processes and their seasonal character, we found soil water and interflow were the primary end-member contributors to streamflow in all seasons. Deep groundwater only contributes to streamflow at high catchment storage conditions, but it provides major ions such as Na, Mg, and Ca that are lacking in other water types. In this way, our results indicate that any future efforts aimed at explaining concentration-discharge behavior of our field site should consider at least three-dimensional mixing space or 4 end-members.

  18. Succession in the petroleum reservoir microbiome through an oil field production lifecycle

    DOE PAGES

    Vigneron, Adrien; Alsop, Eric B.; Lomans, Bartholomeus P.; ...

    2017-05-19

    Subsurface petroleum reservoirs are an important component of the deep biosphere where indigenous microorganisms live under extreme conditions and in isolation from the Earth's surface for millions of years. However, unlike the bulk of the deep biosphere, the petroleum reservoir deep biosphere is subject to extreme anthropogenic perturbation, with the introduction of new electron acceptors, donors and exogenous microbes during oil exploration and production. Despite the fundamental and practical significance of this perturbation, there has never been a systematic evaluation of the ecological changes that occur over the production lifetime of an active offshore petroleum production system. Analysis of themore » entire Halfdan oil field in the North Sea (32 producing wells in production for 1-15 years) using quantitative PCR, multigenic sequencing, comparative metagenomic and genomic bins reconstruction revealed systematic shifts in microbial community composition and metabolic potential, as well as changing ecological strategies in response to anthropogenic perturbation of the oil field ecosystem, related to length of time in production. The microbial communities were initially dominated by slow growing anaerobes such as members of the Thermotogales and Clostridiales adapted to living on hydrocarbons and complex refractory organic matter. However, as seawater and nitrate injection (used for secondary oil production) delivered oxidants, the microbial community composition progressively changed to fast growing opportunists such as members of the Deferribacteres, Delta-, Epsilon- and Gammaproteobacteria, with energetically more favorable metabolism (for example, nitrate reduction, H2S, sulfide and sulfur oxidation). This perturbation has profound consequences for understanding the microbial ecology of the system and is of considerable practical importance as it promotes detrimental processes such as reservoir souring and metal corrosion. These findings provide a new conceptual framework for understanding the petroleum reservoir biosphere and have consequences for developing strategies to manage microbiological problems in the oil industry.« less

  19. Succession in the petroleum reservoir microbiome through an oil field production lifecycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigneron, Adrien; Alsop, Eric B.; Lomans, Bartholomeus P.

    Subsurface petroleum reservoirs are an important component of the deep biosphere where indigenous microorganisms live under extreme conditions and in isolation from the Earth's surface for millions of years. However, unlike the bulk of the deep biosphere, the petroleum reservoir deep biosphere is subject to extreme anthropogenic perturbation, with the introduction of new electron acceptors, donors and exogenous microbes during oil exploration and production. Despite the fundamental and practical significance of this perturbation, there has never been a systematic evaluation of the ecological changes that occur over the production lifetime of an active offshore petroleum production system. Analysis of themore » entire Halfdan oil field in the North Sea (32 producing wells in production for 1-15 years) using quantitative PCR, multigenic sequencing, comparative metagenomic and genomic bins reconstruction revealed systematic shifts in microbial community composition and metabolic potential, as well as changing ecological strategies in response to anthropogenic perturbation of the oil field ecosystem, related to length of time in production. The microbial communities were initially dominated by slow growing anaerobes such as members of the Thermotogales and Clostridiales adapted to living on hydrocarbons and complex refractory organic matter. However, as seawater and nitrate injection (used for secondary oil production) delivered oxidants, the microbial community composition progressively changed to fast growing opportunists such as members of the Deferribacteres, Delta-, Epsilon- and Gammaproteobacteria, with energetically more favorable metabolism (for example, nitrate reduction, H2S, sulfide and sulfur oxidation). This perturbation has profound consequences for understanding the microbial ecology of the system and is of considerable practical importance as it promotes detrimental processes such as reservoir souring and metal corrosion. These findings provide a new conceptual framework for understanding the petroleum reservoir biosphere and have consequences for developing strategies to manage microbiological problems in the oil industry.« less

  20. Monsoon dependent ecosystems: Implications of the vertical distribution of soil moisture on land surface-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Sanchez-Mejia, Zulia M.

    Uncertainty of predicted change in precipitation frequency and intensity motivates the scientific community to better understand, quantify, and model the possible outcome of dryland ecosystems. In pulse dependent ecosystems (i.e. monsoon driven) soil moisture is tightly linked to atmospheric processes. Here, I analyze three overarching questions; Q1) How does soil moisture presence or absence in a shallow or deep layer influence the surface energy budget and planetary boundary layer characteristics?, Q2) What is the role of vegetation on ecosystem albedo in the presence or absence of deep soil moisture?, Q3) Can we develop empirical relationships between soil moisture and the planetary boundary layer height to help evaluate the role of future precipitation changes in land surface atmosphere interactions? . To address these questions I use a conceptual framework based on the presence or absence of soil moisture in a shallow or deep layer. I define these layers by using root profiles and establish soil moisture thresholds for each layer using four years of observations from the Santa Rita Creosote Ameriflux site. Soil moisture drydown curves were used to establish the shallow layer threshold in the shallow layer, while NEE (Net Ecosystem Exchange of carbon dioxide) was used to define the deep soil moisture threshold. Four cases were generated using these thresholds: Case 1, dry shallow layer and dry deep layer; Case 2, wet shallow layer and dry deep layer; Case 3, wet shallow layer and wet deep layer, and Case 4 dry shallow and wet deep layer. Using this framework, I related data from the Ameriflux site SRC (Santa Rita Creosote) from 2008 to 2012 and from atmospheric soundings from the nearby Tucson Airport; conducted field campaigns during 2011 and 2012 to measure albedo from individual bare and canopy patches that were then evaluated in a grid to estimate the influence of deep moisture on albedo via vegetation cover change; and evaluated the potential of using a two-layer bucket model and empirical relationships to evaluate the link between deep soil moisture and the planetary boundary layer height under changing precipitation regime. My results indicate that (1) the presence or absence of water in two layers plays a role in surface energy dynamics, (2) soil moisture presence in the deep layer is linked with decreased ecosystem albedo and planetary boundary layer height, (3) deep moisture sustains vegetation greenness and decreases albedo, and (4) empirical relationships are useful in modeling planetary boundary layer height from dryland ecosystems. Based on these results we argue that deep soil moisture plays an important role in land surface-atmosphere interactions.

  1. Transforming Undergraduate Education Through the use of Analytical Reasoning (TUETAR)

    NASA Astrophysics Data System (ADS)

    Bishop, M. P.; Houser, C.; Lemmons, K.

    2015-12-01

    Traditional learning limits the potential for self-discovery, and the use of data and knowledge to understand Earth system relationships, processes, feedback mechanisms and system coupling. It is extremely difficult for undergraduate students to analyze, synthesize, and integrate quantitative information related to complex systems, as many concepts may not be mathematically tractable or yet to be formalized. Conceptual models have long served as a means for Earth scientists to organize their understanding of Earth's dynamics, and have served as a basis for human analytical reasoning and landscape interpretation. Consequently, we evaluated the use of conceptual modeling, knowledge representation and analytical reasoning to provide undergraduate students with an opportunity to develop and test geocomputational conceptual models based upon their understanding of Earth science concepts. This study describes the use of geospatial technologies and fuzzy cognitive maps to predict desertification across the South-Texas Sandsheet in an upper-level geomorphology course. Students developed conceptual models based on their understanding of aeolian processes from lectures, and then compared and evaluated their modeling results against an expert conceptual model and spatial predictions, and the observed distribution of dune activity in 2010. Students perceived that the analytical reasoning approach was significantly better for understanding desertification compared to traditional lecture, and promoted reflective learning, working with data, teamwork, student interaction, innovation, and creative thinking. Student evaluations support the notion that the adoption of knowledge representation and analytical reasoning in the classroom has the potential to transform undergraduate education by enabling students to formalize and test their conceptual understanding of Earth science. A model for developing and utilizing this geospatial technology approach in Earth science is presented.

  2. Chinese and Australian children's understandings of the Earth: a cross cultural study of conceptual development

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Oliver, Mary; Venville, Grady

    2013-06-01

    The purpose of this study was to explore Chinese and Australian primary children's conceptual understandings of the Earth. The research was conducted in the interpretive paradigm and was designed to be descriptive with comparative and cross sectional elements. Participants were Year 3 and Year 6 children from three schools in Hunan Province, central south China ( n = 38) and Year 3 and Year 6 children from three schools in Western Australia ( n = 36). In-depth interviews including drawings were carried out to explore the participants' conceptual understandings of the Earth's shape, gravity, day/night cycle and seasons. The results showed that, regardless of different cultures, children from the same year group constructed similar concepts about the Earth. The Year 3 children were more likely than the Year 6 children to demonstrate intuitive conceptions of a round and flat Earth. The Year 6 children were more likely to demonstrate consistent understandings of a spherical Earth. The findings supported the universality of entrenched presuppositions hypothesis. Cultural mediation was found to have a subtle impact on children's understanding of the Earth. A model of conceptual development is proposed.

  3. The profile of conceptual comprehension of pre-service teacher in the mathematical problem solving with low emotional intelligence

    NASA Astrophysics Data System (ADS)

    Prayitno, S. H.; Suwarsono, St.; Siswono, T. Y. E.

    2018-03-01

    Conceptual comprehension in this research is the ability to use the procedures that are owned by pre-service teachers to solve problems by finding the relation of the concept to another, or can be done by identifying the type of problem and associating it with a troubleshooting procedures, or connect the mathematical symbols with mathematical ideas and incorporate them into a series of logical reasoning, or by using prior knowledge that occurred directly, through its conceptual knowledge. The goal of this research is to describe the profile of conceptual comprehensin of pre-service teachers with low emotional intelligence in mathematical problems solving. Through observation and in-depth interview with the research subject the conclusion was that: pre-service teachers with low emotional intelligence pertained to the level of formal understanding in understanding the issues, relatively to the level of intuitive understanding in planning problem solving, to the level of relational understanding in implementing the relational problem solving plan, and pertained to the level of formal understanding in looking back to solve the problem.

  4. First-Year Medical Students' Conceptual Understanding of and Resistance to Conceptual Change Concerning the Central Cardiovascular System

    ERIC Educational Resources Information Center

    Mikkila-Erdmann, Mirjamaija; Sodervik, Ilona; Vilppu, Henna; Kaapa, Pekka; Olkinuora, Erkki

    2012-01-01

    Medical students often have initial understanding concerning medical domains, such as the central cardiovascular system (CCVS), when they enter the study programme. These notions may to some extent be in conflict with scientific understanding, which can be seen as a challenge for medical teaching. Hence, the purpose of this study was to analyse…

  5. Approaching a Conceptual Understanding of Enzyme Kinetics and Inhibition: Development of an Active Learning Inquiry Activity for Prehealth and Nonscience Majors

    ERIC Educational Resources Information Center

    House, Chloe; Meades, Glen; Linenberger, Kimberly J.

    2016-01-01

    Presented is a guided inquiry activity designed to be conducted with prenursing students using an analogous system to help develop a conceptual understanding of factors impacting enzyme kinetics and the various types of enzyme inhibition. Pre- and postconceptual understanding evaluations and effectiveness of implementation surveys were given to…

  6. Alternative Conceptions: Turning Adversity into Advantage

    NASA Astrophysics Data System (ADS)

    Ferreira, Annalize; Lemmer, Miriam; Gunstone, Richard

    2017-08-01

    While a vast body of research has identified difficulties in students' understanding about forces and acceleration and their related alternative conceptions, far less research suggests ways to use students' alternative conceptions to enhance conceptual understanding of a specific fundamental concept. This study focused on distinguishing between students' conceptual understanding of the Newtonian concept of gravitational acceleration being the same for all objects and students' alternative conception that heavy objects fall faster. A multiple choice questionnaire was distributed to first year physics students for three consecutive years at a university in South Africa. The results indicate that changing the direction of motion and the physics quantity asked in paired questions revealed practically significant inconsistencies in students' reasoning and conceptions. This research contributes to the body of knowledge in proposing how the alternative conception of mass-related gravitational acceleration can be used in instruction to enhance conceptual understanding of the force-mass-acceleration relationship. Understanding of this relationship not only promotes conceptual understanding of the basic Newtonian concepts of the laws of motion which forms the critical foundation on which more advanced physics courses are built, but also contributes towards students' perception of physics as a set of coherent ideas applicable in all contexts.

  7. Understanding integrated care: a comprehensive conceptual framework based on the integrative functions of primary care

    PubMed Central

    Valentijn, Pim P.; Schepman, Sanneke M.; Opheij, Wilfrid; Bruijnzeels, Marc A.

    2013-01-01

    Introduction Primary care has a central role in integrating care within a health system. However, conceptual ambiguity regarding integrated care hampers a systematic understanding. This paper proposes a conceptual framework that combines the concepts of primary care and integrated care, in order to understand the complexity of integrated care. Methods The search method involved a combination of electronic database searches, hand searches of reference lists (snowball method) and contacting researchers in the field. The process of synthesizing the literature was iterative, to relate the concepts of primary care and integrated care. First, we identified the general principles of primary care and integrated care. Second, we connected the dimensions of integrated care and the principles of primary care. Finally, to improve content validity we held several meetings with researchers in the field to develop and refine our conceptual framework. Results The conceptual framework combines the functions of primary care with the dimensions of integrated care. Person-focused and population-based care serve as guiding principles for achieving integration across the care continuum. Integration plays complementary roles on the micro (clinical integration), meso (professional and organisational integration) and macro (system integration) level. Functional and normative integration ensure connectivity between the levels. Discussion The presented conceptual framework is a first step to achieve a better understanding of the inter-relationships among the dimensions of integrated care from a primary care perspective. PMID:23687482

  8. Understanding integrated care: a comprehensive conceptual framework based on the integrative functions of primary care.

    PubMed

    Valentijn, Pim P; Schepman, Sanneke M; Opheij, Wilfrid; Bruijnzeels, Marc A

    2013-01-01

    Primary care has a central role in integrating care within a health system. However, conceptual ambiguity regarding integrated care hampers a systematic understanding. This paper proposes a conceptual framework that combines the concepts of primary care and integrated care, in order to understand the complexity of integrated care. The search method involved a combination of electronic database searches, hand searches of reference lists (snowball method) and contacting researchers in the field. The process of synthesizing the literature was iterative, to relate the concepts of primary care and integrated care. First, we identified the general principles of primary care and integrated care. Second, we connected the dimensions of integrated care and the principles of primary care. Finally, to improve content validity we held several meetings with researchers in the field to develop and refine our conceptual framework. The conceptual framework combines the functions of primary care with the dimensions of integrated care. Person-focused and population-based care serve as guiding principles for achieving integration across the care continuum. Integration plays complementary roles on the micro (clinical integration), meso (professional and organisational integration) and macro (system integration) level. Functional and normative integration ensure connectivity between the levels. The presented conceptual framework is a first step to achieve a better understanding of the inter-relationships among the dimensions of integrated care from a primary care perspective.

  9. Teaching for conceptual change: An intervention to promote deeper understanding of diffusion and osmosis

    NASA Astrophysics Data System (ADS)

    Berg, Cheryl

    Emergent processes are distinguished from non-emergent processes on the basis of the qualitative relationships among the agents' interactions and the causal relationships between the agents' interactions and the pattern. Research suggests students often have robust misconceptions about emergent processes (such as diffusion) because they do not have the mental model to interpret these processes This study investigates the extent to which a domain-general understanding of emergent processes can help provide students with an enhanced understanding of diffusion and osmosis This is a quasi-experimental study using non-equivalent groups design to compare the treatment and control groups. Sixty-six community college students enrolled in an introductory biology course comprised the participants. Students' prior knowledge about emergent processes, diffusion, and osmosis were assessed by pre-tests. The treatment group received the intervention -- an instructional module about the differences between scientific processes that are emergent versus processes that are non-emergent. The control group did not receive the intervention but received the process assessment to determine incoming knowledge about scientific processes and any gains in knowledge about scientific processes. Both groups received the same specific content instruction about diffusion and osmosis, which was derived from the regular and established curriculum for the course. Both groups were given post-tests to assess whether they learned the concepts, and whether they were able to achieve a deep understanding that resulted in a comprehension of the transport of substances across cell membranes and how that might be applied in particular health-related situations. Data were analyzed using t-tests and analysis of variance. No statistically significant differences were found between the two groups based on the learning measures Limitations include sample restrictions and not taking into account individual ability levels of the participants. In addition, the short length of this intervention may not provide adequate time for students to successfully acquire the schema to understand conceptually difficult science concepts such as diffusion and osmosis. Future directions of research include expanding the sample size and length of exposure to the intervention, in addition to examining the individual ability levels of the participants.

  10. Understanding Global Change: Frameworks and Models for Teaching Systems Thinking

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Mitchell, K.; Zoehfeld, K.; Oshry, A.; Menicucci, A. J.; White, L. D.; Marshall, C. R.

    2017-12-01

    The scientific and education communities must impart to teachers, students, and the public an understanding of how the various factors that drive climate and global change operate, and why the rates and magnitudes of these changes related to human perturbation of Earth system processes today are cause for deep concern. Even though effective educational modules explaining components of the Earth and climate system exist, interdisciplinary learning tools are necessary to conceptually link the causes and consequences of global changes. To address this issue, the Understanding Global Change Project at the University of California Museum of Paleontology (UCMP) at UC Berkeley developed an interdisciplinary framework that organizes global change topics into three categories: (1) causes of climate change, both human and non-human (e.g., burning of fossil fuels, deforestation, Earth's tilt and orbit), (2) Earth system processes that shape the way the Earth works (e.g., Earth's energy budget, water cycle), and (3) the measurable changes in the Earth system (e.g., temperature, precipitation, ocean acidification). To facilitate student learning about the Earth as a dynamic, interacting system, a website will provide visualizations of Earth system models and written descriptions of how each framework topic is conceptually linked to other components of the framework. These visualizations and textual summarizations of relationships and feedbacks in the Earth system are a unique and crucial contribution to science communication and education, informed by a team of interdisciplinary scientists and educators. The system models are also mechanisms by which scientists can communicate how their own work informs our understanding of the Earth system. Educators can provide context and relevancy for authentic datasets and concurrently can assess student understanding of the interconnectedness of global change phenomena. The UGC resources will be available through a web-based platform and scalable professional development programming to facilitate systemic changes in the teaching and learning about climate and global change. We are establishing a diverse community of scientists and educators across the country that are using these tools, and plan to create local networks supported by UGC staff and partners.

  11. On Automatic Assessment and Conceptual Understanding

    ERIC Educational Resources Information Center

    Rasila, Antti; Malinen, Jarmo; Tiitu, Hannu

    2015-01-01

    We consider two complementary aspects of mathematical skills, i.e. "procedural fluency" and "conceptual understanding," from a point of view that is related to modern e-learning environments and computer-based assessment. Pedagogical background of teaching mathematics is discussed, and it is proposed that the traditional book…

  12. Impact of Math Snacks Games on Students' Conceptual Understanding

    ERIC Educational Resources Information Center

    Winburg, Karin; Chamberlain, Barbara; Valdez, Alfred; Trujillo, Karen; Stanford, Theodore B.

    2016-01-01

    This "Math Snacks" intervention measured 741 fifth grade students' gains in conceptual understanding of core math concepts after game-based learning activities. Teachers integrated four "Math Snacks" games and related activities into instruction on ratios, coordinate plane, number systems, fractions and decimals. Using a…

  13. What Should Common Core Assessments Measure?

    ERIC Educational Resources Information Center

    Chandler, Kayla; Fortune, Nicholas; Lovett, Jennifer N.; Scherrer, Jimmy

    2016-01-01

    The Common Core State Standards for mathematics promote ideals about learning mathematics by providing specific standards focused on conceptual understanding and incorporating practices in which students must participate to develop conceptual understanding. Thus, how we define learning is pivotal because our current definition isn't aligned with…

  14. A conceptual framework for implementation fidelity

    PubMed Central

    Carroll, Christopher; Patterson, Malcolm; Wood, Stephen; Booth, Andrew; Rick, Jo; Balain, Shashi

    2007-01-01

    Background Implementation fidelity refers to the degree to which an intervention or programme is delivered as intended. Only by understanding and measuring whether an intervention has been implemented with fidelity can researchers and practitioners gain a better understanding of how and why an intervention works, and the extent to which outcomes can be improved. Discussion The authors undertook a critical review of existing conceptualisations of implementation fidelity and developed a new conceptual framework for understanding and measuring the process. The resulting theoretical framework requires testing by empirical research. Summary Implementation fidelity is an important source of variation affecting the credibility and utility of research. The conceptual framework presented here offers a means for measuring this variable and understanding its place in the process of intervention implementation. PMID:18053122

  15. Comparing the influence of physical and virtual manipulatives in the context of the Physics by Inquiry curriculum: The case of undergraduate students' conceptual understanding of heat and temperature

    NASA Astrophysics Data System (ADS)

    Zacharia, Zacharias C.; Constantinou, Constantinos P.

    2008-04-01

    We compare the effect of experimenting with physical or virtual manipulatives on undergraduate students' conceptual understanding of heat and temperature. A pre-post comparison study design was used to replicate all aspects of a guided inquiry classroom except the mode in which students performed their experiments. This study is the first on physical and virtual manipulative experimentation in physics in which the curriculum, method of instruction, and resource capabilities were explicitly controlled. The participants were 68 undergraduates in an introductory course and were randomly assigned to an experimental or a control group. Conceptual tests were administered to both groups to assess students' understanding before, during, and after instruction. The result indicates that both modes of experimentation are equally effective in enhancing students' conceptual understanding. This result is discussed in the context of an ongoing debate on the relative importance of virtual and real laboratory work in physics education.

  16. Investigating the impact of visuohaptic simulations for the conceptual understanding of electric field for distributed charges

    NASA Astrophysics Data System (ADS)

    Shaikh, Uzma Abdul Sattar

    The present study assessed the benefits of a multisensory intervention on the conceptual understanding of electric field for distributed charges in engineering and technology undergraduate students. A novel visuohaptic intervention was proposed, which focused on exploring the forces around the different electric field configurations for distributed charges namely point, infinitely long line and uniformly charged ring. The before and after effects of the visuohaptic intervention are compared, wherein the intervention includes instructional scaffolding. Three single-group studies were conducted to investigate the effect among three different populations: (a) Undergraduate engineering students, (b) Undergraduate technology students and (c) Undergraduate engineering technology students from a different demographic setting. The findings from the three studies suggests that the haptic modality intervention provides beneficial effects by allowing students to improve their conceptual understanding of electric field for distributed charges, although students from groups (b) and (c) showed a statistically significant increase in the conceptual understanding. The findings also indicate a positive learning perception among all the three groups.

  17. Phase Transitions and Scaling in Systems Far from Equilibrium

    NASA Astrophysics Data System (ADS)

    Täuber, Uwe C.

    2017-03-01

    Scaling ideas and renormalization group approaches proved crucial for a deep understanding and classification of critical phenomena in thermal equilibrium. Over the past decades, these powerful conceptual and mathematical tools were extended to continuous phase transitions separating distinct nonequilibrium stationary states in driven classical and quantum systems. In concordance with detailed numerical simulations and laboratory experiments, several prominent dynamical universality classes have emerged that govern large-scale, long-time scaling properties both near and far from thermal equilibrium. These pertain to genuine specific critical points as well as entire parameter space regions for steady states that display generic scale invariance. The exploration of nonstationary relaxation properties and associated physical aging scaling constitutes a complementary potent means to characterize cooperative dynamics in complex out-of-equilibrium systems. This review describes dynamic scaling features through paradigmatic examples that include near-equilibrium critical dynamics, driven lattice gases and growing interfaces, correlation-dominated reaction-diffusion systems, and basic epidemic models.

  18. Monetary economics from econophysics perspective

    NASA Astrophysics Data System (ADS)

    Yakovenko, Victor M.

    2016-12-01

    This is an invited article for the Discussion and Debate special issue of The European Physical Journal Special Topics on the subject "Can Economics be a Physical Science?" The first part of the paper traces the personal path of the author from theoretical physics to economics. It briefly summarizes applications of statistical physics to monetary transactions in an ensemble of economic agents. It shows how a highly unequal probability distribution of money emerges due to irreversible increase of entropy in the system. The second part examines deep conceptual and controversial issues and fallacies in monetary economics from econophysics perspective. These issues include the nature of money, conservation (or not) of money, distinctions between money vs. wealth and money vs. debt, creation of money by the state and debt by the banks, the origins of monetary crises and capitalist profit. Presentation uses plain language understandable to laypeople and may be of interest to both specialists and general public.

  19. Trajectories of collaborative scientific conceptual change: Middle school students learning about ecosystems in a CSCL environment

    NASA Astrophysics Data System (ADS)

    Liu, Lei

    The dissertation aims to achieve two goals. First, it attempts to establish a new theoretical framework---the collaborative scientific conceptual change model, which explicitly attends to social factor and epistemic practices of science, to understand conceptual change. Second, it report the findings of a classroom study to investigate how to apply this theoretical framework to examine the trajectories of collaborative scientific conceptual change in a CSCL environment and provide pedagogical implications. Two simulations were designed to help students make connections between the macroscopic substances and the aperceptual microscopic entities and underlying processes. The reported study was focused on analyzing the aggregated data from all participants and the video and audio data from twenty focal groups' collaborative activities and the process of their conceptual development in two classroom settings. Mixed quantitative and qualitative analyses were applied to analyze the video/audio data. The results found that, overall participants showed significant improvements from pretest to posttest on system understanding. Group and teacher effect as well as group variability were detected in both students' posttest performance and their collaborative activities, and variability emerged in group interaction. Multiple data analyses found that attributes of collaborative discourse and epistemic practices made a difference in student learning. Generating warranted claims in discourse as well as the predicting, coordinating theory-evidence, and modifying knowledge in epistemic practices had an impact on student's conceptual understanding. However, modifying knowledge was found negatively related to students' learning effect. The case studies show how groups differed in using the computer tools as a medium to conduct collaborative discourse and epistemic practices. Only with certain combination of discourse features and epistemic practices can the group interaction lead to successful convergent understanding. The results of the study imply that the collaborative scientific conceptual change model is an effective framework to study conceptual change and the simulation environment may mediate the development of successful collaborative interactions (including collaborative discourse and epistemic practices) that lead to collaborative scientific conceptual change.

  20. Chinese and Australian Year 3 Children's Conceptual Understanding of Science: A multiple comparative case study

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Colette Oliver, Mary; Venville, Grady Jane

    2012-04-01

    Children have formal science instruction from kindergarten in Australia and from Year 3 in China. The purpose of this research was to explore the impact that different approaches to primary science curricula in China and Australia have on children's conceptual understanding of science. Participants were Year 3 children from three schools of high, medium and low socio-economic status in Hunan Province, central south China (n = 135) and three schools of similar socio-economic status in Western Australia (n = 120). The students' understanding was assessed by a science quiz, developed from past Trends in Mathematics and Science Study science released items for primary children. In-depth interviews were carried out to further explore children's conceptual understanding of living things, the Earth and floating and sinking. The results revealed that Year 3 children from schools of similar socio-economic status in the two countries had similar conceptual understandings of life science, earth science and physical science. Further, in both countries, the higher the socio-economic status of the school, the better the students performed on the science quiz and in interviews. Some idiosyncratic strengths and weaknesses were observed, for example, Chinese Year 3 children showed relative strength in classification of living things, and Australian Year 3 children demonstrated better understanding of floating and sinking, but children in both countries were weak in applying and reasoning with complex concepts in the domain of earth science. The results raise questions about the value of providing a science curriculum in early childhood if it does not make any difference to students' conceptual understanding of science.

  1. Understanding Early Elementary Children's Conceptual Knowledge of Plant Structure and Function through Drawings

    PubMed Central

    Ellis, Jane P.; Jones, Alan M.

    2014-01-01

    This study examined children's drawings to explain children's conceptual understanding of plant structure and function. The study explored whether the children's drawings accurately reflect their conceptual understanding about plants in a manner that can be interpreted by others. Drawing, survey, interview, and observational data were collected from 182 students in grades K and 1 in rural southeastern United States. Results demonstrated the children held a wide range of conceptions concerning plant structure and function. These young children held very simple ideas about plants with respect to both their structure and function. Consistent with the drawings, the interviews presented similar findings. PMID:25185222

  2. Developing a Comprehensive Model of Intensive Care Unit Processes: Concept of Operations.

    PubMed

    Romig, Mark; Tropello, Steven P; Dwyer, Cindy; Wyskiel, Rhonda M; Ravitz, Alan; Benson, John; Gropper, Michael A; Pronovost, Peter J; Sapirstein, Adam

    2015-04-23

    This study aimed to use a systems engineering approach to improve performance and stakeholder engagement in the intensive care unit to reduce several different patient harms. We developed a conceptual framework or concept of operations (ConOps) to analyze different types of harm that included 4 steps as follows: risk assessment, appropriate therapies, monitoring and feedback, as well as patient and family communications. This framework used a transdisciplinary approach to inventory the tasks and work flows required to eliminate 7 common types of harm experienced by patients in the intensive care unit. The inventory gathered both implicit and explicit information about how the system works or should work and converted the information into a detailed specification that clinicians could understand and use. Using the ConOps document, we created highly detailed work flow models to reduce harm and offer an example of its application to deep venous thrombosis. In the deep venous thrombosis model, we identified tasks that were synergistic across different types of harm. We will use a system of systems approach to integrate the variety of subsystems and coordinate processes across multiple types of harm to reduce the duplication of tasks. Through this process, we expect to improve efficiency and demonstrate synergistic interactions that ultimately can be applied across the spectrum of potential patient harms and patient locations. Engineering health care to be highly reliable will first require an understanding of the processes and work flows that comprise patient care. The ConOps strategy provided a framework for building complex systems to reduce patient harm.

  3. Prospective Teacher Learning: Recognizing Evidence of Conceptual Understanding

    ERIC Educational Resources Information Center

    Bartell, Tonya Gau; Webel, Corey; Bowen, Brian; Dyson, Nancy

    2013-01-01

    This study examined prospective teachers' (PSTs) ability to recognize evidence of children's conceptual understanding of mathematics in three content areas before and after an instructional intervention designed to support this ability. It also investigates the role PSTs' content knowledge plays in their ability to recognize children's…

  4. Ghanaian Teacher Trainees' Conceptual Understanding of Stoichiometry

    ERIC Educational Resources Information Center

    Hanson, Ruby

    2015-01-01

    Chemical stoichiometry is a conceptual framework that encompasses other concepts such as the mole, writing of chemical equations in word and representative form, balancing of equations and the equilibrium concept. The underlying concepts enable students to understand relationships among entities of matter and required amounts for use when…

  5. Ghanaian Teacher Trainees' Conceptual Understanding of Stoichiometry

    ERIC Educational Resources Information Center

    Hanson, Ruby

    2016-01-01

    Chemical stoichiometry is a conceptual framework that encompasses other concepts such as the mole, writing of chemical equations in word and representative form, balancing of equations and the equilibrium concept. The underlying concepts enable students to understand relationships among entities of matter and required amounts for use when…

  6. Student beliefs and learning environments: Developing a survey of factors related to conceptual change

    NASA Astrophysics Data System (ADS)

    Hanrahan, Mary

    1994-12-01

    This paper presents a model for the type of classroom environment believed to facilitate scientific conceptual change. A survey based on this model contains items about students' motivational beliefs, their study approach and their perceptions of their teacher's actions and learning goal orientation. Results obtained from factor analyses, correlations and analyses of variance, based on responses from 113 students, suggest that an empowering interpersonal teacher-student relationship is related to a deep approach to learning, a positive attitude to science, and positive self-efficacy beliefs, and may be increased by a constructivist approach to teaching.

  7. Conceptual Change and Science Achievement Related to a Lesson Sequence on Acids and Bases Among African American Alternative High School Students: A Teacher's Practical Arguments and the Voice of the "Other"

    NASA Astrophysics Data System (ADS)

    Wood, Lynda Charese

    The study of teaching and learning during the period of translating ideals of reform into classroom practice enables us to understand student-teacher-researcher symbiotic learning. In line with this assumption, the purpose of this study is threefold:(1) observe effects of the Common Knowledge Construction Model (CKCM), a conceptual change inquiry model of teaching and learning, on African American students' conceptual change and achievement; (2) observe the shift in teacher's practical arguments; and (3) narrate the voice of "the Other" about teacher professional learning. This study uses retrospective data from a mixed-method approach consisting of Phenomenography, practical arguments and story-telling. Data sources include audio-recordings of a chemistry teacher's individual interviews of her students' prior- and post-intervention conceptions of acids and bases; results of Acid-Base Achievement Test (ABA-T); video-recordings of a chemistry teacher's enactment of CKCM acid-base lesson sequence; audio-recordings of teacher-researcher reflective discourse using classroom video-clips; teacher interviews; and teacher and researcher personal reflective journals. Students' conceptual changes reflect change in the number of categories of description; shift in language use from everyday talk to chemical talk; and development of a hierarchy of chemical knowledge. ABA-T results indicated 17 students in the experimental group achieved significantly higher scores than 22 students in the control group taught by traditional teaching methods. The teacher-researcher reflective discourse about enactment of the CKCM acid-base lesson sequence reveals three major shifts in teacher practical arguments: teacher inadequate preparedness to adequate preparedness; lack of confidence to gain in confidence; and surface learning to deep learning. The developing story uncovers several aspects about teaching and learning of African American students: teacher caring for the uncared; cultivating student and teacher confidence; converting dependence on teacher and self to peer interdependence. The study outlines six implications: caring conceptual change inquiry model for the often unreached mind; developing simple chemical talk into coherent chemical explanation; using CKCM for alternative high school students' conceptual change and achievement; engaging teachers in elicitation and appraisal of practical arguments for reconstruction of beliefs; overcoming challenges in teacher practical argument research; and "storytelling" as a way of unpacking teacher transformation amidst complexities of classroom teaching and learning.

  8. Mathematical tasks, study approaches, and course grades in undergraduate mathematics: a year-by-year analysis

    NASA Astrophysics Data System (ADS)

    Maciejewski, Wes; Merchant, Sandra

    2016-04-01

    Students approach learning in different ways, depending on the experienced learning situation. A deep approach is geared toward long-term retention and conceptual change while a surface approach focuses on quickly acquiring knowledge for immediate use. These approaches ultimately affect the students' academic outcomes. This study takes a cross-sectional look at the approaches to learning used by students from courses across all four years of undergraduate mathematics and analyses how these relate to the students' grades. We find that deep learning correlates with grade in the first year and not in the upper years. Surficial learning has no correlation with grades in the first year and a strong negative correlation with grades in the upper years. Using Bloom's taxonomy, we argue that the nature of the tasks given to students is fundamentally different in lower and upper year courses. We find that first-year courses emphasize tasks that require only low-level cognitive processes. Upper year courses require higher level processes but, surprisingly, have a simultaneous greater emphasis on recall and understanding. These observations explain the differences in correlations between approaches to learning and course grades. We conclude with some concerns about the disconnect between first year and upper year mathematics courses and the effect this may have on students.

  9. Interaction of learning approach with concept integration and achievement in a large guided inquiry organic class

    NASA Astrophysics Data System (ADS)

    Mewhinney, Christina

    A study was conducted to investigate the relationship of students' concept integration and achievement with time spent within a topic and across related topics in a large first semester guided inquiry organic chemistry class. Achievement was based on evidence of algorithmic problem solving; and concept integration was based on demonstrated performance explaining, applying, and relating concepts to each other. Twelve individual assessments were made of both variables over three related topics---acid/base, nucleophilic substitution and electrophilic addition reactions. Measurements included written, free response and ordered multiple answer questions using a classroom response system. Results demonstrated that students can solve problems without conceptual understanding. A second study was conducted to compare the students' learning approach at the beginning and end of the course. Students were scored on their preferences for a deep, strategic, or surface approach to learning based on their responses to a pre and post survey. Results suggest that students significantly decreased their preference for a surface approach during the semester. Analysis of the data collected was performed to determine the relationship between students' learning approach and their concept integration and achievement in this class. Results show a correlation between a deep approach and concept integration and a strong negative correlation between a surface approach and concept integration.

  10. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language

    PubMed Central

    Scharff, Constance; Petri, Jana

    2011-01-01

    The evolution of novel morphological features, such as feathers, involves the modification of developmental processes regulated by gene networks. The fact that genetic novelty operates within developmental constraints is the central tenet of the ‘evo-devo’ conceptual framework. It is supported by findings that certain molecular regulatory pathways act in a similar manner in the development of morphological adaptations, which are not directly related by common ancestry but evolved convergently. The Pax6 gene, important for vision in molluscs, insects and vertebrates, and Hox genes, important for tetrapod limbs and fish fins, exemplify this ‘deep homology’. Recently, ‘evo-devo’ has expanded to the molecular analysis of behavioural traits, including social behaviour, learning and memory. Here, we apply this approach to the evolution of human language. Human speech is a form of auditory-guided, learned vocal motor behaviour that also evolved in certain species of birds, bats and ocean mammals. Genes relevant for language, including the transcription factor FOXP2, have been identified. We review evidence that FoxP2 and its regulatory gene network shapes neural plasticity in cortico-basal ganglia circuits underlying the sensory-guided motor learning in animal models. The emerging picture can help us understand how complex cognitive traits can ‘descend with modification’. PMID:21690130

  11. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language.

    PubMed

    Scharff, Constance; Petri, Jana

    2011-07-27

    The evolution of novel morphological features, such as feathers, involves the modification of developmental processes regulated by gene networks. The fact that genetic novelty operates within developmental constraints is the central tenet of the 'evo-devo' conceptual framework. It is supported by findings that certain molecular regulatory pathways act in a similar manner in the development of morphological adaptations, which are not directly related by common ancestry but evolved convergently. The Pax6 gene, important for vision in molluscs, insects and vertebrates, and Hox genes, important for tetrapod limbs and fish fins, exemplify this 'deep homology'. Recently, 'evo-devo' has expanded to the molecular analysis of behavioural traits, including social behaviour, learning and memory. Here, we apply this approach to the evolution of human language. Human speech is a form of auditory-guided, learned vocal motor behaviour that also evolved in certain species of birds, bats and ocean mammals. Genes relevant for language, including the transcription factor FOXP2, have been identified. We review evidence that FoxP2 and its regulatory gene network shapes neural plasticity in cortico-basal ganglia circuits underlying the sensory-guided motor learning in animal models. The emerging picture can help us understand how complex cognitive traits can 'descend with modification'.

  12. Teachers' Beliefs about the Role of Interaction in Teaching Newtonian Mechanics and Its Influence on Students' Conceptual Understanding of Newton's Third Law

    ERIC Educational Resources Information Center

    Jauhiainen, Johanna; Koponen, Ismo T.; Lavonen, Jari

    2006-01-01

    Students' conceptual understanding of Newton's third law has been the subject of numerous studies. These studies have often pointed out the importance of addressing the concept of interaction in teaching Newtonian mechanics. In this study, teachers were interviewed in order to examine how they understand interaction and use it in their…

  13. Ecological Dimensions of Information Literacy

    ERIC Educational Resources Information Center

    Steinerova, Jela

    2010-01-01

    Introduction: We examine relationships between information literacy and information ecology with regard to conceptual innovation in information science. We aim to expand our understanding of human information behaviour and relevance assessment in the electronic environment. Method: Conceptual analysis and conceptual mapping is used and…

  14. Scholarly and Public Views: Understanding Narratives around Nanotechnology

    ERIC Educational Resources Information Center

    Teggatz, Jennifer L.

    2012-01-01

    How people come to conceptualize and understand science topics has implications for how they learn, communicate about, and relate to science. This dissertation conceptualizes and examines "cultural narratives" as cognitive tools used by individuals and shared through culture. Using nanotechnology as a case study I argue that people may…

  15. Explicit Argumentation Instruction to Facilitate Conceptual Understanding and Argumentation Skills

    ERIC Educational Resources Information Center

    Cetin, Pinar Seda

    2014-01-01

    Background: Argumentation is accepted by many science educators as a major component of science education. Many studies have investigated students' conceptual understanding and their engagement in argumentative activities. However, studies conducted in the subject of chemistry are very rare. Purpose: The present study aimed to investigate the…

  16. Evaluation of Students' Understanding of Thermal Concepts in Everyday Contexts

    ERIC Educational Resources Information Center

    Chu, Hye-Eun; Treagust, David F.; Yeo, Shelley; Zadnik, Marjan

    2012-01-01

    The aims of this study were to determine the underlying conceptual structure of the thermal concept evaluation (TCE) questionnaire, a pencil-and-paper instrument about everyday contexts of heat, temperature, and heat transfer, to investigate students' conceptual understanding of thermal concepts in everyday contexts across several school years and…

  17. Broadening the Conceptualization of Literacy in the Lives of Adults with Intellectual Disability

    ERIC Educational Resources Information Center

    Morgan, Michelle F.; Cuskelly, Monica; Moni, Karen B.

    2011-01-01

    Current pedagogical approaches recognize literacy as a social practice and yet school-based conceptualizations continue to dominate understandings of literacy learning of individuals with intellectual disability. Such understandings lead to local or everyday literacy practices being devalued and overlooked. Thus, for adults with intellectual…

  18. Defining Conceptual Understanding in General Chemistry

    ERIC Educational Resources Information Center

    Holme, Thomas A.; Luxford, Cynthia J.; Brandriet, Alexandra

    2015-01-01

    Among the many possible goals that instructors have for students in general chemistry, the idea that they will better understand the conceptual underpinnings of the science is certainly important. Nonetheless, identifying with clarity what exemplifies student success at achieving this goal is hindered by the challenge of clearly articulating what…

  19. Measuring and Comparing Academic Language Development and Conceptual Understanding via Science Notebooks

    ERIC Educational Resources Information Center

    Huerta, Margarita; Tong, Fuhui; Irby, Beverly J.; Lara-Alecio, Rafael

    2016-01-01

    The authors of this quantitative study measured and compared the academic language development and conceptual understanding of fifth-grade economically disadvantaged English language learners (ELL), former ELLs, and native English-speaking (ES) students as reflected in their science notebook scores. Using an instrument they developed, the authors…

  20. The Importance of Dialogic Processes to Conceptual Development in Mathematics

    ERIC Educational Resources Information Center

    Kazak, Sibel; Wegerif, Rupert; Fujita, Taro

    2015-01-01

    We argue that dialogic theory, inspired by the Russian scholar Mikhail Bakhtin, has a distinct contribution to the analysis of the genesis of understanding in the mathematics classroom. We begin by contrasting dialogic theory to other leading theoretical approaches to understanding conceptual development in mathematics influenced by Jean Piaget…

  1. Graduate Employability: A Conceptual Framework for Understanding Employers' Perceptions

    ERIC Educational Resources Information Center

    Cai, Yuzhuo

    2013-01-01

    This study provides a conceptual framework for understanding what employers think about the value of graduates with similar educational credentials in the workplace (their employability), using insights from the new institutionalism. In this framework, the development of employers' beliefs about graduates' employability is broken into a number of…

  2. Addressing Barriers to Conceptual Understanding in IE Physics Classes

    NASA Astrophysics Data System (ADS)

    Coletta, Vincent P.; Phillips, Jeffrey A.

    2009-11-01

    We report on the Thinking in Physics project, which helps students who demonstrate weak scientific reasoning skills, as measured by low preinstruction scores on the Lawson Test of Scientific Reasoning Ability. Without special help, such students are unlikely to achieve a good conceptual understanding of introductory mechanics.

  3. Promoting Conceptual Change in First Year Students' Understanding of Evaporation

    ERIC Educational Resources Information Center

    Costu, Bayram; Ayas, Alipasa; Niaz, Mansoor

    2010-01-01

    We constructed the PDEODE (Predict-Discuss-Explain-Observe-Discuss-Explain) teaching strategy, a variant of the classical POE (Predict-Observe-Explain) activity, to promote conceptual change, and investigated its effectiveness on student understanding of the evaporation concept. The sample consisted of 52 first year students in a primary science…

  4. Re-"Conceptualizing" Procedural Knowledge in Mathematics.

    ERIC Educational Resources Information Center

    Star, Jon R.

    Many mathematics educators have lost sight of the critical importance of the mathematical understanding which underlies procedural competence, in part because we do not have a language to refer to this kind of understanding. The modal way of categorizing mathematical knowledge--conceptual and procedural knowledge--is limited in that: (a) it is…

  5. Strategy Instruction and Maintenance of Basic Multiplication Facts through Digital Game Play

    ERIC Educational Resources Information Center

    Denham, André R.

    2013-01-01

    Formative instruction on multiplication primarily focuses on rote memorization. This leads to factual fluency, but also develops a narrow view of multiplication and hinders the development of conceptual understanding. Theory and research recommend the concurrent development of conceptual understanding and factual fluency during the initial stages…

  6. Epistemic Beliefs and Conceptual Understanding in Biotechnology: A Case Study

    ERIC Educational Resources Information Center

    Rebello, Carina M.; Siegel, Marcelle A.; Witzig, Stephen B.; Freyermuth, Sharyn K.; McClure, Bruce A.

    2012-01-01

    The purpose of this investigation was to explore students' epistemic beliefs and conceptual understanding of biotechnology. Epistemic beliefs can influence reasoning, how individuals evaluate information, and informed decision making abilities. These skills are important for an informed citizenry that will participate in debates regarding areas in…

  7. Three Phase Ranking Framework for Assessing Conceptual Understanding in Algebra Using Multiple Representations

    ERIC Educational Resources Information Center

    Panasuk, Regina M.

    2010-01-01

    Algebra students may often demonstrate a certain degree of proficiency when manipulating algebraic expressions and verbalizing their behaviors. Do these abilities imply conceptual understanding? What is a reliable indicator that would provide educators with a relatively trustworthy and consistent measure to identify whether students learn…

  8. Helping Secondary School Students Develop a Conceptual Understanding of Refraction

    ERIC Educational Resources Information Center

    Ashmann, Scott; Anderson, Charles W.; Boeckman, Heather

    2016-01-01

    Using real-world examples, ray diagrams, and a cognitive apprenticeship cycle, this paper focuses on developing students' conceptual (not mathematical) understanding of refraction. Refraction can be a difficult concept for students to comprehend if they do not have well-designed opportunities to practice explaining situations where reflection and…

  9. Teaching Complex Concepts in the Geosciences by Integrating Analytical Reasoning with GIS

    ERIC Educational Resources Information Center

    Houser, Chris; Bishop, Michael P.; Lemmons, Kelly

    2017-01-01

    Conceptual models have long served as a means for physical geographers to organize their understanding of feedback mechanisms and complex systems. Analytical reasoning provides undergraduate students with an opportunity to develop conceptual models based upon their understanding of surface processes and environmental conditions. This study…

  10. E-Learning for Depth in the Semantic Web

    ERIC Educational Resources Information Center

    Shafrir, Uri; Etkind, Masha

    2006-01-01

    In this paper, we describe concept parsing algorithms, a novel semantic analysis methodology at the core of a new pedagogy that focuses learners attention on deep comprehension of the conceptual content of learned material. Two new e-learning tools are described in some detail: interactive concept discovery learning and meaning equivalence…

  11. Psychological Determinants of University Students' Academic Performance: An Empirical Study

    ERIC Educational Resources Information Center

    Gebka, Bartosz

    2014-01-01

    This study utilises an integrated conceptual model of academic performance which captures a series of psychological factors: cognitive style; self-theories such as self-esteem and self-efficacy; achievement goals such as mastery, performance, performance avoidance and work avoidance; study-processing strategies such as deep and surface learning;…

  12. Conceptual frameworks in astronomy

    NASA Astrophysics Data System (ADS)

    Pundak, David

    2016-06-01

    How to evaluate students' astronomy understanding is still an open question. Even though some methods and tools to help students have already been developed, the sources of students' difficulties and misunderstanding in astronomy is still unclear. This paper presents an investigation of the development of conceptual systems in astronomy by 50 engineering students, as a result of learning a general course on astronomy. A special tool called Conceptual Frameworks in Astronomy (CFA) that was initially used in 1989, was adapted to gather data for the present research. In its new version, the tool included 23 questions, and five to six optional answers were given for each question. Each of the answers was characterized by one of the four conceptual astronomical frameworks: pre-scientific, geocentric, heliocentric and sidereal or scientific. The paper describes the development of the tool and discusses its validity and reliability. Using the CFA we were able to identify the conceptual frameworks of the students at the beginning of the course and at its end. CFA enabled us to evaluate the paradigmatic change of students following the course and also the extent of the general improvement in astronomical knowledge. It was found that the measure of the students’ improvement (gain index) was g = 0.37. Approximately 45% of the students in the course improved their understanding of conceptual frameworks in astronomy and 26% deepened their understanding of the heliocentric or sidereal conceptual frameworks.

  13. Visual Activities for Assessing Non-science Majors’ Understanding in Introductory Astronomy

    NASA Astrophysics Data System (ADS)

    Loranz, Daniel; Prather, E. E.; Slater, T. F.

    2006-12-01

    One of the most ardent challenges for astronomy teachers is to deeply and meaningfully assess students’ conceptual and quantitative understanding of astronomy topics. In an effort to uncover students’ actual understanding, members and affiliates of the Conceptual Astronomy and Physics Education Research (CAPER) Team at the University of Arizona and Truckee Meadows Community College are creating and field-testing innovative approaches to assessment. Leveraging from the highly successful work on interactive lecture demonstrations from astronomy and physics education research, we are creating a series of conceptually rich questions that are matched to visually captivating and purposefully interactive astronomical animations. These conceptually challenging tasks are being created to span the entire domain of topics in introductory astronomy for non-science majoring undergraduates. When completed, these sorting tasks and vocabulary-in-context activities will be able to be delivered via a drag-and-drop computer interface.

  14. Development of two tier test to assess conceptual understanding in heat and temperature

    NASA Astrophysics Data System (ADS)

    Winarti; Cari; Suparmi; Sunarno, Widha; Istiyono, Edi

    2017-01-01

    Heat and temperature is a concept that has been learnt from primary school to undergraduate levels. One problem about heat and temperature is that they are presented abstractly, theoretical concept. A student conceptual frameworks develop from their daily experiences. The purpose of this research was to develop a two-tier test of heat and temperature concept and measure conceptual understanding of heat and temperature of the student. This study consist of two method is qualitative and quantitative method. The two-tier test was developed using procedures defined by Borg and Gall. The two-tier test consisted of 20 question and was tested for 137 students for collecting data. The result of the study showed that the two-tier test was effective in determining the students’ conceptual understanding and also it might be used as an alternative for assessment and evaluation of students’ achievement

  15. Thinking and working relationally: interviewing and constructing hypotheses to create compassionate understanding.

    PubMed

    Sheinberg, Marcia; Brewster, Mary Kim

    2014-12-01

    In the initial interviews of family therapy sessions, the therapist faces the challenge of obtaining and organizing the information that is most relevant toward understanding the essential concerns that families and couples bring to therapy. This article describes the process of clinical interviewing and case conceptualization used in training family therapists at the Ackerman Institute for the Family. This approach helps the therapist bring forward, and organize, specific information into relational hypotheses, or systemic-relational conceptualizations, that allow both family members and the therapist to understand presenting problems within their relational contexts. While always provisional, relational hypotheses help anchor the therapist in a systemic-relational frame and provide a conceptual through-line to guide the ongoing work of the therapy. The process of interviewing and the construction of clear and complex conceptualizations of presenting problems are illustrated through case examples. © 2014 Family Process Institute.

  16. Deep Brain Stimulation Frequency—A Divining Rod for New and Novel Concepts of Nervous System Function and Therapy

    PubMed Central

    Montgomery, Erwin B.; He, Huang

    2016-01-01

    The efficacy of Deep Brain Stimulation (DBS) for an expanding array of neurological and psychiatric disorders demonstrates directly that DBS affects the basic electroneurophysiological mechanisms of the brain. The increasing array of active electrode configurations, stimulation currents, pulse widths, frequencies, and pulse patterns provides valuable tools to probe electroneurophysiological mechanisms. The extension of basic electroneurophysiological and anatomical concepts using sophisticated computational modeling and simulation has provided relatively straightforward explanations of all the DBS parameters except frequency. This article summarizes current thought about frequency and relevant observations. Current methodological and conceptual errors are critically examined in the hope that future work will not replicate these errors. One possible alternative theory is presented to provide a contrast to many current theories. DBS, conceptually, is a noisy discrete oscillator interacting with the basal ganglia–thalamic–cortical system of multiple re-entrant, discrete oscillators. Implications for positive and negative resonance, stochastic resonance and coherence, noisy synchronization, and holographic memory (related to movement generation) are presented. The time course of DBS neuronal responses demonstrates evolution of the DBS response consistent with the dynamics of re-entrant mechanisms. Finally, computational modeling demonstrates identical dynamics as seen by neuronal activities recorded from human and nonhuman primates, illustrating the differences of discrete from continuous harmonic oscillators and the power of conceptualizing the nervous system as composed on interacting discrete nonlinear oscillators. PMID:27548234

  17. Conceptual overview and preliminary risk assessment of cryogen use in deep underground mine production

    NASA Astrophysics Data System (ADS)

    Sivret, J.; Millar, D. L.; Lyle, G.

    2017-12-01

    This research conducts a formal risk assessment for cryogenic fueled equipment in underground environments. These include fans, load haul dump units, and trucks. The motivating advantage is zero-emissions production in the subsurface and simultaneous provision of cooling for ultra deep mine workings. The driving force of the engine is the expansion of the reboiled cryogen following flash evaporation using ambient temperature heat. The cold exhaust mixes with warm mine air and cools the latter further. The use of cryogens as ‘fuel’ leads to much increased fuel transport volumes and motivates special considerations for distribution infrastructure and process including: cryogenic storage, distribution, handling, and transfer systems. Detailed specification of parts and equipment, numerical modelling and preparation of design drawings are used to articulate the concept. The conceptual design process reveals new hazards and risks that the mining industry has not yet encountered, which may yet stymie execution. The major unwanted events include the potential for asphyxiation due to oxygen deficient atmospheres, or physical damage to workers due to exposure to sub-cooled liquids and cryogenic gases. The Global Minerals Industry Risk Management (GMIRM) framework incorporates WRAC and Bow-Tie techniques and is used to identify, assess and mitigate risks. These processes operate upon the competing conceptual designs to identify and eliminate high risk options and improve the safety of the lower risk designs.

  18. Promoting Conceptual Change for Complex Systems Understanding: Outcomes of an Agent-Based Participatory Simulation

    NASA Astrophysics Data System (ADS)

    Rates, Christopher A.; Mulvey, Bridget K.; Feldon, David F.

    2016-08-01

    Components of complex systems apply across multiple subject areas, and teaching these components may help students build unifying conceptual links. Students, however, often have difficulty learning these components, and limited research exists to understand what types of interventions may best help improve understanding. We investigated 32 high school students' understandings of complex systems components and whether an agent-based simulation could improve their understandings. Pretest and posttest essays were coded for changes in six components to determine whether students showed more expert thinking about the complex system of the Chesapeake Bay watershed. Results showed significant improvement for the components Emergence ( r = .26, p = .03), Order ( r = .37, p = .002), and Tradeoffs ( r = .44, p = .001). Implications include that the experiential nature of the simulation has the potential to support conceptual change for some complex systems components, presenting a promising option for complex systems instruction.

  19. Using the Conceptual Change Instruction To Improve Learning.

    ERIC Educational Resources Information Center

    Alparslan, Cem; Tekkaya, Ceren; Geban, Omer

    2003-01-01

    Investigates the effect of conceptual change instruction on grade 11 students' understanding of respiration. The Respiration Concept Test was developed and used to test students' misconceptions. Results indicate that the conceptual change instruction that explicitly addressed students' misconceptions produced significantly greater achievement in…

  20. Stratal stacking patterns and tectono-sedimentary evolution of hyperextended magma-poor rifted margins

    NASA Astrophysics Data System (ADS)

    Ribes, C.; Gillard, M.; Epin, M. E.; Ghienne, J. F.; Manatschal, G.; Karner, G. D.; Johnson, C. A.

    2016-12-01

    Research on the formation and evolution of deep-water rifted margins has undergone a major paradigm shift in recent years. An increasing number of studies of present-day and fossil rifted margins allow us to identify and characterize the structural architecture of the most distal parts of rifted margins, the so-called hyperextended, magma-poor rifted margins. However, at present, little is known about the depositional environments, sedimentary facies, stacking patterns, subsidence and thermal history within these domains. In this context, characterizing the stratal stacking patterns and understanding their spatial and temporal evolution is a new challenge. The major difficulty comes from the fact that the observed stratigraphic geometries and facies relationships are a result of the complex interplay between sediment supply and available accommodation, which is controlled by not only the regional generation of accommodation, but also by local tectono-magmatic processes. These parameters are poorly constrained or even sufficiently known in these tectonic settings. Indeed, the complex structural evolution of hyperextended magma-poor rifted margins, including the development of poly-phase in-sequence and out of sequence extensional detachment faults and associated mantle exhumation and magmatic activity, can generate complex accommodation patterns over a highly structured top basement. The presentation summarizes early results concerning the controlling parameters on ultra-deep water stratigraphic stacking patterns and to provide a conceptual framework. This observation-driven approach combines fieldwork from fossil Alpine Tethys margins exposed in the Alps and the analysis of seismic reflection data from present-day deep water rifted margins such as the Australian-Antarctic, East India and Iberia-Newfoundland margins.

  1. What Makes Deeply Encoded Items Memorable? Insights into the Levels of Processing Framework from Neuroimaging and Neuromodulation

    PubMed Central

    Galli, Giulia

    2014-01-01

    When we form new memories, their mnestic fate largely depends upon the cognitive operations set in train during encoding. A typical observation in experimental as well as everyday life settings is that if we learn an item using semantic or “deep” operations, such as attending to its meaning, memory will be better than if we learn the same item using more “shallow” operations, such as attending to its structural features. In the psychological literature, this phenomenon has been conceptualized within the “levels of processing” framework and has been consistently replicated since its original proposal by Craik and Lockhart in 1972. However, the exact mechanisms underlying the memory advantage for deeply encoded items are not yet entirely understood. A cognitive neuroscience perspective can add to this field by clarifying the nature of the processes involved in effective deep and shallow encoding and how they are instantiated in the brain, but so far there has been little work to systematically integrate findings from the literature. This work aims to fill this gap by reviewing, first, some of the key neuroimaging findings on the neural correlates of deep and shallow episodic encoding and second, emerging evidence from studies using neuromodulatory approaches such as psychopharmacology and non-invasive brain stimulation. Taken together, these studies help further our understanding of levels of processing. In addition, by showing that deep encoding can be modulated by acting upon specific brain regions or systems, the reviewed studies pave the way for selective enhancements of episodic encoding processes. PMID:24904444

  2. Understanding terminological systems. II: Experience with conceptual and formal representation of structure.

    PubMed

    de Keizer, N F; Abu-Hanna, A

    2000-03-01

    This article describes the application of two popular conceptual and formal representation formalisms, as part of a framework for understanding terminological systems. A precise understanding of the structure of a terminological system is essential to assess existing terminological systems, to recognize patterns in various systems and to build new terminological systems. Our experience with the application of this framework to five well-known terminological systems is described.

  3. The Test of Basic Mechanics Conceptual Understanding (bMCU): Using Rasch Analysis to Develop and Evaluate an Efficient Multiple Choice Test on Newton's Mechanics

    ERIC Educational Resources Information Center

    Hofer, Sarah I.; Schumacher, Ralph; Rubin, Herbert

    2017-01-01

    Background: Valid assessment of the understanding of Newton's mechanics is highly relevant to both physics classrooms and research. Several tests have been developed. What remains missing, however, is an efficient and fair test of conceptual understanding that is adapted to the content taught to secondary school students and that can be validly…

  4. Impact of Learning Model Based on Cognitive Conflict toward Student’s Conceptual Understanding

    NASA Astrophysics Data System (ADS)

    Mufit, F.; Festiyed, F.; Fauzan, A.; Lufri, L.

    2018-04-01

    The problems that often occur in the learning of physics is a matter of misconception and low understanding of the concept. Misconceptions do not only happen to students, but also happen to college students and teachers. The existing learning model has not had much impact on improving conceptual understanding and remedial efforts of student misconception. This study aims to see the impact of cognitive-based learning model in improving conceptual understanding and remediating student misconceptions. The research method used is Design / Develop Research. The product developed is a cognitive conflict-based learning model along with its components. This article reports on product design results, validity tests, and practicality test. The study resulted in the design of cognitive conflict-based learning model with 4 learning syntaxes, namely (1) preconception activation, (2) presentation of cognitive conflict, (3) discovery of concepts & equations, (4) Reflection. The results of validity tests by some experts on aspects of content, didactic, appearance or language, indicate very valid criteria. Product trial results also show a very practical product to use. Based on pretest and posttest results, cognitive conflict-based learning models have a good impact on improving conceptual understanding and remediating misconceptions, especially in high-ability students.

  5. The effect of directive tutor guidance on students' conceptual understanding of statistics in problem-based learning.

    PubMed

    Budé, Luc; van de Wiel, Margaretha W J; Imbos, Tjaart; Berger, Martijn P F

    2011-06-01

    Education is aimed at students reaching conceptual understanding of the subject matter, because this leads to better performance and application of knowledge. Conceptual understanding depends on coherent and error-free knowledge structures. The construction of such knowledge structures can only be accomplished through active learning and when new knowledge can be integrated into prior knowledge. The intervention in this study was directed at both the activation of students as well as the integration of knowledge. Undergraduate university students from an introductory statistics course, in an authentic problem-based learning (PBL) environment, were randomly assigned to conditions and measurement time points. In the PBL tutorial meetings, half of the tutors guided the discussions of the students in a traditional way. The other half guided the discussions more actively by asking directive and activating questions. To gauge conceptual understanding, the students answered open-ended questions asking them to explain and relate important statistical concepts. Results of the quantitative analysis show that providing directive tutor guidance improved understanding. Qualitative data of students' misconceptions seem to support this finding. Long-term retention of the subject matter seemed to be inadequate. ©2010 The British Psychological Society.

  6. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiaoliang Ma; Uday Turaga; Shingo Watanabe

    2004-05-01

    The overall objective of this project is to explore a new desulfurization system concept, which consists of efficient separation of the refractory sulfur compounds from diesel fuel by selective adsorption, and effective hydrodesulfurization of the concentrated fraction of the refractory sulfur compounds in diesel fuels. Our approaches focused on (1) selecting and developing new adsorbents for selective adsorption of sulfur or sulfur compounds in commercial diesel fuel; (2) conducting the adsorption desulfurization of model fuels and real diesel fuels by the selective-adsorption-for-removing-sulfur (PSUSARS) process over various developed adsorbents, and examining the adsorptive desulfurization performance of various adsorbents; (3) developing andmore » evaluating the regeneration methods for various spent adsorbent; (4) developing new catalysts for hydrodesulfurization of the refractory sulfur existing in the commercial diesel fuel; (5) on the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, further confirming and improving the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel Three types of adsorbents, the metal-chloride-based adsorbents, the activated nickel-based adsorbents and the metal-sulfide-based adsorbents, have been developed for selective adsorption desulfurization of liquid hydrocarbons. All of three types of the adsorbents exhibit the significant selectivity for sulfur compounds, including alkyl dibenzothiophenes (DBTs), in diesel fuel. Adsorption desulfurization of real diesel fuels (regular diesel fuel (DF), S: 325 ppmw; low sulfur diesel fuel (LSD-I), S: 47 ppmw) over the nickel-based adsorbents (A-2 and A-5) has been conducted at different conditions by using a flowing system. The adsorption capacity of DF over A-2 corresponding to an outlet sulfur level of 30 ppmw is 2.8 mg-S/g-A. The adsorption capacity of LSD-I over A-5 corresponding to the break-through point at 5.0 ppmw sulfur level is 0.35 mg-S/g-A. The spent A-5 can be regenerated by using H2 gas at a flowing rate of 40-50 ml/min, 500 C, and ambient pressure. Adsorption desulfurization of model diesel fuels over metal-sulfide-based adsorbents (A-6-1 and A-6-2) has been conducted at different temperatures to examine the capacity and selectivity of the adsorbents. A regeneration method for the spent metal-sulfide-based adsorbents has been developed. The spent A-6-1 can be easily regenerated by washing the spent adsorbent with a polar solvent followed by heating the adsorbent bed to remove the remainder solvent. Almost all adsorption capacity of the fresh A-6-1 can be recovered after the regeneration. On the other hand, a MCM-41-supported HDS catalyst was developed for deep desulfurization of the refractory sulfur compounds. The results show that the developed MCM-41-supported catalyst demonstrates consistently higher activity for the HDS of the refractory dibenzothiophenic sulfur compounds than the commercial catalyst. On the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel is confirmed and improved further.« less

  7. The Effects of Virtual Versus Physical Lab Manipulatives on Inquiry Skill Acquisition and Conceptual Understanding of Density

    NASA Astrophysics Data System (ADS)

    Brinson, James R.

    The current study compared the effects of virtual versus physical laboratory manipulatives on 84 undergraduate non-science majors' (a) conceptual understanding of density and (b) density-related inquiry skill acquisition. A pre-post comparison study design was used, which incorporated all components of an inquiry-guided classroom, except experimental mode, and which controlled for curriculum, instructor, instructional method, time spent on task, and availability of reference resources. Participants were randomly assigned to either a physical or virtual lab group. Pre- and post-assessments of conceptual understanding and inquiry skills were administered to both groups. Paired-samples t tests revealed a significant mean percent correct score increase for conceptual understanding in both the physical lab group (M = .103, SD = .168), t(38) = -3.82, p < .001, r = .53, two-tailed, and the virtual lab group (M = .084, SD = .177), t(44) = -3.20, p = .003, r = .43, two-tailed. However, a one-way ANCOVA (using pretest scores as the covariate) revealed that the main effect of lab group on conceptual learning gains was not significant, F(1, 81) = 0.081, p = .776, two-tailed. An omnibus test of model coefficients within hierarchical logistic regression revealed that a correct response on inquiry pretest scores was not a significant predictor of a correct post-test response, chi 2(1, N = 84) = 1.68, p = .195, and that when lab mode was added to the model, it did not significantly increase the model's predictive ability, chi2(2, N = 84) = 1.95, p = .377. Thus, the data in the current study revealed no significant difference in the effect of physical versus virtual manipulatives when used to teach conceptual understanding and inquiry skills related to density.

  8. Combining Different Conceptual Change Methods within 5E Model: A Sample Teaching Design of "Cell" Concept and its Organelles

    ERIC Educational Resources Information Center

    Urey, Mustafa; Calik, Muammer

    2008-01-01

    Since students' misconceptions are not completely remedied by means of only one conceptual change method, the authors assume that using different conceptual methods embedded within the 5E model will not only be more effective in enhancing students' conceptual understanding, but also may eliminate all students' misconceptions. The aim of this study…

  9. A Study of Novice Science Teachers' Conceptualizations of Culturally Relevant Pedagogy

    NASA Astrophysics Data System (ADS)

    Redman, Elizabeth Horst

    This qualitative study examined new science teachers' conceptualization of culturally relevant pedagogy (CRP). The study followed six novice science teachers from their preservice teaching placements into their first jobs as instructors of record, observing in their classrooms and interviewing them about their use of CRP. The study sought to understand (1) how the participating teachers conceptualize CRP in science, and (2) what challenges the teachers faced in trying to implement CRP. Findings suggest that the teachers conceptualized CRP in ways that were consistent with Enyedy, Danish and Fields' (2011) interpretations of relevance: relevance of authentic purpose, relevance of content and/or context, and relevance of practices. The teachers, however, translated those interpretations of relevance into their conceptualizations and classroom practice in a variety of ways. While they encountered difficulties in conceptualizing and practicing CRP, they also made productive moves in their practice and evidenced positive elements in their conceptualizations of CRP. In order to address the challenges these teachers faced in implementing CRP, I suggest an approach to teacher preparation in CRP that builds upon the understandings and productive moves the teachers evidenced in this study.

  10. Investigating the effect of plate-mantle interaction in basin creation and associated drainage systems: insights from the North West Shelf of Australia

    NASA Astrophysics Data System (ADS)

    Morón, S.; Gallagher, S. J.; Moresi, L. N.; Salles, T.; Rey, P. F.; Payenberg, T.

    2016-12-01

    The effect of plate-mantle dynamics on surface topography has increasingly being recognized. This concept is particularly useful for the understanding of the links between plate-mantle dynamics, continental break up and the creation of sedimentary basins and their associated drainage systems. To unravel these links back in time we present an approach that uses numerical models and the geological record. The sedimentary basins of the North West Shelf (NWS) of Australia contain an exceptional record of the Permian to early Cretaceous polyphased rifting of Australia from Greater India, which is in turn associated with the breakup of Gondwana. This record and the relative tectonic quiescence of the Australian Continent since the Late Cretaceous make the NWS a great natural laboratory for investigating the interaction between mantle dynamics, plate tectonics and drainage patterns. Furthermore, as a result of the extensive petroleum exploration and production in the area a uniquely large dataset containing seismic, lithologic, biostratigraphic and detrital zircon information is already available. This study will first focus on augmenting zircon datasets to refine the current conceptual models of paleodrainage systems associated with the NWS. Current conceptual models of drainage patterns suggest the previous existance of large transcontinental rivers that transported sediments from Antarctica and India, rather than from more proximal Australian sources. From a mass-balance point of view this model seems reasonable, as large transcontinental rivers would be required to transport the significant volume of sediments that are deposited in the thick (15km) sedimentary sequences of the NWS. Coupling of geodynamic (Underworld) and landscape-dynamics (Badlands) models will allow us to numerically test the likelihood of this conceptual model and also to present and integrated approach to investigate the link between deep Earth processes and surficial processes.

  11. Using self-paced, `flipped' teaching to promote deep learning in an Earth Sciences programming course

    NASA Astrophysics Data System (ADS)

    Kalnins, L. M.

    2015-12-01

    Over the last year we implemented a complete restructuring of a second year Matlab-based course on numerical modelling of Earth processes, with changes aimed at 1) strengthening students' independence as programmers, 2) addressing student concerns about support in developing coding skills, and 3) improving key modelling skills such as choosing boundary conditions. To address this, we designed a mastery-based approach where students progress through a series of small programming projects at their own pace. As part of this, all lectures are `flipped' into short videos, allowing all contact hours to be spent on programming. The projects themselves are structured based on a `bottlenecks to learning' approach, explicitly separating out the steps of learning new commands and code structures, creating a conceptual and mathematical model of the problem, and development of more generic programmings skills such as debugging before asking the students to combine all of the above to build a numerical model of an Earth Sciences problem. Compared with the previous, traditionally taught cohort, student questionnaires show a strong improvement in overall satisfaction. Free text responses show a focus on learning for understanding, and that students particularly valued the encouragement to slow down and work towards understanding when they encountered a difficult topic, rather than being pressured by a set timetable to move on. Quantitatively, exam performance improved on key conceptual questions, such as boundary conditions and discretisation, and overall achievement also rose, with 25% of students achieving an `A+' standard of work. Many of the final projects also demonstrated programming and modelling skills that had not been directly taught, ranging from use of new commands to extension of techniques taught in 1D to the 2D case: strong confirmation of the independent skills we aimed to foster with this new approach.

  12. Students' Communicative Resources in Relation to Their Conceptual Understanding—The Role of Non-Conventionalized Expressions in Making Sense of Visualizations of Protein Function

    NASA Astrophysics Data System (ADS)

    Rundgren, Carl-Johan; Hirsch, Richard; Chang Rundgren, Shu-Nu; Tibell, Lena A. E.

    2012-10-01

    This study examines how students explain their conceptual understanding of protein function using visualizations. Thirteen upper secondary students, four tertiary students (studying chemical biology), and two experts were interviewed in semi-structured interviews. The interviews were structured around 2D illustrations of proteins and an animated representation of water transport through a channel in the cell membrane. In the analysis of the transcripts, a score, based on the SOLO-taxonomy, was given to each student to indicate the conceptual depth achieved in their explanations. The use of scientific terms and non-conventionalized expressions in the students' explanations were investigated based upon a semiotic approach. The results indicated that there was a positive relationship between use of scientific terms and level of education. However, there was no correlation between students' use of scientific terms and conceptual depth. In the interviews, we found that non-conventionalized expressions were used by several participants to express conceptual understanding and played a role in making sense of the visualizations of protein function. Interestingly, also the experts made use of non-conventionalized expressions. The results of our study imply that more attention should be drawn to students' use of scientific and non-conventionalized terms in relation to their conceptual understanding.

  13. Using Conceptual Change Texts with Analogies for Misconceptions in Acids and Bases

    ERIC Educational Resources Information Center

    Cetingul, Ipek; Geban, Omer

    2011-01-01

    This study was conducted to explore the effectiveness of conceptual change oriented instruction over traditional instruction on students' understanding of acids and bases concept. Besides, effects of gender difference and science process skills on students' understanding of acids and bases were also investigated. Analysis of the results showed…

  14. Thai Grade 10 and 11 Students' Conceptual Understanding and Ability to Solve Stoichiometry Problems

    ERIC Educational Resources Information Center

    Dahsah, Chanyah; Coll, Richard K.

    2007-01-01

    Stoichiometry and related concepts are an important part of student learning in chemistry. In this interpretive-based inquiry, we investigated Thai Grade 10 and 11 students' conceptual understanding and ability to solve numerical problems for stoichiometry-related concepts. Ninety-seven participants completed a purpose-designed survey instrument…

  15. Students' Attitudes toward and Conceptual Understanding of Chemical Instrumentation

    ERIC Educational Resources Information Center

    Miller, Larry S.; Nakhleh, Mary B.; Nash, John J.; Meyer, Jeanne A.

    2004-01-01

    Students' attitudes toward and conceptual understanding of chemical instrumentation is surveyed. The study shows that, in general, the students' attitudes toward using instrumentation in the lab is quite positive and they felt that using instrumentation in the lab allowed them not only to connect "chemistry" and the "real world", but also to…

  16. Cross-Grade Comparison of Students' Conceptual Understanding with Lenses in Geometric Optics

    ERIC Educational Resources Information Center

    Tural, G.

    2015-01-01

    Students commonly find the field of physics difficult. Therefore, they generally have learning problems. One of the subjects with which they have difficulties is optics within a physics discipline. This study aims to determine students' conceptual understanding levels at different education levels relating to lenses in geometric optics. A…

  17. Promoting Conceptual Understanding via Adaptive Concept Maps

    ERIC Educational Resources Information Center

    Moore, Jacob P.

    2013-01-01

    The purpose of this study is to explore the feasibility and effectiveness of a scalable concept map based navigation system for a digital textbook. A literature review has been conducted to identify possible methods to promote conceptual understanding in the context of a digital textbook, and these hypothesized solutions will be evaluated through…

  18. From Human Activity to Conceptual Understanding of the Chain Rule

    ERIC Educational Resources Information Center

    Jojo, Zingiswa Mybert Monica; Maharaj, Aneshkumar; Brijlall, Deonarain

    2013-01-01

    This article reports on a study which investigated first year university engineering students' construction of the definition of the concept of the chain rule in differential calculus at a University of Technology in South Africa. An APOS (Action-Process-Objects-Schema) approach was used to explore conceptual understanding displayed by students in…

  19. Understanding and Theorizing the Role of Culture in the Conceptualizations of Successful Aging and Lifelong Learning

    ERIC Educational Resources Information Center

    Tam, Maureen

    2014-01-01

    Successful aging and lifelong learning are value-laden concepts that are culturally determined. To this effect, people with different value systems and cultural backgrounds may perceive and understand these two concepts differently, resulting in different definitions and conceptualizations by people in diverse cultural contexts. There have been…

  20. School Culture and Teenage Substance Use: A Conceptual and Operational Framework

    ERIC Educational Resources Information Center

    Markham, Wolfgang A.

    2015-01-01

    This paper outlines a conceptual and operational framework for understanding the relationships between school culture and teenage substance use (smoking, drinking and illicit drug use). The framework draws upon Bernstein's theory of cultural transmission, a theory of health promoting schools and a frame for understanding the effects of place on…

  1. Assessing the Conceptual Understanding about Heat and Thermodynamics at Undergraduate Level

    ERIC Educational Resources Information Center

    Kulkarni, Vasudeo Digambar; Tambade, Popat Savaleram

    2013-01-01

    In this study, a Thermodynamic Concept Test (TCT) was designed to assess student's conceptual understanding heat and thermodynamics at undergraduate level. The different statistical tests such as item difficulty index, item discrimination index, point biserial coefficient were used for assessing TCT. For each item of the test these indices were…

  2. Beliefs as Conceptualizing Activity: A Dialectical Approach for the Second Language Classroom

    ERIC Educational Resources Information Center

    Negueruela-Azarola, Eduardo

    2011-01-01

    The present article presents an understanding of beliefs as conceptualizing activity from a Vygotskyan dialectical perspective. The proposals I develop here, emerging from a contextual understanding of development, aim to help us reconsider in pedagogical terms the specific relationships between beliefs and actions and the nature of beliefs as…

  3. Reflective Learning and Prospective Teachers' Conceptual Understanding, Critical Thinking, Problem Solving, and Mathematical Communication Skills

    ERIC Educational Resources Information Center

    Junsay, Merle L.

    2016-01-01

    This is a quasi-experimental study that explored the effects of reflective learning on prospective teachers' conceptual understanding, critical thinking, problem solving, and mathematical communication skills and the relationship of these variables. It involved 60 prospective teachers from two basic mathematics classes of an institution of higher…

  4. Mapping Student Understanding in Chemistry: The Perspectives of Chemists

    ERIC Educational Resources Information Center

    Claesgens, Jennifer; Scalise, Kathleen; Wilson, Mark; Stacy, Angelica

    2009-01-01

    Preliminary pilot studies and a field study show how a generalizable conceptual framework calibrated with item response modeling can be used to describe the development of student conceptual understanding in chemistry. ChemQuery is an assessment system that uses a framework of the key ideas in the discipline, called the Perspectives of Chemists,…

  5. A New Conceptual Model for Understanding International Students' College Needs

    ERIC Educational Resources Information Center

    Alfattal, Eyad

    2016-01-01

    This study concerns the theory and practice of international marketing in higher education with the purpose of exploring a conceptual model for understanding international students' needs in the context of a four-year college in the United States. A transcendental phenomenological design was employed to investigate the essence of international…

  6. Navigating a Literacy Landscape: Teaching Conceptual Understanding with Multiple Text Types

    ERIC Educational Resources Information Center

    Boyd, Fenice B.; Ikpeze, Chinwe H.

    2007-01-01

    The authors draw on Cognitive Flexibility Theory (Spiro, Coulson, Feltovich, & Anderson, 2004) as a lens to examine one seventh-grade English language arts teacher's pedagogical approach to using multiple text types to develop students' conceptual understandings about the 1957 integration of Little Rock's Central High School. Multiple text types…

  7. Model My Watershed: Connecting Students' Conceptual Understanding of Watersheds to Real-World Decision Making

    ERIC Educational Resources Information Center

    Gill, Susan E.; Marcum-Dietrich, Nanette; Becker-Klein, Rachel

    2014-01-01

    The Model My Watershed (MMW) application, and associated curricula, provides students with meaningful opportunities to connect conceptual understanding of watersheds to real-world decision making. The application uses an authentic hydrologic model, TR-55 (developed by the U.S. Natural Resources Conservation Service), and real data applied in…

  8. Effect of Instruction Based on Conceptual Change Activities on Students' Understanding of Static Electricity Concepts

    ERIC Educational Resources Information Center

    Baser, Mustafa; Geban, Omer

    2007-01-01

    This study was conducted to investigate the effectiveness of learning activities based on conceptual change conditions and traditionally designed physics instruction on tenth-grade students' understanding of static electricity concepts and their attitudes toward physics as a school subject. Misconceptions related to static electricity concepts…

  9. Young Children's Conceptual Understanding of Triangle

    ERIC Educational Resources Information Center

    Dagli, Ümmühan Yesil; Halat, Erdogan

    2016-01-01

    This study explored 5-6 year-old children's conceptual understanding of one geometric shape, the triangle. It focused on whether children could draw a triangle from memory, and identify triangles of different types, sizes, and orientations. The data were collected from 82 children attending state preschool programs through a one-on-one interview,…

  10. Impact of Additional Guidance in Science Education on Primary Students' Conceptual Understanding

    ERIC Educational Resources Information Center

    Decristan, Jasmin; Hondrich, A. Lena; Büttner, Gerhard; Hertel, Silke; Klieme, Eckhard; Kunter, Mareike; Lühken, Arnim; Adl-Amini, Katja; Djakovic, Sanna-K.; Mannel, Susanne; Naumann, Alexander; Hardy, Ilonca

    2015-01-01

    A cognitive and a guidance dimension can describe the support of students' conceptual understanding in inquiry-based science education. The role of guidance for student learning has been intensively discussed. Furthermore, inquiry learning may pose particular challenges to students with low language proficiency. The present intervention in primary…

  11. Effect of Writing-to-Learn Strategy on Undergraduates' Conceptual Understanding of Electrostatics

    ERIC Educational Resources Information Center

    Atasoy, Sengül

    2013-01-01

    The purpose of this study is to explore the effect of Writing-to-Learn (WTL) strategy on undergraduates' conceptual understanding of electrostatics. The sample of the study was 54 university students registered at elementary school mathematics education department. While the experimental group was asked to conduct WTL activities like explanatory…

  12. Conceptual Ecology of Evolution Acceptance among Greek Education Students: The Contribution of Knowledge Increase

    ERIC Educational Resources Information Center

    Athanasiou, Kyriacos; Katakos, Efstratios; Papadopoulou, Penelope

    2012-01-01

    In this study, we explored the factors related to acceptance of evolutionary theory among students/preservice preschool education teachers using conceptual ecology for biological evolution as a theoretical frame. We aimed to examine the acceptance and understanding of evolutionary theory and also the relationship of acceptance and understanding of…

  13. Effects of Gender and Collaborative Learning Approach on Students' Conceptual Understanding of Electromagnetic Induction

    ERIC Educational Resources Information Center

    Adolphus, Telima; Omeodu, Doris

    2016-01-01

    The study investigates the effect of gender and collaborative learning approach on students' conceptual understanding of electromagnetic induction in Secondary Schools in Nigeria. Three research questions and 2 hypotheses were formulated to guide the research. The research design adopted for this study is the quasi-experimental design. In…

  14. Short storybooks to build conceptual understanding

    NASA Astrophysics Data System (ADS)

    Variano, Evan

    2014-11-01

    To help students build intuitive or conceptual understanding of key fluids concepts, I present short stories written in the style of childrens' books. The goal is to provide analogies with a strong visual component, in a format that allows students to return for a quick review. The content, philosophy, and initial student feedback will be discussed.

  15. Effectiveness of Conceptual Change Instruction on Understanding of Heat and Temperature Concepts

    ERIC Educational Resources Information Center

    Baser, Mustafa; Geban, Omer

    2007-01-01

    This study investigated the differential effects of two modes of instructional program (conceptual change oriented and traditionally designed) and gender difference on students' understanding of heat and temperature concepts, and their attitudes toward science as a school subject. The subjects of this study consisted of 72 seventh grade students…

  16. Effect of Conceptual Change Oriented Instruction on Students' Understanding of Heat and Temperature Concepts

    ERIC Educational Resources Information Center

    Baser, Mustafa

    2006-01-01

    This study explores the effectiveness of conceptual change oriented instruction and standard science instruction and contribution of logical thinking ability on seventh grade students' understanding of heat and temperature concepts. Misconceptions related to heat and temperature concepts were determined by related literature on this subject.…

  17. Towards a Novel Conceptual Framework for Understanding Mergers in Higher Education

    ERIC Educational Resources Information Center

    Cai, Yuzhuo; Pinheiro, Rómulo; Geschwind, Lars; Aarrevaara, Timo

    2016-01-01

    This paper tries to develop a conceptual framework for a comprehensive understanding of the merger process, which is regarded as a matter of institutionalization of organizational innovation. In the framework, a number of factors affecting merger process or institutionalization of merger are identified, such as those related to environmental…

  18. Old Habits Die Hard: An Uphill Struggle against Rules without Reason in Mathematics Teacher Education

    ERIC Educational Resources Information Center

    O'Meara, Niamh; Fitzmaurice, Olivia; Johnson, Patrick

    2017-01-01

    Mathematics teacher educators in the University of Limerick became aware of a lack of conceptual understanding of key mathematics concepts of prospective secondary mathematics teachers through observation on teaching placement and in pedagogy lectures. A pilot study to enhance the conceptual understanding of prospective teachers was carried out…

  19. Development of a Measurement Instrument to Assess Students' Electrolyte Conceptual Understanding

    ERIC Educational Resources Information Center

    Lu, Shanshan; Bi, Hualin

    2016-01-01

    To assess students' conceptual understanding levels and diagnose alternative frameworks of the electrolyte concept, a measurement instrument was developed using the Rasch model. This paper reports the use of the measurement instrument to assess 559 students from grade 10 to grade 12 in two cities. The results provided both diagnostic and summative…

  20. Defining Electric Potential Difference by Moving a Multimeter's Ground Probe

    ERIC Educational Resources Information Center

    Stoeckel, Marta R.

    2018-01-01

    The abstract nature of electric potential difference (voltage) can make it a difficult concept to grasp, but understanding the relative nature of voltage is central to developing a conceptual understanding of electric circuits. In laboratory situations, I see these conceptual difficulties manifest when students have difficulty placing voltmeter…

  1. Preservice Elementary School Teachers' Conceptual Understanding of Place Value within a Constructivist Framework

    ERIC Educational Resources Information Center

    Murawska, Jaclyn Marie

    2013-01-01

    This research study examined the development of 43 preservice elementary school teachers' conceptual understanding of place value after participating in a research-based constructivist unit of instruction in place value. The preservice teachers were enrolled in one of three terms of an elementary mathematics methods course in a private midwestern…

  2. South African Learners' Conceptual Understanding about Image Formation by Lenses

    ERIC Educational Resources Information Center

    John, Merlin; Molepo, Jacob Maisha; Chirwa, Max

    2017-01-01

    The purpose of this research was to explore South African Grade 11 learners' conceptual understanding of "image formation by lenses". The participants for this study were 70 Grade 11 learners from a selected senior secondary school in Mthatha, Eastern Cape Province, South Africa. The qualitative approach employed in the study made use of…

  3. The meaning of leisure: conceptual differences between Americans and Koreans

    Treesearch

    Joohyun Lee; Sae-Sook Oh; Jae-Myung Shim

    2001-01-01

    Considering the importance of diversifying the concept of leisure and expanding our scope of understanding beyond cultural borders, this study examines the conceptual differences between American and Korean understandings of the term. The results revealed that there is a significant relationship between the concept of leisure and nationality. For Americans, work...

  4. Students' Perceptions and Development of Conceptual Understanding Regarding Trigonometry and Trigonometric Function

    ERIC Educational Resources Information Center

    Cetin, Omer Faruk

    2015-01-01

    This study aims to analyse university level mathematics education students' perceptions on conceptual understanding of trigonometry and trigonometric functions and their content development of these concepts. A case study was conducted with 90 freshman students of Elementary Mathematics Department. The data were gathered via a scale; they included…

  5. Developing Conceptual Understanding of Fractions with Year Five and Six Students

    ERIC Educational Resources Information Center

    Mills, Judith

    2016-01-01

    This paper presents findings from classroom observations of one teacher (Beth). It focusses on the development of conceptual understanding of fractions with her students, articulated in Kieren's sub-constructs (Kieren, 1980,1988), and Hansen's progressions (Hansen, 2005). The study covers three lessons within a six week unit. Findings from this…

  6. The Effects on Students' Conceptual Understanding of Electric Circuits of Introducing Virtual Manipulatives within a Physical Manipulatives-Oriented Curriculum

    ERIC Educational Resources Information Center

    Zacharia, Zacharias C.; de Jong, Ton

    2014-01-01

    This study investigates whether Virtual Manipulatives (VM) within a Physical Manipulatives (PM)-oriented curriculum affect conceptual understanding of electric circuits and related experimentation processes. A pre-post comparison study randomly assigned 194 undergraduates in an introductory physics course to one of five conditions: three…

  7. The Effects of Representations, Constructivist Approaches, and Engagement on Middle School Students' Algebraic Procedure and Conceptual Understanding

    ERIC Educational Resources Information Center

    Ross, Amanda; Willson, Victor

    2012-01-01

    This study examined the effects of types of representations, constructivist teaching approaches, and student engagement on middle school algebra students' procedural knowledge and conceptual understanding. Data gathered from 16 video lessons and algebra pretest/posttests were used to run three multilevel structural equation models. Symbolic…

  8. Conceptual ecological models to guide integrated landscape monitoring of the Great Basin

    USGS Publications Warehouse

    Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.

  9. Laban movement analysis to classify emotions from motion

    NASA Astrophysics Data System (ADS)

    Dewan, Swati; Agarwal, Shubham; Singh, Navjyoti

    2018-04-01

    In this paper, we present the study of Laban Movement Analysis (LMA) to understand basic human emotions from nonverbal human behaviors. While there are a lot of studies on understanding behavioral patterns based on natural language processing and speech processing applications, understanding emotions or behavior from non-verbal human motion is still a very challenging and unexplored field. LMA provides a rich overview of the scope of movement possibilities. These basic elements can be used for generating movement or for describing movement. They provide an inroad to understanding movement and for developing movement efficiency and expressiveness. Each human being combines these movement factors in his/her own unique way and organizes them to create phrases and relationships which reveal personal, artistic, or cultural style. In this work, we build a motion descriptor based on a deep understanding of Laban theory. The proposed descriptor builds up on previous works and encodes experiential features by using temporal windows. We present a more conceptually elaborate formulation of Laban theory and test it in a relatively new domain of behavioral research with applications in human-machine interaction. The recognition of affective human communication may be used to provide developers with a rich source of information for creating systems that are capable of interacting well with humans. We test our algorithm on UCLIC dataset which consists of body motions of 13 non-professional actors portraying angry, fear, happy and sad emotions. We achieve an accuracy of 87.30% on this dataset.

  10. Numerical simulation of hydrothermal circulation in the Cascade Range, north-central Oregon

    USGS Publications Warehouse

    Ingebritsen, S.E.; Paulson, K.M.

    1990-01-01

    Alternate conceptual models to explain near-surface heat-flow observations in the central Oregon Cascade Range involve (1) an extensive mid-crustal magmatic heat source underlying both the Quaternary arc and adjacent older rocks or (2) a narrower deep heat source which is flanked by a relatively shallow conductive heat-flow anomaly caused by regional ground-water flow (the lateral-flow model). Relative to the mid-crustal heat source model, the lateral-flow model suggests a more limited geothermal resource base, but a better-defined exploration target. We simulated ground-water flow and heat transport through two cross sections trending west from the Cascade range crest in order to explore the implications of the two models. The thermal input for the alternate conceptual models was simulated by varying the width and intensity of a basal heat-flow anomaly and, in some cases, by introducing shallower heat sources beneath the Quaternary arc. Near-surface observations in the Breitenbush Hot Springs area are most readily explained in terms of lateral heat transport by regional ground-water flow; however, the deep thermal structure still cannot be uniquely inferred. The sparser thermal data set from the McKenzie River area can be explained either in terms of deep regional ground-water flow or in terms of a conduction-dominated system, with ground-water flow essentially confined to Quaternary rocks and fault zones.

  11. The effects of a visualization-centered curriculum on conceptual understanding and representational competence in high school biology

    NASA Astrophysics Data System (ADS)

    Wilder, Anna

    The purpose of this study was to investigate the effects of a visualization-centered curriculum, Hemoglobin: A Case of Double Identity, on conceptual understanding and representational competence in high school biology. Sixty-nine students enrolled in three sections of freshman biology taught by the same teacher participated in this study. Online Chemscape Chime computer-based molecular visualizations were incorporated into the 10-week curriculum to introduce students to fundamental structure and function relationships. Measures used in this study included a Hemoglobin Structure and Function Test, Mental Imagery Questionnaire, Exam Difficulty Survey, the Student Assessment of Learning Gains, the Group Assessment of Logical Thinking, the Attitude Toward Science in School Assessment, audiotapes of student interviews, students' artifacts, weekly unit activity surveys, informal researcher observations and a teacher's weekly questionnaire. The Hemoglobin Structure and Function Test, consisting of Parts A and B, was administered as a pre and posttest. Part A used exclusively verbal test items to measure conceptual understanding, while Part B used visual-verbal test items to measure conceptual understanding and representational competence. Results of the Hemoglobin Structure and Function pre and posttest revealed statistically significant gains in conceptual understanding and representational competence, suggesting the visualization-centered curriculum implemented in this study was effective in supporting positive learning outcomes. The large positive correlation between posttest results on Part A, comprised of all-verbal test items, and Part B, using visual-verbal test items, suggests this curriculum supported students' mutual development of conceptual understanding and representational competence. Evidence based on student interviews, Student Assessment of Learning Gains ratings and weekly activity surveys indicated positive attitudes toward the use of Chemscape Chime software and the computer-based molecular visualization activities as learning tools. Evidence from these same sources also indicated that students felt computer-based molecular visualization activities in conjunction with other classroom activities supported their learning. Implications for instructional design are discussed.

  12. Tackling misconceptions in geometrical optics

    NASA Astrophysics Data System (ADS)

    Ceuppens, S.; Deprez, J.; Dehaene, W.; De Cock, M.

    2018-07-01

    To improve the teaching and learning materials for a curriculum it is important to incorporate the findings from educational research. In light of this, we present creative exercises and experiments to elicit, confront and resolve misconceptions in geometrical optics. Since ray diagrams can be both the cause and the solution for many misconceptions we focus strongly on improving understanding of this tool to solve and understand optical phenomena. Through a combination of a conceptual understanding programme (CUP) and provocative exercises with ray diagrams we aim to elicit conceptual or cognitive conflict and exploit this to tackle misconceptions and increase students’ conceptual understanding through inquiry. We describe exercises for image formation by a plane mirror, image formation by a convex lens and indirect and direct observation of a real image formed by a convex lens as examples of our approach.

  13. Technology Focus: Enhancing Conceptual Knowledge of Linear Programming with a Flash Tool

    ERIC Educational Resources Information Center

    Garofalo, Joe; Cory, Beth

    2007-01-01

    Mathematical knowledge can be categorized in different ways. One commonly used way is to distinguish between procedural mathematical knowledge and conceptual mathematical knowledge. Procedural knowledge of mathematics refers to formal language, symbols, algorithms, and rules. Conceptual knowledge is essential for meaningful understanding of…

  14. The Role of Cognitive, Metacognitive, and Motivational Variables in Conceptual Change: Preservice Early Childhood Teachers' Conceptual Understanding of the Cause of Lunar Phases

    ERIC Educational Resources Information Center

    Sackes, Mesut

    2010-01-01

    This study seeks to explore and describe the role of cognitive, metacognitive, and motivational variables in conceptual change. More specifically, the purposes of the study were (1) to investigate the predictive ability of a learning model that was developed based on the intentional conceptual change perspective in predicting change in conceptual…

  15. Potential for Teacher Collaboration in Post-Soviet Ukraine

    ERIC Educational Resources Information Center

    Kutsyuruba, Benjamin

    2011-01-01

    The purpose of this conceptual paper is to analyze the potential for collaborative relationships in schools in Ukraine. In this paper, I examine the nature of teacher collaboration in schools within a framework of postmodernism as a constructive social theory. To better grasp the deep meaning of collaborative interactions in schools, I use…

  16. Mathematical Tasks, Study Approaches, and Course Grades in Undergraduate Mathematics: A Year-by-Year Analysis

    ERIC Educational Resources Information Center

    Maciejewski, Wes; Merchant, Sandra

    2016-01-01

    Students approach learning in different ways, depending on the experienced learning situation. A deep approach is geared toward long-term retention and conceptual change while a surface approach focuses on quickly acquiring knowledge for immediate use. These approaches ultimately affect the students' academic outcomes. This study takes a…

  17. On the Border: The Contested Children of the Second World War

    ERIC Educational Resources Information Center

    Ericsson, Kjersti; Simonsen, Eva

    2008-01-01

    This article conceptualizes Second World War children of German soldiers and native women in Norway as "border children", who became symbolic bearers of deep societal conflicts. The authors demonstrate that this position had painful consequences in the personal experiences of the children, experiences that were shared with war children…

  18. Virtual Cerebral Ventricular System: An MR-Based Three-Dimensional Computer Model

    ERIC Educational Resources Information Center

    Adams, Christina M.; Wilson, Timothy D.

    2011-01-01

    The inherent spatial complexity of the human cerebral ventricular system, coupled with its deep position within the brain, poses a problem for conceptualizing its anatomy. Cadaveric dissection, while considered the gold standard of anatomical learning, may be inadequate for learning the anatomy of the cerebral ventricular system; even with…

  19. Conceptual Study of Rotary-Wing Microrobotics

    DTIC Science & Technology

    2008-03-27

    tensile residual stress, respectively [78-80]. ......... 48  Table 8: Wing-T design parameters compared to Tsuzuki’s recommendations. ....... 73...Table 13: Summary of key parameters for a feasible rotary-wing MEMS robot design...Direct Methanol Fuel Cell DOF Degrees of Freedom DRIE Deep Reactive Ion Etch FEA Finite Element Analysis FEM Finite Element Modeling FOM Figure

  20. Students' Ideas about How and Why Chemical Reactions Happen: Mapping the conceptual landscape

    NASA Astrophysics Data System (ADS)

    Yan, Fan; Talanquer, Vicente

    2015-12-01

    Research in science education has revealed that many students struggle to understand chemical reactions. Improving teaching and learning about chemical processes demands that we develop a clearer understanding of student reasoning in this area and of how this reasoning evolves with training in the domain. Thus, we have carried out a qualitative study to explore students reasoning about chemical causality and mechanism. Study participants included individuals at different educational levels, from college to graduate school. We identified diverse conceptual modes expressed by students when engaged in the analysis of different types of reactions. Main findings indicate that student reasoning about chemical reactions is influenced by the nature of the process. More advanced students tended to express conceptual modes that were more normative and had more explanatory power, but major conceptual difficulties persisted in their reasoning. The results of our study are relevant to educators interested in conceptual development, learning progressions, and assessment.

  1. Assessing Students' Conceptual Understanding in Science: An Introduction about a National Project in Taiwan

    ERIC Educational Resources Information Center

    Chiu, Mei-Hung; Guo, Chorng-Jee; Treagust, David F.

    2007-01-01

    In this article, we discuss several aspects of the national project, the National Science Concept Learning Study, designed to assess elementary, middle, and secondary students' conceptual understanding in science. After a short introduction to provide some history of the project, we describe the processes used in the integrative study, the…

  2. Modeling Scientific Processes with Mathematics Equations Enhances Student Qualitative Conceptual Understanding and Quantitative Problem Solving

    ERIC Educational Resources Information Center

    Schuchardt, Anita M.; Schunn, Christian D.

    2016-01-01

    Amid calls for integrating science, technology, engineering, and mathematics (iSTEM) in K-12 education, there is a pressing need to uncover productive methods of integration. Prior research has shown that increasing contextual linkages between science and mathematics is associated with student problem solving and conceptual understanding. However,…

  3. The Effects of Inquiry-Based Computer Simulation with Cooperative Learning on Scientific Thinking and Conceptual Understanding of Gas Laws

    ERIC Educational Resources Information Center

    Abdullah, Sopiah; Shariff, Adilah

    2008-01-01

    The purpose of the study was to investigate the effects of inquiry-based computer simulation with heterogeneous-ability cooperative learning (HACL) and inquiry-based computer simulation with friendship cooperative learning (FCL) on (a) scientific reasoning (SR) and (b) conceptual understanding (CU) among Form Four students in Malaysian Smart…

  4. The Contribution of Constructivist Instruction Accompanied by Concept Mapping in Enhancing Pre-Service Chemistry Teachers' Conceptual Understanding of Chemistry in the Laboratory Course

    ERIC Educational Resources Information Center

    Aydin, Sevgi; Aydemir, Nurdane; Boz, Yezdan; Cetin-Dindar, Ayla; Bektas, Oktay

    2009-01-01

    The present study aimed to evaluate whether a chemistry laboratory course called "Laboratory Experiments in Science Education" based on constructivist instruction accompanied with concept mapping enhanced pre-service chemistry teachers' conceptual understanding. Data were collected from five pre-service chemistry teachers at a university…

  5. An Examination of How Middle School Science Teachers Conduct Collaborative Inquiry and Reflection about Students' Conceptual Understanding

    ERIC Educational Resources Information Center

    Todd-Gibson, Christine

    2013-01-01

    This qualitative case study examined how middle school science teachers conducted collaborative inquiry and reflection about students' conceptual understanding, and how individual teachers in the middle school science group acted and made reflections in response to their collaborative inquiry. It also examined external influences that affected the…

  6. The Positive and Negative Effects of Science Concept Tests on Student Conceptual Understanding

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Yeh, Ting-Kuang; Barufaldi, James P.

    2010-01-01

    This study explored the phenomenon of testing effect during science concept assessments, including the mechanism behind it and its impact upon a learner's conceptual understanding. The participants consisted of 208 high school students, in either the 11th or 12th grade. Three types of tests (traditional multiple-choice test, correct concept test,…

  7. Exploring the Usefulness of Two Conceptual Frameworks for Understanding How Organizational Factors Influence Innovation Implementation in Cancer Care

    ERIC Educational Resources Information Center

    Urquhart, Robin; Sargeant, Joan; Grunfeld, Eva

    2013-01-01

    Moving knowledge into practice and the implementation of innovations in health care remain significant challenges. Few researchers adequately address the influence of organizations on the implementation of innovations in health care. The aims of this article are to (1) present 2 conceptual frameworks for understanding the organizational factors…

  8. Enhancing Pre-Service Elementary Teachers' Conceptual Understanding of Solution Chemistry with Conceptual Change Text

    ERIC Educational Resources Information Center

    Calik, Muammer; Ayas, Alipasa; Coll, Richard Kevin

    2007-01-01

    This paper reports on the use of a constructivist-based pedagogy to enhance understanding of some features of solution chemistry. Pre-service science teacher trainees' prior knowledge about the dissolution of salts and sugar in water were elicited by the use of a simple diagnostic tool. The test revealed widespread alternative conceptions. These…

  9. Effect of Current Electricity Simulation Supported Learning on the Conceptual Understanding of Elementary and Secondary Teachers

    ERIC Educational Resources Information Center

    Kumar, David Devraj; Thomas, P. V.; Morris, John D.; Tobias, Karen M.; Baker, Mary; Jermanovich, Trudy

    2011-01-01

    This study examined the impact of computer simulation and supported science learning on a teacher's understanding and conceptual knowledge of current electricity. Pre/Post tests were used to measure the teachers' concept attainment. Overall, there was a significant and large knowledge difference effect from Pre to Post test. Two interesting…

  10. A conceptual framework for the study of human ecosystems in urban areas

    Treesearch

    Steward T.A. Pickett; William R. Burch; Shawn E. Dalton; Timothy W. Foresman; J. Morgan Grove; Rowan Rowntree

    1997-01-01

    The need for integrated concepts, capable of satisfying natural and social scientists and supporting integrated research, motivates a conceptual framework for understanding the role of humans in ecosystems. The question is how to add humans to the ecological models used to understand urban ecosystems. The ecosystem concept can serve as the basis, but specific social...

  11. Are Creative Comparisons Developed by Prospective Chemistry Teachers Evidence of Their Conceptual Understanding? The Case of Inter- and Intramolecular Forces

    ERIC Educational Resources Information Center

    Sendur, Gulten

    2014-01-01

    The aim of this study is to determine prospective chemistry teachers' creative comparisons about the basic concepts of inter- and intramolecular forces, and to uncover the relationship between these creative comparisons and prospective teachers' conceptual understanding. Based on a phenomenological research method, this study was conducted with…

  12. Making the Invisible Visible: Enhancing Students' Conceptual Understanding by Introducing Representations of Abstract Objects in a Simulation

    ERIC Educational Resources Information Center

    Olympiou, Georgios; Zacharias, Zacharia; deJong, Ton

    2013-01-01

    This study aimed to identify if complementing representations of concrete objects with representations of abstract objects improves students' conceptual understanding as they use a simulation to experiment in the domain of "Light and Color". Moreover, we investigated whether students' prior knowledge is a factor that must be considered in deciding…

  13. Teaching Multiplication with Regrouping Using the Concrete-Representational-Abstract Sequence and the Strategic Instruction Model

    ERIC Educational Resources Information Center

    Flores, Margaret M.; Franklin, Toni M.

    2014-01-01

    The Common Core State Standards (2010) involve the demonstration of conceptual knowledge of numbers and operations. For students who struggle with mathematics and have not responded to instruction, it is important that interventions emphasize this understanding. In order to address conceptual understanding of numbers and operations in meeting the…

  14. The Effect of Using the History of Sciences on Conceptual Understanding and Intrinsic Motivation

    ERIC Educational Resources Information Center

    Blizak, Djanette

    2017-01-01

    This study investigates the effect of using the history of science in teaching geometrical optics on the motivation and conceptual understanding of first year university students. For this purpose, 54 students were randomly selected, then divided into two groups: the experimental group was taught by using history of science before traditional…

  15. Understanding the Conceptual and Language Challenges Encountered by Grade 4 Students When Writing Scientific Explanations

    ERIC Educational Resources Information Center

    Seah, Lay Hoon

    2016-01-01

    This study is an attempt to examine the use of linguistic resources by primary science students so as to understand the conceptual and language demands encountered by them when constructing written explanations. The students' written explanations and the instructional language (whole-class discussion and textbook) employed over the topic, the life…

  16. An Inquiry-Based Augmented Reality Mobile Learning Approach to Fostering Primary School Students' Historical Reasoning in Non-Formal Settings

    ERIC Educational Resources Information Center

    Efstathiou, Irene; Kyza, Eleni A.; Georgiou, Yiannis

    2018-01-01

    This study investigated the contribution of a location-based augmented reality (AR) inquiry-learning environment in developing 3rd grade students' historical empathy and conceptual understanding. Historical empathy is an important element of historical thinking, which is considered to improve conceptual understanding and support the development of…

  17. Virtual Microscopic Simulation (VMS) to Promote Students' Conceptual Change: A Case Study of Heat Transfer

    ERIC Educational Resources Information Center

    Wibowo, Firmanul Catur; Suhandi, Andi; Nahadi; Samsudin, Achmad; Darman, Dina Rahmi; Suherli, Zulmiswal; Hasani, Aceng; Leksono, Sroso Mukti; Hendrayana, Aan; Suherman; Hidayat, Soleh; Hamdani, Dede; Costu, Bayram

    2017-01-01

    Most students cannot understand the concepts of science concepts. The abstract concepts that require visualization help students to promote to the understanding about the concept. The aim of this study was to develop Virtual Microscopic Simulation (VMS) in terms of encouraging conceptual change and to promote its effectiveness connected to…

  18. An Examination of How Middle School Science Teachers Conduct Collaborative Inquiry and Reflection about Students' Conceptual Understanding

    ERIC Educational Resources Information Center

    Todd-Gibson, Christine

    2017-01-01

    This qualitative case study examined how middle school science teachers conducted collaborative inquiry and reflection about students' conceptual understanding, and how individual teachers in the middle school science group acted and made reflections in response to their collaborative inquiry. It also examined external influences that affected the…

  19. A Districtwide Study of Automaticity When Included in Concept-Based Elementary School Mathematics Instruction

    ERIC Educational Resources Information Center

    McGee, Daniel; Richardson, Patrick; Brewer, Meredith; Gonulates, Funda; Hodgson, Theodore; Weinel, Rebecca

    2017-01-01

    While conceptual understanding of properties, operations, and the base-ten number system is certainly associated with the ability to access math facts fluently, the role of math fact memorization to promote conceptual understanding remains contested. In order to gain insight into this question, this study looks at the results when one of three…

  20. The Effect of Process Oriented Guided Inquiry Learning (POGIL) on 11th Graders' Conceptual Understanding of Electrochemistry

    ERIC Educational Resources Information Center

    Sen, Senol; Yilmaz, Ayhan; Geban, Ömer

    2016-01-01

    The purpose of this study was to investigate the effect of Process Oriented Guided Inquiry Learning (POGIL) method compared to traditional teaching method on 11th grade students' conceptual understanding of electrochemistry concepts. Participants were 115 students from a public school in Turkey. Nonequivalent control group design was used. Two…

  1. Impacts of Multi-Representational Instruction on High School Students' Conceptual Understandings of the Particulate Nature of Matter

    ERIC Educational Resources Information Center

    Adadan, Emine; Irving, Karen E.; Trundle, Kathy C.

    2009-01-01

    This quasi-experimental study examined 42 high school introductory chemistry students' conceptual understandings of the particulate nature of matter (PNM) before and immediately after instruction. Two groups of students, who were taught by the same teacher, received one of two possible instructional interventions: Reform-Based Teaching (RBT) or…

  2. Understanding the Greenhouse Effect by Embodiment--Analysing and Using Students' and Scientists' Conceptual Resources

    ERIC Educational Resources Information Center

    Niebert, Kai; Gropengießer, Harald

    2014-01-01

    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding…

  3. Engagement, Exploration, Explanation, Extension, and Evaluation (5E) Learning Cycle and Conceptual Change Text as Learning Tools

    ERIC Educational Resources Information Center

    Balci, Sibel; Cakiroglu, Jale; Tekkaya, Ceren

    2006-01-01

    The purpose of this study is to investigate the effects of the Engagement, Exploration, Explanation, Extension, and Evaluation (5E) learning cycle, conceptual change texts, and traditional instructions on 8th grade students' understanding of photosynthesis and respiration in plants. Students' understanding of photosynthesis and respiration in…

  4. Effectiveness of Conceptual Change Text-Oriented Instruction on Students' Understanding of Cellular Respiration Concepts

    ERIC Educational Resources Information Center

    Cakirt, Ozlem S.; Geban, Omer; Yuruk, Nejla

    2002-01-01

    This study investigated the effect of conceptual change text-oriented instruction over traditional instruction on students' understanding of cellular respiration concepts and their attitudes toward biology as a school subject. The sample of this study consisted of 84 eleventh-grade students from four classes of a high school. Two of the classes…

  5. Middle School Students' Conceptual Understanding of Equations: Evidence From Writing Story Problems. WCER Working Paper No. 2009-3

    ERIC Educational Resources Information Center

    Alibali, Martha W.; Kao, Yvonne S.; Brown, Alayna N.; Nathan, Mitchell J.; Stephens, Ana C.

    2009-01-01

    This study investigated middle school students' conceptual understanding of algebraic equations. Participants in the study--257 sixth- and seventh-grade students--were asked to solve one set of algebraic equations and to generate story problems corresponding with another set of equations. Structural aspects of the equations, including the number…

  6. Supporting Conceptual Change in School Science: A Possible Role for Tacit Understanding

    ERIC Educational Resources Information Center

    Howe, Christine; Devine, Amy; Tavares, Joana Taylor

    2013-01-01

    When students reason during school science, they often refer to conceptions that are derived from out-of-school experiences and are poor proxies for science orthodoxy. However, for some areas of science, these conceptions represent only a proportion of students' full conceptual knowledge, for tacit understanding exists that is superior to the…

  7. Effect of a Problem Based Simulation on the Conceptual Understanding of Undergraduate Science Education Students

    ERIC Educational Resources Information Center

    Kumar, David Devraj; Sherwood, Robert D.

    2007-01-01

    A study of the effect of science teaching with a multimedia simulation on water quality, the "River of Life," on the science conceptual understanding of students (N = 83) in an undergraduate science education (K-9) course is reported. Teaching reality-based meaningful science is strongly recommended by the National Science Education Standards…

  8. Effect of Two-Tier Diagnostic Tests on Promoting Learners' Conceptual Understanding of Variables in Conducting Scientific Experiments

    ERIC Educational Resources Information Center

    Çil, Emine

    2015-01-01

    Taking a test generally improves the retention of the material tested. This is a phenomenon commonly referred to as testing effect. The present research investigated whether two-tier diagnostic tests promoted student teachers' conceptual understanding of variables in conducting scientific experiments, which is a scientific process skill. In this…

  9. Effects of Conceptual Change and Traditional Confirmatory Simulations on Pre-Service Teachers' Understanding of Direct Current Circuits

    ERIC Educational Resources Information Center

    Baser, Mustafa

    2006-01-01

    The objective of this research is to investigate the effects of simulations based on conceptual change conditions (CCS) and traditional confirmatory simulations (TCS) on pre-service elementary school teachers' understanding of direct current electric circuits. The data was collected from a sample consisting of 89 students; 48 students in the…

  10. Learning and Retention of Quantum Concepts with Different Teaching Methods

    ERIC Educational Resources Information Center

    Deslauriers, Louis; Wieman, Carl

    2011-01-01

    We measured mastery and retention of conceptual understanding of quantum mechanics in a modern physics course. This was studied for two equivalent cohorts of students taught with different pedagogical approaches using the Quantum Mechanics Conceptual Survey. We measured the impact of pedagogical approach both on the original conceptual learning…

  11. Understanding Nursing Home Worker Conceptualizations about Good Care

    ERIC Educational Resources Information Center

    Chung, Gawon

    2013-01-01

    This study explored how direct care workers in nursing homes conceptualize good care and how their conceptualizations are influenced by external factors surrounding their work environment and the relational dynamics between them and residents. Study participants were drawn from a local service employees' union, and in-depth interviews were…

  12. Other-Regulation in Collaborative Groups: Implications for Regulation Quality

    ERIC Educational Resources Information Center

    Rogat, Toni Kempler; Adams-Wiggins, Karlyn R.

    2014-01-01

    The current study examines variation in other-regulation, conceptualized as efforts by one student to regulate their group's work. This study extends research which has conceptualized other-regulation as temporarily guiding others' conceptual understanding and skill development by broadening the spectrum of other-regulation to include…

  13. Effects of Directed Learning Groups upon Students' Ability to Understand Conceptual Ideas

    ERIC Educational Resources Information Center

    Johnson, Karen Gabrielle; Galluzzo, Benjamin Jason

    2014-01-01

    Mathematical modeling and directed learning groups were employed in a terminal mathematics course to encourage university students to conceptualize real-world mathematics problems. Multiple assessments were utilized to determine whether students' conceptual development is enhanced by participating in directed learning groups conducted in a…

  14. The Instrumental Value of Conceptual Frameworks in Educational Technology Research

    ERIC Educational Resources Information Center

    Antonenko, Pavlo D.

    2015-01-01

    Scholars from diverse fields and research traditions agree that the conceptual framework is a critically important component of disciplined inquiry. Yet, there is a pronounced lack of shared understanding regarding the definition and functions of conceptual frameworks, which impedes our ability to design effective research and mentor novice…

  15. Conceptual Change and Education

    ERIC Educational Resources Information Center

    Vosniadou, Stella

    2007-01-01

    In order to understand the advanced, scientific concepts of the various disciplines, students cannot rely on the simple memorization of facts. They must learn how to restructure their naive, intuitive theories based on everyday experience and lay culture. In other words, they must undergo profound conceptual change. This type of conceptual change…

  16. Enhancing Case Conceptualization through Film: The Addiction Web

    ERIC Educational Resources Information Center

    Warren, Jane; Stech, Matt; Douglas, Kristin; Lambert, Serena

    2010-01-01

    Self-reflection, creativity, and experiential education are effective teaching strategies for counselor educators. Understanding and conceptualizing client cases can feel overwhelming for counselors-in-training. This article describes how the process of case conceptualization can be enhanced through the use of film. A case example is provided of…

  17. Conceptualizing Learning in the Climate Justice Movement

    ERIC Educational Resources Information Center

    Kluttz, Jenalee; Walter, Pierre

    2018-01-01

    This article extends Scandrett et al.'s conceptual framework for social movement learning to understand learning and knowledge creation in the climate justice movement. Drawing on radical pluralist theoretical approaches to social movement learning, learning in the climate justice movement is conceptualized at the micro, meso, and macro levels,…

  18. Conceptual Change in Elementary School Teacher Candidate Knowledge of Rock-Cycle Processes.

    ERIC Educational Resources Information Center

    Stofflett, Rene Therese

    1994-01-01

    Investigates the knowledge of elementary school teacher candidates on rock-cycle processes. Three different instructional interventions were used to improve their knowledge: (1) conceptual-change teaching; (2) traditional didactic teaching; and (3) microteaching. The conceptual-change group showed the most growth in understanding, supporting…

  19. Promoting Conceptual Coherence within Context-Based Biology Education

    ERIC Educational Resources Information Center

    Ummels, Micha H. J.; Kamp, Marcel J. A.; De Kroon, Hans; Boersma, Kerst Th.

    2015-01-01

    In secondary science education, the learning and teaching of coherent conceptual understanding are often problematic. Context-based education has been proposed as a partial solution to this problem. This study aims to gain insight into the development of conceptual coherence and how context-embedded learning-teaching activities (LT) can promote…

  20. A Cross-Cultural Comparison: Teachers' Conceptualizations of Creativity

    ERIC Educational Resources Information Center

    Zhou, Ji; Shen, Jiliang; Wang, Xinghua; Neber, Heinz; Johji, Ikuma

    2013-01-01

    The purpose of this study was to understand teachers' conceptualizations of creativity and its difference among 3 countries. The conceptualization of creativity denotes the concept and exhibition of creativity, the traits of creative students, and the fostering and hindering factors for creativity in school settings. A questionnaire was…

  1. Move-tecture: A Conceptual Framework for Designing Movement in Architecture

    NASA Astrophysics Data System (ADS)

    Yilmaz, Irem

    2017-10-01

    Along with the technological improvements in our age, it is now possible for the movement to become one of the basic components of the architectural space. Accordingly, architectural construction of movement changes both our architectural production practices and our understanding of architectural space. However, existing design concepts and approaches are insufficient to discuss and understand this change. In this respect, this study aims to form a conceptual framework on the relationship of architecture and movement. In this sense, the conceptualization of move-tecture is developed to research on the architectural construction of movement and the potentials of spatial creation through architecturally constructed movement. Move-tecture, is a conceptualization that treats movement as a basic component of spatial creation. It presents the framework of a qualitative categorization on the design of moving architectural structures. However, this categorization is a flexible one that can evolve in the direction of the expanding possibilities of the architectural design and the changing living conditions. With this understanding, six categories have been defined within the context of the article: Topological Organization, Choreographic Formation, Kinetic Structuring, Corporeal Constitution, Technological Configuration and Interactional Patterning. In line with these categories, a multifaceted perspective on the moving architectural structures is promoted. It is aimed that such an understanding constitutes a new initiative in the design practices carried out in this area and provides a conceptual basis for the discussions to be developed.

  2. A Reconciliation for the Future of Psychiatry: Both Folk Psychology and Cognitive Science.

    PubMed

    Hutto, Daniel D

    2016-01-01

    Philosophy of psychiatry faces a tough choice between two competing ways of understanding mental disorders. The folk psychology (FP) view puts our everyday normative conceptual scheme in the driver's seat - on the assumption that it, and it only, tells us what mental disorders are (1). Opposing this, the scientific image (SI) view (2, 3) holds that our understanding of mental disorders must come, wholly and solely, from the sciences of the mind, unfettered by FP. This paper argues that the FP view is problematic because it is too limited: there is more to the mind than FP allows; hence, we must look beyond FP for properly deep and illuminating explanations of mental disorders. SI promises just this. But when cast in its standard cognitivist formulations, SI is unnecessarily and unjustifiably neurocentric. After rejecting both the FP view, in its pure form, and SI view, in its popular cognitivist renderings, this paper concludes that a more liberal version of SI can accommodate what is best in both views - once SI is so formulated and the FP view properly edited and significantly revised, the two views can be reconciled and combined to provide a sound philosophical basis for a future psychiatry.

  3. Chiropractic physicians: toward a select conceptual understanding of bureaucratic structures and functions in the health care institution

    PubMed Central

    Fredericks, Marcel; Kondellas, Bill; Hang, Lam; Fredericks, Janet; Ross, Michael WV

    2011-01-01

    Objective The purpose of this article is to present select concepts and theories of bureaucratic structures and functions so that chiropractic physicians and other health care professionals can use them in their respective practices. The society-culture-personality model can be applied as an organizational instrument for assisting chiropractors in the diagnosis and treatment of their patients irrespective of locality. Discussion Society-culture-personality and social meaningful interaction are examined in relationship to the structural and functional aspects of bureaucracy within the health care institution of a society. Implicit in the examination of the health care bureaucratic structures and functions of a society is the focus that chiropractic physicians and chiropractic students learn how to integrate, synthesize, and actualize values and virtues such as empathy, integrity, excellence, diversity, compassion, caring, and understanding with a deep commitment to self-reflection. Conclusion It is essential that future and current chiropractic physicians be aware of the structural and functional aspects of an organization so that chiropractic and other health care professionals are able to deliver care that involves the ingredients of quality, affordability, availability, accessibility, and continuity for their patients. PMID:22693481

  4. Conceptual Change in Understanding the Nature of Science Learning: An Interpretive Phenomenological Analysis

    NASA Astrophysics Data System (ADS)

    DiBenedetto, Christina M.

    This study is the first of its kind to explore the thoughts, beliefs, attitudes and values of secondary educators as they experience conceptual change in their understanding of the nature of science learning vis a vis the Framework for K-12 Science Education published by the National Research Council. The study takes aim at the existing gap between the vision for science learning as an active process of inquiry and current pedagogical practices in K-12 science classrooms. For students to understand and explain everyday science ideas and succeed in science studies and careers, the means by which they learn science must change. Focusing on this change, the study explores the significance of educator attitudes, beliefs and values to science learning through interpretive phenomenological analysis around the central question, "In what ways do educators understand and articulate attitudes and beliefs toward the nature of science learning?" The study further explores the questions, "How do educators experience changes in their understanding of the nature of science learning?" and "How do educators believe these changes influence their pedagogical practice?" Study findings converge on four conceptions that science learning: is the action of inquiry; is a visible process initiated by both teacher and learner; values student voice and changing conceptions is science learning. These findings have implications for the primacy of educator beliefs, attitudes and values in reform efforts, science teacher leadership and the explicit instruction of both Nature of Science and conceptual change in educator preparation programs. This study supports the understanding that the nature of science learning is cognitive and affective conceptual change. Keywords: conceptual change, educator attitudes and beliefs, framework for K-12 science education, interpretive phenomenological analysis, nature of science learning, next generation science standards, science professional development, secondary science education.

  5. Cerebral coherence between communicators marks the emergence of meaning

    PubMed Central

    Stolk, Arjen; Noordzij, Matthijs L.; Verhagen, Lennart; Volman, Inge; Schoffelen, Jan-Mathijs; Oostenveld, Robert; Hagoort, Peter; Toni, Ivan

    2014-01-01

    How can we understand each other during communicative interactions? An influential suggestion holds that communicators are primed by each other’s behaviors, with associative mechanisms automatically coordinating the production of communicative signals and the comprehension of their meanings. An alternative suggestion posits that mutual understanding requires shared conceptualizations of a signal’s use, i.e., “conceptual pacts” that are abstracted away from specific experiences. Both accounts predict coherent neural dynamics across communicators, aligned either to the occurrence of a signal or to the dynamics of conceptual pacts. Using coherence spectral-density analysis of cerebral activity simultaneously measured in pairs of communicators, this study shows that establishing mutual understanding of novel signals synchronizes cerebral dynamics across communicators’ right temporal lobes. This interpersonal cerebral coherence occurred only within pairs with a shared communicative history, and at temporal scales independent from signals’ occurrences. These findings favor the notion that meaning emerges from shared conceptualizations of a signal’s use. PMID:25489093

  6. Hydrologic processes in deep vadose zones in interdrainage arid environments

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Scanlon, Bridget R.; Hogan, James F.; Phillips, Fred M.; Scanlon, Bridget R.

    2004-01-01

    A unifying theory for the hydrology of desert vadose zones is particularly timely considering the rising population and water stresses in arid and semiarid regions. Conventional models cannot reconcile the apparent discrepancy between upward flow indicated by hydraulic gradient data and downward flow suggested by environmental tracer data in deep vadose zone profiles. A conceptual model described here explains both hydraulic and tracer data remarkably well by incorporating the hydrologic role of desert plants that encroached former juniper woodland 10 to 15 thousand years ago in the southwestern United States. Vapor transport also plays an important role in redistributing moisture through deep soils, particularly in coarse-grained sediments. Application of the conceptual model to several interdrainage arid settings reproduces measured matric potentials and chloride accumulation by simulating the transition from downward flow to upward flow just below the root zone initiated by climate and vegetation change. Model results indicate a slow hydraulic drying response in deep vadose zones that enables matric potential profiles to be used to distinguish whether precipitation episodically percolated below the root zone or was completely removed via evapotranspiration during the majority of the Holocene. Recharge declined dramatically during the Holocene in interdrainage basin floor settings of arid and semiarid basins. Current flux estimates across the water table in these environmental settings, are on the order of 0.01 to 0.1 mm yr-1 and may be recharge (downward) or discharge (upward) depending on vadose zone characteristics, such as soil texture, geothermal gradient, and water table depth. In summary, diffuse recharge through the basin floor probably contributes only minimally to the total recharge in arid and semiarid basins.

  7. Multi-perspective views of students’ difficulties with one-dimensional vector and two-dimensional vector

    NASA Astrophysics Data System (ADS)

    Fauzi, Ahmad; Ratna Kawuri, Kunthi; Pratiwi, Retno

    2017-01-01

    Researchers of students’ conceptual change usually collects data from written tests and interviews. Moreover, reports of conceptual change often simply refer to changes in concepts, such as on a test, without any identification of the learning processes that have taken place. Research has shown that students have difficulties with vectors in university introductory physics courses and high school physics courses. In this study, we intended to explore students’ understanding of one-dimensional and two-dimensional vector in multi perspective views. In this research, we explore students’ understanding through test perspective and interviews perspective. Our research study adopted the mixed-methodology design. The participants of this research were sixty students of third semester of physics education department. The data of this research were collected by testand interviews. In this study, we divided the students’ understanding of one-dimensional vector and two-dimensional vector in two categories, namely vector skills of the addition of one-dimensionaland two-dimensional vector and the relation between vector skills and conceptual understanding. From the investigation, only 44% of students provided correct answer for vector skills of the addition of one-dimensional and two-dimensional vector and only 27% students provided correct answer for the relation between vector skills and conceptual understanding.

  8. A Worksheet to Enhance Students’ Conceptual Understanding in Vector Components

    NASA Astrophysics Data System (ADS)

    Wutchana, Umporn; Emarat, Narumon

    2017-09-01

    With and without physical context, we explored 59 undergraduate students’conceptual and procedural understanding of vector components using both open ended problems and multiple choice items designed based on research instruments used in physics education research. The results showed that a number of students produce errors and revealed alternative conceptions especially when asked to draw graphical form of vector components. It indicated that most of them did not develop a strong foundation of understanding in vector components and could not apply those concepts to such problems with physical context. Based on the findings, we designed a worksheet to enhance the students’ conceptual understanding in vector components. The worksheet is composed of three parts which help students to construct their own understanding of definition, graphical form, and magnitude of vector components. To validate the worksheet, focus group discussions of 3 and 10 graduate students (science in-service teachers) had been conducted. The modified worksheet was then distributed to 41 grade 9 students in a science class. The students spent approximately 50 minutes to complete the worksheet. They sketched and measured vectors and its components and compared with the trigonometry ratio to condense the concepts of vector components. After completing the worksheet, their conceptual model had been verified. 83% of them constructed the correct model of vector components.

  9. Discriminating a deep gallium antisite defect from shallow acceptors in GaAs using supercell calculations

    DOE PAGES

    Schultz, Peter A.

    2016-03-01

    For the purposes of making reliable first-principles predictions of defect energies in semiconductors, it is crucial to distinguish between effective-mass-like defects, which cannot be treated accurately with existing supercell methods, and deep defects, for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite defect GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a conceptual framework of level patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as B As. Thismore » systematic approach determines that the gallium antisite supercell results has signatures inconsistent with an effective mass state and cannot be the 78/203 shallow double acceptor. Lastly, the properties of the Ga antisite in GaAs are described, total energy calculations that explicitly map onto asymptotic discrete localized bulk states predict that the Ga antisite is a deep double acceptor and has at least one deep donor state.« less

  10. Developing Deep Understanding about Language in Undergraduate Pre-Service Teacher Programs through the Application of Knowledge

    ERIC Educational Resources Information Center

    Fenwick, Lisl; Humphrey, Sally; Quinn, Marie; Endicott, Michele

    2014-01-01

    The development of deep understanding of theoretical knowledge is an essential element of successful tertiary-programs that prepare individuals to enter professions. This study investigates the extent to which an emphasis on the application of knowledge within curriculum design, teaching strategies and assessment methods developed deep knowledge…

  11. Improving the quality of cognitive behaviour therapy case conceptualization: the role of self-practice/self-reflection.

    PubMed

    Haarhoff, Beverly; Gibson, Kerry; Flett, Ross

    2011-05-01

    CBT case conceptualization is considered to be a key competency. Prior to the publication in 2009 of Kuyken, Padesky and Dudley's book, little has been documented concerning methods for training conceptualization skills and the conceptualization process is usually perceived as predominantly an intellectual process. In this paper, the Declarative-Procedural-Reflective model of therapist skill acquisition provides a route to understanding how different kinds of knowledge systems can be integrated to enhance therapist skill acquisition. Sixteen recent graduates of a postgraduate diploma in cognitive behaviour therapy worked independently through a self-practice/self-reflection workbook designed to lead them through a series of CBT interventions commonly used to elicit the information required for a CBT conceptualization. The participants' self-reflections were thematically analyzed and uncovered the following inter-related themes: increased theoretical understanding of the CBT model, self-awareness, empathy, conceptualization of the therapeutic relationship, and adaptation of clinical interventions and practice. A tentative conclusion reached, based on the self-reflections of the participants, was that targeted self-practice/self-reflection enhanced case conceptualization skill by consolidating the Declarative, Procedural and Reflective systems important in therapist skill acquisition. © British Association for Behavioural and Cognitive Psychotherapies 2011

  12. Analyzing student conceptual understanding of resistor networks using binary, descriptive, and computational questions

    NASA Astrophysics Data System (ADS)

    Mujtaba, Abid H.

    2018-02-01

    This paper presents a case study assessing and analyzing student engagement with and responses to binary, descriptive, and computational questions testing the concepts underlying resistor networks (series and parallel combinations). The participants of the study were undergraduate students enrolled in a university in Pakistan. The majority of students struggled with the descriptive question, and while successfully answering the binary and computational ones, they failed to build an expectation for the answer, and betrayed significant lack of conceptual understanding in the process. The data collected was also used to analyze the relative efficacy of the three questions as a means of assessing conceptual understanding. The three questions were revealed to be uncorrelated and unlikely to be testing the same construct. The ability to answer the binary or computational question was observed to be divorced from a deeper understanding of the concepts involved.

  13. Vadose Zone Flow and Transport of Dissolved Organic Carbon at Multiple Scales in Humid Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, Philip M; Mayes, Melanie; Mulholland, Patrick J

    2006-06-01

    Scientists must embrace the necessity to offset global CO{sub 2} emissions regardless of politics. Efforts to enhance terrestrial organic carbon sequestration have traditionally focused on aboveground biomass and surface soils. An unexplored potential exists in thick lower horizons of widespread, mature soils such as Alfisols, Ultisols, and Oxisols. We present a case study of fate and transport of dissolved organic carbon (DOC) in a highly weathered Ultisol, involving spatial scales from the laboratory to the landscape. Our objectives were to interpret processes observed at various scales and provide an improved understanding of coupled hydrogeochemical mechanisms that control DOC mobility andmore » sequestration in deep subsoils within humid climatic regimes. Our approach is multiscale, using laboratory-scale batch and soil columns (0.2 by 1.0 m), an in situ pedon (2 by 2 by 3 m), a well-instrumented subsurface facility on a subwatershed (0.47 ha), and ephemeral and perennial stream discharge at the landscape scale (38.4 ha). Laboratory-scale experiments confirmed that lower horizons have the propensity to accumulate DOC, but that preferential fracture flow tends to limit sequestration. Intermediate-scale experiments demonstrated the beneficial effects of C diffusion into soil micropores. Field- and landscape-scale studies demonstrated coupled hydrological, geochemical, and microbiological mechanisms that limit DOC sequestration, and their sensitivity to local environmental conditions. Our results suggest a multi-scale approach is necessary to assess the propensity of deep subsoils to sequester organic C in situ. By unraveling fundamental organic C sequestration mechanisms, we improve the conceptual and quantitative understanding needed to predict and alter organic C budgets in soil systems.« less

  14. Effect of a Diagram on Primary Students' Understanding About Electric Circuits

    NASA Astrophysics Data System (ADS)

    Preston, Christine Margaret

    2017-09-01

    This article reports on the effect of using a diagram to develop primary students' conceptual understanding about electric circuits. Diagrammatic representations of electric circuits are used for teaching and assessment despite the absence of research on their pedagogical effectiveness with young learners. Individual interviews were used to closely analyse Years 3 and 5 (8-11-year-old) students' explanations about electric circuits. Data was collected from 20 students in the same school providing pre-, post- and delayed post-test dialogue. Students' thinking about electric circuits and changes in their explanations provide insights into the role of diagrams in understanding science concepts. Findings indicate that diagram interaction positively enhanced understanding, challenged non-scientific views and promoted scientific models of electric circuits. Differences in students' understanding about electric circuits were influenced by prior knowledge, meta-conceptual awareness and diagram conventions including a stylistic feature of the diagram used. A significant finding that students' conceptual models of electric circuits were energy rather than current based has implications for electricity instruction at the primary level.

  15. Using conceptual maps to assess students' climate change understanding and misconceptions

    NASA Astrophysics Data System (ADS)

    Gautier, C.

    2011-12-01

    The complex and interdisciplinary nature of climate change science poses special challenges for educators in helping students understand the climate system, and how it is evolving under natural and anthropogenic forcing. Students and citizens alike have existing mental models that may limit their perception and processing of the multiple relationships between processes (e.g., feedback) that arise in global change science, and prevent adoption of complex scientific concepts. Their prior knowledge base serves as the scaffold for all future learning and grasping its range and limitations serves as an important basis upon which to anchor instruction. Different instructional strategies can be adopted to help students understand the inherently interdisciplinary topic of global climate change, its interwoven human and natural causes, and the connections it has with society through a complex range of political, social, technological and economic factors. One assessment method for students' understanding of global climate change with its many uncertainties, whether associated with the workings of the climate system or with respect to social, cultural and economic processes that mediate human responses to changes within the system, is through the use of conceptual maps. When well designed, they offer a representation of students' mental model prior and post instruction. We will present two conceptual mapping activities used in the classroom to assess students' knowledge and understanding about global climate change and uncover misconceptions. For the first one, concept maps will be used to demonstrate evidence of learning and conceptual change, while for the second we will show how conceptual maps can provide information about gaps in knowledge and misconceptions students have about the topic.

  16. Use of theoretical and conceptual frameworks in qualitative research.

    PubMed

    Green, Helen Elise

    2014-07-01

    To debate the definition and use of theoretical and conceptual frameworks in qualitative research. There is a paucity of literature to help the novice researcher to understand what theoretical and conceptual frameworks are and how they should be used. This paper acknowledges the interchangeable usage of these terms and researchers' confusion about the differences between the two. It discusses how researchers have used theoretical and conceptual frameworks and the notion of conceptual models. Detail is given about how one researcher incorporated a conceptual framework throughout a research project, the purpose for doing so and how this led to a resultant conceptual model. Concepts from Abbott (1988) and Witz ( 1992 ) were used to provide a framework for research involving two case study sites. The framework was used to determine research questions and give direction to interviews and discussions to focus the research. Some research methods do not overtly use a theoretical framework or conceptual framework in their design, but this is implicit and underpins the method design, for example in grounded theory. Other qualitative methods use one or the other to frame the design of a research project or to explain the outcomes. An example is given of how a conceptual framework was used throughout a research project. Theoretical and conceptual frameworks are terms that are regularly used in research but rarely explained. Textbooks should discuss what they are and how they can be used, so novice researchers understand how they can help with research design. Theoretical and conceptual frameworks need to be more clearly understood by researchers and correct terminology used to ensure clarity for novice researchers.

  17. Inter-relationship between shallow and deep aquifers under the influence of deep groundwater exploitation in the North China Plain

    NASA Astrophysics Data System (ADS)

    Han, Dongmei; Cao, Guoliang; Love, Andrew J.

    2017-04-01

    In the North China Plain (NCP), the interaction between shallow and deep groundwater flow systems enhanced by groundwater extraction has been investigated using multi-isotopic and chemical tracers for understanding the mechanism of salt water transport, which has long been one of the major regional environmental hydrogeological problems in NCP. Information about the problem will be determined using multiple lines of evidence, including field surveys of drilling and water sampling, as well as laboratory experiments and physical and numerical simulations. A conceptual model of groundwater flow system along WE cross-section from piedmont area to coastal region (Shijiazhuang-Hengshui-Cangzhou) has been developed and verified by geochemical modeling. A combined hydrogeochemical and isotopic investigation using ion relationships such as Cl/Br ratios, and environment isotopes (δ 18O, δ 2H, δ 34SSO4-δ 18OSO4, δ 15NNO_3-δ 18ONO_3, δ 13C and 87Sr/86Sr) was reviewed and carried for determining the sources of aquifer recharge, the origin of solutes and the mixing processes in groundwater flow system under the anthropogenic pumping and pollution. Results indicate that hydrochemistry of groundwater is characterized by mixing between end-members coming directly from Piedmont recharge areas, saline groundwater formed during geohistorical transgression in the shallow aquifers of central plain, and to groundwater circulating in a deeply buried Quaternary sediments. We also reviewed the groundwater age (tritium contents, 14C ages, 3H-3He ages, basin-scale flow modeling ages of groundwater) to recognize the local distributed recharge in this strongly exploited aquifer system. Finally, combined with the 1-D Cl transport modeling for the pore water of clay-rich aquitard, we reveal that salt transport in the aquitard is primarily controlled by vertical diffusion on million years' time scale, and the observed the salinized groundwater in deep aquifer may be caused by passing through ``windows'' or preferential flow path, rather than vertical flow through the aquitard.

  18. Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves

    Treesearch

    Alex L. Shigo

    1984-01-01

    The purpose of this chapter is to describe a conceptual framework for understanding how trees grow and how they and other perennial plants defend themselves. The concept of compartmentalization has developed over many years, a synthesis of ideas from a number of investigators. It is derived from detailed studies of the gross morphology and cellular anatomy of the wood...

  19. Assessing the Development of Chemistry Students' Conceptual and Visual Understanding of Dimensional Analysis via Supplemental Use of Web-Based Software

    ERIC Educational Resources Information Center

    Ellis, Jennifer T.

    2013-01-01

    This study was designed to evaluate the effects of a proprietary software program on students' conceptual and visual understanding of dimensional analysis. The participants in the study were high school general chemistry students enrolled in two public schools with different demographics (School A and School B) in the Chattanooga, Tennessee,…

  20. The Collaboration of Cooperative Learning and Conceptual Change: Enhancing the Students' Understanding of Chemical Bonding Concepts

    ERIC Educational Resources Information Center

    Eymur, Gülüzar; Geban, Ömer

    2017-01-01

    The main purpose of this study was to investigate the effects of cooperative learning based on conceptual change approach instruction on ninth-grade students' understanding in chemical bonding concepts compared to traditional instruction. Seventy-two ninth-grade students from two intact chemistry classes taught by the same teacher in a public high…

  1. Effect of PDEODE Teaching Strategy on Turkish Students' Conceptual Understanding: Particulate Nature of Matter

    ERIC Educational Resources Information Center

    Demircioglu, Hülya

    2017-01-01

    The aim of this study is to determine the effect of activities developed in accordance with PDEODE teaching strategy on students' understanding of the particulate nature of matter. The sample of the study consists of the first grade students who study in the Primary School Teacher Education Program. In order to determine the conceptual change on…

  2. Prediction/Discussion-Based Learning Cycle versus Conceptual Change Text: Comparative Effects on Students' Understanding of Genetics

    ERIC Educational Resources Information Center

    Al khawaldeh, Salem A.

    2013-01-01

    Background and Purpose: The purpose of this study was to investigate the comparative effects of a prediction/discussion-based learning cycle (HPD-LC), conceptual change text (CCT) and traditional instruction on 10th grade students' understanding of genetics concepts. Sample: Participants were 112 10th basic grade male students in three classes of…

  3. The Comparative Effects of Prediction/Discussion-Based Learning Cycle, Conceptual Change Text, and Traditional Instructions on Student Understanding of Genetics

    ERIC Educational Resources Information Center

    Yilmaz, Diba; Tekkaya, Ceren; Sungur, Semra

    2011-01-01

    The present study examined the comparative effects of a prediction/discussion-based learning cycle, conceptual change text (CCT), and traditional instructions on students' understanding of genetics concepts. A quasi-experimental research design of the pre-test-post-test non-equivalent control group was adopted. The three intact classes, taught by…

  4. Chinese and Australian Children's Understandings of the Earth: A Cross Cultural Study of Conceptual Development

    ERIC Educational Resources Information Center

    Tao, Ying; Oliver, Mary; Venville, Grady

    2013-01-01

    The purpose of this study was to explore Chinese and Australian primary children's conceptual understandings of the Earth. The research was conducted in the interpretive paradigm and was designed to be descriptive with comparative and cross sectional elements. Participants were Year 3 and Year 6 children from three schools in Hunan Province,…

  5. Improving the Conceptual Understanding in Kinematics Subject Matter with Hypertext Media Learning and Formal Thinking

    ERIC Educational Resources Information Center

    Manurung, Sondang R.; Mihardi, Satria

    2016-01-01

    The purpose of this study was to determine the effectiveness of hypertext media based kinematic learning and formal thinking ability to improve the conceptual understanding of physic prospective students. The research design used is the one-group pretest-posttest experimental design is carried out in the research by taking 36 students on from…

  6. Examining the Conceptual Understandings of Geoscience Concepts of Students with Visual Impairments: Implications of 3-D Printing

    ERIC Educational Resources Information Center

    Koehler, Karen E.

    2017-01-01

    The purpose of this qualitative study was to explore the use of 3-D printed models as an instructional tool in a middle school science classroom for students with visual impairments and compare their use to traditional tactile graphics for aiding conceptual understanding of geoscience concepts. Specifically, this study examined if the students'…

  7. Students' Communicative Resources in Relation to Their Conceptual Understanding--The Role of Non-Conventionalized Expressions in Making Sense of Visualizations of Protein Function

    ERIC Educational Resources Information Center

    Rundgren, Carl-Johan; Hirsch, Richard; Chang Rundgren, Shu-Nu; Tibell, Lena A. E.

    2012-01-01

    This study examines how students explain their conceptual understanding of protein function using visualizations. Thirteen upper secondary students, four tertiary students (studying chemical biology), and two experts were interviewed in semi-structured interviews. The interviews were structured around 2D illustrations of proteins and an animated…

  8. The Effects of Students' Cognitive Styles on Conceptual Understandings and Problem-Solving Skills in Introductory Mechanics

    ERIC Educational Resources Information Center

    Ates, Salih; Cataloglu, Erdat

    2007-01-01

    The purpose of this study was to determine if there are relationships among freshmen students' Field depended or field independent (FD/FI) cognitive style, conceptual understandings, and problem solving skills in mechanics. The sample consisted of 213 freshmen (female = 111, male = 102; age range 17-21) who were enrolled in an introductory physics…

  9. Comparison of Two Different Techniques of Cooperative Learning Approach: Undergraduates' Conceptual Understanding in the Context of Hormone Biochemistry

    ERIC Educational Resources Information Center

    Mutlu, Ayfer

    2018-01-01

    The purpose of the research was to compare the effects of two different techniques of the cooperative learning approach, namely Team-Game Tournament and Jigsaw, on undergraduates' conceptual understanding in a Hormone Biochemistry course. Undergraduates were randomly assigned to Group 1 (N = 23) and Group 2 (N = 29). Instructions were accomplished…

  10. Developing Conceptual Understanding and Procedural Fluency for Junior High School Students through Model-Facilitated Learning (MFL)

    ERIC Educational Resources Information Center

    Laswadi; Kusumah, Yaya S.; Darwis, Sutawanir; Afgani, Jarnawi D.

    2016-01-01

    Conceptual understanding (CU) and procedural fluency (PF) are two important mathematical competencies required by students. CU helps students organizing their knowledge into a coherent whole, and PF helps them to find the right solution of a problem. In order to enhance CU and PF, students need learning experiences in constructing knowledge and…

  11. An Epistemological Inquiry into Organic Chemistry Education: Exploration of Undergraduate Students' Conceptual Understanding of Functional Groups

    ERIC Educational Resources Information Center

    Akkuzu, Nalan; Uyulgan, Melis Arzu

    2016-01-01

    This study sought to determine the levels of conceptual understanding of undergraduate students regarding organic compounds within different functional groups. A total of 60 students who were enrolled in the Department of Secondary Science and Mathematics Education of a Faculty of Education at a state university in Turkey and who had followed an…

  12. The Effect of Enriched Learning Environments on the Conceptual Understanding of Students: "The Erosion and Landslide"

    ERIC Educational Resources Information Center

    Çoruhlu, Tülay Senel; Bilgin, Arzu Kirman; Nas, Sibel Er

    2016-01-01

    The aim of this research is to investigate the effect of enriched learning environments which have been developed in the framework of the "erosion and landslide" concepts on the conceptual understanding of students. A quasi-experimental method has been used in this research. The sample consists of 40 students. 5th grade students (aged…

  13. The Comparative Effectiveness of Physical, Virtual, and Virtual-Physical Manipulatives on Third-Grade Students' Science Achievement and Conceptual Understanding of Evaporation and Condensation

    ERIC Educational Resources Information Center

    Wang, Tzu-Ling; Tseng, Yi-Kuan

    2018-01-01

    The purpose of this study was to investigate the relative effectiveness of experimenting with physical manipulatives alone, virtual manipulatives alone, and virtual preceding physical manipulatives (combination environment) on third-grade students' science achievement and conceptual understanding in the domain of state changes of water, focusing…

  14. The Effects of Dynamic Graphing Utilities on Student Attitudes and Conceptual Understanding in College Algebra

    ERIC Educational Resources Information Center

    Thomas, Ryan Vail

    2016-01-01

    The goal of this study is to explore and characterize the effects of using a dynamic graphing utility (DGU) on conceptual understanding and attitudes toward mathematics, measured by the responses of college algebra students to an attitude survey and concepts assessment. Two sections of college algebra taught by the primary researcher are included…

  15. Effectiveness of Conceptual Change Text Oriented Instruction on Students' Understanding of Cellular Respiration Concepts.

    ERIC Educational Resources Information Center

    Cakir, Ozlem S.; Yuruk, Nejla; Geban, Omer

    The purpose of the study is to compare the effectiveness of conceptual change text oriented instruction and traditional instruction on students' understanding of cellular respiration concepts and their attitudes toward biology as a school subject. The sample of this study consisted of 84 eleventh-grade students from the 4 classes of a high school.…

  16. It's Rather like Learning a Language: Development of Talk and Conceptual Understanding in Mechanics Lessons

    ERIC Educational Resources Information Center

    Rincke, Karsten

    2011-01-01

    Although a broad literature exists concerning the development of conceptual understanding of force and other topics within mechanics, little is known about the role and development of students' talk about the subject. The paper presents an in-depth investigation of students' talk whilst being introduced to the concept of force. The main research…

  17. Exploring Pre-Service Elementary Science Teachers' Conceptual Understanding of Particulate Nature of Matter through Three-Tier Diagnostic Test

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Bilican, Kader; Kirbulut, Zubeyde Demet

    2017-01-01

    The purpose of this study was to explore Pre-service Elementary Science Teachers' (PSTs) conceptual understanding of Particulate Nature of Matter (PNM) through a three-tier diagnostic test. Participants were 215 PSTs from Turkey. Data consisted of participants' responses to the Particulate Nature of Matter Test (PNMT). The PNMT consists of…

  18. Chinese and Australian Year 3 Children's Conceptual Understanding of Science: A Multiple Comparative Case Study

    ERIC Educational Resources Information Center

    Tao, Ying; Oliver, Mary Colette; Venville, Grady Jane

    2012-01-01

    Children have formal science instruction from kindergarten in Australia and from Year 3 in China. The purpose of this research was to explore the impact that different approaches to primary science curricula in China and Australia have on children's conceptual understanding of science. Participants were Year 3 children from three schools of high,…

  19. The Impact of a Classroom Intervention on Grade 10 Students' Argumentation Skills, Informal Reasoning, and Conceptual Understanding of Science

    ERIC Educational Resources Information Center

    Venville, Grady J.; Dawson, Vaille M.

    2010-01-01

    The literature provides confounding information with regard to questions about whether students in high school can engage in meaningful argumentation about socio-scientific issues and whether this process improves their conceptual understanding of science. The purpose of this research was to explore the impact of classroom-based argumentation on…

  20. Seventh Grade Students' Conceptual Understanding about Citizenship: Does a Constructivist Social Studies Program Make a Difference?

    ERIC Educational Resources Information Center

    Sabanci, Osman; Kurnaz, Sefika; Yürük, Nejla

    2016-01-01

    Many studies have shown that students at different age levels come into classrooms with a variety of alternative conceptions. Commonly held alternative conceptions are the main source of the difficulties that students and teachers face in learning and teaching. The aim of this study was to compare the conceptual understanding of students who were…

  1. Exploring Effects of High School Students' Mathematical Processing Skills and Conceptual Understanding of Chemical Concepts on Algorithmic Problem Solving

    ERIC Educational Resources Information Center

    Gultepe, Nejla; Yalcin Celik, Ayse; Kilic, Ziya

    2013-01-01

    The purpose of the study was to examine the effects of students' conceptual understanding of chemical concepts and mathematical processing skills on algorithmic problem-solving skills. The sample (N = 554) included grades 9, 10, and 11 students in Turkey. Data were collected using the instrument "MPC Test" and with interviews. The MPC…

  2. General Chemistry Students' Conceptual Understanding and Language Fluency: Acid-Base Neutralization and Conductometry

    ERIC Educational Resources Information Center

    Nyachwaya, James M.

    2016-01-01

    The objective of this study was to examine college general chemistry students' conceptual understanding and language fluency in the context of the topic of acids and bases. 115 students worked in groups of 2-4 to complete an activity on conductometry, where they were given a scenario in which a titration of sodium hydroxide solution and dilute…

  3. Effects of Experimenting with Physical and Virtual Manipulatives on Students' Conceptual Understanding in Heat and Temperature

    ERIC Educational Resources Information Center

    Zacharia, Zacharias C.; Olympiou, Georgios; Papaevripidou, Marios

    2008-01-01

    This study aimed to investigate the comparative value of experimenting with physical manipulatives (PM) in a sequential combination with virtual manipulatives (VM), with the use of PM preceding the use of VM, and of experimenting with PM alone, with respect to changes in students' conceptual understanding in the domain of heat and temperature. A…

  4. Conceptual Understanding of Acids and Bases Concepts and Motivation to Learn Chemistry

    ERIC Educational Resources Information Center

    Cetin-Dindar, Ayla; Geban, Omer

    2017-01-01

    The purpose of this study was to investigate the effect of 5E learning cycle model oriented instruction (LCMI) on 11th-grade students' conceptual understanding of acids and bases concepts and student motivation to learn chemistry. The study, which lasted for 7 weeks, involved two groups: An experimental group (LCMI) and a control group (the…

  5. Using a modification of the classic Drama Triangle to enhance pastoral care.

    PubMed

    Hasty, C

    2001-01-01

    Describes the Drama Triangle of Victim-Persecutor-Rescuer conceptual model and suggests helpful ways to use it in order to understand and intervene in the difficult situations often encountered by pastors, pastoral counselors, and chaplains. Attempts to join this conceptual model to a theological understanding of persons to deepen self-examination, ground pastoral identity, and enhance pastoral competence.

  6. Influence of Environmental Education Modular Curriculum on Academic Achievement and Conceptual Understanding

    ERIC Educational Resources Information Center

    Artun, Huyseyin; Özsevgec, Tuncay

    2018-01-01

    The purpose of this study was to examine the influence of the environmental education modular curriculum on secondary school students' academic achievements and on their conceptual understanding. In the study, the case study method was used. The research sample included a total of 23 7th grade students (12 male and 11 female) who were determined…

  7. From Words to Concepts: Focusing on Word Knowledge When Teaching for Conceptual Understanding within an Inquiry-Based Science Setting

    ERIC Educational Resources Information Center

    Haug, Berit S.; Ødegaard, Marianne

    2014-01-01

    This qualitative video study explores how two elementary school teachers taught for conceptual understanding throughout different phases of science inquiry. The teachers implemented teaching materials with a focus on learning science key concepts through the development of word knowledge. A framework for word knowledge was applied to examine the…

  8. The Effects of Field Dependent/Field Independent Cognitive Styles and Motivational Styles on Students' Conceptual Understanding about Direct Current Circuits

    ERIC Educational Resources Information Center

    Karaçam, Sedat; Digilli Baran, Azize

    2015-01-01

    The purpose of this study is to investigate the effects of Field Dependent (FD)/Field Independent (FI) cognitive styles and motivational styles on high school students' conceptual understandings about direct current circuit concepts. The participants of this study consisted of 295 high school students (male = 127, female = 168) who were enrolled…

  9. Developing Conceptual Understanding in a Statistics Course: Merrill's First Principles and Real Data at Work

    ERIC Educational Resources Information Center

    Tu, Wendy; Snyder, Martha M.

    2017-01-01

    Difficulties in learning statistics primarily at the college-level led to a reform movement in statistics education in the early 1990s. Although much work has been done, effective learning designs that facilitate active learning, conceptual understanding of statistics, and the use of real-data in the classroom are needed. Guided by Merrill's First…

  10. The effect of activity-based nanoscience and nanotechnology education on pre-service science teachers' conceptual understanding

    NASA Astrophysics Data System (ADS)

    Şenel Zor, Tuba; Aslan, Oktay

    2018-03-01

    The purpose of the study was to examine the effect of activity-based nanoscience and nanotechnology education (ABNNE) on pre-service science teachers' (PST') conceptual understanding of nanoscience and nanotechnology. Within this context, the study was conducted according to mixed methods research with the use of both quantitative and qualitative methods. The participants were 32 PST who were determined by using criterion sampling that is one of the purposive sampling methods. ABNNE was carried out during 7 weeks as 2 h per week in special issues at physics course. Design and implementation of ABNNE were based on "Big Ideas" which was found in literature and provided guidance for teaching nanoscience and nanotechnology. All activities implemented during ABNNE were selected from literature. "Nanoscience and Nanotechnology Concept Test (NN-CT)" and "Activity-Based Nanoscience and Nanotechnology Education Assessment Form (ABNNE-AF)" were used as data collection tools in research. Findings obtained with data collection tools were discussed with coverage of literature. The findings revealed that PST conceptual understanding developed following ABNNE. Various suggestions for increasing PST conceptual understanding of nanoscience and nanotechnology were presented according to the results of the study.

  11. Understanding childbirth practices as an organizational cultural phenomenon: a conceptual framework.

    PubMed

    Behruzi, Roxana; Hatem, Marie; Goulet, Lise; Fraser, William; Misago, Chizuru

    2013-11-11

    Understanding the main values and beliefs that might promote humanized birth practices in the specialized hospitals requires articulating the theoretical knowledge of the social and cultural characteristics of the childbirth field and the relations between these and the institution. This paper aims to provide a conceptual framework allowing examination of childbirth practices through the lens of an organizational culture theory. A literature review performed to extrapolate the social and cultural factors contribute to birth practices and the factors likely overlap and mutually reinforce one another, instead of complying with the organizational culture of the birth place. The proposed conceptual framework in this paper examined childbirth patterns as an organizational cultural phenomenon in a highly specialized hospital, in Montreal, Canada. Allaire and Firsirotu's organizational culture theory served as a guide in the development of the framework. We discussed the application of our conceptual model in understanding the influences of organizational culture components in the humanization of birth practices in the highly specialized hospitals and explained how these components configure both the birth practice and women's choice in highly specialized hospitals. The proposed framework can be used as a tool for understanding the barriers and facilitating factors encountered birth practices in specialized hospitals.

  12. High School Intervention for Influenza Biology and Epidemics/Pandemics: Impact on Conceptual Understanding among Adolescents

    PubMed Central

    Hasni, Abdelkrim

    2009-01-01

    Understanding real-life issues such as influenza epidemiology may be of particular interest to the development of scientific knowledge and initiation of conceptual changes about viruses and their life cycles for high school students. The goal of this research project was to foster the development of adolescents' conceptual understanding of viruses and influenza biology. Thus, the project included two components: 1) pre- and posttests to determine students' conceptions about influenza biology, epidemics/pandemics, and vaccination; and 2) design an intervention that supports conceptual change to promote improvements in influenza knowledge based on these primary conceptions. Thirty-five female students from a high school biology class participated in a series of instructional activities and pre- and posttest assessments. Results from the pretest indicated that high school students exhibit a limited understanding of concepts related to viruses. Six weeks after an intervention that promoted active learning, results from a posttest showed that conceptions about influenza are more accurately related to the provided scientific knowledge. Although adolescents have nonscientific models to explain influenza biology, we showed that a carefully designed intervention can affect students' knowledge as well as influence the implementation of health education programs in secondary schools. PMID:19255137

  13. Development and Use of a Conceptual Survey in Introductory Quantum Physics

    ERIC Educational Resources Information Center

    Wuttiprom, Sura; Sharma, Manjula Devi; Johnston, Ian D.; Chitaree, Ratchapak; Soankwan, Chernchok

    2009-01-01

    Conceptual surveys have become increasingly popular at many levels to probe various aspects of science education research such as measuring student understanding of basic concepts and assessing the effectiveness of pedagogical material. The aim of this study was to construct a valid and reliable multiple-choice conceptual survey to investigate…

  14. Understanding Genetics: Analysis of Secondary Students' Conceptual Status

    ERIC Educational Resources Information Center

    Tsui, Chi-Yan; Treagust, David F.

    2007-01-01

    This article explores the conceptual change of students in Grades 10 and 12 in three Australian senior high schools when the teachers included computer multimedia to a greater or lesser extent in their teaching of a genetics course. The study, underpinned by a multidimensional conceptual-change framework, used an interpretive approach and a…

  15. Exploring the Development of Conceptual Ecologies: Communities of Concepts Related to Convection and Heat.

    ERIC Educational Resources Information Center

    Jones, M. Gail; Carter, Glenda; Rua, Melissa J.

    2000-01-01

    Examines the relationships and development of communities of concepts related to heat and convection among fifth grade students. Discusses the influence of familial and cultural experiences on conceptual development as well as the extent to which competing phenomena affect the development of new conceptual understandings. (Contains 49 references.)…

  16. Design and Validation of the Quantum Mechanics Conceptual Survey

    ERIC Educational Resources Information Center

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2010-01-01

    The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…

  17. Navigating Tensions between Conceptual and Metaconceptual Goals in the Use of Models

    ERIC Educational Resources Information Center

    Delgado, Cesar

    2015-01-01

    Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in "J Sci Educ Technol" 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build…

  18. Investigation of Conceptual Change about Double-Slit Interference in Secondary School Physics

    ERIC Educational Resources Information Center

    Kocakulah, Mustafa Sabri; Kural, Mehmet

    2010-01-01

    In this study, whether or not constructivist teaching of double-slit interference of light has a positive effect on the secondary school students' conceptual change is examined. An achievement test, a conceptual understanding test and semi-structured interviews were used as data collection tools in this mixed methods research. Experimental group…

  19. Exploring Indigenous Game-Based Physics Activities in Pre-Service Physics Teachers' Conceptual Change and Transformation of Epistemic Beliefs

    ERIC Educational Resources Information Center

    Morales, Marie Paz Escaño

    2017-01-01

    "Laro-ng-Lahi" (Indigenous Filipino game) based physics activities invigorated the integration of culture in the pre-service physics education to develop students' epistemic beliefs and the notion of conceptual understanding through conceptual change. The study conveniently involved 28 pre-service undergraduate physics students enrolled…

  20. Energy as a Substancelike Quantity That Flows: Theoretical Considerations and Pedagogical Consequences

    ERIC Educational Resources Information Center

    Brewe, Eric

    2011-01-01

    Utilizing an energy-as-substance conceptual metaphor as a central feature of the introductory physics curriculum affords students a wealth of conceptual resources for reasoning about energy conservation, storage, and transfer. This paper first establishes the utility and function of a conceptual metaphor in developing student understanding of…

  1. Developing Conceptual Understanding and Procedural Skill in Mathematics: An Iterative Process.

    ERIC Educational Resources Information Center

    Rittle-Johnson, Bethany; Siegler, Robert S.; Alibali, Martha Wagner

    2001-01-01

    Proposes that conceptual and procedural knowledge develop in an iterative fashion and improved problem representation is one mechanism underlying the relations between them. Two experiments were conducted with 5th and 6th grade students learning about decimal fractions. Results indicate conceptual and procedural knowledge do develop, iteratively,…

  2. 3D Modeling of the Deep Groundwater System at Mount Shasta, California, Using Finite Difference and Inverse Modeling in Combination with Magnetotellurics

    NASA Astrophysics Data System (ADS)

    Webb, C. H.; Foglia, L.; Fogg, G. E.; McClain, J.

    2017-12-01

    Precipitation in mountainous systems is responsible for much of the world's freshwater supply. Volcanic mountains in particular may have the capacity to store large amounts of groundwater, due to the relatively high permeability of volcanic rocks as compared to fractured crystalline rocks. These qualities make volcanic aquifers likely candidates for laterally extensive deep groundwater systems. However, the depth extent of these aquifers is not well understood and has been little studied, due to the dearth of well data in most mountain systems. When determining a water budget, especially for mountainous regions, it is necessary to understand the extent of the entire system, including the deep components. Mount Shasta of the California cascade volcanoes is one potential case of a deep groundwater system with the capacity to store significant amounts of water. In order to develop a conceptual model of the role of deep and regional groundwater flow in the Mt. Shasta groundwater system, the region was modeled using MODFLOW_2005, the finite difference flow model developed by USGS. The model was constrained using SRTM topography data, spring flow rates, PRISM precipitation rates, and well log levels. Geologic cross sections and gravity data were referenced in order to create a realistic estimate of the aquifer's structure down to 6km in depth. The aquifer stratigraphy was then represented by using 6 layers with 2-4 zones of hydraulic conductivity per layer to account for both vertical and lateral differences in lithology as well as decreasing permeability with depth. These hydraulic conductivity parameters of the model were varied using inverse modeling (UCODE_2014) to determine which layers and zones could support flow and still produce results consistent with existing well logs. Depth of flow was also corroborated with resistivity data collected in Shasta Valley using magnetotelluric (MT) soundings. Depths with comparatively low electrical resistivity were assumed to be aquifer units, and zones with high resistivity were assumed to be aquitards. By performing MT soundings in multiple locations and dividing the model into zones, this model tests both the maximum depth of flow as well as how that depth varies with lithology and geographical location.

  3. More than just "plug-and-chug": Exploring how physics students make sense with equations

    NASA Astrophysics Data System (ADS)

    Kuo, Eric

    Although a large part the Physics Education Research (PER) literature investigates students' conceptual understanding in physics, these investigations focus on qualitative, conceptual reasoning. Even in modeling expert problem solving, attention to conceptual understanding means a focus on initial qualitative analysis of the problem; the equations are typically conceived of as tools for "plug-and-chug" calculations. In this dissertation, I explore the ways that undergraduate physics students make conceptual sense of physics equations and the factors that support this type of reasoning through three separate studies. In the first study, I investigate how students' can understand physics equations intuitively through use of a particular class of cognitive elements, symbolic forms (Sherin, 2001). Additionally, I show how students leverage this intuitive, conceptual meaning of equations in problem solving. By doing so, these students avoid algorithmic manipulations, instead using a heuristic approach that leverages the equation in a conceptual argument. The second study asks the question why some students use symbolic forms and others don't. Although it is possible that students simply lack the knowledge required, I argue that this is not the only explanation. Rather, symbolic forms use is connected to particular epistemological stances, in-the-moment views on what kinds of knowledge and reasoning are appropriate in physics. Specifically, stances that value coherence between formal, mathematical knowledge and intuitive, conceptual knowledge are likely to support symbolic forms use. Through the case study of one student, I argue that both reasoning with equations and epistemological stances are dynamic, and that shifts in epistemological stance can produce shifts in whether symbolic forms are used to reason with equations. The third study expands the focus to what influences how students reason with equations across disciplinary problem contexts. In seeking to understand differences in how the same student reasons on two similar problems in calculus and physics, I show two factors, beyond the content or structure of the problems, that can help explain why reasoning on these two problems would be so different. This contributes to an understanding of what can support or impede transfer of content knowledge across disciplinary boundaries.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter A.

    For the purposes of making reliable first-principles predictions of defect energies in semiconductors, it is crucial to distinguish between effective-mass-like defects, which cannot be treated accurately with existing supercell methods, and deep defects, for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite defect GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a conceptual framework of level patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as B As. Thismore » systematic approach determines that the gallium antisite supercell results has signatures inconsistent with an effective mass state and cannot be the 78/203 shallow double acceptor. Lastly, the properties of the Ga antisite in GaAs are described, total energy calculations that explicitly map onto asymptotic discrete localized bulk states predict that the Ga antisite is a deep double acceptor and has at least one deep donor state.« less

  5. Using inquiry-based instruction with Web-based data archives to facilitate conceptual change about tides among preservice teachers

    NASA Astrophysics Data System (ADS)

    Ucar, Sedat

    The purpose of this mixed methods study was to describe and understand preservice teachers' conceptions of tides and to explore an instructional strategy that might promote the learning of scientific concepts. The participants were preservice teachers in three initial licensure programs. A total of 80 graduate students, in secondary, middle, and early childhood education programs completed a multiple choice assessment of their knowledge of tides-related concepts. Thirty of the 80 participants were interviewed before the instruction. Nineteen of the 30 students who were interviewed also participated in the instruction and were interviewed after the instruction. These 19 students also completed both the pre-test and 18 of them completed the post-test on tides and related content. Data regarding the participants' conceptual understandings of tides were collected before and after the instruction using both qualitative and quantitative data collection methods. A multiple choice pre-test was developed by the researcher. The same test was used before and after the instructional intervention. Structured interviews were conducted with participants before and after instruction. In addition to interviews, participants were asked to write a short journal after instruction. The constant comparative method was used to analyze the qualitative data. Preservice teachers' conceptual understandings of tides were categorized under six different types of conceptual understandings. Before the instruction, all preservice teachers held alternative or alternative fragments as their types of conceptual understandings of tides, and these preservice teachers who held alternative conceptions about tides were likely to indicate that there is one tidal bulge on Earth. They tried to explain this one tidal bulge using various alternative conceptions. After completing an inquiry-based and technology-enhanced instruction of tides, preservice teachers were more likely to hold a scientific conceptual understanding. Also, after completion of the inquiry-based and technology-enhanced instruction, some preservice teachers were likely to continue to hold the conception that the rotation of the moon around the Earth during one 24-hour period causes the tides to move with the moon. The findings of the study provide evidence that inquiry-based and technology-enhanced instruction utilizing Web-based archived data sources can be used to promoting conceptual change among preservice teachers.

  6. Verbal understanding: Integrating the conceptual analyses of Skinner, Ryle, and Wittgenstein.

    PubMed

    Schoneberger, T

    1991-01-01

    Gilbert Ryle's (1949) and Ludwig Wittgenstein's (1953; 1958; 1974/78) conceptual analyses of verbal understanding are presented. For Ryle, the term understanding signifies simultaneously an acquired disposition and a behavioral episode. For Wittgenstein, it signifies simultaneously a skill and a criterial behavior. Both argued that episodes of understanding comprise heterogenious classes of behaviors, and that each member of such a class is neither a necessary nor a sufficient condition of understanding. Next, an approach integrating the analyses of Ryle and Wittgenstein with that of Skinner is presented. Lastly, it is argued that this integrated analysis adequately counters Parrott's (1984) argument that understanding, for Skinner, is potential behavior and not an event.

  7. Verbal understanding: Integrating the conceptual analyses of Skinner, Ryle, and Wittgenstein

    PubMed Central

    Schoneberger, Ted

    1991-01-01

    Gilbert Ryle's (1949) and Ludwig Wittgenstein's (1953; 1958; 1974/78) conceptual analyses of verbal understanding are presented. For Ryle, the term understanding signifies simultaneously an acquired disposition and a behavioral episode. For Wittgenstein, it signifies simultaneously a skill and a criterial behavior. Both argued that episodes of understanding comprise heterogenious classes of behaviors, and that each member of such a class is neither a necessary nor a sufficient condition of understanding. Next, an approach integrating the analyses of Ryle and Wittgenstein with that of Skinner is presented. Lastly, it is argued that this integrated analysis adequately counters Parrott's (1984) argument that understanding, for Skinner, is potential behavior and not an event. PMID:22477637

  8. Creating a Learning Space in Problem-Based Learning

    ERIC Educational Resources Information Center

    Hmelo-Silver, Cindy E.

    2013-01-01

    An important aspect of PBL problems is the affordances that they hold for engaging students in discussion of important content knowledge. In this paper, I argue that one can analyze a problem in terms of a deep problem space and a broader learning space to identify the conceptual ideas for potential engagement. The problem space refers to the…

  9. Semi-Analytical Models of CO2 Injection into Deep Saline Aquifers: Evaluation of the Area of Review and Leakage through Abandoned Wells

    EPA Science Inventory

    This presentation will provide a conceptual preview of an Area of Review (AoR) tool being developed by EPA’s Office of Research and Development that applies analytic and semi-analytical mathematical solutions to elucidate potential risks associated with geologic sequestration of ...

  10. Students' Geocognition of Deep Time, Conceptualized in an Informal Educational Setting

    ERIC Educational Resources Information Center

    Clary, Renee M.; Brzusek, Robert F.; Wandersee, James H.

    2009-01-01

    Students in a Landscape Architecture Design 1 course (N = 25) at a research university in the southern US developed design solutions implementing geologic time for an informal education site. Those students who employed abstract metaphors for their designs (n = 8) were more successful than students who proceeded with a linear design construct.…

  11. Preparation guide for class B software specification documents

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1979-01-01

    General conceptual requirements and specific application rules and procedures are provided for the production of software specification documents in conformance with deep space network software standards and class B standards. Class B documentation is identified as the appropriate level applicable to implementation, sustaining engineering, and operational uses by qualified personnel. Special characteristics of class B documents are defined.

  12. Evidentiality and suggestibility: a new research venue.

    PubMed

    Aydin, Cağla; Ceci, Stephen J

    2009-01-01

    Recent research suggests that acquisition of mental-state language may influence conceptual development. We examine this possibility by investigating the conceptual links between evidentiality in language and suggestibility. Young children are disproportionately suggestible and tend to change their reports or memories when questioned. The authors discuss the extent to which components of mental-state understanding, specifically representational understanding and understanding origins of knowledge, are implicated in improvements in resistance to suggestions and comprehending evidentiality. The authors also review social-psychological evidence that has implications for evidential understanding. Integration of the literature on both topics is followed by suggestions for new research directions.

  13. 3D Geological Model for "LUSI" - a Deep Geothermal System

    NASA Astrophysics Data System (ADS)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  14. An Overview of Thermal Measurements (IR) at the Summit of Piton de la Fournaise Active Volcano and Inferences on the Structure and Dynamics of its Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Fontaine, F.; Peltier, A.; Kowalski, P.; Di Muro, A.; Villeneuve, N.; Ferrazzini, V.; Staudacher, T.

    2017-12-01

    Piton de la Fournaise, located on La Réunion Island in the South East Indian Ocean, is one of the most active basaltic volcanoes (hotspot) of the world with a mean eruption frequency <6 months over the last 20 years. The central dome of the shield is thought to host an active hydrothermal system evidenced by self-potential techniques early in the 90's and mining heat from a magmatic source located about 2-2.5 km below the summit. Surface manifestations of this activity such as fumeroles or hot grounds have however never been observed before 2007 when deep magma withdrawal from the magmatic horizon during the "eruption of the century" (>100×106 m3) on the island, led to the formation of a 400-m-deep, 1000-m-large, funnel-shaped summit caldera. Since then, the floor and inner flanks of this summit depression hosting hot grounds and active fumaroles, are monitored using an infra-red camera device permanently installed on the caldera rim.This thermal dataset constitutes the first opportunity to understand the structure and dynamics of the hydrothermal system and its ability to relay deep-seated heat and mass perturbations. We present in this communication an overview of this thermal datasets focusing on ground/fumaroles temperature evolution during volcanic crisis and rest periods and analyzing correlations with the other permanently acquired data such as the temporal evolution of gas geochemistry (CO2, SO2, H2S), ground deformation and micro-seismic activity. We finally propose a conceptual model of fluid flow architecture within the edifice which paves the way for future quantitative models of hydrothermal heat and mass transfers.

  15. Identity development in upper-level physics students: transitions in and out of physics

    NASA Astrophysics Data System (ADS)

    Irving, Paul

    2016-03-01

    In this era of unprecedented attention from the White House and Congress, the STEM community must rise to the challenge of recruiting and retaining students to achieve the mandate of producing one million additional college graduates with degrees in STEM. However, the number of students choosing to pursue and persist with physics as a degree has had a stagnated growth rate when compared to other STEM fields, and some institutions are experiencing dramatic shifts in the demographics of the students entering their programs. The development of a subject-specific identity is a strong influence on students' persistence in a discipline and is a productive lens from which to understand the stagnated growth rate of physics majors and how to support a shift in student demographics. In this presentation, ongoing research is presented that aims to understand identity development in STEM with a focus on the transition from physics student to physicist. Community development and exposure to authentic practice are established as crucial factors that contribute to the development of a professional identity. How these findings can be implemented into course design is discussed with an outline of the P3 learning environment. The P3 learning environment blends the regular focus of reform-based teaching practices on deep conceptual understanding with a focus on students obtaining understanding through engagement with authentic scientific practices. By establishing and studying learning environments similar to P3 we can further explore the development of subject-specific identity while also developing effective teaching practices.

  16. Mediating relationship of differential products in understanding integration in introductory physics

    NASA Astrophysics Data System (ADS)

    Amos, Nathaniel; Heckler, Andrew F.

    2018-01-01

    In the context of introductory physics, we study student conceptual understanding of differentials, differential products, and integrals and possible pathways to understanding these quantities. We developed a multiple choice conceptual assessment employing a variety of physical contexts probing physical understanding of these three quantities and administered the instrument to over 1000 students in first and second semester introductory physics courses. Using a regression-based mediation analysis with conceptual understanding of integration as the dependent variable, we found evidence consistent with a simple mediation model: the relationship between differentials scores and integral scores may be mediated by the understanding of differential products. The indirect effect (a quantifiable metric of mediation) was estimated as a b =0.29 , 95% CI [0.25, 0.33] for N =1102 Physics 1 students, and a b =0.27 , 95% CI [0.14, 0.48] for N =65 Physics 2 students. We also find evidence that the physical context of the questions can be an important factor. These results imply that for introductory physics courses, instructional emphasis first on differentials then on differential products in a variety of contexts may in turn promote better integral understanding.

  17. Understanding Conceptualizations of Pregnancy and Planning for Pregnancy Among Adolescent Girls and Young Women in Harare, Zimbabwe.

    PubMed

    Tinago, Chiwoneso B; Ingram, Lucy Annang; Frongillo, Edward A; Blake, Christine E; Engelsmann, Barbara; Simmons, David

    2018-07-01

    Zimbabwe has one of the highest rates of maternal mortality, yet little is understood about adolescent girls' and young women's perspectives on pregnancy or planning for pregnancy. The research study took an emic approach to understand and describe how adolescent girls and young women (14-24 years) in Harare, Zimbabwe, conceptualize pregnancy and planning for pregnancy and how these conceptualizations inform pregnancy decisions. Semi-structured, in-depth, qualitative interviews were conducted with adolescent girls and young women ( N = 48) and data were analyzed thematically using NVivo 10. Pregnancy was conceptualized across nine themes: carrying a child and oneself, growing a family, motherhood, the best time for pregnancy, pregnancy decision makers, who is responsible for the pregnancy, pregnancy burden, pregnancy dangers, and increase in social status with pregnancy. Planning for pregnancy was conceptualized during the prepregnancy, pregnancy, and postpregnancy phases. Findings emphasize considering sociocultural views concerning pregnancy and including social networks in maternal health efforts.

  18. Geopolitics: The Key to Understanding Soviet Regional Behavior.

    DTIC Science & Technology

    1987-04-01

    Soviet foreign policy. nertnngthis role, CO can begin to build a usable theoretical framwork for analyzing Soviet behavior in, utategiczlly inportant...the writings of the great geopolitical theorists, such as Mackinder, Spykman, and Gray, in developing a conceptual basis for understanding the la-tem...Histary,- British geographer Sir Halford J. mdcinder provided the conceptual framewrk for geopolitical theory by dividing the world into three vast regions

  19. The Effect of Brain Based Learning on Second Grade Junior Students' Mathematics Conceptual Understanding on Polyhedron

    ERIC Educational Resources Information Center

    Suarsana, I. Made; Widiasih, Ni Putu Santhi; Suparta, I. Nengah

    2018-01-01

    The aim of this study is to examine the effect of Brain Based Learning on second grade junior high school students? conceptual understanding on polyhedron. This study was conducted by using post-test only control group quasi-experimental design. The subjects of this study were 148 students that divided into three classes. Two classes were taken as…

  20. Effect of the 5E Model on Prospective Teachers' Conceptual Understanding of Diffusion and Osmosis: A Mixed Method Approach

    ERIC Educational Resources Information Center

    Artun, Huseyin; Costu, Bayram

    2013-01-01

    The aim of this study was to explore a group of prospective primary teachers' conceptual understanding of diffusion and osmosis as they implemented a 5E constructivist model and related materials in a science methods course. Fifty prospective primary teachers' ideas were elicited using a pre- and post-test and delayed post-test survey consisting…

  1. The Effect of Using Virtual Laboratory on Grade 10 Students' Conceptual Understanding and Their Attitudes towards Physics

    ERIC Educational Resources Information Center

    Faour, Malak Abou; Ayoubi, Zalpha

    2018-01-01

    This study investigated the effect of using (VL) on grade 10 students' conceptual understanding of the direct current electric circuit and their attitudes towards physics. The research used a quantitative experimental approach. The sample of the study was formed of 50 students of the tenth grade, aged 14 to 16 years old, of an official secondary…

  2. Comparison of Pre-Service Physics Teachers' Conceptual Understanding of Dynamics in Model-Based Scientific Inquiry and Scientific Inquiry Environments

    ERIC Educational Resources Information Center

    Arslan Buyruk, Arzu; Ogan Bekiroglu, Feral

    2018-01-01

    The focus of this study was to evaluate the impact of model-based inquiry on pre-service physics teachers' conceptual understanding of dynamics. Theoretical framework of this research was based on models-of-data theory. True-experimental design using quantitative and qualitative research methods was carried out for this research. Participants of…

  3. The Effect of the Conceptual Change Oriented Instruction through Cooperative Learning on 4th Grade Students' Understanding of Earth and Sky Concepts

    ERIC Educational Resources Information Center

    Celikten, Oksan; Ipekcioglu, Sevgi; Ertepinar, Hamide; Geban, Omer

    2012-01-01

    The purpose of this study was to compare the effectiveness of the conceptual change oriented instruction through cooperative learning (CCICL) and traditional science instruction (TI) on 4th grade students' understanding of earth and sky concepts and their attitudes toward earth and sky concepts. In this study, 56 fourth grade students from the…

  4. The Effect of Recycling Education on High School Students' Conceptual Understanding about Ecology: A Study on Matter Cycle

    ERIC Educational Resources Information Center

    Ugulu, Ilker; Yorek, Nurettin; Baslar, Suleyman

    2015-01-01

    The objective of this study is to analyze and determine whether a developed recycling education program would lead to a positive change in the conceptual understanding of ecological concepts associated with matter cycles by high school students. The research was conducted on 68 high school 10th grade students (47 female and 21 male students). The…

  5. The Influence of Computer-Assisted Instruction on Students' Conceptual Understanding of Chemical Bonding and Attitude toward Chemistry: A Case for Turkey

    ERIC Educational Resources Information Center

    Ozmen, Haluk

    2008-01-01

    In this study, the effect of computer-assisted instruction on conceptual understanding of chemical bonding and attitude toward chemistry was investigated. The study employed a quasi-experimental design involving 11 grade students; 25 in an experimental and 25 in a control group. The Chemical Bonding Achievement Test (CBAT) consisting of 15…

  6. Medical Educators' Metaphoric Talk about Their Assessment Relationships with Students: "You Don't Want to Sort of Be the One Who Sticks the Knife in Them"

    ERIC Educational Resources Information Center

    Rees, Charlotte E.; Knight, Lynn V.; Cleland, Jennifer A.

    2009-01-01

    Current perspectives in cognitive linguistics highlight the conceptual nature of cognition and how the conceptual metaphors we hold affect ways we think, talk and act. This study examines medical educators' metaphoric talk to understand ways in which assessment relationships with students are conceptualised in order to understand why educators…

  7. Exploring the Impact of Argumentation on Pre-Service Science Teachers' Conceptual Understanding of Chemical Equilibrium

    ERIC Educational Resources Information Center

    Aydeniz, Mehmet; Dogan, Alev

    2016-01-01

    This study examines the impact of argumentation on pre-service science teachers' (PST) conceptual understanding of chemical equilibrium. The sample consisted of 57 first-year PSTs enrolled in a teacher education program in Turkey. Thirty two of the 57 PSTs who participated in this study were in the experimental group and 25 in the control group.…

  8. Effects of Student-Generated Diagrams versus Student-Generated Summaries on Conceptual Understanding of Causal and Dynamic Knowledge in Plate Tectonics.

    ERIC Educational Resources Information Center

    Gobert, Janice D.; Clement, John J.

    1999-01-01

    Grade five students' (n=58) conceptual understanding of plate tectonics was measured by analysis of student-generated summaries and diagrams, and by posttest assessment of both the spatial/static and causal/dynamic aspects of the domain. The diagram group outperformed the summary and text-only groups on the posttest measures. Discusses the effects…

  9. Teaching to the Test…or Testing to Teach: Exams Requiring Higher Order Thinking Skills Encourage Greater Conceptual Understanding

    ERIC Educational Resources Information Center

    Jensen, Jamie L.; McDaniel, Mark A.; Woodard, Steven M.; Kummer, Tyler A.

    2014-01-01

    In order to test the effect of exam-question level on fostering student conceptual understanding, low-level and high-level quizzes and exams were administered in two sections of an introductory biology course. Each section was taught in a high-level inquiry based style but was assigned either low-level questions (memory oriented) on the quizzes…

  10. Young Adults' Financial Socialization Processes as Influences of Conceptualization and Understanding of Financial Well-Being and Choice in Relationship Commitment

    ERIC Educational Resources Information Center

    Rea, Jennifer K.

    2017-01-01

    The two studies presented in this dissertation provide an understanding of young adults' perspective financial socialization processes and how the experiences influence a conceptualization of financial well-being and their choice of romantic relationship status (Study 1: N = 31, Study 2: N = 549). Study 1 has adapted Gudmunson and Danes' (2011)…

  11. Investigating the Relationship between Instructors' Use of Active-Learning Strategies and Students' Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments

    ERIC Educational Resources Information Center

    Cleveland, Lacy M.; Olimpo, Jeffrey T.; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students' conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected…

  12. Development of Conceptual Models for Internet Search: A Case Study.

    ERIC Educational Resources Information Center

    Uden, Lorna; Tearne, Stephen; Alderson, Albert

    This paper describes the creation and evaluation of a World Wide Web-based courseware module, using conceptual models based on constructivism, that teaches novices how to use the Internet for searching. Questionnaires and interviews were used to understand the difficulties of a group of novices. The conceptual model of the experts for the task was…

  13. Power Matters: Foucault's "Pouvoir/Savoir" as a Conceptual Lens in Information Research and Practice

    ERIC Educational Resources Information Center

    Olsson, Michael; Heizmann, Helena

    2015-01-01

    Introduction: This paper advocates Foucault's notion of pouvoir/savoir (power/knowledge) as a conceptual lens that information researchers might fruitfully use to develop a richer understanding of the relationship between knowledge and power. Methods: Three of the authors' earlier studies are employed to illustrate the use of this conceptual lens.…

  14. Conceptual Change Text: A Supplementary Material To Facilitate Conceptual Change in Electrochemical Cell Concepts.

    ERIC Educational Resources Information Center

    Yuruk, Nejla; Geban, Omer

    The main purpose of the study was to investigate the effectiveness of conceptual change text (CCT) oriented instruction over traditionally designed instruction on students' understanding of electrochemical (galvanic and electrolytic) cell concepts. The subjects of the study consisted of 64 students from the two classes of a high school in Turkey.…

  15. The Impact of Peer Instruction on College Students' Beliefs about Physics and Conceptual Understanding of Electricity and Magnetism

    ERIC Educational Resources Information Center

    Gok, Tolga

    2012-01-01

    The purpose of this study is to assess students' conceptual learning of electricity and magnetism and examine how these conceptions, beliefs about physics, and quantitative problem-solving skills would change after peer instruction (PI). The Conceptual Survey of Electricity and Magnetism (CSEM), Colorado Learning Attitudes about Science Survey…

  16. Surveying Students' Conceptual and Procedural Knowledge of Acid-Base Behavior of Substances

    ERIC Educational Resources Information Center

    Furio-Mas, Carles; Calatayud, Maria-Luisa; Barcenas, Sergio L.

    2007-01-01

    By the end of their high school studies, students should be able to understand macroscopic and sub-microscopic conceptualization of acid-base behavior and the relationship between these conceptual models. The aim of this article is to ascertain whether grade-12 students have sufficient background knowledge to explain the properties of acids,…

  17. Investigating the Effectiveness of an Active Learning Based-Interactive Conceptual Instruction (ALBICI) on Electric Field Concept

    ERIC Educational Resources Information Center

    Samsudin, Achmad; Suhandi, Andi; Rusdiana, Dadi; Kaniawati, Ida; Costu, Bayram

    2016-01-01

    The aim of this study was to develop an Active Learning Based-Interactive Conceptual Instruction (ALBICI) model through PDEODE*E tasks (stands for Predict, Discuss, Explain, Observe, Discuss, Explore, and Explain) for promoting conceptual change and investigating its effectiveness of pre-service physics teachers' understanding on electric field…

  18. Conceptual and Critical Development in Student Teachers: First Steps towards an Integrated Comprehension of Osmosis

    ERIC Educational Resources Information Center

    Viennot, Laurence; Décamp, Nicolas

    2016-01-01

    This investigation is focused on possible links between the development of critical attitude and conceptual understanding. We conducted a fine grained analysis of five student teachers' critical and conceptual development during a one hour and a half interaction with an expert. This investigation completes a series of three previous studies…

  19. Using Item Response Theory to Conduct a Distracter Analysis on Conceptual Inventory of Natural Selection

    ERIC Educational Resources Information Center

    Battisti, Bryce Thomas; Hanegan, Nikki; Sudweeks, Richard; Cates, Rex

    2010-01-01

    Concept inventories are often used to assess current student understanding although conceptual change models are problematic. Due to controversies with conceptual change models and the realities of student assessment, it is important that concept inventories are evaluated using a variety of theoretical models to improve quality. This study used a…

  20. Constructing conceptual meaning from a popular scientific paper—the case of E = mc2

    NASA Astrophysics Data System (ADS)

    Kapon, Shulamit

    2013-01-01

    Although high school physics students solve problems using the expression E = mc2, the origin of this expression and its deep conceptual meaning are hardly ever discussed due to students’ limited prior knowledge. In 1946, a year after the atomic bombs were first dropped, Albert Einstein published a popular scientific paper explaining the equivalence between mass and energy to the general public and the implications of this principle for our daily lives. This paper describes the utilization of Einstein’s paper in a high-school physics lesson on the equivalence of mass and energy, and discusses the instructional affordances of discussing exemplary popular scientific texts in a physics lesson.

  1. Conceptualizing and Communicating River Restoration

    NASA Astrophysics Data System (ADS)

    Jacobosn, R. B.

    2007-12-01

    River restoration increasingly involves collaboration with stakeholders having diverse values and varying technical understanding. In cases where river restoration proceeds through collaborative processes, scientists are required to communicate complex understanding about riverine ecosystem processes to broad audiences. Of particular importance is communication of uncertainties in predictions of ecosystem responses to restoration actions, and how those uncertainties affect monitoring and evaluation strategies. I present a relatively simple conceptual model of how riverine ecosystems operate. The model, which has been used to conceptualize and communicate various river-restoration and management processes in the Lower Missouri River, emphasizes a) the interdependencies of driving regimes (for example, flow, sediment, and water quality), b) the filtering effect of management history, c) the typical hierarchical nature of information about how ecosystems operate, and d) how scientific understanding interacts with decision making. I provide an example of how the conceptual model has been used to illustrate the effects of extensive channel re-engineering of the Lower Missouri River which is intended to mitigate the effects of channelization and flow regulation on aquatic and flood-plain ecosystems. The conceptual model illustrates the logic for prioritizing investments in monitoring and evaluation, interactions among ecosystem components, tradeoffs between ecological and social-commercial benefits, and the feedback loop necessary for successful adaptive management.

  2. Analyzing educational university students' conceptions through smartphone-based PDEODE*E tasks on magnetic field in several mediums

    NASA Astrophysics Data System (ADS)

    Zulfikar, Aldi; Girsang, Denni Yulius; Saepuzaman, Duden; Samsudin, Achmad

    2017-05-01

    Conceptual understanding is one of the most important aspects in the study of Physics because of it useful to understand principles behind certain phenomenon which happened. An innovative method was needed to strengthen and enhance student's conceptual understanding, especially regarding the abstract subject such as magnetic field. For this reason, worksheet and exploration sheet based on PDEODE*E (Predict, Discuss, Explain, Observe, Discuss, Explore, and Explain) that uses Gauss Meter application as the smartphone technology has been designed to answer the problem. The magnetic field strength in different mediums is the physics subject which covered in this research. The research was conducted with the aim to know how effective smartphone technology-based PDEODE*E could be implemented as a physics learning strategy. The result of this research shows that students could show improvements in conceptual understanding that shown by the conclusion that was constructed during the learning process. Based on this result, PDEODE*E could become a solution to strengthen students' conceptual understanding regarding physics subject, especially those that requires abstract thinking. This result also has shown that the application ofsmartphone technology could be used to support physics learning processes in the classroom, such as Gauss Meter in this research which used to measure the magnetic field, Light Meter which could be used in the concept of light, and Harmonicity Meter for the context of the sound wave.

  3. Using the Biology Card Sorting Task to Measure Changes in Conceptual Expertise during Postsecondary Biology Education

    PubMed Central

    Bissonnette, Sarah A.; Combs, Elijah D.; Nagami, Paul H.; Byers, Victor; Fernandez, Juliana; Le, Dinh; Realin, Jared; Woodham, Selina; Smith, Julia I.; Tanner, Kimberly D.

    2017-01-01

    While there have been concerted efforts to reform undergraduate biology toward teaching students to organize their conceptual knowledge like experts, there are few tools that attempt to measure this. We previously developed the Biology Card Sorting Task (BCST), designed to probe how individuals organize their conceptual biological knowledge. Previous results showed the BCST could differentiate between different populations, namely non–biology majors (NBM) and biology faculty (BF). In this study, we administered the BCST to three additional populations, using a cross-sectional design: entering biology majors (EBM), advanced biology majors (ABM), and biology graduate students (BGS). Intriguingly, ABM did not initially sort like experts any more frequently than EBM. However, once the deep-feature framework was revealed, ABM were able to sort like experts more readily than did EBM. These results are consistent with the conclusion that biology education enables advanced biology students to use an expert-like conceptual framework. However, these results are also consistent with a process of “selection,” wherein students who persist in the major may have already had an expert-like conceptual framework to begin with. These results demonstrate the utility of the BCST in measuring differences between groups of students over the course of their undergraduate education. PMID:28213584

  4. Conceptual compression discussion on a multi-linear (FTA) and systematic (FRAM) method in an offshore operation's accident modeling.

    PubMed

    Toroody, Ahmad Bahoo; Abaei, Mohammad Mahdy; Gholamnia, Reza

    2016-12-01

    Risk assessment can be classified into two broad categories: traditional and modern. This paper is aimed at contrasting the functional resonance analysis method (FRAM) as a modern approach with the fault tree analysis (FTA) as a traditional method, regarding assessing the risks of a complex system. Applied methodology by which the risk assessment is carried out, is presented in each approach. Also, FRAM network is executed with regard to nonlinear interaction of human and organizational levels to assess the safety of technological systems. The methodology is implemented for lifting structures deep offshore. The main finding of this paper is that the combined application of FTA and FRAM during risk assessment, could provide complementary perspectives and may contribute to a more comprehensive understanding of an incident. Finally, it is shown that coupling a FRAM network with a suitable quantitative method will result in a plausible outcome for a predefined accident scenario.

  5. Plastic Transition to Switch Nonlinear Optical Properties Showing the Record High Contrast in a Single-Component Molecular Crystal.

    PubMed

    Sun, Zhihua; Chen, Tianliang; Liu, Xitao; Hong, Maochun; Luo, Junhua

    2015-12-23

    To switch bulk nonlinear optical (NLO) effects represents an exciting new branch of NLO material science, whereas it remains a great challenge to achieve high contrast for "on/off" of quadratic NLO effects in crystalline materials. Here, we report the supereminent NLO-switching behaviors of a single-component plastic crystal, 2-(hydroxymethyl)-2-nitro-1,3-propanediol (1), which shows a record high contrast of at least ∼150, exceeding all the known crystalline switches. Such a breakthrough is clearly elucidated from the slowing down of highly isotropic molecular motions during plastic-to-rigid transition. The deep understanding of its intrinsic plasticity and superior NLO property allows the construction of a feasible switching mechanism. As a unique class of substances with short-range disorder embedded in long-range ordered crystalline lattice, plastic crystals enable response to external stimuli and fulfill specific photoelectric functions, which open a newly conceptual avenue for the designing of new functional materials.

  6. Mapping the Terrain of Homosexually-Themed Language

    PubMed Central

    McCormack, Mark

    2011-01-01

    In this article, I present a new model for understanding homosexually-themed language. By detailing how old conceptualizations of homophobic language no longer maintain heuristic utility in explaining the social dynamics of many sport and educational settings, I situate other conceptualizations of homosexually-themed language depending on the cultural context. I argue that whether language is considered homophobic, or whether it is better conceptualized as fag discourse, gay discourse or pro-gay language, is primarily dependent on the homohysteria of a setting. This model should enable scholars and educators to understand the operation of homosexually-themed language in society and properly evaluate the homophobia of a setting. PMID:21534076

  7. Conceptual astronomy. II. Replicating conceptual gains, probing attitude changes across three semesters

    NASA Astrophysics Data System (ADS)

    Zeilik, Michael; Schau, Candace; Mattern, Nancy

    1999-10-01

    We report on a long-term, large-scale study of a one-semester, conceptually based, introductory astronomy course with data from more than 400 students over three semesters at the University of New Mexico. Using traditional and alternative assessment tools developed for the project, we examined the pre- and postcourse results for Fall 1994, Spring 1995, and Fall 1995. We find our results are robust: novice students show large, positive gains on assessments of conceptual understanding and connected understanding of the knowledge structure of astronomy. We find no relationship between course achievement and completion of prior courses in science or math; we do find a small to moderate relationship between students' science self-image and course achievement. Also, we detect little change over each semester in students' mildly positive incoming attitudes about astronomy and science.

  8. Transforming the junior level: Outcomes from instruction and research in E&M

    NASA Astrophysics Data System (ADS)

    Chasteen, Stephanie V.; Pollock, Steven J.; Pepper, Rachel E.; Perkins, Katherine K.

    2012-12-01

    Over the course of four years, we have researched and transformed a key course in the career of an undergraduate physics major—junior-level electricity and magnetism. With the aim of educating our majors based on a more complete understanding of the cognitive and conceptual challenges of upper-division courses, we used principles of active engagement and learning theory to develop course materials and conceptual assessments. Our research results from student and faculty interviews and observations also informed our approach. We present several measures of the outcomes of this work at the University of Colorado at Boulder and external institutions. Students in the transformed courses achieved higher learning gains compared to those in the traditionally taught courses, particularly in the areas of conceptual understanding and ability to articulate their reasoning about a problem. The course transformations appear to close a gender gap, improving female students’ scores on conceptual and traditional assessments so that they are more similar to those of male students. Students enthusiastically support the transformations, and indicate that several course elements provide useful scaffolding in conceptual understanding, as well as physicists’ “habits of mind” such as problem-solving approaches and work habits. Despite these positive outcomes, student conceptual learning gains do not fully meet faculty expectations, suggesting that it is valuable to further investigate how the content and skills indicative of “thinking like a physicist” can be most usefully taught at the upper division.

  9. Reconstructing Student Conceptions of Climate Change; An Inquiry Approach

    NASA Astrophysics Data System (ADS)

    McClelland, J. Collin

    No other environmental issue today has as much potential to alter life on Earth as does global climate change. Scientific evidence continues to grow; indicating that climate change is occurring now, and that change is a result of human activities (National Research Council [NRC], 2010). The need for climate literacy in society has become increasingly urgent. Unfortunately, understanding the concepts necessary for climate literacy remains a challenge for most individuals. A growing research base has identified a number of common misconceptions people have about climate literacy concepts (Leiserowitz, Smith, & Marlon 2011; Shepardson, Niyogi, Choi, & Charusombat, 2009). However, few have explored this understanding in high school students. This sequential mixed methods study explored the changing conceptions of global climate change in 90 sophomore biology students through the course of their participation in an eight-week inquiry-based global climate change unit. The study also explored changes in students' attitudes over the course of the study unit, contemplating possible relationships between students' conceptual understanding of and attitudes toward global climate change. Phase I of the mixed methods study included quantitative analysis of pre-post content knowledge and attitude assessment data. Content knowledge gains were statistically significant and over 25% of students in the study shifted from an expressed belief of denial or uncertainty about global warming to one of belief in it. Phase II used an inductive approach to explore student attitudes and conceptions. Conceptually, very few students grew to a scientifically accurate understanding of the greenhouse effect or the relationship between global warming and climate change. However, they generally made progress in their conceptual understanding by adding more specific detail to explain their understanding. Phase III employed a case study approach with eight purposefully selected student cases, identifying five common conceptual and five common attitudebased themes. Findings suggest similar misconceptions revealed in prior research also occurred in this study group. Some examples include; connecting global warming to the hole in the ozone layer, and falsely linking unrelated environmental issues like littering to climate change. Data about students' conceptual understanding of energy may also have implications for education research curriculum development. Similar to Driver & While no statistical relationship between students' attitudes about global climate change and overall conceptual understanding emerged, some data suggested that climate change skeptics may perceive the concept of evidence differently than non-skeptics. One-way ANOVA data comparing skeptics with other students on evidence-based assessment items was significant. This study offers insights to teachers of potential barriers students face when trying to conceptualize global climate change concepts. More importantly it reinforces the idea that students generally find value in learning about global climate change in the classroom.

  10. Improving conceptual and procedural knowledge: The impact of instructional content within a mathematics lesson.

    PubMed

    Rittle-Johnson, Bethany; Fyfe, Emily R; Loehr, Abbey M

    2016-12-01

    Students, parents, teachers, and theorists often advocate for direct instruction on both concepts and procedures, but some theorists suggest that including instruction on procedures in combination with concepts may limit learning opportunities and student understanding. This study evaluated the effect of instruction on a math concept and procedure within the same lesson relative to a comparable amount of instruction on the concept alone. Direct instruction was provided before or after solving problems to evaluate whether the type of instruction interacted with the timing of instruction within a lesson. We worked with 180 second-grade children in the United States. In a randomized experiment, children received a classroom lesson on mathematical equivalence in one of four conditions that varied in instruction type (conceptual or combined conceptual and procedural) and in instruction order (instruction before or after solving problems). Children who received two iterations of conceptual instruction had better retention of conceptual and procedural knowledge than children who received both conceptual and procedural instruction in the same lesson. Order of instruction did not impact outcomes. Findings suggest that within a single lesson, spending more time on conceptual instruction may be more beneficial than time spent teaching a procedure when the goal is to promote more robust understanding of target concepts and procedures. © 2016 The British Psychological Society.

  11. Models of borderline personality disorder: recent advances and new perspectives.

    PubMed

    D'Agostino, Alessandra; Rossi Monti, Mario; Starcevic, Vladan

    2018-01-01

    The purpose of this article is to review the most relevant conceptual models of borderline personality disorder (BPD), with a focus on recent developments in this area. Several conceptual models have been proposed with the aim of better understanding BPD: the borderline personality organization, emotion dysregulation, reflective (mentalization) dysfunction, interpersonal hypersensitivity and hyperbolic temperament models. These models have all been supported to some extent and their common components include disorganized attachment and traumatic early experiences, emotion dysregulation, interpersonal sensitivity and difficulties with social cognition. An attempt to integrate some components of the conceptual models of BPD has resulted in an emerging new perspective, the interpersonal dysphoria model, which emphasizes dysphoria as an overarching phenomenon that connects the dispositional and situational aspects of BPD. Various conceptual models have expanded our understanding of BPD, but it appears that further development entails theoretical integration. More research is needed to better understand interactions between various components of BPD, including the situational factors that activate symptoms of BPD. This will help develop therapeutic approaches that are more tailored to the heterogeneous psychopathology of BPD.

  12. Fostering Formal Commutativity Knowledge with Approximate Arithmetic

    PubMed Central

    Hansen, Sonja Maria; Haider, Hilde; Eichler, Alexandra; Godau, Claudia; Frensch, Peter A.; Gaschler, Robert

    2015-01-01

    How can we enhance the understanding of abstract mathematical principles in elementary school? Different studies found out that nonsymbolic estimation could foster subsequent exact number processing and simple arithmetic. Taking the commutativity principle as a test case, we investigated if the approximate calculation of symbolic commutative quantities can also alter the access to procedural and conceptual knowledge of a more abstract arithmetic principle. Experiment 1 tested first graders who had not been instructed about commutativity in school yet. Approximate calculation with symbolic quantities positively influenced the use of commutativity-based shortcuts in formal arithmetic. We replicated this finding with older first graders (Experiment 2) and third graders (Experiment 3). Despite the positive effect of approximation on the spontaneous application of commutativity-based shortcuts in arithmetic problems, we found no comparable impact on the application of conceptual knowledge of the commutativity principle. Overall, our results show that the usage of a specific arithmetic principle can benefit from approximation. However, the findings also suggest that the correct use of certain procedures does not always imply conceptual understanding. Rather, the conceptual understanding of commutativity seems to lag behind procedural proficiency during elementary school. PMID:26560311

  13. Conceptual Blending Monitoring Students' Use of Metaphorical Concepts to Further the Learning of Science

    NASA Astrophysics Data System (ADS)

    Fredriksson, Alexandra; Pelger, Susanne

    2018-03-01

    The aim of this study is to explore how tertiary science students' use of metaphors in their popular science article writing may influence their understanding of subject matter. For this purpose, six popular articles written by students in physics or geology were analysed by means of a close textual analysis and a metaphor analysis. In addition, semi-structured interviews were conducted with the students. The articles showed variation regarding the occurrence of active (non-conventional) metaphors, and metaphorical concepts, i.e. metaphors relating to a common theme. In addition, the interviews indicated that students using active metaphors and metaphorical concepts reflected more actively upon their use of metaphors. These students also discussed the possible relationship between subject understanding and creation of metaphors in terms of conceptual blending. The study suggests that students' process of creating metaphorical concepts could be described and visualised through integrated networks of conceptual blending. Altogether, the study argues for using conceptual blending as a tool for monitoring and encouraging the use of adequate metaphorical concepts, thereby facilitating students' opportunities of understanding and influencing the learning of science.

  14. Social, moral, and temporal qualities: Pre-service teachers' considerations of evolution and creation

    NASA Astrophysics Data System (ADS)

    Hahn, Deirdre

    The introduction of the theories of evolution into public education has created a history of misinterpretation and uncertainty about its application to understanding deep time and human origins. Conceptions about negative social and moral outcomes of evolution itself along with cognitive temporal constraints may be difficult for many individuals to uncouple from the scientific theory, serving to provoke the ongoing debate about the treatment of evolution in science education. This debate about teaching evolution is strongly influenced by groups who strive to add creationism to the science curriculum for a balanced treatment of human origins and to mediate implied negative social and moral outcomes of evolution. Individual conceptualization of evolution and creation may influence the choice of college students to teach science. This study is designed to examine if pre-service teachers' conceptualize an evolutionary and creationist process of human development using certain social, moral or temporal patterns; and if the patterns follow a negative conceptual theme. The pilot study explored 21 pre-service teachers' conceptual representation of an evolutionary process through personal narratives. Participants tended to link evolutionary changes with negative social and moral consequences and seemed to have difficulty envisioning change over time. The pilot study was expanded to include a quantitative examination of attribute patterns of an evolutionary and creationist developmental process. Seventy-three pre-service teachers participated in the second experiment and tended to fall evenly along a continuum of creationist and evolutionist beliefs about life. Using a chi-square and principle components analysis, participants were found to map concepts of evolution and creation onto each other using troubling attributes of development to distinguish negative change over time. A strong negative social and moral pattern of human development was found in the creation condition, though only a vague negative human developmental process was found for the evolution condition. Based on these results, pre-service teachers may not use evolution as a viable explanation of human origins, which may serve to contribute to evolution theory debates and discourage pre-service teachers' choice of being science instructors.

  15. Improving students' understanding by using on-going education research to refine active learning activities in a first-year electronics course

    NASA Astrophysics Data System (ADS)

    Peter Mazzolini, Alexander; Arthur Daniel, Scott

    2016-05-01

    Interactive Lecture Demonstrations (ILDs) have been used across introductory university physics as a successful active learning (AL) strategy to improve students' conceptual understanding. We have developed ILDs for more complex topics in our first-year electronics course. In 2006 we began developing ILDs to improve students' conceptual understanding of Operational Amplifiers (OAs) and negative feedback in amplification circuits. The ILDs were used after traditional lecture instruction to help students consolidate their understanding. We developed a diagnostic test, to be administered to students both before and after the ILDs, as a measure of how effective the ILDs were in improving students' understanding.

  16. Evaluation of Students' Conceptual Understanding of Malaria

    NASA Astrophysics Data System (ADS)

    Poh-Ai Cheong, Irene; Treagust, David; Kyeleve, Iorhemen J.; Oh, Peck-Yoke

    2010-12-01

    In this study, a two-tier diagnostic test for understanding malaria was developed and administered to 314 Bruneian students in Year 12 and in a nursing diploma course. The validity, reliability, difficulty level, discriminant indices, and reading ability of the test were examined and found to be acceptable in terms of measuring students' understanding and identifying alternative conceptions with respect to malaria. Results showed that students' understanding of malaria was high for content, low for reasons, and limited and superficial for both content and reasons. The instrument revealed several common alternative conceptual understandings students' hold about malaria. The MalariaTT2 instrument developed could be used in classroom lessons for challenging alternative conceptions and enhancing conceptions of malaria.

  17. Examining the influence of formative assessment on conceptual accumulation and conceptual change

    NASA Astrophysics Data System (ADS)

    Tomita, Miki K.

    This study explored the effect of formative assessment on student achievement in science. Research in science education has shown that students enter science classrooms with previously formed explanatory models of the natural world; these naive "mental models" have a substantial influence on their learning of scientific conceptions. In general, conceptual change describes the pathway from pre-instructional or prior conceptions to a post-instructional or desired conception. Conceptual change involves a fundamental restructuring of a network of concepts rather than fitting new concepts into an existing conceptual network or structure. Research has shown that conceptual change is difficult to promote; for example, students may accumulate multiple conceptions over the course of instruction, including both new misconceptions and more scientifically-sound conceptions. Hellden and Solomon (2004) found that although students tended to evoke the same, less-scientific conceptions over time, they could produce more scientifically-sound conceptions during interviews with appropriate prompting; thus, students undergo conceptual accumulation rather than conceptual change. Students can recall scientifically-sound conceptions they have learned and may use them to reason, but they do so in partnership or hybridization with their less-scientific prior conceptions. Formative assessment, which focuses on providing immediate feedback by acting upon student understanding during the course of instruction, and conceptual change have both been linked to increased student achievement. Formative assessment is an instructional strategy that helps teachers to assess students' current understanding, identify the gap between current understanding and expected understanding, and provide immediate and useful feedback to students on how to close the gap. Formative assessment ranges from formal (e.g. embedded, planned-for interactions between teacher and entire class) to informal (e.g. on-the-fly interactions between teacher and class or student). In this study, the links between formative assessment and conceptual accumulation and conceptual change were explored. Specifically, this study asked: (1) Does formative assessment promote conceptual accumulation, and (2) Does formative assessment promote conceptual change? It was hypothesized that conceptual change-focused formative assessment would foster conceptual change, in addition to supporting conceptual accumulation. It was further hypothesized that all students will show gains in conceptual accumulation as indicated by measures of declarative and procedural knowledge, but that students exposed to conceptual change-focused formative assessment would also show gains in conceptual change as indicated by measures of schematic knowledge or mental models. To research the effect of formative assessment on conceptual accumulation and conceptual change, a small randomized experiment involving 102 middle school students was conducted. In Phase I of the study, 52 6th graders were randomly assigned to a treatment or control group; in Phase II of this study, 50 7th graders were randomly assigned to a treatment or control group. Both the control and experimental groups in both phases were taught about sinking and floating by the same teacher (the author) with identical curriculum materials and activities. In addition, the experimental group received three sets of embedded formative assessments focused on conceptual change around the topic of why things sink and float during the course of instruction. In Phase I of this study, both groups were kept at the same pace through the entire sequence of investigations. The control condition spent more time on some of the more critical FAST lessons, gathering additional data to support the theories the curriculum expected they would develop at a particular juncture but not receiving structured experiences aimed at addressing misconceptions. In Phase II, students in the control condition spent roughly the same time on each FAST lesson as those in the experimental condition (e.g. they finished the sequence of activities earlier because they did not have class sessions devoted to the RLs inserted at critical junctures) but participated in the formal assessments as a block of activities after they finished the FAST investigations and posttest measures. In other words, in addition to replicating Phase I, Phase II included a Reflective Lesson section for the control group after the end of the experiment proper, followed by a post-posttest. Overall, it was found that embedding conceptual change-focused formative assessments in the FAST curriculum significantly influenced conceptual change. It was also found that all students experienced significant gains in terms of their conceptual accumulation, regardless of exposure to the formative assessments. This study connected two previously isolated but theoretically linked educational frameworks: conceptual change and formative assessment. It was found that formative assessments can be used to promote conceptual change. It was also found that conceptual change is different than conceptual accumulation, in that students who show gains on measures of declarative and procedural knowledge do not necessarily show gains on measures of schematic knowledge. (Abstract shortened by UMI.)

  18. The TEDxLSU Student Creative Communications Team: Integrating High-Impact Practices to Increase Engagement, Facilitate Deep Learning, and Advance Communication Skills

    ERIC Educational Resources Information Center

    Burdette, Rebecca; Galeucia, Annemarie; Liggett, Sarah; Thompson, Melissa

    2016-01-01

    This article provides background on Louisiana State University's Communication across the Curriculum (CxC) program and details the history and logistics of its experiential learning and community outreach event--TEDxLSU. In particular, the authors provide details on the Student Creative Communications Team (SCCT) which conceptualizes, plans, and…

  19. "The School, Whose Place Is This"? The Deep Structures of the Hidden Curriculum in Indigenous Education in Bolivia

    ERIC Educational Resources Information Center

    Regalsky, Pablo; Laurie, Nina

    2007-01-01

    In this paper we examine state and indigenous education in Bolivia. Focusing on debates about the hidden curriculum, we conceptualize the school as a political space where tensions between the overlapping jurisdictional powers of the hispanicizing state and indigenous authorities are played out. Our analysis of these tensions highlights the…

  20. Why Jane and John Couldn't Read--And How They Learned. A New Look at Striving Readers

    ERIC Educational Resources Information Center

    Fink, Rosalie

    2006-01-01

    Here is a model of reading ideal for striving readers, focused on their personal interests, topic-specific reading, deep background knowledge, contextual reading strategies, and mentoring support. More important, the model moves away from a deficit approach to conceptualize striving readers in a new way. Chapters share success stories of readers…

Top