Howard, K.A.
2003-01-01
The deep crustal rocks exposed in the Ruby-East Humboldt metamorphic core complex, northeastern Nevada, provide a guide for reconstructing Eocene crustal structure ~50 km to the west near the Carlin trend of gold deposits. The deep crustal rocks, in the footwall of a west-dipping normal-sense shear system, may have underlain the Pinon and Adobe Ranges about 50 km to the west before Tertiary extension, close to or under part of the Carlin trend. Eocene lakes formed on the hanging wall of the fault system during an early phase of extension and may have been linked to a fluid reservoir for hydrothermal circulation. The magnitude and timing of Paleogene extension remain indistinct, but dikes and tilt axes in the upper crust indicate that spreading was east-west to northwest-southeast, perpendicular to a Paleozoic and Mesozoic orogen that the spreading overprinted. High geothermal gradients associated with Eocene or older crustal thinning may have contributed to hydrothermal circulation in the upper crust. Late Eocene eruptions, upper crustal dike intrusion, and gold mineralization approximately coincided temporally with deep intrusion of Eocene sills of granite and quartz diorite and shallower intrusion of the Harrison Pass pluton into the core-complex rocks. Stacked Mesozoic nappes of metamorphosed Paleozoic and Precambrian rocks in the core complex lay at least 13 to 20 km deep in Eocene time, on the basis of geobarometry studies. In the northern part of the complex, the presently exposed rocks had been even deeper in the late Mesozoic, to >30 km depths, before losing part of their cover by Eocene time. Nappes in the core plunge northward beneath the originally thicker Mesozoic tectonic cover in the north part of the core complex. Mesozoic nappes and tectonic wedging likely occupied the thickened midlevel crustal section between the deep crustal core-complex intrusions and nappes and the overlying upper crust. These structures, as well as the subsequent large-displacement Cenozoic extensional faulting and flow in the deep crust, would be expected to blur the expression of any regional structural roots that could correlate with mineral belts. Structural mismatch of the mineralized upper crust and the tectonically complex middle crust suggests that the Carlin trend relates not to subjacent deeply penetrating rooted structures but to favorable upper crustal host rocks aligned within a relatively coherent regional block of upper crust.
Crustal structure of China from deep seismic sounding profiles
Li, S.; Mooney, W.D.
1998-01-01
More than 36,000 km of Deep Seismic Sounding (DSS) profiles have been collected in China since 1958. However, the results of these profiles are not well known in the West due to the language barrier. In this paper, we summarize the crustal structure of China with a new contour map of crustal thickness, nine representative crustal columns, and maps showing profile locations, average crustal velocity, and Pn velocity. The most remarkable aspect of the crustal structure of China is the well known 70+ km thickness of the crust of the Tibetan Plateau. The thick (45-70 km) crust of western China is separated from the thinner (30-45 km) crust of eastern China by the north-south trending seismic belt (105??E). The average crustal velocity of China ranges from 6.15 to 6.45 km/s, indicating a felsic-to-intermediate bulk crustal composition. Upper mantle (Pn) velocities are 8.0 ?? 0.2 km/s, equal to the global continental average. We interpret these results in terms of the most recent thermo-tectonic events that have modified the crust. In much of eastern China, Cenoxoic crustal extension has produced a thin crust with a low average crustal velocity, similar to western Europe and the Basin and Range Province, western USA. In western China, Mesozoic and Cenoxoic arc-continent and continent-continent collisions have led to crustal growth and thickening. Inferences on the process of crustal thickening are provided by the deep crustal velocity structure as determined by DSS profiles and other seismological studies. A high velocity (7.0-7.4 km/s) lower-crustal layer has been reported in western China only beneath the southernmost Tibetan Plateau. We identity this high-velocity layer as the cold lower crust of the subducting Indian plate. As the Indian crust is injected northward into the Tibetan lower crust, it heats and assimilates by partial melting, a process that results in a reduction in the seismic velocity of the lower crust in the central and northern Tibetan Plateau. ?? 1998 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Enciu, Dana-Mihaela
Integration of active and passive-source seismic data is employed to study the relationships between crustal structures and seismicity in the SE Carpathian foreland of Romania, and the connection with the Vrancea Seismogenic Zone. Relocated crustal epicenters and focal mechanisms are correlated with industry seismic profiles Comanesti, Ramnicu Sarat, Braila and Buzau, the reprocessed DACIA PLAN profile and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles in order to understand the link between neo-tectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identified active crustal faults suggesting a mechanical coupling between sedimentary, crustal and upper mantle structures on the Trotus, Sinaia and newly observed Ialomita Faults. Seismic reflection imaging revealed the absence of west dipping reflectors in the crust and an east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against both 'subduction-in-place' and 'slab break-off' as viable mechanisms for generating Vrancea mantle seismicity.
Seismic structure and lithospheric rheology from deep crustal xenoliths, central Montana, USA
NASA Astrophysics Data System (ADS)
Mahan, K. H.; Schulte-Pelkum, V.; Blackburn, T. J.; Bowring, S. A.; Dudas, F. O.
2012-10-01
Improved resolution of lower crustal structure, composition, and physical properties enhances our understanding and ability to model tectonic processes. The cratonic core of Montana and Wyoming, USA, contains some of the most enigmatic lower crust known in North America, with a high seismic velocity layer contributing to as much as half of the crustal column. Petrological and physical property data for xenoliths in Eocene volcanic rocks from central Montana provide new insight into the nature of the lower crust in this region. Inherent heterogeneity in xenoliths derived from depths below ˜30 km support a composite origin for the deep layer. Possible intralayer velocity steps may complicate the seismic definition of the crust/mantle boundary and interpretations of crustal thickness, particularly when metasomatized upper mantle is considered. Mafic mineral-dominant crustal xenoliths and published descriptions of mica-bearing peridotite and pyroxenite xenoliths suggest a strong lower crust overlying a potentially weaker upper mantle.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Guo, Lianghui; Shi, Lei; Li, Yonghua
2018-01-01
The North-South earthquake belt (NSEB) is one of the major earthquake regions in China. The studies of crustal structure play a great role in understanding tectonic evolution and in evaluating earthquake hazards in this region. However, some fundamental crustal parameters, especially crustal interface structure, are not clear in this region. In this paper, we reconstructed the crustal interface structure around the NSEB based on both the deep seismic sounding (DSS) data and the gravity data. We firstly reconstructed the crustal structure of crystalline basement (interface G), interface between upper and lower crusts (interface C) and Moho in the study area by compiling the results of 38 DSS profiles published previously. Then, we forwardly calculated the gravity anomalies caused by the interfaces G and C, and then subtracted them from the complete Bouguer gravity anomalies, yielding the regional gravity anomalies mainly due to the Moho interface. We then utilized a lateral-variable density interface inversion technique with constraints of the DSS data to invert the regional anomalies for the Moho depth model in the study area. The reliability of our Moho depth model was evaluated by comparing with other Moho depth models derived from other gravity inversion technique and receiver function analysis. Based on our Moho depth model, we mapped the crustal apparent density distribution in the study area for better understanding the geodynamics around the NSEB.
The T-Reflection and the Deep Crustal Structure of the Vøring Margin, Offshore mid-Norway
NASA Astrophysics Data System (ADS)
Abdelmalak, M. M.; Faleide, J. I.; Planke, S.; Gernigon, L.; Zastrozhnov, D.; Shephard, G. E.; Myklebust, R.
2017-11-01
Seismic reflection data along volcanic passive margins frequently provide imaging of strong and laterally continuous reflections in the middle and lower crust. We have completed a detailed 2-D seismic interpretation of the deep crustal structure of the Vøring Margin, offshore mid-Norway, where high-quality seismic data allow the identification of high-amplitude reflections, locally referred to as the T-Reflection. Using a dense seismic grid, we have mapped the geometry of the T-Reflection in order to compare it with filtered Bouguer gravity anomalies and seismic refraction data. The T-Reflection is identified between 7 and 10 s. Sometimes it consists of one single smooth reflection. However, it is frequently associated with a set of rough multiple reflections displaying discontinuous segments with varying geometries, amplitudes, and contact relationships. The T-Reflection seems to be connected to deep sill networks and is locally identified at the continuation of basement high structures or terminates over fractures and faults. The T-Reflection presents a low magnetic signal. The spatial correlation between the filtered positive Bouguer gravity anomalies and the deep dome-shaped reflections indicates that the latter represent a high-impedance boundary contrast associated with a high-density and high-velocity body. In 50% of the outer Vøring Margin, the depth of the mapped T-Reflection is found to correspond to the depth of the top of the Lower Crustal Body (LCB), which is characterized by high P wave velocities (>7 km/s). We present a tectonic scenario, where a large part of the deep crustal structure is composed of preserved upper continental crustal blocks and middle to lower crustal lenses of inherited high-grade metamorphic rocks. Deep intrusions into the faulted crustal blocks are responsible for the rough character of the T-Reflection, whereas intrusions into the ductile lower crust and detachment faults are likely responsible for its smoother character. Deep magma intrusions can be responsible for regional metamorphic processes leading to an increasing velocity of the lower crust to more than 7 km/s. The result is a heterogeneous LCB that likely represents a complex mixture of pre- to syn-breakup mafic and ultramafic rocks (cumulates and sills) and old metamorphic rocks such as granulites and eclogites. An increasing degree of melting toward the breakup axis is responsible for an increasing proportion of cumulates and sill intrusions in the lower crust.
Deep Crustal Structure beneath Large Igneous Provinces and the Petrologic Evolution of Flood Basalts
NASA Astrophysics Data System (ADS)
Richards, Mark; Ridley, Victoria
2010-05-01
We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ~6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ~5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp~7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hotspots such as Hawaii, the Marqueses, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ~6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ~15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as "underplating," are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better constraining the overall process of LIP emplacement.
Deep crustal structure beneath large igneous provinces and the petrologic evolution of flood basalts
NASA Astrophysics Data System (ADS)
Ridley, Victoria A.; Richards, Mark A.
2010-09-01
We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ˜ 6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ˜5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp ˜ 7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hot spots such as Hawaii, the Marquesas, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ˜6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ˜15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as "underplating," are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better constraining the overall process of LIP emplacement.
Deep Crustal Structure beneath Large Igneous Provinces and the Petrologic Evolution of Flood Basalts
NASA Astrophysics Data System (ADS)
Richards, M. A.; Ridley, V. A.
2010-12-01
We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ~6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ~5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp~7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hotspots such as Hawaii, the Marquesas, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ~6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ~15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as “underplating,” are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better constraining the overall process of LIP emplacement.
The T-Reflection and the deep crustal structure of the Vøring Margin offshore Mid-Norway
NASA Astrophysics Data System (ADS)
Abdelmalak, M. M.; Faleide, J. I.; Planke, S.; Gernigon, L.; Zastrozhnov, D.; Shephard, G. E.; Myklebust, R.
2017-12-01
Volcanic passive margins are characterized by massive occurrence of mafic extrusive and intrusive rocks, before and during plate breakup, playing major role in determining the evolution pattern and the deep structure of magma-rich margins. Deep seismic reflection data frequently provide imaging of strong continuous reflections in the middle/lower crust. In this context, we have completed a detailed 2D seismic interpretation of the deep crustal structure of the Vøring volcanic margin, offshore mid-Norway, where high-quality seismic data allow the identification of high-amplitude reflections, locally referred to as the T-Reflection (TR). Using the dense seismic grid we have mapped the top of the TR in order to compare it with filtered Bouguer gravity anomalies and seismic refraction data. The TR is identified between 7 and 10 s. Sometimes it consists of one single smooth reflection. However, it is frequently associated with a set of rough multiple reflections displaying discontinuous segments with varying geometries, amplitude and contact relationships. The TR seems to be connected to deep sill networks and locally located at the continuation of basement high structures or terminates over fractures and faults. The spatial correlation between the filtered positive Bouguer gravity anomalies and the TR indicates that the latter represents a high impedance boundary contrast associated with a high-density/velocity body. Within an uncertainty of ± 2.5 km, the depth of the mapped TR is found to correspond to the depth of the top of the Lower Crustal Body (LCB), characterized by high P-wave velocities (>7 km/s), in 50% of the outer Vøring Margin areas, whereas different depths between the TR and the top LCB are estimated for the remaining areas. We present a tectonic scenario, where a large part of the deep structure could be composed of preserved upper continental basement and middle to lower crustal lenses of inherited and intruded high-grade metamorphic rocks. Deep intrusions into the faulted crustal blocks are responsible for the rough character of the TR, whereas intrusions into the lower crust and detachment faults are likely responsible for its smoother appearance. Deep magma intrusions can be responsible for metamorphic processes leading to an increased velocity of the lower crust of more than 7 km/s.
Crustal insights from gravity and aeromagnetic analysis: Central North Slope, Alaska
Saltus, R.W.; Potter, C.J.; Phillips, J.D.
2006-01-01
Aeromagnetic and gravity data are processed and interpreted to reveal deep and shallow information about the crustal structure of the central North Slope, Alaska. Regional aeromagnetic anomalies primarily reflect deep crustal features. Regional gravity anomalies are more complex and require detailed analysis. We constrain our geophysical models with seismic data and interpretations along two transects including the Trans-Alaska Crustal Transect. Combined geophysical analysis reveals a remarkable heterogeneity of the pre-Mississippian basement. In the central North Slope, pre-Mississippian basement consists of two distinct geophysical domains. To the southwest, the basement is dense and highly magnetic; this basement is likely mafic and mechanically strong, possibly acting as a buttress to basement involvement in Brooks Range thrusting. To the northeast, the central North Slope basement consists of lower density, moderately magnetic rocks with several discrete regions (intrusions?) of more magnetic rocks. A conjugate set of geophysical trends, northwest-southeast and southwest-northeast, may be a factor in the crustal response to tectonic compression in this domain. High-resolution gravity and aeromagnetic data, where available, reflect details of shallow fault and fold structure. The maps and profile models in this report should provide useful guidelines and complementary information for regional structural studies, particularly in combination with detailed seismic reflection interpretations. Future challenges include collection of high-resolution gravity and aeromagnetic data for the entire North Slope as well as additional deep crustal information from seismic, drilling, and other complementary methods. Copyrights ?? 2006. The American Association of Petroleum Geologists. All rights reserved.
NASA Astrophysics Data System (ADS)
Sato, Takeshi; No, Tetsuo; Miura, Seiichi; Kodaira, Shuichi
2018-02-01
The crustal structure of the Yamato Bank, the central Yamato Basin, and the continental shelf in the southern Japan Sea back-arc basin is obtained based on a seismic survey using ocean bottom seismographs and seismic shot to elucidate the back-arc basin formation processes. The central Yamato Basin can be divided into three domains based on the crustal structure: the deep basin, the seamount, and the transition domains. In the deep basin domain, the crust without the sedimentary layer is about 12-13 km thick. Very few units have P-wave velocity of 5.4-6.0 km/s, which corresponds to the continental upper crust. In the seamount and transition domains, the crust without the sedimentary layer is about 12-16 km thick. The P-wave velocities of the upper and lower crusts differs among the deep basin, the seamount, and the transition domains. These results indicate that the central Yamato Basin displays crustal variability in different domains. The crust of the deep basin domain is oceanic in nature and suggests advanced back-arc basin development. The seamount domain might have been affected by volcanic activity after basin opening. In the transition domain, the crust comprises mixed characters of continental and oceanic crust. This crustal variation might represent the influence of different processes in the central Yamato Basin, suggesting that crustal development was influenced not only by back-arc opening processes but also by later volcanic activity. In the Yamato Bank and continental shelf, the upper crust has thickness of about 17-18 km and P-wave velocities of 3.3-4.1 to 6.6 km/s. The Yamato Bank and the continental shelf suggest a continental crustal character.
Thinned crustal structure and tectonic boundary of the Nansha Block, southern South China Sea
NASA Astrophysics Data System (ADS)
Dong, Miao; Wu, Shi-Guo; Zhang, Jian
2016-12-01
The southern South China Sea margin consists of the thinned crustal Nansha Block and a compressional collision zone. The Nansha Block's deep structure and tectonic evolution contains critical information about the South China Sea's rifting. Multiple geophysical data sets, including regional magnetic, gravity and reflection seismic data, reveal the deep structure and rifting processes. Curie point depth (CPD), estimated from magnetic anomalies using a windowed wavenumber-domain algorithm, enables us to image thermal structures. To derive a 3D Moho topography and crustal thickness model, we apply Oldenburg algorithm to the gravity anomaly, which was extracted from the observed free air gravity anomaly data after removing the gravity effect of density variations of sediments, and temperature and pressure variations of the lithospheric mantle. We found that the Moho depth (20 km) is shallower than the CPD (24 km) in the Northwest Borneo Trough, possibly caused by thinned crust, low heat flow and a low vertical geothermal gradient. The Nansha Block's northern boundary is a narrow continent-ocean transition zone constrained by magnetic anomalies, reflection seismic data, gravity anomalies and an interpretation of Moho depth (about 13 km). The block extends southward beneath a gravity-driven deformed sediment wedge caused by uplift on land after a collision, with a contribution from deep crustal flow. Its southwestern boundary is close to the Lupar Line defined by a significant negative reduction to the pole (RTP) of magnetic anomaly and short-length-scale variation in crustal thickness, increasing from 18 to 26 km.
NASA Astrophysics Data System (ADS)
Knapp, C. C.; Enciu, D. M.; Knapp, J. H.
2007-12-01
Active crustal deformation and subsidence in the Southeast Carpathian foreland has previously been attributed to active foundering of thickened continental lithosphere beneath the Carpathian bend region (Knapp et al, 2005). The present study involves integration of active and passive-source seismic data in order to place constraints on the duration, timing, and scale of crustal deformation in the Carpathian foreland, and in particular to assess the genetic relationship with the Vrancea intermediate-depth seismogenic zone (VSZ). Relocated crustal earthquakes and focal mechanisms were correlated with four deep industry seismic profiles, the reprocessed DACIA PLAN deep seismic profile, and the DRACULA (Deep Reflection Acquisition Constraining Unusual Lithospheric Activity) II and III profiles. Projection of foreland crustal hypocenters onto the deep seismic lines correlates well with previously identified crustal faults such as the Trotus and Sinaia, as well as the newly identified Ialomita Fault. Specifically, results of this study (1) image the full crustal and uppermost mantle structure of the Focsani Basin in the close proximity of the VSZ, (2) show evidence for a sub-horizontal, slightly east-dipping Moho in the vicinity of the VSZ and thinning of the crust towards the Carpathian orogen, (3) illustrate the conspicuous absence of west-dipping fabrics or structures in the crust and across the Moho, (4) present evidence that the Trotus Fault is a crustal-scale active fault with a dextral sense of motion, (5) suggest that the Paleozoic age Peceneaga-Camena and Capidava-Ovidiu Faults have not been active in post-Paleozoic time, and (6) show evidence for a new active crustal scale sinistral fault, named the Ialomita fault. Both the seismogenic Vrancea body and deformation in the Focsani Basin appear to be concentrically bound by the Trotus Fault in the north and east and the Sinaia-Ialomita Fault in the south, suggesting a coupled deformation between the VSZ and the foreland deformation, possibly accommodated on these two major fault systems. These results contradict both the "subduction-in-place" and "slab- break-off" hypotheses as feasible explanations for VSZ intermediate-depth seismicity, and lend additional support to a lithospheric delamination model to explain both the origin of the VSZ and the crustal architecture of the Southeast Carpathian foreland.
Geometries of geoelectrical structures in central Tibetan Plateau from INDEPTH magnetotelluric data
NASA Astrophysics Data System (ADS)
Vozar, J.; Jones, A. G.; Le Pape, F.
2012-12-01
Magnetotelluric (MT) data collected on N-S profiles crossing the Banggong-Nujiang Suture (BNS), which separates the Qiangtang and Lhasa Terranes in central Tibet, as a part of InterNational DEep Profiling of Tibet and the Himalaya project (INDEPTH) are modeled by 2D, 3D inversion codes and 1D petro-physical package LitMod. The modeling exhibits regional resistive and conductive structures correlated with ShuangHu Suture, Tanggula Mountains and strike-slip faults like BengCo-Jiali fault in the south. The BNS is not manifested in the geoelectrical models as a strong crustal regional structure. The strike direction azimuth of mid and lower crustal structures estimated from horizontal slices from 3D modeling (N110°E) is slightly different from one estimated by 2D strike analysis (N100°E). Orientation of crustal structures is perpendicular to convergence direction in this area. The deepest lower crustal conductors are correlated to areas with maximum Moho depth obtained from satellite gravity data. The anisotropic 2D modeling reveals that lower crustal conductor in Lhasa Terrane is anisotropic. This anisotropy can be interpreted as a proof for crustal channel flow below Lhasa Terrane. But same Lhasa lower crust conductor from isotropic 3D modeling can be interpreted more likely as 3D lower Indian crust structure, located to the east from line 500, than geoelectrical anisotropic crustal flow. From deep electromagnetic sounding, supported by independent integrated petro-physical investigation, we can estimate the next upper-mantle conductive layer at depths from 200 km to 250 km below the Lhasa Terrane and less resistive Tibetan lithosphere below the Qiangtang Terrane with conductive upper-mantle in depths about 120 km.
NASA Astrophysics Data System (ADS)
Chen, Q.; Yu, C.
2017-12-01
On April 20, 2013, Ms7.0 strong earthquake (Lushan earthquake) occurred in Lanshan County Ya'an City, Sichuan Province. It is another earthquake that occurred in the Longmenshan fault zone after the Wenchuan earthquake. However, there is still no conclusive conclusion in relationship between the fine structure of the Lushan area and triggering seismic fault . In this study, the crustal structure, the shallow structure and the hidden faults and the focal mechanism of the Lushan earthquake were analyzed by using the deep seismic reflection profile and the broadband seismic array data. Combined with the surface geological information, the structure and fracture cause of the Lishan earthquake were discussed.We have synthetic analyzed the seismic precursors, fine locating, focal mechanism analysis and time-tomographic imaging of the broadband seismic data before and after the earthquake in Lushan earthquake, and obtained the seismic distribution, the focal mechanism and the crustal fine structure in the Lushan area. And we use these results to detailed interpreted the deep reflection seismic section of the Lushan earthquake zone.The results show that the crust of the Lushan area is characterized by a distinct structure of upper crust with thickness about 14.75km. The nature of the faults is inferred to be thrusting in the region due to the pushing of the crustal material of the Tibetan plateau into the southeast part of the rigid Sichuan basin. The shuangshi-Dachuan fault stretches from the surface to the deep crust at a low angle, and is dominated by thrusting in a form of imbricate structure with small-scale faults nearby. Whereas the Guangyuan-Dayi fault is a positive flower structure with a listric shape, consisting of six branches. Its movement is dominated by thrusting with gentle horizontal slip.
Deep crustal earthquakes associated with continental rifts
NASA Astrophysics Data System (ADS)
Doser, Diane I.; Yarwood, Dennis R.
1994-01-01
Deep (> 20 km) crustal earthquakes have occurred within or along the margins of at least four continental rift zones. The largest of these deep crustal earthquakes ( M ⩾ 5.0) have strike-slip or oblique-slip mechanisms with T-axes oriented similarly to those associated with shallow normal faulting within the rift zones. The majority of deep crustal earthquakes occur along the rift margins in regions that have cooler, thicker crust. Several deep crustal events, however, occur in regions of high heat flow. These regions also appear to be regions of high strain, a factor that could account for the observed depths. We believe the deep crustal earthquakes represent either the relative motion of rift zones with respect to adjacent stable regions or the propagation of rifting into stable regions.
Contemporary crustal movement of southeastern Tibet: Constraints from dense GPS measurements
Pan, Yuanjin; Shen, Wen-Bin
2017-01-01
The ongoing collision between the Indian plate and the Eurasian plate brings up N-S crustal shortening and thickening of the Tibet Plateau, but its dynamic mechanisms remain controversial yet. As one of the most tectonically active regions of the world, South-Eastern Tibet (SET) has been greatly paid attention to by many geoscientists. Here we present the latest three-dimensional GPS velocity field to constrain the present-day tectonic process of SET, which may highlight the complex vertical crustal deformation. Improved data processing strategies are adopted to enhance the strain patterns throughout SET. The crustal uplifting and subsidence are dominated by regional deep tectonic dynamic processes. Results show that the Gongga Shan is uplifting with 1–1.5 mm/yr. Nevertheless, an anomalous crustal uplifting of ~8.7 mm/yr and negative horizontal dilation rates of 40–50 nstrain/yr throughout the Longmenshan structure reveal that this structure is caused by the intracontinental subduction of the Yangtze Craton. The Xianshuihe-Xiaojiang fault is a major active sinistral strike-slip fault which strikes essentially and consistently with the maximum shear strain rates. These observations suggest that the upper crustal deformation is closely related with the regulation and coupling of deep material. PMID:28349926
NASA Astrophysics Data System (ADS)
Cowie, Leanne; Kusznir, Nick; Horn, Brian
2014-05-01
Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been applied to the S Angolan and SE Brazilian margins to determine OCT structure, COB location and magmatic type. Knowledge of these margin parameters are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the S Angolan and SE Brazilian rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Gravity anomaly inversion, incorporating a lithosphere thermal gravity anomaly correction, has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated for profiles Lusigal 12 and ISE-01 on the Iberian margin. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola deep seismic reflection lines. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along the seismic profiles. Gravity inversion, RDA and subsidence analysis along the ION-GXT BS1-575 profile, which crosses the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin, predict the COB to be located SE of the Florianopolis Ridge. Integrated quantitative analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts oceanic crustal thicknesses of between 7 and 8 km thickness with normal oceanic basement seismic velocities and densities. Beneath the Sao Paulo Plateau and Florianopolis Ridge, joint inversion predicts crustal basement thicknesses between 10-15km with high values of basement density and seismic velocities under the Sao Paulo Plateau which are interpreted as indicating a significant magmatic component within the crustal basement. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived "synthetic" RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile suggests that exhumed mantle, corresponding to a magma poor margin, is absent..The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data, is approximately 7km consistent with the global average oceanic crustal thicknesses. The joint inversion predicts a small difference between oceanic and continental crustal basement density and seismic velocity, with the change in basement density and velocity corresponding to the COB independently determined from RDA and subsidence analysis. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing approximately 500m of anomalous uplift attributed to mantle dynamic uplift.
NASA Astrophysics Data System (ADS)
Gao, R.; Wang, H.; Guo, X.; Li, W.; Li, H.; Hou, H.; Xiong, X.; Xu, X.; Liang, H.; Li, Q.
2015-12-01
Most previous studies of the Tibetan Plateau have focused on the processes of crustal thickening and subsequent lateral extrusion to account for the outward growth of the plateau. However, lithospheric structure across the tectonic boundaries of the Tibetan Plateau has not yet been fully imaged and, therefore, how geological structures evolved in association with the lateral expansion of the northeastern margin in particular remains unclear. Here, together with interpretation of regional geological and geophysical data, we employ a recently acquired 165 km-long deep seismic reflection image that crosses the Liupan shan (Fig. 1) northeastern flank of the Tibetan Plateau to show that crustal shortening, structural integrity, and topographic relief are strongly correlated. The resulting stratigraphic "architecture" suggests that crustal shortening is a primary driver for plateau uplift and expansion of northeastern Tibet and decoupled crustal deformation owing to differential structural integrity is accommodated during the subsequent northeastward growth of the plateau. Figure 1.Showing the seismic reflection line location and the topographic relief of the northeastern Tibetan Plateau and the western Ordos basin (KF: Kunlun Fault; LP Shan: Liupan Shan; HF: Haiyuan Fault; YTSF: Yangtongshan Fault; NSS-LSF: Niushou Shan-Luoshan Fault)XG Shan: Xiaoguan Shan; YJD: Yanjiadian Diorite; GS: Guanshan Shan; CCP: Caochuanpu; LS Complex: Longshan Complex)
NASA Astrophysics Data System (ADS)
Balling, N.
2000-12-01
Deep seismic profiling experiments in the region of NW Europe (including BABEL in the Gulf of Bothnia and the Baltic Sea, Mobil Search in the Skagerrak and MONA LISA in the North Sea) have demonstrated the existence of seismic reflectors in the mantle lithosphere beneath the Baltic Shield, the Tornquist Zone and the North Sea basins. Different sets of reflectors are observed, notably dipping and sub-horizontal. Dipping, distinct reflectivity, which may be followed from Moho/Moho offsets into the deeper parts of the continental lithosphere, is of special interest because of its tectonic and geodynamic significance. Such reflectivity, observed in several places, dipping 15-35° and covering a depth range of 30-90 km, constrained by surface geological information and radiometric age data, is interpreted to represent fossil, ancient subduction and collison zones. Subduction slabs with remnant oceanic basaltic crust transformed into eclogite is assumed, in particular, to generate deep seismic reflectivity. Deep seismic evidence is presented for subduction, crustal accretion and collision processes with inferred ages from 1.9 to 1.1 Ga from the main structural provinces within the Baltic Shield including Svecofennian, Transscandinavian Igneous Belt, Gothian and Sveconorwegian. Along the southwestern border of Baltica (in the southeastern North Sea) south-dipping crustal and sub-crustal reflectivity is observed down to a depth of about 90 km, close to the lithosphere-asthenosphere boundary. These structures are interpreted to reveal a lithosphere-scale Caledonian (ca. 440 Ma) suture zone resulting from the closure of the Tornquist Sea/Thor Ocean and the amalgamation of Baltica and Eastern Avalonia. These results demonstrate that deep structures within the continental lithosphere, originating from early crust-forming plate tectonic processes, may survive for a very long time and form seismic marker reflectivity of great value in geotectonic interpretation and reconstructions. Furthermore, the depth of dipping reflectivity from ancient structures, such as subduction slabs, significantly contributes information about the thickness of the coherent lithosphere. The seismic observations and our interpretations support plate tectonic and structural models, suggesting crustal growth and amalgamation of tectonic units in the Baltic Shield and along its southwestern margin generally from the northeast (in present-day orientation) towards the southwest and west, likely to result in regional deep structural and tectonic age zonations.
NASA Astrophysics Data System (ADS)
Schiffer, Christian; Stephenson, Randell; Oakey, Gordon N.; Jacobsen, Bo H.
2016-03-01
Ellesmere Island in Arctic Canada displays a complex geological evolution. The region was affected by two distinct orogenies, the Palaeozoic Ellesmerian orogeny (the Caledonian equivalent in Arctic Canada and Northern Greenland) and the Palaeogene Eurekan orogeny, related to the opening of Baffin Bay and the consequent convergence of the Greenland plate. The details of this complex evolution and the present-day deep structure are poorly constrained in this remote area and deep geophysical data are sparse. Receiver function analysis of seven temporary broad-band seismometers of the Ellesmere Island Lithosphere Experiment complemented by two permanent stations provides important data on the crustal velocity structure of Ellesmere Island. The crustal expression of the northernmost tectonic block of Ellesmere Island (˜82°-83°N), Pearya, which was accreted during the Ellesmerian orogeny, is similar to that at the southernmost part, which is part of the Precambrian Laurentian (North America-Greenland) craton. Both segments have thick crystalline crust (˜35-36 km) and comparable velocity-depth profiles. In contrast, crustal thickness in central Ellesmere Island decreases from ˜24-30 km in the Eurekan fold and thrust belt (˜79.7°-80.6°N) to ˜16-20 km in the Hazen Stable Block (HSB; ˜80.6°-81.4°N) and is covered by a thick succession of metasediments. A deep crustal root (˜48 km) at ˜79.6°N is interpreted as cratonic crust flexed beneath the Eurekan fold and thrust belt. The Carboniferous to Palaeogene sedimentary succession of the Sverdrup Basin is inferred to be up to 1-4 km thick, comparable to geologically-based estimates, near the western margin of the HSB.
Geometries of geoelectrical structures in central Tibetan Plateau from INDEPTH magnetotelluric data
NASA Astrophysics Data System (ADS)
Vozar, Jan; Jones, Alan G.; Le Pape, Florian
2013-04-01
Magnetotelluric (MT) data collected on N-S profiles crossing the Banggong-Nujiang Suture, which separates the Qiangtang and Lhasa Terranes in central Tibet, as a part of InterNational DEep Profiling of Tibet and the Himalaya project (INDEPTH) are modeled by 2D and 3D inversion codes. The 2D deep MT model of line 500 confirms previous observations concluding that the region is characterized to first-order by a resistive upper crust and a conductive, partially melted, middle to lower crust that extends from the Lhasa Terrane to the Qiangtang Terrane with varying depth. The same conductive structure setting, but in shallower depths is also present on the eastern 400 line. From deep electromagnetic sounding, supported by independent 1D integrated petro-physical investigation, we can estimate the next upper-mantle conductive layer at depths from 200 km to 250 km below the Lhasa Terrane and less resistive Tibetan lithosphere below the Qiangtang Terrane with conductive upper-mantle in depths about 120 km. The anisotropic 2D modeling reveals lower crustal anisotropy in Lhasa Terrane, which can interpreted as crustal channel flow. The 3D inversion models of all MT data from central Tibet show dominant 2D regional strike of mid and lower crustal structures equal N110E. This orientation is parallel to Shuanghu suture, BengCo Jiali strike-slip fault system and perpendicular to convergence direction. The lower crust conductor in central Lhasa Terrane can be interpreted more likely as 3D lower Indian crust structure, located to the east from line 500, than geoelectrical anisotropic crustal flow.
Rumpfhuber, E.-M.; Keller, Gordon R.; Sandvol, E.; Velasco, A.A.; Wilson, D.C.
2009-01-01
In this study, we have determined the crustal structure using three different receiver function methods using data collected from the northern transect of the Continental Dynamics of the Rocky Mountains (CD-ROM) experiment. The resulting migrated image and crustal thickness determinations confirm and refine prior crustal thickness measurements based on the CD-ROM and Deep Probe experiment data sets. The new results show a very distinct and thick lower crustal layer beneath the Archean Wyoming province. In addition, we are able to show its termination at 42??N latitude, which provides a seismic tie between the CD-ROM and Deep Probe seismic experiments and thus completes a continuous north-south transect extending from New Mexico into Alberta, Canada. This new tie is particularly important because it occurs close to a major tectonic boundary, the Cheyenne belt, between an Archean craton and a Proterozoic terrane. We used two different stacking techniques, based on a similar concept but using two different ways to estimate uncertainties. Furthermore, we used receiver function migration and common conversion point (CCP) stacking techniques. The combined interpretation of all our results shows (1) crustal thinning in southern Wyoming, (2) strong northward crustal thickening beginning in central Wyoming, (3) the presence of an unusually thick and high-velocity lower crust beneath the Wyoming province, and (4) the abrupt termination of this lower crustal layer north of the Cheyenne belt at 42??N latitude. Copyright 2009 by the American Geophysical Union.
Heat Flow, Regional Geophysics and Lithosphere Structure In The Czech Republic
NASA Astrophysics Data System (ADS)
Safanda, J.; Cermak, V.; Kresl, M.; Dedecek, P.
Paper summarises and critically revises heat flow data that have been collected in the Czech Republic to date. The regional heat flow density map was prepared in view of all existing heat flow data completed with the similar in the surrounding countries and taking into consideration also temperature measurements in deep boreholes. Crustal temperature profiles were calculated by using the available geological information, results of deep seismic sounding and the laboratory data on radiogenic heat produc- tion and thermal conductivity. Special attention was paid to numerous temperature logs in two sedimentary basins, namely in the Cheb and Ostrava-Karvina coal basins, for which detailed heat flow patterns were proposed. Relationships between heat flow distribution and the crustal/lithosphere evolution, between heat flow and the heat pro- duction of the crustal rocks, heat flow and crustal thickness and the steady-state vs. transient heat transport are discussed.
The Crustal Structure And CTBT Monitoring Of India: New Insights From Deep Seismic Profiling
2000-09-01
transitional type crust as a major source of Deccan trap flows. The Narmada-Son lineament is the most conspicuous linear geological feature in the... Deccan proto-continents) buckling of the upper and middle crustal layers of the proto-continents took place, resulting in the western block’s lower...crustal column subducting below the Deccan proto-continents. Thus, the collision process was of such severe magnitude that the impact was seen in both
2010-09-01
which are primarily sensitive to upper crustal structures, are difficult to measure and especially true in tectonically and geologically complex areas...slice through the model (compare Figure 6 and Figure 9). The fit to the receiver function is not perfect and the spread of the slower deep crustal ...Although the final fit is certainly not perfect, note the improvement in timing of the main crustal conversion and reverberation (vertical lines) from the
NASA Astrophysics Data System (ADS)
Barantsrva, O.
2014-12-01
We present a preliminary analysis of the crustal and upper mantle structure for off-shore regions in the North Atlantic and Arctic oceans. These regions have anomalous oceanic lithosphere: the upper mantle of the North Atlantic ocean is affected by the Iceland plume, while the Arctic ocean has some of the slowest spreading rates. Our specific goal is to constrain the density structure of the upper mantle in order to understand the links between the deep lithosphere dynamics, ocean spreading, ocean floor bathymetry, heat flow and structure of the oceanic lithosphere in the regions where classical models of evolution of the oceanic lithosphere may not be valid. The major focus is on the oceanic lithosphere, but the Arctic shelves with a sufficient data coverage are also included into the analysis. Out major interest is the density structure of the upper mantle, and the analysis is based on the interpretation of GOCE satellite gravity data. To separate gravity anomalies caused by subcrustal anomalous masses, the gravitational effect of water, crust and the deep mantle is removed from the observed gravity field. For bathymetry we use the global NOAA database ETOPO1. The crustal correction to gravity is based on two crustal models: (1) global model CRUST1.0 (Laske, 2013) and, for a comparison, (2) a regional seismic model EUNAseis (Artemieva and Thybo, 2013). The crustal density structure required for the crustal correction is constrained from Vp data. Previous studies have shown that a large range of density values corresponds to any Vp value. To overcome this problem and to reduce uncertainty associated with the velocity-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007), and apply different Vp-density conversions for different parts of the region. We present preliminary results, which we use to examine factors that control variations in bathymetry, sedimentary and crustal thicknesses in these anomalous oceanic domains.
NASA Astrophysics Data System (ADS)
Kuochen, H.; Kuo, N. Y. W.; Wang, C. Y.; Jin, X.; Cai, H. T.; Lin, J. Y.; Wu, F. T.; Yen, H. Y.; Huang, B. S.; Liang, W. T.; Okaya, D. A.; Brown, L. D.
2015-12-01
The crustal structure is key information for understanding the tectonic framework and geological evolution in the southeastern China and its adjacent area. In this study, we integrated the data sets from the TAIGER and ATSEE projects to resolve onshore-offshore deep crustal seismic profiles from the Wuyi-Yunkai orogen to the Taiwan orogen in southeastern China. Totally, there are three seismic profiles resolved and the longest profile is 850 km. Unlike 2D and 3D first arrival travel-time tomography from previous studies, we used both refracted and reflected phases (Pg, Pn, PcP, and PmP) to model the crustal structures and the crustal reflectors. 40 shots, 2 earthquakes, and about 1,950 stations were used and 15,319 arrivals were picked among three transects. As a result, the complex crustal evolution since Paleozoic era are shown, which involved the closed Paleozoic rifted basin in central Fujian, the Cenozoic extension due to South China sea opening beneath the coastline of southern Fujian, and the on-going collision of the Taiwan orogen.
Deep structure beneath Lake Ontario: Crustal-scale Grenville subdivisions
Forsyth, D. A.; Milkereit, B.; Zelt, Colin A.; White, D. J.; Easton, R. M.; Hutchinson, Deborah R.
1994-01-01
Lake Ontario marine seismic data reveal major Grenville crustal subdivisions beneath central and southern Lake Ontario separated by interpreted shear zones that extend to the lower crust. A shear zone bounded transition between the Elzevir and Frontenac terranes exposed north of Lake Ontario is linked to a seismically defined shear zone beneath central Lake Ontario by prominent aeromagnetic and gravity anomalies, easterly dipping wide-angle reflections, and fractures in Paleozoic strata. We suggest the central Lake Ontario zone represents crustal-scale deformation along an Elzevir–Frontenac boundary zone that extends from outcrop to the south shore of Lake Ontario.Seismic images from Lake Ontario and the exposed western Central Metasedimentary Belt are dominated by crustal-scale shear zones and reflection geometries featuring arcuate reflections truncated at their bases by apparent east-dipping linear reflections. The images show that zones analogous to the interpreted Grenville Front Tectonic Zone are also present within the Central Metasedimentary Belt and support models of northwest-directed crustal shortening for Grenvillian deep crustal deformation beneath most of southeastern Ontario.A Precambrian basement high, the Iroquoian high, is defined by a thinning of generally horizontal Paleozoic strata over a crestal area above the basement shear zone beneath central Lake Ontario. The Iroquoian high helps explain the peninsular extension into Lake Ontario forming Prince Edward County, the occurrence of Precambrian inlier outcrops in Prince Edward County, and Paleozoic fractures forming the Clarendon–Linden structure in New York.
Identification of Deep Earthquakes
2010-09-01
discriminants that will reliably separate small, crustal earthquakes (magnitudes less than about 4 and depths less than about 40 to 50 km) from small...characteristics on discrimination plots designed to separate nuclear explosions from crustal earthquakes. Thus, reliably flagging these small, deep events is...Further, reliably identifying subcrustal earthquakes will allow us to eliminate deep events (previously misidentified as crustal earthquakes) from
NASA Astrophysics Data System (ADS)
Kusznir, Nick; Alvey, Andy; Roberts, Alan
2017-04-01
The 3D mapping of crustal thickness for continental shelves and oceanic crust, and the determination of ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, represents a substantial challenge. Geophysical inversion of satellite derived free-air gravity anomaly data incorporating a lithosphere thermal anomaly correction (Chappell & Kusznir, 2008) now provides a useful and reliable methodology for mapping crustal thickness in the marine domain. Using this we have produced the first comprehensive maps of global crustal thickness for oceanic and continental shelf regions. Maps of crustal thickness and continental lithosphere thinning factor from gravity inversion may be used to determine the distribution of oceanic lithosphere, micro-continents and oceanic plateaux including for the inaccessible polar regions (e.g. Arctic Ocean, Alvey et al.,2008). The gravity inversion method provides a prediction of continent-ocean boundary location which is independent of ocean magnetic anomaly and isochron interpretation. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we can improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory during ocean basin formation. By restoring crustal thickness & continental lithosphere thinning to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. For detailed analysis to constrain OCT structure, margin type (i.e. magma poor, "normal" or magma rich) and COB location, a suite of quantitative analytical methods may be used which include: (i) Crustal cross-sections showing Moho depth and crustal basement thickness from gravity inversion. (ii) Residual depth anomaly (RDA) analysis which is used to investigate OCT bathymetric anomalies with respect to expected oceanic values. This includes flexural backstripping to produce bathymetry corrected for sediment loading. (iii) Subsidence analysis which is used to determine the distribution of continental lithosphere thinning. (iv) Joint inversion of time-domain deep seismic reflection and gravity anomaly data which is used to determine lateral variations in crustal basement density and velocity across the OCT, and to validate deep seismic reflection interpretations of Moho depth. The combined interpretation of these independent quantitative measurements is used to determine crustal thickness and composition across the ocean-continent-transition. This integrated approach has been validated on the Iberian margin where ODP drilling provides ground-truth of ocean-continent-transition crustal structure, continent-ocean-boundary location and magmatic type.
NASA Astrophysics Data System (ADS)
Harmon, Nicholas; Rychert, Catherine A.
2015-11-01
Continental crust formed billions of years ago but cannot be explained by a simple evolution of primary mantle magmas. A multi-step process is required that likely includes re-melting of wet metamorphosed basalt at high pressures. Such a process could occur at depth in oceanic crust that has been thickened by a large magmatic event. In Central America, variations in geologically inferred, pre-existing oceanic crustal thickness beneath the arc provides an excellent opportunity to study its effect on magma storage, re-melting of meta-basalts, and the potential for creating continental crust. We use surface waves derived from ambient noise tomography to image 6% radially anisotropic structures in the thickened oceanic plateau crust of Costa Rica that likely represent deep crustal melt sills. In Nicaragua, where the arc is forming on thinner oceanic crust, we do not image these deep crustal melt sills. The presence of these deep sills correlates with more felsic arc outputs from the Costa Rican Arc suggesting pre-existing thickened crust accelerates processing of primary basalts to continental compositions. In the Archean, reprocessing thickened oceanic crust by subsequent hydrated hotspot volcanism or subduction zone volcanism may have similarly enhanced formation of early continental crust. This mechanism may have been particularly important if subduction did not initiate until 3 Ga.
NASA Astrophysics Data System (ADS)
Folguera, A.; Alasonati Tašárová, Z.; Götze, H.-J.; Rojas Vera, E.; Giménez, M.; Ramos, V. A.
2012-12-01
The Andean retroarc between 35° and 40°S is the locus of debate regarding its Pliocene to Quaternary tectonic setting. Retroarc volcanic eruptions since 6 Ma to the Present are, based on some hypotheses, associated with widespread extension. In these works, geological data point to the existence of normal faults affecting previous (Late Cretaceous to Miocene) contractional structures. In order to evaluate such interpretations we have collected data from various geological and geophysical studies and scales. Based on these data, an existing large-scale 3-D gravity model could be improved and used to investigate the lithospheric structure of this region. Moreover, using the gravity model, an attenuated crust could be localized and quantified throughout the retroarc area. Deep seismic data available from this region are limited to the forearc - arc area, while in general the retroarc zone lacks deep seismic constraints. The only deep seismic profile extending to the retroarc is a receiver function profile at 39°S, showing crustal attenuation. This observation correlates with the extensional activity recognized at the surface. When analysing the gravity field, positive residual anomalies are observed. They correlate with crustal attenuation at the areas of extension. Also, computed elastic thickness in the retroarc shows good correlation between the areas of crustal stretching and low flexural rigidity, explained by thermal processes. The present extensional deformation reflected in positive residual gravity anomalies points to the influence of reactivated Triassic rifting inherited from early phases of Pangea break-up. Finally, the present local uplift and consequent fluvial incision at the retroarc zone are explained by crustal stretching and not by crustal shortening, the common mechanism in Andean orogenesis.
NASA Astrophysics Data System (ADS)
Cowie, L.; Kusznir, N. J.; Horn, B.
2013-12-01
Knowledge of ocean-continent transition (OCT) structure, continent-ocean boundary (COB) location and magmatic type are of critical importance for understanding rifted continental margin formation processes and in evaluating petroleum systems in deep-water frontier oil and gas exploration. The OCT structure, COB location and magmatic type of the SE Brazilian and S Angolan rifted continental margins are much debated; exhumed and serpentinised mantle have been reported at these margins. Integrated quantitative analysis using deep seismic reflection data and gravity inversion have been used to determine OCT structure, COB location and magmatic type for the SE Brazilian and S Angolan margins. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning. Residual Depth Anomaly (RDA) analysis has been used to investigate OCT bathymetric anomalies with respect to expected oceanic bathymetries and subsidence analysis has been used to determine the distribution of continental lithosphere thinning. These techniques have been validated on the Iberian margin for profiles IAM9 and ISE-01. In addition a joint inversion technique using deep seismic reflection and gravity anomaly data has been applied to the ION-GXT BS1-575 SE Brazil and ION-GXT CS1-2400 S Angola. The joint inversion method solves for coincident seismic and gravity Moho in the time domain and calculates the lateral variations in crustal basement densities and velocities along profile. Gravity inversion, RDA and subsidence analysis along the S Angolan ION-GXT CS1-2400 profile has been used to determine OCT structure and COB location. Analysis suggests that exhumed mantle, corresponding to a magma poor margin, is absent beneath the allochthonous salt. The thickness of earliest oceanic crust, derived from gravity and deep seismic reflection data is approximately 7km. The joint inversion predicts crustal basement densities and seismic velocities which are slightly less than expected for 'normal' oceanic crust. The difference between the sediment corrected RDA and that predicted from gravity inversion crustal thickness variation implies that this margin is experiencing ~300m of anomalous uplift attributed to mantle dynamic uplift. Gravity inversion, RDA and subsidence analysis have also been used to determine OCT structure and COB location along the ION-GXT BS1-575 profile, crossing the Sao Paulo Plateau and Florianopolis Ridge of the SE Brazilian margin. Gravity inversion, RDA and subsidence analysis predict the COB to be located SE of the Florianopolis Ridge. Analysis shows no evidence for exhumed mantle on this margin profile. The joint inversion technique predicts normal oceanic basement seismic velocities and densities and beneath the Sao Paulo Plateau and Florianopolis Ridge predicts crustal basement thicknesses between 10-15km. The Sao Paulo Plateau and Florianopolis Ridge are separated by a thin region of crustal basement beneath the salt interpreted as a regional transtensional structure. Sediment corrected RDAs and gravity derived 'synthetic' RDAs are of a similar magnitude on oceanic crust, implying negligible mantle dynamic topography.
Deep Crustal Melting and the Survival of Continental Crust
NASA Astrophysics Data System (ADS)
Whitney, D.; Teyssier, C. P.; Rey, P. F.; Korchinski, M.
2017-12-01
Plate convergence involving continental lithosphere leads to crustal melting, which ultimately stabilizes the crust because it drives rapid upward flow of hot deep crust, followed by rapid cooling at shallow levels. Collision drives partial melting during crustal thickening (at 40-75 km) and/or continental subduction (at 75-100 km). These depths are not typically exceeded by crustal rocks that are exhumed in each setting because partial melting significantly decreases viscosity, facilitating upward flow of deep crust. Results from numerical models and nature indicate that deep crust moves laterally and then vertically, crystallizing at depths as shallow as 2 km. Deep crust flows en masse, without significant segregation of melt into magmatic bodies, over 10s of kms of vertical transport. This is a major mechanism by which deep crust is exhumed and is therefore a significant process of heat and mass transfer in continental evolution. The result of vertical flow of deep, partially molten crust is a migmatite dome. When lithosphere is under extension or transtension, the deep crust is solicited by faulting of the brittle upper crust, and the flow of deep crust in migmatite domes traverses nearly the entire thickness of orogenic crust in <10 million years. This cycle of burial, partial melting, rapid ascent, and crystallization/cooling preserves the continents from being recycled into the mantle by convergent tectonic processes over geologic time. Migmatite domes commonly preserve a record of high-T - low-P metamorphism. Domes may also contain rocks or minerals that record high-T - high-P conditions, including high-P metamorphism broadly coeval with host migmatite, evidence for the deep crustal origin of migmatite. There exists a spectrum of domes, from entirely deep-sourced to mixtures of deep and shallow sources. Controlling factors in deep vs. shallow sources are relative densities of crustal layers and rate of extension: fast extension (cm/yr) promotes efficient ascent of deep crust, whereas slow extension (mm/yr) produces significantly less exhumation. Recognition of the importance of migmatite (gneiss) domes as archives of orogenic deep crust is applicable to determining the chemical and physical properties of continental crust, as well as mechanisms and timescales of crustal differentiation.
NASA Astrophysics Data System (ADS)
Harmon, N.; Rychert, C.
2013-12-01
Billions of years ago primary mantle magmas evolved to form the continental crust, although no simple magmatic differentiation process explains the progression to average andesitic crustal compositions observed today. A multiple stage process is often invoked, involving subduction and or oceanic plumes, to explain the strong depletion observed in Archean xenoliths and as well as pervasive tonalite-trondhjemite-granodiorite and komatiite protoliths in the greenstone belts in the crust in the cratons. Studying modern day analogues of oceanic plateaus that are currently interacting with subductions zones can provide insights into continental crust formation. Here we use surface waves to image crustal isotropic and radially anisotropic shear velocity structure above the central American subduction system in Nicaragua and Costa Rica, which juxtaposes thickened ocean island plateau crust in Costa Rica with continental/normal oceanic crust in Nicaragua. We find low velocities beneath the active arc regions (3-6% slower than the surrounding region) and up to 6% radially anisotropic structures within the oceanic crust of the Caribbean Large Igneous Province beneath Costa Rica. The low velocities and radial anisotropy suggest the anomalies are due to pervasive deep crustal magma sills. The inferred sill structures correlate spatially with increased silicic outputs in northern Costa Rica, indicating that deep differentiation of primary magmas is more efficient beneath Costa Rica relative to Nicaragua. Subduction zone alteration of large igneous provinces promotes efficient, deep processing of primary basalts to continental crust. This scenario can explain the formation of continental lithosphere and crust, by both providing strongly depleted mantle lithosphere and a means for rapidly generating a silicic crustal composition.
NASA Astrophysics Data System (ADS)
Franěk, J.; Schulmann, K.; Lexa, O.
2006-03-01
A large-scale relict domain of granulite facies deformation fabrics has been identified within the Blanský les granulite body. The granulite facies mylonitic fabric is discordant to the dominant amphibolite facies structures of the surrounding retrograde granulite. The complex geometry of retrograde amphibolite facies fabric indicates a large-scale fold-like structure, which is interpreted to be a result of either crustal-scale buckling of an already exhumed granulite sheet or active rotation of a rigid granulite facies ellipsoidal domain in kinematic continuity with the regional amphibolite facies deformation. We argue that both concepts allow similar restoration of the original granulite facies fabrics prior to the amphibolite facies deformation and “folding”. The geometry of the granulite facies foliations coincides with the earliest fabrics in the nearby mid-crustal units suggesting complete mechanical coupling between the deep lower crust and the mid-crustal levels during the vertical movements of crustal materials. Microstructures indicate grain-size sensitive flow enhanced by the presence of silicate melts at deep crustal levels and a beginning of an exhumation process of low viscosity granulites through a vertical channel. The amphibolite facies fabrics developed at middle crustal levels and their microstructures indicate significant hardening of feldspar-made rigid skeleton of the retrograde granulite. Increase in the strength of the granulite allowed an active buckling or a rigid body rotation of the granulite sheet, which acted as a strong layer inside the weaker metasediments.
NASA Astrophysics Data System (ADS)
Enciu, Dana M.; Knapp, Camelia C.; Knapp, James H.
2009-08-01
Integration of active and passive source seismic data is employed in order to study the nature of the relationships between crustal seismicity and geologic structures in the southeastern (SE) Carpathian foreland of Romania and the possible connection with the Vrancea Seismogenic Zone (VSZ) of intermediate-depth seismicity, one of the most active earthquake-prone areas in Europe. Crustal epicenters and focal mechanisms are correlated with four deep industry seismic profiles, the reprocessed Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics (DACIA PLAN) profile and the Deep Reflection Acquisition Constraining Unusual Lithospheric Activity II and III (DRACULA) profiles in order to understand the link between neotectonic foreland deformation and Vrancea mantle seismicity. Projection of crustal foreland hypocenters onto deep seismic profiles identifies several active crustal faults in the SE Carpathian foreland and suggests a mechanical coupling between the mantle located VSZ and the overlying foreland crust. The coupled associated deformation appears to take place on the Trotus Fault, the Sinaia Fault, and the newly detected Ialomita Fault. Seismic reflection imaging reveals the absence of west dipping reflectors in the crystalline crust and a slightly east dipping to horizontal Moho in the proximity of the Vrancea area. These findings argue against previously purported mechanisms to generate mantle seismicity in the VSZ including oceanic lithosphere subduction in place and oceanic slab break off, furthermore suggesting that the Vrancea seismogenic body is undetached from the overlying crust in the foreland.
Structure of the Malpelo Ridge (Colombia) from seismic and gravity modelling
NASA Astrophysics Data System (ADS)
Marcaillou, Boris; Charvis, Philippe; Collot, Jean-Yves
2006-12-01
Wide-angle and multichannel seismic data collected on the Malpelo Ridge provide an image of the deep structure of the ridge and new insights on its emplacement and tectonic history. The crustal structure of the Malpelo Ridge shows a 14 km thick asymmetric crustal root with a smooth transition to the oceanic basin southeastward, whereas the transition is abrupt beneath its northwestern flank. Crustal thickening is mainly related to the thickening of the lower crust, which exhibits velocities from 6.5 to 7.4 km/s. The deep structure is consistent with emplacement at an active spreading axis under a hotspot like the present-day Galapagos Hotspot on the Cocos-Nazca Spreading Centre. Our results favour the hypothesis that the Malpelo Ridge was formerly a continuation of the Cocos Ridge, emplaced simultaneously with the Carnegie Ridge at the Cocos-Nazca Spreading Centre, from which it was separated and subsequently drifted southward relative to the Cocos Ridge due to differential motion along the dextral strike-slip Panama Fracture Zone. The steep faulted northern flank of the Malpelo Ridge and the counterpart steep and faulted southern flank of Regina Ridge are possibly related to a rifting phase that resulted in the Coiba Microplate’s separation from the Nazca Plate along the Sandra Rift.
Fisher, M.A.; Ratchkovski, N.A.; Nokleberg, W.J.; Pellerin, L.; Glen, J.M.G.
2004-01-01
Geophysical information, including deep-crustal seismic reflection, magnetotelluric (MT), gravity, and magnetic data, cross the aftershock zone of the 3 November 2002 Mw 7.9 Denali fault earthquake. These data and aftershock seismicity, jointly interpreted, reveal the crustal structure of the right-lateral-slip Denali fault and the eastern Alaska Range orogen, as well as the relationship between this structure and seismicity. North of the Denali fault, strong seismic reflections from within the Alaska Range orogen show features that dip as steeply as 25?? north and extend downward to depths between 20 and 25 km. These reflections reveal crustal structures, probably ductile shear zones, that most likely formed during the Late Cretaceous, but these structures appear to be inactive, having produced little seismicity during the past 20 years. Furthermore, seismic reflections mainly dip north, whereas alignments in aftershock hypocenters dip south. The Denali fault is nonreflective, but modeling of MT, gravity, and magnetic data suggests that the Denali fault dips steeply to vertically. However, in an alternative structural model, the Denali fault is defined by one of the reflection bands that dips to the north and flattens into the middle crust of the Alaska Range orogen. Modeling of MT data indicates a rock body, having low electrical resistivity (>10 ??-m), that lies mainly at depths greater than 10 km, directly beneath aftershocks of the Denali fault earthquake. The maximum depth of aftershocks along the Denali fault is 10 km. This shallow depth may arise from a higher-than-normal geothermal gradient. Alternatively, the low electrical resistivity of deep rocks along the Denali fault may be associated with fluids that have weakened the lower crust and helped determine the depth extent of the after-shock zone.
Resistivity structures across the Humboldt River basin, north-central Nevada
Rodriguez, Brian D.; Williams, Jackie M.
2002-01-01
Magnetotelluric data collected along five profiles show deep resistivity structures beneath the Battle Mountain-Eureka and Carlin gold trends in north-central Nevada, which appear consistent with tectonic breaks in the crust that possibly served as channels for hydrothermal fluids. It seems likely that gold deposits along these linear trends were, therefore, controlled by deep regional crustal fault systems. Two-dimensional resistivity modeling of the magnetotelluric data generally show resistive (30 to 1,000 ohm-m) crustal blocks broken by sub-vertical, two-dimensional, conductive (1 to 10 ohmm) zones that are indicative of large-scale crustal fault zones. These inferred fault zones are regional in scale, trend northeast-southwest, north-south, and northwest-southeast, and extend to mid-crustal (20 km) depths. The conductors are about 2- to 15-km wide, extend from about 1 to 4 km below the surface to about 20 km depth, and show two-dimensional electrical structure. By connecting the locations of similar trending conductors together, individual regional crustal fault zones within the upper crust can be inferred that range from about 4- to 10-km wide and about 30- to 150-km long. One of these crustal fault zones coincides with the Battle Mountain-Eureka mineral trend. The interpreted electrical property sections also show regional changes in the resistive crust from south to north. Most of the subsurface in the upper 20 km beneath Reese River Valley and southern Boulder Valley are underlain by rock that is generally more conductive than the subsurface beneath Kelly Creek Basin and northern Boulder Valley. This suggests that either elevated-temperature or high-salinity fluids, alteration, or carbonaceous rocks are more pervasive in the more conductive area (Battle Mountain Heat-Flow High), which implies that the crust beneath these valleys is either more fractured or has more carbonaceous rocks than in the area surveyed along the 41st parallel.
United States crustal thickness
NASA Technical Reports Server (NTRS)
Allenby, R. J.; Schnetzler, C. C.
1983-01-01
The thickness of the crust, the thickness of the basal (intermediate or lower) crustal layer, and the average velocity at the top of the mantle have been mapped using all available deep-penetrating seismic-refraction profiles in the conterminous United States and surrounding border areas. These profiles are indexed to their literature data sources. The more significant long wavelength anomalies on the three maps are briefly discussed and analyzed. An attempt to use Bouguer gravity to validate mantle structure was inconclusive.
2012-03-22
2003). This is particularly true at shallow depths where the shorter periods, which are primarily sensitive to upper crustal structures, are difficult...to measure, and especially true in tectonically and geologically complex areas. On the other hand, regional gravity inversions have the greatest...the slower deep crustal speeds into the Caspian region does not make sense geologically. These effects are driven by the simple Laplacian smoothness
The Magmatic Structure of Mt. Vesuvius: Isotopic and Thermal Constraints
NASA Astrophysics Data System (ADS)
Civetta, L.; D'Antonio, M.; de Lorenzo, S.; Gasparini, P.
2002-12-01
Mt. Vesuvius is an active volcano famous for the AD 79 eruption that destroyed Pompeii, Herculaneum and Stabiae. Because of the intense urbanization around and on the volcano, the risk today is very high. Therefore, the knowledge of the structure and behavior of the magmatic system is fundamental both for the interpretation of any change in the dynamics of the volcano and for prediction of eruptions. A review of available and new isotopic data on rocks from Mt. Vesuvius, together with mineralogical and geochemical data and recent geophysical results, allow us to constrain a thermal modeling that describes history and present state of Mt. Vesuvius magmatic system. This system is formed by a "deep", complex magmatic reservoir where mantle-derived magmas arrive, stagnate and differentiate. The reservoir extends discontinuously between 10 and 20 km of depth, is hosted in densely fractured crustal rocks, where magmas and crust can interact, and has been fed more than once since 400 ka. The hypothesis of crustal contamination is favored by the high temperatures reached by crustal rocks as a consequence of repetitive intrusions of magma. From the "deep" reservoir magmas of K-basaltic to K-tephritic to K-phonotephritic composition rise to shallow depths where they stagnate at 3-5 km of depth before plinian eruptions, and through crystallization and mixing processes with the residual portion of the feeding systems, generate isotopically and geochemically layered reservoirs. Alternatively, during "open conduit" conditions deep, volatile-rich magma batches rise from the "deep" reservoir to less than 1 km of depth and mix with the crystal-rich, volatile-poor resident magma, triggering eruptions.
Extension style in the Orphan Basin during the Mesozoic North Atlantic rifting
NASA Astrophysics Data System (ADS)
Gouiza, Mohamed; Hall, Jeremy
2013-04-01
The Orphan Basin, lying along the Newfoundland passive continental margin, has formed in Mesozoic time during the opening of the North Atlantic Ocean and the breakup of Iberia/Eurasia from North America. Regional deep seismic reflection profiles across the basin indicate that the Neoproterozoic basement has been affected by repeated extensional episodes between the Late Triassic/Jurassic and the Early Cretaceous. Deformation initiated in the eastern part of the Orphan basin in the Jurassic and migrated toward the west in the Early Cretaceous, resulting in numerous rift structures filled with Jurassic-Lower Cretaceous syn-rift successions and sealed by thick Upper Cretaceous-Cenozoic post-rift sediments. The seismic data show an extremely attenuated crust underneath the eastern and western part of the deep basin, forming two sub-basins associated with the development of rifting. The two sub-basins are separated by a wide structural high with a relatively thick crust and are bounded to the west by the continental shelf domain. Restoration of the Orphan Basin along a 2D crustal section (520 km long), yields a total amount of stretching of about 144 km, while the total crustal thinning indicates an extension of around 250 km, assuming mass conservation along the section and an initial crustal thickness of 28 km. Brittle deformation accommodated by normal faults is documented in the seismic profiles and affected essentially the present-day upper portion of the crust, and represents only 60% of the total extension which thinned the Orphan crust. The remaining crustal thinning must involve other deformation processes which are not (easily) recognizable in the seismic data. We propose two models that could explain discrepancies between brittle deformation and total crustal thinning during lithospheric extension. The first model assumes the reactivation of pre-rift inherited structures, which act as crustal-scale detachments during the early stages of rifting. The second model uses depth-dependent extension of a 20 km thick crust characterized by a strong upper crust and a weak lower crust. Both models raise secondary issues that are discussed around the order of rifting events and the original crustal thickness.
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Ye, Xiuwei; Lv, Jinshui; Sun, Jinlong; Wang, Xiaona
2018-02-01
The Pearl River Estuary area, located in the middle part of the southern China coastal seismic belt, has long been considered a potential source of strong earthquakes above magnitude 7.0. To scientifically assess the potential strong earthquake risk in this area, a three-dimensional artificial seismic sounding experiment, consisting of a receiving array and seabed seismograph, was performed to reveal the deep crustal structure in this region. We used artificial ship-borne air-gun excitation shots as sources, and fixed and mobile stations as receivers to record seismic data from May to August 2015. This paper presents results along a line from the western side of the Pearl River Estuary to the western side of the Baijing-Gaoming-Jinwan profile. A two-dimensional velocity structure was constructed using seismic travel-time tomography. The inversion results show that the Moho depth is 27 km in the coastal area and 30 km in the northwest of the Pearl River Estuary area, indicating that the crust thins from land to sea. Two structural discontinuities and multiple low-velocity anomalies appear in the crustal section. Inside both discontinuity zones, a low-velocity layer, with a minimum velocity of 6.05 km s-1, exists at a depth of about 15 km, and another, with a minimum velocity of 6.37 km s-1, exists at a depth of about 21.5 km between the middle and lower crust. These low velocities suggest that the discontinuities may consist of partly molten material. Earthquakes with magnitudes higher than 5.0 occurred in the low-velocity layer along the profile. The deep Kaiping-Enping fault, rooted in the crust, may be one of the most important channels for deep material upwelling and is related to tectonic movement since the Cretaceous in the Pearl River Delta tectonic rift basin.
NASA Astrophysics Data System (ADS)
Stanton, N.; Schmitt, R.; Galdeano, A.; Maia, M.; Mane, M.
2010-07-01
The continental and adjacent marginal features along southeast Brazil were investigated, focusing on the basement structural relationships between onshore and offshore provinces. Lateral and vertical variations in the magnetic anomalies provided a good correlation with the regional tectonic features. The sin-rift dykes and faults are associated with the magnetic lineaments and lie sub parallel to the Precambrian N45E-S45W basement structure of the Ribeira Belt, but orthogonally to the Cabo Frio Tectonic Domain (CFTD) basement, implying that: (1) the upper portion of the continental crust was widely affected by Mesozoic extensional deformation; and (2) tectonic features related to the process of break up of the Gondwana at the CFTD were form regardless of the preexisting structural basement orientation being controlled by the stress orientation during the rift phase. The deep crustal structure (5 km depth) is characterized by NE-SW magnetic "provinces" related to the Ribeira Belt tectonic units, while deep suture zones are defined by magnetic lows. The offshore Campos structural framework is N30E-S30W oriented and resulted from a main WNW-ESE direction of extension in Early Cretaceous. Transfer zones are represented by NW-SE and E-W oriented discontinuities. A slight difference in orientation between onshore (N45E) and offshore (N30E) structural systems seems to reflect a re-orientation of stress during rifting. We proposed a kinematical model to explain the structural evolution of this portion of the margin, characterized by polyphase rifting, associated with the rotation of the South American plate. The Campos Magnetic High (CMH), an important tectonic feature of the Campos Basin corresponds to a wide area of high crustal magnetization. The CMH wass interpreted as a magmatic feature, mafic to ultramafic in composition that extends down to 14 km depth and constitutes an evidence of intense crustal extension at 60 km from the coast.
NASA Astrophysics Data System (ADS)
Wannamaker, P. E.; Doerner, W. M.; Hasterok, D. P.
2005-12-01
In the rifted Basin and Range province of the southwestern U.S., a common faulting model for extensional basins based e.g. on reflection seismology data shows dominant displacement along master faults roughly coincident with the main topographic scarp. On the other hand, complementary data such as drilling, earthquake focal mechanisms, volcanic occurrences, and trace indicators such as helium isotopes suggest that there are alternative geometries of crustal scale faulting and material transport from the deep crust and upper mantle in this province. Recent magnetotelluric (MT) profiling results reveal families of structures commonly dominated by high-angle conductors interpreted to reflect crustal scale fault zones. Based mainly on cross cutting relationships, these faults appear to be late Cenozoic in age and are of low resistivity due to fluids or alteration (including possible graphitization). In the Ruby Mtns area of north-central Nevada, high angle faults along the margins of the core complex connect from near surface to a regional lower crustal conductor interpreted to contain high-temperature fluids and perhaps melts. Such faults may exemplify the high angle normal faults upon which the major earthquakes of the Great Basin appear to nucleate. A larger-scale transect centered on Dixie Valley shows major conductive crustal-scale structures connecting to conductive lower crust below Dixie Valley, the Black Rock desert in NW Nevada, and in east-central Nevada in the Monitor-Diamond Valley area. In the Great Basin-Colorado Plateau transition of Utah, the main structures revealed are a series of nested low-angle detachment structures underlying the incipient development of several rift grabens. All these major fault zones appear to overlie regions of particularly conductive lower crust interpreted to be caused by recent basaltic underplating. In the GB-CP transition, long period data show two, low-resistivity upper mantle diapirs underlying the concentrated conductive lower crust and nested faults, and these are advanced as melt source regions for the underplating. MT, with its wide frequency bandwidth, allows views of nearly a complete melting and emplacement process, from mantle source region, through lower crustal intrusion, to brittle regime deformational response.
NASA Astrophysics Data System (ADS)
Goleby, Bruce R.; Huston, David L.; Lyons, Patrick; Vandenberg, Leon; Bagas, Leon; Davies, Brett M.; Jones, Leonie E. A.; Gebre-Mariam, Musie; Johnson, Wade; Smith, Tim; English, Luc
2009-07-01
Imaging of a major collision zone between the Tanami region and Aileron Province of the Arunta Orogen in Northern Australia, and recognition that several of the major gold deposits within the Tanami region are within near-surface antiformal stacks or uplifted and exhumed crustal sections associated with major crustal-penetrating shear zones, are fundamental results from the 2005 Tanami Seismic Collaborative Research Project. The suture, which is interpreted to have resulted from collision, separates the northwest-dipping structural grain of the Aileron Province crust in the south from the southeast-dipping structural grain of the Tanami crust in the northwest. The collision between the Tanami region and the Aileron Province is interpreted to have occurred prior to ca. 1840 Ma. The correlation between the surface extension of crustal-penetrating shear zones that extend to the Moho boundary and the locations of known gold-rich mineral fields is significant and has implications for minerals explorers within the Tanami region, and elsewhere. In the near-surface, where the crustal-penetrating structures cut relatively shallow upper crustal Tanami Group rocks, there is a significant increase in the degree of local deformation and results in through-going thrust faults, associated pop-up structures, ramp anticlines and antiformal stacking. All known ore deposits appear to be located within these more complexly deformed zones and therefore have a direct association with larger-scale structures.
NASA Astrophysics Data System (ADS)
Gutscher, M. A.; Dellong, D.; Klingelhoefer, F.; Kopp, H.; Graindorge, D.; Margheriti, L.; Moretti, M.
2017-12-01
In the Ionian Sea (Central Mediterranean) the slow convergence between Africa and Eurasia results in the formation of a narrow subduction zone. The nature of the crust and lithosphere of the subducting plate remain debated and could represent the last remnants of the Neo-Tethys ocean. The rifting mechanism that produced the Ionian basin are also still under discussion with the Malta escarpment representing a possible remnant of this opening. At present, this subduction is still retreating to the south-east (motion occurring since the last 35 Ma) but is confined to the narrow Ionian Basin. In order to accommodate slab roll-back, a major lateral slab tear fault is required. This fault is thought to propagate along the eastern Sicily margin but its precise location remains controversial. This study focuses on the deep crustal structure of the Eastern-Sicily margin and the Malta Escarpment by presenting two wide-angle velocity profiles crossing these structures roughly orthogonally. The data used for the forward velocity modeling were acquired onboard the R/V Meteor during the DIONYSUS cruise in 2014. The results image an oceanic crust within the Ionian basin as well as the deep structure of the Malta Escarpment which presents characteristics of a transform margin. A deep and asymmetrical sedimentary basin is imaged south of the Messina strait and seems to have opened in between the Calabrian and Peloritan continental terranes. The interpretation of the velocity models suggests that the tear fault is located east of the Malta Escarpment, along the Alfeo fault system.
Grauch, V.J.S.; Rodriguez, B.D.; Bankey, V.; Wooden, J.L.
2003-01-01
Combined evidence from gravity, radiogenic isotope, and magnetotelluric (MT) data indicates a crustal fault zone that coincides with the northwest-trending Battle Mountain-Eureka (BME) mineral trend in north-central Nevada, USA. The BME crustal fault zone likely originated during Neoproterozoic-Early Paleozoic rifting of the continent and had a large influence on subsequent tectonic events, such as emplacement of allochthons and episodic deformation, magmatism, and mineralization throughout the Phanerozoic. MT models show the fault zone is about 10 km wide, 130-km long, and extends from 1 to 5 km below the surface to deep crustal levels. Isotope data and gravity models imply the fault zone separates crust of fundamentally different character. Geophysical evidence for such a long-lived structure, likely inherited from continental breakup, defies conventional wisdom that structures this old have been destroyed by Cenozoic extensional processes. Moreover, the coincidence with the alignment of mineral deposits supports the assertion by many economic geologists that these alignments are indicators of buried regional structures.
The Oceanic Crustal Structure of the Southwestern Subbasin in the South China Sea
NASA Astrophysics Data System (ADS)
Wu, Z.; Ruan, A.; Li, J.; Lee, C.
2012-12-01
Located at the southwestern part of the South China Sea (SCS) among the Zhongsha Islands(Macclesfield Bank), the east subbasin, the Nansha Islands(Dangerous Ground), the V type southwest subbasin (SWSB) is an unique ocean basin in all the three subbasins of SCS. The crustal structure is one of the key problems to study the formation and evolution of SWSB. During December 2010 to March 2011, Ocean Bottom Seismometers (OBSs) experiment has been carried out in the SWSB to get the deep crustal structure information, especially under the fossil spreading center. Three types of OBS, Sedis IV type, I-4C type and MicrOBS type have been used in the experiment, and the energy source was supplied by 6000 inch3 large volume air-gun. High quality seismic data of four 2D profiles which covered the fossil spreading center of SWSB have been acquired. The data of the experiment can supply evidence for the study of oceanic crustal structure of the SWSB and seafloor spreading course, etc. The profile 1 extended 130 km in length. A total of 8 OBSs were deployed at intervals of 10 or 15 km and 7 OBSs were recovered. The data of the 7 stations of profile 1 have been processed, which shows that the seismic records are clear and seismic phases are abundance, and the air-guns have enough energy supply. The velocity model was obtained by using an interactive trial-and-error 2D ray-tracing method. The crustal structure indicates that the crustal thickness under the SWSB is about 6 km, and the moho depth is about 10km. The results reveal that the crust of SWSB is normal oceanic crust with a thin sedimentary layer on the seamount and shallow moho surface. The crustal velocity under the spreading center is extremely low, which shows the characteristic of the deep crustal structure of the fossil spreading center. Acknowledgements This study was supported by the National Natural Science Foundation of China (Grant No. 91028006, 41106053, 41176046), Scientific Research Fund of the Second Institute of Oceanography, SOA(Grant No. JT1101) References: Ruan A G, Qiu X L, Li J B, et al. Wide aperture seismic sounding in the margin seas of China. South China Journal of Seismology,2009,29:10-18(in Chinese). Li J B, Jin X L, Gao J Y. Morpho-tectonic study on late-stage spreading of the Eastern Subbasin of South China Sea. Sci China Ser D-Earth Sci,2002, 45:978-989 WU Z L, LI J B, RUAN A G, et al. Crustal structure of the northwestern sub-basin, South China Sea: Results from a wide-angle seismic experiment[J]. Sci China Earth Sci, 2012,55:159-172. doi: 10.1007/s11430-011-4324-9.
Crustal structure of Central Sicily
NASA Astrophysics Data System (ADS)
Giustiniani, Michela; Tinivella, Umberta; Nicolich, Rinaldo
2018-01-01
We processed crustal seismic profile SIRIPRO, acquired across Central Sicily. To improve the seismic image we utilized the wave equation datuming technique, a process of upward or downward continuation of the wave-field between two arbitrarily shaped surfaces. Wave equation datuming was applied to move shots and receivers to a given datum plane, removing time shifts related to topography and to near-surface velocity variations. The datuming procedure largely contributed to attenuate ground roll, enhance higher frequencies, increase resolution and improve the signal/noise ratio. Processed data allow recognizing geometries of crust structures differentiating seismic facies and offering a direct image of ongoing tectonic setting within variable lithologies characterizing the crust of Central Sicily. Migrated sections underline distinctive features of Hyblean Plateau foreland and above all a crustal thinning towards the Caltanissetta trough, to the contact with a likely deep Permo-Triassic rifted basin or rather a zone of a continent to oceanic transition. Inhomogeneity and fragmentation of Sicily crust, with a distinct separation of Central Sicily basin from western and eastern blocks, appear to have guided the tectonic transport inside the Caltanissetta crustal scale syncline and the accumulation of allochthonous terrains with south and north-verging thrusts. Major tectonic stack operated on the construction of a wide anticline of the Maghrebian chain in northern Sicily. Sequential south-verging imbrications of deep elements forming the anticline core denote a crust wedge indenting foreland structures. Deformation processes involved multiple detachment planes down to decoupling levels located near crust/mantle transition, supporting a presence of high-density lenses beneath the chain, interrelated to a southwards push of Tyrrhenian mantle and asthenosphere.
Answers from deep inside the Earth; Continental Scientific Drilling at Cajon Pass, California
Russ, D.P.
1989-01-01
Drilling of a 12,000-foot-deep scientific well has been completed at Cajon Pass in southern California to measure crustal properties, to determine crustal structure, and to better understanding the generation of earthquakes along the San Andreas fault. A joint effort of the National Science Foundation (NFS) and the U.S Geological Survey (USGS), the well was begun in November 1986, and is one of the first projects to be undertaken in the new national Continental Scientific Drilling Program. This program aims to enchance our knowledge of the compostiion, sturcture, dynamics, and evolution of the continental crust and of how these factors affect the origin and distribution of mineral and energy resources and natural phenomena such as volcanic eruptions and earthquakes.
NASA Astrophysics Data System (ADS)
Pu, X.; Delph, J. R.; Shimizu, K.; Rasmussen, D. J.; Ratschbacher, B. C.
2017-12-01
Deep zones of mixing, assimilation, storage, and homogenization (MASH) are thought to be one of the primary locations where primitive arc magmas stall, interact with crustal material, and differentiate. Support for deep crustal MASH zones is found in exposed crustal sections, where mafic-ultramafic lithologies occur in the lower crust. However, geophysical observations of active deep MASH zones are rare, and their ubiquity is difficult to assess solely based on geochemistry. Using a multidisciplinary approach, we investigate the role of deep crustal processing by investigating two contrasting arcs: the Central Volcanic Zone (CVZ) of the Andes, characterized by thick crust ( 60 km) and large volume silicic eruptions that extend into the back arc, and the Cascadia arc, characterized by thinner crust ( 40 km) and less evolved eruptions. In the southern Puna region of the CVZ, shear-wave velocities in the uppermost mantle are slow ( 3.9 km/s) compared to the minimum expected shear velocity for melt-free mantle lithosphere ( 4.2 km/s). This is consistent with the presence of a melt-bearing MASH zone near the crust-mantle transition. Sr isotopes indicate the magmas interacted with continental crust, and elevated Dy/Yb ratios suggest this process occurred in the garnet stability field (> 1 GPa). Major element signatures (e.g., ASI vs. SiO2) also suggest contribution from partial melting of the lower crust. The signature of lower crustal differentiation (high Dy/Yb) is also observed in the nearby ignimbrites from Cerro Galan, despite the presence of a large slow velocity body at depths too shallow for garnet stability, suggesting that the geochemical signatures of deep MASH zones may be retained regardless of whether magmas stall at shallower depths. Similarly elevated Dy/Yb ratios and slow shear-wave velocities in the upper mantle are common in the CVZ, implying deep MASH zones are pervasive there. A similar approach is applied to Cascadia, where seismic and geochemical signatures of lower crustal processing are weaker than those in the CVZ. The strongest evidence for a deep MASH zone is found at Rainier, where upper mantle velocities are slow and slightly elevated Dy/Yb ratios in evolved melts indicate differentiation in the presence of garnet. Our results suggest deep MASH zones are more common in the CVZ than Cascadia.
Crustal parameters in the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Banda, E.
1988-06-01
The structure of the crust in the Iberian Peninsula has been investigated for the last 15 years by Spanish and Portuguese groups in close collaboration with other European institutions. The first experiments were carried out in Portugal (Mueller et al., 1973) with the aim of investigating the crustal structure of the Hercynian belt in the southwest corner of the Iberian peninsula. Other experiments have been subsequently realized to study different aspects of the crust in various regions of Portugal. In Spain the main effort has been focused in Alpine areas, with the first experiments in the Alboran Sea and the Betic Cordilleras (Working Group for Deep Seismic Sounding in Spain, 1974-1975, 1977; Working Group for Deep Seismic Sounding in the Alboran Sea, 1974-1975, 1978). Follow-up experiments until 1981 completed the work in the Betic Cordillera. Extensive experiments were carried out in the Pyrenees in 1978. Further surveys covered the Balearic Islands in 1976, the Valencia Trough in 1976 and 1983, and the Celtiberian Chain (or Iberic system) in 1981. The Hercynian belt has only been studied in detail in the northwest corner of Spain in 1982, with smaller studies in the central Iberian Massif in 1976 and 1986. Mostaanpour (1984) has compiled some crustal parameters (crustal thickness, average crustal velocity and Pn velocity) for western Europe. Meanwhile, more complete data are available for the Iberian Peninsula. The results presented here were derived from a large number of seismic refraction experiments which have been carried out mostly along or close to coastal areas of the Iberian Peninsula. Offshore explosions of various sizes were used as the energy source in most cases, in addition to some quarry blasts. Unfortunately this leaves most of the inner part of the Iberian Peninsula unsurveyed. Our purpose is to summarize some of the crustal parameters obtained so far and to detail the appropriate literature for the interested reader.
Glen, J.M.G.; Schmidt, J.; Pellerin, L.; McPhee, D.K.; O'Neill, J. M.
2007-01-01
Recent investigations of the Talkeetna Mountains in south-central Alaska were undertaken to study the region's framework geophysics and to reinterpret structures and crustal composition. Potential field (gravity and magnetic) and magnetotelluric (MT) data were collected along northwest-trending profiles as part of the U.S. Geological Survey's Talkeetna Mountains transect project. The Talkeetna Mountains transect area comprises eight 1:63,360 quadrangles (???9500 km2) in the Healy and Talkeetna Mountains 1?? ?? 3?? sheets that span four major lithostratigraphic terranes (Glen et al., this volume) including the Wrangellia and Peninsular terranes and two Mesozoic overlap assemblages inboard (northwest) of Wrangellia. These data were used here to develop 21/2-dimensional models for the three profiles. Modeling results reveal prominent gravity, magnetic, and MT gradients (???3.25 mGal/ km, ???100nT/km, ???300 ohm-m/km) corresponding to the Talkeetna Suture Zone-a first-order crustal discontinuity in the deep crust that juxtaposes rocks with strongly contrasting rock properties. This discontinuity corresponds with the suture between relatively dense magnetic crust of Wrangellia (likely of oceanic composition) and relatively less dense transitional crust underlying Jurassic to Cretaceous flysch basins developed between Wrangellia and North America. Some area of the oceanic crust beneath Wrangellia may also have been underplated by mafic material during early to mid-Tertiary volcanism. The prominent crustal break underlies the Fog Lakes basin approximately where theTalkeetna thrust faultwaspreviouslymappedas a surface feature. Potential fieldand MT models, however, indicate that the Talkeetna Suture Zone crustal break along the transect is a deep (2-8 km), steeply west-dipping structure-not a shallow east-dipping Alpine nappe-like thrust. Indeed, most of the crustal breaks in the area appear to be steep in the geophysical data, which is consistent with regional geologic mapping that indicates that most of the faults are steep normal, reverse, strike-slip, or oblique-slip faults. Mapping further indicates that many of these features, which likely formed during Jurassic and Cretaceous time, such as the Talkeetna Suture Zone have reactivated inTertiary time (O'Neill et al., 2005). Copyright ?? 2007 The Geological Society of America.
Fuis, G.S.; Moore, Thomas E.; Plafker, G.; Brocher, T.M.; Fisher, M.A.; Mooney, W.D.; Nokleberg, W.J.; Page, R.A.; Beaudoin, B.C.; Christensen, N.I.; Levander, A.R.; Lutter, W.J.; Saltus, R.W.; Ruppert, N.A.
2008-01-01
We investigate the crustal structure and tectonic evolution of the North American continent in Alaska, where the continent has grown through magmatism, accretion, and tectonic underplating. In the 1980s and early 1990s, we conducted a geological and geophysical investigation, known as the Trans-Alaska Crustal Transect (TACT), along a 1350-km-long corridor from the Aleutian Trench to the Arctic coast. The most distinctive crustal structures and the deepest Moho along the transect are located near the Pacific and Arctic margins. Near the Pacific margin, we infer a stack of tectonically underplated oceanic layers interpreted as remnants of the extinct Kula (or Resurrection) plate. Continental Moho just north of this underplated stack is more than 55 km deep. Near the Arctic margin, the Brooks Range is underlain by large-scale duplex structures that overlie a tectonic wedge of North Slope crust and mantle. There, the Moho has been depressed to nearly 50 km depth. In contrast, the Moho of central Alaska is on average 32 km deep. In the Paleogene, tectonic underplating of Kula (or Resurrection) plate fragments overlapped in time with duplexing in the Brooks Range. Possible tectonic models linking these two regions include flat-slab subduction and an orogenic-float model. In the Neogene, the tectonics of the accreting Yakutat terrane have differed across a newly interpreted tear in the subducting Pacific oceanic lithosphere. East of the tear, Pacific oceanic lithosphere subducts steeply and alone beneath the Wrangell volcanoes, because the overlying Yakutat terrane has been left behind as underplated rocks beneath the rising St. Elias Range, in the coastal region. West of the tear, the Yakutat terrane and Pacific oceanic lithosphere subduct together at a gentle angle, and this thickened package inhibits volcanism. ?? 2008 The Geological Society of America.
Grissom, G.C.; DeBari, S.M.; Snee, L.W.
1998-01-01
This paper is included in the Special Publication entitled 'The proto- Andean margin of Gondwana', edited by R.J. Pankhurst and C.W. Rapela. Field mapping in conjunction with structural, metamorphic, and geochronological data document the tectono-thermal history of exhumed deep crustal rocks in the Sierra de Fiambala, NW Argentina. The range consists of two structural blocks distinguished by different metasedimentary sequences and different grades of metamorphism. Orthogneiss and paragneiss in the northern structural block may have a Precambrian history. Greenschist- to amphibolite-facies metamorphism, intrusion, and injection magmatization affected all rocks at 540-550 Ma. A subsequent event in the Late Cambrian to Ordovician (c.515 to 470 Ma) involved amphibolite- to granulite-facies metamorphism, mafic intrusion, and deformation, followed by cooling through mid-Palaeozoic time. The emplacement of Carboniferous (325-350 Ma) post-tectonic granites caused reheating and retrogression that was strongest toward the northeast part of the range. The Cambrian, Ordovician, and Carboniferous events in the Sierra de Fiambala were of regional extent as indicated by temporal correlations with events reported for other deep crustal rocks of the northern Sierras Pampeanas. Correlations between periods of intrusion and high-grade metamorphism in the northern Sierras Pampeanas and volcanic-sedimentary events in the adjacent supracrustal exposures confirm that rocks in the northern Sierras Pampeanas formed at deep (10-25 km) structural levels in the early Palaeozoic continental margin of Gondwana.
Waveform tomography of crustal structure in the south San Francisco Bay region
Pollitz, F.F.; Fletcher, J.P.
2005-01-01
We utilize a scattering-based seismic tomography technique to constrain crustal tructure around the southern San Francisco Bay region (SFBR). This technique is based on coupled traveling wave scattering theory, which has usually been applied to the interpretation of surface waves in large regional-scale studies. Using fully three-dimensional kernels, this technique is here applied to observed P, S, and surface waves of intermediate period (3-4 s dominant period) observed following eight selected regional events. We use a total of 73 seismograms recorded by a U.S. Geological Survey short-period seismic array in the western Santa Clara Valley, the Berkeley Digital Seismic Network, and the Northern California Seismic Network. Modifications of observed waveforms due to scattering from crustal structure include (positive or negative) amplification, delay, and generation of coda waves. The derived crustal structure explains many of the observed signals which cannot be explained with a simple layered structure. There is sufficient sensitivity to both deep and shallow crustal structure that even with the few sources employed in the present study, we obtain shallow velocity structure which is reasonably consistent with previous P wave tomography results. We find a depth-dependent lateral velocity contrast across the San Andreas fault (SAF), with higher velocities southwest of the SAF in the shallow crust and higher velocities northeast of the SAF in the midcrust. The method does not have the resolution to identify very slow sediment velocities in the upper approximately 3 km since the tomographic models are smooth at a vertical scale of about 5 km. Copyright 2005 by the American Geophysical Union.
A deep structural ridge beneath central India
NASA Astrophysics Data System (ADS)
Agrawal, P. K.; Thakur, N. K.; Negi, J. G.
A joint-inversion of magnetic satellite (MAGSAT) and free air gravity data has been conducted to quantitatively investigate the cause for Bouguer gravity anomaly over Central Indian plateaus and possible fold consequences beside Himalayan zone in the Indian sub-continent due to collision between Indian and Eurasian plates. The appropriate inversion with 40 km crustal depth model has delineated after discriminating high density and magnetisation models, for the first time, about 1500 km long hidden ridge structure trending NW-SE. The structure is parallel to Himalayan fold axis and the Indian Ocean ridge in the Arabian Sea. A quantitative relief model across a representative anomaly profile confirms the ridge structure with its highest point nearly 6 km higher than the surrounding crustal level in peninsular India. The ridge structure finds visible support from the astro-geoidal contours.
Evolution of Continental Lower Crust Recorded By an Exhumed Deep Crustal Intracontinental Shear Zone
NASA Astrophysics Data System (ADS)
Dumond, G.; Mahan, K. H.; Regan, S. P.; Williams, M. L.; Goncalves, P.; Wood, V. R.
2014-12-01
Exposures of deep crustal shear zones are fundamental records of strain localization and the temporal evolution of ductile to brittle behavior as these tectonites were exhumed to the surface. We present results from a decade of field-based research on a deeply exhumed (~35 km-paleodepths) strike-slip shear zone in the western Churchill province of the Canadian Shield. The Grease River shear zone is a >400 km-long and 7 km-thick structure that cuts the Athabasca granulite terrane, North America's largest exposure of continental lower crust (>20,000 km2). The shear zone is dominated by granulite- to amphibolite-grade L-S and L>S tectonites characterized by penetrative NE-striking steeply-dipping foliations with gently-plunging to sub-horizontal stretching and intersection lineations. These fabrics are locally overprinted by pseudotachylyte and narrow (<500 m-thick) greenschist-grade zones of cataclasite. Dextral kinematics are defined by deflected foliation trajectories, C' shear bands, and well-developed σ- and δ-type porphyroclasts of Kfs + Pl + Opx + Grt + Hb in felsic to intermediate granulite paragneisses and orthogneisses. Data collected along a well-exposed, nearly 150 km-long segment of the shear zone documents a >100 m.y. episodic record of transpressive to strike-slip intracontinental strain accumulation that coincided with two oppositely convergent orogenies: the east-vergent arc-continent collision of the 1.94-1.90 Ga Taltson orogen and the west-vergent continent-continent collision of the 1.9-1.8 Ga Trans-Hudson orogen. Deformation mechanisms evolved from distributed ductile dynamic recrystallization and grain-size reduction to localized pseudotachylyte development, cataclastic flow, and brittle faulting. Lower crustal behavior during strain localization was dynamic. Melt-weakened mono-cyclic crust was juxtaposed against strong isobarically-cooled poly-cyclic crust along the shear zone at 1.92-1.90 Ga. Brittle-ductile reactivation of the structure during exhumation to middle crustal levels was coincident with fluid-mediated retrograde reactions that facilitated crustal-scale segmentation and transpressive uplift of lower crustal granulites at 1.85 Ga. This study illustrates that lower crustal rheology is spatially and temporally heterogeneous.
Seismic evidence for widespread western-US deep-crustal deformation caused by extension
Moschetti, M.P.; Ritzwoller, M.H.; Lin, F.; Yang, Y.
2010-01-01
Laboratory experiments have established that many of the materials comprising the Earth are strongly anisotropic in terms of seismic-wave speeds. Observations of azimuthal and radial anisotropy in the upper mantle are attributed to the lattice-preferred orientation of olivine caused by the shear strains associated with deformation, and provide some of the most direct evidence for deformation and flow within the Earths interior. Although observations of crustal radial anisotropy would improve our understanding of crustal deformation and flow patterns resulting from tectonic processes, large-scale observations have been limited to regions of particularly thick crust. Here we show that observations from ambient noise tomography in the western United States reveal strong deep (middle to lower)-crustal radial anisotropy that is confined mainly to the geological provinces that have undergone significant extension during the Cenozoic Era (since 65 Myr ago). The coincidence of crustal radial anisotropy with the extensional provinces of the western United States suggests that the radial anisotropy results from the lattice-preferred orientation of anisotropic crustal minerals caused by extensional deformation. These observations also provide support for the hypothesis that the deep crust within these regions has undergone widespread and relatively uniform strain in response to crustal thinning and extension. ?? 2010 Macmillan Publishers Limited. All rights reserved.
NASA Astrophysics Data System (ADS)
Rhie, J.; Kim, S.; Tkalcic, H.; Baag, S. Y.
2017-12-01
Heterogeneous features of magmatic structures beneath intraplate volcanoes are attributed to interactions between the ascending magma and lithospheric structures. Here, we investigate the evolution of crustal magmatic stuructures beneath Mount Baekdu volcano (MBV), which is one of the largest continental intraplate volcanoes in northeast Asia. The result of our seismic imaging shows that the deeper Moho depth ( 40 km) and relatively higher shear wave velocities (>3.8 km/s) at middle-to-lower crustal depths beneath the volcano. In addition, the pattern at the bottom of our model shows that the lithosphere beneath the MBV is shallower (< 100 km) compared to surrounding regions. Togather with previous P-wave velocity models, we interpret the observations as a compositional double layering of mafic underplating and a overlying cooled felsic structure due to fractional crystallization of asthenosphere origin magma. To achieve enhanced vertical and horizontal model coverage, we apply two approaches in this work, including (1) a grid-search based phase velocity measurement using real-coherency of ambient noise data and (2) a transdimensional Bayesian joint inversion using multiple ambient noise dispersion data.
NASA Astrophysics Data System (ADS)
Lebedev, S.; Schaeffer, A. J.; Fullea, J.; Pease, V.
2015-12-01
Thermal structure of the lithosphere is reflected in the values of seismic velocities within it. Our new tomographic models of the crust and upper mantle of the Arctic are constrained by an unprecedentedly large global waveform dataset and provide substantially improved resolution, compared to previous models. The new tomography reveals lateral variations in the temperature and thickness of the lithosphere and defines deep boundaries between tectonic blocks with different lithospheric properties and age. The shape and evolution of the geotherm beneath a tectonic unit depends on both crustal and mantle-lithosphere structure beneath it: the lithospheric thickness and its changes with time (these determine the supply of heat from the deep Earth), the crustal thickness and heat production (the supply of heat from within the crust), and the thickness and thermal conductivity of the sedimentary cover (the insulation). Detailed thermal structure of the basins can be modelled by combining seismic velocities from tomography with data on the crustal structure and heat production, in the framework of computational petrological modelling. The most prominent lateral contrasts across the Arctic are between the cold, thick lithospheres of the cratons (in North America, Greenland and Eurasia) and the warmer, non-cratonic blocks. The lithosphere of the Canada Basin is cold and thick, similar to old oceanic lithosphere elsewhere around the world; its thermal structure offers evidence on its lithospheric age and formation mechanism. At 150-250 km depth, the central Arctic region shows a moderate low-velocity anomaly, cooler than that beneath Iceland and N Atlantic. An extension of N Atlantic low-velocity anomaly into the Arctic through the Fram Strait may indicate an influx of N Atlantic asthenosphere under the currently opening Eurasia Basin.
Integrated study of basins in the Four Corners region
NASA Astrophysics Data System (ADS)
Fagbola, Olamide Olawumi
2007-12-01
This dissertation is an integrated study of basins in the four corners area of the central part of the Colorado Plateau. The Colorado Plateau is a structurally unique part of the Rocky Mountain region because it has only been moderately deformed when compared to the more intensely deformed areas around it. The Colorado Plateau covers a portion of Utah, Colorado, New Mexico and Arizona. The study area extends from latitude 34°N-40°N to longitude 106°W-111W° encompassing a series of major basins and uplifts: the San Juan, Black Mesa, Paradox, and the Blanding basins; and the Zuni, Defiance, Four Corners, Monument uplifts and the San Juan dome and volcanic field. An analysis of gravity anomalies, basement and crustal structure for basins in the four corners region was carried out. This involved using gravity, magnetic, well, outcrop, seismic estimates of crustal thickness, and geologic data in an integrated fashion. Six filtered gravity and three filtered magnetic maps were generated to aid in the interpretation of the gravity and magnetic anomalies in the study area. A detailed comparison of these maps was carried out. The results show a deep seated mafic structure in the basement acting as a crustal boundary separating the high gravity anomalies from the low. These maps also show that the sources of these anomalies are quite shallow resulting from the upper crust in the study area. The structures in the study area are characterized by northwest and northeast trends which correspond to the Precambrian and the Late Paleozoic structures, respectively. A crustal thickness map of the area was also constructed from seismic estimates of crustal thickness. A comparison was done between the crustal thickness map and the 45 km upward continuation Bouguer anomaly map. The result of this comparison shows that areas of thicker ix crust corresponded to low gravity while areas of thinner crust means mantle material is closer to the surface, thereby producing a high gravity anomaly. The thinnest crust encountered is about 32 km while the thickest crust is about 50 km. Seven gravity models were constructed and these include three crustal-scale profiles crisscrossing the study area and four local profiles. The gravity profiles were modeled using well data, structural thickness maps, cross section data, geologic maps and previous gravity models as constraints. Basement inhomogeneities beneath the basins and the uplifts were delineated by the gravity modeling. One of results from this study reveals that the basement beneath the Four Corners area is highly inhomogeneous. This study reveals that there is a high density deep seated mafic intrusion present in the basement which is responsible for the high gravity and magnetic anomaly in A. This dissertation has also shown that the Four Corners region does not possess a single crustal signature as shown by the different crustal trends in San Juan basin trending northeast and the east-west trending Uncompahgre uplift. The 45 km upward continuation gravity map was also found to correlate with seismic estimates of crustal thickness. The Precambrian basement in this region is also not homogeneous as shown by the necessity of inserting exotic bodies into the basement to compensate for high gravity anomalies and lastly an attempt was made to better define Tweto's (1980) outline of geologic features in the study area. On integrating gravity, magnetics, well and outcrop data, the relief of the Defiance uplift is not as high as delineated by Tweto's (1980) outline.
Late Paleogene rifting along the Malay Peninsula thickened crust
NASA Astrophysics Data System (ADS)
Sautter, Benjamin; Pubellier, Manuel; Jousselin, Pierre; Dattilo, Paolo; Kerdraon, Yannick; Choong, Chee Meng; Menier, David
2017-07-01
Sedimentary basins often develop above internal zones of former orogenic belts. We hereafter consider the Malay Peninsula (Western Sunda) as a crustal high separating two regions of stretched continental crust; the Andaman/Malacca basins in the western side and the Thai/Malay basins in the east. Several stages of rifting have been documented thanks to extensive geophysical exploration. However, little is known on the correlation between offshore rifted basins and the onshore continental core. In this paper, we explore through mapping and seismic data, how these structures reactivate pre-existing Mesozoic basement heterogeneities. The continental core appears to be relatively undeformed after the Triassic Indosinian orogeny. The thick crustal mega-horst is bounded by complex shear zones (Ranong, Klong Marui and Main Range Batholith Fault Zones) initiated during the Late Cretaceous/Early Paleogene during a thick-skin transpressional deformation and later reactivated in the Late Paleogene. The extension is localized on the sides of this crustal backbone along a strip where earlier Late Cretaceous deformation is well expressed. To the west, the continental shelf is underlain by three major crustal steps which correspond to wide crustal-scale tilted blocks bounded by deep rooted counter regional normal faults (Mergui Basin). To the east, some pronounced rift systems are also present, with large tilted blocks (Western Thai, Songkhla and Chumphon basins) which may reflect large crustal boudins. In the central domain, the extension is limited to isolated narrow N-S half grabens developed on a thick continental crust, controlled by shallow rooted normal faults, which develop often at the contact between granitoids and the host-rocks. The outer limits of the areas affected by the crustal boudinage mark the boundary towards the large and deeper Andaman basin in the west and the Malay and Pattani basins in the east. At a regional scale, the rifted basins resemble N-S en-echelon structures along large NW-SE shear bands. The rifting is accommodated by large low angle normal faults (LANF) running along crustal morphostructures such as broad folds and Mesozoic batholiths. The deep Andaman, Malay and Pattani basins seem to sit on weaker crust inherited from Gondwana-derived continental blocks (Burma, Sibumasu, and Indochina). The set of narrow elongated basins in the core of the Region (Khien Sa, Krabi, and Malacca basins) suffered from a relatively lesser extension.
Insights into the crustal structure of the transition between Nares Strait and Baffin Bay
NASA Astrophysics Data System (ADS)
Altenbernd, Tabea; Jokat, Wilfried; Heyde, Ingo; Damm, Volkmar
2016-11-01
The crustal structure and continental margin between southern Nares Strait and northern Baffin Bay were studied based on seismic refraction and gravity data acquired in 2010. We present the resulting P wave velocity, density and geological models of the crustal structure of a profile, which extends from the Greenlandic margin of the Nares Strait into the deep basin of central northern Baffin Bay. For the first time, the crustal structure of the continent-ocean transition of the very northern part of Baffin Bay could be imaged. We divide the profile into three parts: continental, thin oceanic, and transitional crust. On top of the three-layered continental crust, a low-velocity zone characterizes the lowermost layer of the three-layered Thule Supergroup underneath Steensby Basin. The 4.3-6.3 km thick oceanic crust in the southern part of the profile can be divided into a northern and southern section, more or less separated by a fracture zone. The oceanic crust adjacent to the continent-ocean transition is composed of 3 layers and characterized by oceanic layer 3 velocities of 6.7-7.3 km/s. Toward the south only two oceanic crustal layers are necessary to model the travel time curves. Here, the lower oceanic crust has lower seismic velocities (6.4-6.8 km/s) than in the north. Rather low velocities of 7.7 km/s characterize the upper mantle underneath the oceanic crust, which we interpret as an indication for the presence of upper mantle serpentinization. In the continent-ocean transition zone, the velocities are lower than in the adjacent continental and oceanic crustal units. There are no signs for massive magmatism or the existence of a transform margin in our study area.
McBride, J.H.; England, R.W.
1999-01-01
Reprocessing and interpretation of commercial and deep seismic reflection data across the East Shetland platform and its North Sea margin provide a new view of crustal subbasement structure beneath a poorly known region of the British Caledonian orogen. The East Shetland platform, east of the Great Glen strike-slip fault system, is one of the few areas of the offshore British Caledonides that remained relatively insulated from the Mesozoic and later rifting that involved much of the area around the British Isles, thus providing an "acoustic window" into the deep structure of the orogen. Interpretation of the reflection data suggests that the crust beneath the platform retains a significant amount of its original Caledonian and older architecture. The upper to middle crust is typically poorly reflective except for individual prominent dipping reflectors with complex orientations that decrease in dip with depth and merge with a lower crustal layer of high reflectivity. The three-dimensional structural orientation of the reflectors beneath the East Shetland platform is at variance with Caledonian reflector trends observed elsewhere in the Caledonian orogen (e.g., north of the Scottish mainland), emphasizing the unique tectonic character of this part of the orogen. Upper to middle crustal reflectors are interpreted as Caledonian or older thrust surfaces that were possibly reactivated by Devonian extension associated with post-Caledonian orogenic collapse. The appearance of two levels of uneven and diffractive (i.e., corrugated) reflectivity in the lower crust, best developed on east-west-oriented profiles, is characteristic of the East Shetland platform. However, a north-south-oriented profile reveals an interpreted south-vergent folded and imbricated thrust structure in the lower crust that appears to be tied to the two levels of corrugated reflectivity on the east-west profiles. A thrust-belt origin for lower crustal reflectivity would explain its corrugated appearance. Regional seismic velocity models derived from refraction data suggest that this reflectivity correlates with a continuous lower crustal layer that has an intermediate seismic velocity. The lower crustal reflectivity is determined to be older than Mesozoic age by the bending down and truncation of the two reflectivity levels at the western margin of the North Sea Viking graben by a major mantle reflector inferred to be associated with Mesozoic rifting. The results of this study are thus in contrast with orthodox interpretations of the reflective layered lower crust as being caused by mantle-derived igneous intrusion or by deformation fabrics associated with stretching in response to continental rifting.
NASA Astrophysics Data System (ADS)
Zhang, J.
2016-12-01
There is a high temperature hydrothermal activity area in the western plateau of Sichuan. More than 200 hot springs points have been found in the region, including 11 hot spring water temperature above local boiling point. Most of these distribute along Jinshajjiang fracture, Dege-Xiangcheng fracture, Ganzi-Litang fracture as well as Xianshuihe fracture, and form three high-temperature hydrothermal activity strips in the NW-SE direction. Using gravity, magnetic, seismic and helium isotope data, this paper analyzed the crust-mantle heat flow structure, crustal heat source distribution and water heating system. The results show that the geothermal activity mainly controlled by the "hot" crust. The ratio of crustal heat flow and surface heat flow is higher than 60%. In the high temperature hydrothermal activities area, there is lower S wave velocity zone with Vs<3.2 km/s in 15 30 km depth in middle and lower crust. Basing on the S wave velocity inversion temperature of crust-mantle, it has been found that there is a high temperature layer with 850 1000 ° in 20 40 km depth. It is the main heat source of high temperature hydrothermal activity area of western Sichuan. Our argument is that atmospheric precipitation, surface water infiltrated along the fault fracture into the crustal deep, heating by crustal hot source, and circulation to surface become high temperature hot water. Geothermal water mainly reserve in the Triassic strata of the containing water good carbonate rocks, and in the intrusive granite which is along the fault zone. The thermal energy of Surface heat thermal activities mainly comes from the high-temperature hot source which is located in the middle and lower crust. Being in the deep crustal fracture, the groundwater infiltrated to the deep crust and absorbed heat, then, quickly got back to the surface and formed high hot springs.
Continentward-Dipping Normal Faults, Boudinage and Ductile Shear at Rifted Passive Margins
NASA Astrophysics Data System (ADS)
Clerc, C. N.; Ringenbach, J. C.; Jolivet, L.; Ballard, J. F.
2017-12-01
Deep structures resulting from the rifting of the continental crust are now well imaged by seismic profiles. We present a series of recent industrial profiles that allow the identification of various rift-related geological processes such as crustal boudinage, ductile shear of the base of the crust and low-angle detachment faulting. Along both magma-rich and magma-poor rifted margins, we observe clear indications of ductile deformation of the deep continental crust. Large-scale shallow dipping shear zones are identified with a top-to-the-continent sense of shear. This sense of shear is consistent with the activity of the Continentward-Dipping Normal Faults (CDNF) that accommodate the extension in the upper crust. This pattern is responsible for an oceanward migration of the deformation and of the associated syn-tectonic deposits (sediments and/or volcanics). We discuss the origin of the Continentward-Dipping Normal Faults (CDNF) and investigate their implications and the effect of sediment thermal blanketing on crustal rheology. In some cases, low-angle shear zones define an anastomosed pattern that delineates boudin-like structures that seem to control the position and dip of upper crustal normal faults. We present some of the most striking examples from several locations (Uruguay, West Africa, South China Sea…), and discuss their rifting histories that differ from the classical models of oceanward-dipping normal faults.
NASA Astrophysics Data System (ADS)
Biemiller, J.; Ellis, S. M.; Little, T.; Mizera, M.; Wallace, L. M.; Lavier, L.
2017-12-01
The structural, mechanical and geometric evolution of rifted continental crust depends on the lithospheric conditions in the region prior to the onset of extension. In areas where tectonic activity preceded rift initiation, structural and physical properties of the previous tectonic regime may be inherited by the rift and influence its development. Many continental rifts form and exhume metamorphic core complexes (MCCs), coherent exposures of deep crustal rocks which typically surface as arched or domed structures. MCCs are exhumed in regions where the faulted upper crust is displaced laterally from upwelling ductile material along a weak detachment fault. Some MCCs form during extensional inversion of a subduction thrust following failed subduction of continental crust, but the degree to which lithospheric conditions inherited from the preceding subduction phase control the extensional style in these systems remains unclear. For example, the Dayman Dome in Southeastern Papua New Guinea exposes prehnite-pumpellyite to greenschist facies rocks in a smooth 3 km-high dome exhumed with at least 24 km of slip along one main detachment normal fault, the Mai'iu Fault, which dips 21° at the surface. The extension driving this exhumation is associated with the cessation of northward subduction of Australian continental crust beneath the oceanic lithosphere of the Woodlark Plate. We use geodynamic models to explore the effect of pre-existing crustal structures inherited from the preceding subduction phase on the style of rifting. We show that different geometries and strengths of inherited subduction shear zones predict three distinct modes of subsequent rift development: 1) symmetric rifting by newly formed high-angle normal faults; 2) asymmetric rifting along a weak low-angle detachment fault extending from the surface to the brittle-ductile transition; and 3) extension along a rolling-hinge structure which exhumes deep crustal rocks in coherent rounded exposures. We propose the latter mode as an exhumation model for Dayman Dome and compare the model predictions to regional geophysical and geological evidence. Our models find that tectonically inherited subduction structures may strongly control subsequent extension style when the subduction thrust is weak and well-oriented for reactivation.
NASA Astrophysics Data System (ADS)
Piana Agostinetti, Nicola; Faccenna, Claudio
2018-05-01
The Apennines is a well-studied orogeny formed by the accretion of continental slivers during the subduction of the Adriatic plate, but its deep structure is still a topic of controversy. Here we illuminated the deep structure of the Northern Apennines belt by combining results from the analysis of active seismic (CROP03) and receiver function data. The result from combining these two approaches provides a new robust view of the structure of the deep crust/upper mantle, from the back-arc region to the Adriatic subduction zone. Our analysis confirms the shallow Moho depth beneath the back-arc region and defines the top of the downgoing plate, showing that the two plates separate at depth about 40 km closer to the trench than reported in previous reconstructions. This spatial relationship has profound implications for the geometry of the shallow subduction zone and of the mantle wedge, by the amount of crustal material consumed at trench.
Jungbluth, Sean P.; Lin, Huei-Ting; Cowen, James P.; Glazer, Brian T.; Rappé, Michael S.
2014-01-01
To expand investigations into the phylogenetic diversity of microorganisms inhabiting the subseafloor biosphere, basalt-hosted crustal fluids were sampled from Circulation Obviation Retrofit Kits (CORKs) affixed to Holes 1025C and 1026B along the Juan de Fuca Ridge (JdFR) flank using a clean fluid pumping system. These boreholes penetrate the crustal aquifer of young ocean crust (1.24 and 3.51 million years old, respectively), but differ with respect to borehole depth and temperature at the sediment-basement interface (147 m and 39°C vs. 295 m and 64°C, respectively). Cloning and sequencing of PCR-amplified small subunit ribosomal RNA genes revealed that fluids retrieved from Hole 1025C were dominated by relatives of the genus Desulfobulbus of the Deltaproteobacteria (56% of clones) and Candidatus Desulforudis of the Firmicutes (17%). Fluids sampled from Hole 1026B also contained plausible deep subseafloor inhabitants amongst the most abundant clone lineages; however, both geochemical analysis and microbial community structure reveal the borehole to be compromised by bottom seawater intrusion. Regardless, this study provides independent support for previous observations seeking to identify phylogenetic groups of microorganisms common to the deep ocean crustal biosphere, and extends previous observations by identifying additional lineages that may be prevalent in this unique environment. PMID:24723917
Behrendt, John C.; Hutchinson, D.R.; Lee, M.; Thornber, C.R.; Tréhu, A.; Cannon, W.; Green, A.
1990-01-01
Deep-crustal and Moho reflections, recorded on vertical incidence and wide angle ocean bottom Seismometer (OBS) data in the 1986 GLIMPCE (Great Lakes International Multidisciplinary Program on Crustal Evolution) experiment, provide evidence for magmatic underplating and intrusions within the lower crust and upper mantle contemporaneous with crustal extension in the Midcontinent Rift system at 1100 Ma. The rift fill consists of 20-30 km (7-10 s) of basalt flows, secondary syn-rift volcaniclastic and post-basalt sedimentary rock. Moho reflections recorded in Lake Superior over the Midcontinent Rift system have times from 14-18 s (about 46 km to as great as 58 km) in contrast to times of about 11-13 s (about 36-42 km crustal thickness) beneath the surrounding Great Lakes. The Seismically complex deep-crust to mantle transition zone (30-60 km) in north-central Lake Superior, which is 100 km wider than the rift half-graben, reflects the complicated products of tectonic and magmatic interaction of lower-crustal and mantle components during evolution or shutdown of the aborted Midcontinent Rift. In effect, mantle was changed into crust by lowering Seismic velocity (through intrusion of lower density magmatic rocks) and increasing Moho (about 8.1 km s-1 depth.
Snyder, D.B.; England, R.W.; McBride, J.H.
1997-01-01
Deep seismic reflection profiles in Scotland reveal mantle structures beneath a crust with a polyphase tectonic history that resulted in several generations of structures. Continuum mechanics suggests that coeval mantle and crustal structures must be kinematically linked. Inherited structures imply relative ages for the reflectors, ages that can be placed into the context of the geological history of the near-surface rocks of northern Scotland. Thus, some mantle reflectors are assigned Triassic ages related to the opening of the West Orkney and related marginal basins of the Atlantic Ocean. Other mantle reflectors are cut by late Caledonian structures associated with the Great Glen Fault Zone and therefore older than c. 400 Ma. Many of these structures also track the late Precambrian margin of Laurentia and may be related to either the opening (900-600 Ma) or closing (500-400 Ma) of the Iapetus Ocean. Some reflective structures may also be attributed to 1800-1700 Ma Laxfordian deformation that was part of a global-scale orogenic belt.
Crustal rheology controls on the Tibetan plateau formation during India-Asia convergence
Chen, Lin; Capitanio, Fabio A.; Liu, Lijun; Gerya, Taras V.
2017-01-01
The formation of the Tibetan plateau during the India-Asia collision remains an outstanding issue. Proposed models mostly focus on the different styles of Tibetan crustal deformation, yet these do not readily explain the observed variation of deformation and deep structures along the collisional zone. Here we use three-dimensional numerical models to evaluate the effects of crustal rheology on the formation of the Himalayan-Tibetan orogenic system. During convergence, a weaker Asian crust allows strain far north within the upper plate, where a wide continental plateau forms behind the orogeny. In contrast, a stronger Asian crust suppresses the plateau formation, while the orogeny accommodates most of the shortening. The stronger Asian lithosphere is also forced beneath the Indian lithosphere, forming a reversed-polarity underthrusting. Our results demonstrate that the observed variations in lithosphere deformation and structures along the India-Asia collision zone are primarily controlled by the strength heterogeneity of the Asian continental crust. PMID:28722008
Implications of magma transfer between multiple reservoirs on eruption cycling.
Elsworth, Derek; Mattioli, Glen; Taron, Joshua; Voight, Barry; Herd, Richard
2008-10-10
Volcanic eruptions are episodic despite being supplied by melt at a nearly constant rate. We used histories of magma efflux and surface deformation to geodetically image magma transfer within the deep crustal plumbing of the Soufrière Hills volcano on Montserrat, West Indies. For three cycles of effusion followed by discrete pauses, supply of the system from the deep crust and mantle was continuous. During periods of reinitiated high surface efflux, magma rose quickly and synchronously from a deflating mid-crustal reservoir (at about 12 kilometers) augmented from depth. During repose, the lower reservoir refilled from the deep supply, with only minor discharge transiting the upper chamber to surface. These observations are consistent with a model involving the continuous supply of magma from the deep crust and mantle into a voluminous and compliant mid-crustal reservoir, episodically valved below a shallow reservoir (at about 6 kilometers).
NASA Astrophysics Data System (ADS)
Pandey, O. P.; Chandrakala, K.; Vasanthi, A.; Kumar, K. Satish
2018-05-01
The time-bound crustal evolution and subsequent deformation of the Cuddapah basin, Nellore Schist Belt and Eastern Ghats terrain of Eastern Dharwar Craton, which have undergone sustained geodynamic upheavals since almost 2.0 billion years, remain enigmatic. An attempt is made here to integrate newly available potential field data and other geophysical anomalies with deep seismic structure, to examine the generative mechanism of major crustal features, associated with this sector. Our study indicates that the initial extent of the Cuddapah basin sedimentation may have been much larger, extending by almost 50-60 km west of Tadipatri during Paleoproterozoic period, which subsequently shrank due to massive erosion following thermal uplift, caused by SW Cuddapah mantle plume. Below this region, crust is still quite warm with Moho temperatures exceeding 500 °C. Similarly, Nallamalai Fold Belt rocks, bounded by two major faults and extremely low gravity, may have occupied a large terrain in western Cuddapah basin also, before their abrasion. No geophysical signatures of thrusting are presently seen below this region, and thus it could not be an alien terrain either. In contrast, Nellore Schist Belt is associated with strikingly high positive gravity, possibly caused by a conspicuous horst structure and up dipping mafic crustal layers underneath, that resulted due to India-east Antarctica collision after the cessation of prolonged subduction (1.6-0.95 Ga). Further, the crustal seismic and gravity signatures would confirm presence of a totally distinct geological terrain east of the Cuddapah basin, but the trace of Eastern Ghats Belt is all together missing. Instead, all the geophysical signatures, point out to presence of a Proterozoic sedimentary terrain, east of Nellore Schist Belt. It is likely that the extent of Prorerozoic sedimentation was much larger than thought today. In addition, presence of a seismically detected Gondwana basin over Nellore Schist Belt, apart from some recently discovered similar subsurface Gondwana occurrences in intracratonic parts, would indicate that Dharwar Craton was rifting even during Gondwana period, thereby challenging the long held view of cratonic stability.
NASA Astrophysics Data System (ADS)
Bedrosian, P. A.; Box, S. E.; Pellerin, L.
2006-12-01
The Middle Proterozoic Belt Basin, spanning parts of Montana, Idaho, Washington, and British Columbia, is one of the deepest basins in North America. More than 18 km of fine-grained sedimentary strata were deposited rapidly between 1.5-1.4 Ga and split by rifting during late Proterozoic development of the North American passive margin. Basin strata were relatively undeformed until Mesozoic Cordilleran thrusting and early Eocene extension. Many outstanding questions require an understanding of deep basin structure, including the flexural load of the Basin, its role during Cordilleran deformation, and controls on ore-forming fluids that produced stratabound Cu-Ag deposits within the Basin. Long-period (deep-crustal) and broadband (shallow-crustal) magnetotelluric (MT) data were collected in 2005 along a 140 km transect within the central Belt Basin, with an average site spacing of 4 km. A portion of the transect is coincident with two deep-crustal seismic reflection profiles (COCORP lines MT-2 and ID-2). The data generally confirm the NW strike of the Sylvanite anticline and Purcell anticlinorium and the more northerly strike of the Libby Thrust Belt. A best-fit, two-dimensional (2D) resistivity model was generated from the MT data down to 50 km. The model is characterized by two subhorizontal, highly conductive horizons. A shallow horizon at 10-15 km depth begins 10 km west of the Whitefish Range front and continues to the west for 60 km to an abrupt end beneath the Sylvanite anticline. A deeper highly-conductive, concave-up layer occurs at 25-35 km depth from just west of southern Lake Koocanusa to an abrupt end about 20 km east of the Purcell trench. From that point west to the Selkirk Crest, the entire crust is very resistive. A crude resistivity stratigraphy is delineated: highly resistive (>104 Ømega m) middle and upper Belt Supergroup (above the Prichard Fm.), moderately conductive (30-1000 Ømega m) Prichard Fm. (to the present depth of exposure), a highly conductive (1-10 Ømega m) sub-Prichard layer (below the lowest Prichard unit mapped at the surface), and moderately to highly resistive (103-104 Ømega m) pre-Belt crystalline basement. The Eocene Purcell trench detachment fault can be traced dipping 25-30° east down to about 20 km depth, flattening along the base of the shallow conductive layer to its eastern end, fully 100 km east of the surface trace of the fault. Realignment of the eastern edges of the shallow and deep conductive layers produces a single west-dipping horizon and suggests about 35 km of Eocene top-to-the-east extension along the northern Purcell trench detachment fault. Reversal of that displacement reveals the crustal structure as it existed at the end of late Mesozoic Cordilleran thrusting. A major thrust decollement at 10-12 km, well-defined below the Sylvanite anticline, occurs below the deepest exposed Prichard units but above the shallow conductive layer. The shallow and deep conductive layers are suggested to be thrust repetitions of a single original layer separated by a thrust imbricate of Archean crystalline basement, 35 km wide and 5-8 km thick, centered below the Sylvanite anticline. The conductive layers are interpreted as sub-Prichard sedimentary strata with disseminated carbonaceous matter or sulfide grains interconnected by shearing. This interpretation is consistent with disseminated sulfides within the lowest exposed Prichard, and emphasizes the dramatic increase in conductivity effected by shearing. Total Cordilleran thrust shortening of 150-200 km is indicated.
Crustal structure and tectonics of the northern part of the Southern Granulite Terrane, India
Rao, V.V.; Sain, K.; Reddy, P.R.; Mooney, W.D.
2006-01-01
Deep seismic reflection studies investigating the exposed Archean lower continental crust of the Southern Granulite Terrane, India, yield important constraints on the nature and evolution of the deep crust, including the formation and exhumation of granulites. Seismic reflection images along the Kuppam-Bhavani profile reveal a band of reflections that dip southward from 10.5 to 15.0??s two-way-time (TWT), across a distance of 50??km. The bottom of these reflections beneath the Dharwar craton is interpreted as the Moho. Further south, another reflection band dipping northward is observed. These bands of reflectivity constitute a divergent reflection fabric that converges at the Moho boundary observed at the Mettur shear zone. Reflection fabrics that intersect at a steep angle are interpreted as a collisional signature due to the convergence of crustal blocks, which we infer resulted in crustal thickening and the formation of granulites. Anomalous gravity and magnetic signatures are also observed across the Mettur shear zone. The gravity model derived from the Bouguer gravity data corroborates seismic results. The tectonic regime and seismic reflection profiles are combined in a 3-D representation that illustrates our evidence for paleo-subduction at a collision zone. The structural dissimilarities and geophysical anomalies suggest that the Mettur shear zone is a suture between the Dharwar craton in the north and another crustal block in the south. This study contributes significantly to our understanding of the operation of Archean plate tectonics, here inferred to involve collision and subduction. Furthermore, it provides an important link between the Gondwanaland and global granulite evolution occurring throughout the late Archean. ?? 2006 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Silva, Sónia; Terrinha, Pedro; Matias, Luis; Duarte, João C.; Roque, Cristina; Ranero, César R.; Geissler, Wolfram H.; Zitellini, Nevio
2017-10-01
The Gulf of Cadiz seismicity is characterized by persistent low to intermediate magnitude earthquakes, occasionally punctuated by high magnitude events such as the M 8.7 1755 Great Lisbon earthquake and the M = 7.9 event of February 28th, 1969. Micro-seismicity was recorded during 11 months by a temporary network of 25 ocean bottom seismometers (OBSs) in an area of high seismic activity, encompassing the potential source areas of the mentioned large magnitude earthquakes. We combined micro-seismicity analysis with processing and interpretation of deep crustal seismic reflection profiles and available refraction data to investigate the possible tectonic control of the seismicity in the Gulf of Cadiz area. Three controlling mechanisms are explored: i) active tectonic structures, ii) transitions between different lithospheric domains and inherited Mesozoic structures, and iii) fault weakening mechanisms. Our results show that micro-seismicity is mostly located in the upper mantle and is associated with tectonic inversion of extensional rift structures and to the transition between different lithospheric/rheological domains. Even though the crustal structure is well imaged in the seismic profiles and in the bathymetry, crustal faults show low to negligible seismic activity. A possible explanation for this is that the crustal thrusts are thin-skinned structures rooting in relatively shallow sub-horizontal décollements associated with (aseismic) serpentinization levels at the top of the lithospheric mantle. Therefore, co-seismic slip along crustal thrusts may only occur during large magnitude events, while for most of the inter-seismic cycle these thrusts remain locked, or slip aseismically. We further speculate that high magnitude earthquake's ruptures may only nucleate in the lithospheric mantle and then propagate into the crust across the serpentinized layers.
The Tethys Rifting of the Valencia Trough Basin
NASA Astrophysics Data System (ADS)
Viñas, Marina; Ranero, César R.; Cameselle, Alejandra L.
2017-04-01
The western Mediterranean submarine realm is composed of several basin inferred to be formed by a common geodynamic process: upper plate extension during slab rollback of a retreating subduction zone. Although the time evolution of the geometry of the trenches is debated, all models assume that basins opened sequentially from NW (Gulf of Lions) towards the SE (Ligurian-Provençal and later Tyrrhenian basins) and SW (Valencia Trough and later Algerian-South Balearic and Alboran Basin) as trenches migrated. Basin opening history is key to reconstruct kinematics of slab retreat preferred in each model. However, the deep structure of basins is inadequately known due to the paucity of modern wide-angle and multichannel reflection seismic studies across entire systems, and absence of deep drilling in the deep-water regions of the basins, as a result, much of the opening evolution is inferred from indirect evidence. In the Valencia Trough Basin (VTB), drilling and vintage seismic data provide good knowledge of the shallow geology of the basin. However, crustal-scale information across the entire VTB has been limited to two studies (Figure 1): One in the late 80's (Valsis experiment) with three Expanded Spread Profiles that yielded local 1D velocity/depth models used to constrain 2D gravity modeling, and a few multichannel seismic profiles along the Iberian shelf and across segments of the basin. A second study in the early 90's (ESCI experiment) collected a low-resolution deep-penetration multichannel seismic reflection profile across the basin and a coincident wide-angle seismic line with numerous land stations in Iberia but a handful of widely-spaced Ocean Bottom Seismometers. In the absence of modern detailed crustal structure, the origin and evolution of the VTB is still debated. Industry multichannel seismic reflection profiles cover the SW segment of the VTB. This is a region where the basin sea floor is comparatively shallower and has numerous industry wells reaching deep into the sediment sequence, which provides an unprecedented view of the tectonic structure and distribution of synrift deposits across the entire basin, from the Iberian to the North Balearic margin (Figure 2). Here we first show that the seismic records provide full crustal-scale information. Later we discuss the tectonic and sedimentary structure that supports that crustal stretching and basin formation of the VTB occurred fundamentally during the Mesozoic times by strike-slip tectonics and not during Tertiary times by back-arc extension. We show that the current sea floor morphological configuration giving rise to the so-called Valencia Trough does not represent the changes in crystalline basement thickness related to rifting, but fundamentally a product of sediment dynamics, particularly by the development during post-Messinian times of the Ebro-river delta. Our results are significant to understand Tethyan rifting and need to be considered for plate kinematic reconstructions of the western Mediterranean.
NASA Astrophysics Data System (ADS)
Baird, D. J.; Nelson, K. D.; Knapp, J. H.; Walters, J. J.; Brown, L. D.
1996-04-01
A 400-km-long deep seismic reflection transect across northeastern Montana and northern North Dakota reveals the crustal-scale structural fabric of the Early Proterozoic Trans-Hudson orogen beneath the Williston basin. Comparison with deep seismic reflection data across the Canadian portion of the same orogen ˜700 km to the north reveals first-order similarities in crustal architecture but documents significant along-strike variation in orogenic evolution. Both transects display a broad crustal-scale antiform axial to the orogen. In the north, geologic data suggest that this antiform is cored by an Archean microcontinent. In the south, west dipping reflections on the western flank of the antiform extend from the upper crust to the uppermost mantle and truncate prominent subhorizontal lower crustal reflections of the Archean Wyoming craton. Within the Wyoming craton, the eastern limit of east dipping midcrustal reflections coincides with the subsurface age boundary between the craton and the Early Proterozoic Trans-Hudson orogen as interpreted from potential field and drill core data. On the basis of subsurface geochronologic data from the crystalline basement and by analogy with the Glennie domain within the exposed Trans-Hudson orogen in Canada, we suggest that the southern antiform is cored by an Archean crustal fragment that was caught up in the terminal collision of the Wyoming and Superior cratons during Hudsonian orogeny. The eastern side of the Trans-Hudson orogen is characterized on both seismic transects by predominantly east dipping crustal penetrating reflections. We interpret the easterly dip of these reflections as evidence that the Superior province was thrust westward over the interludes of the orogen during terminal collision. Although juvenile Early Proterozoic terranes characterize the exposed segment of the Trans-Hudson orogen in Canada, limited drill core information within the Dakota segment of the orogen shows a predominance of granulitic Archean age crust. This difference in basement lithologies along strike within the orogen may indicate the following: either juvenile crust comparable to that exposed in the northern Trans-Hudson was never present in the south, or it was removed by progressive over thickening, erosion, and/or faulting. Postorogenic extensional collapse may be responsible for preservation of juvenile terranes in the north.
NASA Astrophysics Data System (ADS)
He, Chuansong; Dong, Shuwen; Chen, Xuanhua; Santosh, M.; Li, Qiusheng
2014-01-01
The Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt records the tectonic history of Paleozoic convergence between the South China and North China Blocks. In this study, the distribution of crustal thickness and P- and S-wave velocity ratio (Vp/Vs) is obtained by using the H-k stacking technique from the Dabie-Sulu belt in central China. Our results show marked differences in the crustal structure between the Dabie and Sulu segments of the ultrahigh-pressure (UHP) orogen. The lower crust in the Dabie orogenic belt is dominantly of felsic-intermediate composition, whereas the crust beneath the Sulu segment is largely intermediate-mafic. The crust of the Dabie orogenic belt is thicker by ca. 3-5 km as compared to that of the surrounding region with the presence of an ‘orogenic root’. The crustal thickness is nearly uniform in the Dabie orogenic belt with a generally smooth crust-mantle boundary. A symmetrically thickened crust in the absence of any deep-structural features similar to that of the Yangtze block suggests no supportive evidence for the proposed northward subduction of the Yangtze continental block beneath the North China Block. We propose that the collision between the Yangtze and North China Blocks and extrusion caused crustal shortening and thickening, as well as delamination of the lower crust, resulting in asthenospheric upwelling and lower crustal UHP metamorphism along the Dabie Orogen. Our results also reveal the presence of a SE to NW dipping Moho in the North China Block (beneath the Tran-North China Orogen and Eastern Block), suggesting the fossil architecture of the northwestward subduction of the Kula plate.
Integrated geologic and geophysical studies of North American continental intraplate seismicity
Van Lanen, X.; Mooney, W.D.
2007-01-01
The origin of earthquakes within stable continental regions has been the subject of debate over the past thirty years. Here, we examine the correlation of North American stable continental region earthquakes using five geologic and geophysical data sets: (1) a newly compiled age-province map; (2) Bouguer gravity data; (3) aeromagnetic anomalies; (4) the tectonic stress field; and (5) crustal structure as revealed by deep seismic-reflection profiles. We find that: (1) Archean-age (3.8-2.5 Ga) North American crust is essentially aseismic, whereas post-Archean (less than 2.5 Ga) crust shows no clear correlation of crustal age and earthquake frequency or moment release; (2) seismicity is correlated with continental paleorifts; and (3) seismicity is correlated with the NE-SW structural grain of the crust of eastern North America, which in turn reflects the opening and closing of the proto- and modern Atlantic Ocean. This structural grain can be discerned as clear NE-SW lineaments in the Bouguer gravity and aeromagnetic anomaly maps. Stable continental region seismicity either: (1) follows the NE-SW lineaments; (2) is aligned at right angles to these lineaments; or (3) forms clusters at what have been termed stress concentrators (e.g., igneous intrusions and intersecting faults). Seismicity levels are very low to the west of the Grenville Front (i.e., in the Archean Superior craton). The correlation of seismicity with NE-SW-oriented lineaments implies that some stable continental region seismicity is related to the accretion and rifting processes that have formed the North American continental crust during the past 2 b.y. We further evaluate this hypothesis by correlating stable continental region seismicity with recently obtained deep seismic-reflection images of the Appalachian and Grenville crust of southern Canada. These images show numerous faults that penetrate deep (40 km) into the crust. An analysis of hypocentral depths for stable continental region earthquakes shows that the frequency and moment magnitude of events are nearly uniform for the entire 0-35 km depths over which crustal earthquakes extend. This is in contradiction with the hypothesis that larger events have deeper focal depths. We conclude that the deep structure of the crust, in particular the existence of deeply penetrating faults, is the controlling parameter, rather than lateral variations in temperature, rheology, or high pore pressure. The distribution of stable continental region earthquakes in eastern North America is consistent with the existence of deeply penetrating crustal faults that have been reactivated in the present stress field. We infer that future earthquakes may occur anywhere along the geophysical lineations that we have identified. This implies that seismic hazard is more widespread in central and eastern North America than indicated by the limited known historical distribution of seismicity. ?? 2007 The Geological Society of America.
Crustal accretion at fast spreading ridges and implications for hydrothermal circulation
NASA Astrophysics Data System (ADS)
Theissen-Krah, S.; Rupke, L.; Hasenclever, J.
2015-12-01
Oceanic crust is continuously created at mid-ocean ridges, but the location of lower crust crystallization continues to be debated since the proposal of the gabbro glacier and many sills end-member models. Geophysical and geochemical studies find evidence for either of the models. The crust is cooled by a combination of heat diffusion and advection, and hydrothermal circulation is thought to play a key role in distinguishing between both models. We use our numerical model for joint modeling of crustal accretion and hydrothermal circulation1 to test different accretion and hydrothermal cooling scenarios. The results match the seismic and structural observations from the East Pacific Rise2 and the Oman Ophiolite3, with a shallow melt lens at the correct location overlaying a narrow volume of partially molten rocks. Our results show that no more than 25-50% of the lower crust crystallizes in situ and that deep circulation is likely to occur at fast and intermediate spreading ridges. The occurrence of deep hydrothermal cooling however does not rule out that a major portion of the lower crust is formed in the shallow melt lens; our simulations rather suggest that it is necessary independent of where in the lower crust crystallization takes place. 1 Theissen-Krah, S., Iyer, K., Rupke, L. H. & Morgan, J. P. Coupled mechanical and hydrothermal modeling of crustal accretion at intermediate to fast spreading ridges. Earth and Planetary Science Letters 311, 275-286, doi:10.1016/j.epsl.2011.09.018 (2011). 2 Dunn, R. A., Toomey, D. R. & Solomon, S. C. Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9 degrees 30'N. Journal of Geophysical Research-Solid Earth 105, 23537-23555 (2000). 3 Nicolas, A. & Boudier, F. Structural contribution from the Oman ophiolite to processes of crustal accretion at the East Pacific Rise. Terra Nova 27, 77-96, doi:10.1111/ter.12137 (2015).
NASA Astrophysics Data System (ADS)
Dufréchou, G.; Tiberi, C.; Martin, R.; Bonvalot, S.; Chevrot, S.; Seoane, L.
2018-04-01
We present a new model of the lithosphere and asthenosphere structure down to 300 km depth beneath the Pyrenees from the joint inversion of recent gravity and teleseismic data. Unlike previous studies, crustal correction were not applied on teleseismic data in order (i) to preserve the consistency between gravity data, which are mainly sensitive to the density structure of the crust.lithosphere, and travel time data, and (ii) to avoid the introduction of biases resulting from crustal reductions. The density model down to 100 km depth is preferentially used here to discuss the lithospheric structure of the Pyrenees, whereas the asthenospheric structure from 100 km to 300 km depth is discussed from our velocity model. The absence of a high density anomaly in our model between 30-100 km depth (except the Labourd density anomaly) in the northern part of the Pyrenees seems to preclude eclogitization of the subducted Iberian crust at the scale of the entire Pyrenean range. Local eclogitization of the deep Pyrenean crust beneath the western part of the Axial Zone (West of Andorra) associated with the positive Central density anomaly is proposed. The Pyrenean lithosphere in density and velocity models appears segmented from East to West. No clear relation between the along-strike segmentation and mapped major faults is visible in our models. The Pyrenees' lithosphere segments are associated to different seismicity pattern in the Pyrenees suggesting a possible relation between the deep structure of the Pyrenees and its seismicity in the upper crust. The concentration of earthquakes localized just straight up the Central density anomaly can result of the subsidence and/or delamination of an eclogitized Pyrenean deep root. The velocity model in the asthenosphere is similar to previous studies. The absence of a high-velocity anomaly in the upper mantle and transition zone (i.e. 125 to 225 km depth) seems to preclude the presence of a detached oceanic lithosphere beneath the European lithosphere.
A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California
Becken, M.; Ritter, O.; Park, S.K.; Bedrosian, P.A.; Weckmann, U.; Weber, M.
2008-01-01
Magnetotelluric (MT) data from 66 sites along a 45-km-long profile across the San Andreas Fault (SAF) were inverted to obtain the 2-D electrical resistivity structure of the crust near the San Andreas Fault Observatory at Depth (SAFOD). The most intriguing feature of the resistivity model is a steeply dipping upper crustal high-conductivity zone flanking the seismically defined SAF to the NE, that widens into the lower crust and appears to be connected to a broad conductivity anomaly in the upper mantle. Hypothesis tests of the inversion model suggest that upper and lower crustal and upper-mantle anomalies may be interconnected. We speculate that the high conductivities are caused by fluids and may represent a deep-rooted channel for crustal and/or mantle fluid ascent. Based on the chemical analysis of well waters, it was previously suggested that fluids can enter the brittle regime of the SAF system from the lower crust and mantle. At high pressures, these fluids can contribute to fault-weakening at seismogenic depths. These geochemical studies predicted the existence of a deep fluid source and a permeable pathway through the crust. Our resistivity model images a conductive pathway, which penetrates the entire crust, in agreement with the geochemical interpretation. However, the resistivity model also shows that the upper crustal branch of the high-conductivity zone is located NE of the seismically defined SAF, suggesting that the SAF does not itself act as a major fluid pathway. This interpretation is supported by both, the location of the upper crustal high-conductivity zone and recent studies within the SAFOD main hole, which indicate that pore pressures within the core of the SAF zone are not anomalously high, that mantle-derived fluids are minor constituents to the fault-zone fluid composition and that both the volume of mantle fluids and the fluid pressure increase to the NE of the SAF. We further infer from the MT model that the resistive Salinian block basement to the SW of the SAFOD represents an isolated body, being 5-8km wide and reaching to depths >7km, in agreement with aeromagnetic data. This body is separated from a massive block of Salinian crust farther to the SW. The NE terminus of resistive Salinian crust has a spatial relationship with a near-vertical zone of increased seismic reflectivity ???15km SW of the SAF and likely represents a deep-reaching fault zone. ?? 2008 The Authors Journal compilation ?? 2008 RAS.
NASA Astrophysics Data System (ADS)
DeFelipe, I.; Pedreira, D.; Pulgar, J. A.; Van der Beek, P.; Bernet, M.; Pik, R.
2017-12-01
The Pyrenean-Cantabrian Mountain belt extends in an E-W direction along the northern border of Spain and resulted from the convergence between the Iberian and European plates from the Late Cretaceous to the Miocene, in the context of the Alpine orogeny. The main aim of this work is to characterize the tectonic evolution at a crustal-scale of the transition zone from the Pyrenees to the Cantabrian Mountains, in the eastern Basque-Cantabrian Basin (BCB). We integrate structural work, thermochronology (apatite fission track and zircon (U-Th)/He) and geophysical information (shallow seismic reflection profiles, deep seismic refraction/wide-angle reflection profiles and seismicity distribution) to propose an evolutionary model since the Jurassic to the present. During the Albian, hyperextension related to the opening of the Bay of Biscay yielded to mantle unroofing to the base of the BCB. This process was favored by a detachment fault that connected the mantle in its footwall with the base of a deep basin in its hanging wall. During this process, the basin experienced HT metamorphism and fluid circulation caused the serpentinization of the upper part of the mantle. There is no evidence of seafloor mantle exhumation before the onset of the Alpine orogeny. The thermochronological study points to a N-vergent phase of contractional deformation in the late Eocene represented by the thin-skinned Leiza fault system followed in the early Oligocene by the S-vergent, thick-skinned, Ollín thrust. Exhumation rates for the late Eocene-early Oligocene are of 0.2-0.7 km/Myr. After that period, deformation continues southwards until the Miocene. The crustal-scale structure resultant of the Alpine orogeny consists of an Iberian plate that subducts below the European plate. The crust is segmented into four blocks separated by three S-vergent crustal faults inherited from the Cretaceous extensional period. The P-wave velocities in this transect show anomalous values (7.4 km/s) in the deepest part of the Iberian crust that may correspond to serpentinized mantle formed during the Cretaceous and later subducted. The Alpine shortening in this transect is estimated in ca. 90 km. Integration of structural, geophysical and thermochronological data, allows a more precise reconstruction of the crustal-scale Alpine cycle in the eastern BCB.
Crustal structure of the Kaapvaal craton and its significance for early crustal evolution
NASA Astrophysics Data System (ADS)
James, David E.; Niu, Fenglin; Rokosky, Juliana
2003-12-01
High-quality seismic data obtained from a dense broadband array near Kimberley, South Africa, exhibit crustal reverberations of remarkable clarity that provide well-resolved constraints on the structure of the lowermost crust and Moho. Receiver function analysis of Moho conversions and crustal multiples beneath the Kimberley array shows that the crust is 35 km thick with an average Poisson's ratio of 0.25. The density contrast across the Moho is ˜15%, indicating a crustal density about 2.86 gm/cc just above the Moho, appropriate for felsic to intermediate rock compositions. Analysis of waveform broadening of the crustal reverberation phases suggests that the Moho transition can be no more than 0.5 km thick and the total variation in crustal thickness over the 2400 km 2 footprint of the array no more than 1 km. Waveform and travel time analysis of a large earthquake triggered by deep gold mining operations (the Welkom mine event) some 200 km away from the array yield an average crustal thickness of 35 km along the propagation path between the Kimberley array and the event. P- and S-wave velocities for the lowermost crust are modeled to be 6.75 and 3.90 km/s, respectively, with uppermost mantle velocities of 8.2 and 4.79 km/s, respectively. Seismograms from the Welkom event exhibit theoretically predicted but rarely observed crustal reverberation phases that involve reflection or conversion at the Moho. Correlation between observed and synthetic waveforms and phase amplitudes of the Moho reverberations suggests that the crust along the propagation path between source and receiver is highly uniform in both thickness and average seismic velocity and that the Moho transition zone is everywhere less than about 2 km thick. While the extremely flat Moho, sharp transition zone and low crustal densities beneath the region of study may date from the time of crustal formation, a more geologically plausible interpretation involves extensive crustal melting and ductile flow during the major craton-wide Ventersdorp tectonomagmatic event near the end of Archean time.
Probing the Cypriot Lithosphere: Insights from Broadband Seismology
NASA Astrophysics Data System (ADS)
Ogden, C. S.; Bastow, I. D.; Pilidou, S.; Dimitriadis, I.; Iosif, P.; Constantinou, C.; Kounoudis, R.
2017-12-01
Cyprus, an island in the eastern Mediterranean Sea, is an ideal study locale for understanding both the final stages of subduction, and the internal structure of so-called `ophiolites' - rare, on-land exposures of oceanic crust. The Troodos ophiolite offers an excellent opportunity to interrogate a complete ophiolite sequence from mantle rocks to pillow lavas. However, determining its internal architecture, and that of the subducting African plate deep below it, cannot be easily achieved using traditional field geology. To address this issue, we have built a new network of five broadband seismograph stations across the island. These, along with existing permanent stations, record both local and teleseismic earthquakes that we are now using to image Cyprus' crust and mantle seismic structure. Receiver functions are time series, computed from three-component seismograms, which contain information about lithospheric seismic discontinuities. When a P-wave strikes a velocity discontinuity such as the Moho, energy is converted to S-waves (direct Ps phase). The widely-used H-K Stacking technique utilises this arrival, and subsequent crustal reverberations (PpPs and PsPs+PpSs), to calculate crustal thickness (H) and bulk-crustal Vp/Vs ratio (K). Central to the method is the assumption that the Moho produces the largest amplitude conversions, after the direct P-arrival, which is valid where the Moho is sharp. Where the Moho is gradational or upper crustal discontinuities are present, the Moho signals are weakened and masked by shallow crustal conversions, potentially rendering the H-K stacking method unreliable. Using a combination of synthetic and observed seismograms, we explore Cyprus' crustal structure and, specifically, the reliability of the H-K method in constraining it. Data quality is excellent across the island, but the receiver function Ps phase amplitude is low, and crustal reverberations are almost non-existent. Therefore, a simple, abrupt wavespeed jump at the Moho is lacking (perhaps due to the subducting African plate), and/or evidence for it is obscured by complex structure associated with the Troodos ophiolite. On-going analyses also include joint inversion of receiver functions and surface wave data, which together, are capable of resolving complex lithospheric seismic structure.
NASA Astrophysics Data System (ADS)
Heinson, Graham S.; Direen, Nicholas G.; Gill, Rob M.
2006-07-01
The iron oxide copper-gold Olympic Dam deposit, situated along the margin of the Proterozoic Gawler craton, South Australia, is the world's largest uranium deposit and sixth-largest copper deposit; it also contains significant reserves of gold, silver, and rare earth elements. Gaining a better understanding of the mechanisms for genesis of the economic liberalization is fundamental for defining exploration models in similar crustal settings. To delineate crustal structures that may constrain mineral system fluid pathways, coincident deep crustal seismic and magnetotelluric (MT) transects were obtained along a 220 km section that crosses Olympic Dam and the major crustal boundaries. In this paper we present results from 58 long-period (10 104 s) MT sites, with site spacing of 5 10 km. A two-dimensional inversion of MT data from 33 sites to a depth of 100 km shows four notable features: (1) sedimentary cover sequences with low resistivity (<20 Ω·m) thicken to 10 km toward the northern cover sequences of the Adelaide Rift Complex; (2) a northeast-dipping crustal boundary separates a highly resistive (>1000 Ω·m) Archean crustal core from a more conductive crust and mantle to the north (typically <500 Ω·m); (3) to the north of Olympic Dam, the upper-middle crust to ˜20 km is quite resistive (˜1000 Ω·m), but the lower crust is much more conductive (<100 Ω·m); and (4) beneath Olympic Dam, we image a low-resistivity region (<100 Ω·m) throughout the crust, coincident with a seismically transparent region. We argue that the cause of the low-resistivity and low-reflectivity region beneath Olympic Dam may be due to the upward movement of CO2-bearing volatiles near the time of deposit formation that precipitated conductive graphite liberalization along grain boundaries, simultaneously annihilating acoustic impedance boundaries. The source of the volatiles may be from the mantle degassing or retrograde metamorphism of the lower crust associated with Proterozoic crustal deformation.
NASA Astrophysics Data System (ADS)
Rodriguez, E. E.; Russo, R. M.
2016-12-01
Crustal structure is the product of the processes that operated during a region's tectonic history. For Patagonia, these tectonic processes include its early Paleozoic assembly and accretion to the South America portion of Gondwana, Triassic rifting of Gondwana, and a long history as the upper plate during oceanic subduction since the Mesozoic. To assess the crustal structure and glean insight into how these tectonic processes affected the region, we combined data from two seismic networks, the Chile Ridge Subduction Project and Seismic Experiment of Aisen Chile - yielding a total of 77 broadband seismic stations - deployed from 2004 to 2007. The stations were concentrated 300 km inboard of the Chile trench, above structures unlikely to have been affected by ongoing Chile Ridge subduction. Events suitable for receiver function (RF) analyses (M > 5.9, of various backazimuths, epicentral distances of 30 - 90°) yielded 995 radial RFs, constructed using iterative time deconvolution (Ligorria and Ammon, 1999). We estimated crustal thicknesses and compressional to shear wave velocity ratios (Vp/Vs) using the H-k grid search method (Zhu and Kanamori, 2000); common conversion point (CCP) stacking (Zhu, et al., 2006) allowed imaging of crustal structure. Results limit crustal thicknesses to between 30 and 45 km. The crust varies smoothly from 30 km at the N margin of our study area ( 43°S) to a max depth of 45 km at 44.75°S, shallowing to 30 km at 49°S. On E-W CCP sections north of 46°S, the Moho dips westward, from a depth of 35 at 71°W to 45 km at its deepest near 72.75°W. Beneath the active Southern Volcanic Zone, which is bounded to the west by the Liquiñe-Ofqui fault, the Moho is ambiguous, producing unclear Ps phases possibly reflecting a lack of sharp impedance contrast or poor conversion efficiency at the base of the crust, perhaps due to deep-seated volcanic arc processes. The proximity of the Liquiñe-Ofqui strike-slip fault may also complicate the expected velocity discontinuity at the Moho by juxtaposing crustal blocks of different thicknesses. We also observe an extensive, undulating mid-crustal converter between 12-20 km depth. Peaks and troughs of this surface strike E-W, implying that the surface may have formed during N-S crustal shortening. If so, this surface likely formed during Paleozoic assembly of Patagonia.
NASA Astrophysics Data System (ADS)
Dellong, David; Klingelhoefer, Frauke; Kopp, Heidrun; Graindorge, David; Margheriti, Lucia; Moretti, Milena; Murphy, Shane; Gutscher, Marc-Andre
2018-03-01
In the Ionian Sea (central Mediterranean) the slow convergence between Africa and Eurasia results in the formation of a narrow subduction zone. The nature of the crust of the subducting plate remains debated and could represent the last remnants of the Neo-Tethys ocean. The origin of the Ionian basin is also under discussion, especially concerning the rifting mechanisms as the Malta Escarpment could represent a remnant of this opening. This subduction retreats toward the south-east (motion occurring since the last 35 Ma) but is confined to the narrow Ionian basin. A major lateral slab tear fault is required to accommodate the slab roll-back. This fault is thought to propagate along the eastern Sicily margin but its precise location remains controversial. This study focuses on the deep crustal structure of the eastern Sicily margin and the Malta Escarpment. We present two two-dimensional P wave velocity models obtained from forward modeling of wide-angle seismic data acquired onboard the R/V Meteor during the DIONYSUS cruise in 2014. The results image an oceanic crust within the Ionian basin as well as the deep structure of the Malta Escarpment, which presents characteristics of a transform margin. A deep and asymmetrical sedimentary basin is imaged south of the Messina strait and seems to have opened between the Calabrian and Peloritan continental terranes. The interpretation of the velocity models suggests that the tear fault is located east of the Malta Escarpment, along the Alfeo fault system.
The mantle lithosphere and the Wilson Cycle
NASA Astrophysics Data System (ADS)
Heron, Philip; Pysklywec, Russell; Stephenson, Randell
2017-04-01
In the view of the conventional theory of plate tectonics (e.g., the Wilson Cycle), crustal inheritance is often considered important in tectonic evolution. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Deep seismic imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. Recent studies have interpreted mantle lithosphere heterogeneities to be pre-existing structures, and as such linked to the Wilson Cycle and inheritance. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, characteristic of stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in controlling deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics. We outline the difficulty in unravelling the causes of tectonic deformation, alongside discussing the role of deep lithosphere processes in plate tectonics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, P.; Schultz, C.; Larsen, S.
1997-07-15
Monitoring of a CTBT will require transportable seismic identification techniques, especially in regions where there is limited data. Unfortunately, most existing techniques are empirical and can not be used reliably in new regions. Our goal is to help develop transportable regional identification techniques by improving our ability to predict the behavior of regional phases and discriminants in diverse geologic regions and in regions with little or no data. Our approach is to use numerical modeling to understand the physical basis for regional wave propagation phenomena and to use this understanding to help explain observed behavior of regional phases and discriminants.more » In this paper, we focus on results from simulations of data in selected regions and investigate the sensitivity of these regional simulations to various features of the crustal structure. Our initial models use teleseismically estimated source locations, mechanisms, and durations and seismological structures that have been determined by others. We model the Mb 5.9, October 1992, Cairo Egypt earthquake at a station at Ankara Turkey (ANTO) using a two-dimensional crustal model consisting of a water layer over a deep sedimentary basin with a thinning crust beneath the basin. Despite the complex tectonics of the Eastern Mediterranean region, we find surprisingly good agreement between the observed data and synthetics based on this relatively smooth two-dimensional model.« less
NASA Astrophysics Data System (ADS)
Jiménez-Munt, I.; Fernãndez, M.; Saura, E.; Vergés, J.; Garcia-Castellanos, D.
2012-09-01
The aim of this work is to propose a first-order estimate of the crustal and lithospheric mantle geometry of the Arabia-Eurasia collision zone and to separate the measured Bouguer anomaly into its regional and local components. The crustal and lithospheric mantle structure is calculated from the geoid height and elevation data combined with thermal analysis. Our results show that Moho depth varies from ˜42 km at the Mesopotamian-Persian Gulf foreland basin to ˜60 km below the High Zagros. The lithosphere is thicker beneath the foreland basin (˜200 km) and thinner underneath the High Zagros and Central Iran (˜140 km). Most of this lithospheric mantle thinning is accommodated under the Zagros mountain belt coinciding with the suture between two different mantle domains on the Sanandaj-Sirjan Zone. The regional gravity field is obtained by calculating the gravimetric response of the 3-D crustal and lithospheric mantle structure obtained by combining elevation and geoid data. The calculated regional Bouguer anomaly differs noticeably from those obtained by filtering or just isostatic methods. The residual gravity anomaly, obtained by subtraction of the regional components to the measured field, is analyzed in terms of the dominating upper crustal structures. Deep basins and areas with salt deposits are characterized by negative values (˜-20 mGal), whereas the positive values are related to igneous and ophiolite complexes and shallow basement depths (˜20 mGal).
de Castroa, David L.; Fuck, Reinhardt A.; Phillips, Jeffrey D.; Vidotti, Roberta M.; Bezerra, Francisco H. R.; Dantas, Elton L.
2014-01-01
The Parnaíba Basin is a large Paleozoic syneclise in northeastern Brazil underlain by Precambrian crystalline basement, which comprises a complex lithostructural and tectonic framework formed during the Neoproterozoic–Eopaleozoic Brasiliano–Pan African orogenic collage. A sag basin up to 3.5 km thick and 1000 km long formed after the collage. The lithologic composition, structure, and role in the basin evolution of the underlying basement are the focus of this study. Airborne gravity and magnetic data were modeled to reveal the general crustal structure underneath the Parnaíba Basin. Results indicate that gravity and magnetic signatures delineate the main boundaries and structural trends of three cratonic areas and surrounding Neoproterozoic fold belts in the basement. Triangular-shaped basement inliers are geophysically defined in the central region of this continental-scale Neoproterozoic convergence zone. A 3-D gravity inversion constrained by seismological data reveals that basement inliers exhibit a 36–40.5 km deep crustal root, with borders defined by a high-density and thinner crust. Forward modeling of gravity and magnetic data indicates that lateral boundaries between crustal units are limited by Brasiliano shear zones, representing lithospheric sutures of the Amazonian and São Francisco Cratons, Tocantins Province and Parnaíba Block. In addition, coincident residual gravity, residual magnetic, and pseudo-gravity lows indicate two complex systems of Eopaleozoic rifts related to the initial phase of the sag deposition, which follow basement trends in several directions.
LITHO1.0: An Updated Crust and Lithosphere Model of the Earth
NASA Astrophysics Data System (ADS)
Masters, G.; Ma, Z.; Laske, G.; Pasyanos, M. E.
2011-12-01
We are developing LITHO1.0: an updated crust and lithosphere model of the Earth. The overall plan is to take the popular CRUST2.0 model - a global model of crustal structure with a relatively poor representation of the uppermost mantle - and improve its nominal resolution to 1 degree and extend the model to include lithospheric structure. The new model, LITHO1.0, will be constrained by many different datasets including extremely large new datasets of relatively short period group velocity data. Other data sets include (but are not limited to) compilations of receiver function constraints and active source studies. To date, we have completed the compilation of extremely large global datasets of group velocity for Rayleigh and Love waves from 10mHz to 40mHz using a cluster analysis technique. We have also extended the method to measure phase velocity and are complementing the group velocity with global data sets of longer period phase data that help to constrain deep lithosphere properties. To model these data, we require a starting model for the crust at a nominal resolution of 1 degree. This has been developed by constructing a map of crustal thickness using data from receiver function and active source experiments where available, and by using CRUST2.0 where other constraints are not available. Particular care has been taken to make sure that the locations of sharp changes in crustal thickness are accurately represented. This map is then used as a template to extend CRUST2.0 to 1 degree nominal resolution and to develop starting maps of all crustal properties. We are currently modeling the data using two techniques. The first is a linearized inversion about the 3D crustal starting model. Note that it is important to use local eigenfunctions to compute Frechet derivatives due to the extreme variations in crustal structure. Another technique uses a targeted grid search method. A preliminary model for the crustal part of the model will be presented.
Sub-crustal seismic activity beneath Klyuchevskoy Volcano
NASA Astrophysics Data System (ADS)
Carr, M. J.; Droznina, S.; Levin, V. L.; Senyukov, S.
2013-12-01
Seismic activity is extremely vigorous beneath the Klyuchevskoy Volcanic Group (KVG). The unique aspect is the distribution in depth. In addition to upper-crustal seismicity, earthquakes take place at depths in excess of 20 km. Similar observations are known in other volcanic regions, however the KVG is unique in both the number of earthquakes and that they occur continuously. Most other instances of deep seismicity beneath volcanoes appear to be episodic or transient. Digital recording of seismic signals started at the KVG in early 2000s.The dense local network reliably locates earthquakes as small as ML~1. We selected records of 20 earthquakes located at depths over 20 km. Selection was based on the quality of the routine locations and the visual clarity of the records. Arrivals of P and S waves were re-picked, and hypocentral parameters re-established. Newl locations fell within the ranges outlined by historical seismicity, confirming the existence of two distinct seismically active regions. A shallower zone is at ~20 km depth, and all hypocenters are to the northeast of KVG, in a region between KVG and Shiveluch volcano. A deeper zone is at ~30 km, and all hypocenters cluster directly beneath the edifice of the Kyuchevskoy volcano. Examination of individual records shows that earthquakes in both zones are tectonic, with well-defined P and S waves - another distinction of the deep seismicity beneath KVG. While the upper seismic zone is unquestionably within the crust, the provenance of the deeper earthquakes is enigmatic. The crustal structure beneath KVG is highly complex, with no agreed-upon definition of the crust-mantle boundary. Rather, a range of values, from under 30 to over 40 km, exists in the literature. Similarly, a range of velocity structures has been reported. Teleseismic receiver functions (RFs) provide a way to position the earthquakes with respect to the crust-mantle boundary. We compare the differential travel times of S and P waves from deep events observed at a site closest to the epicenter to delay times of Ps phases in RFs that we associate with the crust-mantle transition. Both observations are essentially differences between travel times of S and P waves originating at the same place, and traversing the same velocity structure. Consequently, the uncertainty of the velocity structure beneath the KVG does not influence the comparison. For all events nominally located at 28-30 km beneath KVG the S-P time at the nearest site (CIR) significantly exceeds 4 seconds. Given that crust-mantle boundary Ps times at nearby sites are ~3 s, these earthquakes take place in the upper mantle. Both recent RFs and wide-angle reflection (Deep Seismic Sounding) studies in the late 1970s identified additional boundaries beneath KVG at depths in excess of 40 km. The nature of these boundaries is unclear, however their sharpness suggests chemical changes or the presence of fluids or melts. Chemistry of Klyuchevskoy lavas suggests sub-crustal origin with no clear magma chamber within the crust. Sub-crustal earthquakes we describe show that processes in the magma conduit at the base of the crust beneath KVG are vigorous enough to promote brittle failure in the surrounding mantle rock. The complex seismic structure of the uppermost mantle beneath KVG may reflect a history of magma injection that is accompanied by seismic energy release.
The Lunar Crust: Global Structure and Signature of Major Basins
NASA Technical Reports Server (NTRS)
Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.; Lemoine, Frank G.
1996-01-01
New lunar gravity and topography data from the Clementine Mission provide a global Bouguer anomaly map corrected for the gravitational attraction of mare fill in mascon basins. Most of the gravity signal remaining after corrections for the attraction of topography and mare fill can be attributed to variations in depth to the lunar Moho and therefore crustal thickness. The large range of global crustal thickness (approx. 20-120 km) is indicative of major spatial variations in melting of the lunar exterior and/or significant impact-related redistribution. The 6l-km average crustal thickness, constrained by a depth-to-Moho measured during the Apollo 12 and 14 missions, is preferentially distributed toward the farside, accounting for much of the offset in center-of-figure from the center-of-mass. While the average farside thickness is 12 km greater than the nearside, the distribution is nonuniform, with dramatic thinning beneath the farside, South Pole-Aitken basin. With the global crustal thickness map as a constraint, regional inversions of gravity and topography resolve the crustal structure of major mascon basins to half wavelengths of 150 km. In order to yield crustal thickness maps with the maximum horizontal resolution permitted by the data, the downward continuation of the Bouguer gravity is stabilized by a three- dimensional, minimum-slope and curvature algorithm. Both mare and non-mare basins are characterized by a central upwarped moho that is surrounded by rings of thickened crust lying mainly within the basin rims. The inferred relief at this density interface suggests a deep structural component to the surficial features of multiring lunar impact basins. For large (greater than 300 km diameter) basins, moho relief appears uncorrelated with diameter, but is negatively correlated with basin age. In several cases, it appears that the multiring structures were out of isostatic equilibrium prior to mare emplacement, suggesting that the lithosphere was strong enough to maintain their state of stress to the present.
Moho map of South America from receiver functions and surface waves
NASA Astrophysics Data System (ADS)
Lloyd, Simon; van der Lee, Suzan; FrançA, George Sand; AssumpçãO, Marcelo; Feng, Mei
2010-11-01
We estimate crustal structure and thickness of South America north of roughly 40°S. To this end, we analyzed receiver functions from 20 relatively new temporary broadband seismic stations deployed across eastern Brazil. In the analysis we include teleseismic and some regional events, particularly for stations that recorded few suitable earthquakes. We first estimate crustal thickness and average Poisson's ratio using two different stacking methods. We then combine the new crustal constraints with results from previous receiver function studies. To interpolate the crustal thickness between the station locations, we jointly invert these Moho point constraints, Rayleigh wave group velocities, and regional S and Rayleigh waveforms for a continuous map of Moho depth. The new tomographic Moho map suggests that Moho depth and Moho relief vary slightly with age within the Precambrian crust. Whether or not a positive correlation between crustal thickness and geologic age is derived from the pre-interpolation point constraints depends strongly on the selected subset of receiver functions. This implies that using only pre-interpolation point constraints (receiver functions) inadequately samples the spatial variation in geologic age. The new Moho map also reveals an anomalously deep Moho beneath the oldest core of the Amazonian Craton.
NASA Astrophysics Data System (ADS)
Liou, Juhn G.; Tsujimori, Tatsuki; Yang, Jingsui; Zhang, R. Y.; Ernst, W. G.
2014-12-01
Newly recognized occurrences of ultrahigh-pressure (UHP) minerals including diamonds in ultrahigh-temperature (UHT) felsic granulites of orogenic belts, in chromitites associated with ophiolitic complexes, and in mantle xenoliths suggest the recycling of crustal materials through deep subduction, mantle upwelling, and return to the Earth's surface. This circulation process is supported by crust-derived mineral inclusions in deep-seated zircons, chromites, and diamonds from collision-type orogens, from eclogitic xenoliths in kimberlites, and from chromitities of several Alpine-Himalayan and Polar Ural ophiolites; some of these minerals contain low-atomic number elements typified by crustal isotopic signatures. Ophiolite-type diamonds in placer deposits and as inclusions in chromitites together with numerous highly reduced minerals and alloys appear to have formed near the mantle transition zone. In addition to ringwoodite and inferred stishovite, a number of nanometric minerals have been identified as inclusions employing state-of-the-art analytical tools. Reconstitution of now-exsolved precursor UHP phases and recognition of subtle decompression microstructures produced during exhumation reflect earlier UHP conditions. For example, Tibetan chromites containing exsolution lamellae of coesite + diopside suggest that the original chromitites formed at P > 9-10 GPa at depths of >250-300 km. The precursor phase most likely had a Ca-ferrite or a Ca-titanite structure; both are polymorphs of chromite and (at 2000 °C) would have formed at minimum pressures of P > 12.5 or 20 GPa respectively. Some podiform chromitites and host peridotites contain rare minerals of undoubted crustal origin, including zircon, feldspars, garnet, kyanite, andalusite, quartz, and rutile; the zircons possess much older U-Pb ages than the time of ophiolite formation. These UHP mineral-bearing chromitite hosts evidently had a deep-seated evolution prior to extensional mantle upwelling and partial melting at shallow depths to form the overlying ophiolite complexes. These new findings together with stable isotopic and inclusion characteristics of diamonds provide compelling evidence for profound underflow of both oceanic and continental lithosphere, recycling of surface 'organic' carbon into the lower mantle, and ascent to the Earth's surface through mantle upwelling. Intensified study of UHP granulite-facies lower crustal basement and ophiolitic chromitites should allow a better understanding of the geodynamics of subduction and crustal cycling.
NASA Astrophysics Data System (ADS)
Welford, J. Kim; Peace, Alexander L.; Geng, Meixia; Dehler, Sonya A.; Dickie, Kate
2018-05-01
Mesozoic to Cenozoic continental rifting, breakup, and spreading between North America and Greenland led to the opening, from south to north, of the Labrador Sea and eventually Baffin Bay between Baffin Island, northeast Canada, and northwest Greenland. Baffin Bay lies at the northern limit of this extinct rift, transform, and spreading system and remains largely underexplored. With the sparsity of existing crustal-scale geophysical investigations of Baffin Bay, regional potential field methods and quantitative deformation assessments based on plate reconstructions provide two means of examining Baffin Bay at the regional scale and drawing conclusions about its crustal structure, its rifting history, and the role of pre-existing structures in its evolution. Despite the identification of extinct spreading axes and fracture zones based on gravity data, insights into the nature and structure of the underlying crust have only been gleaned from limited deep seismic experiments, mostly concentrated in the north and east where the continental shelf is shallower and wider. Baffin Bay is partially underlain by oceanic crust with zones of variable width of extended continental crust along its margins. 3-D gravity inversions, constrained by bathymetric and depth to basement constraints, have generated a range of 3-D crustal density models that collectively reveal an asymmetric distribution of extended continental crust, approximately 25-30 km thick, along the margins of Baffin Bay, with a wider zone on the Greenland margin. A zone of 5 to 13 km thick crust lies at the centre of Baffin Bay, with the thinnest crust (5 km thick) clearly aligning with Eocene spreading centres. The resolved crustal thicknesses are generally in agreement with available seismic constraints, with discrepancies mostly corresponding to zones of higher density lower crust along the Greenland margin and Nares Strait. Deformation modelling from independent plate reconstructions using GPlates of the rifted margins of Baffin Bay was performed to gauge the influence of original crustal thickness and the width of the deformation zone on the crustal thicknesses obtained from the gravity inversions. These results show the best match with the results from the gravity inversions for an original unstretched crustal thickness of 34-36 km, consistent with present-day crustal thicknesses derived from teleseismic studies beyond the likely continentward limits of rifting around the margins of Baffin Bay. The width of the deformation zone has only a minimal influence on the modelled crustal thicknesses if the zone is of sufficient width that edge effects do not interfere with the main modelled domain.
NASA Astrophysics Data System (ADS)
Drooff, C.; Ebinger, C. J.; Lavayssiere, A.; Keir, D.; Oliva, S. J.; Tepp, G.; Gallacher, R. J.
2017-12-01
Improved seismic imaging beneath the African continent reveals lateral variations in lithospheric thickness, and crustal structure, complementing a growing crust and mantle xenolith data base. Border fault systems in the active cratonic rifts of East Africa are characterized by lower crustal seismicity, both in magmatic sectors and weakly magmatic sectors, providing constraints on crustal rheology and, in some areas, magmatic fluid migration. We report new seismicity data from magmatic and weakly magmatic sectors of the East African rift zone, and place the work in the context of independent geophysical and geochemical studies to models for strain localization during early rifting stages. Specifically, multidisciplinary studies in the Magadi Natron rift sectors reveal volumetrically large magmatic CO2 degassing along border faults with seismicity along projections of surface dips to the lower crust. The magmatic CO2 degassing and high Vp/Vs ratios and reflectivity of the lower crust implies that the border fault serves a conduit between the lower crustal underplating and the atmospheric. Crustal xenoliths in the Eastern rift sector indicate a granulitic lower crust, which is relatively weak in the presence of fluids, arguing against a strong lower crust. Within magmatic sectors, seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Within some weakly magmatic sectors, lower crustal earthquakes also occur along projections of border faults to the lower crust (>30 km), and they are prevalent in areas with high Vp/Vs in the lower crust. Within the southern Tanganyika rift, focal mechanisms are predominantly normal with steep nodal planes. Our comparative studies suggest that pervasive metasomatism above a mantle plume, and melt extraction in thin zones between cratonic roots, lead to high pore pressures that promote brittle failure in the lower crust, even in areas with no surface expression of magmatism.
NASA Astrophysics Data System (ADS)
Chin, Emily J.; Shimizu, Kei; Bybee, Grant M.; Erdman, Monica E.
2018-01-01
Two distinct igneous differentiation trends - the tholeiitic and calc-alkaline - give rise to Earth's oceanic and continental crust, respectively. Mantle melting at mid-ocean ridges produces dry magmas that differentiate at low-pressure conditions, resulting in early plagioclase saturation, late oxide precipitation, and Fe-enrichment in mid-ocean ridge basalts (MORBs). In contrast, magmas formed above subduction zones are Fe-depleted, have elevated water contents and are more oxidized relative to MORBs. It is widely thought that subduction of hydrothermally altered, oxidized oceanic crust at convergent margins oxidizes the mantle source of arc magmas, resulting in erupted lavas that inherit this oxidized signature. Yet, because our understanding of the calc-alkaline and tholeiitic trends largely comes from studies of erupted melts, the signals from shallow crustal contamination by potentially oxidized, Si-rich, Fe-poor materials, which may also generate calc-alkaline rocks, are obscured. Here, we use deep crustal cumulates to "see through" the effects of shallow crustal processes. We find that the tholeiitic and calc-alkaline trends are indeed reflected in Fe-poor mid-ocean ridge cumulates and Fe-rich arc cumulates, respectively. A key finding is that with increasing crustal thickness, arc cumulates become more Fe-enriched. We propose that the thickness of the overlying crustal column modulates the melting degree of the mantle wedge (lower F beneath thick arcs and vice versa) and thus water and Fe3+ contents in primary melts, which subsequently controls the onset and extent of oxide fractionation. Deep crustal cumulates beneath thick, mature continental arcs are the most Fe-enriched, and therefore may be the "missing" Fe-rich reservoir required to balance the Fe-depleted upper continental crust.
NASA Astrophysics Data System (ADS)
Fuis, G. S.; Moore, T. E.; Plafker, G.; Brocher, T. M.; Fisher, M. A.; Mooney, W. D.; Nokleberg, W. J.; Page, R. A.; Beaudoin, B. C.; Christensen, N. I.; Levander, A.; Lutter, W. J.; Saltus, R. W.; Ruppert, N. A.
2010-12-01
We investigated the crustal structure and tectonic evolution of the North American continent in Alaska, where the continent has grown through magmatism, accretion, and tectonic underplating. In the 1980’s and early 1990’s, we conducted a geological and geophysical investigation, known as the Trans-Alaska Crustal Transect (TACT), along a 1350-km-long corridor from the Aleutian Trench to the Arctic coast. The most distinctive crustal structures and the deepest Moho along the transect are located near the Pacific and Arctic margins. Near the Pacific margin, we infer a stack of tectonically underplated oceanic layers interpreted to be remnants of the extinct Kula (or Resurrection) Plate. Continental Moho just north of this underplated stack is more than 55 km deep. Near the Arctic margin, the Brooks Range is underlain by north-vergent, crustal-scale duplexes that overlie a ramp on autochthonous North Slope crust. There, Moho has been depressed to nearly 50-km depth. In contrast, the Moho of central Alaska is on average 32 km deep. In the Paleogene, tectonic underplating of Kula- (or Resurrection-) Plate fragments overlapped in time with duplexing in the Brooks Range. Possible tectonic models linking these two widely separated regions include “flat-slab” subduction and an “orogenic-float” model. In the Neogene, the collision of the Yakutat terrane (YAK), in southern Alaska, correlates with renewed compression in northeast Alaska and northwest Canada, in a fashion somewhat similar to the tectonics in the Paleogene. The Yakutat terrane, riding atop the subducting Pacific oceanic lithosphere (POL), spans a newly interpreted tear in the POL. East of the tear, POL is interpreted to subduct steeply and alone beneath the Wrangell arc volcanoes because the overlying YAK has been left behind as tectonically underplated rocks beneath the rising St. Elias Range in the coastal region. West of the tear, the YAK and POL are interpreted to subduct together at a gentle angle (a few degrees from 0 to 400 km from the trench), and this thickened package inhibits arc volcanism.
NASA Astrophysics Data System (ADS)
Afonso Dias, Nuno; Afilhado, Alexandra; Schnürle, Philippe; Gallais, Flora; Soares, José; Fuck, Reinhardt; Cupertino, José; Viana, Adriano; Moulin, Maryline; Aslanian, Daniel; Matias, Luís; Evain, Mikael; Loureiro, Afonso
2017-04-01
The deep crustal structure of the North-East equatorial Brazilian margin, was investigated during the MAGIC (Margins of brAzil, Ghana and Ivory Coast) joint project, conducted in 2012. The main goal set to understand the fundamental processes leading to the thinning and finally breakup of the continental crust, in a context of a Pull-apart system with two strike-slip borders. The offshore Barreirinhas Basin, was probed by a set of 5 intersecting deep seismic wide-angle profiles, with the deployment of short-period OBS's from IFREMER and land stations from the Brazilian pool. The experiment was devoted to obtain the 2D structure along the directions of flow lines, parallel to margin segmentation and margin segmentation, from tomography and forward modeling. The OBS's deployed recorded also lateral shooting along some profiles, allowing a 3D tomography inversion complementing the results of 2D modeling. Due to the large variation of the water column thickness, heterogeneous crustal structure and Moho depth, several approaches were tested to generate initial input models, to set the grid parameterization and inversion parameters. The assessment of the 3D model was performed by standard synthetic tests and comparison with the obtained 2D forward models. The results evidence a NW-SE segmentation of the margin, following the opening direction of this pull-apart basin, and N-S segmentation that marks the passage between Basins II-III. The signature of the segmentation is evident in the tomograms, where the shallowing of the basement from Basin II towards the oceanic domain is well marked by a NW-SE velocity gradient. Both 2D forward modeling and 3D tomographic inversion indicate a N-S segmentation in the proto-oceanic and oceanic domains, at least at the shallow mantle level. In the southern area the mantle is much faster than on the north. In all profiles crossing Basin II, a deep layer with velocities of 7-4-7.6 km/s generates both refracted as well as reflected phases from its boundaries, in agreement with the 3D model, which indicate a much more gradual transition of crustal velocities to mantle-velocities, than in the remaining segments. The intersection of Basins II, III and proto-oceanic crust is well marked by the absence of seismic energy propagation at deep crust to mantle levels, with no lateral arrival being recorded. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz.
Deep structure of the western part of the Central Caucasus from geophysical data
NASA Astrophysics Data System (ADS)
Shempelev, A. G.; Zaalishvili, V. B.; Kukhmazov, S. U.
2017-09-01
The paper presents new data on seismotectonic studies along the Adygei profile in the western part of the Central Caucasus and provides an overview of deep geophysical studies of the Greater Caucasus. For the first time, comprehensive geophysical characteristics of a crustal section of the Greater Caucasus across an orogenic structure (along the Adygei profile) have been obtained with a uniform step of observations. Based on factual data obtained by such methods as converted waves from distant earthquakes, magnetotelluric sounding, and gravimagnetic surveys, sinking of the marginal part of the southern microplate into the mantle is verified. It is noted that the contemporary Alpine structure of the Greater Caucasus formed during gentle thrusting of the Earth's crust (Scythian Plate) from the north on the consolidated crust of the southern microplate.
Microbial decomposition of marine dissolved organic matter in cool oceanic crust
NASA Astrophysics Data System (ADS)
Shah Walter, Sunita R.; Jaekel, Ulrike; Osterholz, Helena; Fisher, Andrew T.; Huber, Julie A.; Pearson, Ann; Dittmar, Thorsten; Girguis, Peter R.
2018-05-01
Marine dissolved organic carbon (DOC) is one of the largest active reservoirs of reduced carbon on Earth. In the deep ocean, DOC has been described as biologically recalcitrant and has a radiocarbon age of 4,000 to 6,000 years, which far exceeds the timescale of ocean overturning. However, abiotic removal mechanisms cannot account for the full magnitude of deep-ocean DOC loss. Deep-ocean water circulates at low temperatures through volcanic crust on ridge flanks, but little is known about the associated biogeochemical processes and carbon cycling. Here we present analyses of DOC in fluids from two borehole observatories installed in crustal rocks west of the Mid-Atlantic Ridge, and show that deep-ocean DOC is removed from these cool circulating fluids. The removal mechanism is isotopically selective and causes a shift in specific features of molecular composition, consistent with microbe-mediated oxidation. We suggest organic molecules with an average radiocarbon age of 3,200 years are bioavailable to crustal microbes, and that this removal mechanism may account for at least 5% of the global loss of DOC in the deep ocean. Cool crustal circulation probably contributes to maintaining the deep ocean as a reservoir of `aged' and refractory DOC by discharging the surviving organic carbon constituents that are molecularly degraded and depleted in 14C and 13C into the deep ocean.
NASA Astrophysics Data System (ADS)
Tan, P.; Sippel, J.; Scheck-Wenderoth, M.; Meeßen, C.; Breivik, A. J.
2016-12-01
The study area is located between the Jan Mayen Ridge and the east coast of Greenland. It has a complex geological setting with the ultraslow Kolbeinsey and Mohn's spreading ridges, the anomalously shallow Eggvin Bank, the Jan Mayen Microcontinent (JMMC), and the tectonically active West Jan Mayen Fracture Zone (WJMFZ). In this study, we present the results of forward 3D structural, S-wave velocity, and gravity modeling which provide new insights into the deep crust and mantle structure and the wide-ranging influence of the Iceland Plume. The crustal parts of the presented 3D structural model are mainly constrained by local seismic refraction and reflection data. Accordingly, greatest crustal thicknesses (24 km) are observed on the northern boundary of the JMMC, while the average crustal thickness is 8.5 km and 4 km in the Kolbeinsey and Mohn's Ridge, respectively. The densities of the crustal parts are from previous studies. Additionally, the mantle density is derived from S-wave velocity data (between 50 and 250 km depth), while densities of the lithospheric mantle between the Moho and 50 km are calculated assuming isostatic equilibrium at 250 km depth. This is used as a starting density model which is further developed to obtain a reasonable fit between the calculated and measured (free-air) gravity fields. The observed S-wave tomographic data and the gravity modeling prove that the Iceland plume anomaly in the asthenosphere affects the lithospheric thickness and temperature, from the strongly influenced Middle Kolbeinsey Ridge, to the less affected North Kolbeinsey Ridge (Eggvin Bank), and to the little impacted Mohn's Ridge. Thus, the age-temperature relations of the different mid-ocean ridges of the study area are perturbed to different degrees controlled by the distance from the Iceland Plume. Furthermore, we find that the upper 50 km of lithospheric mantle are thermally affected by the plume only in the southwestern parts of the study area.
NASA Astrophysics Data System (ADS)
Rutte, Daniel; Fox, Matthew; Ratschbacher, Lothar
2017-04-01
Miocene gneiss domes in the Pamir allow unique insight into crustal-scale processes forming the Asian crust of the Pamir-Tibet Plateau. They were exhumed along normal-sense shear zones in an intermittent phase of N-S extension while earlier and later structures document N-S shortening. Recently, Schmidt et al. (2011), Stearns et al., (2013; 2015), Rutte et al. (a & b, accepted), and Hacker et al. (submitted) established a vast structural, petrologic, and geochronologic dataset for the Central Pamir domes. These studies interpreted the domes as a product of gravitational collapse. The dataset includes (micro)structural observations constraining the mechanism of exhumation, thermobarometry of the metamorphic rocks, petrochronologic data constraining timing of pro- and retrogression, a vast multi-method thermochronometric dataset including age-elevation and age-distance data, dates for normal-sense shear zones and barometric data on intrusive rocks. These data constrain the time-temperature, pressure-temperature, and time-pressure history of the dome rocks. We explore the dataset using one-dimensional thermal models. Our code solves the heat transfer equation and gives a transient solution allowing for variation of the geothermal gradient and thermal diffusivity. At this stage, our models suggest that exponential decay of an initially high exhumation rate of 6 km/Myr at 22 Ma to 0.5km/Myr at 13 Ma best explains the dataset. This suggests a one-time input of gravitational potential energy (GPE) that is successively decaying through crustal extension. Both, Asian crustal foundering or Indian slab breakoff may concur with this result. While the Central Pamir domes extend >400 km along strike of the orogen, little variation in timing of most of exhumation during N-S extension is observed. This suggests that the underlying mechanism - be it crustal foundering or slab breakoff - varied little along strike as well. References Hacker, B.R., Ratschbacher, L., Rutte, D., Stearns, M. A., Malz, N., Stübner, K., Kylander-Clark, A. R. C., Pfänder, J. A., and Everson, A. (submitted) Building the Pamir-Tibet Plateau—Crustal stacking, extensional collapse, and lateral extrusion in the Pamir: 3. Thermobarometry and Petrochronology of Deep Asian Crust. Tectonics Rutte, D., Ratschbacher, L., Schneider, S., Stübner, K., Stearns, M. A., Gulzar, M.A., and Hacker, B. R. (accepted a) Building the Pamir-Tibet Plateau-Crustal Stacking, Extensional Collapse, and Lateral Extrusion in the Central Pamir: 1. Geometry and kinematics. Tectonics Rutte, D., Ratschbacher, L., Khan, J., Stübner, K., Jonckheere, R., Pfänder, J. A., Hacker, B. R., Stearns, M. A., Enkelmann, E., Sperner, B., Tichomirowa, M. (accepted b) Building the Pamir-Tibet Plateau-Crustal Stacking, Extensional Collapse, and Lateral Extrusion in the Central Pamir: 2. Timing and Rates. Tectonics Schmidt J., Hacker B. R., Ratschbacher L., Stübner K., Stearns M., Kylander-Clark A., Cottle J. M., Alexander A., Webb G., Gehrels G. and Minaev V. (2011) Cenozoic deep crust in the Pamir. Earth Planet. Sci. Lett. 312, 411-421. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0012821X11006327. Stearns M. A., Hacker B. R., Ratschbacher L., Lee J., Cottle J. M. and Kylander-Clark A. (2013) Synchronous oligocene-miocene metamorphism of the pamir and the north himalaya driven by plate-scale dynamics. Geology 41, 1071-1074. Stearns M. A., Hacker B. R., Ratschbacher L., Rutte D. and Kylander-Clark A. R. C. (2015) Titanite petrochronology of the Pamir gneiss domes: Implications for middle to deep crust exhumation and titanite closure to Pb and Zr diffusion. Tectonics 34, 1-19.
NASA Astrophysics Data System (ADS)
Altenbernd, Tabea; Jokat, Wilfried; Heyde, Ingo; Damm, Volkmar
2015-11-01
Investigating the crust of northern Baffin Bay provides valuable indications for the still debated evolution of this area. The crust of the southern Melville Bay is examined based on wide-angle seismic and gravity data. The resulting P wave velocity, density, and geological models give insights into the crustal structure. A stretched and rifted continental crust underneath southern Melville Bay is up to 30 km thick, with crustal velocities ranging between 5.5 and 6.9 km/s. The deep Melville Bay Graben contains a 9 km thick infill with velocities of 4 to 5.2 km/s in its lowermost part. West of the Melville Bay Ridge, a ~80 km wide and partly only 5 km thick Continent-Ocean Transition (COT) is present. West of the COT, up to 5 km thick sedimentary layers cover a 4.3 to 7 km thick, two-layered oceanic crust. The upper oceanic layer 2 has velocities of 5.2 to 6.0 km/s; the oceanic layer 3 has been modeled with rather low velocities of 6.3 to 6.9 km/s. Low velocities of 7.8 km/s characterize the probably serpentinized upper mantle underneath the thin crust. The serpentinized upper mantle and low thickness of the oceanic crust are another indication for slow or ultraslow spreading during the formation of the oceanic part of the Baffin Bay. By comparing our results on the crustal structure with other wide-angle seismic profiles recently published, differences in the geometry and structure of the crust and the overlying sedimentary cover are revealed. Moreover, the type of margin and the extent of crustal types in the Melville Bay area are discussed.
Seismological structure of the 1.8 Ga Trans-Hudson Orogen of North America
NASA Astrophysics Data System (ADS)
Gilligan, Amy; Bastow, Ian D.; Darbyshire, Fiona A.
2016-06-01
Precambrian tectonic processes are debated: what was the nature and scale of orogenic events on the younger, hotter, and more ductile Earth? Northern Hudson Bay records the Paleoproterozoic collision between the Western Churchill and Superior plates—the ˜1.8 Ga Trans-Hudson Orogeny (THO)—and is an ideal locality to study Precambrian tectonic structure. Integrated field, geochronological, and thermobarometric studies suggest that the THO was comparable to the present-day Himalayan-Karakoram-Tibet Orogen (HKTO). However, detailed understanding of the deep crustal architecture of the THO, and how it compares to that of the evolving HKTO, is lacking. The joint inversion of receiver functions and surface wave data provides new Moho depth estimates and shear velocity models for the crust and uppermost mantle of the THO. Most of the Archean crust is relatively thin (˜39 km) and structurally simple, with a sharp Moho; upper-crustal wave speed variations are attributed to postformation events. However, the Quebec-Baffin segment of the THO has a deeper Moho (˜45 km) and a more complex crustal structure. Observations show some similarity to recent models, computed using the same methods, of the HKTO crust. Based on Moho character, present-day crustal thickness, and metamorphic grade, we support the view that southern Baffin Island experienced thickening during the THO of a similar magnitude and width to present-day Tibet. Fast seismic velocities at >10 km below southern Baffin Island may be the result of partial eclogitization of the lower crust during the THO, as is currently thought to be happening in Tibet.
NASA Astrophysics Data System (ADS)
Larkin, Steven P.; Levander, Alan; Okaya, David; Goff, John A.
1996-12-01
As a high resolution addition to the 1992 Pacific to Arizona Crustal Experiment (PACE), a 45-km-long deep crustal seismic reflection profile was acquired across the Chocolate Mountains in southeastern California to illuminate crustal structure in the transition between the Salton Trough and the Basin and Range province. The complex seismic data are analyzed for both large-scale (deterministic) and fine-scale (stochastic) crustal features. A low-fold near-offset common-midpoint (CMP) stacked section shows the northeastward lateral extent of a high-velocity lower crustal body which is centered beneath the Salton Trough. Off-end shots record a high-amplitude diffraction from the point where the high velocity lower crust pinches out at the Moho. Above the high-velocity lower crust, moderate-amplitude reflections occur at midcrustal levels. These reflections display the coherency and frequency characteristics of reflections backscattered from a heterogeneous velocity field, which we model as horizontal intrusions with a von Kármán (fractal) distribution. The effects of upper crustal scattering are included by combining the mapped surface geology and laboratory measurements of exposed rocks within the Chocolate Mountains to reproduce the upper crustal velocity heterogeneity in our crustal velocity model. Viscoelastic finite difference simulations indicate that the volume of mafic material within the reflective zone necessary to produce the observed backscatter is about 5%. The presence of wavelength-scale heterogeneity within the near-surface, upper, and middle crust also produces a 0.5-s-thick zone of discontinuous reflections from a crust-mantle interface which is actually a first-order discontinuity.
Simulations of tremor-related creep reveal a weak crustal root of the San Andreas Fault
Shelly, David R.; Bradley, Andrew M.; Johnson, Kaj M.
2013-01-01
Deep aseismic roots of faults play a critical role in transferring tectonic loads to shallower, brittle crustal faults that rupture in large earthquakes. Yet, until the recent discovery of deep tremor and creep, direct inference of the physical properties of lower-crustal fault roots has remained elusive. Observations of tremor near Parkfield, CA provide the first evidence for present-day localized slip on the deep extension of the San Andreas Fault and triggered transient creep events. We develop numerical simulations of fault slip to show that the spatiotemporal evolution of triggered tremor near Parkfield is consistent with triggered fault creep governed by laboratory-derived friction laws between depths of 20–35 km on the fault. Simulated creep and observed tremor northwest of Parkfield nearly ceased for 20–30 days in response to small coseismic stress changes of order 104 Pa from the 2003 M6.5 San Simeon Earthquake. Simulated afterslip and observed tremor following the 2004 M6.0 Parkfield earthquake show a coseismically induced pulse of rapid creep and tremor lasting for 1 day followed by a longer 30 day period of sustained accelerated rates due to propagation of shallow afterslip into the lower crust. These creep responses require very low effective normal stress of ~1 MPa on the deep San Andreas Fault and near-neutral-stability frictional properties expected for gabbroic lower-crustal rock.
NASA Astrophysics Data System (ADS)
Hochmuth, K.; Gohl, K.; Uenzelmann-Neben, G.; Werner, R.
2014-12-01
The Manihiki Plateau of the western Pacific is one of the world - wide greatest Large Igneous Province (LIP) on oceanic crust. It is assumed that the Manihiki Plateau was emplaced as the centerpiece of the "Super-LIP" Ontong Java Nui by multiple volcanic phases during the Cretaceous Magnetic Quiet Period. The subsequent break-up of Ontong Java Nui led to fragmentation of the Manihiki Plateau into three sub-plateaus, which all exhibit individual relicts of the "Super-LIP" break-up. We examine two deep crustal seismic refraction/wide-angle reflection profiles crossing the two largest sub-plateaus of the Manihiki Plateau, the Western Plateaus and the High Plateau. Modeling of P- and S-wave velocities reveals surprising differences in the crustal structure between the two sub-plateaus. Whereas the High Plateau shows a constant crustal thickness of 20 km, relicts of multiple volcanic phases and break-up features at its margins, the model of the Western Plateaus reveals a crustal thickness decreasing from 17 km to only 9 km. There is only little evidence of secondary phases of volcanic activity. The main upper crustal structure on the Western Plateaus consists of fault systems and sedimentary basins. We infer that the High Plateau experienced phases of strong secondary volcanism, and that tectonic deformation was limited to its edges. The Western Plateaus, on the contrary, were deformed by crustal stretching and underwent only little to no secondary volcanism. This indicates that the two main sub-plateaus of the Manihiki Plateau experienced a different geological history and have played their individual parts in the break-up history of Ontong Java Nui.
NASA Astrophysics Data System (ADS)
Parmentier, E. M.; Mustard, J. F.; Ehlmann, B. L.; Roach, L. H.
2007-12-01
Both orbital remote sensing and geophysical observations indicate an important role for hydrothermal crustal cooling during the Noachian epoch. Orbital remote sensing shows that phyllosilicate minerals are common in Noachian-aged terrains but have not been observed in younger terrains (<3.8 Ga). Throughout the Noachian highlands, phyllosilicates are observed in deeply eroded terrains as well as in association with impact craters, in their walls, rims, ejecta, and in central peaks of craters as large as 45 km, corresponding to excavation depths of 4-5 km. CRISM and OMEGA mapping typically show phyllosilicate-bearing rocks occupy the lowest observable stratigraphic unit, and the most common alteration minerals are iron magnesium smectites which typically form at low pressures and temperatures <200°C. Widespread occurrences of phyllosilicates to depths of at least 4-5 km may provide evidence for deep crustal hydrothermal circulation during the Noachian. Geophysical evidence from surface deformation associated with faulting and from the analysis of the relationship of gravity and topography suggest elastic lithosphere thicknesses a large as ~30 km near the end of the Noachian, corresponding to surface heatflux of 20-40 mW/m2. Relaxation of elastic stresses due to thermally activated creep results in elastic lithosphere thicknesses sensitive to crustal temperatures. Plausible planetary thermal evolution models with chondritic abundances of heat producing elements predict a surface heat flux of 50-60 mW/m2 near the end of the Noachian. The difference in the heat flux required for planetary cooling and that inferred from elastic lithospheric thickness, suggests that a significant fraction of heatflow reaching the surface may be transported by hydrothermal convection rather than by conduction alone. Relaxation of crustal thickness variations due to lower crustal flow is sensitive to both the temperature and geothermal gradient at the crust-mantle boundary. In the presence of a low thermal conductivity regolith, thermal evolution models also indicate that crustal thickness variations created during the Noachian would not be preserved, even with a creep-resistant dry diabase rheology. Thus, a mechanism enhancing heat flux in the Noachian Martian crust is indicated. The studies to be reported will summarize these individual constraints on thermal structure and explore their combined implications for the depth and vigor of hydrothermal circulation during the early crustal evolution of Mars.
The crustal thickness of West Antarctica
NASA Astrophysics Data System (ADS)
Chaput, J.; Aster, R. C.; Huerta, A.; Sun, X.; Lloyd, A.; Wiens, D.; Nyblade, A.; Anandakrishnan, S.; Winberry, J. P.; Wilson, T.
2014-01-01
P-to-S receiver functions (PRFs) from the Polar Earth Observing Network (POLENET) GPS and seismic leg of POLENET spanning West Antarctica and the Transantarctic Mountains deployment of seismographic stations provide new estimates of crustal thickness across West Antarctica, including the West Antarctic Rift System (WARS), Marie Byrd Land (MBL) dome, and the Transantarctic Mountains (TAM) margin. We show that complications arising from ice sheet multiples can be effectively managed and further information concerning low-velocity subglacial sediment thickness may be determined, via top-down utilization of synthetic receiver function models. We combine shallow structure constraints with the response of deeper layers using a regularized Markov chain Monte Carlo methodology to constrain bulk crustal properties. Crustal thickness estimates range from 17.0±4 km at Fishtail Point in the western WARS to 45±5 km at Lonewolf Nunataks in the TAM. Symmetric regions of crustal thinning observed in a transect deployment across the West Antarctic Ice Sheet correlate with deep subice basins, consistent with pure shear crustal necking under past localized extension. Subglacial sediment deposit thicknesses generally correlate with trough/dome expectations, with the thickest inferred subice low-velocity sediment estimated as ˜0.4 km within the Bentley Subglacial Trench. Inverted PRFs from this study and other published crustal estimates are combined with ambient noise surface wave constraints to generate a crustal thickness map for West Antarctica south of 75°S. Observations are consistent with isostatic crustal compensation across the central WARS but indicate significant mantle compensation across the TAM, Ellsworth Block, MBL dome, and eastern and western sectors of thinnest WARS crust, consistent with low density and likely dynamic, low-viscosity high-temperature mantle.
NASA Astrophysics Data System (ADS)
Duretz, T.; Gerya, T. V.
2013-08-01
Collision between continents can lead to the subduction of continental material. If the crust remains coupled to the downgoing slab, a large buoyancy force is generated. This force slows down convergence and promotes slab detachment. If the crust resists to subduction, it may decouple from the downgoing slab and be subjected to buoyant extrusion. We employ two-dimensional thermo-mechanical modelling to study the importance of crustal rheology on the evolution of subduction-collision systems. We propose simple quantifications of the mechanical decoupling between lithospheric levels (σ*) and the potential for buoyant extrusion of the crust (ξ*). The modelling results indicate that a variable crustal rheological structure results in slab detachment, delamination, or the combination of both mechanisms. A strong crust provides coupling at the Moho (low σ*) and remains coherent during subduction (low ξ). It promotes deep subduction of the crust (180 km) and slab detachment. Exhumation occurs in coherent manners via eduction and thrusting. Slab detachment triggers the development of topography (> 4.5 km) close to the suture. A contrasting style of collision occurs using a weak crustal rheology. Mechanical decoupling at the Moho (high σ*) promotes the extrusion of the crust (high ξ), disabling slab detachment. Ongoing shortening leads to buckling of the crust and development of topography on the lower plate. Collisions involving rheologically layered crust allow decoupling at mid-crustal depths. This structure favours both the extrusion of upper crust and the subduction of the lower crust. Such collisions are successively affected by delamination and slab detachment. Topography develops together with the buoyant extrusion of crust onto the foreland and is further amplified by slab detachment. Our results suggest that the occurrence of both delamination (Apennines) and slab detachment (Himalayas) in orogens may indicate differences in the initial crustal structure of subducting continental plates in these regions.
NASA Astrophysics Data System (ADS)
Schulte-Pelkum, V.; Mahan, K. H.; Shen, W.; Stachnik, J. C.
2016-12-01
We compare and contrast crustal structure and composition along a transect from the Southern to Northern Rocky Mountains, with a focus on the lower crust. Evolution of the crust can include processes of emplacement, differentiation, and thermal changes that may generate lower crust with high seismic wavespeeds. The high seismic velocities can be due to mafic composition, the presence of garnet, or both. We seek to find seismic signatures preserved from such processes and compare xenolith samples and present-day seismic appearance between regions with varying tectonic histories. We review recent seismic results from the EarthScope Transportable Array from receiver functions and surface waves, compilations of active source studies, and xenolith studies to compare lower crustal structure along transects through the Northern and Southern Rocky Mountains traversing Montana, Wyoming, Colorado, Utah, and New Mexico. Xenoliths from an unusually thick lower crustal layer with high seismic velocities in Montana record magmatic emplacement processes dating back to the Archean. The lower crustal layer possesses internal velocity contrasts that lead to conflicting interpretations of Moho depth depending on the method used, with xenoliths and a refraction study placing the Moho at 55 km depth, while studies using surface waves and receiver functions identify the largest contrast at 40-45 km depth as the Moho. An additional confounding factor is the presence of metasomatized uppermost mantle with low seismic velocities, which may further diminish the seismic signature of the petrological Moho. To the south, the high-velocity layer diminishes, and seismic velocities in the deep crust under southern Wyoming, Colorado, and New Mexico are lower. In the literature, north-south gradients in lower crustal velocity in this area and observed differences in garnet content have variously been ascribed to thermal dehydration of Archean-age hydrous crust or Laramide-age hydration of previously garnet-rich crust.
Hildenbrand, T.G.; Berger, B.; Jachens, R.C.; Ludington, S.
2000-01-01
Upgraded gravity and magnetic databases and associated filtered-anomaly maps of western United States define regional crustal fractures or faults that may have guided the emplacement of plutonic rocks and large metallic ore deposits. Fractures, igneous intrusions, and hydrothermal circulation tend to be localized along boundaries of crustal blocks, with geophysical expressions that are enhanced here by wavelength filtering. In particular, we explore the utility of regional gravity and magnetic data to aid in understanding the distribution of large Mesozoic and Cenozoic ore deposits, primarily epithermal and porphyry precious and base metal deposits and sediment-hosted gold deposits in the western United States cordillera. On the broadest scale, most ore deposits lie within areas characterized by low magnetic properties. The Mesozoic Mother Lodge gold belt displays characteristic geophysical signatures (regional gravity high, regional low-to-moderate background magnetic field anomaly, and long curvilinear magnetic highs) that might serve as an exploration guide. Geophysical lineaments characterize the Idaho-Montana porphyry belt and the La Caridad-Mineral Park belt (from northern Mexico to western Arizona) and thus indicate a deep-seated control for these mineral belts. Large metal accumulations represented by the giant Bingham porphyry copper and the Butte polymetallic vein and porphyry copper systems lie at intersections of several geophysical lineaments. At a more local scale, geophysical data define deep-rooted faults and magmatic zones that correspond to patterns of epithermal precious metal deposits in western and northern Nevada. Of particular interest is an interpreted dense crustal block with a shape that resembles the elliptical deposit pattern partly formed by the Carlin trend and the Battle Mountain-Eureka mineral belt. We support previous studies, which on a local scale, conclude that structural elements work together to localize mineral deposits within regional zones or belts. This study of mineral deposits of the western United States demonstrates the ability of magnetic and gravity data to elucidate the regional geologic framework or structural setting and to contribute in locating favorable environments for hydrothermal mineralization.
Gravity anomaly and crustal structure characteristics in North-South Seismic Belt of China
NASA Astrophysics Data System (ADS)
Shen, Chongyang; Xuan, Songtbai; Yang, Guangliang; Wu, Guiju
2017-04-01
The North-South Seismic Belt (NSSB) is the binary system boundary what is formed by the western Indian plate subduction pushing and the eastern west Pacific asthenosphere rising, and it is one of the three major seismic belts (Tianshan, Taiwan and NSSB) and mainly located between E102°and E107°. And it is mainly composed of topographic gradient zones, faults, cenozoic basins and strong earthquake zones, which form two distinct parts of tectonic and physical features in the west and east. The research results of geophysical and deep tectonic setting in the NSSB show that it is not only a gravity anomaly gradient zone, it is but also a belt of crustal thickness increasing sharply westward of abrupt change. Seismic tomography results show that the anomaly zone is deeper than hundreds of kilometers in the NSSB, and the composition and structure of the crust are more complex. We deployed multiple Gravity and GNSS synchronous detection profiles in the NSSB, and these profiles crossed the mainly faults structure and got thousands of points data. In the research, source analysis, density structure inversion, residual gravity related imaging and normalized full gradient methods were used, and analyzed gravity field, density and their structure features in different positions, finally obtained the crustal density structure section characteristics and depth structure differences. The research results showed that the gravity Bouguer anomaly is similar to the existing large scale result. The Bouguer anomaly is rising significantly from west to east, its trend variation coincides well with the trend change of Moho depth, which is agreeing with the material flows to the peripheral situation of the Tibetan plateau. The obvious difference changes of the residual anomaly is relative to the boundary of structure or main tectonics, it's also connected with the stop degree of the eurasian plate when the material migrates around. The density structure of the gravity profiles mainly reflects basic frame work of the regional crust structure. The earth's crust basically present three layer structure, nearly horizontally distributes, undulation of Moho is obvious, which is consistent with the results of seismic sounding and seismic array detection; in the local area, there are lower density layer zonal distribution in the earth's crust what accelerates the lateral movement in up and middle crust; when the substance of the Tibetan plateau spreads around, the integrity in up and middle crust is well, and it is basically a coupling movement together; in the lower crust, the thickness of the Tibetan plateau is outward gradually thinning, there is decoupling phenomenon in crust-mantle; The results of the gravity and the crustal density structure show that the research area can be divided into several part such as Qinghai-Tibet Plateau, Sichuan-Yunnan block, Ordos block and Alxa block, the transitional zones of the Qinghai-Tibet Plateau and Sichuan basin, and Alxa and Ordos are complex, and Moho slope is bigger, where is the part of strong tectonic activity and strong earthquakes occur easily. The research is of great significance for study the crustal deep structure, geodynamic evolution process and environment of earthquake gestation of the NSSB region.
Permeability of continental crust influenced by internal and external forcing
Rojstaczer, S.A.; Ingebritsen, S.E.; Hayba, D.O.
2008-01-01
The permeability of continental crust is so highly variable that it is often considered to defy systematic characterization. However, despite this variability, some order has been gleaned from globally compiled data. What accounts for the apparent coherence of mean permeability in the continental crust (and permeability-depth relations) on a very large scale? Here we argue that large-scale crustal permeability adjusts to accommodate rates of internal and external forcing. In the deeper crust, internal forcing - fluxes induced by metamorphism, magmatism, and mantle degassing - is dominant, whereas in the shallow crust, external forcing - the vigor of the hydrologic cycle - is a primary control. Crustal petrologists have long recognized the likelihood of a causal relation between fluid flux and permeability in the deep, ductile crust, where fluid pressures are typically near-lithostatic. It is less obvious that such a relation should pertain in the relatively cool, brittle upper crust, where near-hydrostatic fluid pressures are the norm. We use first-order calculations and numerical modeling to explore the hypothesis that upper-crustal permeability is influenced by the magnitude of external fluid sources, much as lower-crustal permeability is influenced by the magnitude of internal fluid sources. We compare model-generated permeability structures with various observations of crustal permeability. ?? 2008 The Authors Journal compilation ?? 2008 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
He, Enyuan; Zhao, Minghui; Qiu, Xuelin; Sibuet, Jean-Claude; Wang, Jian; Zhang, Jiazheng
2016-05-01
The 140-km wide last phase of opening of the South China Sea (SCS) corresponds to a N145° direction of spreading with rift features identified on swath bathymetric data trending N055° (Sibuet et al., 2016). These N055° seafloor spreading features of the East Sub-basin are cut across by a post-spreading volcanic ridge oriented approximately E-W in its western part (Zhenbei-Huangyan seamounts chain). The knowledge of the deep crustal structure beneath this volcanic ridge is essential to elucidate not only the formation and tectonic evolution of the SCS, but also the mechanism of emplacement of the post-spreading magmatism. We use air-gun shots recorded by ocean bottom seismometers to image the deep crustal structure along the N-S oriented G8G0 seismic profile, which is perpendicular to the Zhenbei-Huangyan seamounts chain but located in between the Zhenbei and Huangyan seamounts, where topographic changes are minimum. The velocity structure presents obvious lateral variations. The crust north and south of the Zhenbei-Huangyan seamounts chain is ca. 4-6 km in thickness and velocities are largely comparable with those of normal oceanic crust of Atlantic type. To the south, the Jixiang seamount with a 7.2-km thick crust, seems to be a tiny post-spreading volcanic seamount intruded along the former extinct spreading ridge axis. In the central part, a 1.5-km thick low velocity zone (3.3-3.7 km/s) in the uppermost crust is explained by the presence of extrusive rocks intercalated with thin sedimentary layers as those drilled at IODP Site U1431. Both the Jixiang seamount and the Zhenbei-Huangyan seamounts chain started to form by the intrusion of decompressive melt resulting from the N-S post-spreading phase of extension and intruded through the already formed oceanic crust. The Jixiang seamount probably formed before the emplacement of the E-W post-spreading seamounts chain.
Using Receiver Functions to Image the Montana Crust and Upper Mantle
NASA Astrophysics Data System (ADS)
Sirianni, R. T.; Russo, R. M.
2008-12-01
We determined receiver functions (RFs) at six permanent Advanced National Seismic System (ANSS) stations to examine crust and upper mantle structure of the Wyoming craton (WC) and Medicine Hat block (MHB). The Deep Probe & SAREX projects (Henstock et al., 1998; Clowes et al., 2002; Gorman et al., 2002) used active source seismics to model a high velocity crustal layer (the so-called 7x layer) beneath the WC. This layer exhibits P wave velocities that are high for lower continental crust (~7+ km/s) and extends from 30-55 km below the surface. Interpretations of the active source data indicate that this layer may represent wide scale crustal underplating of the WC, implying post-Archean craton modification with implications for Laurentia assembly. We used 43 earthquakes from a wide azimuthal distribution recorded at the Montana ANSS stations; high signal-to-noise ratios of 25 of these RFs were acceptable for further analysis. Receiver functions constrain crustal velocity structure beneath a seismometer by using P-to-S wave conversions at sharp velocity contrast boundaries. Preliminary results for seismic stations DGMT, EGMT, and LAO, located to the east of the Deep Probe and SAREX seismic line on the Wyoming craton/Medicine Hat block show the influence of sedimentary cover and a strong Ps phase at approximately four seconds after P. At BOZ and MSO, located in the Rocky mountains, the sedimentary cover signal previously noted is absent, and instead we observe a sharp Ps phase at about four and a half seconds after P. RFs at station RLMT (on the WC) are highly anomalous, probably reflecting complex conversions from two differently oriented dipping layers. We will use the RFs to produce suites of acceptable structural models to test for the presence and lateral extent of the 7x layer and other structural features of the Rocky Mountains-craton transition.
Orphan Basin crustal structure from a dense wide-angle seismic profile - layered modeling
NASA Astrophysics Data System (ADS)
Lau, K. W. Helen; Watremez, Louise; Louden, Keith E.; Nedimović, Mladen R.; Karner, Garry D.
2014-05-01
The Orphan Basin is a large, deep water basin to the east of Newfoundland and northwest of Flemish Cap, Canada. It contains a considerably wide series of rift basins that provides an excellent opportunity to study continental crustal deformations under varying degrees of extension. We present a 500-km-long P-wave velocity model across the complete rift system of the Orphan Basin, from Flemish Cap to the Bonavista Platform, using high-resolution refraction and wide-angle reflection data from 89 ocean-bottom seismometers (OBS). This layered model builds on a first-arrival traveltime tomography model (Watremez et al., this session) and is formed using additional constraints from a coincident multichannel seismic reflection profile, gravity data and borehole data from three wells. The layered model helps detail deep sediment and crustal variations across this wide region of extended continental crust. The sedimentary section contains post-rift Tertiary (vp~1.7-3.5 km/s) and syn-rift Cretaceous and Jurassic (vp~4-5.4 km/s) layers within both the eastern and the western sub-basins, separated by three basement highs, suggesting that the two sub-basins may have opened during a single, extended rifting event. The crust is composed of three layers with vp of 5.4-6.1, 6.1-6.5 and 6.3-7.1 km/s of highly variable combined thicknesses, from 32 km beneath Flemish Cap and the Bonavista Platform to <10 km beneath both western and eastern sub-basins. The shape of the crustal thinning appears highly asymmetrical across the two sub-basins. Flemish Cap crust thins westward within the eastern sub-basin into a narrow zone (35 km) of hyperextended crust (<10 km thick) beneath an 8-km-deep sedimentary basin. In contrast, the Bonavista Platform crust thins eastward within the western sub-basin into a wider zone (116 km) of hyperextended crust. Separating the two rift basins is a central section with two distinctive zones of thicker (10-16 km) crust, where muted topography characterizes the eastern part and large basement highs in the western part, separated by the eastward dipping White Sail Fault cutting through the whole crust to the Moho. Higher velocities are, however, found within the lower crustal hanging wall relative to its footwall counterpart to its west. Since such structure cannot be explained by displacement along the fault alone, lateral ductile flow may be responsible for such depth-dependant stretching (DDS). Discrepancies between upper crustal thinning (γuc) and lower crustal thinning (γlc) are consistently observed, but only create a small deficit (~7% or 1.5 km) in the lower crust. Reconstruction of the North Atlantic at M0 time suggests a complex connection between Rockall Trough and the West Orphan Basin, Porcupine Bank and the East Orphan Basin, and the Central Orphan High and Porcupine Bank. Unlike the Rockall and Porcupine Basins, no evidence for partial serpentinization of the upper mantle is observed beneath the E. Orphan trough. However, hyperextension (crustal thickness < 10 km) only occurs over a very narrow zone (~ 30 km wide) in the E. Orphan trough, which might have allowed the basement to have been covered by syn-rift sediment that inhibited the flow of water down the faults.
NASA Astrophysics Data System (ADS)
Wang, L.; Kusky, T.
2009-12-01
High-precision 1:1,000 mapping of Yangkou Bay, eastern Sulu orogen, defines the structural geometry and history of the world’s most significant UHP (Ultrahigh Pressure) rock exposures. Four stages of folds are recognized in the UHP rocks and associated quartzo-feldspathic gneiss. Eclogite facies rootless F1 and isoclinal F2 folds are preserved locally in coesite-eclogite. Mylonitic to ultramylonitic cosesit-eclogite shear zones separate 5-10-meter-thick nappes of ultramafic-mafic UHP rocks from banded quartzo-feldspathic gneiss. These shear zones are folded, and progressively overprinted by amphibolite and greenschist facies shear zones that become wider with lower grade. The deformation sequences is explained by deep subduction of offscraped thrust slices of oceanic or lower continental crust, caught between the colliding North and South China cratons in the Mesozoic. After these slices were structurally isolated along the plate interface, they were rolled like ball-bearings, in the subduction channel during their exhumation, forming several generations of folds, sequentially lower-grade foliations and lineations, and intruded by several generations of in situ and exotically derived melts. The shear zones formed during different generations of deformation are wider with lower grades, suggesting that deep-crustal/upper mantle deformation operates efficiently (perhaps with more active crystallographic slip systems) than deformation at mid to upper crustal levels.
Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt
Jungbluth, Sean P; Bowers, Robert M; Lin, Huei-Ting; Cowen, James P; Rappé, Michael S
2016-01-01
Although little is known regarding microbial life within our planet's rock-hosted deep subseafloor biosphere, boreholes drilled through deep ocean sediment and into the underlying basaltic crust provide invaluable windows of access that have been used previously to document the presence of microorganisms within fluids percolating through the deep ocean crust. In this study, the analysis of 1.7 million small subunit ribosomal RNA genes amplified and sequenced from marine sediment, bottom seawater and basalt-hosted deep subseafloor fluids that span multiple years and locations on the Juan de Fuca Ridge flank was used to quantitatively delineate a subseafloor microbiome comprised of distinct bacteria and archaea. Hot, anoxic crustal fluids tapped by newly installed seafloor sampling observatories at boreholes U1362A and U1362B contained abundant bacterial lineages of phylogenetically unique Nitrospirae, Aminicenantes, Calescamantes and Chloroflexi. Although less abundant, the domain Archaea was dominated by unique, uncultivated lineages of marine benthic group E, the Terrestrial Hot Spring Crenarchaeotic Group, the Bathyarchaeota and relatives of cultivated, sulfate-reducing Archaeoglobi. Consistent with recent geochemical measurements and bioenergetic predictions, the potential importance of methane cycling and sulfate reduction were imprinted within the basalt-hosted deep subseafloor crustal fluid microbial community. This unique window of access to the deep ocean subsurface basement reveals a microbial landscape that exhibits previously undetected spatial heterogeneity. PMID:26872042
NASA Astrophysics Data System (ADS)
Cheng, Win-Bin
2018-01-01
Crustal seismic velocity structure was determined for the northern Taiwan using seismic travel-time data to investigate the northeastern extension of the northern South China Sea's high-magnetic belt. In order to increase the model resolution, a joint analysis of gravity anomaly and seismic travel-time data have been conducted. A total of 3385 events had been used in the inversion that was collected by the Central Weather Bureau Seismological Network from 1990 to 2015. The main features of the obtained three-dimensional velocity model are: (1) a relatively high Vp zone with velocity greater than 6.5 km/s is observed in the middle to lower crust, (2) the high Vp zone generally parallels to the north-south structural trending of the Chuchih fault and Hsuehshan Range, (3) at 25 km depth-slice, the high Vp zone shows structural trends change from northeastward to northward in central Taiwan, where the values of high-magnetic anomalies are rapidly decreasing to low values. A combination of seismic, GPS, and structural interpretations suggests that the entire crust has been deformed and demagnetized in consequence of the collision between the Philippine Sea plate and the Asian continental margin. We suggest that the feature of sharp bending of the high Vp zone would migrate southwestward and cause further crustal deformation of the Peikang High in the future.
NASA Astrophysics Data System (ADS)
Barantsrva, O.; Artemieva, I. M.; Thybo, H.
2015-12-01
We present the results of gravity modeling for the North Atlantic region based on interpretation of GOCE gravity satellite data. First, to separate the gravity signal caused by density anomalies within the crust and the upper mantle, we subtract the lower harmonics in the gravity field, which are presumably caused by deep density structure of the Earth (the core and the lower mantle). Next, the gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crustal model. Our "basic model" is constrained by a recent regional seismic model EUNAseis for the crustal structure (Artemieva and Thybo, 2013); for bathymetry and topography we use a global ETOPO1 model by NOAA. We test sensitivity of the results to different input parameters, such as bathymetry, crustal structure, and gravity field. For bathymetry, we additionally use GEBCO data; for crustal correction - a global model CRUST 1.0 (Laske, 2013); for gravity - EGM2008 (Pavlis, 2012). Sensitivity analysis shows that uncertainty in the crustal structure produces the largest deviation from "the basic model". Use of different bathymetry data has little effect on the final results, comparable to the interpolation error. The difference in mantle residual gravity models based on GOCE and EMG2008 gravity data is 5-10 mGal. The results based on two crustal models have a similar pattern, but differ significantly in amplitude (ca. 250 mGal) for the Greenland-Faroe Ridge. The results demonstrate the presence of a strong gravity and density heterogeneity in the upper mantle in the North Atlantic region. A number of mantle residual gravity anomalies are robust features, independent of the choice of model parameters. This include (i) a sharp contrast at the continent-ocean transition, (ii) positive mantle gravity anomalies associated with continental fragments (microcontinents) in the North Atlantic ocean; (iii) negative mantle gravity anomalies which mark regions with anomalous oceanic mantle and the Mid-Atlantic Ridge. To understand better a complex geodynamics mosaic in the region, we compare our results with regional geochemical data (Korenaga and Klemen, 2000), and find that residual mantle gravity anomalies are well correlated with anomalies in epsilon-Nd and iron-depletion.
Crustal structure across the Brunswick Magnetic Anomaly in Southern Georgia
NASA Astrophysics Data System (ADS)
Lizarralde, D.; Shillington, D. J.; Harder, S. H.
2017-12-01
We will present results from Line 3 of the SUGAR experiment, a seismic refraction profile crossing the Brunswick Magnetic Anomaly (BMA) in southern Georgia. The BMA is a prominent, long-wavelength magnetic low that runs along the shelf offshore South Carolina and Georgia, turns inland near Brunswick and extends WNW toward Columbus GA. The source and significance of the BMA remain central elements of hypotheses for the construction of the SE U.S. continental lithosphere, including scenarios where the BMA marks the location of the Alleghany suture, where it represents a pre-existing suture within a peri-Gondwanan accreted terrane, and where the anomaly is related to Mesozoic rift-related tectono/magmatic processes. Deep-crustal reflectivity observed in multi-channel seismic images across the BMA proximal to the Laurentian margin near Columbus GA promoted the hypothesis that the BMA marks the location of the Alleghany suture. Results from an offshore refraction profile across the BMA along the Georgia shelf revealed a continuous, stratified, 4-km-thick layer in the upper crust beneath the post-rift unconformity with Vp=5.8 km/s interpreted as an undeformed Paleozoic metasedimentary section, inconsistent with an Alleghany suture, but also found an abrupt transition in mid-crustal velocity (6.18 north to 6.4 km/s south of BMA), consistent with preferential emplacement of Mesozoic magmatic additions or perhaps a pre-Alleghany suture. Line 3 of the SUGAR experiment is a relatively high-resolution crustal refraction line that included 11 shots and 700 seismic stations along a 110-km-long profile crossing normal to the BMA near Jesup GA. Preliminary results from Line 3 are similar to what is found offshore, with upper crustal velocities transitioning from 6.0 to 6.3 km/s across the BMA from N to S, with modest structural disruption related to the Kibbee Basin at the northern end of the line. These results are thus generally consistent with the ancient-suture hypothesis, though there is no corollary to the 5.8 km/s layer observed offshore. Further analyses will reveal upper-crustal structure in greater detail and also provide information on Moho structure across the BMA.
3D Crustal Structure of the North-Ligurian Margin: First Results of the GROSMarin Experiment
NASA Astrophysics Data System (ADS)
Dessa, J.-X.; Lelièvre, M.; Simon, S.; Deschamps, A.; Béthoux, N.; Solarino, S.; Beslier, M.-O.; Sage, F.; Bellier, O.; Courboulex, F.; Klingelhoefer, F.; Eva, E.; Ferretti, G.; Scafidi, D.; Pavan, M.; Eva, C.; Lefeldt, M.; Flueh, E.
2010-05-01
The North-Ligurian rifted margin is singular in that it lies immediately next to the Alpine orogenic arc. It is furthermore seismically active and can experience destructive earthquakes such as in 1887 in the region of Imperia—an event that resulted in a tsunami and more than 600 casualties in spite of a coastal area that was much less densely populated than today. Out of such rare large events, the area undergoes a limited and diffuse seismic activity that can remain undetected and is generally poorly located. This results in a poor knowledge of active structures, especially at sea. Such knowledge is however required towards a quantification of the seismic hazard along the French Riviera and the Ligurian region. To this end, the GROSMarin project was undertaken with a dual objective: (1) to characterize the North-Ligurian margin from a structural standpoint—mode and degree of crustal stretching prior to oceanic accretion, segmentation along strike, subsequent evolution in an orogenic context— and (2) to identify zones of active crustal deformation at sea that are likely to generate earthquakes. The programme is a collaborative work between GeoAzur and Dip.Te.Ris (University of Genova), with some support from INGV, IFM-GEOMAR and IFREMER. It took place from April to October 2008 and consisted in the deployment of 21 ocean-bottom seismometers (OBS) on a grid spanning 50 km along strike and 25 km across, located between Nice, France, and Imperia, Italy, and ranging from mid-slope to the deep basin. This array was extended on land by the permanent stations of the French and Italian regional networks, temporarily densified by 13 portable stations. These instruments recorded the shots of a marine seismic source towed from R/V l'Atalante and were left for more than 5 months for passive surveying. The active part of the programme aims at characterizing the main structures of the margin through crustal 3D tomography; the objective of the passive part is to decrease the detection threshold of marine microseismicity and to reach a precise location of events in order to map active faults. Some of the sea and land instruments were fitted with broadband sensors to allow for teleseismic imaging of deep lithospheric discontinuities. We present the preliminary results of this experiment—in particular a first 3D tomographic model obtained from ~31.500 travel times derived from our recording of active seismic shots by the OBS's. Passive data analysis is being under progress and first relocations have been obtained. These results give an insight into the variability of the crustal structure, both along and across strike.
NASA Astrophysics Data System (ADS)
Worthington, L. L.; Christeson, G. L.; van Avendonk, H. J.; Gulick, S. P.
2009-12-01
We present results of a 2008 marine seismic reflection/refraction survey acquired as part of the St. Elias Erosion and Tectonics Project (STEEP), a multi-disciplinary NSF-Continental Dynamics project aimed at tectonic-climate interaction, structural evolution and geodynamics in the Chugach-St. Elias orogen. The Chugach-St.Elias orogen is the result of flat-slab subduction and collision of the Yakutat (YAK) microplate with North Amercian (NA) on the southern Alaska margin during the last ~10Ma. A fundamental goal of STEEP is to address controversy related to the deep crustal structure of the YAK block itself, describe its offshore structural relationships and constrain its buoyancy in order to understand the orogenic driver. Marine seismic reflection profiles acquired across the offshore YAK microplate provide the first regional images of the top of the subducting YAK basement. The basement reflector is observed near the seafloor at the Dangerous River Zone (DRZ) and is overlain by up to 12 km of sediments near Kayak Island, resulting in a basement dip of ~3° in the direction of subduction. The basement reflector also shallows near the shelf-edge adjacent to the Transition Fault, the YAK-Pacific boundary. These observations are indicative of an overall regional basement tilt towards the NA continent. Two coincident wide-angle refraction profiles constrain YAK crustal thickness between 30-35km, >20km thicker than normal oceanic crust, and lower crustal velocities potentially >7km/s. Crustal velocity and thickness are comparable to the Kerguelen oceanic plateau and the Siletz terrane. These results are the first direct observations in support of the oceanic plateau theory for the origin of the YAK microplate. Crustal velocity and structure are continuous across the DRZ on the YAK shelf, which is historically described as a vertical boundary between continental crust on the east and oceanic basement on the west. Instead, we observe a gradual shallowing of elevated crustal velocities associated with the aforementioned basement high near DRZ. Interestingly, observed Moho arrivals across the profile do not mimic the dipping trajectory of the basement reflector, indicating that the YAK slab may be slightly wedge-shaped, thinning in the direction of subduction. If true, the following implications for the YAK-NA collision must be considered: first, that uplift and deformation have intensified through time as thicker, more buoyant YAK crust attempts to subduct; second, migration of intense uplift from west to east across the orogen is partly controlled by underlying slab structure at depth.
Nature and origin of fluids in granulite facies metamorphism
NASA Technical Reports Server (NTRS)
Newton, R. C.
1988-01-01
The various models for the nature and origin of fluids in granulite facies metamorphism were summarized. Field and petrologic evidence exists for both fluid-absent and fluid-present deep crustal metamorphism. The South Indian granulite province is often cited as a fluid-rich example. The fluids must have been low in H2O and thus high in CO2. Deep crustal and subcrustal sources of CO2 are as yet unproven possibilities. There is much recent discussion of the possible ways in which deep crustal melts and fluids could have interacted in granulite metamorphism. Possible explanations for the characteristically low activity of H2O associated with granulite terranes were discussed. Granulites of the Adirondacks, New York, show evidence for vapor-absent conditions, and thus appear different from those of South India, for which CO2 streaming was proposed. Several features, such as the presence of high-density CO2 fluid inclusions, that may be misleading as evidence for CO2-saturated conditions during metamorphism, were discussed.
NASA Astrophysics Data System (ADS)
Bai, Denghai; Meju, Maxwell A.; Liao, Zhijie
2001-12-01
Broadband (0.004-4096s) magnetotelluric (MT) soundings have been applied to the determination of the deep structure across the Rehai geothermal field in a Quaternary volcanic area near the Indo-Eurasian collisional margin. Tensorial analysis of the data show evidence of weak to strong 3-D effects but for approximate 2-D imaging, we obtained dual-mode MT responses for an assumed strike direction coincident with the trend of the regional-scale faults and with the principal impedance azimuth at long periods. The data were subsequently inverted using different approaches. The rapid relaxation inversion models are comparable to the sections constructed from depth-converted invariant impedance phase data. The results from full-domain 2-D conjugate-gradient inversion with different initial models are concordant and evoke a picture of a dome-like structure consisting of a conductive (<10 Ωm) core zone, c . 2km wide, and a resistive (>50-1000 Ωm) cap which is about 5-6km thick in the central part of the known geothermal field and thickens outwards to about 15-20km. The anomalous structure rests on a mid-crustal zone of 20-30 Ωm resistivity extending down to about 25km depth where there appears to be a moderately resistive (>30 Ωm) substratum. The MT images are shown to be in accord with published geological, isotopic and geochemical results that suggested the presence of a magma body underneath the area of study.
NASA Astrophysics Data System (ADS)
Buttinelli, M.; Bianchi, I.; Anselmi, M.; Chiarabba, C.; de Rita, D.; Quattrocchi, F.
2010-12-01
The Tolfa-Cerite volcanic district developed along the Tyrrhenian passive margin of central Italy, as part of magmatic processes started during the middle Pliocene. In this area the uncertainties on the deep crustal structures and the definition of the intrusive bodies geometry are focal issues that still need to be addressed. After the onset of the spreading of the Tyrrhenian sea during the Late Miocene, the emplacement of the intrusive bodies of the Tolfa complex (TDC), in a general back-arc geodynamical regime, generally occurred in a low stretching rate, in correspondence of the junctions between major lithospheric discontinuities. Normal faults, located at the edge of Mio-Pliocene basins, were used as preferential pathways for the rising of magmatic masses from the mantle to the surface. We used teleseismic recordings at the TOLF and MAON broad band station of the INGV seismic network (located between the Argentario promontory and Tolfa-Ceriti dome complexes -TDC-) to image the principal seismic velocity discontinuities by receiver function analysis (RF's). Together with RF’s velocity models of the area computed using the teleseismic events recorded by a temporary network of eight stations deployed around the TDC, we achieve a general crustal model of this area. The geometry of the seismic network has been defined to focus on the crustal structure beneath the TDC, trying to define the main velocity changes attributable to the intrusive bodies, the calcareous basal complex, the deep metamorphic basement, the lower crust and the Moho. The analysis of these data show the Moho at a depth of 23 km in the TDC area and 20 km in the Argentario area. Crustal models also show an unexpected velocity decrease between 12 and 18 km, consistent with a slight dropdown of the Vp/Vs ratio, imputable to a regional mid-crustal shear zone inherited from the previous alpine orogenesis, re-activated in extensional tectonic by the early opening phases of the Tyrrhenian sea. Above this low Vs layer, we find some interesting features corresponding to: - a low Vs shallow and 2 km thick layer of Liguride and Plio-Pleistocene units (z = 0-2 km of depth) - a high Vs 4-5 km thick anisotropic layer of limestones (z = 2-7 km of depth) - a very high Vs (3.8 km/s) 4 km thick layer probably corresponding to the metamorphic basement. The analysis of the geometry of the velocity changes between these layers (from the surface to the bottom of metamorphic basement), also yield evidence of crustal block tilting, due to the development of the eastern continental passive margin of the Tyrrhenian sea. The general crustal setting observed between the TDC and the Argentario areas is also consistent with the simple shear models suggested for back-arc basins opening. Comparison of RF’s TDC models with MAON station data also led to important considerations confirming the initial evolutive phase of the Tyrrhenian sea opening, in association with the first occurrences of intrusive magmatism in these areas.
NASA Astrophysics Data System (ADS)
Ritz, M.; Robineau, B.; Vassal, J.; Bellion, Y.; Dukhan, M.
1989-04-01
Magnetotelluric (MT) measurements were carried out at 20 sites, extending 450 km across southern Mauritania in order to study lithospheric structures related to the West African craton (WAC) margin. The MT profile starts to the west on the Senegal-Mauritania basin (S-M basin), traverses across the Mauritanides orogenic belt, and terminates on the western border of the WAC (Taoudeni basin). Distortion effects due to local shallow inhomogeneities are present in nearly all of the basin data. In such a situation, the preliminary interpretation of the data was done by using 1D inversions based upon rotationally invariant parameters. Such distortion is not apparent for the belt and craton sites, and 1D inversions were followed by 2D modeling. The models produced reveal a clear crustal subdivision into a resistive upper crust underlain by a two-layer lower crust with two conductors, one at mid-crustal depths (supposed fluid-produced) beneath the S-M basin and the second at the base of the crust beneath the WAC. The 14-km-thick conductive material below the Mauritanides belt is interpreted as large imbricated thrusts representing the deep roots of the Mauritanides nappes. The models also show that significant contrasts in resistivity extend deep in the lithosphere between the cratonic area and the Senegal microplate.
NASA Astrophysics Data System (ADS)
Laumonier, Mickael; Gaillard, Fabrice; Muir, Duncan; Blundy, Jon; Unsworth, Martyn
2017-01-01
The formation of the continental crust at subduction zones involves the differentiation of hydrous mantle-derived magmas through a combination of crystallization and crustal melting. However, understanding the mechanisms by which differentiation occurs at depth is hampered by the inaccessibility of the deep crust in active continental arcs. Here we report new high-pressure electrical conductivity and petrological experiments on hydrated andesitic melt from Uturuncu volcano on the Bolivian Altiplano. By applying our results to regional magnetotelluric data, we show that giant conductive anomalies at mid-crustal levels in several arcs are characterized by relatively low amounts of intergranular andesitic partial melts with unusually high dissolved water contents (≥8 wt.% H2O). Below Uturuncu, the Altiplano-Puna Magma Body (APMB) displays an electrical conductivity that requires high water content (up to 10 wt.%) dissolved in the melt based on crystal-liquid equilibria and melt H2O solubility experiments. Such a super-hydrous andesitic melt must constitute about 10% of the APMB, the remaining 90% being a combination of magmatic cumulates and older crustal rocks. The crustal ponding level of these andesites at around 6 kbar pressure implies that on ascent through the crust hydrous magmas reach their water saturation pressure in the mid-crust, resulting in decompression-induced crystallization that increases magma viscosity and in turn leads to preferential stalling and differentiation. Similar high conductivity features are observed beneath the Cascades volcanic arc and Taupo Volcanic Zone. This suggests that large amounts of water in super-hydrous andesitic magmas could be a common feature of active continental arcs and may illustrate a key step in the structure and growth of the continental crust. One Sentence Summary: Geophysical, laboratory conductivity and petrological experiments reveal that deep electrical conductivity anomalies beneath the Central Andes, Cascades and Taupo Volcanic Zone image the ponding of super-hydrous andesitic melts which contributes to the growth of continental crust.
NASA Astrophysics Data System (ADS)
Hrouda, F.; Schulmann, K.; Chlupacova, M.; Aichler, J.; Mixa, P.; Pecina, V.; Zacek, V.; Kroener, A.
2003-04-01
The eastern Variscan front at the Czech and Polish border is characterised by oblique underthrusting of Neo-Proterozoic continental margin below thickened crustal root. The underthrust plate is subsequently imbricated and forms obliquely convergent crustal wedge which was further thrust over the foreland. Several granitic plutons of arc geochemical affinity are intruded during different stages of crustal thickening and exhumation. Analysis of anisotropy of magnetic susceptibility was carried out to study the relationships between host rock deformation and magma emplacement fabrics in different crustal levels and geographical positions with respect to crustal wedge and westerly orogenic root. Deep seated granodiorite sheets (Javornik intrusion 348 Ma, and Stare Mesto sill 340 Ma) are emplaced in the deepest and more internal high grade parts of the orogen along the margin of thickened crustal root. They show AMS fabrics entirely concordant with surrounding high grade gneisses and were emplaced during contractional (transpressive) regime.The Sumperk granodiorite is a more shallow intrusion emplaced in the central part of the crustal wedge. This sheet-like intrusion shows its AMS fabrics conformable to transpressional fabrics of surrounding mylonitised barovian schists and gneisses. The Zulova Pluton 330 Ma, representing the shallowest intrusion, intrudes the most external part of the crustal wedge. It shows the magnetic fabrics virtually perpendicular to compressional structures in the neighbouring areas. In addition, these fabrics are clearly concordant with large-scale detachment zone along which the Devonian meta-sedimentary cover slided to the west. The AMS fabrics of granitoids thus testify the progressive oblique convergence prograding to the east followed by collapse of external part of orogenic wedge. The AMS fabric data allow us to evaluate the mechanical role of arc magmas syntectonically emplaced during oblique convergence and finally during normal shearing perpendicular to the orogen.
Hybrid shallow on-axis and deep off-axis hydrothermal circulation at fast-spreading ridges.
Hasenclever, Jörg; Theissen-Krah, Sonja; Rüpke, Lars H; Morgan, Jason P; Iyer, Karthik; Petersen, Sven; Devey, Colin W
2014-04-24
Hydrothermal flow at oceanic spreading centres accounts for about ten per cent of all heat flux in the oceans and controls the thermal structure of young oceanic plates. It also influences ocean and crustal chemistry, provides a basis for chemosynthetic ecosystems, and has formed massive sulphide ore deposits throughout Earth's history. Despite this, how and under what conditions heat is extracted, in particular from the lower crust, remains largely unclear. Here we present high-resolution, whole-crust, two- and three-dimensional simulations of hydrothermal flow beneath fast-spreading ridges that predict the existence of two interacting flow components, controlled by different physical mechanisms, that merge above the melt lens to feed ridge-centred vent sites. Shallow on-axis flow structures develop owing to the thermodynamic properties of water, whereas deeper off-axis flow is strongly shaped by crustal permeability, particularly the brittle-ductile transition. About 60 per cent of the discharging fluid mass is replenished on-axis by warm (up to 300 degrees Celsius) recharge flow surrounding the hot thermal plumes, and the remaining 40 per cent or so occurs as colder and broader recharge up to several kilometres away from the axis that feeds hot (500-700 degrees Celsius) deep-rooted off-axis flow towards the ridge. Despite its lower contribution to the total mass flux, this deep off-axis flow carries about 70 per cent of the thermal energy released at the ridge axis. This combination of two flow components explains the seismically determined thermal structure of the crust and reconciles previously incompatible models favouring either shallower on-axis or deeper off-axis hydrothermal circulation.
Wells, Ray E.
2004-01-01
Although some scientists considered the Ms=7.1 Loma Prieta, Calif., earthquake of 1989 to be an anticipated event, some aspects of the earthquake were surprising. It occurred 17 km beneath the Santa Cruz Mountains along a left-stepping restraining bend in the San Andreas fault system. Rupture on the southwest-dipping fault plane consisted of subequal amounts of right-lateral and reverse motion but did not reach the surface. In the area of maximum uplift, severe shaking and numerous ground cracks occurred along Summit Road and Skyland Ridge, several kilometers south of the main trace of the San Andreas fault. The relatively deep focus of the earthquake, the distribution of ground failure, the absence of throughgoing surface rupture on the San Andreas fault, and the large component of uplift raised several questions about the relation of the 1989 Loma Prieta earthquake to the San Andreas fault: Did the earthquake actually occur on the San Andreas fault? Where exactly is the San Andreas fault in the heavily forested Santa Cruz Mountains, and how does the fault relate to ground ruptures that occurred there in 1989 and 1906? What is the geometry of the San Andreas fault system at depth, and how does it relate to the major crustal blocks identified by geologic mapping? Subsequent geophysical and geologic investigations of crustal structure in the Loma Prieta region have addressed these and other questions about the relation of the earthquake to geologic structures observed in the southern Santa Cruz Mountains. The diverse papers in this chapter cover several topics: geologic mapping of the region, potential- field and electromagnetic modeling of crustal structure, and the velocity structure of the crust and mantle in and below the source region for the earthquake. Although these papers were mostly completed between 1992 and 1997, they provide critical documentation of the crustal structure of the Loma Prieta region. Together, they present a remarkably coherent, three-dimensional picture of the earthquake source region--a geologically complex volume of crust with a long history of both right-lateral faulting and fault-normal compression, thrusting, and uplift.
NASA Astrophysics Data System (ADS)
Barantseva, Olga; Artemieva, Irina; Thybo, Hans; Herceg, Matija
2015-04-01
We present the results from modelling the gravity and density structure of the upper mantle for the off-shore area of the North Atlantic region. The crust and upper mantle of the region is expected to be anomalous: Part of the region affected by the Icelandic plume has an anomalously shallow bathymetry, whereas the northern part of the region is characterized by ultraslow spreading. In order to understand the links between deep geodynamical processes that control the spreading rate, on one hand, and their manifestations such as oceanic floor bathymetry and heat flow, on the other hand, we model the gravity and density structure of the upper mantle from satellite gravity data. The calculations are based on interpretation of GOCE gravity satellite data for the North Atlantics. To separate the gravity signal responsible for density anomalies within the crust and upper mantle, we subtract the lower harmonics caused by deep density structure of the Earth (the core and the lower mantle). The gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crust for two crustal models. We use a recent regional seismic model for the crustal structure (Artemieva and Thybo, 2013) based om seismic data together with borehole data for sediments. For comparison, similar results are presented for the global CRUST 1.0 model as well (Laske, 2013). The conversion of seismic velocity data for the crustal structure to crustal density structure is crucial for the final results. We use a combination of Vp-to-density conversion based on published laboratory measurements for the crystalline basement (Ludwig, Nafe, Drake, 1970; Christensen and Mooney, 1995) and for oceanic sediments and oceanic crust based on laboratory measurements for serpentinites and gabbros from the Mid-Atlantic Ridge (Kelemen et al., 2004). Also, to overcome the high degree of uncertainty in Vp-to-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007). The results demonstrate the presence of strong gravity and density heterogeneity of the upper mantle in the North Atlantic region. In particular, there is a sharp contrast at the continent-ocean transition, which also allows for recognising mantle gravity anomalies associated with continental fragments and with anomalous oceanic lithosphere.
Electromagnetic studies in the Fennoscandian Shield—electrical conductivity of Precambrian crust
NASA Astrophysics Data System (ADS)
Korja, T.; Hjelt, S.-E.
1993-12-01
Electromagnetic (EM) investigations of the 1980s in the Fennoscandian (Baltic) Shield produced an unique and unified EM data set. Studies include regional investigations by the magnetovariational (MV) method with large lateral sampling distance, investigations of anomalous conductivity structures by magnetotelluric (MT) soundings and other (EM) and electrical methods (audio MT soundings, d.c. dipole-dipole and VLF resistivity profilings) with shorter sampling distance, and studies of the near-surface conductivity by airborne EM surveys. The variety of methods provide an ability to map efficiently crustal conductivity structures from a regional scale of hundreds of kilometres down to local details of some metres in the anomalous structures. The Precambrian of the Fennoscandian Shield is characterized by roughly NW-SE-directed elongated belts of conductors which separate more resistive crustal blocks. The latter serve as transparent windows through which to probe deep electrical structure and belts of conductors as tectonic markers of ancient orogenic zones including (1) the Kittilä-Vetrenny Poyas conductor, (2) the Lapland Granulite Belt and Inari-Pechenga-Imandra-Varzuga conductors, (3) the Archaean-Proterozoic boundary conductor and (4) the Southern Finland Conductor. The conductive belts—orogenic conductors—indicate places where crustal masses collided and were finally sealed together. Enhanced conductivity in the orogenic conductors is caused primarily by an electronic conducting mechanism in graphite- and sulphide-bearing metasedimentary rocks. Estimations of the lower-crustal conductivity indicate a laterally heterogeneous lower crust in the Fennoscandian Shield. Archaean lower crust seems to be in general more resistive than the Early Proterozoic lower crust of the Karelian and Svecofennian Domains. The lower crust in the southwestern part of the Svecofennian Domain and in the Sveconorwegian Domain seems to be more resistive than in the central part of the Svecofennian Domain.
NASA Astrophysics Data System (ADS)
Wan, Kuiyuan; Sun, Jinlong; Xu, Huilong; Xie, Xiaoling; Xia, Shaohong; Zhang, Xiang; Cao, Jinghe; Zhao, Fang; Fan, Chaoyan
2018-02-01
A cluster of earthquakes occurred in the Taiwan Shoal region on the outer rise of the Manila Trench. Although most were of small to medium magnitudes, one strong earthquake occurred on September 16, 1994. Several previous studies have provided important information to progress our understanding of this single earthquake. However, little is currently known about the earthquake cluster, and it is necessary to investigate the deep crustal structure of the Taiwan Shoal region to understand the mechanisms involved in controlling and generating it. This study presents a two-dimensional seismic tomographic image of the crustal structure along the OBS2012 profile based on ocean-bottom seismograph (OBS) data, which exhibits a high-velocity anomaly flanked by low-velocity anomalies in the upper crust beneath the Taiwan Shoal. In this study, 765 earthquakes (Richter magnitude ML > 1.5) occurring between 1991 and 2015 were studied and analyses of earthquake epicenters, regional faults, and the crustal structure provides an improved understanding of the nature of active tectonics in this region. Results of analyses indicate firstly that the high-velocity area represents major asperities that correspond to the location of the earthquake cluster and where stress is concentrated. It is also depicted that the earthquake cluster was influenced by fault interactions. However, the September 1994 earthquake occurred independently of these seismic activities and was associated with reactivation of a preexisting fault. It is also determined that slab pull is resisted by the exposed precollision accretionary prism, and the resistive force is causing accumulation of inplane compressive-stress. This may trigger a future damaging earthquake in the Taiwan Shoal region.
NASA Astrophysics Data System (ADS)
Mishra, D. C.; Arora, K.; Tiwari, V. M.
2004-02-01
A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW-SE, NE-SW and N-S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35-40 km under the continent, which reduces to 22/20-24 km under the Bay of Bengal with thick sediments of 8-10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m 3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150-200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5-6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m 3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent-ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8-9 km with crustal layers of densities 2650 and 2870 kg/m 3 representing an oceanic crust.
NASA Astrophysics Data System (ADS)
Ramirez, C.; Nyblade, A.; Emry, E. L.; Julià, J.; Sun, X.; Anandakrishnan, S.; Wiens, D. A.; Aster, R. C.; Huerta, A. D.; Winberry, P.; Wilson, T.
2017-12-01
A uniform set of crustal parameters for seismic stations deployed on rock in West Antarctica and the Transantarctic Mountains (TAM) has been obtained to help elucidate similarities and differences in crustal structure within and between several tectonic blocks that make up these regions. P-wave receiver functions have been analysed using the H-κ stacking method to develop estimates of thickness and bulk Poisson's ratio for the crust, and jointly inverted with surface wave dispersion measurements to obtain depth-dependent shear wave velocity models for the crust and uppermost mantle. The results from 33 stations are reported, including three stations for which no previous results were available. The average crustal thickness is 30 ± 5 km along the TAM front, and 38 ± 2 km in the interior of the mountain range. The average Poisson's ratios for these two regions are 0.25 ± 0.03 and 0.26 ± 0.02, respectively, and they have similar average crustal Vs of 3.7 ± 0.1 km s-1. At multiple stations within the TAM, we observe evidence for mafic layering within or at the base of the crust, which may have resulted from the Ferrar magmatic event. The Ellsworth Mountains have an average crustal thickness of 37 ± 2 km, a Poisson's ratio of 0.27, and average crustal Vs of 3.7 ± 0.1 km s-1, similar to the TAM. This similarity is consistent with interpretations of the Ellsworth Mountains as a tectonically rotated TAM block. The Ross Island region has an average Moho depth of 25 ± 1 km, an average crustal Vs of 3.6 ± 0.1 km s-1 and Poisson's ratio of 0.30, consistent with the mafic Cenozoic volcanism found there and its proximity to the Terror Rift. Marie Byrd Land has an average crustal thickness of 30 ± 2 km, Poisson's ratio of 0.25 ± 0.04 and crustal Vs of 3.7 ± 0.1 km s-1. One station (SILY) in Marie Byrd Land is near an area of recent volcanism and deep (25-40 km) seismicity, and has a high Poisson's ratio, consistent with the presence of partial melt in the crust.
NASA Astrophysics Data System (ADS)
Gilligan, A.; Bastow, I. D.; Darbyshire, F. A.
2015-12-01
How tectonic processes operated and changed through the Precambrian is debated: what was the nature and scale of orogenic events and were they different on the younger, hotter, more ductile Earth? The geology of northern Hudson Bay records the Paleoproterozoic collision between the Western Churchill and Superior plates: the 1.8Ga Trans-Hudson Orogeny (THO) and is thus an ideal study locale to address this issue. It has been suggested, primarily on the strength of traditional field geology, that the THO was comparable in scale and style to the present-day Himalayan-Karakoram-Tibet Orogen (HKTO). However, understanding of the deep crustal architecture of the THO, and how it compares to the evolving HKTO is presently lacking. Through joint inversion of teleseismic receiver functions and surface wave data, we obtain new Moho depth estimates and shear velocity models for the crust and upper mantle. Archean crust in the Rae, Hearne and Churchill domains is thin and structurally simple, with a sharp Moho; upper crustal wavespeed variations are readily attributed to post-formation events. However, the Paleoproterozoic Quebec-Baffin segment of the THO has a deeper Moho and more complex crustal structure. Our observations are strikingly similar to recent models, computed using the same methods, of the HKTO lithosphere, where deformation also extends >400km beyond the collision front. On the strength of Moho character, present-day crustal thickness, and metamorphic grade, we thus propose that southern Baffin experienced uplift of a similar magnitude and spatial extent to the Himalayas during the Paleoproterozoic Trans-Hudson Orogeny.
NASA Astrophysics Data System (ADS)
Lee, Sang-Mook; Kim, Yoon-Mi
2016-04-01
Marginal basins locate between the continent and arc islands often exhibit diverse style of opening, from regions that appear to have formed by well-defined and localized spreading center (manifested by the presence of distinct seafloor magnetic anomaly patterns) to those with less obvious zones of extension and a broad magmatic emplacement most likely in the lower crust. Such difference in the style of back-arc basin formation may lead to marked difference in crustal structure in terms of its overall thickness and spatial variations. The Ulleung Basin, one of three major basins in the East Sea/Sea of Japan, is considered to represent a continental rifting end-member of back-arc opening. Although a great deal of work has been conducted on the sedimentary sections in the last several decades, the deep crustal sections have not been systematically investigated for long time, and thus the structure and characteristics of the crust remain poorly understood. This study examines the marine gravity anomalies of the Ulleung Basin in order to understand the crustal structure using crucial sediment-thickness information. Our analysis shows that the Moho depth in general varies from 16 km at the basin center to 22 km at the margins. However, within the basin center, the inferred thickness of the crust is more or less the same (10-12 km), thus by varying only about 10-20% of the total thickness, contrary to the previous impression. The almost-uniformly-thick crust that is thicker than a normal oceanic crust (~ 7 km) is consistent with previous observations using ocean bottom seismometers and recent deep seismic results from the nearby Yamato Basin. Another important finding is that small residual mantle gravity anomaly highs exist in the northern part of the basin. These highs are aligned in the NNE-SSW direction which correspond to the orientation of the major tectonic structures on the Korean Peninsula, raising the possibility that, though by a small degree, they are a consequence of localized extension and extra crustal thinning at the time of basin formation. Alternative explanation is that they are the result of a small post-rift underplating at the base of the crust. Two important processes appear to have shaped the Ulleung Basin following its formation: post-rifting magmatism which occurred in the north, especially in the northeast sections of the Ulleung Basin, and the deflection of crust in response to preferential sediment loading towards the south. The median high in the basin may be a consequence of the flexural bending. Based on our evidence for almost-uniformly-thick crust, we argue that, unlike many other rift-dominated basins which exhibit large variations in crustal thickness, decompressional melting that took place during basin extension resulted in a widespread magmatic emplacement that not only smoothed but also enhanced the crustal thickness.
NASA Astrophysics Data System (ADS)
Jones, P.; Ferraccioli, F.; Corr, H.; Smith, A. M.; King, E.; Vaughan, D.
2003-12-01
A significant part of the West Antarctic Ice Sheet appears to be imposed upon a complex and still largely unknown continental rift system, perhaps featuring sedimentary basins, thin crust and high heat flow. Subglacial geology has been postulated to strongly modulate the dynamics and stability of the ice sheet itself. Specifically, recent aerogeophysics collected over central West Antarctica at edge of the Whitmore Mountains crustal block show that narrow subglacial rift basins with thick sedimentary infill may control the onsets and lateral margins of ice streams. The British Antarctic Survey flew an aerogeophysical survey during the 2001-02 field season: the main aim was to investigate what factors control the location and dynamics of the onset region of the Rutford Ice stream. Airborne radar, aerogravity and aeromagnetic data were simultaneously collected over the drainage basin of the Rutford Ice Stream. The new bedrock elevation grid for the area shows that the Rutford Ice Stream is constrained by a deep bedrock trough with a N-S to NE-SW trend. The onset region appears however to lie within an E-W bedrock trough at the edge of the Ellsworth Mountains crustal block. Bouguer gravity maps do not reveal typical signatures for a coincident deep rift basin at this location. However, a sharp NE-SW trending gradient, likely separating crustal blocks with contrasting crustal thickness is revealed. Aeromagnetic data image NE-SW trends north of the Rutford Ice Stream. In the onset region, these trends appear to be truncated by a NNW-SSE trend, lying on strike with the Ellsworth Mountains. Hence, the new aerogeophysical data suggests greater complexity in the subglacial geology and structure of an onset region of an ice stream compared to previous investigations.
Mapping Shear Zones, Faults, and Crustal Deformation Fabric With Receiver Functions
NASA Astrophysics Data System (ADS)
Schulte-Pelkum, V.; Mahan, K. H.
2014-12-01
Dipping faults, shear zones, and pervasive anisotropic crustal fabric due to deformation are all capable of generating strong near-station mode conversions of teleseismic body waves, even for weak (a few percent) velocity anisotropy. These conversions can be found using the receiver function technique. Dipping foliation and dipping isotropic velocity contrasts can occur in isolation or together in deformed crust. Both generate receiver function arrivals that have a characteristic periodicity with azimuth. Different fixed azimuthal phase shifts between radial and tangential component receiver functions distinguish dipping or tilted structure and fabric from horizontal axis anisotropy. We demonstrate a method that uses these characteristics to map geologically relevant information such as strike and depth of foliation of dipping isotropic velocity contrasts and of horizontal symmetry axis anisotropy contrasts. The method uses waveforms without matching them via forward modeling, which makes choices such as slow versus fast axis symmetry and isotropic dip versus anisotropic axis tilt unnecessary. It also does not use shear wave splitting of the converted waves, which is more difficult to isolate. We show results from the continental U.S. and Canada and from the collision zones in the Himalaya and Tibetan Plateau and Taiwan. We discuss interpretation of our results in the light of recent laboratory measurements of deformed crustal rocks and contributions to the seismic signal from individual minerals such as micas, amphiboles, and quartz. Our observations are connected to geological ground truth by using structural maps and sample anisotropy determined using electron backscatter diffraction from exhumed deep crust in the Athabasca granulite province to predict the seismic signal from present-day deep crust. We also discuss the reconciliation of measurements from anisotropic receiver functions, surface waves, and split shear waves.
Bathymetry, Crustal Imaging and Tectonics in the South of Islas Marias (Nayarit, Mexico)
NASA Astrophysics Data System (ADS)
Carrillo de la Cruz, J. L.; Nunez, D.; Nuñez-Cornu, F. J.; Barba, D. C., Sr.; Gonzalez-Fernandez, A.; Escalona, F.; Danobeitia, J.
2016-12-01
The seismic activity of the Mexican Pacific margin is principally due to the subduction process of the Rivera plate beneath the North America plate and Jalisco Block. In 2014, the TSUJAL geophysical experiment provided new data to archive a better knowledge about the crustal structure and their implications in seismic and tsunamigenic potential hazards. In this study, we present the processed and analyzed bathymetric, WAS and MCS data along the TS11 seismic transect (115 km length) across the southern of Islas Marías. The seismic sources used in this work correspond to the airgun shots provided by RRS James Cook every 120 s and 50 m to recover WAS and MCS data, respectively. These sources were registered by a network of 4 OBS and 30 land seismic stations and the MCS data were acquired with a 5.85 km length streamer with a 468 active channels. Meanwhile, the bathymetric data were obtained with 2 multibeam echo sounders, EM120 and EM710, obtaining a 75 - 80 m of grid resolution. After data processing and interpretation, we have obtained information about two basins (De la Cruz Basin and Tres Marias basin) delimitated with geological lineaments alongside the Sierra de Cleofas from bathymetry, being Tres Marias basin the deepest zone in the area. Moreover, the main canyon founded in this study (De la Cruz Canyon) has been classified as type 3, according to Harris & Whiteway (2011). From seismic data, we have determined the shallow and deep crustal structure of the northern part of Rivera plate subduction with a dip angle between 6° and 8°. In this region, the oceanic crust is 10 km deep, increasing up to 20 km, while the deepest layers of the upper mantle have been determined at 45-50 km.
Structure and evolution of the NE Atlantic conjugate margins off Norway and Greenland (Invited)
NASA Astrophysics Data System (ADS)
Faleide, J.; Planke, S.; Theissen-Krah, S.; Abdelmalak, M.; Zastrozhnov, D.; Tsikalas, F.; Breivik, A. J.; Torsvik, T. H.; Gaina, C.; Schmid, D. W.; Myklebust, R.; Mjelde, R.
2013-12-01
The continental margins off Norway and NE Greenland evolved in response to the Cenozoic opening of the NE Atlantic. The margins exhibit a distinct along-margin segmentation reflecting structural inheritance extending back to a complex pre-breakup geological history. The sedimentary basins at the conjugate margins developed as a result of multiple phases of post-Caledonian rifting from Late Paleozoic time to final NE Atlantic breakup at the Paleocene-Eocene transition. The >200 million years of repeated extension caused comprehensive crustal thinning and formation of deep sedimentary basins. The main rift phases span the following time intervals: Late Permian, late Middle Jurassic-earliest Cretaceous, Early-mid Cretaceous and Late Cretaceous-Paleocene. The late Mesozoic-early Cenozoic rifting was related to the northward propagation of North Atlantic sea floor spreading, but also linked to important tectonic events in the Arctic. The pre-drift extension is quantified based on observed geometries of crustal thinning and stretching factors derived from tectonic modeling. The total (cumulative) pre-drift extension amounts to in the order of 300 km which correlates well with estimates from plate reconstructions based on paleomagnetic data. Final lithospheric breakup at the Paleocene-Eocene transition culminated in a 3-6 m.y. period of massive magmatic activity during breakup and onset of early sea-floor spreading, forming a part of the North Atlantic Volcanic Province. At the outer parts of the conjugate margins, the lavas form characteristic seaward dipping reflector sequences and lava deltas that drilling has demonstrated to be subaerially and/or neritically erupted basalts. The continent-ocean transition is usually well defined as a rapid increase of P-wave velocities at mid- to lower-crustal levels. Maximum igneous crustal thickness of about 18 km is found across the outer Vøring Plateau on the Norwegian Margin, and lower-crustal P-wave velocities of up to 7.3 km/s are found at the bottom of the igneous crust here. The igneous crust, including the characteristic 7+ km/s lower crustal body, is even thicker on the East Greenland Margin. During the main igneous episode, sills intruded into the thick Cretaceous successions throughout the NE Atlantic margins. Strong crustal reflections can be mapped widespread on both conjugate margins. In some areas they are associated with the top of the high-velocity lower crustal body, in other areas they may represent deeply buried sedimentary sequence boundaries or moho at the base of the crust. Following breakup, the subsiding margins experienced modest sedimentation until the late Pliocene when large wedges of glacial sediments prograded into the deep ocean from uplifted areas along the continental margins. The outbuilding was probably initiated in Miocene time indicating pre-glacial tectonic uplift of Greenland, Fennoscandia and the Barents Shelf. The NE Atlantic margins also reveal evidence of widespread Cenozoic compressional deformation.
NASA Astrophysics Data System (ADS)
Miller, R. B.; Paterson, S. R.; Matzel, J. P.
2008-12-01
The crystalline core of the North Cascades preserves a Cretaceous crustal section that facilitates evaluation of pluton construction, emplacement, geometry, composition, and deformation at widely variable crustal levels (~5 to 40 km paleodepth) in a thick (> 55 km) continental magmatic arc. The oldest and largest pulse of plutonism was focused between 96-89 Ma when fluxes were a minimum of 3.9x10-6km3/yr/km of arc length, but the coincidence with regional crustal thickening and underthrusting of a cool outboard terrane resulted in relatively low mid- to deep-crustal temperatures for an arc. A second, smaller peak of magmatism at 78-71 Ma (minimum of 8.2x10-7km3/yr/km of arc length) occurred during regional transpression. Tonalite dominates at all levels of the section. Intrusions range from large plutons to thin (< 50 m) dispersed sheets encased in metamorphic rocks that record less focused magmatism. The percentage of igneous rocks increases systematically from shallow to middle to deep levels; from approximately 37% to 55% to 65% of the total rock volume. Unfocused magmas comprise much higher percentages (approximately 19%) of the total plutonic rock at deep- and mid-crustal depths, but only 1% at shallower levels, whereas the largest intrusions were emplaced into shallow crust. Plutons have a range of shapes, including: asymmetric wedges to funnels; subhorizontal tabular sheets; steep-sided, blade-shaped bodies with high aspect ratios in map view; and steep-sided, vertically extensive (> 8 km) bodies shaped like thick disks and/or hockey pucks. Sheeted intrusions and gently dipping tabular bodies are more common with depth. Some of these plutons fit the model that most intrusions are subhorizontal and tabular, but many do not, reflecting the complex changes in lithology and rheology in arc crust undergoing regional shortening. The steep sheeted plutons partly represent magma transfer zones that fed the large shallow plutons, which were sites of intermittent magma accumulation for up to 5.5 m.y. Downward movement of host rocks by multiple processes occurred at all crustal levels during pluton emplacement. Ductile flow and accompanying rigid rotation were the dominant processes; stoping played an important secondary role, and magma wedging and regional deformation also aided emplacement. Overall, there are some striking changes with increasing depth, but many features and processes in the arc are similar throughout the crustal section, probably reflecting the relatively small differences in peak temperatures between the mid- and deep crust. Such patterns may be representative of thick continental magmatic arcs constructed during regional shortening.
NASA Astrophysics Data System (ADS)
Sage, Françoise; Beslier, Marie-Odile; Gaullier, Virginie; Larroque, Christophe; Dessa, Jean-Xavier; Mercier de Lepinay, Bernard; Corradi, Nicola; Migeon, Sébastien; Katz, Hélène; Ruiz Constan, Ana
2013-04-01
The northern Ligurian margin, of Oligo-Miocene age, is currently undergoing compression related to microplate motions and/or to gravity spreading of the Alpine chain located immediately north of it. Active thrust faults and folds have previously been identified below the margin, together with a global uplift of the continental edge, since at least the Messinian. The seismicity that goes with the present-day margin contraction (e.g. Mw 6.9, 1887/02/23) extends to the axis of the adjacent oceanic basin (e.g. ML 6.0, 1963/07/19; ML 5.4, 2011/07/07). However, we do not know of any recent or active crustal contractional structure within this oceanic domain. In this study, we use new 12-channel high-resolution seismic data (FABLES seismic cruise, 2012, R/V Tethys II) in order to image the sedimentary cover of the Ligurian oceanic basin, up to ~3km below the seabed, including the Plio-Quaternary and the Messinian sediment down to the bottom of the Messinian salt layer. Because the Messinian event is well dated (5.96-5.32 Ma) and well identified in the seismic data, it forms a clear marker that we use to characterize the recent deformation related to both mobile salt motion and crustal tectonics. About 50 km south of the margin offshore of Italy, we identify huge and complex salt walls that elongate SW-NE. Such salt walls, which cannot be explained by salt tectonics only, are interpreted as evidence of deep-seated crustal deformation. They form en echelon structures that are well expressed in the seabed morphology, and do not correspond to any significant vertical throw at the base of the salt layer. This suggests that within the deep basin, mainly strike-slip faulting accommodates long-term crustal deformation. It thus offers a contrast with the margin where deformation is mainly marked by shortening and reverse faulting, with vertical throws of several hundred meters. This discrepancy in the tectonic styles between the margin and the adjacent oceanic basin suggests some partitioning of the deformation. It may result from the difference in the topographic gradient of the main crustal interfaces between the steep margin and the adjacent oceanic domain, and/or to different mechanical behaviours of the adjacent lithospheric domains.
Data integration and conceptual modelling of the Larderello geothermal area, Italy
NASA Astrophysics Data System (ADS)
Manzella, Adele; Gola, Gianluca; Bertini, Giovanni; Bonini, Marco; Botteghi, Serena; Brogi, Andrea; De Franco, Roberto; Dini, Andrea; Donato, Assunta; Gianelli, Giovanni; Liotta, Domenico; Montanari, Domenico; Montegrossi, Giordano; Petracchini, Lorenzo; Ruggieri, Giovanni; Santilano, Alessandro; Scrocca, Davide; Trumpy, Eugenio
2017-04-01
The Larderello geothermal field, located in southern Tuscany (Italy), is one of the most important long-living hydrothermal system in the world. The inner zone of the Northern Apennines is characterized by high heat flow, well constrained by several hundred measurements deriving from both shallow boreholes and deep exploration wells. It is widely accepted that the interplay among extensional tectonics, thinning of the previously overthickened crust and lithosphere, and magmatism related to crustal melting and hybridism, controlled the NW-SE trending geothermal anomaly occurring in southern Tuscany. At Larderello, the geothermal exploitation started at the beginning of the last century from the shallow evaporite-carbonate reservoir (about 700 - 1000 m b.g.l. on average) hosting a super-heated steam with temperature ranging from 150°C to 260°C. A deep exploration program was carried out in the early 1980s. Deep boreholes found a super-heated steam-dominated system hosted in the metamorphic basement (about 2500 - 4000 m b.g.l), characterized by temperatures ranging from 300°C to 350°C. In the SW part of the Larderello area (Lago locality), a temperature exceeding 400°C was measured down to 3000 m b.s.l. The 2D and 3D seismic exploration activities provided evidences of a seismic marker, locally showing bright spot features, defining the top of a deeper reflective crustal interval, named as "K-horizon". The K-horizon has not yet been drilled, but some boreholes approached it. This seismic reflector exhibits interesting positive correlation with the maximum peak of the hypocentre distribution of low-magnitude earthquakes and, at the same time, its shape coincides with the thermal anomaly distribution, in plain view. The review and updating of the velocity and resistivity models suggest the existence of over-pressurized fluids, likely of magmatic and/or thermo-metamorphic origin, which originate the seismic velocity anomalies. The upward migration and storage of the fluids can be controlled by: i) structural conduits crossing a multi-layered crust affected by magmatic intrusions; ii) mechanisms controlling the fluid migration in different rheological settings; and iii) self-sealing processes of magmatic hypersaline fluids arising from the brittle/ductile transition. Our study is addressed to the better understanding of the structure of the deepest part of the Larderello geothermal field, by integrating structural, geological, geochemical and geophysical data. Based on downward temperature extrapolation, fluid inclusions and geothermometers analyses, the possible occurrence of super-hot fluids, in supercritical conditions, nearby the K-horizon is envisaged. The final goal is to achieve a comprehensive understanding of the geological structure and the physical conditions (pressure and temperature) of the deep reservoir including also the zone corresponding to the K-horizon, to characterize the supercritical geothermal system as well as the deep crustal processes that work in synergy leading to the regional anomaly.
Lin, Guoqing; Amelung, Falk; Lavallee, Yan; Okubo, Paul G.
2014-01-01
An anomalous body with low Vp (compressional wave velocity), low Vs (shear wave velocity), and high Vp/Vs anomalies is observed at 8–11 km depth beneath the upper east rift zone of Kilauea volcano in Hawaii by simultaneous inversion of seismic velocity structure and earthquake locations. We interpret this body to be a crustal magma reservoir beneath the volcanic pile, similar to those widely recognized beneath mid-ocean ridge volcanoes. Combined seismic velocity and petrophysical models suggest the presence of 10% melt in a cumulate magma mush. This reservoir could have supplied the magma that intruded into the deep section of the east rift zone and caused its rapid expansion following the 1975 M7.2 Kalapana earthquake.
Evidence for Moho-lower crustal transition depth diking and rifting of the Sierra Nevada microplate
NASA Astrophysics Data System (ADS)
Smith, Kenneth D.; Kent, Graham M.; Seggern, David P.; Driscoll, Neal W.; Eisses, Amy
2016-10-01
Lithospheric rifting most often initiates in continental extensional settings where "breaking of a plate" may or may not progress to sea floor spreading. Generally, the strength of the lithosphere is greater than the tectonic forces required for rupture (i.e., the "tectonic force paradox"), and it has been proposed that rifting requires basaltic magmatism (e.g., dike emplacement) to reduce the strength and cause failure, except for the case of a thin lithosphere (<30 km thick). Here we isolate two very similar and unprecedented observations of Moho-lower crustal transition dike or fluid injection earthquake swarms under southern Sierra Valley (SV: 2011-2012) and North Lake Tahoe (LT: 2003-2004), California. These planar distributions of seismicity can be interpreted to define the end points, and cover 25% of the length, of an implied 56 km long structure, each striking N45°W and dipping 50°NE. A single event at 30 km depth that locates on the implied dipping feature between the two swarms is further evidence for a single Moho-transition depth structure. We propose that basaltic or fluid emplacement at or near Moho depths weakens the upper mantle lid, facilitating lithospheric rupture of the Sierra Microplate. Similar to the LT sequence, the SV event is also associated with increased upper crustal seismicity. An 27 October 2011, Mw 4.7 earthquake occurred directly above the deep SV sequence at the base of the upper crustal seismogenic zone ( 15 km depth).
Crustal structure in Tengchong Volcano-Geothermal Area, western Yunnan, China
NASA Astrophysics Data System (ADS)
Wang, Chun-Yong; Huangfu, Gang
2004-02-01
Based upon the deep seismic sounding profiles carried out in the Tengchong Volcano-Geothermal Area (TVGA), western Yunnan Province of China, a 2-D crustal P velocity structure is obtained by use of finite-difference inversion and forward travel-time fitting method. The crustal model shows that a low-velocity anomaly zone exists in the upper crust, which is related to geothermal activity. Two faults, the Longling-Ruili Fault and Tengchong Fault, on the profile extend from surface to the lower crust and the Tengchong Fault likely penetrates the Moho. Moreover, based on teleseismic receiver functions on a temporary seismic network, S-wave velocity structures beneath the geothermal field show low S-wave velocity in the upper crust. From results of geophysical survey, the crust of TVGA is characterized by low P-wave and S-wave velocities, low resistivity, high heat-flow value and low Q. The upper mantle P-wave velocity is also low. This suggests presence of magma in the crust derived from the upper mantle. The low-velocity anomaly in upper crust may be related to the magma differentiation. The Tengchong volcanic area is located on the northeast edge of the Indian-Eurasian plate collision zone, away from the eastern boundary of the Indian plate by about 450 km. Based on the results of this paper and related studies, the Tengchong volcanoes can be classified as plate boundary volcanoes.
Using the heterogeneity distribution in Earth's mantle to study structure and flow
NASA Astrophysics Data System (ADS)
Rost, S.; Frost, D. A.; Bentham, H. L.
2016-12-01
The Earth's interior contains heterogeneities on many scale-lengths ranging from continent sized structures such as Large-Low Shear Velocity Provinces (LLSVPs) to grain-sized anomalies resolved using geochemistry. Sources of heterogeneity in Earth's mantle are for example the recycling of crustal material through the subduction process as well as partial melting and compositional variations. The subduction and recycling of oceanic crust throughout Earth's history leads to strong heterogeneities in the mantle that can be detected using seismology and geochemistry. Current models of mantle convection show that the subducted crustal material can be long-lived and is transported passively throughout the mantle by convective flows. Settling and entrainment is dependent on the density structure of the heterogeneity. Imaging heterogeneities throughout the mantle therefore allows imaging mantle flow especially in areas of inhibited flow due to e.g. viscosity changes or changes in composition or dynamics. The short-period seismic wavefield is dominated by scattered seismic energy partly originating from scattering at small-scale heterogeneities in Earth's mantle. Using specific raypath configurations we are able to sample different depths throughout Earth's mantle for the existence and properties of heterogeneities. These scattering probes show distinct variations in energy content with frequency indicating dominant heterogeneity length-scales in the mantle. We detect changes in heterogeneity structure both in lateral and radial directions. The radial heterogeneity structure requires changes in mantle structure at depths of 1000 km and 1800 to 2000 km that could indicate a change in viscosity structure in the mid mantle partly changing the flow of subducted crustal material into the deep mantle. Lateral changes in heterogeneity structure close to the core mantle boundary indicate lateral transport inhibited by the compositional anomalies of the LLSVPs.
NASA Astrophysics Data System (ADS)
Bouyahiaoui, Boualem; Abtout, Abdeslam; Sage, Françoise; Klingelhoeffer, Frauke; Collot, Jean-yves; Yelles-chaouche, Abdelkarim; Marok, Abbas; Djellit, Hamou; Galves, Audrey; Bracène, Rabah; Schnurle, Philippe; Graindorge, David; party, Scientific
2013-04-01
The Algerian continental margin North Africa presents one of only a few examples of a passive continental margin formed in a back-arc environment, which undergoes current compression and is proposed to be reactivated today. In the framework of the Algerian - French SPIRAL research program (Sismique Profonde et Investigation Regionale du nord de l'ALgérie), a seismic cruise was conducted on the R/V Atalante from September to November 2009. During the cruise, deep penetrating low frequency multichannel and wide-angle seismic data were acquired in order to study the deep structure of the Algerian margin. In this work, we present the preliminary results from wide-angle modeling of the North-east Algerian margin in the region of Annaba along a N-S transect using a data set of 42 OBS (ocean bottom seismometers) along a profile extending 117km, and 13 broadband seismological stations along a profile of 80 km length. Travel-time tomography and forward modeling were undertaken to model the velocity structure in this region. The resulting velocity models image the thickness of the sedimentary layers, which varies between a few hundred meters on the continental margin of more than 4 km in the basin. The crust is about 6 km thick in the basin, and thickens to 7-8 km between 40 and 60km distance from the margin toe. Crustal thickness increases to about 22 km at the continental slope over a distance of ~ 90 km. The nature of the crust was determined to be thin oceanic with abnormal velocity gradient in the basin, and thinned continental from around 30 km distance from the coast landward. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will help to better understand the structure of the Algerian margin and the adjacent oceanic basin in the Annaba region, and to discuss the numerous cinematic models proposed in literature regarding the formation of the north-Algerian basin.
Seismic evidence for a possible deep crustal hot zone beneath Southwest Washington.
Flinders, Ashton F; Shen, Yang
2017-08-07
Crustal pathways connecting deep sources of melt and the active volcanoes they supply are poorly understood. Beneath Mounts St. Helens, Adams, and Rainier these pathways connect subduction-induced ascending melts to shallow magma reservoirs. Petrogenetic modeling predicts that when these melts are emplaced as a succession of sills into the lower crust they generate deep crustal hot zones. While these zones are increasingly recognized as a primary site for silicic differentiation at a range of volcanic settings globally, imaging them remains challenging. Near Mount Rainier, ascending melt has previously been imaged ~28 km northwest of the volcano, while to the south, the volcano lies on the margin of a broad conductive region in the deep crust. Using 3D full-waveform tomography, we reveal an expansive low-velocity zone, which we interpret as a possible hot zone, linking ascending melts and shallow reservoirs. This hot zone may supply evolved magmas to Mounts St. Helens and Adams, and possibly Rainier, and could contain approximately twice the melt volume as the total eruptive products of all three volcanoes combined. Hot zones like this may be the primary reservoirs for arc volcanism, influencing compositional variations and spatial-segmentation along the entire 1100 km-long Cascades Arc.
Seismic evidence for a possible deep crustal hot zone beneath Southwest Washington
Flinders, Ashton; Shen, Yang
2017-01-01
Crustal pathways connecting deep sources of melt and the active volcanoes they supply are poorly understood. Beneath Mounts St. Helens, Adams, and Rainier these pathways connect subduction-induced ascending melts to shallow magma reservoirs. Petrogenetic modeling predicts that when these melts are emplaced as a succession of sills into the lower crust they generate deep crustal hot zones. While these zones are increasingly recognized as a primary site for silicic differentiation at a range of volcanic settings globally, imaging them remains challenging. Near Mount Rainier, ascending melt has previously been imaged ~28 km northwest of the volcano, while to the south, the volcano lies on the margin of a broad conductive region in the deep crust. Using 3D full-waveform tomography, we reveal an expansive low-velocity zone, which we interpret as a possible hot zone, linking ascending melts and shallow reservoirs. This hot zone may supply evolved magmas to Mounts St. Helens and Adams, and possibly Rainier, and could contain approximately twice the melt volume as the total eruptive products of all three volcanoes combined. Hot zones like this may be the primary reservoirs for arc volcanism, influencing compositional variations and spatial-segmentation along the entire 1100 km-long Cascades Arc.
Stratigraphy and structure of eastern Syria across the Euphrates depression
NASA Astrophysics Data System (ADS)
Sawaf, Tarif; Al-Saad, Damen; Gebran, Ali; Barazangi, Muawia; Best, John A.; Chaimov, Thomas A.
1993-04-01
A N-S crustal-scale geotransect across the northern Arabian platform in eastern Syria reveals an alternating series of basement uplifts and basins separated by predominantly transpressional fault zones above an effectively uniform crust. Four major tectonic provinces are crossed along a 325 × 100 km corridor that extends from the Iraqi border in the south to the Turkish border in the north: the Rutbah uplift, the Euphrates depression, the Abd el Aziz structural zone, and the Qamichli uplift. These features are the manifestations of reactivated pre-Cenozoic structures that responded to forces acting along nearby Arabian plate boundaries, particularly Cenozoic convergence and collision along the margins of the northern Arabian platform i.e., the Bitlis suture and the East Anatolian fault in southern Turkey and the Zagros suture in Iran and Iraq. The database for this study consists of 3000 km of industry seismic reflection data, 28 exploratory wells, and geologic and Bouguer gravity maps. The deep crustal structure and, in part, the basement geometry along this transect are inferred from two-dimensional modeling of Bouguer gravity, whereas the shallow (about 8 km) structure is constrained primarily by well and seismic data. Features of the geotransect reveal: (1) A relatively uniform crustal column approximately 37 km thick with only minor crustal thinning beneath the Euphrates. Crustal thinning may be slightly more pronounced beneath the Euphrates (about 35 km) to the southeast of the transect where the Bouguer gravity anomaly is slightly higher. (2) Along the Euphrates depression, ongoing subsidence, which began during the Late Cretaceous, resulted in the deposition of at least 3 km of Late Cretaceous and Cenozoic rocks. The structural complexity of the Paleozoic and most of the Mesozoic sedimentary sections along the transect contrasts markedly with a relatively simple, flat-lying Cenozoic section along most of the transect. A notable exception is the Abd el Aziz uplift, where Cenozoic rocks are strongly deformed. (3) While Euphrates subsidence continued throughout the Cenozoic, the inversion of the E-W-trending Abd el Aziz structure into a fault-bounded tilted block began in the Miocene, perhaps as a response to the last episode of intense Miocene collision along the nearby Bitlis and Zagros suture zones.
NASA Astrophysics Data System (ADS)
Ruan, Aiguo; Hu, Hao; Li, Jiabiao; Niu, Xiongwei; Wei, Xiaodong; Zhang, Jie; Wang, Aoxing
2017-06-01
As a supplementary study, we used passive seismic data recorded by one ocean bottom seismometer (OBS) station (49°41.8'E) close to a hydrothermal vent (49°39'E) at the Southwest Indian Ridge to invert the crustal structure and mantle transition zone (MTZ) thickness by P-to-S receiver functions to investigate previous active seismic tomographic crustal models and determine the influence of the deep mantle thermal anomaly on seafloor hydrothermal venting at an ultra-slow spreading ridge. The new passive seismic S-wave model shows that the crust has a low velocity layer (2.6 km/s) from 4.0 to 6.0 km below the sea floor, which is interpreted as partial melting. We suggest that the Moho discontinuity at 9.0 km is the bottom of a layer (2-3 km thick); the Moho (at depth of 6-7 km), defined by active seismic P-wave models, is interpreted as a serpentinized front. The velocity spectrum stacking plot made from passive seismic data shows that the 410 discontinuity is depressed by 15 km, the 660 discontinuity is elevated by 18 km, and a positive thermal anomaly between 182 and 237 K is inferred.
Numerical simulation of hydrothermal circulation in the Cascade Range, north-central Oregon
Ingebritsen, S.E.; Paulson, K.M.
1990-01-01
Alternate conceptual models to explain near-surface heat-flow observations in the central Oregon Cascade Range involve (1) an extensive mid-crustal magmatic heat source underlying both the Quaternary arc and adjacent older rocks or (2) a narrower deep heat source which is flanked by a relatively shallow conductive heat-flow anomaly caused by regional ground-water flow (the lateral-flow model). Relative to the mid-crustal heat source model, the lateral-flow model suggests a more limited geothermal resource base, but a better-defined exploration target. We simulated ground-water flow and heat transport through two cross sections trending west from the Cascade range crest in order to explore the implications of the two models. The thermal input for the alternate conceptual models was simulated by varying the width and intensity of a basal heat-flow anomaly and, in some cases, by introducing shallower heat sources beneath the Quaternary arc. Near-surface observations in the Breitenbush Hot Springs area are most readily explained in terms of lateral heat transport by regional ground-water flow; however, the deep thermal structure still cannot be uniquely inferred. The sparser thermal data set from the McKenzie River area can be explained either in terms of deep regional ground-water flow or in terms of a conduction-dominated system, with ground-water flow essentially confined to Quaternary rocks and fault zones.
Saltus, R.W.; Hudson, T.L.
2007-01-01
The northern Cordilleran fold-and-thrust belt in Canada and Alaska is at the boundary between the broad continental margin mobile belt and the stable North American craton. The fold-and-thrust belt is marked by several significant changes in geometry: cratonward extensions in the central Yukon Territory and northeastern Alaska are separated by marginward re-entrants. These geometric features of the Cordilleran mobile belt are controlled by relations between lithospheric strength and compressional tectonic forces developed along the continental margin. Regional magnetic anomalies indicate deep thermal and compositional characteristics that contribute to variations in crustal strength. Our detailed analysis of one such anomaly, the North Slope deep magnetic high, helps to explain the geometry of the fold-and-thrust front in northern Alaska. This large magnetic anomaly is inferred to reflect voluminous mafic magmatism in an old (Devonian?) extensional domain. The presence of massive amounts of malic material in the lower crust implies geochemical depletion of the underlying upper mantle, which serves to strengthen the lithosphere against thermal erosion by upper mantle convection. We infer that deep-source magnetic highs are an important indicator of strong lower crust and upper mantle. This stronger lithosphere forms buttresses that play an important role in the structural development of the northern Cordilleran fold-and-thrust belt. ?? 2007 The Geological Society of America.
Crustal and uppermost mantle structure and deformation in east-central China
NASA Astrophysics Data System (ADS)
Li, H.; Yang, X.; Ouyang, L.; Li, J.
2017-12-01
We conduct a non-linear joint inversion of receiver functions and Rayleigh wave dispersions to obtain the crustal and upper mantle velocity structure in east-central China. In the meanwhile, the lithosphere and upper mantle deformation beneath east-central China is also evaluated with teleseismic shear wave splitting measurements. The resulting velocity model reveals that to the east of the North-South Gravity Lineament, the crust and the lithosphere are significantly thinned. Furthermore, three extensive crustal/lithospheric thinning sub-regions are clearly identified within the study area. This indicates that the modification of the crust and lithosphere in central-eastern China is non-uniform due to the heterogeneity of the lithospheric strength. Extensive crustal and lithospheric thinning could occur in some weak zones such as the basin-range junction belts and large faults. The structure beneath the Dabie orogenic belt is complex due to the collision between the North and South China Blocks during the Late Paleozoic-Triassic. The Dabie orogenic belt is generally delineated by a thick crust with a mid-crust low-velocity zone and a two-directional convergence in the lithospheric scale. Obvious velocity contrast exhibits in the crust and upper mantle at both sides of the Tanlu fault, which suggests the deep penetration of this lithospheric-scale fault. Most of our splitting measurements show nearly E-W trending fast polarization direction which is slightly deviating from the direction of plate motion. The similar present-day lithosphere structure and upper mantle deformation may imply that the eastern NCC and the eastern SCB were dominated by a common dynamic process after late Mesozoic, i.e., the westward subduction of Pacific plate and the retreat of the subduction plate. The westward subduction of the Philippine plate and the long-range effects of the collision between the Indian plate and Eurasia plate during Cenozoic may have also contributed to the present velocity structure and stress environment of eastern China.
Estimating the formation age distribution of continental crust by unmixing zircon ages
NASA Astrophysics Data System (ADS)
Korenaga, Jun
2018-01-01
Continental crust provides first-order control on Earth's surface environment, enabling the presence of stable dry landmasses surrounded by deep oceans. The evolution of continental crust is important for atmospheric evolution, because continental crust is an essential component of deep carbon cycle and is likely to have played a critical role in the oxygenation of the atmosphere. Geochemical information stored in the mineral zircon, known for its resilience to diagenesis and metamorphism, has been central to ongoing debates on the genesis and evolution of continental crust. However, correction for crustal reworking, which is the most critical step when estimating original formation ages, has been incorrectly formulated, undermining the significance of previous estimates. Here I suggest a simple yet promising approach for reworking correction using the global compilation of zircon data. The present-day distribution of crustal formation age estimated by the new "unmixing" method serves as the lower bound to the true crustal growth, and large deviations from growth models based on mantle depletion imply the important role of crustal recycling through the Earth history.
NASA Astrophysics Data System (ADS)
Shillington, D. J.; Ferrini, V. L.; MacLeod, C. J.; Teagle, D. A.; Gillis, K. M.; Cazenave, P. W.; Hurst, S. D.; Scientific Party, J.
2008-12-01
In January-February 2008, new geophysical and geological data were acquired in Hess Deep using the RRS James Cook and the British ROV Isis. Hess Deep provides a tectonic window into oceanic crust emplaced by fast seafloor spreading at the East Pacific Rise, thereby offering the opportunity to test competing hypotheses for oceanic crustal accretion. The goal of this cruise was to collect datasets that can constrain the structure and composition of the lower crustal section exposed in the south-facing slope of the Intrarift Ridge just north of the Deep, and thus provide insights into the emplacement of gabbroic lower crust at fast spreading rates. Additionally, the acquired datasets provide site survey data for IODP Proposal 551-Full. The following datasets were acquired during JC021: 1) regional multibeam bathymetry survey complemented with sub-bottom profiler (SBP) data (in selected areas), 2) two micro-bathymetry surveys, and 3) seafloor rock samples acquired with an ROV. Here we present grids of regional multibeam and microbathymetry data following post-cruise processing. Regional multibeam bathymetry were acquired using the hull-mounted Kongsberg Simrad EM120 system (12 kHz). These data provide new coverage of the northern flank of the rift as far east as 100°W, which show that it comprises of a series of 50- to 100-km-long en echelon segments. Both E-W and NE-SW striking features are observed in the immediate vicinity of the Deep, including in a newly covered region to the SW of the rift tip. Such features might arise due to the rotation of the Galapagos microplate(s), as proposed by other authors. The ROV Isis acquired micro-bathymetry data in two areas using a Simrad SM2000 (200 kHz) multibeam sonar. Data were acquired at a nominal altitude of ~100 m and speed of 0.3 kts to facilitate high-resolution mapping of seabed features and also permit coverage of two relatively large areas. Swath widths were ~200- 350 m depending on noise and seabed characteristics. Following the cruise, we reprocessed navigation and sonar data using software tools developed through National Deep Submergence Facility (USA) to 1) regenerate seafloor picks with more robust algorithm, 2) incorporate high-resolution navigation (which could not be included in shipboard processing) and 3) correct for attitude variations. The first survey covers a ~15 km2 area on the south-facing slope of the Intrarift Ridge immediately north of the Deep, where lower crustal gabbros have been sampled by Isis during JC021 and by dredging and other deep submergence vehicles during previous cruises. This area also contains the highest priority drill sites from IODP Proposal 551-Full. The second survey covers a ~5.5 km2 area on the Intrarift Ridge and its southern flank, including the location of ODP Site 894. Both grids show structures that strike both E-W and NE-SW, similar to what is observed at a larger scale in the regional bathymetry data. The first survey area also contains a series of sedimented benches, which might be suitable drilling targets. The second survey is characterized by steep scarps that predominantly strike NE-SW. These features were observed to correspond to sizable cliffs during seafloor operations with Isis.
NASA Astrophysics Data System (ADS)
Horst, A. J.; Karson, J. A.; Varga, R. J.; Gee, J. S.
2007-12-01
Models of the internal structure of oceanic crust have been constructed from studies of ophiolites and from more recent observations of tectonic windows into the upper crust. Spreading rate and/or magma supply are the central variables that control ridge processes and the ultimate architecture of ocean crust. In addition to ophiolites, Iceland also provides an important analog to study mid-ocean ridge processes and structure. Flexure zones in Iceland characterize the structure of Tertiary-Recent lava flows, and are areas wherein lavas dip regionally inward toward the axis of one of several ~N/S-trending rift zones. These rift zones are interpreted to represent fossil spreading centers which were abandoned during a series of eastward-directed ridge jumps. In the Hildará area, north-central Iceland, the eastern side of a regional flexure is characterized by westward-dipping lavas, approximately 6-8 Ma, which are cut by east-dipping normal faults and dikes. The upper-crustal structure within this flexure zone from slow spread (~20 mm/yr) crust exhibits remarkable similarities to the structure of the upper crust created at a fast-spreading (110 mm/yr) segment of the East Pacific Rise (EPR) observed at Hess Deep. In this modern ocean setting, ~1 Ma crust is characterized by west-dipping lavas above consistently east-dipping (away from the EPR) dikes and dike-subparallel fault zones. In both locations, paleomagnetic and structural data indicate that west-dipping lavas and east-dipping dikes result from tectonic rotations. In addition, cross-cutting dike relationships demonstrate that dike intrusion occurred both during and after normal fault- related tilting. These data indicate that fault-controlled tilting was initiated within the narrow neovolcanic zone of the ridge and is not associated with off-axis processes. Lavas at magmatically robust ridges commonly flow away from elevated ridge-crests. Measurement of anisotropy of magnetic susceptibility (AMS) of the lavas from the flexure in Iceland suggests a mean flow direction to the northeast, that is, away from the fossil-ridge axis, demonstrating that the fossil spreading center from which the lavas were extruded was located to the west. Despite the distinct differences in spreading rates, the high magma supply in both environments resulted in a very similar upper crustal architecture.
Summary and Review of the Tectonic Structure of Eurasia. Part 1
1980-12-05
DTIC TAB Just tIcjat DIstrju1j D it i AVi Dis a2 INTRODUCTION An extensive search of the available geologic and geo- physical literature dealing...with the crust and upper mantle properties of the U.S.S.R. and Eurasia has been conducted. During the past 25 years a vast amount of deep seismic...boundaries for these provinces were drawn after considering geologic evolution. Seismic activity, heat flow, Moho properties , crustal properties
The Crustal Structure and Seismicity of Eastern Venezuela
NASA Astrophysics Data System (ADS)
Schmitz, M.; Martins, A.; Sobiesiak, M.; Alvarado, L.; Vasquez, R.
2001-12-01
Eastern Venezuela is characterized by a moderate to high seismicity, evidenced recently by the 1997 Cariaco earthquake located on the El Pilar Fault, a right lateral strike slip fault which marks the plate boundary between the Caribbean and South-American plates in this region. Recently, the seismic activity seems to migrate towards the zone of subduction of the Lesser Antilles in the northeast, where a mb 6.0 earthquake occurred in October 2000 at 120 km of depth. Periodical changes in the seismic activity are related to the interaction of the stress fields of the strike-slip and the subduction regimes. The seismic activity decreases rapidly towards to the south with some disperse events on the northern edge of the Guayana Shield, related to the Guri fault system. The crustal models used in the region are derived from the information generated by the national seismological network since 1982 and by microseismicity studies in northeastern Venezuela, coinciding in a crustal thickness of about 35 km in depth. Results of seismic refraction measurements for the region were obtained during field campains in 1998 (ECOGUAY) for the Guayana Shield and the Cariaco sedimentary basin and in 2001 (ECCO) for the Oriental Basin. The total crustal thickness decreases from about 45 km on the northern edge of the Guayana Shield to some 36 km close to El Tigre in the center of the Oriental Basin. The average crustal velocity decreases in the same sense from 6.5 to 5.8 km/s. In the Cariaco sedimentary basin a young sedimentary cover of 1 km thickness with a seismic velocity of 2 km/s was derived. Towards the northern limit of the South-American plate, no deep seismic refraction data are available up to now. The improvement of the crustal models used in that region would constitute a step forward in the analysis of the seismic hazard. Seismic refraction studies funded by CONICIT S1-97002996 and S1-2000000685 projects and PDVSA (additional drilling and blasting), recording equipment from FU-Berlin and IRIS/PASSCAL Instrument Centre. key words: Seismic refraction, seismicity, crustal structure, Venezuela, Cariaco earthquake.
Geological Structures in the WaIls of Vestan Craters
NASA Technical Reports Server (NTRS)
Mittlefehldt, David; Nathues, A.; Beck, A. W.; Hoffmann, M.; Schaefer, M.; Williams, D. A.
2014-01-01
A compelling case can be made that Vesta is the parent asteroid for the howardite, eucrite and diogenite (HED) meteorites [1], although this interpretation has been questioned [2]. Generalized models for the structure of the crust of Vesta have been developed based on petrologic studies of basaltic eucrites, cumulate eucrites and diogenites. These models use inferred cooling rates for different types of HEDs and compositional variations within the clan to posit that the lower crust is dominantly diogenitic in character, cumulate eucrites occur deep in the upper crust, and basaltic eucrites dominate the higher levels of the upper crust [3-5]. These models lack fine-scale resolution and thus do not allow for detailed predictions of crustal structure. Geophysical models predict dike and sill intrusions ought to be present, but their widths may be quite small [6]. The northern hemisphere of Vesta is heavily cratered, and the southern hemisphere is dominated by two 400-500 km diameter basins that excavated deep into the crust [7-8]. Physical modeling of regolith formation on 300 km diameter asteroids predicts that debris layers would reach a few km in thickness, while on asteroids of Vesta's diameter regolith thicknesses would be less [9]. This agrees well with the estimated =1 km thickness of local debris excavated by a 45 km diameter vestan crater [10]. Large craters and basins may have punched through the regolith/megaregolith and exposed primary vestan crustal structures. We will use Dawn Framing Camera (FC) [11] images and color ratio maps from the High Altitude and Low Altitude Mapping Orbits (HAMO, 65 m/pixel; LAMO, 20 m/pixel) to evaluate structures exposed on the walls of craters: two examples are discussed here.
NASA Astrophysics Data System (ADS)
Klingelhoefer, F.; Laurencin, M.; Marcaillou, B.; Graindorge, D.; Evain, M.; Lebrun, J. F.
2016-12-01
One of the goals of the Antithesis cruises (2013 and 2016) was investigating the deep structure of the Lesser Antilles subduction zone in order to: 1) constrain the possible along-strike variations of deep margin structures and slab geometry, 2) assess the nature of the crust and 3) discuss the potential impact of these structures on seismic hazard. Four combined wide-angle and multichannel seismic profiles were acquired between Barbuda and the Virgin Islands using 66 ocean bottom seismometers, a 4.5 km digital streamer and a 7200 cu inch seismic source. Along every line, we performed forward modelling of the wide-angle seismic data, gravity models and synthetic data calculations. The 5-7-km-thick subducting Atlantic oceanic plate is modelled with a single layer along every profile. The sedimentary prism fill is globally thin with maximal 5 km thick and 20-30 km wide. The 18-km-thick Caribbean crust is subdivided in 2 or 3 layers interpreted, from top to bottom, as following. A 2 to 4 km thick upper layer with velocity ranging from 2.5 to 3.5 km/s possibly consists of consolidate sediments or a carbonate platform. The underlying 4 to 6 km thick layer, with velocity ranging from 4.7 to 6.15 km/s might correspond to volcanic products. The lower 15 km thick lower crustal layer shows velocity up to 7.4 km/s, typical of basal velocities in oceanic crust. The structure and velocity model is thus closely consistent with a possibly overthickened oceanic crust. Our southernmost model, offshore of Barbuda, reveal a general crust structure and slab geometry which appear very to those described South of Guadeloupe along a line proposed by Kopp et al. (2011). It suggests an overall homogeneity for these structural features within the central segment of the Lesser Antilles (Martinique - Antigua). When the overall structure of the Caribbean plate is stable, the deep structure of the frontal margin and slab geometry is evolving from south to north. The wideness and thickness of the prism decrease toward the north as a consequence of the presence of blocking ridges and less sediment inputs. Frontal bending of the slab is also decreasing toward the north leading to a less steep slab within the first 30 kilometers as a consequence of increasing obliquity of subduction in the northern Antilles. This phenomena may increase the wideness of a seismogenic zone?
SCANLIPS - A Study of Epirogenic Uplift of Scandinavia
NASA Astrophysics Data System (ADS)
England, R. W.; Ebbing, J.
2007-12-01
Thermochronology data and geomorphological interpretation indicate that parts of the Scandinavian mountains have risen by over 1 km since the Miocene. This permanent uplift, the cause of which is still disputed, varies across Norway, being greatest in southern and northern areas and least in the central region. To investigate this the SCANLIPS project employs passive seismology, coupled with modelling of potential field data to determine variations in crustal properties and structure across Norway and Sweden. Initially we intend to test whether lateral variations in crustal structure and properties are correlated with the uplift pattern. This would suggest that the cause of the differential uplift lies in a modification of the crust. If the test of this hypothesis is null we will use the data to investigate the present day upper mantle structure for the cause. Between April and October 2006 28 seismometers were deployed at sites along a c. 600 km long profile between Trondheim in Norway and Harnosand in Sweden to record teleseismic arrivals. Receiver Functions have been calculated for teleseismic events recorded at these stations and then modelled to determine crustal velocity structure, estimate Vp/Vs and depth to Moho. Preliminary results suggest that crustal thickness increases eastward beneath Norway and then remains deep beneath the lower topography of central Sweden. Along the profile a gradual eastward increase in seismic velocity, including a very high velocity lower crust beneath Sweden explains the compensation of shallow topography by thick crust. Forward density and isostatic modelling shows that the introduction of the high-density lower crust adjusts both the gravity field and the isostatic compensation. Beneath Norway the crust thins rapidly toward the continental margin at a rate that is faster than the topography decreases. This suggests that at least part of the topography is supported by the flexural strength of the crust in the footwall of the More-Trondelag fault zone. Recently published results of Svenningsen et al. (2007) show a similar thickening below the high topography of southern Norway, indicating Airy type compensation. Further work is required before a direct comparison can be made of the crustal properties between the two regions and a possible cause for the differential uplift of Scandinavia determined.
Crustal reflectivity in the Skagerrak area
NASA Astrophysics Data System (ADS)
Larsson, F. R.; Husebye, E. S.
1991-04-01
Reflectors within the crystalline crust are often observed in deep seismic reflection profiling surveys. The lower crust in extensional areas is generally credited with an abundance of reflectors. The deep seismic reflection data (16 s TWT) from the M.V. Mobil Search cruise in Skagerrak show a reflective lower crust and a relatively transparent upper crust in most of the area. Reflectivity seems to be less inside the Oslo Rift, and also beneath the sediment-covered areas. Reflectivity maxima are found near the Moho and at depths of 10-20 km. The latter is taken to coincide with the transition between the brittle upper and ductile lower crust. The distribution of crustal reflectors in Skagerrak and their possible relationships with seismic velocities, earthquake depth distribution and major tectonic elements such as the Fennoscandian Border Zone, the Oslo Rift system and the shield environment are discussed. Hypotheses on the formation of the crustal reflectors are also briefly reviewed.
Tectonics, Deep-Seated Structure and Recent Geodynamics of the Caucasus
NASA Astrophysics Data System (ADS)
Amanatashvili, I.; Adamia, Sh.; Lursmanashvili, N.; Sadradze, N.; Meskhia, V.; Koulakov, I.; Zabelina, I.; Jakovlev, A.
2012-04-01
The tectonics and deep-seated structure of the Caucasus are determined by its position between the still converging Eurasian and Africa-Arabian plates, within a wide zone of continental collision. The region in the Late Proterozoic - Early Cenozoic belonged to the Tethys Ocean and its Eurasian and Africa-Arabian margins. During Oligocene-Middle Miocene and Late Miocene-Quaternary time as a result of collision back-arc basins were inverted to form fold-thrust mountain belts and the Transcaucasian intermontane lowlands. The Caucasus is divided into platform and fold-thrust units, and forelands superimposed mainly on the rigid platform zones. The youngest structural units composed of Neogene-Quaternary continental volcanic formations of the Armenian and Javakheti highlands and extinct volcanoes of the Great Caucasus. As a result of detailed geophysical study of the gravity, magnetic, seismic, and thermal fields, the main features of the deep crustal structure of the Caucasus have been determined. Knowledge on the deep lithospheric structure of the Caucasus region is based on surface geology and deep and super deep drilling data combined with gravity, seismic, heat flow, and magnetic investigations. Close correlation between the geology and its deep-seated structures appears in the peculiarities of spatial distribution of gravitational, thermal and magnetic fields, particularly generally expressed in orientation of regional anomalies that is in good agreement with general tectonic structures. In this study we present two tomographic models derived for the region based on two different tomographic approaches. In the first case, we use the travel time data on regional seismicity recorded by networks located in Caucasus. The tomographic inversion is based on the LOTOS code which enables simultaneous determination of P and S velocity distributions and source locations. The obtained model covers the crustal and uppermost mantle depths. The second model, which is constructed for the upper mantle down to 700 km depth, is based on the data from the global ISC catalogue. We use travel times corresponding to rays which travel, at least partly, through the study volume. These data include rays from events in the study area recorded by worldwide stations, as well as teleseismic data recorded at regional stations. The computed seismic models reveal some deep traces of recent tectonic processes in the Caucasus: • For the 5, 15, 25 and 60-km-depth, there appears a clear coincidence between anomalous low velocities of P and S-waves with the fold-thrust mountainous belts of the Great and Lesser Caucasus, and also connection of high-velocity anomalies with the Trasncaucasian forelands. • Lowest-velocity anomalies are characteristic of the areas of Neogene-Quaternary volcanism of the Great and Lesser Caucasus. Areas with the lowest velocities of P- and S-waves coincide with the mountainous-folded belts, whereas the areas of high-velocity predominantly coincide with the platformal structures and forelands, as well as with basins of the Black and Caspian Seas. • Clear spatial correlation of the areas of lowest values of P- and S-velocities with the areas of Neogene-Quaternary volcanism occurs up to the depth of 150-200km that evidences location of magma sources within the crust - upper mantle - asthenosphere. • Tomographic data unambiguously confirm spatial unity of the main structures of the Caucasus and its basement, the location of the structures in situ in Late Cenozoic and connection of the volcanic constructions with their roots - magma chambers.
NASA Astrophysics Data System (ADS)
Kaban, M. K.; El Khrepy, S.; Al-Arifi, N. S.
2016-12-01
The isostatic anomalies are often considered as one of the most useful correction of the gravity field for investigation of the upper crust structure in many practical applications. By applying this correction, a substantial part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomaly, can be removed. With this approach, it is not even necessary to know the deep density structure of the crust and upper mantle in details; it is sufficient to prescribe some type of compensation (regional vs. local) and a compensation depth. However, even when all the parameters are chosen correctly, this reduction of the gravity field does not show the full gravity effect of unknown anomalies in the crust. The last ones should be also compensated to some extent; therefore their impact is substantially reduced by the isostatic compensation. Long ago (Cordell et al., 1991), it was suggested a so-called decompensative correction of the isostatic anomalies, which provides a possibility to separate these effects. However, the decompensative correction is very sensitive to the parameters of the compensation scheme. In the present study we analyse the ways to choose these parameters and extend this approach by assuming a possibility for the regional compensation via elastic deformations of the lithosphere. Based on this technique, we estimate the isostatic and decompensative anomalies for the Arabian plate and surrounding regions. The parameters of the isostatic model are chosen based on previous studies. It was demonstrated that the decompensative correction is very significant at the mid-range wavelengths and may exceed 100 mGal, therefore ignoring this effect would lead to wrong conclusions about the upper crust structure. The total amplitude of the decompensative anomalies reaches ±250 mGal, evidencing for both, large density anomalies of the upper crust (including sediments) and strong isostatic disturbances of the lithosphere. These results improve the knowledge about the crustal structure in the Middle East. Cordell, L., Zorin, Y. A., & Keller, G. R. (1991). The decompensative gravity anomaly and deep structure of the region of the Rio Grande rift. Journal of Geophysical Research: Solid Earth (1978-2012), 96(B4), 6557-6568.
NASA Astrophysics Data System (ADS)
Singh, S. B.; Stephen, Jimmy
2006-10-01
The resistivity signatures of the major crustal scale shear zones that dissect the southern granulite terrain (SGT) of South India into discrete geological fragments have been investigated. Resistivity structures deduced from deep resistivity sounding measurements acquired with a 10 km long Schlumberger spreads yield significant insights into the resistivity distribution within the E-W trending shear system comprising the Moyar-Bhavani-Salem-Attur shear zone (MBSASZ) and Palghat-Cauvery shear zone (PCSZ). Vertical and lateral extensions of low resistivity features indicate the possible existence of weak zones at different depths throughout the shear zones. The MBSASZ characterized by very low resistivity in its deeper parts (>2500 m), extends towards the south with slightly higher resistivities to encompass the PCSZ. A major resistivity transition between the northern and southern parts is evident in the two-dimensional resistivity images. The northern Archaean granulite terrain exhibits a higher resistivity than the southern Neoproterozoic granulite terrain. Though this resistivity transition is not clear at greater depths, the extension of low resistivity zones has been well manifested. It is speculated here that a network of crustal scale shear zones in the SGT may have influenced the strength of the lithosphere.
NASA Astrophysics Data System (ADS)
Saiga, Atsushi; Kato, Aitaro; Kurashimo, Eiji; Iidaka, Takashi; Okubo, Makoto; Tsumura, Noriko; Iwasaki, Takaya; Sakai, Shin'ichi; Hirata, Naoshi
2013-03-01
is an important feature of elastic wave propagation in the Earth and can arise from a variety of ordered architectures such as fractures with preferential alignments or preferred crystal orientations. We studied the regional variations in shear wave anisotropy around a deep Low-Frequency Earthquake (LFE) zone beneath the Kii Peninsula, SW Japan, using waveforms of local earthquakes observed by a dense linear array along the LFE zone. The fast directions of polarization are subparallel to the strike of the margin for both crustal and intraslab earthquakes. The delay time of the split shear waves in intraslab earthquakes is larger than that in crustal earthquakes and shows a down-dip variation across the LFE zone. This indicates that anisotropy exists in the mantle wedge and in the lower crust and/or oceanic slab. We explain the observed delay time of 0.015-0.045 s by suggesting that the mantle wedge consists of a deformed, 1-15 km thick serpentine layer if the mantle wedge is completely serpentinized. In addition to high-fluid pressures within the oceanic crust, the sheared serpentine layer may be a key factor driving LFEs in subduction zones.
Deep crustal electromagnetic structure of central India tectonic zone and its implications
NASA Astrophysics Data System (ADS)
Naganjaneyulu, K.; Naidu, G. Dhanunjaya; Rao, M. Someswara; Shankar, K. Ravi; Kishore, S. R. K.; Murthy, D. N.; Veeraswamy, K.; Harinarayana, T.
2010-07-01
Magnetotelluric data at 45 locations along the Mahan-Khajuria Kalan profile in the central India tectonic zone are analysed. This 290 km long profile yields data in the period range 0.001-1000 s across the tectonic elements of the study region bounded by Purna fault, Gavligarh fault, Tapti fault, Narmada South fault and Narmada North fault. Multi-site, multi-frequency analysis suggests N70°E as the geo-electric strike direction. Data rotated into the N70°E strike direction are modelled using a non-linear conjugate gradient scheme with error floors of 10% for both apparent resistivity and phase components. Two-dimensional magnetotelluric model yields conductors that correlate with known faults in the study region and regional seismicity. Presence of a -30 mgal gravity high together with the observed conductive bodies (less than 20 ohm m) in the deep crust beneath the Purna graben and Tapti valley is explained by the process of magmatic underplating. The conductive bodies beneath the Mahakoshal rift belt and Vindhyans accompanied by regional gravity lows of the order -70 mgal are attributed to the presence of deep crustal fluids. Following the re-activation model proposed for the entire region, the conductors (20 ohm m) at various depth levels correspond to mafic magmatic and/or fluid intrusions controlled by deep-seated faults that seem to tap reservoirs beyond the crust-mantle boundary. The shallow depth localized faults also seem to have facilitated further upward movement of these underplated material and fluids release during this process.
Terrane accumulation and collapse in central Europe: seismic and rheological constraints
NASA Astrophysics Data System (ADS)
Meissner, R.
1999-05-01
An attempt is made to compare the tectonic units and their evolution in central Europe with the deep seismic velocity structure and patterns of reflectivity. Caledonian and Variscan terrane accretion and orogenic collapse dominate the tectonic development in central and western Europe and have left their marks in a distinct velocity structure and crustal thickness as well as in the various reflectivity patterns. Whereas the memory of old collisional structures is still preserved in the rigid upper crust, collapse processes have formed and modified the lower crust. They have generally created rejuvenated, thin crusts with shallow Mohos. In the Variscan internides, the center of collision and post-orogenic heat pulses, the lower crust developed strong and thick seismic lamellae, the (cooler) externides show a thrust and shear pattern in the whole crust, and the North German Basin experienced large mafic intrusions in the lower crust and developed a high-velocity structure with only very thin lamellae on top of the Moho. The various kinds of reflectivity patterns in the lithosphere can be explained by a thermo-rheological model from terrane collision, with crustal thickening to collapse in a hot, post-orogenic setting.
NASA Astrophysics Data System (ADS)
Su, Yuping; Zheng, Jianping; Griffin, William L.; Huang, Yan; Wei, Ying; Ping, Xianquan
2017-11-01
The age and composition of the lower crust are critical in understanding the processes of continental formation and evolution, and deep-seated granulite xenoliths can offer direct information on the lower crust. Here, we report mineral chemistry, whole-rock major and trace elements, Sr-Nd isotopes and zircon U-Pb-Hf results for a suite of deep-seated crustal xenoliths, recently discovered in the Cenozoic basalts of the Nangaoya area in the northern part of the North China Craton (NCC). Based on the P-T estimates, these xenoliths including mafic, intermediate and felsic granulites and hornblendites were sampled from different levels of the lower crust. While a hornblendite has a flat REE pattern, all other xenoliths display LREE enrichment and depletion of Nb, Ta, Th and Ti. The mafic granulite xenolith has relatively high whole-rock εNd(t) value of - 13.37, and yields Mesozoic (188-59 Ma) zircons ages with high εHf(t) values from - 15.3 to - 9.2. The garnet-bearing intermediate granulite-facies rocks show low εNd(t) values from - 16.92 to - 17.48, and reveal both Paleoproterozoic (1948 Ma) and Mesozoic (222-63 Ma) zircon U-Pb ages. Their Mesozoic zircons have lower εHf(t) values (from - 18.4 to - 13.8) than those from the mafic xenolith. The remaining intermediate to felsic xenoliths show Paleoproterozoic zircon ages, and the lowest εNd(t) values (from - 20.78 to - 24.03). The mafic-intermediate granulites with Mesozoic zircons originated from the interaction of lower crust-derived magmas with mantle melts, with higher proportions of mantle magmas involved in the generation of mafic granulite, whereas intermediate to felsic xenoliths without Mesozoic zircons represent ancient Paleoproterozoic to Neoarchean deep crust. These deep-seated xenoliths reveal complicated crustal evolution processes, including crustal growth during Neoarchean (2.5-2.7 Ga), middle Paleoproterozoic (2.2-2.1 Ga) and Mesozoic, and reworking during early Paleoproterozoic, late Paleoproterozoic and Mesozoic related to magmatic underplating. The integrated analyses of lithological, geochemical and age data for a suite of deep-seated xenoliths show that the lower crust in the Nangaoya area is temporally and compositionally zoned. The upper part of the lower crust mainly comprises Neoarchean to Paleoproterozoic intermediate-felsic rocks with intercalated hornblendites, the majority of which record 1950 and 1850 Ma metamorphism; the middle part is dominated by a Paleoproterozoic and Mesozoic intermediate garnet-bearing granulite-facies hybrid layer; and the lowermost crust is represented by a Mesozoic mafic granulite layer, which was significantly modified by episodic magmatic underplating. Such a modification induced by crust-mantle interaction can result in Mesozoic ages and more mafic components for xenolith granulites, and thus is an effective mechanism to explain the differences between exposed and xenolithic granulites.
NASA Astrophysics Data System (ADS)
Heinson, G.
2005-12-01
The iron-oxide-copper-gold (IOCG) Olympic Dam (OD) deposit, situated along the margin of the Proterozoic Gawler Craton, South Australia, is the world's largest uranium deposit, and sixth largest copper deposit; it also contains significant reserves of gold, silver and rare-earth elements (REE). Gaining a better understanding of the mechanisms for genesis of the economic mineralisation is fundamental for defining exploration models in similar crustal-settings. To delineate crustal structures that may constrain mineral system fluid pathways, coincident deep crustal seismic and magnetotelluric (MT) transects were obtained along a 220 km section that crosses OD and the major crustal boundaries. We present results from 58 long-period (10-104 s) MT sites, with site spacing of 5 to 10 km. A 2D inversion of all MT data to a depth of 100 km shows four notable features: (a) sedimentary cover sequences with low resistivity (<20 Ω.m) thicken to 10 km towards the northern cover sequences of the Adelaide Rift Complex; (b) a northeast-dipping crustal boundary separates a highly resistive (>1000 Ω.m) Archaean crustal core, from a more conductive crust to the north (typically <500 Ω.m); (c) to the north of OD, the crust to about 20 km is quite resistive (~1000 Ω.m), but the lower crust is much more conductive (<100 Ω.m); and (d) beneath OD, we image a low-resistivity region (<100 Ω.m) throughout the crust, coincident with a seismically transparent region. We argue that the cause of the low-resistivity and low-reflectivity region beneath OD may be due to the upward movement of crustal-volatiles that have deposited conductive graphite mineralisation along grain boundaries, simultaneously annihilating acoustic impedance boundaries. The source of the volatiles may be from the mantle-degassing or retrograde metamorphism of the lower crust associated with Proterozoic crustal deformation.
Thinning Mechanism of the South China Sea Crust: New Insight from the Deep Crustal Images
NASA Astrophysics Data System (ADS)
Chang, S. P.; Pubellier, M. F.; Delescluse, M.; Qiu, Y.; Liang, Y.; Chamot-Rooke, N. R. A.; Nie, X.; Wang, J.
2017-12-01
The passive margin in the South China Sea (SCS) has experienced a long-lived extension period from Paleocene to late Miocene, as well as an extreme stretching which implies an unusual fault system to accommodate the whole amount of extension. Previous interpretations of the fault system need to be revised to explain the amount of strain. We study a long multichannel seismic profile crossing the whole rifted margin in the southwest of SCS, using 6 km- and 8 km-long streamers. After de-multiple processing by SRME, Radon and F-K filtering, an enhanced image of the crustal geometry, especially on the deep crust, allows us to illustrate two levels of detachment at depth. The deeper detachment is around 7-8 sec TWT in the profile. The faults rooting at this detachment are characterized by large offset and are responsible for thicker synrift sediment. A few of these faults appear to reach the Moho. The geometry of the acoustic basement between these boundary faults suggests gentle tilting with a long wavelength ( 200km), and implies some internal deformation. The shallower detachment is located around 4-5 sec TWT. The faults rooting at this detachment represent smaller offset, a shorter wavelength of the basement and thinner packages of synrift sediment. Two detachments separate the crust into upper, middle and lower crust. If the lower crust shows ductile behavior, the upper and middle crust is mostly brittle and form large wavelength boudinage structure, and the internal deformation of the boudins might imply low friction detachments at shallower levels. The faults rooting to deep detachment have activated during the whole rifting period until the breakup. Within the upper and middle crust, the faults resulted in important tilting of the basement at shallow depth, and connect to the deep detachment at some places. The crustal geometry illustrates how the two detachments are important for the thinning process, and also constitute a pathway for the following magmatic activity from the mantle to the surface.
NASA Astrophysics Data System (ADS)
Behrmann, Jan H.; Planert, Lars; Jokat, Wilfried; Ryberg, Trond; Bialas, Jörg; Jegen, Marion
2013-04-01
The opening of the South Atlantic ocean basin was accompanied by voluminous magmatism on the conjugate continental margins of Africa and South America, including the formation of the Parana and Entendeka large igneous provinces (LIP), the build-up of up to 100 km wide volcanic wedges characterized by seaward dipping reflector sequences (SDR), as well as the formation of paired hotspot tracks on the rifted African and South American plates, the Walvis Ridge and the Rio Grande Rise. The area is considered as type example for hotspot or plume-related continental break-up. However, SDR, and LIP-related features on land are concentrated south of the hotspot tracks. The segmentation of the margins offers a prime opportunity to study the magmatic signal in space and time, and investigate the interrelation with rift-related deformation. A globally significant question we address here is whether magmatism drives continental break-up, or whether even rifting accompanied by abundant magmatism is in response to crustal and lithospheric stretching governed by large-scale plate kinematics. In 2010/11, an amphibious set of wide-angle seismic data was acquired around the landfall of Walvis Ridge at the Namibian passive continental margin. The experiments were designed to provide crustal velocity information and to investigate the structure of the upper mantle. In particular, we aimed at identifying deep fault zones and variations in Moho depth, constrain the velocity signature of SDR sequences, as well as the extent of magmatic addition to the lower crust near the continent-ocean transition. Sediment cover down to the igneous basement was additionally constrained by reflection seismic data. Here, we present tomographic analysis of the seismic data of one long NNW oriented profile parallel to the continental margin across Walvis Ridge, and a second amphibious profile from the Angola Basin across Walvis Ridge and into the continental interior, crossing the area of the Etendeka Plateau basalts. The most striking feature is the sharp transition in crustal structure and thickness across the northern boundary of Walvis Ridge. Thin oceanic crust (6.5 km) of the Angola Basin lies next to the up to 35 km thick igneous crustal root founding the highest elevated northern portions of Walvis Ridge. Both structures are separated by a very large transform fault zone. The velocity structure of Walvis Ridge lower crust is indicative of gabbro, and, in the lowest parts, of cumulate sequences. On the southern side of Walvis Ridge there is a smooth gradation into the adjacent 25-30 km thick crust underlying the ocean-continent boundary, with a velocity structure resembling that of Walvis Ridge The second profile shows a sharp transition from oceanic to rifted continental crust. The transition zone may be underlain by hydrated uppermost mantle. Below the Etendeka Plateau, an extensive high-velocity body, likely representing gabbros and their cumulates at the base of the crust, indicates magmatic underplating. We summarize by stating that rift-related lithospheric stretching and associated transform faulting play an overriding role in locating magmatism, dividing the margin in a magmatic-dominated segment to the south, and an amagmatic segment north of Walvis Ridge.
Teleseismic surface wave study of S-wave velocity structure in Southern California
NASA Astrophysics Data System (ADS)
Prindle-Sheldrake, K. L.; Tanimoto, T.
2002-12-01
We report on a 3D S-wave velocity structure derived from teleseismic Rayleigh and Love waves using TriNet broadband seismic data. Phase velocity maps, constructed between 20 and 55 mHz for Rayleigh waves and between 25 and 45 mHz for Love waves, were inverted for S-wave velocity structure at depth. Our starting model is SCEC 2.2, which has detailed crustal structure, but laterally homogeneous upper mantle structure. Depth resolution from the data set is good from the surface to approximately 100 km, but deteriorates rapidly beyond this depth. Our analysis indicates that, while Rayleigh wave data are mostly sensitive to mantle structure, Love wave data require some modifications of crustal structure from SCEC 2.2 model. Various regions in Southern California have different seismic-velocity signatures in terms of fast and slow S-wave velocities: In the Southern Sierra, both the crust and mantle are slow. In the Mojave desert, mid-crustal depths tend to show slow velocities, which are already built into SCEC 2.2. In the Transverse Ranges, the lower crust and mantle are both fast. Our Love wave results require much faster crustal velocity than those in SCEC 2.2 in this region. In the Peninsular ranges, both the crust and mantle are fast with mantle fast velocity extending to about 70 km. This is slightly more shallow than the depth extent under the Transverse Ranges, yet it is surprisingly deep. Under the Salton Sea, the upper crust is very slow and the upper mantle is also slow. However, these two slow velocity layers are separated by faster velocity lower crust which creates a distinct contrast with respect to the adjacent slow velocity regions. Existence of such a relatively fast layer, sandwiched by slow velocities, are related to features in phase velocity maps, especially in the low frequency Love wave phase velocity map (25 mHz) and the high frequency Rayleigh wave phase velocity maps (above 40 mHz). Such a feature may be related to partial melting processes under the Salton Sea.
Basement structures over Rio Grande Rise from gravity inversion
NASA Astrophysics Data System (ADS)
Constantino, Renata Regina; Hackspacher, Peter Christian; de Souza, Iata Anderson; Lima Costa, Iago Sousa
2017-04-01
The basement depth in the Rio Grande Rise (RGR), South Atlantic, is estimated from combining gravity data obtained from satellite altimetry, marine surveys, bathymetry, sediment thickness and crustal thickness information. We formulate a crustal model of the region by inverse gravity modeling. The effect of the sediment layer is evaluated using the global sediment thickness model of National Oceanic and Atmospheric Administration (NOAA) and fitting the sediment compaction model to observed density values from Deep Sea Drilling Project (DSDP) reports. The Global Relief Model ETOPO1 and constraining data from seismic interpretation on crustal thickness are integrated in the inversion process. The modeled Moho depth values vary between 6 and 27 km over the area, being thicker under the RGR and also in the direction of São Paulo Plateau. The inversion for the gravity-equivalent basement topography is applied to gravity residual data, which is free from the gravity effect of sediments and from the gravity effect of the estimated Moho interface. We find several short-wavelengths structures not present in the bathymetry data. Our model shows a rift crossing the entire Rio Grande Rise deeper than previously presented in literature, with depths up to 5 km in the East Rio Grande Rise (ERGR) and deeper in the West Rio Grande Rise (WRGR), reaching 6.4 km. An interesting NS structure that goes from 34°S and extends through de São Paulo Ridge may be related to the South Atlantic Opening and could reveal an extinct spreading center.
NASA Astrophysics Data System (ADS)
Hooft, E. E. E.; Morgan, J. V.; Nomikou, P.; Toomey, D. R.; Papazachos, C. V.; Warner, M.; Heath, B.; Christopoulou, M. E.; Lampridou, D.; Kementzetzidou, D.
2016-12-01
The goal of the PROTEUS seismic experiment (Plumbing Reservoirs Of The Earth Under Santorini) is to examine the entire crustal magma plumbing system beneath a continental arc volcano and determine the magma geometry and connections throughout the crust. These physical parameters control magma migration, storage, and eruption and inform the question of how physical and chemical processing of magma at arc volcanoes forms the andesitic rock compositions that dominate the lower continental crust. These physical parameters are also important to understand volcanic-tectonic interactions and geohazards. Santorini is ideal for these goals because the continental crust has been thinned by extension and so the deep magmatic system is more accessible, also it is geologically well studied. Since the volcano is a semi-submerged, it was possible to collect a unique 3D marine-land active source seismic dataset. During the PROTEUS experiment in November-December of 2015, we recorded 14,300 marine sound sources from the US R/V Langseth on 89 OBSIP short period ocean bottom seismometers and 60 German and 5 Greek land seismometers. The experiment was designed for high-density spatial sampling of the seismic wavefield to allow us to apply two state-of-the-art 3D inversion methods: travel time tomography and full waveform inversion. A preliminary travel time tomography model of the upper crustal seismic velocity structure of the volcano and surrounding region is presented in an accompanying poster. We also made marine geophysical maps of the seafloor using multi-beam bathymetry and of the gravity and magnetic fields. The new seafloor map reveals the detailed structure of the major fault system between Santorini and Amorgos, of associated landslides, and of newly discovered volcanic features. The PROTEUS project will provide new insights into the structure of the whole crustal magmatic system of a continental arc volcano and its evolution within the surrounding tectonic setting.
Crustal structure of mountain belts and basins: Industry and academic collaboration at Cornell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allmendinger, R.; Barazangi, M.; Brown, L.
1995-08-01
Interdisciplinary investigations of the large-scale structure and evolution of key basins and orogenic belts around the world are the focal point of academic-industry interaction at Cornell. Ongoing and new initiatives with significant industry involvement include: Project INDEPTH (Interdisciplinary Deep Profiling of Tibet and the Himalayas), a multinational effort to delineate deep structure across the type example of active continent-continent collision. 300 km of deep reflection profiling was collected across the Himalaya: and southern Tibet Plateau in 1992 and 1994. CAP (Cornell Andes Project), a long-standing interdisciplinary effort to understand the structure and evolution of the Andes, with a focus onmore » Argentina, Chile and Bolivia. A deep reflection profile is tentatively planned for 1997. Intra-plate Orogeny in the Middle East and North Africa is the focus of multidisciplinary regional syntheses of existing seismic reflection and other databases in Syria (Palmyrides)and Morocco (Atlas), with an emphasis on reactivation and inversion tectonics. Project URSEIS (Urals Reflection Seismic Experiment and Integrated Studies) is a collaboration with EUROPROBE to collect 500 km of vibroseis and dynamite deep reflection profiling across the southern Urals in 1995. Project CRATON, an element in COCORP`s systematic exploration of the continental US, is a nascent multi-disciplinary effort to understand the buried craton of the central US and the basins built upon it. Global Basins Research Network (GBRN) is a diversified observational and computational effort to image and model the movement of pore fluids in detail and on a regional scale for a producing oil structure in the Gulf of Mexico.« less
NASA Astrophysics Data System (ADS)
Shahrokhi, H.; Malehmir, A.; Sopher, D.
2012-04-01
The BABEL project (Baltic And Bothnian Echoes from the Lithosphere) was a collaboration among British, Danish, Finnish, German and Swedish geoscientists to collect deep-crustal reflection and wide-angle refraction profiles in Baltic Shield and Gulf of Bothnia. The acquisition of 2,268km of deep marine reflection seismic data was carried out in 1989. The BABEL line 7 runs in E-W direction in the Bothnian Sea, north of the Åland islands and east of the city of Gävle. Several authors presented the seismic results but with a main focus of imaging and interpreting deep crustal geological structures and the nature and the depth of Moho discontinuity along line 7. Based on this seismic data, several publications about velocity distributions within the crust, the depth and texture of Moho discontinuity and seismic reflectivity patterns in the crust were presented. Some evidence from the reflection seismic data was also presented to suggest Early Proterozoic plate tectonics in the Baltic Shield. Previous seismic images of the BABEL line 7 reflection data show a dramatic change in the reflectivity pattern from weakly reflective lower crust in the west to a more reflective lower crust in the east, which was attributed to a change from a rigid crust to a plastic crust from the west to the east. The BABEL line 7 reflection data were acquired with a total profile length of 174km, a set of 48 airguns towed at 7.5m depth, and 3000m long streamer with 60 channels spaced with 50m intervals and towed at 15m depth. Seismic data were recorded for 25s using 4ms sampling interval and 75m shot interval. Seismic data is characterized by strong source-generated noise at shallow travel times and strong but randomly distributed spurious spikes at later arrival times. In this study, we have recovered and reprocessed the seismic data along BABEL line 7. Using modern processing and imaging techniques, which were not available at the time, and with a focus on the shallow parts of the seismic data, we have managed to reveal reflections as shallow as 1s in the data. Some of these reflections appear to be a continuation of deeper reflections but now they appear to reach to the surface, allowing correlation with the near-surface geology. At least two major moderately dipping shear zones are visible in the reprocessed data in comparison with the previous results. Deeper reflections are also improved which together with the improvements in the shallow parts of the data should allow small-scale geological structures encounter along the BABEL line 7 to be refined.
NASA Astrophysics Data System (ADS)
Köhler, A.; Balling, N.; Ebbing, J.; England, R.; Frassetto, A.; Gradmann, S.; Jacobsen, B. H.; Kvarven, T.; Maupin, V.; Medhus, A. Bondo; Mjelde, R.; Ritter, J.; Schweizer, J.; Stratford, W.; Thybo, H.; Wawerzinek, B.; Weidle, C.
2012-04-01
The origin of the Scandinavian mountains, located far away from any presently active plate margin, is still not well understood. In particular, it is not clear if the mountains are sustained isostatically either by crustal thickening or by light upper mantle material. Within the TopoScandiaDeep project (a collaborative research project within the ESF TOPO-EUROPE programme), we therefore analyse recently collected passive seismological and active seismic data in the southern Scandes and surrounding regions. We infer crustal and upper mantle (velocity) structures and relate them to results of gravity and temperature-composition modelling. The Moho under the high topography of southern Norway appears from controlled source seismic refraction and Receiver Functions as relatively shallow (<= 45 km) compared to the deeper conversion (>55 km) imaged beneath the low topography in Sweden and elsewhere in the Baltic Shield area outside Norway. The Receiver Function modeling as well as the active seismic results suggest that the differences in the observed Moho response may represent the transition between tectonically reworked Moho under southern Norway and an intact, cratonic crust-mantle boundary beneath the Baltic Shield. Furthermore, the 410km-discontinuity and the LAB is imaged, the latter one suggesting a lithospheric thickening in NE direction. Upper mantle P-wave and S-wave velocities in southern Sweden and southern Norway east of the Oslo Graben are correspondingly relatively high while lower velocities are observed in the southwestern part of Norway and northern Denmark. The lateral velocity gradient, interpreted as the southwestern boundary of thick Baltic Shield lithosphere, is remarkably sharp. Differences in upper mantle velocities are found at depths of 100-400 km and amount to ± 2-3%. S-to-P wave conversions, interpreted to originate from the lithosphere-asthenosphere boundary, are preliminary estimated to 90-120 km depth. Inversion of Rayleigh and Love surface wave phase velocity dispersion curves from observations of ambient noise and earthquakes yield another independent model of the crust and upper mantle structure below southern Norway. Inverted crustal velocities and Moho depths are consistent with the results of seismic refraction and receiver functions. Additionally, indications for radial crustal anisotropy of up to about 3% are found. The inferred upper mantle S-wave velocities show that the lithosphere under southern Norway has characteristics usually found under continental platforms and changes towards a cratonic-like velocity structure in the East, in agreement with the body wave tomography. All in all, these separate investigations give a very consistent and stable picture of the crust and upper mantle configuration. Integrated geophysical modeling of the results shows that a lateral transition from thinner, warmer lithosphere under southern Norway towards thicker, colder lithosphere under Sweden results in a density distribution that significantly adds to the isostatic support of Norway's high topography.
Fan, Yin; Richard, Steve; Bristol, R. Sky; Peters, Shanan; Ingebritsen, Steven E.; Moosdorf, Nils; Packman, Aaron I.; Gleeson, Tom; Zazlavsky, Ilya; Peckham, Scott; Murdoch, Larry; Cardiff, Michael; Tarboton, David; Jones, Norm; Hooper, Richard; Arrigo, Jennifer; Gochis, David; Olson, John
2015-01-01
Fluid circulation in the Earth's crust plays an essential role in surface, near surface, and deep crustal processes. Flow pathways are driven by hydraulic gradients but controlled by material permeability, which varies over many orders of magnitude and changes over time. Although millions of measurements of crustal properties have been made, including geophysical imaging and borehole tests, this vast amount of data and information has not been integrated into a comprehensive knowledge system. A community data infrastructure is needed to improve data access, enable large-scale synthetic analyses, and support representations of the subsurface in Earth system models. Here, we describe the motivation, vision, challenges, and an action plan for a community-governed, four-dimensional data system of the Earth's crustal structure, composition, and material properties from the surface down to the brittle–ductile transition. Such a system must not only be sufficiently flexible to support inquiries in many different domains of Earth science, but it must also be focused on characterizing the physical crustal properties of permeability and porosity, which have not yet been synthesized at a large scale. The DigitalCrust is envisioned as an interactive virtual exploration laboratory where models can be calibrated with empirical data and alternative hypotheses can be tested at a range of spatial scales. It must also support a community process for compiling and harmonizing models into regional syntheses of crustal properties. Sustained peer review from multiple disciplines will allow constant refinement in the ability of the system to inform science questions and societal challenges and to function as a dynamic library of our knowledge of Earth's crust.
ERIC Educational Resources Information Center
Stoever, Edward C., Jr.
Crustal Evolution Education Project (CEEP) modules were designed to: (1) provide students with the methods and results of continuing investigations into the composition, history, and processes of the earth's crust and the application of this knowledge to man's activities and (2) to be used by teachers with little or no previous background in the…
Holbrook, W.S.; Brocher, T.M.; ten Brink, Uri S.; Hole, J.A.
1996-01-01
Wide-angle seismic data collected during the Bay Area Seismic Imaging Experiment provide new glimpses of the deep structure of the San Francisco Bay Area Block and across the offshore continental margin. San Francisco Bay is underlain by a veneer (<300 m) of sediments, beneath which P wave velocities increase rapidly from 5.2 km/s to 6.0 km/s at 7 km depth, consistent with rocks of the Franciscan subduction assemblage. The base of the Franciscan at-15-18 km depth is marked by a strong wide-angle reflector, beneath which lies an 8- to 10-km-thick lower crust with an average velocity of 6.75??0.15 km/s. The lower crust of the Bay Area Block may be oceanic in origin, but its structure and reflectivity indicate that it has been modified by shearing and/or magmatic intrusion. Wide-angle reflections define two layers within the lower crust, with velocities of 6.4-6.6 km/s and 6.9-7.3 km/s. Prominent subhorizontal reflectivity observed at near-vertical incidence resides principally in the lowermost layer, the top of which corresponds to the "6-s reflector" of Brocher et al. [1994]. Rheological modeling suggests that the lower crust beneath the 6-s reflector is the weakest part of the lithosphere; the horizontal shear zone suggested by Furlong et al. [1989] to link the San Andreas and Hayward/Calaveras fault systems may actually be a broad zone of shear deformation occupying the lowermost crust. A transect across the continental margin from the paleotrench to the Hayward fault shows a deep crustal structure that is more complex than previously realized. Strong lateral variability in seismic velocity and wide-angle reflectivity suggests that crustal composition changes across major transcurrent fault systems. Pacific oceanic crust extends 40-50 km landward of the paleotrench but, contrary to prior models, probably does not continue beneath the Salinian Block, a Cretaceous arc complex that lies west of the San Andreas fault in the Bay Area. The thickness (10 km) and high lower-crustal velocity of Pacific oceanic crust suggest that it was underplated by magmatism associated with the nearby Pioneer seamount. The Salinian Block consists of a 15-km-thick layer of velocity 6.0-6.2 km/s overlying a 5-km-thick, high-velocity (7.0 km/s) lower crust that may be oceanic crust, Cretaceous arc-derived lower crust, or a magmatically underplated layer. The strong structural variability across the margin attests to the activity of strike-slip faulting prior to and during development of the transcurrent Pacific/North American plate boundary around 29 Ma. Copyright 1996 by the American Geophysical Union.
Magnetic signature of the Sicily Channel volcanism
NASA Astrophysics Data System (ADS)
Lodolo, E.; Civile, D.; Zanolla, C.; Geletti, R.
2012-03-01
Widespread Late Miocene to Quaternary volcanic activity is know to have occurred in the Sicily Channel continuing up to historical time. New magnetic anomaly data acquired in the Pantelleria Graben, one of the three main tectonic depressions forming the WNW-trending Sicily Channel rift system, integrated with available profiles, are used to identify and map volcanic bodies in this sector of the northern African margin. Some of these manifestations, both outcropping at the sea-floor or buried beneath a variable thickness of Plio-Quaternary sedimentary cover, have been imaged by seismic reflection profiles. Three main positive magnetic anomalies have been found: to the S-E of the Pantelleria Island, the largest emerged caldera of the Sicily Channel, along the eastern margin of the Nameless Bank, and at the north-western termination of the Linosa Graben. Only the anomaly located off the south-eastern coast of the Pantelleria Island, associated with a large outcropping body gradually buried beneath a substantially undisturbed Upper Pliocene-Quaternary sediments, aligns with the trend of the tectonic depression. 2-D geophysical models produced along seismic transects perpendicularly crossing the Pantelleria Graben have allowed to derive its deep crustal structure, and detect the presence of buried magmatic bodies which generate the anomalies. Marginal faults seem to have played a major role in focussing magma emplacement in this sector of the Sicily Channel. The other anomalies represent off-axis volcanic episodes and generally do not show evident magmatic manifestations at the sea-floor. These magnetic maxima seem to follow a NNE-SSW-trending belt extending from Linosa Island to the Nameless Bank, where pre-existing crustal anisotropies may have conditioned magma emplacement both at deep and shallow crustal levels. In general, data analysis has shown that there is a structural control on magma emplacement, with the major magmatic features located in specific locations like boundary faults and transfer zones, in a manner similar to that found along several segments of the East African Rift system.
Transect across the West Antarctic rift system in the Ross Sea, Antarctica
Trey, H.; Cooper, A. K.; Pellis, G.; Della, Vedova B.; Cochrane, G.; Brancolini, Giuliano; Makris, J.
1999-01-01
In 1994, the ACRUP (Antarctic Crustal Profile) project recorded a 670-km-long geophysical transect across the southern Ross Sea to study the velocity and density structure of the crust and uppermost mantle of the West Antarctic rift system. Ray-trace modeling of P- and S-waves recorded on 47 ocean bottom seismograph (OBS) records, with strong seismic arrivals from airgun shots to distances of up to 120 km, show that crustal velocities and geometries vary significantly along the transect. The three major sedimentary basins (early-rift grabens), the Victoria Land Basin, the Central Trough and the Eastern Basin are underlain by highly extended crust and shallow mantle (minimum depth of about 16 km). Beneath the adjacent basement highs, Coulman High and Central High, Moho deepens, and lies at a depth of 21 and 24 km, respectively. Crustal layers have P-wave velocities that range from 5.8 to 7.0 km/s and S-wave velocities from 3.6 to 4.2 km/s. A distinct reflection (PiP) is observed on numerous OBS from an intra-crustal boundary between the upper and lower crust at a depth of about 10 to 12 km. Local zones of high velocities and inferred high densities are observed and modeled in the crust under the axes of the three major sedimentary basins. These zones, which are also marked by positive gravity anomalies, may be places where mafic dikes and sills pervade the crust. We postulate that there has been differential crustal extension across the West Antarctic rift system, with greatest extension beneath the early-rift grabens. The large amount of crustal stretching below the major rift basins may reflect the existence of deep crustal suture zones which initiated in an early stage of the rifting, defined areas of crustal weakness and thereby enhanced stress focussing followed by intense crustal thinning in these areas. The ACRUP data are consistent with the prior concept that most extension and basin down-faulting occurred in the Ross Sea during late Mesozoic time, with relatively small extension, concentrated in the western half of the Ross Sea, during Cenozoic time.
NASA Astrophysics Data System (ADS)
Lymer, Gaël; Vendeville, Bruno; Gaullier, Virginie; Chanier, Frank; Gaillard, Morgane
2017-04-01
The Western Tyrrhenian Basin, Mediterranean Sea, is a fascinating basin in terms of interactions between crustal tectonics, salt tectonics and sedimentation. The METYSS (Messinian Event in the Tyrrhenian from Seismic Study) project is based on 2100 km of HR seismic data acquired in 2009 and 2011 along the Eastern Sardinian margin. The main aim is to study the Messinian Salinity Crisis (MSC) in the Western Tyrrhenian Basin, but we also investigate the thinning processes of the continental crust and the timing of crustal vertical motions across this complex domain. Our first results allowed us to map the MSC seismic markers and to better constrain the timing of the rifting, which ended before the MSC across the upper and middle parts of the margin. We also evidenced that crustal activity persisted long after the end of rifting. This has been particularly observed on the upper margin, where several normal faults and a surprising compressional structure were recently active. In this study we investigate the middle margin, the Cornaglia Terrace, where the Mobile Unit (MU, mobile Messinian salt) accumulated during the MSC and acts as a décollement. Our goal is to ascertain whether or not crustal tectonics existed after the pre-MSC rift. This is a challenge where the MU is thick, because potential basement deformations could be first accommodated by the MU and therefore would not find any expression in the supra-salt layers (Upper Unit, UU and Plio-Quaternary, PQ). However our investigations clearly reveal interactions between crustal and salt tectonics along the margin. We thus evidence gravity gliding of the salt and its brittle sedimentary cover along basement slopes generated by the post-MSC tilting of some basement blocks bounded by crustal normal faults, formerly due to the rifting. Another intriguing structure also got our interest. It corresponds to a wedge-shaped of MU located in a narrow N-S half graben bounded to the west by a major, east-verging, crustal normal fault. Below the MU, the sediments thicken toward the fault. The top of the MU is sub-horizontal and the supra-salt layers are sub-horizontal. At a first glance this geometry would suggest that the pre-salt unit and the MU are syn-tectonic and that nothing happened after Messinian times. However some subtle evidence of deformations in the UU and PQ (an anticline to the west and a small west-verging normal fault in the east) imply that some crustal tectonics activity persisted after the end of the rifting. To understand why the salt unit is wedge-shaped, we considered several scenarii that we tested with physical modelling. We demonstrate that this structure is related to the post-rift activity of the major crustal normal fault, whose vertical motion has been cushioned by lateral flow of an initially tabular salt layer, which thinned upslope and inflated downslope, keeping the overlying sediments remained sub-horizontal. Such interactions between thin-skinned and thick-skinned tectonics highlight how the analysis of the salt tectonics is a powerful tool to reveal recent deep crustal tectonics in the Western Mediterranean Basin.
Saudi Arabian refraction profile: Crustal structure of the Red Sea-Arabian shield transition
NASA Astrophysics Data System (ADS)
Milkereit, B.; Flüh, E. R.
1985-02-01
An interpretation of deep seismic sounding measurements across the ocean-continent transition of the Red Sea-Saudi Arabian Shield is presented. Using synthetic seismograms based on ray tracing we achieve a good fit to observed traveltimes and some of the characteristic amplitudes of the record sections. Crustal thickness varies along the profile from 15 km in the Red Sea Shelf to 40-45 km beneath the Asir Mountains and the Saudi Arabian Shield. Based on the computation of synthetic seismograms our model requires a velocity inversion in the Red Sea-Arabian Shield transition. High-velocity oceanic mantle material is observed above continental crust and mantle, thereby forming a double-layered Moho. Our results indicate a thick sedimentary basin in the shelf area, and zone of high velocities within the Asir Mountains (probably uplifted lower crust). Prominent secondary low-frequency arrivals are interpreted as multiples.
A feature illustration and application of azimuthal P receiver function patterns
NASA Astrophysics Data System (ADS)
Eckhardt, C.; Rabbel, W.
2009-12-01
Based on a synthetic catalog of thirty azimuthal patterns of P receiver functions for crustal structures down to thirty km depth we have summarized and illustrated the most important azimuthal features. We have constructed five model classes encompassing (an-)isotropic horizontal and dipping layers. The model classes were initialized by in situ observations of three deep reflection seismic profiles (DEKORP) of varying high reflective zones and a spiral shaped foliation scheme of an upper crustal bore hole out of the German Continental Deep Drilling Program (KTB). Up to fourteen azimuthal features were extracted out of the synthetic patterns and could be grouped into an already known fundamental part, a multiple part and into an extension part. Each feature was rated by a specific grade A, B, C to inform about the type of its initialization ((an-) isotropy and/or layer dipping). We have evaluated the fourteen features on the synthetic patterns to apply a hierarchical classification. From the classification of the model objects we found that nearly eighty percent of the models are well explained by the fundamental part. The hierarchical order of the model objects can be used as a template to screen real observed azimuthal patterns to find a starting model for a forward modeling or an inversion procedure. For one station of the German Regional Seismic Network (GRSN) we have evaluated the features and screened them through the template. A forward simulation of the azimuthal pattern, using the modified first found model explanation out of the hierarchical order for station MOX, leads to a good coincidence between the real and the simulated pattern. The final 1D model could be divided into an upper crustal part (8 km deep) with an axis of symmetry tilt of 55° and 20°NW trend (direction of axis tilt) and a lower crustal part (24 km thickness) with an axis of symmetry of increasing tilt from 55° to 85° and a trend orientation of 20°SE. For the simulation we have assumed 8 and 7 percent of negative P+S anisotropy for hexagonal symmetry of the upper and lower crust, respectively. From the synthetic and the real observations it is evident that additional boundaries beside the Moho discontinuity are merely detectable for certain circumstances in an azimuthal resolution and will be blinded out in the traditional radial stack.
Robustness of Global Radial Anisotropy Models of the Upper Mantle
NASA Astrophysics Data System (ADS)
Xing, Z.; Beghein, C.; Yuan, K.
2014-12-01
Radial anisotropy provides important constraints on mantle deformation. While its presence is well accepted in the uppermost mantle, large discrepancies remain among existing models, even at depths well sampled by seismic data, and its presence at greater depths is highly uncertain. Surface wave phase velocity dispersion measurements are routinely used to constrain lateral variations in mantle S-wave velocity (dlnVS) and radial anisotropy (ξ=VSH2/VSV2). Here, we employed the fundamental and higher mode surface wave phase velocity maps of Visser et al. (2008) that have unprecedented sensitivity to structure down to 800-1000km depth, and we adopted a probabilistic forward modeling approach, the Neighbourhood Algorithm, to quantify posterior model uncertainties and parameter trade-offs. We investigated the effect of prior crustal corrections on 3-D ξ and dlnVS models. To avoid mapping crustal structure onto mantle heterogeneities, it is indeed important to accurately account for 3-D crustal anomalies and variations in Moho depth. One approach is to solve the non-linear problem and simultaneously constrain Moho depth and mantle anomalies (Visser et al., 2008). Another approach, taken here, is to calculate non-linear crustal corrections with an a priori crustal model, which are then applied to the phase velocity maps before inverting the remaining signal for mantle structure. In this work, we also determined laterally varying sensitivity kernels to account for lateral changes in the crust. We compare models obtained using CRUST2.0 (Bassin et al., 2000) and the new CRUST1.0 (Laske et al., 2012) models, which mostly differ under continents. Our preliminary results show strong differences (ΔdlnVS>2%) between the two models in continental dlnVS for the upper 150-200km, and strong changes in x amplitudes in the top 200km (Δξ>2%). Some of the differences in ξ persist down to the transition zone, in particular beneath central Asia and South America. Despite these discrepancies, inferences on the depth of continental roots (~200-250km) based on either the extent of the dlnVS>0 anomalies or the depth at which ξ changes sign remain independent of the crustal model employed. We also note that VSV>VSH dominates the deep upper mantle except in central Pacific, which is characterized by VSH>VSV down to the transition zone.
Probabilistic seismic hazard assessment for the two layer fault system of Antalya (SW Turkey) area
NASA Astrophysics Data System (ADS)
Dipova, Nihat; Cangir, Bülent
2017-09-01
Southwest Turkey, along Mediterranean coast, is prone to large earthquakes resulting from subduction of the African plate under the Eurasian plate and shallow crustal faults. Maximum observed magnitude of subduction earthquakes is Mw = 6.5 whereas that of crustal earthquakes is Mw = 6.6. Crustal earthquakes are sourced from faults which are related with Isparta Angle and Cyprus Arc tectonic structures. The primary goal of this study is to assess seismic hazard for Antalya area (SW Turkey) using a probabilistic approach. A new earthquake catalog for Antalya area, with unified moment magnitude scale, was prepared in the scope of the study. Seismicity of the area has been evaluated by the Gutenberg-Richter recurrence relationship. For hazard computation, CRISIS2007 software was used following the standard Cornell-McGuire methodology. Attenuation model developed by Youngs et al. Seismol Res Lett 68(1):58-73, (1997) was used for deep subduction earthquakes and Chiou and Youngs Earthq Spectra 24(1):173-215, (2008) model was used for shallow crustal earthquakes. A seismic hazard map was developed for peak ground acceleration and for rock ground with a hazard level of a 10% probability of exceedance in 50 years. Results of the study show that peak ground acceleration values on bedrock change between 0.215 and 0.23 g in the center of Antalya.
NASA Astrophysics Data System (ADS)
Dooley, T. P.; Monastero, F. C.; McClay, K. R.
2007-12-01
Results of scaled physical models of a releasing bend in the transtensional, dextral strike-slip Coso geothermal system located in the southwest Basin and Range, U.S.A., are instructive for understanding crustal thinning and heat flow in such settings. The basic geometry of the Coso system has been approximated to a 30? dextral releasing stepover. Twenty-four model runs were made representing successive structural iterations that attempted to replicate geologic structures found in the field. The presence of a shallow brittle-ductile transition in the field known from a well-documented seismic-aseismic boundary, was accommodated by inclusion of layers of silicone polymer in the models. A single polymer layer models a conservative brittle-ductile transition in the Coso area at a depth of 6 km. Dual polymer layers impose a local elevation of the brittle-ductile transition to a depth of 4 km. The best match to known geologic structures was achieved with a double layer of silicone polymers with an overlying layer of 100 µm silica sand, a 5° oblique divergent motion across the master strike-slip faults, and a thin-sheet basal rubber décollement. Variation in the relative displacement of the two base plates resulted in some switching in basin symmetry, but the primary structural features remained essentially the same. Although classic, basin-bounding sidewall fault structures found in all pull-apart basin analog models formed in our models, there were also atypical complex intra-basin horst structures that formed where the cross-basin fault zone is situated. These horsts are flanked by deep sedimentary basins that were the locus of maximum crustal thinning accomplished via high-angle extensional and oblique-extensional faults that become progressively more listric with depth as the brittle-ductile transition was approached. Crustal thinning was as much as 50% of the original model depth in dual polymer models. The weak layer at the base of the upper crust appears to focus brittle deformation and facilitate formation of listric normal faults. The implications of these modeling efforts are that: 1) Releasing stepovers that have associated weak upper crust will undergo a more rapid rate of crustal thinning due to the strain focusing effect of this ductile layer; 2) The origin of listric normal faults in these analog models is related to the presence of the weak, ductile layer; and, 3) Due to high dilatency related to major intra-basin extension these stepover structures can be the loci for high heat flow.
NASA Astrophysics Data System (ADS)
Anderson, R. B.; Long, S. P.; Horton, B. K.; Calle, A.; Ramirez, V.
2015-12-01
Structural insights obtained from balanced cross sections, including thrust belt geometry, location of footwall ramps, and crustal shortening estimates, provide key information for testing model predictions of orogen dynamics (e.g., Cordilleran cyclicity, critical taper theory). New results from geologic mapping along an east-west transect in the central Andes are integrated with existing geophysical data to construct a balanced cross section across the Interandean (IAZ) and Subandean (SAZ) zones of southern Bolivia at 21°S, in order to define thrust belt geometry and estimate crustal shortening. The IAZ consists of a doubly vergent zone of 2-4 km-thick thrust sheets of mainly Silurian-Devonian rocks, which are structurally elevated ~10 km relative to equivalent SAZ levels to the east. Notably, our proposed IAZ geometry differs from published geometries that lack significant west-directed backthrusts. The SAZ is defined by regional-scale, fault-bend folds (10-20 km wavelength, 4-6 km amplitude) that exhume rocks as deep as Carboniferous above a 10-12 km-deep regional décollement in Silurian rocks. Previous studies have interpreted IAZ and SAZ shortening to be balanced by slip on two separate basement megathrust sheets at depth. We estimate 151 km (44%) of total east-west shortening in the IAZ (71 km) and SAZ (80 km), which is similar to a previous estimate (144 km, 42%). Importantly, our estimate of SAZ shortening restores the leading edge of the basement thrust sheet feeding displacement into the SAZ back to a corresponding footwall ramp that is constrained by a seismic reflection profile 90 km along strike to the south. Our shortening magnitudes are similar to nearby estimates to the north and south, which range between 60-86 km for the SAZ and 43-96 km for the IAZ. Future work will continue the cross section westward into the Eastern Cordillera hinterland, and explore potential variations in the geometry and style of basement deformation.
NASA Astrophysics Data System (ADS)
Agate, M.; Bertotti, G.; Catalano, R.; Pepe, F.; Sulli, A.
Three multichannel seismic reflection profiles across the North Sicily continental mar- gin have been reprocessed and interpreted. Data consist of an unpublished high pene- tration seismic profile (deep crust Italian CROP Project) and a high-resolution seismic line. These lines run in the NNE-SSW direction, from the Sicilian continental shelf to the Tyrrhenian abyssal plain (Marsili area), and are tied by a third, high penetration seismic line MS104 crossing the Sisifo High. The North Sicily continental margin represents the inner sector of the Sicilian-Maghrebian chain that is collapsed as con- sequence of extensional tectonics. The chain is formed by a tectonic wedge (12-15 km thick. It includes basinal Meso-Cenozoic carbonate units overthrusting carbonate platform rock units (Catalano et al., 2000). Presently, main culmination (e.g. Monte Solunto) and a number of tectonic depressions (e.g. Cefalù basin), filled by >1000 m thick Plio-Pleistocene sedimentary wedge, are observed along the investigated tran- sect. Seismic attributes and reflector pattern depicts a complex crustal structure. Be- tween the coast and the M. Solunto high, a transparent to diffractive band (assigned to the upper crust) is recognised above low frequency reflective layers (occurring be- tween 9 and 11 s/TWT) that dips towards the North. Their bottom can be correlated to the seismological (African?) Moho discontinuity which is (26 km deep in the Sicilian shelf (Scarascia et al., 1994). Beneath the Monte Solunto ridge, strongly deformed re- flectors occurring between 8 to 9.5 s/TWT (European lower crust?) overly the African (?) lower crust. The resulting geometry suggests underplating of the African crust respect to the European crust (?). The already deformed crustal edifice is dissected by a number of N-dipping normal faults that open extensional basins and are associ- ated with crustal thinning. The Plio-Pleistocene fill of the Cefalù basin can be subdi- vided into three subunits by well-developed unconformities. The stratal pattern of the lower subunit (Early Pliocene?) points out thrust-top basin. The intermediate subunit (Middle-Late Pliocene?) shows a wide sedimentary lateral accretion with syntectonic growth geometries. Upper Pliocene layers are overlain by well-stratified sediments of supposedly Pleistocene to Recent age, which drape and smooth underlying features (Pepe et al., 2000). Crustal thinning is (2 in the Cefalù basin and reach (3.54 north of Sisifo volcano, where crustal separation occurs and oceanic crust emplaced (Marsili 1 basin). In this area the Moho is located at (8 s/TWT, corresponding to 10-km depth. References Catalano R., Franchino A., Merlini S. e Sulli A., 2000. Mem. Soc. Geol. It., 55, 5-16. Pepe F., Bertotti G., Cella F. Marsella E., 2000. Tectonics, 19, 241-257. Scarascia S., Lozej A. Cassinis R., 1994. Boll. Geof. Teor. Appl., 36 (141-144), 5-19. 2
NASA Astrophysics Data System (ADS)
Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Cambaz, D.; Mutlu, A. K.; Kahraman, M.; Houseman, G. A.; Rost, S.; Thompson, D. A.; Cornwell, D. G.; Utkucu, M.; Gülen, L.
2013-12-01
The North Anatolian Fault (NAF) is one of the major strike slip fault systems on Earth comparable to San Andreas Fault in some ways. Devastating earthquakes have occurred along this system causing major damage and casualties. In order to comprehensively investigate the shallow and deep crustal structure beneath the western segment of NAF, a temporary dense seismic network for North Anatolia (DANA) consisting of 73 broadband sensors was deployed in early May 2012 surrounding a rectangular grid of by 70 km and a nominal station spacing of 7 km with the aim of further enhancing the detection capability of this dense seismic array. This joint project involves researchers from University of Leeds, UK, Bogazici University Kandilli Observatory and Earthquake Research Institute (KOERI), and University of Sakarya and primarily focuses on upper crustal studies such as earthquake locations (especially micro-seismic activity), receiver functions, moment tensor inversions, shear wave splitting, and ambient noise correlations. To begin with, we obtained the hypocenter locations of local earthquakes that occured within the DANA network. The dense 2-D grid geometry considerably enhanced the earthquake detection capability which allowed us to precisely locate events with local magnitudes (Ml) less than 1.0. Accurate earthquake locations will eventually lead to high resolution images of the upper crustal structure beneath the northern and southern branches of NAF in Sakarya region. In order to put additional constraints on the active tectonics of the western part of NAF, we also determined fault plane solutions using Regional Moment Tensor Inversion (RMT) and P wave first motion methods. For the analysis of high quality fault plane solutions, data from KOERI and the DANA project were merged. Furthermore, with the aim of providing insights on crustal anisotropy, shear wave splitting parameters such as lag time and fast polarization direction were obtained for local events recorded within the seismic network with magnitudes larger than 2.5.
NASA Astrophysics Data System (ADS)
Fu, Yuanyuan V.; Jia, Ruizhi; Han, Fengqin; Chen, Anguo
2018-06-01
The deep structure of southeastern Tibet is important for determining lateral plateau expansion mechanisms, such as movement of rigid crustal blocks along large strike-slip faults, continuous deformation or the eastward crustal channel flow. We invert for 3-D isotropic SH wave velocity model of the crust and upper mantle to the depth of 110 km from Love wave phase velocity data using a best fitting average model as the starting model. The 3-D SH velocity model presented here is the first SH wave velocity structure in the study area. In the model, the Tibetan Plateau is characterized by prominent slow SH wave velocity with channel-like geometry along strike-slip faults in the upper crust and as broad zones in the lower crust, indicating block-like and distributed deformation at different depth. Positive radial anisotropy (VSH > VSV) is suggested by a high SH wave and low SV wave anomaly at the depths of 70-110 km beneath the northern Indochina block. This positive radial anisotropy could result from the horizontal alignment of anisotropic minerals caused by lithospheric extensional deformation due to the slab rollback of the Australian plate beneath the Sumatra trench.
Crustal structure of central Syria: The intracontinental Palmyride mountain belt
NASA Astrophysics Data System (ADS)
Al-Saad, Damen; Sawaf, Tarif; Gebran, Ali; Barazangi, Muawia; Best, John A.; Chaimov, Thomas A.
1992-07-01
Along a 450-km transect across central Syria seismic reflection data, borehole information, potential field data and surface geologic mapping have been combined to examine the crustal structure of the northern Arabian platform beneath Syria. The transect is surrounded by the major plate boundaries of the Middle East, including the Dead Sea transform fault system along the Levantine margin to the west, the Bitlis suture and East Anatolian fault to the north, and the Zagros collisional belt to the northeast and east. Three main tectonic provinces of the northern Arabian platform in Syria are crossed by this transect from south to north: the Rutbah uplift, the Palmyra fold-thrust belt, and the Aleppo plateau. The Rutbah uplift in southern Syria is a broad, domal basement-cored structure with a thick Phanerozoic (mostly Paleozoic) cover of 6-7 km. Isopachs based on well and seismic reflection data indicate that this region was an early Paleozoic depocenter. The Palmyra fold-thrust belt, the northeastern arm of the Syrian Arc, is a northeast-southwest-trending intracontinental mountain belt that acts as a mobile tectonic zone between the relatively stable Rutbah uplift to the south and the less stable Aleppo plateau to the north. Short-wavelength en-echelon folds characterized by relatively steep, faulted southeast flanks dominate in the southwest, most strongly deformed segment of the belt, while a complex system of deeply rooted faults and broad folds characterize the northeastern region, described in this study. The Aleppo plateau lies immediately north of the Palmyride belt, with a combined Paleozoic and Mesozoic sedimentary section that averages 4-5 km in thickness. Although this region appears relatively undeformed on seismic reflection data when compared to Palmyride deformation, a system of near-vertical, probable strike-slip faults crosscut the region in a dominantly northeasterly direction. Gravity and magnetic modeling constrains the deep crustal structure along the transect. The crustal thickness is estimated to be approximately 38 km. Interpretation of the gravity data indicates two different crustal blocks beneath the Rutbah uplift and the Aleppo plateau, and the presence of a crustal-penetrating, high-density body beneath the northeast Palmyrides. The two distinct crustal blocks suggest that they were accreted possibly along a suture zone and/or a major strike-slip fault zone located approximately in the present-day position of the Palmyrides. The age of the accretion is estimated to be Proterozoic or Early Cambrian, based on the observation of a pervasive reflection (interpreted as the Middle Cambrian Burj limestone) in the Rutbah uplift and in the Aleppo plateau and by analogy with the well-mapped Proterozoic sutures of the Arabian shield to the south.
Crustal architecture of the oblique-slip conjugate margins of George V Land and southeast Australia
Stagg, H.M.J.; Reading, A.M.
2007-01-01
A conceptual, lithospheric-scale cross-section of the conjugate, oblique-slip margins of George V Land, East Antarctica, and southeast Australia (Otway Basin) has been constructed based on the integration of seismic and sample data. This cross-section is characterised by asymmetry in width and thickness, and depth-dependent crustal extension at breakup in the latest Maastrichtian. The broad Antarctic margin (~360 km apparent rift width) developed on thick crust (~42 km) of the Antarctic craton, whereas the narrow Otway margin (~220 km) developed on the thinner crust (~31 km) of the Ross–Delamerian Orogen. The shallow basement (velocities ~5.5 km.s-1) and the deep continental crust (velocities >6.4 km.s-1) appear to be largely absent across the central rift, while the mid-crustal, probably granitic layer (velocities ~6 km.s-1) is preserved. Comparison with published numerical models suggests that the shallow basement and deep crust may have been removed by simple shear, whereas the mid-crust has been ductilely deformed.
The south-central United States magnetic anomaly
NASA Technical Reports Server (NTRS)
Hinze, W. J.; Braile, L. W. (Principal Investigator); Starich, P. J.
1984-01-01
The South-Central United States Magnetic Anomaly is the most prominent positive feature in the MAGSAT scalar magnetic field over North America. The anomaly correlates with increased crustal thickness, above average crustal velocity, negative free air gravity anomalies and an extensive zone of Middle Proterozoic anorogenic felsic basement rocks. Spherical dipole source inversion of the MAGSAT scalar data and subsequent calculation of reduced to pole and derivative maps provide constraints for a crustal magnetic model which corresponds geographically to the extensive Middle Proterozoic felsic rocks trending northeasterly across the United States. These felsic rocks contain insufficient magnetization or volume to produce the anomaly, but are rather indicative of a crustal zone which was disturbed during a Middle Proterozoic thermal event which enriched magnetic material deep in the crust.
Crustal-scale geological and thermal models of the Beaufort-Mackenzie Basin, Arctic Canada
NASA Astrophysics Data System (ADS)
Sippel, Judith; Scheck-Wenderoth, Magdalena; Kröger, Karsten; Lewerenz, Björn
2010-05-01
The Beaufort-Mackenzie Basin is a petroliferous province in northwest Arctic Canada and one of the best-known segments of the Arctic Ocean margin due to decades of exploration. Our study is part of the programme MOM (Methane On the Move), which aims to quantify the methane contribution from natural petroleum systems to the atmosphere over geological times. Models reflecting the potential of a sedimentary basin to release methane require well-assessed boundary conditions such as the crustal structure and large-scale temperature variation. We focus on the crustal-scale thermal field of the Beaufort-Mackenzie Basin. This Basin has formed on a post-rift, continental margin which, during the Late Cretaceous and Tertiary, developed into the foreland of the North American Cordilleran foldbelt providing space for the accumulation of up to 16 km of foreland deposits. We present a 3D geological model which integrates the present topography, depth maps of Upper Cretaceous and Tertiary horizons (Kroeger et al., 2008, 2009), tops of formations derived from interpreted 2D reflection seismic lines and 284 boreholes (released by the National Energy Board of Canada), and the sequence stratigraphic framework established by previous studies (e.g. Dixon et al., 1996). To determine the position and geometry of the crust-mantle boundary, an isostatic calculation (Airýs model) is applied to the geological model. We present different crustal-scale models combining isostatic modelling, published deep reflection and refraction seismic lines (e.g. Stephenson et al., 1994; O'Leary et al., 1995), and calculations of the 3D conductive thermal field. References: Dixon, J., 1996. Geological Atlas of the Beaufort-Mackenzie Area, Geological Survey of Canada Miscellaneous Report, 59, Ottawa, 173 pp. Kroeger, K.F., Ondrak, R., di Primio, R. and Horsfield, B., 2008. A three-dimensional insight into the Mackenzie Basin (Canada): Implications for the thermal history and hydrocarbon generation potential of Tertiary deltaic sequences, AAPG Bulletin, 92(2): 225-247. Kroeger, K.F., di Primio, R. and Horsfield, B., (2009). Hydrocarbon flow modeling in complex structures (Mackenzie Basin, Canada), AAPG Bulletin, 93(9): 1-25. O'Leary, D.M., Ellis, R.M., Stephenson, R.A., Lane, L.S. and Zelt, C.A., 1995. Crustal structure of the northern Yukon and Mackenzie Delta, northwestern Canada, Journal of Geophysical Research 100(B7): 9905-9920. Stephenson, R.A., Coflin, K.C., Lane, L.S. and Dietrich, J.R., 1994. Crustal structure and tectonics of the southeastern Beaufort Sea continental margin, Tectonics, 13(2): 389-400.
Seismic anisotropy of the crystalline crust: What does it tell us?
Rabbel, Wolfgang; Mooney, Walter D.
1996-01-01
The study of the directional dependence of seismic velocities (seismic anisotropy) promises more refined insight into mineral composition and physical properties of the crystalline crust than conventional deep seismic refraction or reflection profiles providing average values of P-and S-wave velocities. The alignment of specific minerals by ductile rock deformation, for instance, causes specific types of seismic anisotropy which can be identified by appropriate field measurements.Vice versa, the determination of anisotropy can help to discriminate between different rock candidates in the deep crust. Seismic field measurements at the Continental Deep Drilling Site (KTB, S Germany) are shown as an example that anisotropy has to be considered in crustal studies. At the KTB, the dependence of seismic velocity on the direction of wave propagation in situ was found to be compatible with the texture, composition and fracture density of drilled crustal rocks.
Statistical geochemistry reveals disruption in secular lithospheric evolution about 2.5 Gyr ago.
Keller, C Brenhin; Schoene, Blair
2012-05-23
The Earth has cooled over the past 4.5 billion years (Gyr) as a result of surface heat loss and declining radiogenic heat production. Igneous geochemistry has been used to understand how changing heat flux influenced Archaean geodynamics, but records of systematic geochemical evolution are complicated by heterogeneity of the rock record and uncertainties regarding selection and preservation bias. Here we apply statistical sampling techniques to a geochemical database of about 70,000 samples from the continental igneous rock record to produce a comprehensive record of secular geochemical evolution throughout Earth history. Consistent with secular mantle cooling, compatible and incompatible elements in basalts record gradually decreasing mantle melt fraction through time. Superimposed on this gradual evolution is a pervasive geochemical discontinuity occurring about 2.5 Gyr ago, involving substantial decreases in mantle melt fraction in basalts, and in indicators of deep crustal melting and fractionation, such as Na/K, Eu/Eu* (europium anomaly) and La/Yb ratios in felsic rocks. Along with an increase in preserved crustal thickness across the Archaean/Proterozoic boundary, these data are consistent with a model in which high-degree Archaean mantle melting produced a thick, mafic lower crust and consequent deep crustal delamination and melting--leading to abundant tonalite-trondhjemite-granodiorite magmatism and a thin preserved Archaean crust. The coincidence of the observed changes in geochemistry and crustal thickness with stepwise atmospheric oxidation at the end of the Archaean eon provides a significant temporal link between deep Earth geochemical processes and the rise of atmospheric oxygen on the Earth.
3D Thermal/Mechanical Evolution Of The Plate Boundary Corner In SE Alaska
NASA Astrophysics Data System (ADS)
Barker, A.; Koons, P.; Upton, P.; Pavlis, T.; Chapman, J.
2007-12-01
The St Elias orogen of southeast Alaska forms part of an actively deforming plate boundary corner. The corner accommodates the transition from a strike-slip lateral boundary to a convergent normal boundary. Oblique convergence of the Yakutat microplate into the corner generates early stage tectonic characteristics associated with other corner systems (e.g. Himalayan Eastern Syntaxis). In combination with the high relief, the extreme erosive processes of the region redistribute crustal material, partition tectonic strain, and influence the advection of deep crustal material. The evolution of the convergent corner is investigated using 3D numerical models and sandbox analog models. Preliminary model results indicate the deformation partitions into a narrow two-sided orogen along the lateral boundary. The pattern transitions into a wider zone of shortening bounded by inboard and outboard directed thrusts along the frontal boundary. The inclusion of erosion boundary conditions leads to nascent tectonic aneurysm behavior, involving increased strain localization and focused vertical advection of deep crustal material. Thermal models, using the 3D velocity field from these mechanical solutions, show a vertical deflection (towards the surface) of isotherms beneath the eroding region. Sensitivity of the aneurysm behavior is related to the efficiency of the imposed erosion rate (i.e. greater erosion rates led to greater bedrock uplift rates). Higher erosion rates are localized within zones containing major glacier systems in SE Alaska: Bering Glacier, Bagley Icefield, Malaspina Glacier, and Seward Glacier. Combined thermal/mechanical solutions identify the glacier valleys as rheological weakspots, defined by localized strain and differential advection of deep crustal material.
NASA Astrophysics Data System (ADS)
Hochmuth, Katharina; Gohl, Karsten; Uenzelmann-Neben, Gabriele
2014-05-01
The Manihiki Plateau is a Large Igneous Province (LIP) located in the Central Pacific. It is assumed, that the formation of the Manihiki Plateau took place during the early Cretaceous in multiple volcanic stages as part of the "Super-LIP" Ontong-Java-Nui. The plateau consists of several sub-plateaus of which the Western Plateau und High Plateau are the largest. In addressing the plateau's magmatic evolutionary history, one of the key questions is whether all sub-plateaus experienced the same magmatic history or if distinct phases of igneous or tectonic processes led to its fragmentation. During the RV Sonne cruise SO-224 in 2012; we collected two deep crustal seismic refraction/wide-angle reflection lines, crossing the two main sub-plateaus. Modeling of P- and S-wave phases reveals the different crustal nature of both sub-plateaus. On the High Plateau, the 20 km thick crust is divided into four seismic units, interpreted to range from basaltic composition in the uppermost crust to peridotitic composition in the middle and lower crust. The Western Plateau on the other hand shows multiple rift structures and no indications of basalt flows. With a maximum of 17 km crustal thickness, the Western Plateau is also thinner than the High Plateau. The upper basement layers show relatively low P-wave velocities (3.0 - 5.0 km/s), which infers that on the Western Plateau these layers consist of volcanoclastic and carbonatic rocks rather than basaltic flow units. Later volcanic stages may be restricted to the High Plateau with a possible eastward trend in the center of volcanic activity. Extensive secondary volcanism does not seem to have occurred on the Western Plateau, and its later deformation is mainly caused by tectonic extension and rifting.
Basement Structure and Styles of Active Tectonic Deformation in Central Interior Alaska
NASA Astrophysics Data System (ADS)
Dixit, N.; Hanks, C.
2017-12-01
Central Interior Alaska is one of the most seismically active regions in North America, exhibiting a high concentration of intraplate earthquakes approximately 700 km away from the southern Alaska subduction zone. Based on increasing seismological evidence, intraplate seismicity in the region does not appear to be uniformly distributed, but concentrated in several discrete seismic zones, including the Nenana basin and the adjacent Tanana basin. Recent seismological and neotectonics data further suggests that these seismic zones operate within a field of predominantly pure shear driven primarily by north-south crustal shortening. Although the location and magnitude of the seismic activity in both basins are well defined by a network of seismic stations in the region, the tectonic controls on intraplate earthquakes and the heterogeneous nature of Alaska's continental interior remain poorly understood. We investigated the current crustal architecture and styles of tectonic deformation of the Nenana and Tanana basins using existing geological, geophysical and geochronological datasets. The results of our study demonstrate that the basements of the basins show strong crustal heterogeneity. The Tanana basin is a relatively shallow (up to 2 km) asymmetrical foreland basin with its southern, deeper side controlled by the northern foothills of the central Alaska Range. Northeast-trending strike-slip faults within the Tanana basin are interpreted as a zone of clockwise crustal block rotation. The Nenana basin has a fundamentally different geometry; it is a deep (up to 8 km), narrow transtensional pull-apart basin that is deforming along the left-lateral Minto Fault. This study identifies two distinct modes of tectonic deformation in central Interior Alaska at present, and provides a basis for modeling the interplay between intraplate stress fields and major structural features that potentially influence the generation of intraplate earthquakes in the region.
Seismic Velocity Assessment In The Kachchh Region, India, From Multiple Waveform Functionals
NASA Astrophysics Data System (ADS)
Ghosh, R.; Sen, M. K.; Mandal, P.; Pulliam, J.; Agrawal, M.
2014-12-01
The primary goal of this study is to estimate well constrained crust and upper mantle seismic velocity structure in the Kachchh region of Gujarat, India - an area of active interest for earthquake monitoring purposes. Several models based on 'stand-alone' surface wave dispersion and receiver function modeling exist in this area. Here we jointly model the receiver function, surface wave dispersion and, S and shear-coupled PL wavetrains using broadband seismograms of deep (150-700 km), moderate to-large magnitude (5.5-6.8) earthquakes recorded teleseismically at semi-permanent seismograph stations in the Kachchh region, Gujarat, India. While surface wave dispersion and receiver function modeling is computationally fast, full waveform modeling makes use of reflectivity synthetic seismograms. An objective function that measures misfit between all three data is minimized using a very fast simulated annealing (VFSA) approach. Surface wave and receiver function data help reduce the model search space which is explored extensively for detailed waveform fitting. Our estimated crustal and lithospheric thicknesses in this region vary from 32 to 41 km and 70 to 80 km, respectively, while crustal P and S velocities from surface to Moho discontinuity vary from 4.7 to 7.0 km/s and 2.7 to 4.1 km/s, respectively. Our modeling clearly reveals a zone of crustal as well as an asthenospheric upwarping underlying the Kachchh rift zone relative to the surrounding unrifted area. We believe that this feature plays a key role in the seismogenesis of lower crustal earthquakes occurring in the region through the emanation of volatile CO2 into the hypocentral zones liberating from the crystallization of carbonatite melts in the asthenosphere. Such a crust-mantle structure might be related to the plume-lithosphere interaction during the Deccan/Reunion plume episode (~65 Ma).
NASA Astrophysics Data System (ADS)
Gans, P. B.; Wong, M.
2014-12-01
The juxtaposition of mylonitic mid-crustal rocks and faulted supracrustal rocks in metamorphic core complexes (MMCs) is usually portrayed in 2 dimensions and attributed to a single event of large-scale slip ± isostatic doming along a low-angle "detachment fault"/ shear zone. This paradigm does not explain dramatic along strike (3-D) variations in slip magnitude, footwall architecture, and burial / exhumation histories of most MMCs. A fundamental question posed by MMCs is how did their earlier thickening and exhumation histories influence the geometric evolution and 3-D slip distribution on the subsequent detachment faults? New geologic mapping and 40Ar/39Ar thermochronology from the Snake Range-Kern Mts-Deep Creek Mts (SKDC) complex in eastern Nevada offer important insights into this question. Crustal shortening and thickening by large-scale non-cylindrical recumbent folds and associated thrust faults during the late Cretaceous (90-80 Ma) resulted in deep burial (650°C, 20-25 km) of the central part of the footwall, but metamorphic grade decreases dramatically to the N and S in concert with decreasing amplitude on the shortening structures. Subsequent Paleogene extensional exhumation by normal faulting and ESE-directed mylonitic shearing is greatest in areas of maximum earlier thickening and brought highest grade rocks back to depths of~10-12 km. After ≥15 Ma of quiescence, rapid E-directed slip initiated along the brittle Miocene Snake Range detachment at 20 Ma and reactivated the Eocene shear zone. The ≥200°C gradient across the footwall at this time implies that the Miocene slip surface originated as a moderately E-dipping normal fault. This Miocene slip surface can be tracked for more than 100 km along strike, but the greatest amount of Miocene slip also coincides with parts of the footwall that were most deeply buried in the Cretaceous. These relations indicate that not only is the SKDC MMC a composite feature, but that the crustal welt created by early thickening played a fundamental role in controlling the slip distribution on subsequent extensional structures and is still evident in the high modern surface elevations of the portions of the footwall what were most deeply buried.
Moho depth across the Trans-European Suture Zone from P- and S-receiver functions
NASA Astrophysics Data System (ADS)
Knapmeyer-Endrun, Brigitte; Krüger, Frank; Passeq Working Group
2014-05-01
The Mohorovičić discontinuity, Moho for short, which marks the boundary between crust and mantle, is the main first-order structure within the lithosphere. Geodynamics and tectonic evolution determine its depth level and properties. Here, we present a map of the Moho in central Europe across the Teisseyre-Tornquist Zone, a region for which a number of previous studies are available. Our results are based on homogeneous and consistent processing of P- and S-receiver functions for the largest passive seismological data set in this region yet, consisting of more than 40 000 receiver functions from almost 500 station. Besides, we also provide new results for the crustal vP/vS ratio for the whole area. Our results are in good agreement with previous, more localized receiver function studies, as well as with the interpretation of seismic profiles, while at the same time resolving a higher level of detail than previous maps covering the area, for example regarding the Eifel Plume region, Rhine Graben and northern Alps. The close correspondence with the seismic data regarding crustal structure also increases confidence in use of the data in crustal corrections and the imaging of deeper structure, for which no independent seismic information is available. In addition to the pronounced, stepwise transition from crustal thicknesses of 30 km in Phanerozoic Europe to more than 45 beneath the East European Craton, we can distinguish other terrane boundaries based on Moho depth as well as average crustal vP/vS ratio and Moho phase amplitudes. The terranes with distinct crustal properties span a wide range of ages, from Palaeoproterozoic in Lithuania to Cenozoic in the Alps, reflecting the complex tectonic history of Europe. Crustal thickness and properties in the study area are also markedly influenced by tectonic overprinting, for example the formation of the Central European Basin System, and the European Cenozoic Rift System. In the areas affected by Cenozoic rifting and volcanism, thinning of the crust corresponds to lithospheric updoming reported in recent surface wave and S-receiver function studies, as expected for thermally induced deformation. The same correlation applies for crustal thickening, not only across the Trans-European Suture Zone, but also within the southern part of the Bohemian Massif. A high Poisson's ratio of 0.27 is obtained for the craton, which is consistent with a thick mafic lower crust. In contrast, we typically find Poisson's ratios around 0.25 for Phanerozoic Europe outside of deep sedimentary basins. Mapping of the thickness of the shallowest crustal layer, that is low-velocity sediments or weathered rock, indicates values in excess of 6 km for the most pronounced basins in the study area, while thicknesses of less than 4 km are found within the craton, central Germany and most of the Czech Republic.
New Interpretation of Crustal Extension Evidences on Mars
NASA Astrophysics Data System (ADS)
Grin, E. A.
The record of early evolution of life on Earth has been obscured by extensive surface activity. On the opposite, large fractions of the martian surface date back to an early clement epoch favorable to the needs of biological systems [1]. The upper martian surface reflects a wide variety of modifying processes which destroy the geological context. However, due to endogenic causes acting after the end of the primordial bombardment, abundant extensional structures display vertical sequences of stratigraphic units from late Noachian to early Hesperian periods [2]. Deep structural incisions in the upper crust provide unaltered strata, open flanks, and slope deposits that favor the use of an autonomous lander-rover-penetrator The strategy for an exobiology search of such an optimum site should be guided by the recent attention devoted to extensional structures and their global significance [4]. Geological evidence supporting the martian crustal extension is suggested by abundant fractures associated with the dichotomy boundary northland-south upland, i.e., Aeolis Region, and peak igneous activity (Elysium bulge). As pointed out by [5], the system of fractures correlates with the endogenic origin of the dichotomy, as related to a major difference in the thicknessof the crust. Perpendicular to this boundary, fractures of deep graben testify to a general tectonic crust relaxation. The opening of the graben, joined with compressive wrinkles, is the signature of a dynamical pervasive stress regime that implies a large scale roll-over of the upper crust over the ductile interface of a more dense mantle. This general motion is not a transport of material, as there is no thickening on the boundary of the dichotomy. The horizontal movement is due to the gravitational mechanism and differential thermal convection cells in the upper crust over the slope of the anti-flexure rigid interface consequential to Elysium bulge. The fracturation occurs as the neutral zone of the crust rises to the brittle surface of the crust. Deep extensional structures are logical sites for locating and sampling fossilized organisms from various epochs. Grabens suggest ancient lakes and the development of biological systems supported by bottom hot springs.
NASA Astrophysics Data System (ADS)
Davy, R. G.; Morgan, J. V.; Minshull, T. A.; Bayrakci, G.; Bull, J. M.; Klaeschen, D.; Reston, T. J.; Sawyer, D. S.; Lymer, G.; Cresswell, D.
2018-01-01
Continental hyperextension during magma-poor rifting at the Deep Galicia Margin is characterized by a complex pattern of faulting, thin continental fault blocks and the serpentinization, with local exhumation, of mantle peridotites along the S-reflector, interpreted as a detachment surface. In order to understand fully the evolution of these features, it is important to image seismically the structure and to model the velocity structure to the greatest resolution possible. Traveltime tomography models have revealed the long-wavelength velocity structure of this hyperextended domain, but are often insufficient to match accurately the short-wavelength structure observed in reflection seismic imaging. Here, we demonstrate the application of 2-D time-domain acoustic full-waveform inversion (FWI) to deep-water seismic data collected at the Deep Galicia Margin, in order to attain a high-resolution velocity model of continental hyperextension. We have used several quality assurance procedures to assess the velocity model, including comparison of the observed and modeled waveforms, checkerboard tests, testing of parameter and inversion strategy and comparison with the migrated reflection image. Our final model exhibits an increase in the resolution of subsurface velocities, with particular improvement observed in the westernmost continental fault blocks, with a clear rotation of the velocity field to match steeply dipping reflectors. Across the S-reflector, there is a sharpening in the velocity contrast, with lower velocities beneath S indicative of preferential mantle serpentinization. This study supports the hypothesis that normal faulting acts to hydrate the upper-mantle peridotite, observed as a systematic decrease in seismic velocities, consistent with increased serpentinization. Our results confirm the feasibility of applying the FWI method to sparse, deep-water crustal data sets.
NASA Astrophysics Data System (ADS)
Cossette, Élise; Schneider, David; Audet, Pascal; Grasemann, Bernhard
2016-04-01
Seismic anisotropy data are often used to resolve rock structures and deformation styles in the crust based on compilations of rock properties that may not be representative of the exposed geology. We use teleseismic receiver functions jointly with in situ rock property data to constrain the seismic structure and anisotropy of the crust in the Cyclades, Greece, located in the back arc region of the Hellenic subduction zone. Crystallographic preferred orientations (CPOs) via electron backscatter diffraction (EBSD) analyses were measured on a suite of samples representative of different structural depths along the West Cycladic Detachment System; average seismic properties of the rocks were calculated with the Voigt-Reuss-Hill average of the single minerals' elastic stiffness tensor. The calcitic and quartzitic rocks have P- and S-wave velocity anisotropies (AVp, AVs) averaging 8.1% and 7.1%, respectively. The anisotropy increases with depth represented by blueschist assemblages, with AVp averaging 20.3% and AVs averaging 14.5% due to the content of aligned glaucophane and mica, which strongly control the seismic properties of the rocks. Localized anisotropies of very high magnitude are caused by the presence of mica schists as they possess the strongest anisotropies, with values of ~25% for AVp and AVs. The direction of the fast and slow P-wave velocities occur parallel and perpendicular to the foliation, respectively, for most samples. The fast propagation has the same NE-SW orientation as the lithospheric stretching direction present in the Cyclades since the Late Oligocene. The maximum shear wave anisotropy is subhorizontal, similarly concordant with mineral alignment that developed during back-arc extension. Our results strongly favor radial anisotropy in the Aegean mid-crust over azimuthal anisotropy. The receiver function data indicate that the Moho is relatively flat at 25 km depth in the south and deepens to 33 km in the north, consistent with previous studies, and reveal an intra-crustal discontinuity at depth varying from 3 to 11 km, mostly observed in the south-central Aegean. Harmonic decomposition of the receiver functions further indicates layering of both shallow and deep crustal anisotropy related to crustal structures. We model synthetic receiver functions based on constraints from the in situ rock properties that we measured using the EBSD technique. Our results indicate that the shallow upper crustal layer is characterized by metapelites with ~5% anisotropy, underlain by a 20 km thick and anisotropic layer of possible high-pressure rocks comprising blueschist and eclogite and/or restitic crust as a consequence of Miocene magmatism. Seismic anisotropy models require a sub-vertical axis of hexagonal symmetry in the upper crust (i.e. radial anisotropy), consistent with in situ rock data. Finally, a thinned crust is likely caused by back-arc extension associated with elevated sub-crustal temperatures, in agreement with thermal isostasy models of back arcs. This study demonstrates the importance of integrating rock textural data with seismic velocity profiles in the interpretation of crustal architecture.
Ivrea mantle wedge and arc of the Western Alps (I): Geophysical evidence for the deep structure
NASA Astrophysics Data System (ADS)
Kissling, Edi; Schmid, Stefan M.; Diehl, Tobias
2017-04-01
The construction of five crustal-scale profiles across the Western Alps and the Ivrea mantle wedge integrates up-to-date geological and geophysical information and reveals important along strike changes in the overall structure of the crust of the Western Alpine arc (Schmid et al. 2017). The 3D crustal model of the Western Alps represented by these cross sections is based on recent P-velocity local earthquake tomography that compliments the previously existing wealth of geophysical information about lithosphere structure in the region. As part of Adria mantle lithosphere exhibiting strong upward bending toward the plate boundary along the inner arc of the Western Alps, the well-known Ivrea body plays a crucial role in our tectonic model. Until recently, however, the detailed 3D geometry of this key structure was only poorly constrained. In this study we present a review of the many seismic data in the region and we document the construction of our 3D lithosphere model by principles of multidisciplinary seismic tomography. Reference: Stefan M. Schmid, Edi Kissling, Douwe J.J. van Hinsbergen, Giancarlo Molli (2017). Ivrea mantle wedge and arc of the Western Alps (2): Kinematic evolution of the Alps-Apennines orogenic system. Abstract Volume EGU 2017.
NASA Astrophysics Data System (ADS)
Šumanovac, Franjo; Hegedűs, Endre; Orešković, Jasna; Kolar, Saša; Kovács, Attila C.; Dudjak, Darko; Kovács, István J.
2016-06-01
Passive seismic experiment was carried out at the SW contact of the Dinarides and Pannonian basin to determine the crustal structure and velocity discontinuities. The aim of the experiment was to define the relationship between the Adriatic microplate and the Pannonian segment as a part of the European plate. Most of the temporary seismic stations were deployed in Croatia along the Alp07 profile-a part of the active-source ALP 2002 project. About 300-km-long profile stretches from Istra peninsula to the Drava river, in a WSW-ESE direction. Teleseismic events recorded on 13 temporary seismic stations along the profile were analysed by P-receiver function method. Two types of characteristic receiver functions (RF) have been identified, belonging to Dinaridic and Pannonian crusts as defined on the Alp07 profile, while in transitional zone there are both types. Three major crustal discontinuities can be identified for the Dinaridic type: sedimentary basement, intracrustal discontinuity and Mohorovičić discontinuity, whereas the Pannonian type revealed only two discontinuities. The intracrustal discontinuity was not observed in the Pannonian type, thus pointing to a single-layered crust in the Pannonian basin. Two interpretation methods were applied: forward modelling of the receiver functions and H-κ stacking method, and the results were compared with the active-source seismic data at deep refraction profile Alp07. The receiver function modelling has given reliable results of the Moho depths that are in accordance with the seismic refraction results at the end of the Alp07 profile, that is in the area of Pannonian crust characterized by simple crustal structure and low seismic velocities (Vp between 5.9 and 6.2 km s-1). In the Dinarides and its peripheral parts, receiver function modelling regularly gives greater Moho depths, up to +15 per cent, due to more complex crustal structure. The depths of the Moho calculated by the H-κ stacking method vary within wide limits (±13 km), due to band limited data of short-period stations. The results at five stations have to be rejected because of huge deviations in comparison with all previous results, while at the other seven stations the Moho depths vary within ±15 per cent around the Moho discontinuity of the Alp07 profile.
NASA Astrophysics Data System (ADS)
Shulgin, A.; Kopp, H.; Mueller, C.; Planert, L.; Lueschen, E.; Flueh, E. R.; Djajadihardja, Y.
2011-01-01
The region offshore Eastern Java represents one of the few places where the early stage of oceanic plateau subduction is occurring. We study the little investigated Roo Rise oceanic plateau on the Indian plate, subducting beneath Eurasia. The presence of the abnormal bathymetric features entering the trench has a strong effect on the evolution of the subduction system, and causes additional challenges on the assessment of geohazard risks. We present integrated results of a refraction/wide-angle reflection tomography, gravity modelling, and multichannel reflection seismic imaging using data acquired in 2006 south of Java near 113°E. The composite structural model reveals the previously unresolved deep geometry of the oceanic plateau and the subduction zone. The oceanic plateau crust is on average 15 km thick and covers an area of about 100 000 km2. Within our profile the Roo Rise crustal thickness ranges between 18 and 12 km. The upper oceanic crust shows high degree of fracturing, suggesting heavy faulting. The forearc crust has an average thickness of 14 km, with a sharp increase to 33 km towards Java, as revealed by gravity modelling. The complex geometry of the backstop suggests two possible models for the structural formation within this segment of the margin: either accumulation of the Roo Rise crustal fragments above the backstop or alternatively uplift of the backstop caused by basal accumulation of crustal fragments. The subducting plateau is affecting the stress field within the accretionary complex and the backstop edge, which favours the initiation of large, potentially tsunamogenic earthquakes such as the 1994 Mw= 7.8 tsunamogenic event.
Steltenpohl, Mark G.; Horton, J. Wright; Hatcher, Robert D.; Zietz, Isidore; Daniels, David L.; Higgins, Michael W.
2013-01-01
Aeromagnetic and gravity data sets obtained for Alabama (United States) have been digitally merged and filtered to enhance upper-crustal anomalies. Beneath the Appalachian Basin in northwestern Alabama, broad deep-crustal anomalies of the continental interior include the Grenville front and New York–Alabama lineament (dextral fault). Toward the east and south, high-angle discordance between the northeast-trending Appalachians and the east-west–trending wedge of overlapping Mesozoic and Cenozoic Gulf Coastal Plain sediments reveals how bedrock geophysical signatures progressively change with deeper burial. High-frequency magnetic anomalies in the Appalachian deformed domain (ADD) correspond to amphibolites and mylonites outlining terranes, while broader, lower-amplitude domains include Paleozoic intrusive bodies and Grenville basement gneiss. Fundamental ADD structures (e.g., the Alexander City, Towaliga, and Goat Rock–Bartletts Ferry faults) can be traced southward beneath the Gulf Coastal Plain to the suture with Gondwanan crust of the Suwannee terrane. Within the ADD, there is clear magnetic distinction between Laurentian crust and the strongly linear, high-frequency magnetic highs of peri-Gondwanan (Carolina-Uchee) arc terranes. The contact (Central Piedmont suture) corresponds to surface exposures of the Bartletts Ferry fault. ADD magnetic and gravity signatures are truncated by the east-west–trending Altamaha magnetic low associated with the Suwannee suture. Arcuate northeast-trending magnetic linears of the Suwannee terrane reflect internal structure and Mesozoic failed-rift trends. Geophysical data can be used to make inferences on surface and subsurface geology and vice versa, which has applicability anywhere that bedrock is exposed or concealed beneath essentially non-magnetic sedimentary cover.
Ambient seismic noise applications for Titan
NASA Astrophysics Data System (ADS)
Jackson, J. M.; Zhan, Z.; Clayton, R. W.; Helmberger, D. V.; Tsai, V. C.
2010-12-01
Titan is Saturn’s largest moon and is host to a myriad of surface, crustal, and perhaps interior dynamic processes (e.g., Lunine & Lorenz 2009; Sotin et al. 2009). Although recent gravity data put constraints on the nature of Titan’s deep interior (Iess et al. 2010), details regarding the layering and crustal structure remain poorly constrained. For example, the crustal thickness derived from modeling of the gravity data suggests a value ~100 km, but with a large uncertainty. There may exist a subsurface ocean or reservoirs of liquid that actively connects with Titan’s hyrdrocarbon-bearing lakes and atmosphere. Cross-correlation of ambient seismic noise is an emerging method to study crustal structures (e.g., Shapiro et al. 2005). Recent results show that under certain conditions, such as post-critical reflections, the Moho-reflected shear wave (SmS) can be clearly identified with ambient seismic noise [Zhan et al. 2010]. Titan may represent a plausible planetary body to apply the methods of ambient seismic noise, thereby providing a unique opportunity to better understand the interior of an icy body in our solar system. We will explore the use of ambient seismic noise on Titan and assess its application to determine interior structures, such as signals expected for different crust-(ocean)-mantle boundary depths. References: Iess, L. et al. (2010), Science 327: 1367-1369 Lunine, J.I. and Lorenz, R.D. (2009), Ann. Rev. Earth Planet. Sci. 37: 299-320. Shapiro et al. (2005), Science 307: 1615-1618. Sotin et al. (2009), in Titan from Cassini-Huygens: 61-73. R.H. Brown, J.-P. Lebreton, J. Hunter Waite, Eds. Zhan, Z. et al. (2010), Geophys. J. Int. doi: 10.1111/j/1365-246X.2010.04625.x Acknowledgments: Parts of this work grew out of discussions during a mini study at the Keck Institute for Space Studies, which is funded by the W. M. Keck Foundation.
NASA Astrophysics Data System (ADS)
Chen, J.; Wiens, D.; Wei, S. S.; Zha, Y.; Julià, J.; Cai, C.; Chen, Y. J.
2015-12-01
In order to investigate the crustal thickness and lithospheric structure beneath active and inactive volcanic arcs in Fiji and Tonga, we analyzed receiver functions from teleseismic P waves as well as Rayleigh waves from teleseismic earthquakes and ambient noise. The data were recorded by stations from three previous temporary seismic arrays deployed on the islands during 1993-1995, 2001-2002, and 2009-2010. Receiver functions were calculated with an iterative deconvolution in the time domain. We used an H-k stacking method to get preliminary Moho depth estimates under the island arcs, after assuming constant seismic average crustal P velocity. We also determined the shear wave velocity structure beneath each station from a 1-D combined inversion of receiver functions and Rayleigh wave phase velocity dispersion curves from ambient noise cross correlation at 8s - 20s and teleseismic surface waves at 20s-90s. The joint inversion models reveal that the Moho beneath the main islands of the Fiji plateau is 26-31 km deep, whereas the crust under the outer islands - including the Lau Ridge - is generally thinner, with Moho depths of 21-23.5 km. The thinnest crust (16 km) is found beneath Moala Island located between the Fiji Platform and the Lau Ridge. Crustal thickness beneath several Tonga islands is about 18-20 km. A relatively high velocity lithosphere (Vs of 4.4 - 4.5 km/s) extends to only about 60 km depth beneath the outer Fiji Islands and Lau Ridge, but to depths of 90 km underneath the main islands of the Fiji Plateau. The much thicker crust and lithosphere of the Fiji plateau relative to the Lau Ridge and Tonga Arc reflects its much longer geological history of arc crust building, going back to the early Miocene.
NASA Astrophysics Data System (ADS)
Prada, M.; Watremez, L.; Chen, C.; O'Reilly, B.; Minshull, T. A.; Reston, T. J.; Wagner, G.; Gaw, V.; Klaeschen, D.; Shannon, P.
2015-12-01
The Porcupine Basin is a tongue-shaped basin SW of Ireland formed during the opening of the North Atlantic Ocean. Its history of sedimentation reveals several rifting and subsidence phases during the Late Paleozoic and Cenozoic, with a particular major rift phase occurring in Late Jurassic-Early Cretaceous times. Previous work, focused on seismic and gravity data, suggest the presence of major crustal faulting and uppermost mantle serpentinization in the basin. Serpentinization is a key factor in lithospheric extension since it reduces the strength of mantle rocks, and hence, influences the tectonics of the lithosphere. Besides reducing the seismic velocity of the rock, serpentinization decreases mantle rock density favoring isostatic rebound and basin uplift, thus affecting the tectonic and thermal evolution of the basin. Here we characterize the deep structure of the Porcupine Basin from wide-angle seismic (WAS) and gravity data, with especial emphasis on the nature of the underlying mantle. The WAS data used were acquired along a 300 km long transect across the northern region of the basin. We used a travel time inversion method to model the data and obtain a P-wave velocity (Vp) model of the crust and uppermost mantle, together with the geometry of the main geological interfaces. The crustal structure along the model reveals a maximum stretching factor of ~5-6. These values are well within the range of crustal extension at which the crust becomes entirely brittle allowing the formation of major crustal faulting and serpentinization of the mantle. To further constrain the seismic structure and hence the nature of the mantle we assess the Vp uncertainty of the model by means of a Monte Carlo analysis and perform gravity modeling to test different interpretations regarding mantle rock nature. This project is funded by the Irish Shelf Petroleum Studies Group (ISPSG) of the Irish Petroleum Infrastructure Programme Group 4.
Study on 3-D velocity structure of crust and upper mantle in Sichuan-yunnan region, China
Wang, C.; Mooney, W.D.; Wang, X.; Wu, J.; Lou, H.; Wang, F.
2002-01-01
Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others appear the characteristic of tectonic boundary, indicating that the faults litely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the Sichuan-Yunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the Indian and the Asian plates. The crustal velocity in the Sichuan-Yunnan rhombic block generally shows normal.value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.
NASA Astrophysics Data System (ADS)
Schulte-Pelkum, V.; Mahan, K. H.
2015-12-01
We investigate seismic and geological features related to the tectonic evolution of the crust on a continent-wide scale. We present continent-wide features using Transportable Array data receiver function analysis, followed by regional comparisons to tie to ground truth from xenolith studies and structural mapping. We stress that the Transportable Array, at ~75 km station spacing, only offers a collection of point measurements of the crust due to the lack of crossing raypaths. 7.x layers (lower crust with high seismic velocities) can be created during crustal growth processes such as magmatic or mechanical underplating and during crustal modification such as large-scale melting. We present receiver function results and a compilation of previous regional studies using refraction data or receiver functions from regional dense networks. 7.x layers appear predominantly in parts of the northern U.S. Cordillera and across the southeastern U.S. We compare the seismic results with a xenolith study in Montana that details incremental growth of the 7.x layer from the Archean on. Hydration of a granulitic lower crust can destroy the 7.x layer and has the potential to cause epirogenic uplift. We interpret the pattern seen across the Transportable Array in the light of this hypothesis. Ductile deformation of the deep crust generates shear fabrics that can be detected seismically. Receiver functions detect shear zones via contrasts in foliation to the surrounding material. We map foliation strikes and depths in the crust across the Transportable Array using azimuthal analysis of receiver functions. Strikes from receiver functions typically align with surface fault traces in tectonically active regions, with depths of the converters exceeding the brittle zone. We discuss continent-wide strikes mapped with receiver functions. Contrasting orientations of Proterozoic shear zones and pervasive surrounding foliations in basement exposures in Colorado are reflected in seismic results from the Transportable Array and CREST experiment.
Geophysical survey reveals tectonic structures in the Amundsen Sea embayment, West Antarctica
Gohl, K.; Eagles, G.; Netzeband, G.; Grobys, J.W.G.; Parsiegla, N.; Schlüter, P.; Leinweber, V.; Larter, R.D.; Uenzelmann-Neben, G.; Udintsev, G.B.
2007-01-01
Island Bay (PIB) reveal the crustal thickness and some tectonic features. The Moho is 24-22 km deep on the shelf. NE-SW trending magnetic and gravity anomalies and the thin crust indicate a former rift zone that was active during or in the run-up to breakup between Chatham Rise and West Antarctica before or at 90 Ma. NW-SE trending gravity and magnetic anomalies, following a prolongation of Peacock Sound, indicate the extensional southern boundary to the Bellingshausen Plate which was active between 79 and 61 Ma.
Do MAGSAT anomalies contain a record of past and present-day mantle convection under South America?
NASA Technical Reports Server (NTRS)
Hastings, D. A.
1985-01-01
Global anomaly maps from the National Aeronautics and Space Administration's Magnetic Field Satellite (MAGSAT) have been spatially filtered to reduce the prominence of long-wavelength east-west bands and to improve the discrimination of anomalies within structural provinces. Previous research suggested a correlation between total-field MAGSAT anomaly lows in equatorial regions with crustal bodies of relatively high average magnetic susceptibility (such as Archaean shields), and of anomaly highs with bodies of low susceptibility (such as deep parts of basins). These correlations reverse at higher latitudes.
NASA Astrophysics Data System (ADS)
Klingelhoefer, F.; Museur, T.; Roest, W. R.; Graindorge, D.; Chauvet, F.; Loncke, L.; Basile, C.; Poetisi, E.; Deverchere, J.; Lebrun, J. F.; Perrot, J.; Heuret, A.
2017-12-01
Many transform margins have associated intermediate depth marginal plateaus, which are commonly located between two oceanic basins. The Demerara plateau is located offshore Surinam and French Guiana. Plate kinematic reconstructions show that the plateau is located between the central and equatorial Atlantic in a position conjugate to the Guinean Plateau. In the fall of 2016, the MARGATS cruise acquired geophysical data along the 400 km wide Demerara plateau. The main objective of the cruise was to image the deep structure of the Demerara plateau and to study its tectonic history. A set of 4 combined wide-angle and reflection seismic profiles was acquired along the plateau, using 80 ocean-bottom seismometers, a 3 km long seismic streamer and a 8000 cu inch tuned airgun array. Forward modelling of the wide-angle seismic data on a profile, located in the eastern part of the plateau and oriented in a NE-SW direction, images the crustal structure of the plateau, the transition zone and the neighbouring crust of oceanic origin, up to a depth of 40 km. The plateau itself is characterised by a crust of 30 km thickness, subdivided into three distinct layers. However, the velocities and velocity gradients do not fit typical continental crust, with a lower crustal layer showing untypically high velocities and an upper layer having a steep velocity gradient. From this model we propose that the lowermost layer is probably formed from volcanic underplated material and that the upper crustal layer likely consists of the corresponding extrusive volcanic material, forming thick seaward-dipping reflector sequences on the plateau. A basement high is imaged at the foot of the slope and forms the ocean-continent transition zone. Further oceanward, a 5-6 km thick crust is imaged with velocities and velocity gradients corresponding to a thin oceanic crust. A compilation of magnetic data from the MARGATS and 3 previous cruises shows a high amplitude magnetic anomaly along the northern edge of the plateau thereby strengthening the hypothesis of an volcanic origin of at least part of the structure. We propose, that the plateau was formed by large-scale volcanism, possibly intruding into a thinner existing continental crust.
NASA Astrophysics Data System (ADS)
Lebedeva-Ivanova, Nina; Gaina, Carmen; Minakov, Alexander; Kashubin, Sergey
2016-04-01
We derived Moho depth and crustal thickness for the High Arctic region by 3D forward and inverse gravity modelling method in the spectral domain (Minakov et al. 2012) using lithosphere thermal gravity anomaly correction (Alvey et al., 2008); a vertical density variation for the sedimentary layer and lateral crustal variation density. Recently updated grids of bathymetry (Jakobsson et al., 2012), gravity anomaly (Gaina et al, 2011) and dynamic topography (Spasojevic & Gurnis, 2012) were used as input data for the algorithm. TeMAr sedimentary thickness grid (Petrov et al., 2013) was modified according to the most recently published seismic data, and was re-gridded and utilized as input data. Other input parameters for the algorithm were calibrated using seismic crustal scale profiles. The results are numerically compared with publically available grids of the Moho depth and crustal thickness for the High Arctic region (CRUST 1 and GEMMA global grids; the deep Arctic Ocean grids by Glebovsky et al., 2013) and seismic crustal scale profiles. The global grids provide coarser resolution of 0.5-1.0 geographic degrees and not focused on the High Arctic region. Our grids better capture all main features of the region and show smaller error in relation to the seismic crustal profiles compare to CRUST 1 and GEMMA grids. Results of 3D gravity modelling by Glebovsky et al. (2013) with separated geostructures approach show also good fit with seismic profiles; however these grids cover the deep part of the Arctic Ocean only. Alvey A, Gaina C, Kusznir NJ, Torsvik TH (2008). Integrated crustal thickness mapping and plate recon-structions for the high Arctic. Earth Planet Sci Lett 274:310-321. Gaina C, Werner SC, Saltus R, Maus S (2011). Circum-Arctic mapping project: new magnetic and gravity anomaly maps of the Arctic. Geol Soc Lond Mem 35, 39-48. Glebovsky V.Yu., Astafurova E.G., Chernykh A.A., Korneva M.A., Kaminsky V.D., Poselov V.A. (2013). Thickness of the Earth's crust in the deep Arctic Ocean: results of a 3D gravity modeling Russian Geology and Geophysics 54, 247-262. Jakobsson M, Mayer L, Coakley B, Dowdeswell JA, Forbes S, Fridman B, Hodnesdal H, Noormets R, Pedersen R, Rebesco M, Schenke HW, Zarayskaya Y, Accettella D, Armstrong A, Anderson RM, Bienhoff P, Camerlenghi A, Church I, Edwards M, Gardner JV, Hall JK, Hell B, Hestvik O, Krist-offersen Y, Marcussen C, Mohammad R, Mosher D, Nghiem SV, Pedrosa MT, Travaglini PG, Weatherall P (2012). The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0. Geophys Res Lett 39, L12609. Laske, G., Masters., G., Ma, Z. and Pasyanos, M. (2013). Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust, Geophys. Res. Abstracts, 15, Abstract EGU2013-2658, 2013. Minakov A, Faleide JI, Glebovsky VY, Mjelde R (2012) Structure and evolution of the northern Barents-Kara Sea continental margin from integrated analysis of potential fields, bathymetry and sparse seismic data. Geophys J Int 188, 79-102. Petrov O., Smelror M., Shokalsky S., Morozov A., Kashubin S., Grikurov G., Sobolev N., Petrov E., (2013). A new international tectonic map of the Arctic (TeMAr) at 1:5 M scale and geodynamic evolution in the Arctic region. EGU2013-13481. Reguzzoni, M., & Sampietro, D. (2014). GEMMA: An Earth crustal model based on GOCE satellite data. International Journal of Applied Earth Observation and Geoinformation Spasojevic S. & Gurnis M., (2012). Sea level and vertical motion of continents from dynamic earth models since the late Cretaceous. American Association of Petroleum Geologists Bulletin, 96, pp. 2037-2064.
Imaging crustal roots in the Europe-Mediterranean region: a surface wave perspective
NASA Astrophysics Data System (ADS)
Villaseñor, Antonio
2016-04-01
The thickness of crustal roots is a fundamental constrain to understand the geodynamic evolution of mountain ranges. Crustal thickness can be inferred from a variety of geophysical observables (e.g. gravity anomalies, active and passive seismic methods, etc). Deep seismic sounding (DSS) using controlled sources usually provides the most accurate images of the crustal structure and thickness. However it is an expensive method, and often only used for 2D profiles. On the other hand, passive seismology experiments based on earthquakes or ambient noise have generally lower resolution, but are cheaper to conduct and can provide 3D images. As a result of the success of USArray, experiments consisting of dense deployments of broadband seismometers have become the modern standard approach for imaging continental regions. This, in combination with the densification of permanent regional monitoring networks and the use of seismic ambient noise, has allowed to use surface waves to image with increased resolution regions such as Europe and the Mediterranean basin. Surface waves are not very sensitive to the location of discontinuities such as the Moho, but can provide good constraints on the lateral variation of crustal thickness. Here, by combining continuous recordings of array experiments and permanent networks, I present a new tomographic model of surface wave velocities in the Europe-Mediterranean region that can be used as a proxy for crustal thickness. Large low velocity anomalies corresponding to thick crust are observed as expected in mountain ranges such as the Atlas, Pyrenees and Alps where crustal thickening has occurred as a result of continental collision. In addition, similarly large low velocity anomalies are observed in regions where slab roll-back/break-off has occurred (Betic-Rif, NW and SE Carpathians, Apennines, western Balkan peninsula). While these anomalies might not all be originated by thick crust, in some cases such as the Rif-western Betics previously unknown thick crust (without topographic nor gravimetric signature) has been confirmed by recent DSS studies, suggesting different a mechanism for crustal thickening than simply continental collision. This research has been funded by projects MISTERIOS (CGL2013-48601-C2-1-R) and VeTools.
Investigation of North Pond crustal fluids by poised potential methods
NASA Astrophysics Data System (ADS)
Jones, R. M.; Orcutt, B.
2017-12-01
Microbes are present in the deep subsurface but their rates of activity, potential metabolisms and roles in the environment are still largely unknown. The marine deep crustal subsurface accounts for approximately 2.3x1018 m2 of the earth's volume, making this environment potentially significant to earth processes despite low productivity inherent in resource limited conditions. This has implications for geochemical cycling and exploring limits of life, linking to the `follow the energy' approach for defining habitability on earth and further afield. Most resources for life in the marine deep crust originate from rock. One subset of lithotrophic interactions involves direct transfer between electron acceptors and donors embedded in minerals and microbes. In this investigation, poised potential methods such as chronoamperometry were used to investigate mineral-microbe electron transfer interactions in the context of North Pond, a Mid-Atlantic ridge site representative of cool, sediment-covered basalts that make up the majority of the deep marine subsurface. Electrodes were poised at potentials corresponding approximately to particular lithotrophic oxidation reactions to enrich for sub-sections of North Pond deep subsurface fluid communities that were associated with direct electron transfer at these potentials.
Comparing The North-east German Basin With The Polish Basin, Influenced By Major Crustal Fractures
NASA Astrophysics Data System (ADS)
Lamarche, J.; Scheck, M.; Otto, V.; Bayer, U.; Lewerenz, B.
The North-East German Basin (NEGB) and the Polish Basin (PB) are two intraplate sedimentary basins in Central Europe, the development of which was controlled by deep crustal structures: the Elbe Fault System and the Teisseyre-Tornquist Zone, re- spectively. 3D structural models performed separately for each basin led to indepen- dent interpretations showing major similarities, but also significant differences. The outlook of the comparison between the NEGB and the PB is to lead to a joined 3D structural model, which allows reconstructing the synthetic geodynamic evolution of the area. The NEGB and PB are NW-SE-oriented. Both were initiated during Late Carboniferous and Lower Permian, when the post-Variscan rifting affected the com- posite Palaeozoic basement of Central Europe. During Triassic to Cretaceous times, both basins evolved due to thermal subsidence and pulses of tectonic subsidence. At the end of Cretaceous, the basins were tectonically inverted. The sedimentary succes- sions of the NEGB and PB are comparable. Particularly, the Zechstein salt induced comparable sedimentary structures and provided a decoupling level between pre- and post-Zechstein rocks during the Late Cretaceous tectonic inversion in both basins. At the crustal scale, both basins are presently limited to the SW by the NW-SE-oriented Elbe Fault System, that correlates with a positive gravity anomaly. Finally, both basins show a N-S differentiation regarding the detailed subsidence history, the structural set- ting and the salt pattern. In spite of the very similar tectonic evolution of the NEGB and the PB, their large-scale geometry and inversion-related structures are different. The NEGB is asymmetric with a shallow northern slope and a steep bounding fault at the SW margin (Elbe Fault System). In the NEGB, the Late Cretaceous tectonic inversion resulted in asymmetric uplift of the SW' border along the Elbe Fault Sys- tem, and in decreasing deformation in the cover towards North. In contrast, the PB is a symmetric basin, that developed above the Teisseyre-Tornquist Zone. The tectonic inversion resulted in a rather symmetric swell, uplifted along the axis of the former basin. The occurrence and rejuvenation of the deep-seated Teisseyre-Tornquist Zone is held responsible for the symmetry of the PB during its development and later inver- sion, whereas the reactivation of the Elbe Fault Zone induced asymmetric deformation in the Mesozoic cover at the SW margin of the NEGB.
The geophysical character of southern Alaska - Implications for crustal evolution
Saltus, R.W.; Hudson, T.L.; Wilson, Frederic H.
2007-01-01
The southern Alaska continental margin has undergone a long and complicated history of plate convergence, subduction, accretion, and margin-parallel displacements. The crustal character of this continental margin is discernible through combined analysis of aeromagnetic and gravity data with key constraints from previous seismic interpretation. Regional magnetic data are particularly useful in defining broad geophysical domains. One of these domains, the south Alaska magnetic high, is the focus of this study. It is an intense and continuous magnetic high up to 200 km wide and ∼1500 km long extending from the Canadian border in the Wrangell Mountains west and southwest through Cook Inlet to the Bering Sea shelf. Crustal thickness beneath the south Alaska magnetic high is commonly 40–50 km. Gravity analysis indicates that the south Alaska magnetic high crust is dense. The south Alaska magnetic high spatially coincides with the Peninsular and Wrangellia terranes. The thick, dense, and magnetic character of this domain requires significant amounts of mafic rocks at intermediate to deep crustal levels. In Wrangellia these mafic rocks are likely to have been emplaced during Middle and (or) Late Triassic Nikolai Greenstone volcanism. In the Peninsular terrane, the most extensive period of mafic magmatism now known was associated with the Early Jurassic Talkeetna Formation volcanic arc. Thus the thick, dense, and magnetic character of the south Alaska magnetic high crust apparently developed as the response to mafic magmatism in both extensional (Wrangellia) and subduction-related arc (Peninsular terrane) settings. The south Alaska magnetic high is therefore a composite crustal feature. At least in Wrangellia, the crust was probably of average thickness (30 km) or greater prior to Triassic mafic magmatism. Up to 20 km (40%) of its present thickness may be due to the addition of Triassic mafic magmas. Throughout the south Alaska magnetic high, significant crustal growth was caused by the addition of mafic magmas at intermediate to deep crustal levels.
NASA Astrophysics Data System (ADS)
Kirby, Eric
2017-04-01
The manifestation of coupling among climate, erosion and tectonics along steep topographic margins of orogenic plateaus is strongly dependent on the processes driving crustal thickening. Along the eastern margin of the Tibetan Plateau, a long-standing and vigorous debate persists over whether mountain building occurred largely along upper-crustal faults or was the consequence of distributed thickening in the lower crust. Here I revisit this debate and show how surface deformation recorded by geomorphology over millennial timescales (10^4-105 yr) can yield insight into the role the deep crust along plateau margins. In contrast to the intensively studied Longmen Shan, the topographic margin of the Tibetan Plateau north of the Sichuan Basin follows the north-south Min Shan and cuts orthogonally across the structural grain of the Mesozoic West Qinling orogen. The lack of a direct association of topography with upper crustal faults affords an opportunity to evaluate the patterns of differential rock uplift from geomorphology. First, I employ an empirical calibration of river profile steepness (channel gradient normalized for drainage basin area) and erosion rate from cosmogenic 10Be concentrations in modern sediment. Application to the channels draining the plateau margin reveals a locus of high (300-500 m/Myr) erosion rate coincident with the Min Shan. Second, I present new results of surveying and dating of fluvial terraces developed along the Bailong Jiang, one of the major rivers draining across the plateau margin. A preliminary chronology of terrace formation and abandonment based on radiocarbon and OSL dating of fluvial deposits reveals systematic spatial gradients in fluvial incision, with highest incision rates (1000-2000 m/Myr) localized along the axis of the Min Shan and decreasing toward both the foreland and the plateau. This locus of incision has apparently been sustained through multiple generations of terrace formation and abandonment since at least 80 ka and thus is interpreted to reflect sustained differential rock uplift along this axis. The wavelength of the region of highest incision rates is 80 km and requires either 1) a deeply buried tip of a blind fault, or 2) thickening in the deep crust. We argue that terrace deformation and associated rock uplift likely reflects flow and thickening of deep Tibetan crust against the foreland of the West Qinling.
NASA Astrophysics Data System (ADS)
Kirby, Eric; Zhang, Huiping; Chen, Jie
2016-04-01
The manifestation of coupling among climate, erosion and tectonics along steep topographic margins of orogenic plateaus is strongly dependent on the processes driving crustal thickening. Along the eastern margin of the Tibetan Plateau, a long-standing an vigorous debate persists over whether mountain building occurred largely along upper-crustal faults or was the consequence of distributed thickening in the lower crust. Here we revisit this debate and show how surface deformation recorded by geomorphology over millennial timescales (104-105 yr) can yield insight into the role the deep crust along plateau margins. In contrast to the intensively studied Longmen Shan, the topographic margin of the Tibetan Plateau north of the Sichuan Basin follows the north-south Min Shan and cuts orthogonally across the structural grain of the Mesozoic West Qinling orogen. The lack of a direct association of topography with upper crustal faults affords an opportunity to evaluate the patterns of differential rock uplift from geomorphology. First, we employ an empirical calibration of river profile steepness (channel gradient normalized for drainage basin area) and erosion rate from cosmogenic 10Be concentrations in modern sediment. Application to the channels draining the plateau margin reveals a locus of high (300-500 m/Myr) erosion rate coincident with the Min Shan. Second, we present new results of surveying and dating of fluvial terraces developed along the Bailong Jiang, one of the major rivers draining across the plateau margin. A preliminary chronology of terrace tread deposits based on radiocarbon and OSL samples reveals systematic spatial gradients in fluvial incision, with highest incision rates (1000-2000 m/Myr) localized along the axis of the Min Shan and decreasing toward both the foreland and the plateau. This locus of incision has apparently been sustained through multiple generations of terrace formation and abandonment since ca. 80ka and thus is interpreted to reflect sustained differential rock uplift along this axis. The wavelength of the region of highest incision rates is ˜80 km and requires either 1) a deeply buried tip of a blind fault, or 2) thickening in the deep crust. We argue that terrace deformation and associated rock uplift likely reflects flow and thickening of deep Tibetan crust against the foreland of the West Qinling.
NASA Astrophysics Data System (ADS)
Guo, Zhi; Gao, Xing; Li, Tong; Wang, Wei
2018-05-01
We use P-wave receiver function H-k stacking and joint inversion of receiver functions and Rayleigh wave dispersions to investigate crustal and uppermost mantle structure beneath the South China. The obtained results reveal prominent crustal structure variations in the study area, Moho depth increases from ∼30 km in the Cathaysia Block to more than ∼60 km in the eastern Tibetan Plateau. A Moho undulation and Vp/Vs ratio variations can be observed from the Cathaysia Block to Yangtze Craton. These observations consistent with the crustal structures predict by the flat slab subduction model. We interpret these lateral crustal structure variations reflect the tectonic evolution of the Yangtze Craton and Cathaysia Block prior the Mesozoic and the post-orogenic magmatism due to the breaking up of the subducted flat slab and subsequent slab rollback in the South China. The observed variations of the crustal structures not only reveal the lateral crustal inhomogeneity, but also provide constraints on the geodynamic evolution of the South China.
The deep structure of Venusian plateau highlands
NASA Technical Reports Server (NTRS)
Grimm, Robert E.
1994-01-01
Magellan gravity data confirm that several of the large, tectonically deformed, plateau-like highlands on venus are shallowly compensated, most likely by crustal thickness variations. Apparent depths of isostatic compensation, computed in the spatial domain, range from 30 to 50 km for Alpha, Tellus, Ovda, and Thetis Regiones. Using a two-layer model for isostatic compensation, Alpha, Tellus, and Ovda are best represented as nearly completely compensated in crust that is regionally 20-40 km thick around these highlands, with little contribution from deeper mantle sources. In contrast to these three areas, a stronger regional gravity high associated with Thetis requires a significant upper mantle component to compensation. This is evident in the spectral admittance as a pronounced deep, long-wavelength anomaly. In the two-layer isostatic model, a broad, deeply compensated upland underlies a shallowly compensated central block of Thetis. If this deep component is interpreted as a thermal anomaly, the loci of maximum upwelling agree well with sites of recent extension. The plateau highlands are thus physiographically and isostatically equivalent to terrestrial continents, though probably not compositionally. They also share the record of a long tectonic history. The large regional gravity anomaly of Thetis indicates that active mantle proceses continue even beneath some areas (tessera) thought to be a relic of a former geological regime. The excellent agreement of modeled crustal thicknesses around Alpha, Tellus, and Ovda Regiones suggests that 20-40 km is a representative global value for the plains. Such a crust is thicker than previously estimated and about twice as thick as the expected thickness of crust produced at venusian spreading centers
A tentative 2D thermal model of central India across the Narmada-Son Lineament (NSL)
NASA Astrophysics Data System (ADS)
Rai, S. N.; Thiagarajan, S.
2006-12-01
This work deals with 2D thermal modeling in order to delineate the crustal thermal structure of central India along two Deep Seismic Sounding (DSS) profiles, namely Khajuriakalan-Pulgaon and Ujjan-Mahan, traversing the Narmada-Son-Lineament (NSL) in an almost north-south direction. Knowledge of the crustal structure and P-wave velocity distribution up to the Moho, obtained from DSS studies, has been used for the development of the thermal model. Numerical results reveal that the Moho temperature in this region of central India varies between 500 and 580 °C. The estimated heat flow density value is found to vary between 46 and 49 mW/m 2. The Curie depth varies between 40 and 42 km and is in close agreement with the Curie depth (40±4 km) estimated from the analysis of MAGSAT data. Based on the present work and previous work, it is suggested that the major part of peninsular India consisting of the Wardha-Pranhita Godavari graben/basin, Bastar craton and the adjoining region of the Narmada Son Lineament between profiles I and III towards the north and northwest of the Bastar craton are characterized with a similar mantle heat flow density value equal to ˜23 mW/m 2. Variation in surface heat flow density values in these regions are caused by variation in the radioactive heat production and fluid circulation in the upper crustal layer.
Temperature profiles in the earth of importance to deep electrical conductivity models
NASA Astrophysics Data System (ADS)
Čermák, Vladimír; Laštovičková, Marcela
1987-03-01
Deep in the Earth, the electrical conductivity of geological material is extremely dependent on temperature. The knowledge of temperature is thus essential for any interpretation of magnetotelluric data in projecting lithospheric structural models. The measured values of the terrestrial heat flow, radiogenic heat production and thermal conductivity of rocks allow the extrapolation of surface observations to a greater depth and the calculation of the temperature field within the lithosphere. Various methods of deep temperature calculations are presented and discussed. Characteristic geotherms are proposed for major tectonic provinces of Europe and it is shown that the existing temperatures on the crust-upper mantle boundary may vary in a broad interval of 350 1,000°C. The present work is completed with a survey of the temperature dependence of electrical conductivity for selected crustal and upper mantle rocks within the interval 200 1,000°C. It is shown how the knowledge of the temperature field can be used in the evaluation of the deep electrical conductivity pattern by converting the conductivity-versustemperature data into the conductivity-versus-depth data.
Brocher, Thomas M.; Parsons, Tom; Creager, Ken C.; Crosson, Robert S.; Symons, Neill P.; Spence, George D.; Zelt, Barry C.; Hammer, Philip T.C.; Hyndman, Roy D.; Mosher, David C.; Tréhu, Anne M.; Miller, Kate C.; ten Brink, Uri S.; Fisher, Michael A.; Pratt, Thomas L.; Alvarez, Marcos G.; Beaudoin, Bruce C.; Louden, Keith E.; Weaver, Craig S.
1999-01-01
This report describes the acquisition and processing of deep-crustal wide-angle seismic reflection and refraction data obtained in the vicinity of Puget Lowland, the Strait of Juan de Fuca, and Georgia Strait, western Washington and southwestern British Columbia, in March 1998 during the Seismic Hazards Investigation of Puget Sound (SHIPS). As part of a larger initiative to better understand lateral variations in crustal structure along the Cascadia margin, SHIPS participants acquired 1000 km of deep-crustal multichannel seismic-reflection profiles and 1300 km of wideangle airgun shot lines in this region using the R/V Thompson and R/V Tully. The Tully was used to record airgun shots fired by the Thompson in two different geometries: (1) expanding spread profiles (ESPs) and (2) constant offset profiles (COPs). Prior to this reflection survey, we deployed 257 Reftek and 15 ocean-bottom seismic recorders to record the airgun signals at far offsets. All data were recorded digitally on large-capacity hard disks. Although most of these stations only recorded the vertical component of motion, 95 of these seismographs recorded signals from an oriented 3-component seismometer. By recording signals generated by the Thompson's marine air gun array, operated in two differing geometries having a total volume of 110 and 79 liters (6730 and 4838 cu. in.), respectively, the arrays of wide-angle recorders were designed to (1) image the crustal structure, particularly in the vicinity of crustal faults and Cenozoic sedimentary basins, (2) determine the geometry of the Moho, and (3) image the subducting Gorda and Juan de Fuca plates. Nearly 33,300 air gun shots were recorded along several seismic lines. In this report, we illustrate the expanding spread profiles acquired using the Thompson and Tully, describe the land and ocean-bottom recording of the air gun signals, discuss the processing of the land recorder data into common receiver gathers, and illustrate the processed wide-angle seismic data collected using the Refteks and ocean-bottom seismometers. We also describe the format and content of the archival tapes containing the SEGY-formated, common-receiver gathers for the Reftek data. Data quality is variable but SHIPS appears to have successfully obtained useful data from almost all the stations deployed to record the airgun shots. Several interesting arrivals were observed: including refractions from the sedimentary basin fill in several basins, refractions from basement rocks forming the upper crust, Pg, refractions from the upper mantle, Pn, as well as reflections from within the crust and from the top of the upper mantle, PmP. We separately archived more than 30 local earthquakes recorded by the Reftek array during our deployment.
NASA Astrophysics Data System (ADS)
Liou, J. G.; Tsujimori, T.; Yang, J.; Zhang, R. Y.; Ernst, W. G.
2014-12-01
Newly recognized ultrahigh-pressure (UHP) mineral occurrences including diamonds in ultrahigh-temperature (UHT) felsic granulites of orogenic belts, in chromitites associated with ophiolitic complexes, and in mafic/ultramafic xenoliths suggest the recycling of crustal materials through profound subduction, mantle upwelling, and return to the Earth's surface. Recycling is supported by unambiguously crust-derived mineral inclusions in deep-seated zircons, chromites, and diamonds from collision-type orogens, from eclogitic xenoliths, and from ultramafic bodies of several Alpine-Himalayan and Polar Ural ophiolites; some such phases contain low-atomic number elements typified by crustal isotopic signatures. Ophiolite-type diamonds in placer deposits and as inclusions in chromitites together with numerous highly reduced minerals and alloys appear to have formed near the mantle transition zone. In addition to ringwoodite and stishovite, a wide variety of nanometric minerals have been identified as inclusions employing state-of-the-art analysis. Reconstitution of now-exsolved precursor UHP phases and recognition of subtle decompression microstructures produced during exhumation reflect earlier UHP conditions. Some podiform chromitites and associated peridotites contain rare minerals of undoubted crustal origin, including Zrn, corundum, Fls, Grt, Ky, Sil, Qtz, and Rtl; the zircons possess much older U-Pb ages than the formation age of the host ophiolites. These UHP mineral-bearing chromitites had a deep-seated evolution prior to extensional mantle upwelling and its partial melting at shallow depths to form the overlying ophiolite complexes. These new findings plus stable isotopic and inclusion characteristics of diamonds provide compelling evidence for profound underflow of both oceanic and continental lithosphere, recycling of biogenic carbon into the lower mantle, and ascent to the Earth's surface through deep mantle ascent.
NASA Astrophysics Data System (ADS)
Kachingwe, Marsella; Nyblade, Andrew; Julià, Jordi
2015-07-01
New estimates of crustal thickness, Poisson's ratio and crustal shear wave velocity have been obtained for 39 stations in Angola, Botswana, the Democratic Republic of Congo, Malawi, Mozambique, Namibia, Rwanda, Tanzania and Zambia by modelling P-wave receiver functions using the H-κ stacking method and jointly inverting the receiver functions with Rayleigh-wave phase and group velocities. These estimates, combined with similar results from previous studies, have been examined for secular trends in Precambrian crustal structure within the southern African subcontinent. In both Archean and Proterozoic terranes we find similar Moho depths [38-39 ± 3 km SD (standard deviation)], crustal Poisson's ratio (0.26 ± 0.01 SD), mean crustal shear wave velocity (3.7 ± 0.1 km s-1 SD), and amounts of heterogeneity in the thickness of the mafic lower crust, as defined by shear wave velocities ≥4.0 km s-1. In addition, the amount of variability in these crustal parameters is similar within each individual age grouping as between age groupings. Thus, the results provide little evidence for secular variation in Precambrian crustal structure, including between Meso- and Neoarchean crust. This finding suggests that (1) continental crustal has been generated by similar processes since the Mesoarchean or (2) plate tectonic processes have reworked and modified the crust through time, erasing variations in structure resulting from crustal genesis.
The Crustal Structure of the Central Anatolia (Turkey) Using Receiver Functions
NASA Astrophysics Data System (ADS)
Yelkenci, S.; Benoit, M.; Kuleli, H.; Gurbuz, C.
2005-12-01
Central Anatolia lies in a transitional region between the extensional tectonics of western Anatolia and the complex transpressional tectonics of Eastern Anatolia, and has a complicated thermal and structural history. Few studies of the crustal structure of Anatolia have been performed, however, studies of the crustal structure of Eastern Anatolia showed that crustal thicknesses were thinner than previously thought. To further investigate the crustal structure in Central Anatolia, we present results from receiver function analysis using new data from broad-band instruments. The stations were equipped with 7 broadband three-component STS-2 and 13 short period three-component S-13 sensors. These stations operated for period of one and half months between the October and November, 2002, and yielded data for ~ 40 high quality receiver functions. Additionally, receiver functions were also computed using data from permanent stations MALT, ISP, and ANTO. We applied the hk-stacking technique of Zhu and Kanamori (2000) to receiver functions to obtain the crustal thickness and Vp/Vs ratios. Furthermore, we applied a waveform modeling technique to investigate mid-crustal discontinuties previously imaged in the region. Our results compare well with refraction-based crustal thicknesses in overlapped areas.
Crustal structure of mainland China from deep seismic sounding data
Li, S.; Mooney, W.D.; Fan, J.
2006-01-01
Since 1958, about ninety seismic refraction/wide angle reflection profiles, with a cumulative length of more than sixty thousand kilometers, have been completed in mainland China. We summarize the results in the form of (1) a new contour map of crustal thickness, (2) fourteen representative crustal seismic velocity-depth columns for various tectonic units, and, (3) a Pn velocity map. We found a north-south-trending belt with a strong lateral gradient in crustal thickness in central China. This belt divides China into an eastern region, with a crustal thickness of 30-45??km, and a western region, with a thickness of 45-75??km. The crust in these two regions has experienced different evolutionary processes, and currently lies within distinct tectonic stress fields. Our compilation finds that there is a high-velocity (7.1-7.4??km/s) layer in the lower crust of the stable Tarim basin and Ordos plateau. However, in young orogenic belts, including parts of eastern China, the Tianshan and the Tibetan plateau, this layer is often absent. One exception is southern Tibet, where the presence of a high-velocity layer is related to the northward injection of the cold Indian plate. This high-velocity layer is absent in northern Tibet. In orogenic belts, there usually is a low-velocity layer (LVL) in the crust, but in stable regions this layer seldom exists. The Pn velocities in eastern China generally range from 7.9 to 8.1??km/s and tend to be isotropic. Pn velocities in western China are more variable, ranging from 7.7 to 8.2??km/s, and may display azimuthal anisotropy. ?? 2006.
Crustal Structure of the Yakutat Microplate: Constraints from STEEP Wide-angle Seismic Data
NASA Astrophysics Data System (ADS)
Christeson, G. L.; van Avendonk, H.; Gulick, S. P.; Worthington, L.; Pavlis, T.
2008-12-01
In Fall 2008 we will conduct a seismic program focusing on the Yakutat microplate. As part of this study we plan to acquire two wide-angle profiles: an onshore-offshore northwest-southeast oriented profile extending from the Bering glacier onto the continental shelf and across the Dangerous River Zone, and an offshore northeast-southwest oriented profile extending from the ocean basin across the Transition fault and into Yakutat Bay. The sound source will be the R/V Langseth's tuned 6600 cu. in., 36 air gun array. Ocean bottom seismometers will be positioned at ~15 km spacing, and Texan seismometers at 1-4 km spacing across the Bering Glacier. Coincident deep-penetrating seismic reflection data will be acquired on the marine portion of both profiles using a 8-km, 640-channel solid hydrophone streamer. Existing models for the Yakutat microplate disagree as to whether it is a continental fragment attached to normal oceanic crust or an oceanic plateau, and if the deep structure changes from west to east across the Dangerous River Zone. In the continental fragment model uplift is concentrated along crustal-scale thrust faulting at the ocean crust boundary (Dangerous River Zone?) resulting in focused and rapid erosion. In the oceanic plateau model more distributed, regional uplift is expected which will produce widespread exhumation with net erosion potentially coupled with glacial cycles. Thus distinguishing between these models, which we expect to accomplish with our planned seismic program, is vital for linking tectonics to erosion on both spatial and temporal scales.
McFadden, Rory; Teyssier, Christian; Siddoway, Christine; Cosca, Michael A.; Fanning, C. Mark
2015-01-01
In Marie Byrd Land, West Antarctica, the Fosdick Mountains migmatite-cored gneiss dome was exhumed from mid- to lower middle crustal depths during the incipient stage of the West Antarctic Rift system in the mid-Cretaceous. Prior to and during exhumation, major crustal melting and deformation included transfer and emplacement of voluminous granitic material and numerous intrusions of mantle-derived diorite in dikes. A succession of melt- and magma-related structures formed at temperatures in excess of 665 ± 50 °C based on Ti-in-zircon thermometry. These record a transition from wrench to oblique extensional deformation that culminated in the development of the oblique South Fosdick Detachment zone. Solid-state fabrics within the detachment zone and overprinting brittle structures record translation of the detachment zone and dome to shallow levels.To determine the duration of exhumation and cooling, we sampled granite and gneisses at high spatial resolution for U–Pb zircon geochronology and 40Ar/39Ar hornblende and biotite thermochronology. U–Pb zircon crystallization ages for the youngest granites are 102 Ma. Three hornblende ages are 103 to 100 Ma and 12 biotite ages are 101 to 99 Ma. All overlap within uncertainty. The coincidence of zircon crystallization ages with 40Ar/39Ar cooling ages indicates cooling rates > 100 °C/m.y. that, when considered together with overprinting structures, indicates rapid exhumation of granite and migmatite from deep to shallow crustal levels within a transcurrent setting. Orientations of structures and age-constrained crosscutting relationships indicate counterclockwise rotation of stretching axes from oblique extension into nearly orthogonal extension with respect to the Marie Byrd Land margin. The rotation may be a result of localized extension arising from unroofing and arching of the Fosdick dome, extensional opening within a pull-apart zone, or changes in plate boundary configuration.The rapid tectonic and temperature evolution of the Fosdick Mountains dome lends support to recently developed numerical models of crustal flow and cooling in orogenic crust undergoing extension/transtension, and accords with numerous studies of migmatite-cored gneiss domes in transcurrent settings.
NASA Astrophysics Data System (ADS)
Yamashita, M.; Kodaira, S.; Takahashi, N.; Tatsumi, Y.; Kaneda, Y.
2009-12-01
The Izu-Bonin (Ogasawara)-Mariana (IBM) arc is known to the typical oceanic island arc, and it is the most suitable area to understand the growth process of island arc. By previous seismic survey and deep sea drilling, convex basements are distributed along North-South direction in present forearc region. The convex basements are reported to be formed during Oligocene and Eocene (Taylor, 1992). In IBM forearc region, the middle crust with 6 km/s is recognized by seismic survey using OBSs. In IBM region, four IODP drilling sites are proposed in order to understand comprehensive growth process of arc and continental crust evolution. Two of them are located in forearc region. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out multi-channel seismic reflection survey using 7,800/12,000 cu.in. air gun and 5-6 km streamer with 444/204 ch hydrophones in the IBM region since 2004. We investigate the crustal structure beneath the Izu-Bonin forearc region for contribution of IBM drilling site along five long survey lines, which are across from present volcanic front to forearc basin. Seismic refraction survey is also conducted across forearc region using 84 OBSs every 1 km interval. Shallow crustal structure can be classified four units including basement which compared between previous drilling results and obtained seismic profiles. In IBM forearc region, thick sedimentary basin distribute from east side of volcanic front. Two convex basement peaks are indicated in across profile of forearc region. These peaks are estimated the top of paleoarc (Oligocene and Eocene) by previous ODP drilling. The half graben structure with major displacement is identified from west side of present volcanic front to the top of Oligocene arc. On the other hand, there is no displacement of sediments between the Oligocene arc and Eocene arc. This result shows the same origin of basement between the present volcanic front and Oligocene arc. There is long time difference of tectonic activity of sediments between the west and east side of Oligocene paleoarc. We would present the crustal condition before rifting between present volcanic front and Oligocene paleoarc by comparison of reflection and velocity structure.
Microbial Life in Ridge Flank Crustal Fluids at Baby Bare Seamount, Juan de Fuca Ridge
NASA Astrophysics Data System (ADS)
Huber, J. A.; Johnson, H. P.; Butterfield, D. A.; Baross, J. A.
2005-12-01
To determine the microbial community diversity within old oceanic crust, a novel sampling strategy was used to collect crustal fluids at Baby Bare Seamount, a 3.5 Ma old outcrop located in the northeast Pacific Ocean on the eastern flank of the Juan de Fuca Ridge. Stainless steel probes were driven directly into the igneous ocean crust to obtain samples of ridge flank crustal fluids. Genetic signatures and enrichment cultures of microorganisms demonstrate that these crustal fluids host a microbial community composed of species indigenous to the subseafloor, including anaerobic thermophiles, and species from other deep-sea habitats, such as seawater and sediments. Evidence using molecular techniques indicates the presence of a relatively small but active microbial population, dominated by bacteria. The microbial community diversity found in the crustal fluids may indicate habitat variability in old oceanic crust, with inputs of nutrients from seawater, sediment pore-water fluids and possibly hydrothermal sources. This report further supports the presence of an indigenous microbial community in ridge flank crustal fluids and advances our understanding of the potential physiological and phylogenetic diversity of this community.
Deep electrical resistivity structure of northwestern Costa Rica
NASA Astrophysics Data System (ADS)
Brasse, H.; Kapinos, G.; Mütschard, L.; Alvarado, G. E.; Worzewski, T.; Jegen, M.
2009-01-01
First long-period magnetotelluric investigations were conducted in early 2008 in northwestern Costa Rica, along a profile that extends from the coast of the Pacific Ocean, traverses the volcanic arc and ends currently at the Nicaraguan border. The aim of this study is to gain insight into the electrical resistivity structure and thus fluid distribution at the continental margin where the Cocos plate subducts beneath the Caribbean plate. Preliminary two-dimensional models map the only moderately resistive mafic/ultramafic complexes of the Nicoya Peninsula (resistivity of a few hundred Ωm), the conductive forearc and the backarc basins (several Ωm). Beneath the backarc basin the data image a poor conductor in the basement with a clear termination in the south, which may tentatively be interpreted as the Santa Elena Suture. The volcanic arc shows no pronounced anomaly at depth, but a moderate conductor underlies the backarc with a possible connection to the upper mantle. A conductor at deep-crustal levels in the forearc may reflect fluid release from the downgoing slab.
Crustal deformation in great California earthquake cycles
NASA Technical Reports Server (NTRS)
Li, Victor C.; Rice, James R.
1986-01-01
Periodic crustal deformation associated with repeated strike slip earthquakes is computed for the following model: A depth L (less than or similiar to H) extending downward from the Earth's surface at a transform boundary between uniform elastic lithospheric plates of thickness H is locked between earthquakes. It slips an amount consistent with remote plate velocity V sub pl after each lapse of earthquake cycle time T sub cy. Lower portions of the fault zone at the boundary slip continuously so as to maintain constant resistive shear stress. The plates are coupled at their base to a Maxwellian viscoelastic asthenosphere through which steady deep seated mantle motions, compatible with plate velocity, are transmitted to the surface plates. The coupling is described approximately through a generalized Elsasser model. It is argued that the model gives a more realistic physical description of tectonic loading, including the time dependence of deep slip and crustal stress build up throughout the earthquake cycle, than do simpler kinematic models in which loading is represented as imposed uniform dislocation slip on the fault below the locked zone.
NASA Astrophysics Data System (ADS)
Harding, J.; Van Avendonk, H. J.; Hayman, N. W.; Grevemeyer, I.; Peirce, C.
2016-12-01
The Mid Cayman Spreading Center (MCSC) is an ultraslow-spreading center (15 mm yr-1 full rate) along the Caribbean-North American plate boundary. Despite the paradigm that ultraslow-spreading centers are amagmatic and cold, two hydrothermal vent fields have recently been discovered along the MCSC. The Beebe Vent Field is a black smoker in the northern axial deep, and the Von Damm Vent Field (VDVF) is a moderate-temperature, talc precipitating vent found atop an oceanic core complex (OCC). This OCC, "Mt. Dent", is a large (3 km high) massif that formed beneath a detachment fault, which exhumed lower crustal and upper mantle material. The CaySeis Experiment was conducted in April, 2015 in order to collect wide-angle refraction data of the MCSC crust and upper mantle. We modeled the across-axis crustal structure of Mt. Dent as well as the surrounding lithosphere using 2.5D P-wave tomography. Using this tomographic model, along with geochemistry, we propose a model for the formation and evolution of the OCC Mt. Dent and the VDVF. A detachment fault formed in a magma-poor environment due to a pulse of magmatism, producing a large gabbro body that was then exhumed and rotated into the OCC footwall. Once magmatism waned and the gabbroic body cooled, the OCC was faulted and fractured due to plate flexure and increased tectonic extensional stress in the naturally cold and thick lithosphere. These faults provide a permeable and deep network of hydrothermal pathways that mine deep lithospheric heat and expose gabbro and fresh mantle peridotite. This model is consistent with the basalt geochemistry, hydrothermal fluid geochemistry, and the distribution of brittle vs. ductile structures along the detachment shear zone. The VDVF is therefore a product of a pulse of magmatism in an overall melt-poor environment, conditions that may be found at other ultraslow-spreading ridges.
NASA Astrophysics Data System (ADS)
Leroux, Estelle; Gorini, Christian; Aslanian, Daniel; Rabineau, Marina; Blanpied, Christian; Rubino, Jean-Loup; Robin, Cécile; Granjeon, Didier; Taillepierre, Rachel
2016-04-01
The post-rift (~20-0 Ma) vertical movements of the Provence Basin (West Mediterranean) are quantified on its both conjugate (the Gulf of Lion and the West Sardinia) margins. This work is based on the stratigraphic study of sedimentary markers using a large 3D grid of seismic data, correlations with existing drillings and refraction data. The post-rift subsidence is measured by the direct use of sedimentary geometries analysed in 3D [Gorini et al., 2015; Rabineau et al., 2014] and validated by numerical stratigraphic modelling. Three domains were found: on the platform (1) and slope (2), the subsidence takes the form of a seaward tilting with different amplitudes, whereas the deep basin (3) subsides purely vertically [Leroux et al., 2015a]. These domains correspond to the deeper crustal domains respectively highlighted by wide angle seismic data. The continental crust (1) and the thinned continental crust (2) are tilted, whereas the intermediate crust, identified as lower continental exhumed crust [Moulin et al., 2015, Afhilado et al., 2015] (3) sagged. The post-break-up subsidence re-uses the initial hinge lines of the rifting phase. This striking correlation between surface geologic processes and deep earth dynamic processes emphasizes that the sedimentary record and sedimentary markers is a window into deep geodynamic processes and dynamic topography. Pliocene-Pleistocene seismic markers enabled high resolution quantification of sediment budgets over the past 6 Myr [Leroux et al., in press]. Sediment budget history is here completed on the Miocene interval. Thus, the controlling factors (climate, tectonics and eustasy) are discussed. Afilhado, A., Moulin, M., Aslanian, D., Schnürle, P., Klingelhoefer, F., Nouzé, H., Rabineau, M., Leroux, E. & Beslier, M.-O. (2015). Deep crustal structure across a young 1 passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) - II. Sardinia's margin. Bull. Soc. géol. France, 186, ILP Spec. issue, 4-5, 331-351. Gorini, C., Montadert, L., Rabineau, M., (2015) New imaging of the salinity crisis: Dual Messinian lowstand megasequences recorded in the deep basin of both the eastern and western Mediterranean, Marine and Petroleum Geology (2015), doi: 10.1016/j.marpetgeo.2015.01.009. Leroux, E., Aslanian, D., Rabineau, M., Moulin, M., Granjeon, D., Gorini C. & Droz, L. (2015a). Sedimentary markers in the Provençal basin (Western Mediterranean): a window into deep geodynamic processes. Terra Nova, 27(2), 122-129. Leroux, E., Rabineau, M., Aslanian, D., Gorini, C., Molliex, S., Bache, F., Robin, C., Droz, L., Moulin, M., Poort, J., Rubino, J.-L. & Suc, J.P. (2016, in press). High resolution evolution of terrigenous sediment yields in the Provence Basin during the last 6 Ma: relation with climate and tectonic. Basin Research, xx, xx-xx (ID: 4759575-1545130). Moulin, M., Klingelhoefer, F., Afiladho, A., Aslanian, D., Schnürle, P., Nouze, H., Beslier, M.-O. & Feld, A. (2015). Deep crustal structure across an young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) - I. Gulf of Lion's margin, Bull. Soc. géol. France., 186, ILP Spec. issue, 4-5,309-330. Rabineau, M., Leroux, E., Aslanian, D., Bache, F., Gorini, C., Moulin, M., Molliex, S., Droz, L., Reis, T. D., Rubino, J.-L., Guillocheau, F. & Olivet, J.-L. (2014). Quantifying subsidence and isostatic readjustment using sedimentary markers (example in the Gulf of Lion). Earth and Planetary Science Letters, 388, 1-14.
Some examples of deep structure of the Archean from geophysics
NASA Technical Reports Server (NTRS)
Smithson, S. B.; Johnson, R. A.; Pierson, W. R.
1986-01-01
The development of Archean crust remains as one of the significant problems in earth science, and a major unknown concerning Archean terrains is the nature of the deep crust. The character of crust beneath granulite terrains is especially fascinating because granulites are generally interpreted to represent a deep crustal section. Magnetic data from this area can be best modeled with a magnetized wedge of older Archean rocks (granulitic gneisses) underlying the younger Archean greenstone terrain. The dip of the boundary based on magnetic modeling is the same as the dip of the postulated thrust-fault reflection. Thus several lines of evidence indicate that the younger Archean greenstone belt terrain is thrust above the ancient Minnesota Valley gneiss terrain, presumably as the greenstone belt was accreted to the gneiss terrain, so that the dipping reflection represents a suture zone. Seismic data from underneath the granulite-facies Minnesota gneiss terrain shows abundant reflections between 3 and 6 s, or about 9 to 20 km. These are arcuate or dipping multicyclic events indicative of layering.
NASA Astrophysics Data System (ADS)
Rabineau, Marina; Aslanian, Daniel; Leroux, Estelle; Pellen, Romain; Gorini, Christian; Moulin, Maryline; Droz, Laurence; Bache, Francois; Molliex, Stephane; Silenzario, Carmine; Rubino, Jean-Loup
2017-04-01
Deep Earth dynamics impact so strongly on surface geological processes that we can use sediment palaeo-markers as a window into the deeper Earth. Derived from climatic and tectonic erosive actions on the continents, and related to eustasy, subsidence and isostasy, the sediment in a deep basin is the main recorder of these processes. Nevertheless, defining and quantifying the relative roles of parameters that interact to give the final sedimentary architecture is not a simple task. Using a 3D-grid of seismic and wide-angle data, boreholes and numerical stratigraphic modelling, we propose here a quantification of post-rift vertical movements in the Provençal Basin (Western Mediterranean) involving three domains of subsidence: seaward tilting on the platform and the slope and purely vertical subsidence in the deep basin (Rabineau et al., 2014 ; Leroux et al., 2015). These domains fit the deeper crustal domains highlighted by previous geophysical data (Moulin et al., 2015 ; Afilhado et al., 2015). Post-break-up sedimentary markers may therefore be used to identify the initial hinge lines of the rifting phase, to quantify sedimentation rates and isostatic rebound (Rabineau et al., 2014) and redefine the subsidence laws. Similar work and results are obtained in the Valencia Basin (Pellen et al., 2016). This Western Mediterranean Sea is a natural laboratory with very high total subsidence rates that enable high sedimentation rates along the margin with sediments provided by the Rhône and Ebro rivers flowing from the Alps, the Pyrennees and Catalan chains, which in turn archives the detailed record of climate/tectonic evolution during the Neogene. The Western Mediterranean Sea could therefore further probe deep-earth and surface connections using deep drillings of this land-locked ocean basin transformed into a giant saline basin (Rabineau et al., 2015). Leroux, E., Aslanian, D., Rabineau, M., M. Moulin, D. Granjeon, C. Gorini, L. Droz, 2015. Sedimentary markers: a window to deep geodynamic processes. Terra Nova 27, 122-129. Moulin, M., Klingelhoefer, F., Afilhado, A., Feld, A., Aslanian, D., Schnurle, P., Nouzé, H., Rabineau, M. & Beslier, M.O., 2015. Deep crustal structure across an young passive margin from wide- angle and reflection seismic date (The SARDINIA Experiment) - I- Gulf of Lion's Margin BSGF, ILP Special Volume, 186 (4-5), pp. 309-330 Afilhado A., M. Moulin, F. Klingelhoefer, D. Aslanian, P. Schnurle, H. Nouzé, M. Rabineau & M.O. Beslier, 2015. Deep crustal structure across a young passive margin from wide- angle and reflection seismic data (The SARDINIA Experiment) - II. Sardinia's margin, BSGF, ILP Special Volume, 186 (4-5), p. 331-351 Pellen, R., Aslanian, D., Rabineau, M., Leroux, E., Gorini, C., Silenzario, C., Blanpied, C., Rubino, J-L., 2016. The Minorca Basin: a buffer zone between Valencia and Provençal Basins, Terra Nova, 28-4, p. 245-256. Rabineau, M., Leroux, E., Aslanian, D., Bache, F., Gorini, C., Moulin, M., Molliex, S., Droz, L., Dos Reis, T., Rubino, J-L., Olivet, J-L., 2014. Quantifying Subsidence and Isostasy using paleobathymetric markers : example from the Gulf of Lion, EPSL, vol. 288, p. 353- 366. http://dx.doi.org/10.1016/j.epsl.2013.11.059 Rabineau, M., S. Cloetingh, J. Kuroda, D. Aslanian, A Droxler, C. Gorini, D. Garcia-Castellanos, A. Moscariello, Y. Hello, E. Burov, F. Sierro, F. Lirer, F. Roure, P.A. Pezard, L. Matenco, Y. Mart, A. Camerlenghi, A. Tripati and the GOLD and DREAM Working Groups, 2015. Probing connections between deep earth and surface processes in a land-locked ocean basin transformed into a giant saline basin: the Mediterranean GOLD project, Marine and Petroleum Geology, Volume: 66 Pages: 6-17.
NASA Astrophysics Data System (ADS)
Mocanu, V. I.; Stephenson, R. A.; Diaconescu, C. C.; Knapp, J. H.; Matenco, L.; Dinu, C.; Harder, S.; Prodehl, C.; Hauser, F.; Raileanu, V.; Cloetingh, S. A.; Leever, K.
2001-12-01
Seismic studies of the outer Carpathian Orogen and its foreland (Focsani Basin) in the vicinity of the Vrancea Zone and Danube Delta (Romania) forms one component of a new multidisciplinary initiative of ISES (Netherlands Centre for Integrated Solid Earth Sciences) called DACIA PLAN ("Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics"). The study area, at the margin of the European craton, constitutes one of the most active seismic zones in Europe, yet has remained a geological and geodynamic enigma within the Alpine-Himalayan orogenic system. Intermediate depth (50-220 km) mantle earthquakes of significant magnitude occur in a geographically restricted area in the south-east Carpathians bend. The adjacent, foreland Focsani Basin appears to exhibit recent extensional deformation in what is otherwise understood to be a zone of convergence. The deep seismic reflection component of DACIA PLAN comprises a ~140-km near-vertical profile across the Vrancea Zone and Focsani Basin. Data acquisition took place in August-September 2001, as part of the integrated refraction/reflection seismic field programme "Vrancea-2001" co-ordinated at Karlsruhe University (cf. Abstract, Part 1), utilising 640 independently deployed recorders provided by UTEP and IRIS/PASSCAL ("Texans"). Station spacing was every 100-m with shots every 1-km. These data are to be integrated with industry seismic as well as planned new medium-high resolution seismic reflection profiling across key neotectonically active structures in the Focsani Basin. Particular goals of DACIA PLAN include: (1) the architecture of the Tertiary/Quaternary basins developed within and adjacent to this zone, including the foreland Focsani Basin; (2) the presence and geometry of structural detachment(s) in relation with foreland basin development, including constraints for balanced cross-sections and geodynamic modelling of basin origin and evolution; (3) the relationship between crustal structures related to basin evolution, especially neotectonic structures, with deep (mantle) structure and seismicity; and, (4) integratration with complementary studies in the Carpathian-Transylvanian region for evaluation and validation of competing geodynamic models for the present-day development and neotectonic character of the Vrancea Zone-Focsani Basin-Danube Delta-Black Sea corridor.
Crustal Seismic Structure beneath Portugal (Western Iberia) and the role of Variscan Inheritance
NASA Astrophysics Data System (ADS)
Veludo, Idalina; Afonso Dias, Nuno; Fonseca, Paulo; Matias, Luís; Carrilho, Fernando; Haberland, Christian; Villaseñor, Antonio
2017-04-01
Mainland Portugal comprises most of the Western portion of the Iberian Peninsula, in a geodynamic setting associated with the Africa-Eurasia plate boundary. The crustal structure in Portugal is the result of a complex assemblage history of continental collision and extension with most of the surface is covered by rocks dating to the Variscan orogeny, the coastal ranges dominated by Mesozoic structures and Mesocenozoic basins covering partially the mainland. The impact and extension of this complex tectonic in the structure of the Iberian Lithosphere is still a matter of discussion, especially in its western part beneath Portugal. The existing knowledge relating the observed surface geology and lithospheric structures is sparse and sometimes incoherent, the relation between shallow and deep structures and their lateral extension still widely undetermined. Some questions still pertinent are the role and influence of the several tectonic units and their contacts in the present tectonic regime and in the stress field observed today, and the relation between the anomalous seismicity and associated crustal deformation rates with the inherited structure from past orogenies. In this study we present the results of a local earthquake tomographic study, performed to image this complex crustal structure down to 20 km depth. The relocation of the onshore seismicity recorded in the period 2000-2014 with the new 3D model allows cleansing some of the alignments and their correlation with some of the main active structures in Portugal enabling for the first time to correlate a large number of tectonic features to the small magnitude seismicity pattern. The seismicity distribution also displays a complex pattern, mainly reflecting the interaction between inherited Variscan structures with more recent fault systems created during the rifting stages of the Atlantic and diapir magmatic intrusions. The complex history of the assemblage of the crust beneath Western Iberia is well-marked in the final models. The arcuate shape of the Ibero-Armorican Arc can be perceived over the general pattern of the Vp and Vp/Vs anomalies and the heterogeneity observed on the surface geology are clearly marked in the tomograms. Other significant features are the low Vp values associated with the Mesocenozoic rocks outcropping in the Lusitanian and Algarve basins, and the low Vp and high Vp/Vs values of the sedimentary cover of the Lower-Tagus and Sado Basin. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz.
NASA Astrophysics Data System (ADS)
Bianchi, Irene; Qorbani, Ehsan; Bokelmann, Götz
2016-04-01
As one of the rare observational tools for studying deformation and stress within the Earth, seismic anisotropy has been one of the focuses of geophysical studies over the last decade. In order to unravel the anisotropic properties of the crust, the teleseismic receiver functions (RF) methodology has started to be widely applied recently. Such effects of anisotropy on RF were illustrated in theoretical studies, showing the strong backazimuthal dependence of RF on the 3D characteristics of the media sampled by the waves. The use of teleseismic RF has the advantage of not being affected by a heterogeneous depth distribution of local earthquakes, since teleseismic rays sample the entire crust beneath the stations. The application of this technique however, needs to be critically assessed using a suitable field test. To test the technique, we need a crustal block where the underground structure is reasonably well-known, e.g., where there is extensive knowledge from local seismic experiments and drilling. A field experiment has thus been carried out around the KTB (Kontinental Tiefbohrung) site in the Oberpfalz area in Southeastern Germany, in order to compare with previous results from deep drilling, and high-frequency seismic experiments around the drill site. The investigated region has been studied extensively by local geophysical experiments, and geological studies. The deep borehole was placed into gneiss rocks of the Zone Erbendorf-Vohenstrauss. The drilling activity lasted from 1987 to 1994, and descended down to a depth of 9101 meters, sampling an alternating sequence of paragneiss and amphibolite, with metamorphism of upper amphibolite facies conditions, and ductile deformation produced a strong foliation of the rocks. The application of the RFs reveals strong seismic anisotropy in the upper crust related to the so-called Erbendorf body. The SKS shear-wave splitting method has been applied as well, revealing coherent results for the whole region with exception of the southernmost station, for which the seismic waves show larger delays. We use the RF observations to test the effect of crustal anisotropy on the SKS records, which sample entire crust and upper mantle.
NASA Astrophysics Data System (ADS)
Brown, L. D.
2006-05-01
Given the 3D framework represented by EarthScope's USArray as it scans eastward, the strategic challenge falls to defining cost-effective deployments of FlexArray to address specific lithospheric targets. Previous deep geophysical surveys (e.g. COCORP, USGS, GLIMPCE, et al.) provide guidance not only in framing the geological issues involved, but in designing field experiments that overcome the limitations of previous work. Opportunities highlighted by these precursor studies include: a) Collisional sutures (e.g. Brunswick Anomaly/Suwannee terrane) which lie buried beneath overthrust terranes/ younger sedimentary covers. Signal penetration in previous controlled source surveys has been insufficient. High resolution passive surveys designed to map intralithospheric detachments, Moho, and mantle subduction scars is needed to validate the extrapolations of the existing upper crustal information; b) Intracratonic basins and domes (e.g. Michigan Basin, Adirondack Dome) are perhaps the greatest geological mystery hosted in the east. Previous geophysical studies have lacked the resolution or penetration needed to identify the buoyancy drivers presumed to be responsible for such structures. It is likely that these drivers lie in the upper mantle and will require detailed velocity imaging to recognized. c) Distributed shear fabrics are a defining characteristic of the deep crust in many deformation zones (e.g. Grenville Front). Detailed mapping of crustal anisotropy associated with such shear zones should help delineate ductile flow directions associated with the orogenies that accreted the eastern U.S. 3 component, 3D active+passive surveys are needed to obtain definitive remote measures of such vector characteristics in the deep crust. d) Extensive reflectors in the central U.S. may mark important buried Precambrian basins and/or sill complexes. If the latter, the magmatic roots of those systems remain unrecognized, as does their volumetric contribution to crustal growth. 3C expanding spreads to resolve lithology in the upper crust, coupled with passive imaging of potential mantle sources, are needed to evaluate the role of these sequences in mid Proterozoic continental evolution. Effective experiments must build upon existing data, be strategic in the selection of the various FlexArray tools available, and link operationally with the Bigfoot deployments in an appropriately staged fashion.
Continental degassing of 4He by surficial discharge of deep groundwater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aggarwal, Pradeep K.; Matsumoto, Takuya; Sturchio, Neil C.
2014-12-01
Radiogenic He-4 is produced by the decay of uranium and thorium in the Earths mantle and crust. From here, it is degassed to the atmosphere(1-5) and eventually escapes to space(1,5,6). Assuming that all of the He-4 produced is degassed, about 70% of the total He-4 degassed from Earth comes from the continental crust(2,-5,7). However, the outgoing flux of crustal He-4 has not been directly measured at the Earths surface(2) and the migration pathways are poorly understood(2-4,7,8). Here we present measurements of helium isotopes and the long-lived cosmogenic radio-isotope Kr-81 in the deep, continental-scale Guarani aquifer in Brazil and show thatmore » crustal He-4 reaches the atmosphere primarily by the surficial discharge of deep groundwater. We estimate that He-4 in Guarani groundwater discharge accounts for about 20% of the assumed global flux from continental crust, and that other large aquifers may account for about 33%. Old groundwater ages suggest that He-4 in the Guarani aquifer accumulates over half- to one-million-year timescales. We conclude that He-4 degassing from the continents is regulated by groundwater discharge, rather than episodic tectonic events, and suggest that the assumed steady state between crustal production and degassing of He-4, and its resulting atmospheric residence time, should be re-examined« less
NASA Astrophysics Data System (ADS)
Leprêtre, A.; Deverchere, J.; Klingelhoefer, F.; Graindorge, D.; Schnurle, P.; Yelles, K.; Bracene, R.
2011-12-01
The origin of the Algerian margin remains one of the key questions still unresolved in the Western Mediterranean sea. This is related to the unknown nature and kinematics of this Neogene basin. Whereas the westernmost margin is generally assumed to have been shaped as a STEP-fault (Subduction-Transform Edge Propagator, transcurrent) margin by the westward displacement of the Alboran block, the central Algerian margin is believed to have involved a NW-SE basin opening related to a southward slab rollback. This work sheds insight on this issue, using data acquired in the context of the Algerian-French program SPIRAL (Sismique Profonde et Investigation Régionale en Algérie): a cruise conducted on the 'R/V L'Atalante' in October-November 2009. It has provided 5 new combined onshore-offshore wide-angle seismic profiles and an extensive multi-channel seismic dataset spread along the margin, from Oran to Annaba. In this work, the available structural information on the ~N-S wide-angle transect of Tipaza is presented, where the margin broadens due to the presence of a bathymetric high (the Khayr-Al-Din bank) which is assumed to represent a remaining titled block of the passive margin. Along the transect, 39 OBS and 13 landstations recorded 751 low frequency airgun shots. Travel-time tomography and forward modelling were computed using the software developed by Zelt and Barton (1998) and Zelt and Smith (1992), to obtain the velocity structure in the region. A set of multi-channel seismic reflection profiles including two coincident profiles with the wide-angle data allows a combined interpretation and extend the deep structure in the Bou Ismail Bay. MCS data outline the sedimentary sequence filling the Algerian basin depicting an intensive salt tectonic associated with the Messinan Salinity Crisis and allowing to image locally below the salt layer. The deep penetrating data SPIRAL allow to image the sedimentary sequence in the Algerian basin off Tipaza (West Algiers) and the crustal structure at the continent-ocean boundary. In the Algerian basin off Tipaza, the Moho discontinuity is identified using wide-angle modelling at 11-12 km depth which corresponds in two-way travel-time to 7-8 s. Wide-angle seismic modelling imaged a major thinning of the crust from more of 15 km in the upper margin (KADB) to only 5-6 km in the deep basin. This thinning also marks the rapid transition from a thinned continental crust at the Khayr-al-Din bank to an oceanic crust in the Algerian Basin, revealing a narrow transition zone (20-30 km) between the two domains. This work presents the deep structure of the margin West of Algiers from wide-angle and multichannel seismic data in order to discuss models of opening for the Algerian basin.
Deep-crustal seismicity in volcanic regions by fluid-enhanced wallrock embrittlement
NASA Astrophysics Data System (ADS)
Sisson, T. W.; Power, J. A.
2013-12-01
Spatial association of deep long-period (DLP) seismicity with volcanoes [1,2], spectral frequencies resembling shallow events attributed to fluid motions, and temporal associations with some eruptions, prompt the interpretation that DLPs mark the locations of magma, or magma with percolating exsolved vapor, in the mid and lower crust. However, various factors are more consistent with the events taking place in the walls surrounding the hot aseismic cores of deep magmatic systems, due to expelled magmatic fluids elevating pore pressures and reducing wall rock brittle strengths, or possibly in largely solidified peripheral intrusions embrittled by interstitial residual melt. First, although exceptions are known, deep seismic events are typically displaced to one or more sides of the locus of volcanism. Compilation of >1000 mid to deep crustal DLP and volcano tectonic events from the Aleutian arc, plotted as radial distance from the respective volcanic locus vs. depth, shows a minimum of events beneath the volcanic loci, encased in a downward broadening halo of events, typically displaced about 6 km to the sides of the volcanic locus. Lateral offsets of deep events are also well established for volcanoes of the Washington Cascades [3], averaging 7.5×4.5(1σ) km, and for some centers in California [1]. Second, while mafic parental magmas can have high concentrations of H2O (CO2 concentrations are comparatively negligible), H2O is highly soluble at mid to lower crustal pressures and will not exsolve appreciably until advanced crystallization and second boiling. Deep vapor exsolution will proceed gradually, delayed well after replenishment events, due to slow cooling and crystallization in the hot deep crust. Exsolution dominantly at high crystallinities argues against bubbles moving through largely liquid replenishing magmas as a major cause of DLPs. Third, isotherms around the mid to deep crustal portions of magmatic systems will propagate outward with time1/2 due to dominantly conductive heat transfer at those depths. Over the ca. 1-5×105 yr durations of convergent margin volcanoes, characteristic isotherms propagate <10 km (k: 2.25 W/mK); temperature dependent thermal conductivity [4] would reduce these distances. Deep magmatic systems are therefore encased in relatively thin thermal sheaths, outboard of which temperatures drop sharply to near-ambient values, and rock strengths increase accordingly. Collectively, these factors support a scenario wherein magmas crystallize in the roots of volcanic systems, gradually exsolving and releasing vapor, some of which percolates into surrounding wallrocks. Beyond some critical isotherm, plastic rock strength increases sufficiently for fluid enhanced brittle failure when the walls are stressed by magma replenishments or by ordinary tectonic forces. If so, the statistical spatial distribution of DLPs indicates that the hot, active portions of the deep magmatic systems are relatively narrow, commonly <6 km in semi-minor radius. 1. Pitt et al., 2002, Seis Res Lett 73:144-152 2. Power et al., 2004, Jour Volc Geotherm Res 138:243-266 3. Nichols et al., 2011, Jour Volc Geotherm Res 200:116-128 4. Whittington et al., 2009, Nature 458, 319-321
Extension and gold mineralisation in the hanging walls of active convergent continental shear zones
NASA Astrophysics Data System (ADS)
Upton, Phaedra; Craw, Dave
2014-07-01
Orogenic gold-bearing quartz veins form in mountain belts adjacent to convergent tectonic boundaries. The vein systems, hosted in extensional structures within compressively deformed rocks, are a widespread feature of these orogens. In many cases the extensional structures that host gold-bearing veins have been superimposed on, and locally controlled by, compressional structures formed within the convergent orogen. Exploring these observations within the context of a three-dimensional mechanical model allows prediction of mechanisms and locations of extensional zones within convergent orogens. Our models explore the effect of convergence angle and mid-crustal strength on stress states and compare them to the Southern Alps and Taiwan. The dilatation zones coincide with the highest mountains, in the hanging walls of major plate boundary faults, and can extend as deep as the brittle-ductile transition. Extensional deformation is favoured in the topographic divide region of oblique orogens with mid-lower crustal rheology that promotes localisation rather than diffuse deformation. In the near surface, topography influences the stress state to a depth approximately equal to the topographic relief, bringing the rock closer to failure and rotating σ1 to near vertical. The distribution of gold-bearing extensional veins may indicate the general position of the topographic divide within exhumed ancient orogens.
Geophysical characteristics and crustal structure of greenstone terranes: Canadian Shield
NASA Technical Reports Server (NTRS)
Thomas, M. D.; Losier, L.; Thurston, P. C.; Gupta, V. K.; Gibb, R. A.; Grieve, R. A. F.
1986-01-01
Geophysical studies in the Canadian Shield have provided some insights into the tectonic setting of greenstone belts. Greenstone belts are not rooted in deep crustal structures. Geophysical techniques consistently indicate that greenstones are restricted to the uppermost 10 km or so of crust and are underlain by geophysically normal crust. Gravity models suggest that granitic elements are similarly restricted, although magnetic modelling suggests possible downward extension to the intermediate discontinuity around approx. 18 km. Seismic evidence demonstrates that steeply-dipping structure, which can be associated with the belts in the upper crust, is not present in the lower crust. Horizontal intermediate discontinuities mapped under adjacent greenstone and granitic components are not noticeably disrupted in the boundary zone. Geophysical evidence points to the presence of discontinuities between greenhouse-granite and adjacent metasedimentary erranes. Measured stratigraphic thicknesses of greenstone belts are often twice or more the vertical thicknesses determined from gravity modelling. Explantations advanced for the discrepancy include stratigraphy repeated by thrust faulting and/or listric normal faulting, mechanisms which are consistent with certain aspects of conceptual models of greenstone development. Where repetition is not a factor the gravity evidence points to removal of the root zones of greenstone belts. For one region, this has been attributed to magmatic stopping during resurgent caldera activity.
Tectonics and crustal structure of the Saurashtra peninsula: based on Gravity and Magnetic data
NASA Astrophysics Data System (ADS)
Mishra, A. K.; Singh, A.; Singh, U. K.
2016-12-01
The Saurashtra peninsula is located at the North Western margin of the Indian shield which occurs as a horst block between the rifts namely as Kachchh, Cambay and Narmada. It is important because of occurrence of moderate earthquake and presence of mesozoic sediments below the Deccan trap. The maps of bouguer gravity anomaly and the total intensity magnetic anomalies of Saurashtra have delineated six circular gravity highs of magnitudes 40-60 mGal and 800-1000 nT respectively. In order to understand the location, structure and depth of the source body, methods like continuous wavelet transform (CWT), Euler deconvolution and power spectrum analysis have been implemented in the potential field data. The CWT and Euler deconvolution give 16-18 km average depth of volcanic plug in Junagadh and Rajula region. From the power spectrum analysis, it is found that average Moho depth in the Saurashtra is about 36-38 km. Keeping the constraints obtained from geophysical studies like borehole, deep seismic survey, receiver function analysis and geological information, combined gravity and magnetic modeling have been performed. Detailed crustal structure of the Saurashtra region has been delineated along two profiles which pass from prominent geological features Junagadh and Rajula volcanic plugs respectively.
NASA Astrophysics Data System (ADS)
Shulgin, Alexey; Thybo, Hans
2014-05-01
Until present, seismic surveys have only been carried out offshore and near the coasts of Greenland, where the crustal structure is affected by oceanic break-up. We present the deep seismic structure of the crust of the interior of Greenland, based on the new and the only existing so far seismic refraction/wide-angle reflection profile. The seismic data was acquired by a team of six people during a two-month long experiment in summer of 2011 on the ice cap in the interior of central-eastern Greenland. The presence of an up to 3.4 km thick ice sheet, permanently covering most of the land mass, made acquisition of geophysical data logistically complicated. The profile extends 310 km inland in E-W direction from the approximate edge of the stable ice cap near the Scoresby Sund across the center of the ice cap. 350 Reftek Texan receivers recorded high-quality seismic data from 8 equidistant shots along the profile. Explosive charge sizes were 1 ton at the ends and ca. 500 kg along the profile, loaded with about 125 kg at 35-85 m depth in individual boreholes. Given that the data acquisition was affected by the thick ice sheet, we questioned the quality of seismic records in such experiment setup. We have developed an automatic routine to check the amplitudes and spectra of the selected seismic phases and to check the differences/challenges in making seismic experiments on ice and the effects of ice on data interpretation. Using tomographic inversion and forward ray tracing modelling we have obtained the two-dimensional velocity model down to a 50 km depth. The model shows a decrease of crustal thickness from 47 km below the centre of Greenland in the western part of the profile to 40 km in its eastern part. Relatively high lower crustal velocities (Vp 6.8 - 7.3 km/s) in the western part of the TopoGreenland profile may result from past collision tectonics or, alternatively, may be related to the speculated passage of the Iceland mantle plume. Comparison of our results with the new receiver function studies (Kraft et al., personal communication) suggests the possibility for a massive underplating along the profile. The origin of the pronounced circum-Atlantic mountain ranges in Norway and eastern Greenland, which have average elevation above 1500 m with peak elevations of more than 3.5 km near the Scoresby Sund in Eastern Greenland, is unknown. Our new results on the crustal structure provide constraints for assessment of the isostatic balance of the crust in Greenland, as well as for examining possible links between crustal composition, rifting history and present-day topography of the North Atlantic Region.
NASA Astrophysics Data System (ADS)
Best, John A.; Barazangi, Muawia; Al-Saad, Damen; Sawaf, Tarif; Gebran, Ali
1990-12-01
This study examines the crustal structure of the Palmyrides and the northern Arabian platform in Syria by two- and three-dimensional modeling of the Bouguer gravity anomalies. Results of the gravity modeling indicate that (1) western Syria is composed of at least two different crustal blocks, (2) the southern crustal block is penetrated by a series of crustal-scale, high-density intrusive complexes, and (3) short-wavelength gravity anomalies in the southwest part of the mountain belt are clearly related to basement structure. The crustal thickness in Syria, as modeled on the gravity profiles, is approximately 40 ±4 km, which is similar to crustal thicknesses interpreted from refraction data in Jordan and Saudi Arabia. The different crustal blocks and large-scale mafic intrusions are best explained, though not uniquely, by Proterozoic convergence and suturing and early Paleozoic rifting, as interpreted in the exposed rocks of the Arabian shield. These two processes, combined with documented Mesozoic rifting and Cenozoic transpression, compose the crustal evolution of the northern Arabian platform beneath Syria.
NASA Astrophysics Data System (ADS)
Rao, D. Atchuta; Babu, H. V. Ram; Sinha, G. D. J. Sivakumar
1992-10-01
Aeromagnetic data over an 80-km-wide belt along the ENE-trending Narmada-Son lineament (NSL), starting from Baroda in the west and continuing to the south of Jabalpur in the east, has been studied to understand the structural and tectonic framework of the region. The area is covered by generally E-W-trending steeply dipping and folded Archean phyllites and quartzites as basement, with Bijawars (Upper Precambrian), upper Vindhyans (Upper Proterozoic), and Gondwanas (Upper Carboniferous) overlying them. Overlapping them all are the Deccan trap (Cretaceous-Eocene) flows. Aeromagnetic linements and their disposition and pattern in this region suggest major dislocations in the crust. The region around Hoshangabad, which is the intersection point of the NSL and the northwestern extension of the Godavari lineament, appears to have been intensely disturbed. Spectral analysis of aeromagnetic profiles across the NSL belt brought out a deep magnetic interface within crust at depths varying from 4 km to about 20 km below the surface, perhaps corresponding to the discontinuity characterized by the interface of granitic and basaltic rocks. There is a significant downwarping of this interface under the Hoshangabad region, suggesting that this is perhaps related to the evolution of the Gondwana basin structure in this area. This warping of the magnetic interface may be a reflection of the crustal flexuring and rift faulting. Elsewhere in the world, concentrations of carbonatite complexes and dike swarms are known to occur in areas of crustal flexuring and rift faulting. The occurrence of carbonatite complexes in this region (e.g. at Amba Dongar and Barwaha, and dike swarms in the Dadiapada region) gives credence to the present inferences from the aeromagnetic study.
NASA Astrophysics Data System (ADS)
Poort, Jeffrey; Lucazeau, Francis; Le Gal, Virginie; Rabineau, Marina; Dal Cin, Michela; Bouzid, Abderrezak; Palomino, Desirée; Leroux, Estelle; Akhmanov, Grigory; Battani, Anne; Bachir, Roza Si; Khlystov, Oleg; Koptev, Aleksandre
2017-04-01
While there is now a large consensus that Western Mediterranean basins developed in a Miocene back-arc setting due to slab roll-back and that some of its domains are floored by oceanic crust, there is still a lot of speculation on the configuration, nature and evolution of its margins and the ocean-continent transitions (OCT). A thick Messinian layer of evaporites in the deep basin obscures deep seismic reflectors, and only recently seismic refraction and wide-angle studies revealed a confident picture of basement configuration. In order to further constrain models of crustal structure and margin evolution, heat flow is one of the key parameters needed. Recent heat flow studies on other margins have shown the existence of a persistent thermal anomaly under rifted margins that urges to reconsider the classical models of its evolution. The young age of OCT and ceased oceanic formation in the Western Mediterranean make it an interesting test case for a thermo-mechanical study of its margins. The presence of halokinetic structuring and salt diapirs urges the need of close spaced heat flow measurement to evaluate heat refraction and advective heat transfer by fluid migration. During the WestMedFlux cruise on the research vessel L'Atalante, we collected a total of 150 new heat flow measurement (123 in pogo mode, 27 with a sediment corer) in the deep basin of the Western Mediterranean where heat flow data were sparse. Preliminary analysis of the heat flow data confirms two regional trends: in the southern Provencal basin an overall increase from west to east (from about 60 mW/m2 at the Golf of Lion towards 75 mW/m2 at the West-Sardinia margin), while in the northern part of the Algero-Balearic basin heat flow increases from east to west (from about 80 to 100 mW/m2). On this regional trends, several local anomalies are clearly differentiated. In the deep oceanic basin, strong anomalies seem to be merely associated to salt diapiric structures. On the OCT and on the rifted continent, both strongly reduced and elevated heat flow are observed and suggest other heat sink and sources. We will discuss on the different processes that might have affected the surface heat flow (e.g., bottom water currents, slope instabilities and focused fluid migrations) and try to link the large scale heat flow patterns with crustal nature, structuring of the margins and mantle dynamics.
An oceanic plateau subduction: A case study offshore Eastern Java.
NASA Astrophysics Data System (ADS)
Shulgin, Alexey; Kopp, Heidrun; Mueller, Christian; Planert, Lars; Lueschen, Ewald; Flueh, Ernst; Djajadihardja, Yusuf
2010-05-01
The area offshore Java represents one of a few places globally where the early stage of subduction of an oceanic plateau is observed. Our study area is located south of eastern Java and covers the edge of the Roo Rise plateau, the Java trench and the entire forearc section. For the first time the detailed deep structure of the Roo Rise is studied, subduction of which has a significant effect on the forearc dynamics and evolution and the increase of the geohazards risks. The tsunamogenic earthquakes of 1994 and 2006 are associated with the oceanic plateau edge been subducted. We present integrated results of a refraction/wide-angle reflection tomography, gravity modeling, and multichannel reflection seismic imaging using data acquired in 2006 along a corridor centered around 113°E and composed of a 340 km long N-S profile and a 130 km long E-W oriented profile. The composite structural models reveal the previously unresolved deep geometry of the collision zone and the structure of the oceanic plateau. The crustal thickness of the Roo Rise plateau is ranging from 18 to 12 km. The structure of the upper crust of the incoming oceanic plate shows the extreme degree of fracturing in its top section, and is associated with a plate bending. The forearc Moho has a depth range from 16 to 20 km. The gravity modeling requires a sharp crustal thickness increase below Java. Within our profiles we do not recover any direct evidence for the presence of the bathymetric features on the oceanic plate currently present below the accretionary prism, responsible for the tsunamogenic earthquake triggering. However vertical variations of the forearc basement edge are observed on the trench-parallel profile, which opens a discussion on the origin of such basement undulations, together with a localized patchy uplift character of the forearc high.
NASA Astrophysics Data System (ADS)
Tinto, K. J.; Siddoway, C. S.; Bell, R. E.; Lockett, A.; Wilner, J.
2017-12-01
Now submerged within marine plateaus and rises bordering Antarctica, Australia and Zealandia, the East Gondwana accretionary margin was a belt of terranes and stitched by magmatic arcs, later stretched into continental ribbons separated by narrow elongate rifts. This crustal architecture is known from marine geophysical exploration and ocean drilling of the mid-latitude coastal plateaus and rises. A concealed sector of the former East Gondwana margin that underlies the Ross Ice Shelf (RIS), Antarctica, is the focus of ROSETTA-ICE, a new airborne data acquisition campaign that explores the crustal makeup, tectonic boundaries and seafloor bathymetry beneath RIS. Gravimeters and a magnetometer are deployed by LC130 aircraft surveying along E-W lines spaced at 10 km, and N-S tie lines at 55 km, connect 1970s points (RIGGS) for controls on ocean depth and gravity. The ROSETTA-ICE survey, 2/3 completed thus far, provides magnetic anomalies, Werner depth-to-basement solutions, a new gravity-based bathymetric model at 20-km resolution, and a new crustal density map tied to the 1970s data. Surprisingly, the data reveal that the major lithospheric boundary separating East and West Antarctica lies 300 km east of the Transantarctic Mountains, beneath the floating RIS. The East and West regions have contrasting geophysical characteristics and bathymetry, with relatively dense lithosphere, low amplitude magnetic anomalies, and deep bathymetry on the East Antarctica side, and high amplitude magnetic anomalies, lower overall density and shallower water depths on the West Antarctic side. The Central High, a basement structure cored at DSDP Site 270 and seismically imaged in the Ross Sea, continues beneath RIS as a faulted but coherent crustal ribbon coincident with the tectonic boundary. The continuity of Gondwana margin crustal architecture discovered beneath the West Antarctic Ice Sheet requires a revision of the existing tectonic framework. The sub-RIS narrow rift basins and transfer zones, and the crustal boundary that is well-separated from the Transantarctic Mountains front, control the bathymetry, impart the large-scale patterning within and upon the base of the ice sheet, influence oceanographic circulation, and therefore are of import for Ross Ice Shelf stability.
NASA Astrophysics Data System (ADS)
Klingelhoefer, F.; Biari, Y.; Sahabi, M.; Funck, T.; Benabdellouahed, M.; Schnabel, M.; Reichert, C. J.; Gutscher, M. A.; Bronner, A.; Austin, J. A., Jr.
2017-12-01
The structure of conjugate passive margins provides information about rifting styles, the initial phases of the opening of an ocean and the formation of its associated sedimentary basins. The study of the deep structure of conjugate passive continental margins combined with precise plate kinematic reconstructions can provide constraints on the mechanisms of rifting and formation of initial oceanic crust. In this study the Central Atlantic conjugate margins are compared, based on compilation of wide-angle seismic profiles from the NW-Africa Nova Scotian and US passive margins. Plate cinematic reconstructions were used to place the profiles in the position at opening and at the M25 magnetic anomaly. The patterns of volcanism, crustal thickness, geometry, and seismic velocities in the transition zone. suggest symmetric rifting followed by asymmetric oceanic crustal accretion. Conjugate profiles in the southern Central Atlantic image differences in the continental crustal thickness. While profiles on the eastern US margin are characterized by thick layers of magmatic underplating, no such underplate was imaged along the NW-African continental margin. It has been proposed that these volcanic products form part of the CAMP (Central Atlantic Magmatic Province). In the north, two wide-angle seismic profiles acquired in exactly conjugate positions show that the crustal geometry of the unthinned continental crust and the necking zone are nearly symmetric. A region including seismic velocities too high to be explained by either continental or oceanic crust is imaged along the Nova Scotia margin off Eastern Canada, corresponding on the African side to an oceanic crust with slightly elevated velocities. These might result from asymmetric spreading creating seafloor by faulting the existing lithosphere on the Canadian side and the emplacement of magmatic oceanic crust including pockets of serpentinite on the Moroccan margin. A slightly elevated crustal thickness along the African margin can be explained by the influence of the Canary hotspot between 60 and 30 Ma in the study region. After isochron M25, a large-scale plate reorganization may then have led to an increase in spreading velocity and the production of a more typical but thin magmatic crust on both sides.
NASA Astrophysics Data System (ADS)
Giambiagi, L.; Tassara, A.; Mescua, J.; Suriano, J.; Mahoney, J. B.; Hoke, G. D.; Spagnotto, S. L.; Lossada, A. C.; Mardónez, D.; Mazzitelli, M.; Barrionuevo, M.
2015-12-01
Nowadays, it is broadly accepted that the Central Andes resulted largely from crustal shortening in the last ~45 Ma, driven by horizontal forces as a consequence of subduction of the Nazca plate beneath South America. However, the way this shortening is achieved is still a matter a debate. Structural, seismological, thermochronological, isotopical and sedimentological studies of the Central Andes, together with thermomechanical modeling, suggest that different megadetachments located shallow in the upper crust were active during the construction of the Andes. Constrains on changes in the state of stress in the crust gleaned from more than 1,500 fault-slip data in the arc region provide insights into how and when these megadetachments get activated or deactivated. We used a forward modeling procedure to examine five transects across the Central Andes, at 21.5°, 24°, 30°, 34° and 35°S, with particular emphasis on the relationship between deep and shallow structures. Our kinematic-thermomechanical models show that most of the upper-middle crust has a brittle-elastic behavior particularly for the cold and rigid forearc and foreland regions, and a ductile behavior below the thermally weakened arc region. Our models assume a shallow, sub-horizontal megadetachment located at the shallowest brittle-ductile transition, which concentrates the majority of the horizontal crustal shortening between the fore-arc and the South American craton. During this horizontal shortening, the crust gets thick and topography rises due to buoyancy of the crustal root. The threshold of this thickening is achieved when the bouyancy force equals the horizontal force. At this point, the megadetachment deactives and the crustal root widens eastwards in concert with ductile deformation in the lower crust and the generation of a new megadetachment. By studying changes in the paleostress fields along the arc region, from compression to strike-slip, and strike-slip to extension, associated with σ3/σ2 and σ2/σ1 permutations respectively, together with the timing of uplift and exhumation of the morphostructural units across the transects, we can constrain the timing of activation/deactivation of the detachments responsible for the Andean deformation.
NASA Astrophysics Data System (ADS)
Julia, J.; Nascimento, R.; Bastow, I. D.; Dias, R. C.; Pinheiro, A. G.; Farias do Nascimento, A.; Ferreira, J. M.; Fuck, R. A.
2013-05-01
The Borborema Province of NE Brazil can be regarded as a collage ofseveral terranes of Precambrian age that amalgamated during the Brasiliano-Pan African orogeny around 600 Ma. It comprises the northeasternmost corner of the South American continent and it is bounded by the São Francisco craton to the South, the Paleozoic Parnaiba basin to the West and a number of Mesozoic marginal basins to the North and East. The Cenozoic evolution of the Province is marked by the uplift of the Borborema Plateau and the coeval magmatism along two mutually orthogonal alignments: Macau-Queimadas, onshore and trending in the NS direction, and Fernando de Noronha-Mecejana, offshore and trending EW. Constraints on the geodynamical evolution of the Province come mostly from geochronological data and neotectonic markers, which have related this Cenozoic volcanism and the coeval plateau uplift to a small-scale convection cell that might have developed at the edge of the continent. Available seismic constraints on deep crustal and upper mantle structure to validate this interpretation, however, are scarce. In order to develop seismic constraints on deep crustal and upper mantle structure, a network of 16 short-period stations was deployed in 2011 under the Instituto Nacional de Ciência e Tecnologia de Estudos Tectônicos (INCT-ET) of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The stations complement an existing network of 16 broadband stations used for seismic monitoring of the Brazilian northeast. The combined network has an aperture of ˜400 km in the NE direction, ˜600 km in the NS direction, and an average inter-station spacing of ˜100 km and will operate for about 2 years. Tomographic images based on fundamental model surface-waves dispersion as well as ambient-noise cross-correlations and P- and S-wave travel-times are now being developed, along with detailed crustal-velocity models from the joint inversion of receiver functions and surface-wave dispersion, anisotropy constraints from SKS-splitting, and transition zone discontinuity topography from receiver function stacks. We expect that the new results will help shed light on the origin of the Cenozoic volcanism and uplift mechanism for the Borborema Province.
2012-06-05
Variations in the Zagros Fold and Trust Zone While crustal anisotropy may be indicative of tectonic stresses and alignments of faults and fracture zones...AFRL-RV-PS- AFRL-RV-PS- TP-2012-0042 TP-2012-0042 INVESTIGATION OF THE CRUSTAL STRUCTURE IN THE MIDDLE EAST FROM BODY-WAVE ANALYSIS...DATES COVERED (From - To) 01 Sep 2010 to 19 Mar 2012 4. TITLE AND SUBTITLE INVESTIGATION OF THE CRUSTAL STRUCTURE IN THE MIDDLE EAST FROM
Formation and Elimination of Transform Faults on the Reykjanes Ridge
NASA Astrophysics Data System (ADS)
Martinez, Fernando; Hey, Richard
2017-04-01
The Reykjanes Ridge is a type-setting for examining processes that form and eliminate transform faults because it has undergone these events systematically within the Iceland gradient in hot-spot influence. A Paleogene change in plate motion led to the abrupt segmentation of the originally linear axis into a stair-step ridge-transform configuration. Its subsequent evolution diachronously and systematically eliminated the just-formed offsets re-establishing the original linear geometry of the ridge over the mantle, although now spreading obliquely. During segmented stages accreted crust was thinner and during unsegmented stages southward pointing V-shaped crustal ridges formed. Although mantle plume effects have been invoked to explain the changes in segmentation and crustal features, we propose that plate boundary processes can account for these changes [Martinez & Hey, EPSL, 2017]. Fragmentation of the axis was a mechanical effect of an abrupt change in plate opening direction, as observed in other areas, and did not require mantle plume temperature changes. Reassembly of the fragmented axis to its original linear configuration was controlled by a deep damp melting regime that persisted in a linear configuration following the abrupt change in opening direction. Whereas the shallow and stronger mantle of the dry melting regime broke up into a segmented plate boundary, the persistent deep linear damp melting regime guided reassembly of the ridge axis back to its original configuration by inducing asymmetric spreading of individual ridge segments. Effects of segmentation on mantle upwelling explain crustal thickness changes between segmented and unsegmented phases of spreading without mantle temperature changes. Buoyant upwelling instabilities propagate along the long linear deep melting regime driven by regional gradients in mantle properties away from Iceland. Once segmentation is eliminated, these propagating upwelling instabilities lead to crustal thickness variations forming the V-shaped ridges on the Reykjanes Ridge flanks, without requiring actual rapid radial mantle plume flow or temperature variations. Our study indicates that the Reykjanes Ridge can be used to study how plate boundary processes within a regional gradient in mantle properties lead to a range of effects on lithospheric segmentation, melt production and crustal accretion.
Crustal structure of Mars from gravity and topography
NASA Technical Reports Server (NTRS)
Neumann, G. A.; Zuber, M. T.; Wieczorek, M. A.; McGovern, P. J.; Lemoine, F. G.; Smith, D. E.
2004-01-01
Mars Orbiter Laser Altimeter (MOLA) topography and gravity models from 5 years of Mars Global Surveyor (MGS) spacecraft tracking provide a window into the structure of the Martian crust and upper mantle. We apply a finite-amplitude terrain correction assuming uniform crustal density and additional corrections for the anomalous densities of the polar caps, the major volcanos, and the hydrostatic flattening of the core. A nonlinear inversion for Moho relief yields a crustal thickness model that obeys a plausible power law and resolves features as small as 300 km wavelength. On the basis of petrological and geophysical constraints, we invoke a mantle density contrast of 600 kg m-3; with this assumption, the Isidis and Hellas gravity anomalies constrain the global mean crustal thickness to be >45 km. The crust is characterized by a degree 1 structure that is several times larger than any higher degree harmonic component, representing the geophysical manifestation of the planet's hemispheric dichotomy. It corresponds to a distinction between modal crustal thicknesses of 32 km and 58 km in the northern and southern hemispheres, respectively. The Tharsis rise and Hellas annulus represent the strongest components in the degree 2 crustal thickness structure. A uniform highland crustal thickness suggests a single mechanism for its formation, with subsequent modification by the Hellas impact, erosion, and the volcanic construction of Tharsis. The largest surviving lowland impact, Utopia, post-dated formation of the crustal dichotomy. Its crustal structure is preserved, making it unlikely that the northern crust was subsequently thinned by internal processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fielding, E.J.; Barazangi, M.; Isacks, B.L.
Topography and heterogeneous crustal structure have major effects on the propagation of regional seismic phases. We are collecting topographical, geological, and geophysical datasets for Eurasia into an information system that can be accessed via Internet connections. Now available are digital topography, satellite imagery, and data on sedimentary basins and crustal structure thicknesses. New datasets for Eurasia include maps of depth to Moho beneath Europe and Scandinavia. We have created regularly spaced grids of the crustal thickness values from these maps that can be used to create profiles of crustal structure. These profiles can be compared by an analyst or anmore » automatic program with the crustal seismic phases received along the propagation path to better understand and predict the path effects on phase amplitudes, a key to estimating magnitudes and yields, and for understanding variations in travel-time delays for phases such as Pn, important for improving regional event locations. The gridded data could also be used to model propagation of crustal phases in three dimensions. Digital elevation models, Satellite imagery, Geographic information systems, Lg Propagation, Moho, Geology, Crustal structure, Topographic relief.« less
CRUSTAL FAILURE DURING BINARY INSPIRAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penner, A. J.; Andersson, N.; Jones, D. I.
2012-04-20
We present the first fully relativistic calculations of the crustal strain induced in a neutron star by a binary companion at the late stages of inspiral, employing realistic equations of state for the fluid core and the solid crust. We show that while the deep crust is likely to fail only shortly before coalescence, there is a large variation in elastic strain, with the outermost layers failing relatively early on in the inspiral. We discuss the significance of the results for both electromagnetic and gravitational-wave astronomy.
Kulongoski, J.T.; Hilton, David R.; Izbicki, J.A.
2005-01-01
We assess the role of fracturing and seismicity on fluid-driven mass transport of helium using groundwaters from the eastern Morongo Basin (EMB), California, USA. The EMB, located ???200 km east of Los Angeles, lies within a tectonically active region known as the Eastern California Shear Zone that exhibits both strike-slip and extensional deformation. Helium concentrations from 27 groundwaters range from 0.97 to 253.7 ?? 10-7 cm3 STP g-1 H2O, with corresponding 3He/4He ratios falling between 1.0 and 0.26 RA (where RA is the 3He/4He ratio of air). All groundwaters had helium isotope ratios significantly higher than the crustal production value of ???0.02 RA. Dissolved helium concentrations were resolved into components associated with solubility equilibration, air entrainment, in situ production within the aquifer, and extraneous fluxes (both crustal and mantle derived). All samples contained a mantle helium-3 (3Hem) flux in the range of 4.5 to 1351 ?? 10-14 cm3 STP 3He cm-2 yr-1 and a crustal flux (J0) between 0.03 and 300 ?? 10-7 cm3 STP 4He cm-2 yr-1. Groundwaters from the eastern part of the basin contained significantly higher 3Hem and deep crustal helium-4 (4Hedc) concentrations than other areas, suggesting a localized source for these components. 4Hedc and 3Hem are strongly correlated, and are associated with faults in the basin. A shallow thermal anomaly in a >3,000 m deep graben in the eastern basin suggests upflow of fluids through active faults associated with extensional tectonics. Regional tectonics appears to drive large scale crustal fluid transport, whereas episodic hydrofracturing provides an effective mechanism for mantle-crust volatile transport identified by variability in the magnitude of degassing fluxes (3Hem and J0) across the basin. Copyright ?? 2005 Elsevier Ltd.
Depth to the Moho in Southern New England and Eastern New York State from Seismic Receiver Functions
NASA Astrophysics Data System (ADS)
Cipar, J. J.; Ebel, J.
2016-12-01
The thickness of the Earth's crust is a fundamental parameter of geophysics and geology. The eastern New York/southern New England area encompasses the suture between the Paleozoic Appalachian orogen and the Proterozoic Laurentian craton. The recent installation of the IRIS Traveling Array (TA) in 2013-2014 coupled with stations operated by Boston College, Lamont-Doherty, and the US National Seismic Network provide an unprecedented source of data for seismic studies of crustal structure. We use the receiver functions complied by the EarthScope Automated Receiver Survey (EARS) to measure crustal thickness. Our procedure is to stack receiver functions (RFs) at each station using the correct moveout for the P-to-S conversion at the Moho (Ps phase). The time difference between the Ps and direct P arrivals (Ps-P time) is dependent on crustal thickness (H) and crustal S-wave velocity (Vs). To get an estimate of H, we assume that the mean P-wave velocity (Vp) in the crust is 6.5 km/s, and determine the range of Vs for a range of Poisson's ratio (0.23-0.27). We then solve for H using the P-Ps times measured from the RF stacks (at Δ=60°) and our estimates for Vp and Vs. The uncertainty in S-wave velocity translates to approximately ±2 km uncertainty in crustal thickness. Our crustal thickness map shows the well-known general progression from shallow crust near the Atlantic coast line ( 30 km) to deeper crust (45+ km) in the Laurentian craton. However, some detailed features become evident on our map. Most notably, thin crust ( 30 km) extends inland from the coast to the Connecticut River valley in eastern-central Massachusetts and southeastern New Hampshire. The Berkshire Hills of western Massachusetts have thick crust (43 km), reaching as deep as 46 km in extreme northwestern Massachusetts. Thus, there is a 13-15 km increase in crustal thickness over a distance of about 60 km. Currently, no stations are located in that zone. We find that the eastern Adirondacks have very thick crust, generally in excess of 45 km. Overall, our crustal thickness measurements are in excellent agreement with those from the 1988 Ontario-New York-New England refraction experiment (USGS) and from a local receiver function study conducted using closely-spaced stations (John Schuh, Boston College).
Zheng, Tian-Yu; He, Yu-Mei; Yang, Jin-Hui; Zhao, Liang
2015-01-01
Crustal rejuvenation is a key process that has shaped the characteristics of current continental structures and components in tectonic active continental regions. Geological and geochemical observations have provided insights into crustal rejuvenation, although the crustal structural fabrics have not been well constrained. Here, we present a seismic image across the North China Craton (NCC) and Central Asian Orogenic Belt (CAOB) using a velocity structure imaging technique for receiver functions from a dense array. The crustal evolution of the eastern NCC was delineated during the Mesozoic by a dominant low seismic wave velocity with velocity inversion, a relatively shallow Moho discontinuity, and a Moho offset beneath the Tanlu Fault Zone. The imaged structures and geochemical evidence, including changes in the components and ages of continental crusts and significant continental crustal growth during the Mesozoic, provide insight into the rejuvenation processes of the evolving crust in the eastern NCC caused by structural, magmatic and metamorphic processes in an extensional setting. The fossil structural fabric of the convergent boundary in the eastern CAOB indicates that the back-arc action of the Paleo-Pacific Plate subduction did not reach the hinterland of Asia. PMID:26443323
NASA Astrophysics Data System (ADS)
Person, M. A.; Woolsey, E.; Pepin, J.; Crossey, L. J.; Karlstrom, K. E.; Phillips, F. M.; Kelley, S.; Timmons, S.
2013-12-01
The Rio Grande rift in New Mexico hosts a number of low-temperature geothermal systems as well as the 19 km deep Socorro Magma Body. The presence of a mantle helium anomaly measured at San Acacia spring (3He/4He = 0.295 RA) and in an adjacent shallow well (50m < ; 0.8 RA) overlying the Socorro Magma Body at the southern terminus of the Albuquerque Basin suggests that deeply sourced fluids mix with the sedimentary basin groundwater flow system. Temperatures recorded at the base of the San Acacia well is elevated (29 oC). Published estimates of uplift rates and heat flow suggest that the magma body was emplaced about 1-3 ka and reflects a long-lived (several Ma) magmatic system. Further south near the southern terminus of the Engle Basin, much warmer temperatures (42 oC) occur at shallow depths within the spa district in the town of Truth or Consequences at shallow depths also suggesting deep-fluid circulation. 14C constrained apparent groundwater residence times in the spa district range between 6-10 ka. We have developed two 6-19 km deep crustal-scale, cross-sectional models that simulate subsurface fluid flow, heat and isotope (3He/4He) transport as well as groundwater residence times along the Rio Grande rift. The North-South oriented model of the Albuquerque Basin incorporates a high-permeability conduit 100 m wide having hydrologic properties differing from surrounding crystalline basement units. We use these models to constrain the crustal permeability structure and fluid circulation patterns beneath the Albuquerque and Engle Basins. Model results are compared to measurements of groundwater temperatures, residence times (14C), and 3He/4He data. We also use the distribution of earthquake hypocenters to constrain likely fault-crystalline basement hydraulic interactions in the seismogenic crust above the Socorro Magma Body. For the case of the southern Albuquerque Basin, conduit permeability associated with the Indian Hill conduit/fault zone must range between about 1.0E-13 to 1.0E-15 m2 in order for simulated 3He/4He, solute concentrations, and temperatures to match observed conditions. Basement permeability outside of the fault damage zone must range between 1.0E-17 to 1.0E-18 m2. However, a much longer transport time is required (between about 20-30 ka) in order to match observed conditions suggesting multiple magmatic intrusion events. For the case of the Engle Basin near Truth or Consequences, bulk crustal permeability between a depth of 2-6 km below the sedimentary succession must approach 1.0E-12 m2 in order to reproduce hot spring temperatures and groundwater residence times. We compare these model derived permeability estimates to published permeability-depth relationships for crustal rocks (Manning and Ingebritsen, 1999; Ingebritsen and Manning, 2010).
NASA Astrophysics Data System (ADS)
Heron, Philip J.; Pysklywec, Russell N.
2016-05-01
Continents have a rich tectonic history that have left lasting crustal impressions. In analyzing Central Australian intraplate orogenesis, complex continental features make it difficult to identify the controls of inherited structure. Here the tectonics of two types of inherited structures (e.g., a thermally enhanced or a rheologically strengthened region) are compared in numerical simulations of continental compression with and without "glacial buzzsaw" erosion. We find that although both inherited structures produce deformation in the upper crust that is confined to areas where material contrasts, patterns of deformation in the deep lithosphere differ significantly. Furthermore, our models infer that glacial buzzsaw erosion has little impact at depth. This tectonic isolation of the mantle lithosphere from glacial processes may further assist in the identification of a controlling inherited structure in intraplate orogenesis. Our models are interpreted in the context of Central Australian tectonics (specifically the Petermann and Alice Springs orogenies).
Seismic characteristics of central Brazil crust and upper mantle: A deep seismic refraction study
Soares, J.E.; Berrocal, J.; Fuck, R.A.; Mooney, W.D.; Ventura, D.B.R.
2006-01-01
A two-dimensional model of the Brazilian central crust and upper mantle was obtained from the traveltime interpretation of deep seismic refraction data from the Porangatu and Cavalcante lines, each approximately 300 km long. When the lines were deployed, they overlapped by 50 km, forming an E-W transect approximately 530 km long across the Tocantins Province and western Sa??o Francisco Craton. The Tocantins Province formed during the Neoproterozoic when the Sa??o Francisco, the Paranapanema, and the Amazon cratons collided, following the subduction of the former Goia??s ocean basin. Average crustal VP and VP/VS ratios, Moho topography, and lateral discontinuities within crustal layers suggest that the crust beneath central Brazil can be associated with major geological domains recognized at the surface. The Moho is an irregular interface, between 36 and 44 km deep, that shows evidences of first-order tectonic structures. The 8.05 and 8.23 km s-1 P wave velocities identify the upper mantle beneath the Porangatu and Cavalcante lines, respectively. The observed seismic features allow for the identification of (1) the crust has largely felsic composition in the studied region, (2) the absence of the mafic-ultramafic root beneath the Goia??s magmatic arc, and (3) block tectonics in the foreland fold-and-thrust belt of the northern Brasi??lia Belt during the Neoproterozoic. Seismic data also suggested that the Bouguer gravimetric discontinuities are mainly compensated by differences in mass distribution within the lithospheric mantle. Finally, the Goia??s-Tocantins seismic belt can be interpreted as a natural seismic alignment related to the Neoproterozoic mantle domain. Copyright 2006 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Marzen, R. E.; Shillington, D. J.; Lizarralde, D.; Harder, S. H.
2017-12-01
The crustal structure in the Southeastern United States records a rich tectonic history, including multiple terrane accretion events, the formation of the supercontinent Pangea, widespread magmatism from the Central Atlantic Magmatic Province (CAMP), and crustal thinning before the breakup of Pangea. We use wide-angle refraction seismic data from Lines 1 and 2 of the SUGAR (SUwannee suture and GeorgiA Rift basin) seismic experiment to constrain crustal structure in order to better understand these tectonic events. The 320 and 420 km lines extend from the northwest to the southeast, crossing the Mesozoic rift basins that record crustal thinning prior to the breakup of Pangea and multiple potential suture zones between accreted terranes. We model crustal P-wave velocity structure with reflection/refraction tomography based on refractions through the sediments, crust and mantle and reflections from the base of the sediments, within the crust and the Moho. To the north on Line 2, we observe high Vp and Vs within the Inner Piedmont and Carolina accreted terranes underlain by a low velocity zone at 5 km depth. These observations are consistent with metamorphosed terranes accreting onto the Laurentian margin along a low velocity region that represents meta-sedimentary rocks and/or an Appalachian detachment. Additionally, differences in the basin structure, lower crustal velocities, and crustal thickness between Lines 1 and 2 reflect varying extension and magmatism between the two Mesozoic rift segments. Line 1 has thicker and more laterally extensive syn-rift sediments and a more pronounced region of crustal thinning. In contrast, syn-rift sediments along Line 2 are thinner and limited to a couple of smaller basins, and the crust of Line 2 gradually thins towards the coast. The thinned crust beneath Line 1 is characterized by high velocities of >7.0 km/s, which we interpret as mafic intrusions related to rifting or CAMP; in contrast, no evidence of elevated lower crustal velocities is observed on Line 2. Because intrusions into the lower crust increase both lower crustal velocities and crustal thickness, the correspondence of high lower crustal velocities with regions of greater crustal thinning suggests that extension and magmatism were more localized than one would infer based only on variations in crustal thickness.
Creep cavitation bands control porosity and fluid flow in lower crustal shear zones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menegon, Luca; Fusseis, Florian; Stunitz, Holger
2015-03-01
Shear zones channelize fluid flow in Earth’s crust. However, little is known about deep crustal fluid migration and how fluids are channelized and distributed in a deforming lower crustal shear zone. This study investigates the deformation mechanisms, fluid-rock interaction, and development of porosity in a monzonite ultramylonite from Lofoten, northern Norway. The rock was deformed and transformed into an ultramylonite under lower crustal conditions (temperature = 700–730 °C, pressure = 0.65–0.8 GPa). The ultramylonite consists of feldspathic layers and domains of amphibole + quartz + calcite, which result from hydration reactions of magmatic clinopyroxene. The average grain size in bothmore » domains is <25 mm. Microstructural observations and electron backscatter diffraction analysis are consistent with diffusion creep as the dominant deformation mechanism in both domains. Festoons of isolated quartz grains define C'-type bands in feldspathic layers. These quartz grains do not show a crystallographic preferred orientation. The alignment of quartz grains is parallel to the preferred elongation of pores in the ultramylonites, as evidenced from synchrotron X-ray microtomography. Such C'-type bands are interpreted as creep cavitation bands resulting from diffusion creep deformation associated with grain boundary sliding. Mass-balance calculation indicates a 2% volume increase during the protolith-ultramylonite transformation, which is consistent with synkinematic formation of creep cavities producing dilatancy. Thus, this study presents evidence that creep cavitation bands may control deep crustal porosity and fluid flow. Nucleation of new phases in creep cavitation bands inhibits grain growth and enhances the activity of grain size–sensitive creep, thereby stabilizing strain localization in the polymineralic ultramylonites.« less
Parsons, T.; Trehu, A.M.; Luetgert, J.H.; Miller, K.; Kilbride, F.; Wells, R.E.; Fisher, M.A.; Flueh, E.; ten Brink, Uri S.; Christensen, N.I.
1998-01-01
In light of suggestions that the Cascadia subduction margin may pose a significant seismic hazard for the highly populated Pacific Northwest region of the United States, the U.S. Geological Survey (USGS), the Research Center for Marine Geosciences (GEOMAR), and university collaborators collected and interpreted a 530-km-long wide-angle onshore-offshore seismic transect across the subduction zone and volcanic arc to study the major structures that contribute to seismogenic deformation. We observed (1) an increase in the dip of the Juan de Fuca slab from 2°–7° to 12° where it encounters a 20-km-thick block of the Siletz terrane or other accreted oceanic crust, (2) a distinct transition from Siletz crust into Cascade arc crust that coincides with the Mount St. Helens seismic zone, supporting the idea that the mafic Siletz block focuses seismic deformation at its edges, and (3) a crustal root (35–45 km deep) beneath the Cascade Range, with thinner crust (30–35 km) east of the volcanic arc beneath the Columbia Plateau flood basalt province. From the measured crustal structure and subduction geometry, we identify two zones that may concentrate future seismic activity: (1) a broad (because of the shallow dip), possibly locked part of the interplate contact that extends from ∼25 km depth beneath the coastline to perhaps as far west as the deformation front ∼120 km offshore and (2) a crustal zone at the eastern boundary between the Siletz terrane and the Cascade Range.
Is the Kapuskasing structure the site of a cryptic suture
NASA Technical Reports Server (NTRS)
Burke, K.
1983-01-01
The demonstration that the Kapuskasing structure involves substantial thrusting of deep continental crustal rocks over shallower continental rocks calls into question an earlier suggestion (by Wilson) that the Circum-Ungaua suture zone continued through the Kapuskasing to join the Penokean fold belt (implying that the Kapuskasing marked the site of what has since come to be called a cryptic suture). Problems are discussed which arose in attempting to reconcile Wilson's idea with data from more recent studies: whether the Kapuskasing and the Thompson belt both mark sutures of about 1700 Ma age; why there is no age difference across the Kapuskasing if it does mark the site of continental collision, and why there is no offset of Superior subprovinces across the Kapuskasing.
Bohannon, R.G.; Eittreim, S.L.
1991-01-01
The continental margins of the southern and central Red Sea and most of Wilkes Land, Antarctica have bulk crustal configurations and detailed structures that are best explained by a prolonged history of magmatic expansion that followed a brief, but intense period of mechanical extension. Extension on the Red Sea margins was spatially confined to a rift that was 20-30 km in width. The rifting phase along the Arabian margin of the central and southern Red Sea occurred 25-32 Ma ago, primarily by detachment faulting at upper crustal levels and ductile uniform stretching at depth. Rifting was followed by an early magmatic phase during which the margin was invaded by dikes and plutons, primarily of gabbro and diorite, at 20-24 Ma, after the crust was mechanically thinned from 40 km to ??? 20 km. We infer continued spreading after that in which broad shelves were formed by a process of magmatic expansion, because the offshore crust is only 8-15 km thick, including sediment, and seismic reflection data do not depict horst and graben or half graben structures from which mechanical extension might be inferred. The Wilkes Land margin is similar to the Arabian example. The margin is about 150 km in width, the amount of upper crustal extension is too low to explain the change in sub-sediment crustal thickness from ??? 35 km on the mainland to < 10 km beneath the margin and reflectors in the deepest seismic sequence are nearly flat lying. Our model requires large volumes of melt in the early stages of continental rifting. The voluminous melt might be partly a product of nearby hot spots, such as Afar and partly the result of an initial period of partial fusion in the deep continental lithosphere under lower temperatures than ordinarily required by dry solidus conditions. ?? 1991.
Origin of olivine at Copernicus
NASA Technical Reports Server (NTRS)
Pieters, C. M.; Wilhelms, D. E.
1985-01-01
The central peaks of Copernicus are among the few lunar areas where near-infrared telescopic reflectance spectra indicate extensive exposures of olivine. Other parts of Copernicus crater and ejecta, which were derived from highland units in the upper parts of the target site, contain only low-Ca pyroxene as a mafic mineral. The exposure of compositionally distinct layers including the presence of extensive olivine may result from penetration to an anomalously deep layer of the crust or to the lunar mantle. It is suggested that the Procellarum basin and the younger, superposed Insularum basin have provided access to these normally deep-seated crustal or mantle materials by thinning the upper crustal material early in lunar history. The occurrences of olivine in portions of the compositionally heterogeneous Aristarchus Region, in a related geologic setting, may be due to the same sequence of early events.
Seismic Reflection Transect across the Central Iberian Zone (Iberian Massif): The ALCUDIA project
NASA Astrophysics Data System (ADS)
Carbonell, R.; Simancas, F.; Martinez-Poyatos, D.; Ayarza, P.; Gonzalez, P.; Tejero, R.; Martín-Parra, L.; Matas, J.; Gonzalez-Lodeiro, F.; Pérez-Estaún, A.; García-Lobon, J.; Mansilla, L.; Palomeras, I.
2007-12-01
The lithosphere of the Central Iberian Zone (CIZ) differs from that of the southwestern Iberian Massif. They are limited by a suture zone. The seismic reflection profile IBERSEIS suggested that the activity of a Carboniferous mantle plume resulted in abundant intrusions of mafic magmas in the mid-to-lower crust which resulted in a singular crustal evolution. The current knowledge of the area based mostly in surface geological mapping suggests that basic magmatism continues further towards the north, indicating that the mantle plume may have affected a bigger area up to the Tajo depression. Furthermore, the existence of the Almadén mine, one of the largest mercury mine in the world within the CIZ, favour that the crust in this area is the result of anomalous lithospheric processes. Accordingly, the ALCUDIA project has been lauched aiming to study the structure and nature of the lithosphere of the CIZ. It includes the acquisition of a deep high resolution seismic reflection transect, detailed geological mapping, kinematic, petrologic and geochemical studies, and other geophysical studies (potential field methods). This new profile extends the previous IBERSEIS Transect towards the northeast, completing almost 600 km of deep seismic profiles, crossing the southern half of the Iberian Variscides. The transect crosses some important structures, such as the Toledo fault, Santa Elena Fault, Alcudia anticline, Almadén syncline, and some major magnetic anomalies. The preliminary results reveal that the crust is 30 km thick in average, with a horizontal Moho, a highly reflective mid-to-lower crust with a few mantle reflectors and well defined features in the upper crust with the indication of detachments zones that might link to the mid- crustal reflective zone.
The crustal structure in the transition zone between the western and eastern Barents Sea
NASA Astrophysics Data System (ADS)
Shulgin, Alexey; Mjelde, Rolf; Faleide, Jan Inge; Høy, Tore; Flueh, Ernst; Thybo, Hans
2018-07-01
We present a crustal-scale seismic profile in the Barents Sea based on new data. Wide-angle seismic data were recorded along a 600 km long profile at 38 ocean bottom seismometer and 52 onshore station locations. The modelling uses the joint refraction/reflection tomography approach where co-located multichannel seismic reflection data constrain the sedimentary structure. Further, forward gravity modelling is based on the seismic model. We also calculate net regional erosion based on the calculated shallow velocity structure. Our model reveals a complex crustal structure of the Baltic Shield to Barents shelf transition zone, as well as strong structural variability on the shelf itself. We document large volumes of pre-Carboniferous sedimentary strata in the transition zone which reach a total thickness of 10 km. A high-velocity crustal domain found below the Varanger Peninsula likely represents an independent crustal block. Large lower crustal bodies with very high velocity and density below the Varanger Peninsula and the Fedynsky High are interpreted as underplated material that may have fed mafic dykes in the Devonian. We speculate that these lower crustal bodies are linked to the Devonian rifting processes in the East European Craton, or belonging to the integral part of the Timanides, as observed onshore in the Pechora Basin.
Geologic map of the Artemis Chasma quadrangle (V-48), Venus
Bannister, Roger A.; Hansen, Vicki L.
2010-01-01
Artemis, named for the Greek goddess of the hunt, represents an approximately 2,600 km diameter circular feature on Venus, and it may represent the largest circular structure in our solar system. Artemis, which lies between the rugged highlands of Aphrodite Terra to the north and relatively smooth lowlands to the south, includes an interior topographic high surrounded by the 2,100-km-diameter, 25- to 200-km-wide, 1- to 2-km-deep circular trough, called Artemis Chasma, and an outer rise that grades outward into the surrounding lowland. Although several other chasmata exist in the area and globally, other chasmata have generally linear trends that lack the distinctive circular pattern of Artemis Chasma. The enigmatic nature of Artemis has perplexed researchers since Artemis Chasma was first identified in Pioneer Venus data. Although Venus' surface abounds with circular to quasi-circular features at a variety of scales, including from smallest to largest diameter features: small shield edifices (>1 km), large volcanic edifices (100-1,000 km), impact craters (1-270 km), coronae (60-1,010 km), volcanic rises and crustal plateaus (~1,500-2,500 km), Artemis defies classification into any of these groups. Artemis dwarfs Venus' largest impact crater, Mead (~280 km diameter); Artemis also lacks the basin topography, multiple ring structures, and central peak expected for large impact basins. Topographically, Artemis resembles some Venusian coronae; however Artemis is an order of magnitude larger than the average corona (200 km) and about twice the size of Heng-O Corona (which is 1,010 km in diameter), the largest of Venusian coronae. In map view Artemis' size and shape resemble volcanic rises and crustal plateaus; however, both of these classes of features differ topographically from Artemis. Volcanic rises and crustal plateaus form broad domical regions, and steep-sided regions with flat tops, respectively; furthermore, neither rises nor plateaus include circular troughs. So although it seems clear what Artemis is not, there is little consensus about what Artemis is, much less how Artemis formed. Debate during the past decade has resulted in the proposal of at least four hypotheses for Artemis' formation. The first (herein referred to as H1) is that Artemis Chasma represents a zone of northwest-directed convergence and subduction. The second hypothesis (herein referred to as H2) is that Artemis consists of a composite structure with a part of its interior region marking the exposure of deformed ductile deep-crustal rocks analogous to a terrestrial metamorphic core complex. The third (herein referred to as H3) is that Artemis reflects the surface expression of an ancient (>3.5 Ga) huge bolide impact event on cold strong lithosphere. The fourth hypothesis (herein referred to as H4) is that Artemis marks the surface expression of a deep mantle plume. Each of these hypotheses holds different implications for Venus geodynamics and evolution processes, and for terrestrial planet processes in general. Viability of H1 would provide support that terrestrial-like plate-tectonic processes once occurred on Earth's sister planet. The feasibility of H2 would require high values of crustal extension and therefore imply that significant horizontal displacements occurred on Venus-displacement that may or may not be related to terrestrial-like plate-tectonic processes. The possibility of H3 would suggest that Venus' surface is extremely old, and that Venus has experienced very little dynamic activity for the last 3.5 billion years or more; this would further imply that Venus is essentially tectonically dead, and has been for most of its history. This view contrasts strongly with studies that highlight a rich history of Venus including activity at least as young as 750 million years ago, and quite likely up to the present. If H4 has credibility, then Artemis could provide clues to cooling mechanisms of Earth's sister planet. Each of these hypotheses
NASA Astrophysics Data System (ADS)
Padovani, Elaine R.; Hall, Jeremy; Simmons, Gene
1982-04-01
Seismic velocities have been measured as a function of confining pressure to 8 kbar for crustal xenoliths from the Moses Rock Dike and Mule Ear Diatreme, two kimberlite pipes on the Colorado Plateau. Rock types measured include rhyolite, granite, diorite, metasedimentary schists and gneisses, mafic amphibolites and granulites. Many of our samples have been hydrothermally altered to greenschist facies mineral assemblages during transport to the earth's surface. The velocity of compressional waves measured on altered amphibolites and granulites are too low by 0.1-0.3 km/s for such rock types to be characteristic of deep crustal levels. A direct correlation exists between progressive alteration and the presence of microcracks extending into the xenoliths from the kimberlitic host rock. Velocities of pristine samples are compatible with existing velocity profiles for the Colorado Plateau and we conclude that the crust at depths greater than 15 km has probably not undergone a greenschist facies metamorphic event. The xenolith suite reflects a crustal profile similar to that exposed in the Ivrea-Verbano and Strona-Ceneri zones in northern Italy.
Gravity Maps of Antarctic Lithospheric Structure from Remote-Sensing and Seismic Data
NASA Astrophysics Data System (ADS)
Tenzer, Robert; Chen, Wenjin; Baranov, Alexey; Bagherbandi, Mohammad
2018-02-01
Remote-sensing data from altimetry and gravity satellite missions combined with seismic information have been used to investigate the Earth's interior, particularly focusing on the lithospheric structure. In this study, we use the subglacial bedrock relief BEDMAP2, the global gravitational model GOCO05S, and the ETOPO1 topographic/bathymetric data, together with a newly developed (continental-scale) seismic crustal model for Antarctica to compile the free-air, Bouguer, and mantle gravity maps over this continent and surrounding oceanic areas. We then use these gravity maps to interpret the Antarctic crustal and uppermost mantle structure. We demonstrate that most of the gravity features seen in gravity maps could be explained by known lithospheric structures. The Bouguer gravity map reveals a contrast between the oceanic and continental crust which marks the extension of the Antarctic continental margins. The isostatic signature in this gravity map confirms deep and compact orogenic roots under the Gamburtsev Subglacial Mountains and more complex orogenic structures under Dronning Maud Land in East Antarctica. Whereas the Bouguer gravity map exhibits features which are closely spatially correlated with the crustal thickness, the mantle gravity map reveals mainly the gravitational signature of the uppermost mantle, which is superposed over a weaker (long-wavelength) signature of density heterogeneities distributed deeper in the mantle. In contrast to a relatively complex and segmented uppermost mantle structure of West Antarctica, the mantle gravity map confirmed a more uniform structure of the East Antarctic Craton. The most pronounced features in this gravity map are divergent tectonic margins along mid-oceanic ridges and continental rifts. Gravity lows at these locations indicate that a broad region of the West Antarctic Rift System continuously extends between the Atlantic-Indian and Pacific-Antarctic mid-oceanic ridges and it is possibly formed by two major fault segments. Gravity lows over the Transantarctic Mountains confirms their non-collisional origin. Additionally, more localized gravity lows closely coincide with known locations of hotspots and volcanic regions (Marie Byrd Land, Balleny Islands, Mt. Erebus). Gravity lows also suggest a possible hotspot under the South Orkney Islands. However, this finding has to be further verified.
NASA Astrophysics Data System (ADS)
Breivik, A. J.; Faleide, J. I.; Mjelde, R.; Flueh, E.; Murai, Y.
2017-12-01
The Vøring Plateau was part of the Northeast Atlantic igneous province (NAIP) during early Cenozoic crustal breakup. Crustal breakup at the Vøring Plateau occurred marginal to the deep Cretaceous basins on the shelf, with less extension of the crust. Intrusive magmatism and oceanic crust up to three times normal thickness caused a period of sub-aerial magmatism around breakup time. The transition to the Lofoten Margin is rapid to a deep-water plain. Still, there is some excess magmatism north of this transition, where early oceanic crustal thickness is reduced to half of that of the Vøring Plateau 150 km away. Our estimates of the earliest seafloor spreading rates using new ship-track magnetic profiles on different margin segments offer a clue to what caused this rapid transition. While crustal breakup occurred within the magnetic polarity C24r in other parts of the NAIP, there is a delayed breakup for the Lofoten/Vesterålen margin. Modeling of the earliest seafloor spreading with geomagnetic reversals, indicate a breakup within C24n.3n (anomaly 24b), approximately 1 m.y. later. Both old wide-angle seismic models (from Ocean Bottom Seismometers) off southern Lofoten and a newly published profile farther north show a strongly extended outer margin. Applying early seafloor half-spreading rates ( 30 mm/y) from other NAIP margin segments for 1 m.y. can account for 30 km extra extension, giving a factor of three crustal thinning, and gives a high strain rate of 3.2 ·10-14. Crustal breakup at the magma-poor Iberian Margin occurred at a low strain rate of 4.4·10-15, allowing the ascending mantle to cool, favoring tectonic extension over magmatism. Similar strain rates are found within the main Ethiopian Rift, but there is much magmatism and crustal separation is dominated by dike injection. Mantle tomography models show an exceptionally low seismic velocity below the area interpreted as an unusually hot upper mantle, which will favor magmatism. The transition from the Vøring Plateau to the Lofoten Margin can therefore be explained by the presence/absence of hot mantle plume material under the different segments during rifting. Only after significant extension and close to crustal breakup time did a minor amount of plume material reach the Lofoten/Vesterålen margin to cause some elevated but short-lived excess magmatism there.
Link of grabens and reactivated mantle boundaries in western Bohemian Massif
NASA Astrophysics Data System (ADS)
Babuska, Vladislav; Plomerova, Jaroslava; Vecsey, Ludek; Munzarova, Helena
2015-04-01
To study relations between mantle and crustal fabrics in the Bohemian Massif (BM), we model 3D anisotropy of the mantle lithosphere by inverting and interpreting jointly P-wave travel-time deviations and shear-wave splitting parameters of teleseismic waves recorded at portable and permanent stations operating in the BM for more than 20 years. Changes in orientation of the large-scale anisotropy in the mantle lithosphere, caused by systematic preferred orientation of olivine, identify boundaries of domains representing original micro-plates assembled during the Variscan orogeny. Consistent anisotropy of the mantle-lithosphere domains, with distinct changes at their boundaries, documents rigidity and a long memory of pervasive olivine fabrics. Some of the palaeo-plate boundaries represent weak elements of the assemblage that can be later rejuvenated. This is why graben structures in the western BM developed above the identified mantle boundaries. The Eger (Ohře) Rift (ER) originated above the ENE oriented mantle suture between the Saxothuringian (ST) in the north-west and the Moldanubian (MD) and Teplá-Barrandian (TB) in the south-east. The most significant graben structure, accompanied by a rich Cenozoic volcanic activity, developed above the central part of the ST/TB suture that witnessed a subduction down to ~150 km, as documented by findings of microdiamonds in ST granulites. The smaller-scale NNW oriented Cheb-Domažlice Graben (CDG) is located above the mantle boundary between the western rim of the TB and the MD. Unlike the suture beneath the ER, this boundary does not show any sign of a deep subduction and it is characterized by a less well developed graben structure and a weak volcanic activity. In both grabens we observe local shifts between the equivalent crustal and mantle boundaries of the units as large as ~20 km. The shift indicates a Variscan detachment of the crust from the mantle lithosphere. Cenozoic rifting and the graben structures developed preferably above the mantle boundaries, often away from the boundaries of the crustal units.
NASA Astrophysics Data System (ADS)
Altenberger, U.; Prosser, G.; Grande, A.; Günter, C.; Langone, A.
2013-10-01
Pseudotachylyte veins frequently associated with mylonites and ultramylonites occur within migmatitic paragneisses, metamonzodiorites, as well as felsic and mafic granulites at the base of the section of the Hercynian lower crust exposed in Calabria (Southern Italy). The crustal section is tectonically superposed on lower grade units. Ultramylonites and pseudotachylytes are particularly well developed in migmatitic paragneisses, whereas sparse fault-related pseudotachylytes and thin mylonite/ultramylonite bands occur in granulite-facies rocks. The presence of sillimanite and clinopyroxene in ultramylonites and mylonites indicates that relatively high-temperature conditions preceded the formation of pseudotachylytes. We have analysed pseudotachylytes from different rock types to ascertain their deep crustal origin and to better understand the relationships between brittle and ductile processes during deformation of the deeper crust. Different protoliths were selected to test how lithology controls pseudotachylyte composition and textures. In migmatites and felsic granulites, euhedral or cauliflower-shaped garnets directly crystallized from pseudotachylyte melts of near andesitic composition. This indicates that pseudotachylytes originated at deep crustal conditions (>0.75 GPa). In mafic protoliths, quenched needle-to-feather-shaped high-alumina orthopyroxene occurs in contact with newly crystallized plagioclase. The pyroxene crystallizes in garnet-free and garnet-bearing veins. The simultaneous growth of orthopyroxene and plagioclase as well as almandine, suggests lower crustal origin, with pressures in excess of 0.85 GPa. The existence of melts of different composition in the same vein indicates the stepwise, non-equilibrium conditions of frictional melting. Melt formed and intruded into pre-existing anisotropies. In mafic granulites, brittle faulting is localized in a previously formed thin high-temperature mylonite bands. migmatitic gneisses are deformed into ultramylonite domains characterized by s-c fabric. Small grain size and fluids lowered the effective stress on the c planes favouring a seismic event and the consequent melt generation. Microstructures and ductile deformation of pseudotachylytes suggest continuous ductile flow punctuated by episodes of high-strain rate, leading to seismic events and melting.
Early origins of the Caribbean plate from deep seismic profiles across the Nicaraguan Rise
NASA Astrophysics Data System (ADS)
Ott, B.; Mann, W. P.
2012-12-01
The offshore Nicaraguan Rise in the maritime zones of Honduras, Jamaica, Nicaragua and Colombia covers a combined area of 500,000 km2, and is one of the least known equatorial Cretaceous-Cenozoic carbonate regions remaining on Earth. The purpose of this study is to describe the Cretaceous to Recent tectonic and stratigraphic history of the deep water Nicaraguan Rise, and to better understand how various types of crustal blocks underlying the Eocene to Recent carbonate cover fused into a single, larger Caribbean plate known today from GPS studies. We interpreted 8700 km of modern, deep-penetration 2D seismic data kindly provided by the oil industry, tied to five wells that penetrated Cretaceous igneous basement. Based on these data, and integration with gravity, magnetic and existing crustal refraction data, we define four crustal provinces for the offshore Nicaraguan Rise: 1) Thicker (15-18 km) Late Cretaceous Caribbean ocean plateau (COP) with rough, top basement surface; 2) normal (6-8 km) Late Cretaceous COP with smooth top basement surface (B") and correlative outcrops in southern Haiti and Jamaica; 3) Precambrian-Paleozoic continental crust (20-22 km thick) with correlative outcrops in northern Central America; and 4) Cretaceous arc crust (>18 km thick) with correlative outcrops in Jamaica. These strongly contrasting basement belts strike northeastward to eastward, and were juxtaposed by latest Cretaceous-Paleogene northward and northwestward thrusting of Caribbean arc over continental crust in Central America, and the western Nicaraguan Rise (84 to 85 degrees west). A large Paleogene to recent, CCW rotation of the Caribbean plate along the Cayman trough faults and into its present day location explains why terranes in Central America and beneath the Nicaraguan Rise have their present, anomalous north-east strike. Continuing, present-day activity on some of these crustal block boundaries is a likely result of intraplate stresses imposed by the surrounding Caribbean plate boundaries.
A multi-frequency receiver function inversion approach for crustal velocity structure
NASA Astrophysics Data System (ADS)
Li, Xuelei; Li, Zhiwei; Hao, Tianyao; Wang, Sheng; Xing, Jian
2017-05-01
In order to constrain the crustal velocity structures better, we developed a new nonlinear inversion approach based on multi-frequency receiver function waveforms. With the global optimizing algorithm of Differential Evolution (DE), low-frequency receiver function waveforms can primarily constrain large-scale velocity structures, while high-frequency receiver function waveforms show the advantages in recovering small-scale velocity structures. Based on the synthetic tests with multi-frequency receiver function waveforms, the proposed approach can constrain both long- and short-wavelength characteristics of the crustal velocity structures simultaneously. Inversions with real data are also conducted for the seismic stations of KMNB in southeast China and HYB in Indian continent, where crustal structures have been well studied by former researchers. Comparisons of inverted velocity models from previous and our studies suggest good consistency, but better waveform fitness with fewer model parameters are achieved by our proposed approach. Comprehensive tests with synthetic and real data suggest that the proposed inversion approach with multi-frequency receiver function is effective and robust in inverting the crustal velocity structures.
NASA Astrophysics Data System (ADS)
Braitenberg, Carla; Mariani, Patrizia
2015-04-01
The GOCE gravity field is globally homogeneous at the resolution of about 80km or better allowing for the first time to analyze tectonic structures at continental scale. Geologic correlation studies based on age determination and mineral composition of rock samples propose to continue the tectonic lineaments across continents to the pre-breakup position. Tectonic events which induce density changes, as metamorphic events and magmatic events, should then show up in the gravity field. Therefore gravity can be used as a globally available supportive tool for interpolation of isolated samples. Applying geodynamic plate reconstructions to the GOCE gravity field places today's observed field at the pre-breakup position. In order to test the possible deep control of the crustal features, the same reconstruction is applied to the seismic velocity models, and a joint gravity-velocity analysis is performed. The geophysical fields allow to control the likeliness of the hypothesized continuation of lineations based on sparse surface outcrops. Total absence of a signal, makes the cross-continental continuation of the lineament improbable, as continental-wide lineaments are controlled by rheologic and compositional differences of lithospheric mantle. It is found that the deep lithospheric roots as those found below cratons control the position of the positive gravity values. The explanation is that the deep lithospheric roots focus asthenospheric upwelling outboard of the root protecting the overlying craton from magmatic intrusions. The study is carried out over the African and South American continents. The background for the study can be found in the following publications where the techniques which have been used are described: Braitenberg, C., Mariani, P. and De Min, A. (2013). The European Alps and nearby orogenic belts sensed by GOCE, Boll. Bollettino di Geofisica Teorica ed Applicata, 54(4), 321-334. doi:10.4430/bgta0105 Braitenberg, C. and Mariani, P. (2015). Geological implications from complete Gondwana GOCE-products reconstructions and link to lithospheric roots. Proceedings of 5th International GOCE User Workshop, 25 - 28 November 2014. Braitenberg, C. (2015). Exploration of tectonic structures with GOCE in Africa and across-continents. Int. J.Appl. Earth Observ. Geoinf. 35, 88-95. http://dx.doi.org/10.1016/j.jag.2014.01.013 Braitenberg, C. (2015). A grip on geological units with GOCE, IAG Symp. 141, in press.
Arctic Ocean UNCLOS Article 76 Work for Greenland Starts on Land
NASA Astrophysics Data System (ADS)
Dahl-Jensen, T.; Marcussen, C.; Jackson, R.; Voss, P.
2005-12-01
One of the most lonely and desolate stretches of coastline on the planet has become the target for UNCLOS article 76 related research. The Danish Continental Shelf Project has launched a work program to investigate the possibilities for Greenland to claim an area outside the 200 nm limit in the Arctic Ocean. The role of the Lomonosov Ridge as a Natural Prolongation of Greenland/Canada is an important issue, and in order to better evaluate the connection between Greenland and the Lomonosov Ridge the nature of not only the ridge but also of Northern Greenland is the target of deep crustal investigations. The North Greenland Fold belt covers the ice-free part of North Greenland and continues west in the Canadian Arctic. The foldbelt was formed during the Ellesmerian orogeny, where sediments from the Franklinian Basin where compressed and deformed. The deep structure of basin and its subsequent closure are broadly unknown. Three broad band earthquake seismological stations where installed in North Greenland to supplement the existing stations at Alert (Canada) and Station Nord to the east, and the first data was available summer 2005. Crustal thickness data from these first results are presented. Plans for the spring 2006 consist of wide-angle acquisition on the sea ice from the Greenland-Canadian mainland out onto the Lomonosov Ridge, a joint Danish - Canadian project with a 400 km long profile over difficult ice conditions, 18 tons of explosives, three helicopters, a Twin Otter and about 30 participants.
NASA Astrophysics Data System (ADS)
Bocin, A.; Stephenson, R.; Mocanu, V.
2007-12-01
The DACIA PLAN (Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics) deep seismic reflection survey was performed in August-September 2001, with the proposed objective of obtaining new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basin developed within and adjacent to the Vrancea zone, including the rapidly subsiding Focsani Basin. The DACIA-PLAN profile is about 140 km long, having a roughly NW-SE direction, from near the southeast Transylvanian Basin, across the mountainous southeastern Carpathians and their foreland to near the Danube River. A high resolution 2.5D velocity model of the upper crust along the seismic profile has been determined from a tomographic inversion and a 2D ray tracing forward modelling of the DACIA PLAN first arrival data. Peculiar shallow high velocities indicate that pre-Tertiary basement in the Vrancea Zone (characterised by velocities greater than 5.6 km/s) is involved in Carpathian thrusting while rapid alternance, vertically or horizontally, of velocity together with narrowingly contemporary crustal events suggests uplifting. Further to the east, at the foreland basin-thrust belt transition zone (well defined within velocity values), the velocity model suggests a nose of the Miocene Subcarpathians nappe being underlain by Focsani Basin units. A Miocene and younger Focsani Basin sedimentary succession of ~10 km thickness is ascertained by a gradual increase of velocities and strongly defined velocity boundaries.
Deep crustal deformation by sheath folding in the Adirondack Mountains, USA
NASA Technical Reports Server (NTRS)
Mclelland, J. M.
1988-01-01
As described by McLelland and Isachsen, the southern half of the Adirondacks are underlain by major isoclinal (F sub 1) and open-upright (F sub 2) folds whose axes are parallel, trend approximately E-W, and plunge gently about the horizontal. These large structures are themselves folded by open upright folds trending NNE (F sub 3). It is pointed out that elongation lineations in these rocks are parallel to X of the finite strain ellipsoid developed during progressive rotational strain. The parallelism between F sub 1 and F sub 2 fold axes and elongation lineations led to the hypothesis that progressive rotational strain, with a west-directed tectonic transport, rotated earlier F sub 1-folds into parallelism with the evolving elongation lineation. Rotation is accomplished by ductile, passive flow of F sub 1-axes into extremely arcuate, E-W hinges. In order to test these hypotheses a number of large folds were mapped in the eastern Adirondacks. Other evidence supporting the existence of sheath folds in the Adirondacks is the presence, on a map scale, of synforms whose limbs pass through the vertical and into antiforms. This type of outcrop pattern is best explained by intersecting a horizontal plane with the double curvature of sheath folds. It is proposed that sheath folding is a common response of hot, ductile rocks to rotational strain at deep crustal levels. The recognition of sheath folds in the Adirondacks reconciles the E-W orientation of fold axes with an E-W elongation lineation.
NASA Astrophysics Data System (ADS)
Xu, Shaosui; Mitchell, David; Liemohn, Michael; Dong, Chuanfei; Bougher, Stephen; Fillingim, Matthew; Lillis, Robert; McFadden, James; Mazelle, Christian; Connerney, Jack; Jakosky, Bruce
2016-09-01
The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission samples the Mars ionosphere down to altitudes of ˜150 km over a wide range of local times and solar zenith angles. On 5 January 2015 (Orbit 520) when the spacecraft was in darkness at high northern latitudes (solar zenith angle, SZA >120° latitude >60°), the Solar Wind Electron Analyzer (SWEA) instrument observed photoelectrons at altitudes below 200 km. Such observations imply the presence of closed crustal magnetic field loops that cross the terminator and extend thousands of kilometers to the deep nightside. This occurs over the weak northern crustal magnetic source regions, where the magnetic field has been thought to be dominated by draped interplanetary magnetic fields (IMF). Such a day-night magnetic connectivity also provides a source of plasma and energy to the deep nightside. Simulations with the SuperThermal Electron Transport (STET) model show that photoelectron fluxes measured by SWEA precipitating onto the nightside atmosphere provide a source of ionization that can account for the O2+ density measured by the Suprathermal and Thermal Ion Composition (STATIC) instrument below 200 km. This finding indicates another channel for Martian energy redistribution to the deep nightside and consequently localized ionosphere patches and potentially aurora.
Wang, Chun-Yong; Zeng, Rong-Sheng; Mooney, W.D.; Hacker, B.R.
2000-01-01
We present a new crustal cross section through the east-west trending ultrahigh-pressure (UHP) Dabie Shan orogenic belt, east central China, based on a 400-km-long seismic refraction profile. Data from our profile reveal that the cratonal blocks north and south of the orogen are composed of 35-km-thick crust consisting of three layers (upper, middle, and lower crust) with average seismic velocities of 6.0±0.2 km/s, 6.5±0.1 km/s, and 6.8±0.1 km/s. The crust reaches a maximum thickness of 41.5 km beneath the northern margin of the orogen, and thus the present-day root beneath the orogen is only 6.5 km thick. The upper mantle velocity is 8.0±0.1 km/s. Modeling of shear wave data indicate that Poisson's ratio increases from 0.24±0.02 in the upper crust to 0.27±0.03 in the lower crust. This result is consistent with a dominantly felsic upper crustal composition and a mafic lower crustal composition within the amphibolite or granulite metamorphic facies. Our seismic model indicates that eclogite, which is abundant in surface exposures within the orogen, is not a volumetrically significant component in the middle or lower crust. Much of the Triassic structure associated with the formation of the UHP rocks of the Dabie Shan has been obscured by post-Triassic igneous activity, extension and large-offset strike-slip faulting. Nevertheless, we can identify a high-velocity (6.3 km/s) zone in the upper (<5 km depth) crustal core of the orogen which we interpret as a zone of ultrahigh-pressure rocks, a north dipping suture, and an apparent Moho offset that marks a likely active strike-slip fault.
Visualization and dissemination of global crustal models on virtual globes
NASA Astrophysics Data System (ADS)
Zhu, Liang-feng; Pan, Xin; Sun, Jian-zhong
2016-05-01
Global crustal models, such as CRUST 5.1 and its descendants, are very useful in a broad range of geoscience applications. The current method for representing the existing global crustal models relies heavily on dedicated computer programs to read and work with those models. Therefore, it is not suited to visualize and disseminate global crustal information to non-geological users. This shortcoming is becoming obvious as more and more people from both academic and non-academic institutions are interested in understanding the structure and composition of the crust. There is a pressing need to provide a modern, universal and user-friendly method to represent and visualize the existing global crustal models. In this paper, we present a systematic framework to easily visualize and disseminate the global crustal structure on virtual globes. Based on crustal information exported from the existing global crustal models, we first create a variety of KML-formatted crustal models with different levels of detail (LODs). And then the KML-formatted models can be loaded into a virtual globe for 3D visualization and model dissemination. A Keyhole Markup Language (KML) generator (Crust2KML) is developed to automatically convert crustal information obtained from the CRUST 1.0 model into KML-formatted global crustal models, and a web application (VisualCrust) is designed to disseminate and visualize those models over the Internet. The presented framework and associated implementations can be conveniently exported to other applications to support visualizing and analyzing the Earth's internal structure on both regional and global scales in a 3D virtual-globe environment.
NASA Astrophysics Data System (ADS)
Sampaio, Edson E. S.; Barbosa, Johildo S. F.; Correa-Gomes, Luiz C.
2017-07-01
The Archean-Paleoproterozoic Jequié (JB) and Itabuna-Salvador-Curaçá (ISCB) blocks and their tectonic transition zone in the Valença region, Bahia, Brazil are potentially important for ore deposits, but the geological knowledge of the area is still meager. The paucity of geological information restricts the knowledge of the position and of the field characteristics of the tectonic suture zone between these two crustal segments JB and ISCB. Therefore, interpretation of geophysical data is necessary to supplement the regional structural and petrological knowledge of the area as well as to assist mining exploration programs. The analysis of the airborne radiometric and magnetic data of the region has established, respectively, five radiometric domains and five magnetic zones. Modeling of a gravity profile has defined the major density contrasts of the deep structures. The integrated interpretation of the geophysical data fitted to the known geological information substantially improved the suture zone (lower plate JB versus upper plate ISCB) delimitation, the geological map of the area and allowed to estimate the thicknesses of these two blocks, and raised key questions about the São Francisco Craton tectonic evolution.
Fine-scale crustal structure of the Azores Islands from teleseismic receiver functions
NASA Astrophysics Data System (ADS)
Spieker, K.; Rondenay, S.; Ramalho, R. S.; Thomas, C.; Helffrich, G. R.
2016-12-01
The Azores plateau is located near the Mid-Atlantic Ridge (MAR) and consists of nine islands, most of which lie east of the MAR. Various methods including seismic reflection, gravity, and passive seismic imaging have been used to investigate the crustal thickness beneath the islands. They have yielded thickness estimates that range between roughly 10 km and 30 km, but until now models of the fine-scale crustal structure have been lacking. A comparison of the crustal structure beneath the islands that lie west and east of the MAR might give further constraints on the evolution of the islands. For example, geochemical studies carried out across the region predict the existence of volcanic interfaces that should be detected seismically within the shallow crust of some of the islands. In this study, we use data from ten seismic stations located on the Azores Islands to investigate the crustal structure with teleseismic P-wave receiver functions. We query our resulting receiver functions for signals associated with the volcanic edifice, the crust-mantle boundary, and potential underplated layers beneath the various islands. The islands west of the MAR have a crustal structure comprising two discontinuities - an upper one at 1-2 km depth marking the base of the volcanic edifice, and a lower one at 10 km depth that we interpret as crust-mantle boundary. The islands east of the MAR can be subdivided into two groups. The central islands that are closer to the MAR exhibit a crustal structure similar to that of the western islands, with a volcanic edifice reaching a depth of 2 km and an average crust-mantle boundary at around 12 km depth. The easternmost islands, located on the oldest lithosphere, exhibit a more complex crustal structure with evidence for a mid-crustal interface and an underplated layer, yielding an effective crust-mantle boundary at >15 km depth. The difference in structure between proximal and distal islands might be related to the age of the plate at the time of emplacement of the islands, with an older plate providing conditions that are more favourable for basaltic underplating.
Zircon oxygen isotopes reveal Ivrea-Verbano Zone source characteristics of the Sesia Valley Caldera
NASA Astrophysics Data System (ADS)
Economos, R. C.; Quick, J. E.; Sinigoi, S.; de Silva, S. L.
2013-12-01
The Sesia Valley, in the Italian Alpine foothills, contains >14 km diameter caldera adjacent to and structurally shallower than the famous Ivrea-Verbano Zone deep crustal section. The caldera and its associated eruptive sequence presents opportunity to explore volcanic magmatism in light of exposed and well characterized source candidates, namely lower crustal gabbros and the mid-crustal metasedimentary Kinzigite formation. Original geochemical characteristics of volcanic units have been obscured by the effects of subsequent hydrothermal alteration. The resistance of the mineral zircon to fluid alteration makes it a prime candidate for the preservation and exploration of these geochemical signals, such as O isotopes. Lower crustal gabbros in the Ivrea-Verbano Zone have broadly monotonic whole-rock δ18O values between +8 and +9‰VSMOW (Sinigoi et al., 1994). Kinzigites preserve a much higher and more heterogeneous δ18O values, typically ranging from +10‰ up to +15‰ (Baker, 1990). Zircons from the caldera-forming rhyolitic eruption units and a pre-caldera rhyodacitic unit were analyzed by ion microprobe at UCLA for in-situ oxygen isotope ratios. External reproducibility of within-mount standard R33 grains range from 0.27 to 0.36‰. Rhyolites from the caldera-forming eruption yield a range of δ18O(zircon) values from 6.3‰ to 8.3‰. This range displays rough correlation with CL activity - CL active grains have lower δ18O(zircon) values while CL dark grains have higher δ18O(zircon) values. This variation may correlate with U contents, which are notoriously low in zircons from Ivrea-Verbano Zone gabbros. We argue that the range in O isotope values suggests zircons are a good fit for magmas influenced by gabbro and Kinzigite sources. However, these zircons do not appear to be inherited directly from either the gabbro or Kinzigite sources as their O isotope signatures are typically intermediate between the two. The pre-caldera rhyodacite sample displays a much broader range of δ18O(zircon) values, from +6 to +10‰. These values, when corrected for melt-zircon isotopic fractionation, are an excellent match for mafic and felsic sources in the Ivrea-Verbano Zone. Thus, volcanic rocks of the Sesia Valley share spatial, temporal, and geochemical affinities for Ivrea-Verbano Zone sources, strengthening the body of evidence that the Sesia Valley Caldera represents the upper crustal portions of a complete crustal section contiguous with these mid- and lower-crustal Alpine exposures. These data demonstrate a difference in extent of hybridization of source signals in the rhyodacite (little homogenization) compared to the caldera-forming eruption (more homogenization). This suggests a record of variation in magmatic processes for precursor and climactic eruptions that is potentially related to the thermal maturation of the volcanic system and warrants additional study. Additional work on trace element concentrations, including Ti thermometry, on these grains will further elucidate these processes and their relationship to known zircon-bearing sources in the mid- to deep-crust of the Ivrea-Verbano Zone.
Crustal and Upper Mantle Structure from Joint Inversion of Body Wave and Gravity Data
2012-09-01
CRUSTAL AND UPPER MANTLE STRUCTURE FROM JOINT INVERSION OF BODY WAVE AND GRAVITY DATA Eric A. Bergman1, Charlotte Rowe2, and Monica Maceira2...for these events include many readings of direct crustal P and S phases, as well as regional (Pn and Sn) and teleseismic phases. These data have been...the usefulness of the gravity data, we apply high-pass filtering, yielding gravity anomalies that possess higher resolving power for crustal and
NASA Astrophysics Data System (ADS)
Jin, Sheng; Zhang, Letian; Wei, Wenbo; Ye, Gaofeng; Jing, Jianen; Dong, Hao; Xie, Chengliang; Yin, Yaotian
2017-04-01
The Tibetan Plateau, as known as "roof of the world", was created through the on-going continent-continent collision between the Indian and Eurasian plates since 55 Ma. As the process continues, the plateau is growing both vertically and horizontally. The horizontal expansion of the plateau is blocked by the Yangtze block in the east, the Tarim block in the north, and the Ordos block in the northeast, and consequently lead to the formation of the circum Tibetan plateau orogenic belts. To better understand the mechanism behind this process, we conducted a comparative study by collecting 7 magnetotelluric (MT) profiles over the margins of the Tibetan plateau, namely, the INDEPTH 100, 700 and 800 lines in the southern Tibet, the INDEPTH 4000 and 5000 lines across the Altyn Tagh fault on the northern margin of the plateau, as well as other two profiles across the Haiyuan fault and the Longmenshan fault on the northeastern and eastern margins of the plateau deployed under the framework of project SinoProbe. The electrical features of the stable blocks surrounding the Tibetan plateau are generally resistive, while crustal conductive layers are found to be wide spread within the plateau. The southern margin of the Tibetan plateau is characterized by large scale underthrust of the Indian lithosphere beneath the plateau. This intense converging process created the thrust fault system distributed along the southern margin of the Tibetan plateau over 1000 km. Crustal conductive layers discovered in southern Tibet are generally associated with the southward crustal flow that originated from the lower crust within the plateau and exhumed along the thrust belts in the Himalayas. On the eastern margin of the Tibetan plateau, the electrical structures suggest that the Yangtze block wedged into the Tibetan lithosphere and caused decoupling between the crust and upper mantel. Large scale conductors discovered beneath the Songpan-Ganze block reflect that the eastward crustal flow was blocked and piled up along the eastern margin of the plateau due to the block of the Sichuan Basin, which further result in the uplift and expansion of the eastern Tibetan plateau. The northeastern and northern margins of the Tibetan plateau is bounded by large scale left-lateral strike-slip Haiyuan and Altyn Tagh faults. In these regions, the plateau interacts with the surrounding stable blocks in a way of oblique strike-slip. The deformation of the northern Tibetan lithosphere is dominated by crustal thickening, where no features of decoupling or large scale underthrusting were seen. Crustal conductors in these regions are generally not very well connected, which suggest the absence of crustal flow. Deep metamorphism fluids could be an alternative interpretation of the crustal conductors in these regions. * This work was jointly supported by the grants from Project SinoProbe-02-04 and National Natural Science Foundation of China (41404060).
NASA Astrophysics Data System (ADS)
Dubey, C. P.; Tiwari, V. M.; Rao, P. R.
2017-12-01
Comprehension of subsurface structures buried under thick sediments in the region of Bay of Bengal is vital as structural features are the key parameters that influence or are caused by the subsurface deformation and tectonic events like earthquakes. Here, we address this issue using the integrated analysis and interpretation of gravity and full gravity gradient tensor with few seismic profiles available in the poorly known region. A 2D model of the deep earth crust-mantle is constructed and interpreted with gravity gradients and seismic profiles, which made it possible to obtain a visual image of a deep seated fault below the basement associated with thick sediments strata. Gravity modelling along a NE-SW profile crossing the hypocentre of the earthquake of 21 May 2014 ( M w 6.0) in the northern Bay of Bengal suggests that the location of intraplate normal dip fault earthquake in the upper mantle is at the boundary of density anomalies, which is probably connected to the crustal fault. We also report an enhanced structural trend of two major ridges, the 85°E and the 90°E ridges hidden under the sedimentary cover from the computed full gravity gradients tensor components.
Magnetic anomalies in East Antarctica: a window on major tectonic provinces and their boundaries
Golynsky, A.V.
2007-01-01
An analysis of aeromagnetic data compiled within the Antarctic Digital Magnetic Anomaly Project (ADMAP) yields significant new insight into major tectonic provinces of East Antarctica. Several previously unknown crustal blocks are imaged in the deep interior of the continent, which are interpreted as cratonic nuclei. These cratons are fringed by a large and continuous orogenic belt between Coats Land and Princess Elizabeth Land, with possible branches in the deeper interior of East Antarctica. Most of the crustal provinces and boundaries identified in this study are only in part exposed. More detailed analyses of these crustal provinces and their tectonic boundaries would require systematic acquisition of additional high-resolution magnetic data, because at present the ADMAP database is largely inadequate to address many remaining questions regarding Antarctica’s tectonic evolution.
Seismic images of a Grenvillian terrane boundary
Milkereit, B.; Forsyth, D. A.; Green, A.G.; Davidson, A.; Hanmer, S.; Hutchinson, Deborah R.; Hinze, W. J.; Mereu, R.F.
1992-01-01
A series of gently dipping reflection zones extending to mid-crustal depths is recorded by seismic data from Lakes Ontario and Erie. These prominent reflection zones define a broad complex of southeast-dipping ductile thrust faults in the interior of the Grenville orogen. One major reflection zone provides the first image of a proposed Grenvillian suture—the listric boundary zone between allochthonous terranes of the Central Gneiss and Central Metasedimentary belts. Curvilinear bands of reflections that may represent "ramp folds" and "ramp anticlines" that originally formed in a deep crustal-scale duplex abut several faults. Vertical stacking of some curvilinear features suggests coeval or later out-of-sequence faulting of imbricated and folded thrust sheets. Grenvillian structure reflections are overlain by a thin, wedge-shaped package of shallow-dipping reflections that probably originates from sediments deposited in a local half graben developed during a period of post-Grenville extension. This is the first seismic evidence for such extension in this region, which could have occurred during terminal collapse of the Grenville orogen, or could have marked the beginning of pre-Appalachian continental rifting.
Probing the edge of the West African Craton: A first seismic glimpse from Niger
NASA Astrophysics Data System (ADS)
Di Leo, Jeanette F.; Wookey, James; Kendall, J.-Michael; Selby, Neil D.
2015-03-01
Constraints on crustal and mantle structure of the Eastern part of the West African Craton have to date been scarce. Here we present results of P receiver function and SK(K)S wave splitting analyses of data recorded at International Monitoring System array TORD in SW Niger. Despite lacking in lateral coverage, our measurements sharply constrain crustal thickness (˜41 km), VP/VS ratio (1.69 ± 0.03), mantle transition zone (MTZ) thickness (˜247 km), and a midlithospheric discontinuity at ˜67 km depth. Splitting delay times are low with an average of 0.63 ± 0.01 s. Fast directions follow the regional surface geological trend with an average of 57 ± 1°. We suggest that splitting is due to fossil anisotropic fabrics in the crust and lithosphere, incurred during the Paleoproterozoic Eburnean Orogeny, with possible contributions from the later Pan-African Orogeny and present-day mantle flow. The MTZ appears to be unperturbed, despite the proximity of the sampled region to the deep cratonic root.
NASA Astrophysics Data System (ADS)
Hasenclever, Jörg; Rüpke, Lars; Theissen-Krah, Sonja; Morgan, Jason
2016-04-01
We use 3-D numerical models of hydrothermal fluid flow to assess the magnitude and spatial distribution of hydrothermal mass and energy fluxes within the upper and lower oceanic crust. A better understanding of the hydrothermal flow pattern (e.g. predominantly on-axis above the axial melt lens vs. predominantly off-axis and ridge-perpendicular over the entire crustal thickness) is essential for quantifying the volume of oceanic crust exposed to high-temperature fluid flow and the associated leaching and redistribution of economically interesting metals. The initial setup of all 3-D models is based on our previous 2-D studies (Theissen-Krah et al., 2011), in which we have coupled numerical models for crustal accretion and hydrothermal fluid flow. One result of these 2-D calculations is a crustal permeability field that leads to a thermal structure in the crust that matches seismic tomography data at the East Pacific Rise. Our reference 3-D model for hydrothermal flow at fast-spreading ridges predicts the existence of a hybrid hydrothermal system (Hasenclever et al., 2014) with two interacting flow components that are controlled by different physical mechanisms. Shallow on-axis flow structures develop owing to the thermodynamic properties of water, whereas deeper off-axis flow is strongly shaped by crustal permeability, particularly the brittle-ductile transition. About ˜60% of the discharging fluid mass is replenished on-axis by warm (up to 300oC) recharge flow surrounding the hot thermal plumes. The remaining ˜40%, however, occurs as colder and broader recharge up to several kilometres away from the ridge axis that feeds hot (500-700oC) deep off-axis flow in the lower crust towards the ridge. Both flow components merge above the melt lens to feed ridge-centred vent sites. In a suite of 3-D model calculations we vary the isotropic crustal permeability to quantify its influence on on-axis vs. off-axis hydrothermal fluxes as well as on along-axis hydrothermal activity. We also explore the effect of anisotropic permeability that is likely to be a feature of the diking region above the melt lens where the repeated emplacement of meter-size dikes should lead to higher permeability in vertical and along-ridge direction and to lower permeability across the ridge. We further study the effect of along-ridge depth-variations of the axial melt lens on the distribution of hydrothermal vent sites.
NASA Astrophysics Data System (ADS)
Huang, J.
2017-12-01
Northeast China is located in the composite part of Paleo Asia ocean and Pacific ocean Domain, it undergone multi-stage tectonism and has complicated geological structure. In this region, two major geologic and geophysical boundaries are distinct, the NNE-trending North South Gravity Lineament (NSGL) and Tanlu fault. With respect to North China Craton (NCC), Northeast China is more closely adjacent to the subduction zone of Pacific slab. Along the eastern boundary of Northeast China, the subducting Pacific plate approaches depths of 600 km, many deep earthquakes occurred here. This region becomes an ideal place to investigate deep structure related to deep subduction, deep earthquakes as well as intraplate volcanism. In this study, we determined high-resolution three dimensional P- and S-wave velocity models of the crust and upper mantle to 800 km depth by jointly inverting arrival times from local events and relative residuals from teleseismic events. Our results show that main velocity anomalies exhibited block feature and are generally oriented in NE to NNE direction, which is consistent with regional tectonic direction. The NSGL is characterized by a high-velocity (high-V) anomaly belt with a width of approximately 100 km, and the high-V anomaly extents to the bottom of upper mantle or mantle transition zone. The songliao basin, which is located between NSGL and Tanlu fault tectonic boundaries, obvious low-velocity anomaly extends to about depth of 200 km(. Under the Great Xing'an Range on the west side of NSGL, the low velocity extend to the lithosphere. Our results also show that most of deep earthquakes all occurred in deep subduction zone with high-velocity anomaly. Further, we also observed that extensive low velocity exists above deep-earthquakes zones, this result suggests that deep subduction of the Pacific slab maybe affect overlying lithosphere, resulting in the state of molten, semi-molten or high water.This research is supported by the National Science Foundation of China (91114204) and National Key R&D Plan (2017YFC0601406)
The South China sea margins: Implications for rifting contrasts
Hayes, D.E.; Nissen, S.S.
2005-01-01
Implications regarding spatially complex continental rifting, crustal extension, and the subsequent evolution to seafloor spreading are re-examined for the northern and southern-rifted margins of the South China Sea. Previous seismic studies have shown dramatic differences in the present-day crustal thicknesses as the manifestations of the strain experienced during the rifting of the margin of south China. Although the total crustal extension is presumed to be the same along the margin and adjacent ocean basin, the amount of continental crustal extension that occurred is much less along the east and central segments of the margin than along the western segment. This difference was accommodated by the early formation of oceanic crust (creating the present-day South China Sea basin) adjacent to the eastern margin segment while continued extension of continental crust was sustained to the west. Using the observed cross-sectional areas of extended continental crust derived from deep penetration seismics, two end-member models of varying rift zone widths and varying initial crustal thicknesses are qualitatively examined for three transects. Each model implies a time difference in the initiation of seafloor spreading inferred for different segments along the margin. The two models examined predict that the oceanic crust of the South China Sea basin toward the west did not begin forming until sometime between 6-12 my after its initial formation (???32 Ma) toward the east. These results are compatible with crustal age interpretations of marine magnetic anomalies. Assuming rifting symmetry with conjugate margin segments now residing along the southern portions of the South China Sea basin implies that the total width of the zone of rifting in the west was greater than in the east by about a factor of two. We suggest the most likely causes of the rifting differences were east-west variations in the rheology of the pre-rift crust and associated east-west variations in the thermal structure of the pre-rift lithosphere. The calculated widths of rifted continental crust for the northern and southern margins, when combined with the differential widths of seafloor generated during the seafloor spreading phase, indicate the total crustal extension that occurred is about 1100 km and is remarkably consistent to within ???10% for all three (eastern, central, western) segments examined. ?? 2005 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hermance, J. F. (Principal Investigator)
1981-01-01
An algorithm was developed to address the problem of electromagnetic coupling of ionospheric current systems to both a homogeneous Earth having finite conductivity, and to an Earth having gross lateral variations in its conductivity structure, e.g., the ocean-land interface. Typical results from the model simulation for ionospheric currents flowing parallel to a representative geologic discontinuity are shown. Although the total magnetic field component at the satellite altitude is an order of magnitude smaller than at the Earth's surface (because of cancellation effects from the source current), the anomalous behavior of the satellite observations as the vehicle passes over the geologic contact is relatively more important pronounced. The results discriminate among gross lithospheric structures because of difference in electrical conductivity.
Crust and Upper Mantle Structure of Antarctica from Rayleigh Wave Tomography
NASA Astrophysics Data System (ADS)
Wiens, D. A.; Heeszel, D. S.; Sun, X.; Chaput, J. A.; Aster, R. C.; Nyblade, A.; Anandakrishnan, S.; Wilson, T. J.; Huerta, A. D.
2012-12-01
We combine data from three temporary arrays of seismometers (AGAP/GAMSEIS 2007-2010, ANET/POLENET 2007-2012, TAMSEIS 2001-2003) deployed across Antarctica, along with permanent stations in the region, to produce a large scale shear velocity model of the continent extending from the Gamburtsev Subglacial Mountains (GSM) in East Antarctica, across the Transantarctic Mountains (TAM) and West Antarctic Rift System (WARS) to Marie Byrd Land (MBL) in West Antarctica. Our combined dataset consists of Rayleigh wave phase and amplitude measurements from 112 stations across the study region. We first invert for 2-D Rayleigh wave phase velocities using the two-plane wave method. These results are then inverted for shear velocity structure using crustal thicknesses derived from ambient noise tomography and teleseismic receiver functions. We refine our shear velocity model by performing a Monte Carlo simulation that explores the tradeoff between crustal thickness and upper mantle seismic velocities. The resulting model is higher resolution than previous studies (~150 km resolution length) and highlights significant differences in crustal and uppermost mantle structure between East and West Antarctica in greater detail than previously possible. East Antarctica is underlain by thick crust (reaching ~55 km beneath the GSM) and fast, cratonic lithosphere. West Antarctica is defined by thinner crust and slow upper mantle velocities indicative of its more recent tectonic activity. The observed boundary in crustal thickness closely follows the TAM front. MBL is underlain by a thicker lithosphere than that observed beneath the WARS, but slow mantle velocities persist to depths greater than 200 km, indicating a 'deep seated' (i.e. deeper than the deepest resolvable features of our model) thermal source for volcanism in the region. The slowest seismic velocities at shallow depths are observed in the Terror Rift region of the Ross Sea along an arc following the TAM front, where the most recent extension has occurred, and in another region of active volcanism. The Ellsworth-Whitmore Mountains are underlain by relatively thick crust and an intermediate thickness lithosphere, consistent with its hypothesized origin as a remnant Precambrian crustal block. We also produce upper mantle viscosity models for the study region using a temperature-dependent rheology, assuming that mantle seismic anomalies are dominated by temperature variations. Initial results closely correlate with the velocity model, with viscosities beneath West Antarctica inferred to be orders of magnitude lower than beneath East Antarctica. These viscosity results have important implications for our understanding of glacial isostatic adjustment, which is of particular interest in producing models of past and future changes in the Antarctic Ice Sheets.
NASA Astrophysics Data System (ADS)
van der Hilst, R. D.; Huang, H.; Yao, H.
2010-12-01
We summarize results of our seismological studies of the lithosphere beneath Tibet and SW China. Joint analysis of geological, geodetic, and seismological data suggests that the Tibetan plateau formed through interplay between continental collision between India and Asia in the west and ocean floor subduction along the western Pacific island arcs and marginal basins in the east. These dynamic systems combine to facilitate the eastward extrusion of lithospheric material away from central Tibet. Located near the transition of these systems, SE Tibet is a key area for understanding regional seismicity as well as eastward plateau expansion. For a detailed regional study MIT installed an array of 25 three-component, broad band seismometers in Sichuan and Yunnan provinces, SW China. During the same 1-year period Lehigh University operated a 75 station array in east Tibet. Data from these and other nearby arrays have been used in a range of studies of crust and mantle heterogeneity and anisotropy. We focus our presentation on results of two lines of seismological study. First, travel time tomography (Li et al., PEPI 2006, EPSL 2008, JGR 2010) - with hand-picked phase arrivals from recordings at regional arrays, data from over 1,000 stations in China, and the global data base due to Engdahl et al. (BSSA, 1998) - has revealed that structures associated with subduction of the Indian plate beneath the Himalayas vary significantly from west Tibet (where the plate seems to underlie the entire plateau) to east Tibet (where Indian lithosphere seems to have plunged deeper into the mantle). Further east, fast structures appear in the upper mantle transition zone, presumably related to stagnation of slab fragments from westward subduction along Asia’s eastern sea board. Second, surface wave array tomography (Yao et al., GJI 2006, GJI 2008, JGR 2010; Huang et al., GRL 2010), based on ambient noise interferometry and traditional (inter station) dispersion analysis, is used to delineate the 3-D anisotropic structure of the crust and lithospheric mantle at length scales as small as 100 km beneath SE Asia. These inversions revealed (i) the presence of intra-crustal low velocity zones (perhaps bounded by major faults), (ii) a strong correlation between these low velocity zones and radial anisotropy (Vsh faster than Vsv), and (iii) that the pattern of crustal (azimuthal) anisotropy is quite different from that in the deep crust and mantle lithosphere. Furthermore, the spatial relationship with high heat flow, high (electrical) conductivity, and high Poisson’s ratio’s suggests that the crustal zones of low shear velocity are mechanically weak. Collectively, these inferences suggest that deformation is generally not vertically coherent and that (horizontal) ductile flow occurs (at least locally) in the deep crust of SE Tibet. Deformation of the lithosphere in SE Tibet may thus occur through interaction of geological units with and without crustal flow that are separated by major faults.
NASA Astrophysics Data System (ADS)
Ferraccioli, Fausto; Armadillo, Egidio; Young, Duncan; Blankenship, Donald; Jordan, Tom; Siegert, Martin
2017-04-01
The Wilkes Subglacial Basin extends for 1,400 km into the interior of East Antarctica and hosts several major glaciers that drain a large sector of the East Antarctic Ice Sheet. The deep northern Wilkes Subglacial Basin underlies the catchments of the Matusevich, Cook, Ninnis and Mertz Glaciers, which are largely marine-based and hence potentially particularly sensitive to past and also predicted future ocean and climate warming. Sediment provenance studies suggest that the glaciers flowing in this region may have retreated significantly compared to their modern configuration, as recently as the warm mid-Pliocene interval, potentially contributing several m to global sea level rise (Cook et al.,Nature Geosci., 2013). Here we combine airborne radar, aeromagnetic and airborne gravity observations collected during the international WISE-ISODYN and ICECAP aerogeophysical campaigns with vintage datasets to help unveil subglacial geology and deeper crustal architecture and to assess its influence on bedrock topography and ice sheet dynamics in the northern Wilkes Subglacial Basin. Aeromagnetic images reveal that the Matusevich Glacier is underlain by a ca 480 Ma thrust fault system (the Exiles Thrust), which has also been inferred to have been reactivated in response to intraplate Cenozoic strike-slip faulting. Further to the west, the linear Eastern Basins are controlled by the Prince Albert Fault System. The fault system continues to the south, where it provides structural controls for both the Priestley and Reeves Glaciers. The inland Central Basins continue in the coastal area underlying the fast flowing Cook ice streams, implying that potential ocean-induced changes could propagate further into the interior of the ice sheet. We propose based on an analogy with the Rennick Graben that these deep subglacial basins are controlled by the underlying horst and graben crustal architecture. Given the interpreted subglacial distribution of Beacon sediments and Ferrar tholeiites and uplifted Ross-age basement blocks, we propose that these grabens were reactivated in post-Jurassic times, as observed from geological studies in the Rennick Graben. A remarkable contrast in long-wavelength magnetic anomaly signatures is observed over the coastal and inland segments of the Cook ice stream glacial catchment. We attribute this, to the presence of several km thick early Cambrian to late Neoproterozoic(?) sedimentary basins in the coastal region, in contrast to a prominent Proterozoic basement high at the onset of fast glacial flow further inland. This suggests that there could also be a marked difference in geothermal heat flux at the base of the ice sheet in these two regions, which may in turn exert influences on basal melting and subglacial hydrology networks. Further west, the deep Western Basins provide key topographic controls on the Ninnis Glacier, which is interpreted here, as controlled by a major Paleoproterozoic crustal boundary, separating an inferred linear Archean crustal ribbon from Paleoproterozoic rift basins, which are partially exposed along the coastal segment of the Terre Adelie Craton. The ca 1.7 Ga Mertz Shear Zone flanks the Mertz Glacier, and is interpreted here as a fault splay associated with this major crustal boundary.
Crustal structure along the DESERT 2000 Transect inferred from 3-D gravity modelling
NASA Astrophysics Data System (ADS)
El-Kelani, R.; Goetze, H.; Rybakov, M.; Hassouneh, M.; Schmidt, S.
2003-12-01
A three-dimensional interpretation of the newly compiled Bouguer anomaly map is part of the DESERT 2000 Transect. That is multi-disciplinary and multinational project studying for first time the Dead Sea Transform (DST) fault system (DST) from the Mediterranean Sea to Saudi Arabia across the international border in the NW-SE direction. The negative Bouguer anomalies (with magnitude reached "C130 mGal), located into transform valley, are caused by the internal sedimentary basins filled by the light density young sediments (Y10 km). A high-resolution 3-D model constrained with the seismic results reveals a possible crustal thickness and density distribution beneath the DST valley. The inferred zone of intrusion coincides with the maximum gravity anomaly over the eastern flank of the DST. The intrusion is displaced at different sectors along the NW-SE direction. The zone of the maximum crustal thinning (30 km) is attained in the western sector at the Mediterranean. The southeastern plateau, on the other hand, shows by far the largest crustal thickness in the region (38-42 km). Linked to the left lateral movement of ~ 105 km at the boundary between the African and Arabian plate, and constrained with the DESERT 2000 seismic data, a small asymmetric topography of the Moho beneath the DST was modelled. The thickness and density of the crust suggest that a continental crust underlies the DST. The deep basins, the relatively large nature of the intrusion and the asymmetric topography of the Moho lead to the conclusion that a small-scale asthenospheric upwelling(?) might be responsible for the thinning of the crust and subsequent rifting of the Dead Sea graben during the left lateral movement.
Crustal architecture of an inverted back arc rift basin, Niigata, central Japan
NASA Astrophysics Data System (ADS)
Sato, H.; Abe, S.; Kawai, N.; Saito, H.; Kato, N.; Ishiyama, T.; Iwasaki, T.; Kurashimo, E.; Inaba, M.; Van Horne, A.
2012-04-01
A back arc rift basin, formed during the Miocene opening of the Japan Sea, now uplifted and exposed in Niigata, central Japan, provides an exceptional opportunity to study a back arc rift formed on a short time scale and in a still active setting for the present day shortening deformation. Due to stress build up before the 2011 Tohoku earthquake (M9), two damaging earthquakes (M6.8) occurred in 2004 and 2007 in this inverted rift basin. Deep seismic profiling was performed along four seismic lines between 2008 and 2011. We used onshore-offshore deep seismic reflection profiling to examine the crustal architecture of the back arc basin, in particular the geometry of the source faults. We further applied refraction tomography analysis to distinguish between previously undifferentiated syn-rift volcanics and pre-rift Mesozoic rock based on P-wave velocity. Our findings indicate that the Miocene rift structure created during the extensional phase regulates the style of deformation and the geometry of the source faults in the current compressional regime. Syn-rift volcanics with a maximum thickness of 6 km filled the fault controlled basins as rifting proceeded. The volcanism was bimodal, comprising a reflective unit of mafic rocks around the rift axis and a non-reflective unit of felsic rocks near the margins of the basins. Once rifting ended, thermal subsidence, and subsequently, mechanical subsidence related to the onset of the compressional regime, allowed deposition of up to 5 km of post-rift, deep marine to fluvial sedimentation, including the Teradomari Formation, an over-pressured mudstone in the middle of the section that later became an important shallow detachment layer. Continued compression has caused fault-related fold and wedge thrusting in the post-rift sedimentary strata which are highly deformed by thin-skin style deformation. Since the Pliocene, normal faults created during the rift phase have been reactivated as reverse faults, including a shallow detachment in the Teradomari Formation which forms a complicated shortened deformation structure. Quaternary geomorphology suggests ongoing shortening. Transform faults inherited from the rift stage control the extent of present day reverse source faults and more importantly, earthquake magnitude.
Experience from the ECORS program in regions of complex geology
NASA Astrophysics Data System (ADS)
Damotte, B.
1993-04-01
The French ECORS program was launched in 1983 by a cooperation agreement between universities and petroleum companies. Crustal surveys have tried to find explanations for the formation of geological features, such as rifts, mountains ranges or subsidence in sedimentary basins. Several seismic surveys were carried out, some across areas with complex geological structures. The seismic techniques and equipment used were those developed by petroleum geophysicists, adapted to the depth aimed at (30-50 km) and to various physical constraints encountered in the field. In France, ECORS has recorded 850 km of deep seismic lines onshore across plains and mountains, on various kinds of geological formations. Different variations of the seismic method (reflection, refraction, long-offset seismic) were used, often simultaneously. Multiple coverage profiling constitutes the essential part of this data acquisition. Vibrators and dynamite shots were employed with a spread generally 15 km long, but sometimes 100 km long. Some typical seismic examples show that obtaining crustal reflections essentialy depends on two factors: (1) the type and structure of shallow formations, and (2) the sources used. Thus, when seismic energy is strongly absorbed across the first kilometers in shallow formations, or when these formations are highly structured, standard multiple-coverage profiling is not able to provide results beyond a few seconds. In this case, it is recommended to simultaneously carry out long-offset seismic in low multiple coverage. Other more methodological examples show: how the impact on the crust of a surface fault may be evaluated according to the seismic method implemented ( VIBROSEIS 96-fold coverage or single dynamite shot); that vibrators make it possible to implement wide-angle seismic surveying with an offset 80 km long; how to implement the seismic reflection method on complex formations in high mountains. All data were processed using industrial seismic software, which was not always appropriate for records at least 20 s long. Therefore, a specific procedure adapted to deep seismic surveys was developed for several processing steps. The long duration of the VIBROSEIS sweeps often makes it impossible to perform correlation and stack in the recording truck in the field. Such field records were first preprocessed, in order to be later correlated and stacked in the processing center. Because of the long duration of the recordings and the great length of the spread, several types of final sections were replayed, such as: (1) detailed surface sections (0-5 s), (2) entire sections (0-20 s) after data compression, (3) near-trace sections and far-trace sections, which often yield complementary information. Standard methods of reflection migration gave unsatisfactory results. Velocities in depth are inaccurate, the many diffractions do not all come from the vertical plane of the line, and the migration software is poorly adapted to deep crustal reflections. Therefore, migration is often performed graphically from arrivals picked in the time section. Some line-drawings of various onshore lines, especially those across the Alps and the Pyrenees, enable to judge the results obtained by ECORS.
Crustal structure of Yunnan province, People's Republic of China, from seismic refraction profiles
Kan, R.-J.; Hu, H.-X.; Zeng, R.-S.; Mooney, W.D.; McEvilly, T.V.
1986-01-01
Seismic refraction, profiles in Yunnan Province, southwestern China, define the crustal structure in an area of active tectonics, on the southern end of the Himalaya-Burma arc. The crustal thickness ranges from 38 to 46 kilometers, and the relatively low mean crustal velocity indicates a crustal composition compatible with normal continental crust and consisting mainly of meta-sedimentary and silicic intrusive rocks, with little mafic or ultramafic component. This composition suggests a crustal evolution involving sedimentary processes on the flank of the Yangtze platform rather than the accretion of oceanic island arcs, as has been proposed. An anomalously low upper-mantle velocity observed on one profile, but not on another at right angles to it may indicate active tectonic processes in the mantle or seismic anisotropy.
Crustal Structure of Yunnan Province, People's Republic of China, from Seismic Refraction Profiles.
Kan, R J; Hu, H X; Zeng, R S; Mooney, W D; McEvilly, T V
1986-10-24
Seismic refraction, profiles in Yunnan Province, southwestern China, define the crustal structure in an area of active tectonics on the southern end of the Himalaya-Burma arc. The crustal thickness ranges from 38 to 46 kilometers, and the relatively low mean crustal velocity indicates a crustal composition compatible with normal continental crust and consisting mainly of meta-sedimentary and silicic intrusive rocks, with little mafic or ultramafic component. This composition suggests a crustal evolution involving sedimentary processes on the flank of the Yangtze platform rather than the accretion of oceanic island arcs, as has been proposed. An anomalously low upper-mantle velocity observed on one profile but not on another at right angles to it may indicate active tectonic processes in the mantle or seismic anisotropy.
Evolution of the Median Tectonic Line fault zone, SW Japan, during exhumation
NASA Astrophysics Data System (ADS)
Shigematsu, Norio; Kametaka, Masao; Inada, Noriyuki; Miyawaki, Masahiro; Miyakawa, Ayumu; Kameda, Jun; Togo, Tetsuhiro; Fujimoto, Koichiro
2017-01-01
Like many crustal-scale fault zones, the Median Tectonic Line (MTL) fault zone in Japan preserves fault rocks that formed across a broad range of physical conditions. We examined the architecture of the MTL at a large new outcrop in order to understand fault behaviours under different crustal levels. The MTL here strikes almost E-W, dips to the north, and juxtaposes the Sanbagawa metamorphic rocks to the south against the Izumi Group sediments to the north. The fault core consists mainly of Sanbagawa-derived fault gouges. The fault zone can be divided into several structural units, including two slip zones (upper and lower slip zones), where the lower slip zone is more conspicuous. Crosscutting relationships among structures and kinematics indicate that the fault zone records four stages of deformation. Microstructures and powder X-ray diffraction (XRD) analyses indicate that the four stages of deformation occurred under different temperature conditions. The oldest deformation (stage 1) was widely distributed, and had a top-to-the-east (dextral) sense of slip at deep levels of the seismogenic zone. Deformation with the same sense of slip, then became localised in the lower slip zone (stage 2). Subsequently, the slip direction in the lower slip zone changed to top-to-the-west (sinistral-normal) (stage 3). The final stage of deformation (stage 4) involved top-to-the-north normal faulting along the two slip zones within the shallow crust (near the surface). The widely distributed stage 1 damage zone characterises the deeper part of the seismogenic zone, while the sets of localised principal slip zones and branching faults of stage 4 characterise shallow depths. The fault zone architecture described in this paper leads us to suggest that fault zones display different behaviours at different crustal levels.
Effect of the lithospheric thermal state on the Moho interface: A case study in South America
NASA Astrophysics Data System (ADS)
Bagherbandi, Mohammad; Bai, Yongliang; Sjöberg, Lars E.; Tenzer, Robert; Abrehdary, Majid; Miranda, Silvia; Alcacer Sanchez, Juan M.
2017-07-01
Gravimetric methods applied for Moho recovery in areas with sparse and irregular distribution of seismic data often assume only a constant crustal density. Results of latest studies, however, indicate that corrections for crustal density heterogeneities could improve the gravimetric result, especially in regions with a complex geologic/tectonic structure. Moreover, the isostatic mass balance reflects also the density structure within the lithosphere. The gravimetric methods should therefore incorporate an additional correction for the lithospheric mantle as well as deeper mantle density heterogeneities. Following this principle, we solve the Vening Meinesz-Moritz (VMM) inverse problem of isostasy constrained by seismic data to determine the Moho depth of the South American tectonic plate including surrounding oceans, while taking into consideration the crustal and mantle density heterogeneities. Our numerical result confirms that contribution of sediments significantly modifies the estimation of the Moho geometry especially along the continental margins with large sediment deposits. To account for the mantle density heterogeneities we develop and apply a method in order to correct the Moho geometry for the contribution of the lithospheric thermal state (i.e., the lithospheric thermal-pressure correction). In addition, the misfit between the isostatic and seismic Moho models, attributed mainly to deep mantle density heterogeneities and other geophysical phenomena, is corrected for by applying the non-isostatic correction. The results reveal that the application of the lithospheric thermal-pressure correction improves the RMS fit of the VMM gravimetric Moho solution to the CRUST1.0 (improves ∼ 1.9 km) and GEMMA (∼1.1 km) models and the point-wise seismic data (∼0.7 km) in South America.
NASA Astrophysics Data System (ADS)
Gouiza, Mohamed; Hall, Jeremy; Welford, J. Kim
2017-04-01
The Orphan Basin is located in the deep offshore of the Newfoundland margin, and it is bounded by the continental shelf to the west, the Grand Banks to the south, and the continental blocks of Orphan Knoll and Flemish Cap to the east. The Orphan Basin formed in Mesozoic time during the opening of the North Atlantic Ocean between eastern Canada and western Iberia-Europe. This work, based on well data and regional seismic reflection profiles across the basin, indicates that the continental crust was affected by several extensional episodes between the Jurassic and the Early Cretaceous, separated by events of uplift and erosion. The preserved tectono-stratigraphic sequences in the basin reveal that deformation initiated in the eastern part of the Orphan Basin in the Jurassic and spread towards the west in the Early Cretaceous, resulting in numerous rift structures filled with a Jurassic-Lower Cretaceous syn-rift succession and overlain by thick Upper Cretaceous to Cenozoic post-rift sediments. The seismic data show an extremely thinned crust (4-16 km thick) underneath the eastern and western parts of the Orphan Basin, forming two sub-basins separated by a wide structural high with a relatively thick crust (17 km thick). Quantifying the crustal architecture in the basin highlights the large discrepancy between brittle extension localized in the upper crust and the overall crustal thinning. This suggests that continental deformation in the Orphan Basin involved, in addition to the documented Jurassic and Early Cretaceous rifting, an earlier brittle rift phase which is unidentifiable in seismic data and a depth-dependent thinning of the crust driven by localized lower crust ductile flow.
NASA Astrophysics Data System (ADS)
Hermann, T.; Jokat, W.
2012-04-01
The Boreas Basin is located in Norwegian Greenland Sea bordered by the Greenland Fracture Zone in the south and the Hovgard Ridge in the north, respectively. In the east it adjoins the ultraslow mid-ocean Knipovich Ridge. Previous seismic reflection studies in the Boreas Basin have shown that the basement topography has a roughness, which is typical for ultraslow spreading ridges. This observation supports assumptions that the basin was formed at ultraslow spreading rates during its entire geological history. However, the detailed crustal structure remained unresolved. In summer 2009 new seismic refraction data were acquired in the Boreas Basin during the expedition ARK-XXIV/3 with the research vessel Polarstern. The deep seismic sounding line has a length of 340 km. Forward modelling of the data of 18 ocean bottom seismometers deployed along the NW-SE trending profile reveal an unusual 3.2 km thin oceanic crust. The crustal model is further constrained by S-wave and 2D gravity modelling. The P-wave velocity model shows a layered oceanic crust without oceanic layer 3 and with velocities less than 6.3 km/s except beneath a nearly 2000 m high seamount. Beneath the seamount velocities of up to 6.7 km/s were observed. The mantle velocities range between 7.5 km/s in the uppermost mantle and 8.0 km/s in almost 15 km depth. A serpentinisation of approximately 13% in the uppermost mantle decreasing downwards can explain the low mantle velocities. In summary, the transect confirms earlier models that the entire Boreas Basin was formed at ultraslow spreading rates. Indications for this are the basement roughness and the overall thin oceanic crust. Both observations are typical for ultraslow spreading systems.
Peressini, G.; Quick, J.E.; Sinigoi, S.; Hofmann, A.W.; Fanning, M.
2007-01-01
The Ivrea-Verbano Zone in the western Italian Alps contains one of the world's classic examples of ponding of mantle-derived, mafic magma in the deep crust. Within it, a voluminous, composite mafic pluton, the Mafic Complex, intruded lower-crustal, high-grade paragneiss of the Kinzigite Formation during Permian-Carboniferous time, and is now exposed in cross-section as a result of Alpine uplift. The age of the intrusion is still debated because the results of geochronological studies in the last three decades on different rock types and with various dating techniques range from 250 to about 300 Ma. Sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon age determinations on 12 samples from several locations within the Mafic Complex were performed to better constrain the age of the igneous event. The results indicate a long history of magma emplacement and cooling, which reconciles the spread in previously published ages. The main intrusive phase took place at 288 ?? 4 Ma, causing a perturbation of the deep-crustal geotherm, which relaxed to the Sm-Nd closure temperature in garnet-free mafic rocks after about 15-20 Myr of sub-solidus cooling at c. 270 Ma. These results suggest that large, deep crustal plutons, such as those identified geophysically at depths of 10-20 km within extended continental crust (e.g. Yellowstone, Rio Grande Rift, Basin and Range) may have formed rapidly but induced a prolonged thermal perturbation. In addition, the data indicate that a significant thermal event affected the country rock of the Mafic Complex at about 310 Ma. The occurrence of an upper amphibolite- to granulite-facies thermal event in the Kinzigite Formation prior to the main intrusive phase of the Mafic Complex has been postulated by several workers, and is corroborated by other geochronological investigations. However, it remains uncertain whether this event (1) was part of a prolonged perturbation of the deep-crustal geotherm, which started long before the onset of intrusion of the Mafic Complex, or (2) corresponded to the intrusion of the first sills of the Mafic Complex, or (3) was related to an earlier, independent thermal pulse. ?? The Author 2007. Published by Oxford University Press. All rights reserved.
Anisotropic tomography of the European lithospheric structure from surface wave studies
NASA Astrophysics Data System (ADS)
Nita, Blanka; Maurya, Satish; Montagner, Jean-Paul
2016-06-01
We present continental-scale seismic isotropic and anisotropic imaging of shear wave upper-mantle structure of tectonically diversified terranes creating the European continent. Taking into account the 36-200 s period range of surface waves enables us to model the deep subcontinental structure at different vertical scale-lengths down to 300 km. After very strict quality selection criteria, we have obtained phase wave speeds at different periods for fundamental Rayleigh and Love modes from about 9000 three-component seismograms. Dispersion measurements are performed by using Fourier-domain waveform inversion technique named "roller-coaster-type" algorithm. We used the reference model with a varying average crustal structure for each source-station path. That procedure led to significant improvement of the quality and number of phase wave speed dispersion measurements compared to the common approach of using a reference model with one average crustal structure. Surface wave dispersion data are inverted at depth for retrieving isotropy and anisotropy parameters. The fast axis directions related to azimuthal anisotropy at different depths constitute a rich database for geodynamical interpretations. Shear wave anomalies of the horizontal dimension larger than 200 km are imaged in our models. They correlate with tectonic provinces of varying age-provenance. Different anisotropy patterns are observed along the most distinctive feature on our maps-the bordering zone between the Palaeozoic and Precambrian Europe. We discuss the depth changes of the lithosphere-asthenosphere boundary along the profiles crossing the chosen tectonic units of different origin and age: Fennoscandia, East European Craton, Anatolia, Mediterranean subduction zones. Within the flat and stable cratonic lithosphere, we find traces of the midlithospheric discontinuity.
NASA Astrophysics Data System (ADS)
Peressini, G.; Quick, J. E.; Poller, U.; Todt, W.; Mayer, A.; Sinigoi, S.; Hofmann, A. W.
2002-12-01
The Mafic Complex (MC) of the Ivrea Zone is one of the largest gabbro bodies in the Alps (ca 8 km thick and 30 km long); it intruded the already metamorphic volcano-sedimentary sequence of the Kinzigite Formation (KF) at a depth of more than 20 km during the Late Paleozoic. New geochronologic data constrain the duration of the intrusion. The crustal section, uplifted, tilted and exposed in Alpine time, is tectonically bounded, but essentially undisturbed by Alpine tectonics; the internal structure of the MC and its relations with the KF are well preserved. Intrusion of the MC in extending continental crust is suggested by pre-Triassic, high-T, extensional shear zones in the Ivrea Zone, and is consistent with the internal arcuate structure of the MC, which is defined by high-T foliation and banding, that are discordant to the roof of the intrusion. Rocks in the roof of the MC attain upper-amphibolite grade and show evidence of partial melting within about 2 km of the MC. The country rock was melted as a consequence of heat released by the crystallizing mafic body; the chemistry of the mafic rocks was affected by up to 30% crustal contamination that occurred partially in situ, by mixing of the basaltic melts with anatectic melts derived from depleted crustal rocks. A thin (less than 20 m) seam of leucogranite crystallized from anatectic melt is present at the MC-KF contact. Syntectonic intrusion of leucogranite along shear zones within the KF demonstrates migration of anatectic melts to higher crustal levels. U/Pb SHRIMP ages on magmatic zircons range from 295+4 and 287+4 Ma for the MC, and 280+4 Ma for syntectonic leucogranites in the KF. Thus, intrusion of the MC may have taken as long as 10-15 Ma. Nd-Sm mineral isochrones for the MC range from 244 to 274, indicating that the Complex cooled to temperatures below 750C within about 40 Ma of final crystallization. The heat of crystallization of the MC was accommodated by anatexis and assimilation, and syntectonic migration of anatectic melts transferred heat to higher crustal levels.
Gravity in extensional regimes: A case study in the Central Volcanic Region, New Zealand
NASA Astrophysics Data System (ADS)
Greve, A.; Stern, T. A.
2017-12-01
Using the interpretation of a large crustal seismic experiment conducted in 2009 as boundary model, we produced a sequence of new 2D gravity models for the central North Island in New Zealand. The Bouguer gravity field in the region ranges from -100 to 60 mGal and is dominated by the long wavelength signals of the subduction of the Pacific beneath the Australian plate along the Hikurangi margin and the transition from continental to oceanic lithosphere about the Bay of Plenty coast (NE New Zealand). Removal of these broad regional trends reveals the presence of a triangular shaped area, within the lines Taranaki-Coromandel and Taranaki - White Island, with negative anomalies between -30 and 60 mGal and positive anomalies around 10 mGal along the margins. This area, commonly referred to as the Central Volcanic Region (CVR) represents the continental continuation of the Lau-Havre, oceanic, back-arc rift basin. The Taupo Volcanic Zone forms the active eastern half of the CVR, where anomalously high heat output, geothermal activity and active volcanism occur. The new gravity model includes the presence of a 90km wide, ca. 10 km thick rift pillow of new underplated, lower crust between the depths of 15 and 25 km. A positive density contrast of 300 kg/m3 for this body is consistent with the observed seismic velocities (6.8 ≤ Vp ≤ 7.1 km/s). A ca. 2.5 km deep basin dominates the upper crustal structure and is about 50 km wide, infilled by low density volcaniclastics, with adopted average negative densities of -425 kg/m3. In the mid-crustal region, between 2.5 and 15 km depth, isostatic compensation requires a small density contrast of -110 kg/m3. This density contrast, with respect to a standard crustal model, can be ascribed to the presence of low density intrusives, within the old and now stretched crust. On the basis of this new crustal structure model we estimate a stretching factor (ß) for the old crust of 2-2.4. The intruded mid crust and the underplated new crust are most likely the primary sources of the impressive 4 GW heat output of the CVR.
Crustal Scale Magnetotelluric Imaging of the Central Atlas in Moocco
NASA Astrophysics Data System (ADS)
Ledo, J.; Jones, A. G.; Sinischalchi, A.; Rouais, M.; Campanyà, J.; Kiyan, D.; Moretti, P.; Piña, P.; Hogg, C.; Romano, G.; Picasso Team
2010-12-01
The Central Atlas of Morocco is an intracontinental fold-thrust belt with an ENE-WSW main strike that extends about 2000 km and 100 km wide, located in the foreland of the Mediterranean Alpine belt. The structure of the Atlas resulted from the tectonic inversion of a Mesozoic extensional basin, due to compression related to convergence between Africa and Europe occurred from cenozoic to present times. Previous MT data models based on stitched 1D inversion or using only the phases and the induction vector data following and trial and error approach (Schwarz et al., 1992), therefore the overall geoelectrical structure is partly unresolved. In this paper we will expose and discuss the results of new magnetotelluric data acquired along a profile crossing the Atlas that allows imaging its electrical crustal structure.In the lower crust two conductive units appear. One below the Moulouya plains that coincides with a minimum of the Bouguer anomaly, less earthquakes than the adjacent Middle and High Atlas and a low velocity anomaly at lower crustal levels. Moreover, the Moulouya plain and the Middle Atlas to the north are host of the largest Neogene-Quaternary intraplate alkaline volcanic field in Morocco. This feature has been associated either to a Canary mantle plume flow beneath Africa or to the interplay between reactivation of inherited geological structures and the thermal erosion of the metasomatized lithosphere. In any case, all the authors agree that are originated by low degree partial melting of sublithospheric mantle sources. Another low resistivity anomaly appears at lower crustal depths below the Anti-Atlas, that could be either a remnant of tectonic processes in the pre-mesozoic or a more recent overprint of the lower crust due to mantle processes. Two main events during the Pan African orogeny may be the cause of this anomaly, a relic of a subduction process or a deep mineralization associated to magmatism. The Anti-Atlas consists of of a Precambrian crystalline basement that collided at approximately 685 Ma with and oceanic convergent margin together with and ophiolitic assemblage (Saghro, Bou Azzer). The low resistivity structure could be associated to relic subducted oceanic sediments. On the other hand, the Anti-Atlas was affected at the end of the Pan-African orogeny (ca 585-560 Ma) by high-K calc-alkaline and alkaline magmatism. The proterozoic inliers in the Anti-Atlas are highly mineralized, among them, the Imiter Ag deposit is one of the largest silver deposits in the world.
NASA Technical Reports Server (NTRS)
Glikson, A. Y.
1992-01-01
Since the oldest intact terrestrial rocks of ca. 4.0 Ga and oldest zircon xenocrysts of ca. 4.3 Ga measured to date overlap with the lunar late heavy bombardment, the early Precambrian record requires close reexamination vis a vis the effects of megaimpacts. The identification of microtektite-bearing horizons containing spinals of chondritic chemistry and Ir anomalies in 3.5-3.4-Ga greenstone belts provides the first direct evidence for large-scale Archaean impacts. The Archaean crustal record contains evidence for several major greenstone-granite-forming episodes where deep upwelling and adiabatic fusion of the mantle was accompanied by contemporaneous crustal anatexis. Isotopic age studies suggest evidence for principal age clusters about 3.5, 3.0, and 2.7 (+/- 0.8) Ga, relics of a ca. 3.8-Ga event, and several less well defined episodes. These peak events were accompanied and followed by protracted thermal fluctuations in intracrustal high-grade metamorphic zones. Interpretations of these events in terms of internal dynamics of the Earth are difficult to reconcile with the thermal behavior of silicate rheologies in a continuously convecting mantle regime. A triggering of these episodes by mantle rebound response to intermittent extraterrestrial asteroid impacts is supported by (1) identification of major Archaean impacts from microtektite and distal ejecta horizons marked by Ir anomalies; (2) geochemical and experimental evidence for mantle upwelling, possibly from levels as deep as the transition zone; and (3) catastrophic adiabatic melting required to generate peridotitic komatites. Episodic differentiation/accretion growth of sial consequent on these events is capable of resolving the volume problem that arises from comparisons between modern continental crust and the estimated sial produced by continuous two-stage mantle melting processes. The volume problem is exacerbated by projected high accretion rates under Archaean geotherms. It is suggested that impact shock effects have been largely obscured by (1) outpouring of voluminous basic/ultrabasic lavas, inundating shock-deformed crust and extending beyond the perimeters of impact excavated basins; (2) gravity subsidence and downfaulting of terrestrial maria, accounting for the burial and anatexis of subgreenstone basement; and (3) extensive shearing and recrystallization at elevated temperatures of impact structure, breccias, and mineral deformation features beneath impact-excavated basins, relics of which may be retained in structural windows in high-grade metamorphic terranes.
Along-axis variability in crustal accretion at the Mid-Atlantic Ridge: Results from the OCEAN study
Henstock, T.J.; White, Robert S.; McBride, J.H.
1996-01-01
The OCEAN experiment is an integrated geophysical study of a region of the Cape Verde abyssal plain that formed at 140 Ma. Deep seismic reflection and ocean bottom hydrophone (OBH) refraction data were acquired along lines parallel and perpendicular to the paleoridge axis trend identified from a detailed magnetic anomaly survey. The igneous basement is overlain by about 1.3 km of sediment which enables improved imaging of intracrustal structure beyond that possible near the Mid-Atlantic Ridge axis. We describe the results of a 150-km long profile oriented parallel to magnetic anomalies M15 and M16, along which deep seismic reflection data collected by the British Institutions Reflection Profiling Syndicate are complemented by refraction data constrained by four OBHs. The line spans an entire spreading segment between two fracture zones; the northern of which has an offset of 40 km and the other (central) has an offset of only 10 km. Away from the fracture zones, the mean igneous crustal thickness is 7.2 km; near both fracture zones, thinning of up to 4 km is observed, giving a mean igneous crustal thickness over the whole segment of approximately 6.5 km. Differences are seen between the two fracture zones in their seismic velocity structure, in the associated basement topography, and in the presence of a strong reflection extending into the mantle beneath the northern fracture zone. The boundary between oceanic layers 2 and 3 correlates with variably coherent normal incidence reflections and a change in the character of the reflectivity. A number of planar reflections up to 10 km in length are present within the middle and lower crust, dipping outward from beneath low-amplitude basement highs at ??? 15??; these appear to be present only within layer 3. The Moho has several expressions in the reflection data, including isolated reflection events, a local increase in reflected amplitudes, and a downward decrease in coherent reflections. At the center of the segment there is a zone at the base of the crust within which both high- and low-velocity materials are present. This zone shows an enhanced level of discontinuous normal incidence reflectivity and may represent an initial fractionation event as melt was emplaced at the spreading ridge.
NASA Astrophysics Data System (ADS)
Klingelhoefer, F.; Aslanian, D.; Sahabi, M.; Moulin, M.; Schnurle, P.; Berglar, K.; Biari, Y.; Feld, A.; Graindorge, D.; Corela, C.; Mehdi, K.; Zourarah, B.; Perrot, J.; Alves Ribeiro, J.; Reichert, C. J.
2011-12-01
The study of conjugate margins is important to test different hypotheses of rifting and initial opening of an ocean. In this scope, seven wide-angle seismic profiles were acquired on the Moroccan Atlantic margin (at the latitudes between 32° and 33° N) together with coincident deep frequency reflection seismic data during the MIRROR cruise in May and June 2011. The main seismic profile is conjugate to an existing wide-angle seismic profile off Nova Scotia (SMART 2). Further objectives of the cruise were to image ocean-continent transition zone, to detect and eventually quantify exhumed upper mantle material present in this zone and to determine the origin of the high amplitude West African Magnetic Anomaly, which is conjugate to the north American East Coast Magnetic Anomaly and can be linked to the opening of the Atlantic. Two of the newly acquired profiles are located perpendicular and five parallel to the Moroccan margin. The seismic profiles are between 130 and 260 km in length and between 28 and 13 ocean-bottom seismometers were deployed on each one. One profile was extended on land by 15 landstations in order to better image the zone of continental thinning. A 4.5 km digital streamer and a 7200 cu inch tuned airgun array were used for the acquisition of the seismic data. Additionally magnetic, bathymetric and high resolution seismic data were acquired in the study region. Preliminary results from tomographic inversion of the first arrivals from the ocean-bottom seismometer data image the zone of crustal thinning from about 25 km to 6 km in the basin along about 70 kilometers of the profiles which are located perpendicular to the margin. The oceanic crust can be divided into 2 regions, based on the lower crustal velocities. Upper mantle velocities are about 8.0 km/s. The coincident reflection seismic data show the fine basement and sedimentary structures including salt tectonics in the basin. The comparative study of the two conjugate profiles on the Moroccan and Nova Scotia margin will give new insights into the original opening of the Atlantic ocean. Further work on this data set will include forward modelling of the wide-angle seismic data, gravity and magnetic modelling.
Post-Laramide Epiorogeny through Crustal Hydration?
NASA Astrophysics Data System (ADS)
Jones, C. H.; Mahan, K. H.; Farmer, G.
2011-12-01
The most perplexing part of the Cordilleran orogen in the western U.S. has been the Cenozoic uplift of broad regions with insufficient crustal shortening to produce the change in elevation following retreat of the Western Interior Seaway. These regions (most notably the High Plains, Wyoming craton, and Colorado Plateau) generally also have heat flow values comparable to much of the tectonically inactive (and low) parts of the U.S. Explanations have included dynamic effects, erosion of mantle lithosphere, cryptic crustal thickening, and hydration of the mantle lithosphere. We suggest that an alternative worthy of investigation is the hypothesis that a garnet-rich lower crust throughout the region was hydrated, producing increased buoyancy capable of driving uplift. A profile from Canada to southernmost Wyoming contains coincident increases in lower crustal hydration, decreases in lower crustal wavespeed, and increases in elevation. Xenoliths from near the Canadian border in Montana are pristine and lack hydrous alteration. Similar xenoliths from the lower crust at the 50 Ma Homestead kimberlite in central Montana have been altered such that garnet+feldspar is partially replaced by a chlorite-calcite-albite assemblage that may have occurred under high-pressure conditions, reducing the rock density from 3.19 Mg/m3 to 3.05 Mg/m3. Farther south, lower crustal hornblende granulite xenoliths from Quaternary volcanic rocks in the Leucite Hills lack garnet and exhibit evidence for hydration reactions, some of which are late Archean. Along the same general trend, the DeepProbe seismic profile yielded a ~20 km thick lower crustal layer with wavespeeds decreasing from 7.7 km/s in Canada to ~7.2 km/s in central Wyoming to <7.0 km/s in southern Wyoming (Gorman et al., 2002). If this variation coincides with a 5-10% decrease in density of this layer, 1-2 km of topography should be produced, comparable to the ~1.5 km difference observed. Evidence for late-stage deep crustal hydration has also been described from xenoliths in the Four Corners region of the Colorado Plateau (Broadhurst, 1986; Selverstone et al., 1999). The presence of a partially hydrated high-wavespeed layer at the base of the crust could complicate attempts to define the Moho using receiver functions, a problem encountered in several areas in Wyoming and the Colorado Plateau.The timing of the observed lower crustal hydration is unknown, but if related to Cenozoic uplift this implies that fluids were added in Late Cretaceous to Early Tertiary, potentially via dehydration of shallowly subducting oceanic lithosphere. If correct, this idea requires some means of passing significant amounts of fluid to the lower crust through the lithospheric mantle.
2011-12-30
which data sets containing GT0 events (explosions and mine tremors) are available, local crustal structure is well known, and hand-picked arrival...available, local crustal structure is well known, and hand-picked arrival times have been obtained. Boomer et al. (2010) describes the development of...local criteria for the simple crustal structure of the Archean Kaapvaal Craton in southern Africa. Continuing the development of local criteria in
NASA Astrophysics Data System (ADS)
Karson, J. A.
2016-12-01
Structures generated by seafloor spreading in oceanic crust (and ophiolites) and thick oceanic crust of Iceland show a continuous spectrum of features that formed by similar mechanisms but at different scales. A high magma budget near the Iceland hotspot generates thick (40-25 km) mafic crust in a plate boundary zone about 50 km wide. The upper crust ( 10 km thick) is constructed by the subaxial subsidence and thickening of lavas fed by dense dike swarms over a hot, weak lower crust to produce structures analogous to seaward-dipping reflectors of volcanic rifted margins. Segmented rift zones propagate away from the hotspot creating migrating transform fault zones, microplate-like crustal blocks and rift-parallel strike-slip faults. These structures are decoupled from the underlying lower crustal gabbroic rocks that thin by along-axis flow that reduces the overall crustal thickness and smooths-out local crustal thickness variations. Spreading on mid-ocean ridges with high magma budgets have much thinner crust (10-5 km) generated at a much narrower (few km) plate boundary zone. Subaxial subsidence accommodates the thickening of the upper crust of inward-dipping lavas and outward-dipping dikes about 1-2 km thick over a hot weak lower crust. Along-axis (high-temperature ductile and magmatic) flow of lower crustal material may help account for the relatively uniform seismic thickness of oceanic crust worldwide. Spreading along even slow-spreading mid-ocean ridges near hotspots (e.g., the Reykjanes Ridge) probably have similar features that are transitional between these extremes. In all of these settings, upper crustal and lower crustal structures are decoupled near the plate boundary but eventually welded together as the crust ages and cools. Similar processes are likely to occur along volcanic rifted margins as spreading begins.
NASA Astrophysics Data System (ADS)
Camerlenghi, Angelo; Aoisi, Vanni; Lofi, Johanna; Hübscher, Christian; deLange, Gert; Flecker, Rachel; Garcia-Castellanos, Daniel; Gorini, Christian; Gvirtzman, Zohar; Krijgsman, Wout; Lugli, Stefano; Makowsky, Yizhaq; Manzi, Vinicio; McGenity, Terry; Panieri, Giuliana; Rabineau, Marina; Roveri, Marco; Sierro, Francisco Javier; Waldmann, Nicolas
2014-05-01
In May 2013, the DREAM MagellanPlus Workshop was held in Brisighella (Italy). The initiative builds from recent activities by various research groups to identify potential sites to perform deep-sea scientific drilling in the Mediterranean Sea across the deep Messinian Salinity Crisis (MSC) sedimentary record. In this workshop three generations of scientists were gathered: those who participated in formulation of the deep desiccated model, through DSDP Leg 13 drilling in 1973; those who are actively involved in present-day MSC research; and the next generation (PhD students and young post-docs). The purpose of the workshop was to identify locations for multiple-site drilling (including riser-drilling) in the Mediterranean Sea that would contribute to solve the several open questions still existing about the causes, processes, timing and consequences at local and planetary scale of an outstanding case of natural environmental change in the recent Earth history: the Messinian Salinity Crisis in the Mediterranean Sea. The product of the workshop is the identification of the structure of an experimental design of site characterization, riser-less and riser drilling, sampling, measurements, and down-hole analyses that will be the core for at least one compelling and feasible multiple phase drilling proposal. Particular focus has been given to reviewing seismic site survey data available from different research groups at pan-Mediterranean basin scale, to the assessment of additional site survey activity including 3D seismics, and to ways of establishing firm links with oil and gas industry. The scientific community behind the DREAM initiative is willing to proceed with the submission to IODP of a Multi-phase Drilling Project including several drilling proposals addressing specific drilling objectives, all linked to the driving objectives of the MSC drilling and understanding . A series of critical drilling targets were identified to address the still open questions related to the MSC event. Several proposal ideas also emerged to support the Multi-phase drilling project concept: Salt tectonics and fluids, Deep stratigraphic and crustal drilling in the Gulf of Lion (deriving from the GOLD drilling project), Deep stratigraphic and crustal drilling in the Ionian Sea, Deep Biosphere, Sapropels, and the Red Sea. A second MagellanPlus workshop held in January 2014 in Paris (France), has proceeded a step further towards the drafting of the Multi-phase Drilling Project and a set of pre-proposals for submission to IODP.
NASA Astrophysics Data System (ADS)
Ma, Y.; Clayton, R. W.
2012-12-01
We determine the Vs structure to a depth of 140 km of Southern Peru, where the subducted Nazca slab changes from normal to flat subduction. The data are from a box-like array that is approximately 300 km on a side, and with 150 stations in total. The structure is inverted from surface wave dispersion curves measured between 5 s to 23 s period from ambient noise cross-correlations, and between 25 s to 69 s from earthquake two-plane-wave analysis. From the map views of different depths, we observe that: (1) The forearc region is characterized by shallow crustal thickness and higher crustal velocity compared with the backarc. (2) The upper-crust velocity in the backarc above normal subduction (3.0-3.2 km/s) is lower compared with that above flat subduction region (3.2-3.4 km/s). The low velocity coincides with the deep sediments above the Altiplano plateau. (3) The transition from the normal to flat subduction is characterized by a comparatively lower upper-mid crust velocity (3.2-3.4 km/s). The lower velocity zone also coincides with the highest topography (>4700 m) in the study area. (4) The mantle wedge velocity above the flat subduction (4.6-4.9 km/s) is higher than the surrounding mantle and the mantle above the normal subduction region (4.3-4.5 km/s). We deduce that the upper-mid crust above the transition of the slab geometry is probably more felsic, which can be due to the old volcanic activity during the normal-flat transition, and thus can more easily accommodate the crustal shortening. The lack of present volcanism above the flat subduction, however, could be explained by the high velocity anomaly related to the flat slab. It may indicate a cold environment, and thus the lack of mantle melting.
NASA Astrophysics Data System (ADS)
Zhang, R.; Wu, Q.
2013-12-01
From 2009 to 2011, a 60 station broadband seismic array extending over 1200km was deployed in northeast China (NEC) by the Institute of geophysics, China Earthquake Administration (CEA). The recently linear deployment of seismic array in Northeast China (NEC) facilitated collection of more high-quality broadband data, thus provide us an opportunity to use S-wave receiver functions to investigate its crustal and mantle lithosphere structure with high resolution. Two distinct signals with large amplitude can be identified in our imaged S receiver functions. The strong positive one from the Moho can be observed continuously at depths from 40 km beneath Great Xing'an Range to less than 30 km beneath the Songliao Basin. The imaged Moho agrees with previous estimate of crustal thickness, and the lateral variations correlate to its surface tomography. The deep negative Sp phase interpreted as from the lithosphere-asthenosphere boundary (LAB) is as shallow as ~100km in the Songliao basin, down to 140-160km in the westward of Xingmeng block. The boundary is less prominent east of the Songliao Basin. The imaged Moho and LAB structure indicate the crust and lithosphere thinning in the Songliao Basin, and the vertical thinning of LAB is more obvious, evidence in a depth variation up to 50 km. The Songliao Basin is a continental rifting where a large amount of extension occurs, and the coupling of thinning between in the crust and underlying lithosphere indicated that the lithosphere stretching may be involved to the crustal rifting. The stretching can be more explained by the pure shear regime proposed in extensional tectonics. Acknowledgments. Seismic data were collected by the by the Institute of Geophysics, China Earthquake Administration. This work was supported by the NSF of China (grants 40974061, 90814013), the Chinese government's executive program (SinoProbe-02-03) and the international cooperation project of the Ministry of Science and Technology of China (2011DFB20120).
NASA Astrophysics Data System (ADS)
Karson, J.; Horst, A. J.; Nanfito, A.
2011-12-01
Iceland has long been used as an analog for studies of seafloor spreading. Despite its thick (~25 km) oceanic crust and subaerial lavas, many features associated with accretion along mid-ocean ridge spreading centers, and the processes that generate them, are well represented in the actively spreading Neovolcanic Zone and deeply glaciated Tertiary crust that flanks it. Integrated results of structural and geodetic studies show that the plate boundary zone on Iceland is a complex array of linked structures bounding major crustal blocks or microplates, similar to oceanic microplates. Major rift zones propagate N and S from the hotspot centered beneath the Vatnajökull icecap in SE central Iceland. The southern propagator has extended southward beyond the South Iceland Seismic Zone transform fault to the Westman Islands, resulting in abandonment of the Eastern Rift Zone. Continued propagation may cause abandonment of the Reykjanes Ridge. The northern propagator is linked to the southern end of the receding Kolbeinsey Ridge to the north. The NNW-trending Kerlingar Pseudo-fault bounds the propagator system to the E. The Tjörnes Transform Fault links the propagator tip to the Kolbeinsey Ridge and appears to be migrating northward in incremental steps, leaving a swath of deformed crustal blocks in its wake. Block rotations, concentrated mainly to the west of the propagators, are clockwise to the N of the hotspot and counter-clockwise to the S, possibly resulting in a component of NS divergence across EW-oriented rift zones. These rotations may help accommodate adjustments of the plate boundary zone to the relative movements of the N American and Eurasian plates. The rotated crustal blocks are composed of highly anisotropic crust with rift-parallel internal fabric generated by spreading processes. Block rotations result in reactivation of spreading-related faults as major rift-parallel, strike-slip faults. Structural details found in Iceland can help provide information that is difficult or impossible to obtain in propagating systems of the deep seafloor.
The Electrical Resistivity Structure of the Eastern Anatolian Collision Zone, Northeastern Anatolia
NASA Astrophysics Data System (ADS)
Cengiz, Özlem; Tuǧrul Başokur, Ahmet; Tolak Çiftçi, Elif
2016-04-01
The Northeastern Anatolia is located at the intensely deformed Eastern Anatolian Collision Zone (EACZ), and its tectonic framework is characterized by the collision of the Arabian plate with Eurasian. Although extensive attention is given to understand the crustal and upper mantle processes at this convergent boundary, there is still an ongoing debate over the geodynamic processes of the region. In this study, we were specifically interested in the geoelectric properties and thus geodynamics of the crust beneath the EACZ. Magnetotelluric (MT) measurements were made on two profiles across the north of the EACZ in 1998 as part of a national project undertaken by the Turkish Petroleum Corporation (TPAO). MT data in the frequency range of 300-0.001 Hz were collected from 168 stations located along 78 km north to south and 47 km west to east profiles where direct convergence occurs between Arabian and Eurasian plates. Two and three-dimensional inversion algorithms were used to obtain resistivity models of the study area. According to these models, the upper crust consists of low resistivity sedimentary rocks (<30 Ωm) that are underlain by highly resistive (~500-1000 Ωm) crystalline basement rocks of the Eastern Anatolian Accretionary Complex and Pontides. While the upper and lower crustal resistivity at the northern part of the study area shows a layered structure, significant horizontal and vertical variations for the rest of the EACZ exists on resistivity models. The broad low resistivity zones (<50 Ωm) observed at mid and lower crustal levels throughout the EACZ. These fluid-rich regions along with high temperatures could indicate weak zones representing the locations of active deformation induced by continent-continent collision and correlate with volcanic centers in the region. The variation in the resistivity structure supports the southward subduction model with the resistive continental block and the deep conductive zones presumably corresponding to the oceanic crust.
Modeling Wide-Angle Seismic Data from the Hi-CLIMB Experiment in Tibet
NASA Astrophysics Data System (ADS)
Nowack, R. L.; Griffin, J. D.; Tseng, T.; Chen, W.
2009-12-01
Using data from local and regional events recorded by the Hi-CLIMB array in Tibet, we utilize seismic attributes, including arrival times, Hilbert amplitudes and pulse frequencies, to constrain structures of seismic wave speed and attenuation in the crust and the upper mantle in western China. We construct more than 30 high-quality, regional seismic profiles, and select 14 of these, which show excellent crustal and Pn arrivals, for further analysis. Travel-times from events at regional distances constrain large-scale velocity structures, and four close-in events provide further details on crustal structure. We use the 3-D ray tracer, CRT, to model the travel-times. Initial results indicate that the Moho beneath the Lhasa terrane of southern Tibet is over 73 km deep with a high Pn speed of about 8.2 km/s. In contrast, the Qiangtang terrane farther north shows a thinner crust, by up to 10 km, and a low Pn speed of 7.8-7.9 km/s. Preliminary estimates of upper mantle velocity gradients are between .003 and .004 km/s per km, consistent with previous results by Phillips et al. (2007). We also use P to SV conversions from teleseismic earthquakes to independently constrain variations in speeds of Pn and depths of the Moho. For instance, amplitudes of the SsPmP phase, when its last reflection off the Moho is near-critical, are particularly sensitive to the contrast in seismic wave speeds across the crust-mantle interface; and results from these additional data are consistent with those from modeling of travel-times. Additional seismic attributes, extracted from wave-trains containing Pn and major crustal phases, are being compared with results of numerical modeling based on the spectral element method and asymptotic calculations in laterally varying media, where both lateral and vertical gradients in seismic wave speeds can strongly affect Pn amplitudes and pulse frequencies.
NASA Astrophysics Data System (ADS)
Muto, A.; Peters, L. E.; Anandakrishnan, S.; Alley, R. B.; Riverman, K. L.
2013-12-01
Recent estimates indicate that ice shelves along the Amundsen Sea coast in West Antarctica are losing substantial mass through sub-ice-shelf melting and contributing to the accelerating mass loss of the grounded ice buttressed by them. For Pine Island Glacier (PIG), relatively warm Circumpolar Deep Water has been identified as the key driver of the sub-ice-shelf melting although poor constraints on PIG sub-ice shelf have restricted thorough understanding of these ice-ocean interactions. Aerogravity data from NASA's Operation IceBridge (OIB) have been useful in identifying large-scale (on the order of ten kilometers) features but the results have relatively large uncertainties due to the inherent non-uniqueness of the gravity inversion. Seismic methods offer the most direct means of providing water thickness and upper crustal geological constraints, but availability of such data sets over the PIG ice shelf has been limited due to logistical constraints. Here we present a comparative analysis of the bathymetry and upper crustal structure beneath the ice shelf of PIG through joint inversion of OIB aerogravity data and in situ active-source seismic measurements collected in the 2012-13 austral summer. Preliminary results indicate improved resolution of the ocean cavity, particularly in the interior and sides of the PIG ice shelf, and sedimentary drape across the region. Seismically derived variations in ice and ocean water densities are also applied to the gravity inversion to produce a more robust model of PIG sub-ice shelf structure, as opposed to commonly used single ice and water densities across the entire study region. Misfits between the seismically-constrained gravity inversion and that estimated previously from aerogravity alone provide insights on the sensitivity of gravity measurements to model perturbations and highlight the limitations of employing gravity data to model ice shelf environments when no other sub-ice constraints are available.
NASA Astrophysics Data System (ADS)
Glorie, Stijn; Agostino, Kate; Dutch, Rian; Pawley, Mark; Hall, James; Danišík, Martin; Evans, Noreen J.; Collins, Alan S.
2017-04-01
Multi-method geo- and thermochronological data obtained for Palaeo- and Mesoproterozoic granitoids traversing the main structural architecture of the eastern Musgrave Province within South Australia reveal multiphase cooling histories. Apatite U-Pb dating on six samples yield consistent ages of 1075-1025 Ma, suggesting a thermal reset coinciding with mantle-derived magmatism of the greater Warakurna Large Igneous Province ( 1080-1040 Ma). Apatite fission track (AFT) analysis indicate that four discrete thermal events affected the study area, inducing cooling through the AFT partial annealing zone ( 60-120 °C), supported by apatite and zircon (U-Th-Sm)/He data. Late Neoproterozoic cooling from deep crustal levels to temperatures < 200 °C was discerned, which is thought to be related to exhumation and denudation during the Petermann Orogeny. Subsequent cooling events at 450-400 Ma (Silurian-Devonian) and 310-290 Ma (Late Carboniferous) are interpreted to represent exhumation associated with the Alice Springs Orogeny. The latter event exhumed the sampled plutons to shallow crustal depths. An additional Triassic - early Jurassic thermal event, likely recording elevated geothermal gradients at that time, was observed throughout the study area, however, more data is needed to further support this interpretation. The high sample density across the structural architecture of the study area furthermore reveals patterns of fault reactivation and resulting differential exhumation, indicating shallower exhumation levels in the centre and deeper exhumation towards the margins of the sampled transect. The observed differential exhumation patterns match with existing seismic data and fit a model of an inverted graben system for the Phanerozoic evolution of the eastern Musgraves. The results highlight a complex Phanerozoic thermal history for the eastern Musgraves and help to elucidate the poorly appreciated tectonic evolution of inland Australia. This study further demonstrates how high-density sample transects across structural architecture can assess the relative crustal level and associated preservation of the thermal history record within fault-reactivated terranes.
NASA Astrophysics Data System (ADS)
Leitchenkov, G.; Guseva, J.; Gandyukhin, V.; Grikurov, G.; Kristoffersen, Y.; Sand, M.; Golynsky, A.; Aleshkova, N.
2008-06-01
About 16,000 km of multichannel seismic (MCS), gravity and magnetic data and 28 sonobuoys were acquired in the Riiser-Larsen Sea Basin and across the Gunnerus and Astrid Ridges, to study their crustal structure. The study area has contrasting basement morphologies and crustal thicknesses. The crust ranges in thickness from about 35 km under the Riiser-Larsen Sea shelf, 26 28 km under the Gunnerus Ridge, 12 17 km under the Astrid Ridge, and 9.5 10 km under the deep-water basin. A 50-km-wide block with increased density and magnetization is modeled from potential field data in the upper crust of the inshore zone and is interpreted as associated with emplacement of mafic intrusions into the continental margin of the southern Riiser-Larsen Sea. In addition to previously mapped seafloor spreading magnetic anomalies in the western Riiser-Larsen Sea, a linear succession from M2 to M16 is identified in the eastern Riiser-Larsen Sea. In the southwestern Riiser-Larsen Sea, a symmetric succession from M24B to 24n with the central anomaly M23 is recognized. This succession is obliquely truncated by younger lineation M22 M22n. It is proposed that seafloor spreading stopped at about M23 time and reoriented to the M22 opening direction. The seismic stratigraphy model of the Riiser-Larsen Sea includes five reflecting horizons that bound six seismic units. Ages of seismic units are determined from onlap geometry to magnetically dated oceanic basement and from tracing horizons to other parts of the southern Indian Ocean. The seaward edge of stretched and attenuated continental crust in the southern Riiser-Larsen Sea and the landward edge of unequivocal oceanic crust are mapped based on structural and geophysical characteristics. In the eastern Riiser-Larsen Sea the boundary between oceanic and stretched continental crust is better defined and is interpreted as a strike-slip fault lying along a sheared margin.
NASA Astrophysics Data System (ADS)
Aïdi, Chafik; Beslier, Marie-Odile; Yelles-Chaouche, Abdel Karim; Klingelhoefer, Frauke; Bracene, Rabah; Galve, Audrey; Bounif, Abdallah; Schenini, Laure; Hamai, Lamine; Schnurle, Philippe; Djellit, Hamou; Sage, Françoise; Charvis, Philippe; Déverchère, Jacques
2018-03-01
During the Algerian-French SPIRAL survey aimed at investigating the deep structure of the Algerian margin and basin, two coincident wide-angle and reflection seismic profiles were acquired in central Algeria, offshore Greater Kabylia, together with gravimetric, bathymetric and magnetic data. This 260 km-long offshore-onshore profile spans the Balearic basin, the central Algerian margin and the Greater Kabylia block up to the southward limit of the internal zones onshore. Results are obtained from modeling and interpretation of the combined data sets. The Algerian basin offshore Greater Kabylia is floored by a thin oceanic crust ( 4 km) with P-wave velocities ranging between 5.2 and 6.8 km/s. In the northern Hannibal High region, the atypical 3-layer crustal structure is interpreted as volcanic products stacked over a thin crust similar to that bordering the margin and related to Miocene post-accretion volcanism. These results support a two-step back-arc opening of the west-Algerian basin, comprising oceanic crust accretion during the first southward stage, and a magmatic and probably tectonic reworking of this young oceanic basement during the second, westward, opening phase. The structure of the central Algerian margin is that of a narrow ( 70 km), magma-poor rifted margin, with a wider zone of distal thinned continental crust than on the other margin segments. There is no evidence for mantle exhumation in the sharp ocean-continent transition, but transcurrent movements during the second opening phase may have changed its initial geometry. The Plio-Quaternary inversion of the margin related to ongoing convergence between Africa and Eurasia is expressed by a blind thrust system under the margin rising toward the surface at the slope toe, and by an isostatic disequilibrium resulting from opposite flexures of two plates decoupled at the continental slope. This disequilibrium is likely responsible for the peculiar asymmetrical shape of the crustal neck that may thus be a characteristic feature of inverted rifted margins.
NASA Astrophysics Data System (ADS)
Zhou, Zhichao; Mei, Lianfu; Liu, Jun; Zheng, Jinyun; Chen, Liang; Hao, Shihao
2018-02-01
The rift architecture and deep crustal structure of the distal margin at the mid-northern margin of the South China Sea have been previously investigated by using deep seismic reflection profiles. However, one fundamental recurring problem in the debate is the extensional fault system and rift structure of the hyperextended rift basins (Baiyun Sag and Liwan Sag) within the distal margin because of the limited amount of seismic data. Based on new 3D seismic survey data and 2D seismic reflection profiles, we observe an array of fault blocks in the Baiyun Sag, which were tilted towards the ocean by extensional faulting. The extensional faults consistently dip towards the continent. Beneath the tilted fault blocks and extensional faults, a low-angle, high-amplitude and continuous reflection has been interpreted as the master detachment surface that controls the extension process. During rifting, the continentward-dipping normal faults evolved in a sequence from south to north, generating the asymmetric rift structure of the Baiyun Sag. The Baiyun Sag is separated from the oceanic domain by a series of structural highs that were uplifted by magmatic activity in response to the continental breakup at 33 Ma and a ridge jump to the south at 26-24 Ma. Therefore, we propose that magmatism played a significant role in the continental extension and final breakup in the South China Sea.
The Precambrian crustal structure of East Africa
NASA Astrophysics Data System (ADS)
Young, A. J.; Tugume, F.; Nyblade, A.; Julia, J.; Mulibo, G.
2011-12-01
We present new results on crustal structure from East Africa from analyzing P wave receiver functions. The data for this study come from temporary AfricaArray broadband seismic stations deployed between 2007 and 2011 in Uganda, Tanzania and Zambia. Receiver functions have been computed using an iterative deconvolution method. Crustal structure has been imaged using the H-k stacking method and by jointly inverting the receiver functions and surface wave phase and group velocities. The results show remarkably uniform crust throughout the Archean and Proterozoic terrains that comprise the Precambrian tectonic framework of the region. Crustal thickness for most terrains is between 37 and 40 km, and Poisson's ratio is between 0.25 and 0.27. Results from the joint inversion yield average crustal Vs values of 3.6 to 3.7 km/s. For most terrains, a thin (1-5 km) thick high velocity (Vs>4.0 km/s) is found at the base of the crust.
NASA Astrophysics Data System (ADS)
Imaeva, Lyudmila; Gusev, Georgy; Imaev, Valerii; Mel'nikova, Valentina
2017-10-01
The Arctic-Asian and Okhotsk-Chukotka seismic belts bordering the Kolyma-Chukotka crustal plate are the subject of our study aimed at reconstructing the stress-strain state of the crust and defining the types of seismotectonic deformation (STD) in the region. Based on the degrees of activity of geodynamic processes, the regional principles for ranking neotectonic structures were constrained, and the corresponding classes of the discussed neotectonic structures were substantiated. We analyzed the structural tectonic positions of the modern structures, their deep structure parameters, and the systems of active faults in the Laptev, Kharaulakh, Koryak, and Chukotka segments and Chersky seismotectonic zone, as well as the tectonic stress fields revealed by tectonophysical analysis of the Late Cenozoic faults and folds. From the earthquake focal mechanisms, the average seismotectonic strain tensors were estimated. Using the geological, geostructural, geophysical and GPS data, and corresponding average tensors, the directions of the principal stress axes were determined. A regularity in the changes of tectonic settings in the Northeast Arctic was revealed.
The influence of inherited structures on magmatic and amagmatic processes in the East African Rift.
NASA Astrophysics Data System (ADS)
Biggs, J.; Lloyd, R.; Hodge, M.; Robertson, E.; Wilks, M.; Fagereng, A.; Kendall, J. M.; Mdala, H. S.; Lewi, E.; Ayele, A.
2017-12-01
The idea that crustal heterogeneities, particularly inherited structures, influence the initiation and evolution of continental rifts is not new, but now modern techniques allow us to explore these controls from a fresh perspective, over a range of lengthscales, timescales and depths. In amagmatic rifts, I will demonstrate that deep fault structure is controlled by the stress orientation during the earliest phase of rifting, while the surface expression exploits near-surface weaknesses. I will show that pre-existing structures control the storage and orientation of deeper magma reservoirs in magmatic rifts, while the tectonic stress regime controls intra-rift faulting and shallow magmatism and stresses related to surface loading and cycles of inflation and deflation dominate at volcanic edifices. Finally, I will show how cross-rift structures influence short-term processes such as deformation and seismicity. I will illustrate the talk throughout using examples from along the East African Rift, including Malawi, Tanzania, Kenya and Ethiopia.
The Modulation of Crustal Magmatic Systems by Tectonic Forcing
NASA Astrophysics Data System (ADS)
Karakas, O.; Dufek, J.
2010-12-01
The amount, location and residence time of melt in the crust significantly impacts crustal structure and influences the composition, frequency, and volume of eruptive products. In this study, we develop a two dimensional model that simulates the response of the crust to prolonged mantle-derived intrusions in arc environments. The domain includes the entire crustal section and upper mantle and focuses on the evolving thermal structure due to intrusions and external tectonic forcing. Magmatic intrusion into the crust can be accommodated by extension or thickening of the crust or some combination of both mechanisms. Additionally, external tectonic forcing can generate thicker crustal sections, while tectonic extension can significantly thin the crust. We monitor the thermal response, melt fraction and surface heat flux for different tectonic conditions and melt flux from the mantle. The amount of crustal melt versus fractionated primary mantle melts present in the crustal column helps determine crustal structure and growth through time. We express the amount of crustal melting in terms of an efficiency; we define the melting efficiency as the ratio of the melted volume of crustal material to the volume of melt expected from a strict enthalpy balance as explained by Dufek and Bergantz (2005). Melting efficiencies are less than 1 in real systems because heat diffuses to sections of the crust that never melt. In general, thick crust and crust experiencing extended compressional regimes results in an increased melting efficiency; and thin crust and crust with high extension rates have lower efficiency. In most settings, maximum efficiencies are less than 0.05-0.10. We also observe that with a geophysically estimated flux, the mantle-derived magma bodies build up isolated magma pods that are distributed in the crust. One of the aspects of this work is to monitor the location and size of these magma chambers in the crustal column. We further investigate the rheological, stress and pre-existing structure control on the longevity of the individual magmatic systems.
Crustal shear velocity structure in the Southern Lau Basin constrained by seafloor compliance
NASA Astrophysics Data System (ADS)
Zha, Yang; Webb, Spahr C.
2016-05-01
Seafloor morphology and crustal structure vary significantly in the Lau back-arc basin, which contains regions of island arc formation, rifting, and seafloor spreading. We analyze seafloor compliance: deformation under long period ocean wave forcing, at 30 ocean bottom seismometers to constrain crustal shear wave velocity structure along and across the Eastern Lau Spreading Center (ELSC). Velocity models obtained through Monte Carlo inversion of compliance data show systematic variation of crustal structure in the basin. Sediment thicknesses range from zero thickness at the ridge axis to 1400 m near the volcanic arc. Sediment thickness increases faster to the east than to the west of the ELSC, suggesting a more abundant source of sediment near the active arc volcanoes. Along the ELSC, upper crustal velocities increase from the south to the north where the ridge has migrated farther away from the volcanic arc front. Along the axial ELSC, compliance analysis did not detect a crustal low-velocity body, indicating less melt in the ELSC crustal accretion zone compared to the fast spreading East Pacific Rise. Average upper crust shear velocities for the older ELSC crust produced when the ridge was near the volcanic arc are 0.5-0.8 km/s slower than crust produced at the present-day northern ELSC, consistent with a more porous extrusive layer. Crust in the western Lau Basin, which although thought to have been produced through extension and rifting of old arc crust, is found to have upper crustal velocities similar to older oceanic crust produced at the ELSC.
Deep Probe: Investigating the lithosphere of western North America with refraction seismology
NASA Astrophysics Data System (ADS)
Gorman, Andrew Robert
The Laurentian Craton, composed of the exposed Canadian Shield ringed by sediment-covered platforms, is the Precambrian heart of North America. The craton can be divided into several provinces representing ancient Archean blocks and the suture regions which stitched them together. In western Canada, Montana and Wyoming, the general distribution of Precambrian cratonic elements has been established by previous potential field studies combined with the analysis of basement rocks extracted from a small number of exploration drill holes that penetrated the overlying sedimentary basin, and from limited outcrops in southern Montana and Wyoming. The major blocks identified in this region include the Archean Hearne (mostly beneath Alberta) and Wyoming (beneath Montana and Wyoming) Provinces. A third block, the Medicine Hat Block, often interpreted to be the southernmost part of the Hearne Province, is considered independent in this study. The objectives of this thesis are to determine the velocity structure and characteristics of the crust and sub-crustal lithospheric mantle beneath the three Archean domains and the relationships among them to further understanding of the tectonic development of cratonic western North America. These objectives are met through interpretation of data from the Deep Probe/SAREX seismic refraction experiment of 1995, the largest of its type ever undertaken on the continent. Twenty large chemical explosions were detonated along a 3000-km-long profile running from Great Slave Lake to southern New Mexico and recorded at ˜2000 closely spaced seismograph stations between central Alberta and northern New Mexico. Interpretations, of increasing complexity, are based on: (1) the tau-p downward continuation of individual shot records, (2) a ray-theoretical travel-time inversion with Earth curvature considerations, and (3) detailed modelling of specific features with a finite difference wave propagation method. Interpretations of velocities and structures are made to depths as great as 150 km. From features of the crustal structure and their correspondence with two north-dipping relict subduction zones in the upper mantle, the boundaries between the three major Archean blocks are delineated and associated with the Vulcan Structure and Great Falls Tectonic Zone, two poorly understood tectonic features in the region. A prominent 10-to-30 km thick high velocity layer at the base of the Wyoming Province and Medicine Hat Block is interpreted to represent Proterozoic crustal underplating and alteration. The composition and physical properties of the crust-mantle boundary, the relict subduction zones and a heterogeneous upper mantle layer lying between depths of 100 km and 140 km are investigated to further understand lithospheric development in this region. The seismic interpretation is combined with previous work to develop a revised scenario for the tectonic assembly of western Laurentia.
NASA Astrophysics Data System (ADS)
Roeske, S.; Benowitz, J.; Enkelmann, E.; Pavlis, T. L.
2013-12-01
Crustal deformation at the transition from a dextral transform to subduction in the northern Cordillera is complicated by both the bend of the margin and the presence of low-angle subduction of an oceanic plateau, the Yakutat microplate, into the 'corner'. The dextral Denali Fault system located ~400 km inboard of the plate margin shows a similar transition from a dominantly strike-slip to transpressional regime as it curves to the west. Thermochronologic and structural studies in both areas indicate crustal response through the transition region is highly varied along and across strike. Previous thermochronology along the Fairweather fault SE of the St. Elias bend shows the most rapid exhumation occurs in close proximity to the fault, decreasing rapidly away from it. Enkelmann et al. (2010) and more recent detrital zircon FT (Falkowski et al., 2013 AGU abstract) show rapid and deep exhumation concentrated in the syntaxis, but over a fairly broad area continuing north beyond the Fairweather fault. Although the region is dominantly under ice, borders of the rapidly exhuming region appear to be previously identified major high-angle faults. This suggests that structures controlling the extreme exhumation may have significant oblique slip component, or, if flower structure, are reverse faults, and the region may be exhuming by transpression, with a significant component of pure shear. Southwest of the syntaxis, where convergence dominates over strike-slip, thin-skinned fold-and-thrust belts in the Yakutat microplate strata account for the shortening. The long-term record of convergence in this area is more cryptic due to sediment recycling through deep underplating and/or limited exhumation by upper crustal shortening, but a wide range of thermochronologic studies suggests that initial exhumation in the region began ~ 30 Ma and most rapid exhumation in the syntaxis began ~ 5 Ma. In the eastern Alaska Range a significant component of strike-slip, in addition to convergence, has been accommodated along the Denali Fault since E. Miocene. Southeast of the bend there is little evidence of convergence across the fault and Quaternary slip is ~12-13.5 mm/year. The eastern restraining bend of the Denali fault is much broader than the syntaxis and dextral slip continues at rates of ~10 mm/year, but the rock response to increasing obliquity is similar. Low and moderate-T cooling histories determined from a wide range of isotopic systems on minerals from bedrock show exhumation strongly localized on the north side of the high-angle Denali fault, south of the Hines Creek fault, since ~25 Ma. The structural record in ductilely deformed rocks from the most highly exhumed regions shows transpressive deformation over a few km wide region, but above the brittle-ductile transition strain becomes highly partitioned and is accommodated by thrust and normal faults on the north side of the bend. A connector fault between the Fairweather and Totschunda-Denali fault systems has been speculated on but it is not clear whether a single through-going fault is expressed at the surface. Any connector is likely a relatively young structure compared to the Fairweather and Denali systems' histories of long-lived oblique convergence. Overall, in both regions high-angle faults appear to be critical for controlling the location of major deep-seated and/or long-lived exhumation, and deformation at these geometrical complexities is dominated by transpression.
NASA Astrophysics Data System (ADS)
Morris, R.; DeBari, S. M.; Busby, C.; Medynski, S.
2016-12-01
The southern volcano-bounded basin of the Rosario segment of the Cretaceous Alisitos oceanic arc provides outstanding 3-D exposures of an extensional arc, where crustal generation processes are recorded in the upper-crustal volcanic units and underlying middle-crustal plutonic rocks. Geochemical linkages between exposed crustal levels provide an analog for extensional arc systems such as the Izu-Bonin-Mariana (IBM) Arc. Upper-crustal units comprise a 3-5 km thick volcanic-volcaniclastic stratigraphy with hypabyssal intrusions. Deep-seated plutonic rocks intrude these units over a transition of <500m, where rafted volcanic blocks and evidence of magma mingling are exposed. Thermobarometry suggests <6 km emplacement depths. Compositional ranges (basalt to rhyolite) and mineral assemblages are similar in both middle-crustal and upper-crustal units, with striking compositional overlap. The most mafic compositions occur in upper-crustal hypabyssal units, and as amphibole cumulates in the plutonic rocks ( 51% SiO2). The most felsic compositions occur in welded ignimbrites and a tonalite pluton ( 71% SiO2). All units are low K with flat REE patterns, and show LILE enrichment and HFSE depletion. Trace element ratios show limited variation throughout the crustal section. Zr/Y and Nb/Y ratios are similar to the Izu active ( 3 Ma to present) zone of extension immediately behind the arc front, suggesting comparable mantle melt % during extension. Th/Zr ratios are more enriched in Alisitos compared to Izu, suggesting greater subducted sediment input. The Alisitos crustal section shows a limited range in ɛNd (5.7-7.1), but a wider range in 87Sr/86Sr (0.7035-0.7055) and 206Pb/204Pb (18.12-19.12); the latter is likely alteration effects. Arc magmas were derived from a subduction-modified MORB mantle source, less depleted than Izu arc front and less enriched than the rear arc, but is a good match with the zone of extension that lies between. Differentiation occurred in a closed system (i.e., fractional crystallization/self-melting with back mixing), producing the entire crustal section in <3 Ma.
A Comparison of Microbial Communities from Deep Igneous Crust
NASA Astrophysics Data System (ADS)
Smith, A. R.; Flores, G. E.; Fisk, M. R.; Colwell, F. S.; Thurber, A. R.; Mason, O. U.; Popa, R.
2013-12-01
Recent investigations of life in Earth's crust have revealed common themes in organism function, taxonomy, and diversity. Capacities for hydrogen oxidation, carbon fixation, methanogenesis and methanotrophy, iron and sulfur metabolisms, and hydrocarbon degradation often predominate in deep life communities, and crustal mineralogy has been hypothesized as a driving force for determining deep life community assemblages. Recently, we found that minerals characteristic of the igneous crust harbored unique communities when incubated in the Juan de Fuca Ridge flank borehole IODP 1301A. Here we present attached mineral biofilm morphologies and a comparison of our mineral communities to those from a variety of locations, contamination states, and igneous crustal or mineralogical types. We found that differences in borehole mineral communities were reflected in biofilm morphologies. Olivine biofilms were thick, carbon-rich films with embedded cells of uniform size and shape and often contained secondary minerals. Encrusted cells, spherical and rod-shaped cells, and tubes were indicative of glass surfaces. We also found that the attached communities from incubated borehole minerals were taxonomically more similar to native, attached communities from marine and continental crust than to communities from the aquifer water that seeded it. Our findings further support the hypothesis that mineralogy selects for microbial communities that have distinct phylogenetic, morphological, and potentially functional, signatures. This has important implications for resolving ecosystem function and microbial distributions in igneous crust, the largest deep habitat on Earth.
NASA Astrophysics Data System (ADS)
Mousavi, Naeim; Ebbing, Jörg
2017-04-01
In this study, we investigate the magnetic basement and crustal structure in the region of Iran by inverse and forward modeling of aeromagnetic data and gravity data. The main focus is on the definition of the magnetic top basement. The combination of multiple shallow magnetic sources and an assumed shallow Curie isotherm depth beneath the Iranian Plateau creates a complex magnetic architecture over the area. Qualitative analysis, including pseudo gravity, wavelength filtering and upward continuation allowed a first separation of probable deep and shallow features, like the Sanandaj Sirjan zone, Urumieh Dokhtar Magmatic Assemblage, Kopet Dagh structural unit and Central Iran domain. In the second step, we apply inverse modeling to generate an estimate of the top basement geometry. The initial model was established from top basement to (a) constant depth of 25 km and (b) Moho depth. The inversion result was used as starting model for more detailed modelling in 3D to evaluate the effect of susceptibility heterogeneities in the crust. Subsequently, the model was modified with respect to tectonic and geological characterization of the region. Further modification of model in regards more details of susceptibility distribution was led to separating upper crust to different magnetic domains. In addition, we refined the top basement geometry by using terrestrial gravity observation as well. The best fitting model is consistent with the Curie isotherm depth as the base of magnetization. The Curie isotherm was derived from independent geophysical-petrological model.
NASA Astrophysics Data System (ADS)
Saikia, C. K.; Woods, B. B.; Thio, H. K.
- Regional crustal waveguide calibration is essential to the retrieval of source parameters and the location of smaller (M<4.8) seismic events. This path calibration of regional seismic phases is strongly dependent on the accuracy of hypocentral locations of calibration (or master) events. This information can be difficult to obtain, especially for smaller events. Generally, explosion or quarry blast generated travel-time data with known locations and origin times are useful for developing the path calibration parameters, but in many regions such data sets are scanty or do not exist. We present a method which is useful for regional path calibration independent of such data, i.e. with earthquakes, which is applicable for events down to Mw = 4 and which has successfully been applied in India, central Asia, western Mediterranean, North Africa, Tibet and the former Soviet Union. These studies suggest that reliably determining depth is essential to establishing accurate epicentral location and origin time for events. We find that the error in source depth does not necessarily trade-off only with the origin time for events with poor azimuthal coverage, but with the horizontal location as well, thus resulting in poor epicentral locations. For example, hypocenters for some events in central Asia were found to move from their fixed-depth locations by about 20km. Such errors in location and depth will propagate into path calibration parameters, particularly with respect to travel times. The modeling of teleseismic depth phases (pP, sP) yields accurate depths for earthquakes down to magnitude Mw = 4.7. This Mwthreshold can be lowered to four if regional seismograms are used in conjunction with a calibrated velocity structure model to determine depth, with the relative amplitude of the Pnl waves to the surface waves and the interaction of regional sPmP and pPmP phases being good indicators of event depths. We also found that for deep events a seismic phase which follows an S-wave path to the surface and becomes critical, developing a head wave by S to P conversion is also indicative of depth. The detailed characteristic of this phase is controlled by the crustal waveguide. The key to calibrating regionalized crustal velocity structure is to determine depths for a set of master events by applying the above methods and then by modeling characteristic features that are recorded on the regional waveforms. The regionalization scheme can also incorporate mixed-path crustal waveguide models for cases in which seismic waves traverse two or more distinctly different crustal structures. We also demonstrate that once depths are established, we need only two-stations travel-time data to obtain reliable epicentral locations using a new adaptive grid-search technique which yields locations similar to those determined using travel-time data from local seismic networks with better azimuthal coverage.
NASA Astrophysics Data System (ADS)
Nigro, O. D.; Rappe, M. S.; Jungbluth, S.; Lin, H. T.; Steward, G.
2015-12-01
Fluids contained in the basalt-hosted deep subsurface of the world's oceans represent one of the most inaccessible and understudied biospheres on earth. Recent improvements in sampling infrastructure have allowed us to collect large volumes of crustal fluids (~104 L) from Circulation Obviation Retrofit Kits (CORKs) placed in boreholes located on the eastern flank of the Juan de Fuca Ridge (JdFR). We detected viruses within these fluids by TEM and epifluorescence microscopy in samples collected from 2010 to 2014. Viral abundance, determined by epifluorescence counts, indicated that concentrations of viruses in subsurface basement fluids (~105 ml-1) are lower than the overlying seawater, but are higher in abundance than microbial cells in the same samples. Analysis of TEM images revealed distinct viral morphologies (rod and spindle-shaped) that resemble the morphologies of viral families infecting archaea. There are very few, if any, direct observations of these viral morphologies in marine samples, although they have been observed in enrichment cultures and their signature genes detected in metagenomic studies from hydrothermal vents and marine sediments. Analysis of metagenomes from the JdFR crustal fluids revealed sequences with homology to archaeal viruses from the rudiviridae, bicaudaviridae and fuselloviridae. Prokaryotic communities in fluids percolating through the basaltic basement rock of the JdFR flank are distinct from those inhabiting the overlying sediments and seawater. Similarly, our data support the idea that the viral assemblage in these fluids is distinct from viral assemblages in other marine and terrestrial aquatic environments. Our data also suggest that viruses contribute to the mortality of deep subsurface prokaryotes through cell lysis, and viruses may alter the genetic potential of their hosts through the processes of lysogenic conversion and horizontal gene transfer.
Dipping Magnetic Reversal Boundaries at Endeavor Deep: Implications for Crustal Accretion
NASA Astrophysics Data System (ADS)
Pockalny, R. A.; Shields, A. C.; Larson, R. L.; Popham, C.
2005-12-01
Endeavor Deep, created by ongoing rifting along the northeastern boundary of the Juan Fernandez Microplate, provides a generous 75-km long view of the upper 1-3 km of oceanic crust created ~3 Ma at a fast-spreading ridge (~80 km/Myr, half-rate). Recent near-bottom surveys with the ROV Jason collected high-resolution video, rock samples, and 3-component magnetometer data along a 5 km-wide section of the southern wall of the deep. The video and rock samples define a crustal section with 300-500 m of primarily pillows and flows overlying a 400-500 m transition zone of extrusives and dykes. Forward modeling of the total magnetic intensity calculated from the 3-component magnetometer data identifies a magnetic polarity reversal that corresponds to a reversal boundary within magnetic anomaly 2a (C2An.2r - C2AN.3n , ~3.33 Ma). The location of the modeled polarity transition suggests the reversal boundary dips downward toward the original ridge axis with shallow dips (15 degrees) in the extrusive layer becoming increasingly steeper (25 degrees) in the deeper transition zone. The dipping character of the reversal boundary has also been observed along the walls of the Blanco Fracture Zone and is consistent with evolving crustal accretion models for seafloor created at intermediate- and fast-spreading rates, which predicts the rotation of the upper extrusive layer back toward the ridge axis. As a consequence of this rotation, originally horizontal flow boundaries will dip back toward the ridge axis and the magnitude of the dip will increase with depth into the crustal section. A small reversed magnetic polarity is also observed deeper within normally magnetized C2AN.3n chron, but with a very shallow dip (3-5 degrees). We doubt this is another normal-reverse-normal polarity transition, since the anomaly suspiciously coincides with the transition from dykes to extrusives. Therefore, we believe this anomaly is either the result of an edge-effect created by the different magnetic properties of the dykes and extrusives or evidence off-axis volcanism that occurred during a more recent period of normal magnetization.
Collision tectonics of the Central Indian Suture zone as inferred from a deep seismic sounding study
Mall, D.M.; Reddy, P.R.; Mooney, W.D.
2008-01-01
The Central Indian Suture (CIS) is a mega-shear zone extending for hundreds of kilometers across central India. Reprocessing of deep seismic reflection data acquired across the CIS was carried out using workstation-based commercial software. The data distinctly indicate different reflectivity characteristics northwest and southeast of the CIS. Reflections northwest of the CIS predominantly dip southward, while the reflection horizons southeast of the CIS dip northward. We interpret these two adjacent seismic fabric domains, dipping towards each other, to represent a suture between two crustal blocks. The CIS itself is not imaged as a sharp boundary, probably due to the disturbed character of the crust in a 20 to 30-km-wide zone. The time sections also show the presence of strong bands of reflectors covering the entire crustal column in the first 65??km of the northwestern portion of the profile. These reflections predominantly dip northward creating a domal structure with the apex around 30??km northwest of the CIS. There are a very few reflections in the upper 2-2.5??s two-way time (TWT), but the reflectivity is good below 2.5??s TWT. The reflection Moho, taken as the depth to the deepest set of reflections, varies in depth from 41 to 46??km and is imaged sporadically across the profile with the largest amplitude occurring in the northwest. We interpret these data as recording the presence of a mid-Proterozoic collision between two micro-continents, with the Satpura Mobile Belt being thrust over the Bastar craton. ?? 2008.
Local Wave Propagation and Crustal Structure Tomography in Northern Mississippi Embayment
NASA Astrophysics Data System (ADS)
Yang, Y.; Langston, C. A.
2016-12-01
Several datasets in the vicinity of the New Madrid Seismic Zone (NMSZ) are used to study local wave propagation and crustal structure in this region, including data collected for the Northern Embayment Lithosphere Experiment (NELE) project, Transportable Array, New Madrid Cooperative Network and Embayment Seismic Excitation Experiment (ESEE). Focal mechanisms and focal depths are determined with the help of synthetic seismograms for earthquakes with magnitude larger than 3. The thick unconsolidated sediment complicates waveforms inside the Mississippi Embayment by producing large converted PS, SP phases and reverberations that mask important near-source depth phases. Modeling events with well-constrained focal mechanisms using synthetic seismograms reveals a variety of waveguide propagation effects including P and S sediment reverberations as well as leaky mode P wave trains. Substantial differences in the travel time of the mid-crustal reflection are observed for waves traveling in different directions. The travel time of the mid-crustal reflection waves and direct waves are then used in a tomography for the crustal structure. The result reveals that there is a significant southwest dip to the top of the mid-crust in the vicinity of the NMSZ. Resulting image and the determined source parameters are essential for full waveform inversion to determine high-resolution crustal structure of the Northern Mississippi Embayment.
Earthquake prediction using extinct monogenetic volcanoes: A possible new research strategy
NASA Astrophysics Data System (ADS)
Szakács, Alexandru
2011-04-01
Volcanoes are extremely effective transmitters of matter, energy and information from the deep Earth towards its surface. Their capacities as information carriers are far to be fully exploited so far. Volcanic conduits can be viewed in general as rod-like or sheet-like vertical features with relatively homogenous composition and structure crosscutting geological structures of far more complexity and compositional heterogeneity. Information-carrying signals such as earthquake precursor signals originating deep below the Earth surface are transmitted with much less loss of information through homogenous vertically extended structures than through the horizontally segmented heterogeneous lithosphere or crust. Volcanic conduits can thus be viewed as upside-down "antennas" or waveguides which can be used as privileged pathways of any possible earthquake precursor signal. In particular, conduits of monogenetic volcanoes are promising transmitters of deep Earth information to be received and decoded at surface monitoring stations because the expected more homogenous nature of their rock-fill as compared to polygenetic volcanoes. Among monogenetic volcanoes those with dominantly effusive activity appear as the best candidates for privileged earthquake monitoring sites. In more details, effusive monogenetic volcanic conduits filled with rocks of primitive parental magma composition indicating direct ascent from sub-lithospheric magma-generating areas are the most suitable. Further selection criteria may include age of the volcanism considered and the presence of mantle xenoliths in surface volcanic products indicating direct and straightforward link between the deep lithospheric mantle and surface through the conduit. Innovative earthquake prediction research strategies can be based and developed on these grounds by considering conduits of selected extinct monogenetic volcanoes and deep trans-crustal fractures as privileged emplacement sites of seismic monitoring stations using an assemblage of physical, chemical and biological sensors devised to detect precursory signals. Earthquake prediction systems can be built up based on the concept of a signal emission-transmission-reception system, in which volcanic conduits and/or deep fractures play the role of the most effective signal transmission paths through the lithosphere. Unique "precursory fingerprints" of individual seismic structures are expected to be pointed out as an outcome of target-oriented strategic prediction research. Intelligent pattern-recognition systems are to be included for evaluation of the signal assemblages recorded by complex sensor arrays. Such strategies are expected however to be limited to intermediate-depth and deep seismic structures. Due to its particular features and geotectonic setting, the Vrancea seismic structure in Romania appears to be an excellent experimental target for prediction research.
USArray Imaging of North American Continental Crust
NASA Astrophysics Data System (ADS)
Ma, Xiaofei
The layered structure and bulk composition of continental crust contains important clues about its history of mountain-building, about its magmatic evolution, and about dynamical processes that continue to happen now. Geophysical and geological features such as gravity anomalies, surface topography, lithospheric strength and the deformation that drives the earthquake cycle are all directly related to deep crustal chemistry and the movement of materials through the crust that alter that chemistry. The North American continental crust records billions of years of history of tectonic and dynamical changes. The western U.S. is currently experiencing a diverse array of dynamical processes including modification by the Yellowstone hotspot, shortening and extension related to Pacific coast subduction and transform boundary shear, and plate interior seismicity driven by flow of the lower crust and upper mantle. The midcontinent and eastern U.S. is mostly stable but records a history of ancient continental collision and rifting. EarthScope's USArray seismic deployment has collected massive amounts of data across the entire United States that illuminates the deep continental crust, lithosphere and deeper mantle. This study uses EarthScope data to investigate the thickness and composition of the continental crust, including properties of its upper and lower layers. One-layer and two-layer models of crustal properties exhibit interesting relationships to the history of North American continental formation and recent tectonic activities that promise to significantly improve our understanding of the deep processes that shape the Earth's surface. Model results show that seismic velocity ratios are unusually low in the lower crust under the western U.S. Cordillera. Further modeling of how chemistry affects the seismic velocity ratio at temperatures and pressures found in the lower crust suggests that low seismic velocity ratios occur when water is mixed into the mineral matrix, and the combination of high temperature and water may point to small amounts of melt in the lower crust of Cordillera.
NASA Astrophysics Data System (ADS)
Gutscher, Marc-Andre; Dominguez, Stephane; Mercier de Lepinay, Bernard; Pinheiro, Luis; Babonneau, Nathalie; Cattaneo, Antonio; LeFaou, Yann; Barreca, Giovanni; Micallef, Aaron; Rovere, Marzia
2014-05-01
The relation between deep crustal faults and the origin of Mount Etna, the largest and most active volcano in Europe has long been suspected due to its unusual geodynamic location. Results from a new marine geophysical survey offshore Eastern Sicily reveal the detailed geometry (location, length, dip and orientation) of a two-branched 200-km long, lithospheric scale fault system, long sought for as being the cause of Mount Etna. Using high-resolution bathymetry and seismic profiling, we image a 60-km long, previously unidentified, NW trending fault with evidence of recent displacement at the seafloor, offsetting Holocene sediments. This newly identified fault connects NE of Catania, to a known 40-km long, offshore-onshore fault system dissecting the southeastern flank of Mount Etna, generally interpreted as purely gravitational collapse structures. Geological and morphological field studies together with earthquake focal mechanisms indicate active dextral strike-slip motion along the onshore and shallow offshore portion of this 40 + 60 km long segment. The southern 100 km branch of the fault is associated with a sub-vertical lithospheric scale tear fault showing pure down to the East normal faulting and a 500+m thick elongate basin marked by syn-tectonic Plio-quaternary sediment fill. Together they represent two kinematically distinct strands of the long sought "STEP" (Subduction Tear Edge Propagator) fault, whose expression at depth controls the position of Mount Etna. Both 100-km long branches of the fault system are mechanically capable of generating magnitude 7 earthquakes (e.g. - like the 1693 Catania earthquake, the strongest in Italian history, causing 40,000 deaths). We conclude this deep-rooted lithospheric weakness guides gradual down slope creep of Mount Etna and may lead to long-term catastrophic flank collapse with associated tsunami by large-scale mass wasting.
Sinigoi, S.; Quick, J.E.; Mayer, A.; Budahn, J.
1996-01-01
The southern Ivrea-Verbano Zone of the Italian Western Alps contains a huge mafic complex that intruded high-grade metamorphic rocks while they were resident in the lower crust. Geologic mapping and chemical variations of the igneous body were used to study the evolution of underplated crust. Slivers of crustal rocks (septa) interlayered with igneous mafic rocks are concentrated in a narrow zone deep in the complex (Paragneiss-bearing Belt) and show evidence of advanced degrees of partial melting. Variations of rare-earth-element patterns and Sr isotope composition of the igneous rocks across the sequence are consistent with increasing crustal contamination approaching the septa. Therefore, the Paragneiss-bearing Belt is considered representative of an "assimilation region" where in-situ interaction between mantle- and crust-derived magmas resulted in production of hybrid melts. Buoyancy caused upwards migration of the hybrid melts that incorporated the last septa and were stored at higher levels, feeding the Upper Mafic Complex. Synmagmatic stretching of the assimilation region facilitated mixing and homogenization of melts. Chemical variations of granitoids extracted from the septa show that deep septa are more depleted than shallow ones. This suggests that the first incorporated septa were denser than the later ones, as required by the high density of the first-injected mafic magmas. It is inferred that density contrasts between mafic melts and crustal rocks play a crucial role for the processes of contamination of continental magmas. In thick under- plated crust, the extraction of early felsic/hybrid melts from the lower crust may be required to increase the density of the lower crust and to allow the later mafic magmas to penetrate higher crustal levels.
Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt.
Bengtson, Stefan; Rasmussen, Birger; Ivarsson, Magnus; Muhling, Janet; Broman, Curt; Marone, Federica; Stampanoni, Marco; Bekker, Andrey
2017-04-24
Fungi have recently been found to comprise a significant part of the deep biosphere in oceanic sediments and crustal rocks. Fossils occupying fractures and pores in Phanerozoic volcanics indicate that this habitat is at least 400 million years old, but its origin may be considerably older. A 2.4-billion-year-old basalt from the Palaeoproterozoic Ongeluk Formation in South Africa contains filamentous fossils in vesicles and fractures. The filaments form mycelium-like structures growing from a basal film attached to the internal rock surfaces. Filaments branch and anastomose, touch and entangle each other. They are indistinguishable from mycelial fossils found in similar deep-biosphere habitats in the Phanerozoic, where they are attributed to fungi on the basis of chemical and morphological similarities to living fungi. The Ongeluk fossils, however, are two to three times older than current age estimates of the fungal clade. Unless they represent an unknown branch of fungus-like organisms, the fossils imply that the fungal clade is considerably older than previously thought, and that fungal origin and early evolution may lie in the oceanic deep biosphere rather than on land. The Ongeluk discovery suggests that life has inhabited submarine volcanics for more than 2.4 billion years.
NASA Astrophysics Data System (ADS)
Padrón, Eleazar; Padilla, Germán; Hernández, Pedro A.; Pérez, Nemesio M.; Calvo, David; Nolasco, Dácil; Barrancos, José; Melián, Gladys V.; Dionis, Samara; Rodríguez, Fátima
2013-01-01
We report herein the first results of an extensive soil gas survey performed on Timanfaya volcano on May 2011. Soil gas composition at Timanfaya volcano indicates a main atmospheric source, slightly enriched in CO2 and He. Soil CO2 concentration showed a very slight deep contribution of the Timanfaya volcanic system, with no clear relation to the main eruptive fissures of the studied area. The existence of soil helium enrichments in Timanfaya indicates a shallow degassing of crustal helium and other possible deeper sources probably form cooling magma bodies at depth. The main soil helium enrichments were observed in good agreement with the main eruptive fissures of the 1730-36 eruption, with the highest values located at those areas with a higher density of recent eruptive centers, indicating an important structural control for the leakage of helium at Timanfaya volcano. Atmospheric air slightly polluted by deep-seated helium emissions, CO2 degassed from a cooling magma body, and biogenic CO2, might be the most plausible explanation for the existence of soil gas. Helium is a deep-seated gas, exhibiting important emission rates along the main eruptive fissure of the 1730-36 eruption of Timanfaya volcano.
NASA Astrophysics Data System (ADS)
Diaz, Jordi; Gallart, Josep; Carbonell, Ramon
2016-04-01
The complex tectonic interaction processes between the European and African plates at the Western Mediterranean since Mesozoic times have left marked imprints in the present-day crustal architecture of this area, particularly as regarding the lateral variations in crustal and lithospheric thicknesses. The detailed mapping of such variations is essential to understand the regional geodynamics, as it provides major constraints for different seismological, geophysical and geodynamic modeling methods both at lithospheric and asthenospheric scales. Since the 1970s, the lithospheric structure beneath the Iberian Peninsula and its continental margins has been extensively investigated using deep multichannel seismic reflection and refraction/wide-angle reflection profiling experiments. Diaz and Gallart (2009) presented a compilation of the results then available beneath the Iberian Peninsula. In order to improve the picture of the whole region, we have now extended the geographical area to include northern Morocco and surrounding waters. We have also included in the compilation the results arising from all the seismic surveys performed in the area and documented in the last few years. The availability of broad-band sensors and data-loggers equipped with large storage capabilities has allowed in the last decade to boost the investigations on crustal and lithospheric structure using natural seismicity, providing a spatial resolution never achieved before. The TopoIberia-Iberarray network, deployed over Iberia and northern Morocco, has provided a good example of those new generation seismic experiments. The data base holds ~300 sites, including the permanent networks in the area and hence forming a unique seismic database in Europe. In this contribution, we retrieve the results on crustal thickness presented by Mancilla and Diaz (2015) using data from the TopoIberia and associated experiments and we complement them with additional estimations beneath the Rif Cordillera arising from more recent deployments. We have now included also the sparse results in the region previously published, with the aim of checking the consistency of the results, hence giving more strength to the retained features. Combining the Moho depth values coming from controlled source and natural seismicity experiments has finally allowed us to build up a high quality grid of the region at crustal scale, which is completed in the non-sampled areas by the wide-scale CRUST1.0 model. The final picture evidences the geodynamic diversity of the area, including crustal imbrication in the Pyrenean range, a large and relatively undisturbed Variscan Massif in the center of Iberia and a probable delamination process beneath the Gibraltar Arc. Crustal thicknesses range from values around 15 km in continental margins (Cantabrian margin and Valencia Trough) to depths exceeding 50 km beneath the Pyrenees and the Rif Cordillera. A new 3D model of those variations is presented here to illustrate and summarize such large variations
NASA Astrophysics Data System (ADS)
Piana Agostinetti, N.; Amato, A.; Cattaneo, M.; de Gori, P.; di Bona, M.
In the framework of the italian PNRA (Progetto Nazionale di Ricerche in Antartide), we have started to re-analize teleseismic waveforms recorded, using three-components seismometers (equipped with 5 seconds sensors, Lennartz 3D-5s), during five summer campaings, from 1993 to 2000. Seismic stations were deployed around Terra Nova Bay (TNB) italian base, from the sea to reach the interior of the Transantartic Moun- tains (TAM), the most striking example of nocontractional mountain belt. During the last campaingn (1999-2000) seismic stations were deployed deep into Northern Vic- toria Land to reach Rennik and Lillie Glaciers Area and George V coast region, the northest part of TAM. Our main goals were: to compute, using frequency-domanin deconvolution method by Di Bona [1998], Receiver Functions covering all the area around TNB italian antartic base; to map of Moho-depth and intercrustal S-waves ve- locity discontinuity from 1-D velocity model computed using Sambridge's inversion scheme [Sambridge,1999]; to analize new teleseimic waveforms recorded near TNB base: continuos recording, from 1999 to present, permits more accurate modelling S-velocity crustal structure in this critical area situated at the edge of the ipothetic rift [Stern and ten Brik, 1989; Stump and Fitzgerald, 1992; ten Brik et al., 1997]; to present final results from BACKTAM expedition.
NASA Astrophysics Data System (ADS)
Li, Jianhua; Dong, Shuwen; Cawood, Peter A.; Zhao, Guochun; Johnston, Stephen T.; Zhang, Yueqiao; Xin, Yujia
2018-05-01
In the Mesozoic, South China was situated along the convergent margin between the Asian and Pacific plates, providing an excellent laboratory to understand the interactions between deformation, sedimentation and magmatism in a retroarc environment. The crustal architecture of northwest South China is displayed along the ∼600-km-long SINOPROBE deep seismic reflection profiles and reveals from east to west: (1) highly folded and truncated reflectors in the upper crust of the Yangtze Fold Zone, which correspond to thin- and thick-skinned thrust systems, and document large-scale intraplate structural imbrication and shortening; (2) a crustal-scale flat-ramp-flat structure, termed the Main Yangtze decollement, which forms a weak, viscous layer to accommodate strain decoupling and material transport in the thin- and thick-skinned systems; and (3) nearly flat-lying reflectors in the Sichuan Basin, which support interpretation of the basin as a weakly deformed depocentre. The Yangtze Fold Zone and the Sichuan Basin represent a retro-arc foreland basin system that is >800 km away from the continental-margin magmatic arc. We suggest that tectonic processes across the arc and retro-arc systems, including arc magma flare-up, basin sedimentation, retroarc thrust propagation, lithosphere underthrusting, root foundering, and extension-related magmatism were interrelated and governed mass transfer. Age data and geological relations link the tectonic processes to evolving geodynamics of the subducting Paleo-Pacific plate.
NASA Astrophysics Data System (ADS)
Özaydın, Sinan; Tank, Sabri Bülent; Karaş, Mustafa
2018-03-01
Magnetotelluric data analyses and three-dimensional modeling techniques were implemented to investigate the crustal electrical structure in the North-Central Turkey, along a 190-km-long profile crossing Çankırı Basin, İzmir-Ankara-Erzincan Suture Zone and Central Pontides. In this area, the segment of the North Anatolian Fault (NAF) shows 280-km-long restraining bend, where it was near the focus of the hazardous 1943 Tosya Earthquake (M: 7.6). Structure around the NAF exhibits resistive characteristics at both sides of the fault reaching to at least 25 km of depth. Fluids below the brittle-ductile transition were not detected which will nucleate earthquakes in the area. This resistive structure implies an asperity zone of the NAF, which was ruptured in 1943. The presence of a fluid-bearing upwelling conductive anomaly in Central Pontides may suggest that beneath the deep brittle crust, there may exists a fluid-enriched conductive forearc region, which may have caused by a prograde source related to paleo-tectonic processes.
Crustal and Upper Mantle Structure of the Taupo Volcanic Zone, North Island, New Zealand.
NASA Astrophysics Data System (ADS)
Harrison, A. J.; White, R. S.
2003-12-01
The Taupo Volcanic Zone (TVZ) is a major Pliocene-Quaternary NNE-SSW orientated,volcano-tectonic complex, about 250 km long and up to 60 km wide in the central North Island of New Zealand. The TVZ is one of the largest and most frequently active rhyolitic magmatic systems on Earth, characterised by intense shallow seismic activity, high natural heat flow (some 12-20 times the continental norm) and active NW-SE extension. To the north of the TVZ, subduction of the Pacific Plate beneath the oceanic lithosphere of the Australian Plate is accompanied by a region of back-arc extension (the Havre Trough). The TVZ marks the southern continuation of this back-arc extension into continental lithosphere.The TVZ therefore represents an ideal opportunity to study the onset of back-arc spreading onshore. Here we present forward and inverse models of the crustal structure beneath the TVZ. These models incorporate both active and passive source data acquired from the NIGHT (North Island GeopHysical Transect) project. Common to both models is a 2-3km deep basin of low velocity sediments which we interpret to be ignimbrite deposits. Typical basement velocities of ˜6km/s are observed beneath and to either side of the TVZ, where they correlate well with mapped outcrops of basement rocks. Velocities of around 7.3 km/s are observed at depths greater than 16 km beneath the TVZ. Such velocities may be interpreted as anomalously low velocity upper manlte or heavly intruded lower crust. Having constrained the crustal structure we then use earthquake events from the subducting Pacific Plate to yield information on the velocity structure of the upper mantle beneath the TVZ. NIGHT Working Group A. Harrison, J. Haines, R. White (University of Cambridge,United Kingdom); S. Henrys, S. Bannister, I. Pecher, F. Davey (Inst. Geological and Nuclear Sciences, Lower Hutt, New Zealand); T. Stern, W. Stratford (Victoria University of Wellington, New Zealand); H. Shimamura, Y. Nishimura, and A. Yamada (Hokkaido University, Sapporo, Japan).
Carboxydotrophy potential of uncultivated Hydrothermarchaeota from the oceanic crust deep biosphere
NASA Astrophysics Data System (ADS)
Carr, S. A.; Jungbluth, S.; Rappe, M. S.; Orcutt, B.
2017-12-01
The marine sedimentary and crustal subsurface biospheres harbor many uncultured microorganisms, including those belonging to Hydrothermarchaeota, formerly known as Marine Benthic Group E. SSU rRNA sequences of Hydrothermarchaeota have been identified in marine sediments across the globe, often in low abundance. Recently, crustal fluids from two subseafloor borehole observatories located on the eastern flank of the Juan de Fuca Ridge (i.e., CORKs at IODP Holes U1362A and U1362B), were collected for single-cell and metagenomic analyses. Both techniques revealed Hydrothermarchaeota to be prevalent in this system. Collectively, single-cell amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) depict Hydrothermarchaeota as opportunists, potentially capable of dissimilative and assimilative carboxydotrophy, sulfate reduction, thiosulfate reduction, nitrate reduction, chemotaxis, and motility. We propose that this diverse suit of metabolic potential may be advantageous for the hydrologically and geochemically dynamic subsurface crustal aquifer, an environment thought to be energy and nutrient limited.
Limitations of quantitative analysis of deep crustal seismic reflection data: Examples from GLIMPCE
Lee, Myung W.; Hutchinson, Deborah R.
1992-01-01
Amplitude preservation in seismic reflection data can be obtained by a relative true amplitude (RTA) processing technique in which the relative strength of reflection amplitudes is preserved vertically as well as horizontally, after compensating for amplitude distortion by near-surface effects and propagation effects. Quantitative analysis of relative true amplitudes of the Great Lakes International Multidisciplinary Program on Crustal Evolution seismic data is hampered by large uncertainties in estimates of the water bottom reflection coefficient and the vertical amplitude correction and by inadequate noise suppression. Processing techniques such as deconvolution, F-K filtering, and migration significantly change the overall shape of amplitude curves and hence calculation of reflection coefficients and average reflectance. Thus lithological interpretation of deep crustal seismic data based on the absolute value of estimated reflection strength alone is meaningless. The relative strength of individual events, however, is preserved on curves generated at different stages in the processing. We suggest that qualitative comparisons of relative strength, if used carefully, provide a meaningful measure of variations in reflectivity. Simple theoretical models indicate that peg-leg multiples rather than water bottom multiples are the most severe source of noise contamination. These multiples are extremely difficult to remove when the water bottom reflection coefficient is large (>0.6), a condition that exists beneath parts of Lake Superior and most of Lake Huron.
NASA Astrophysics Data System (ADS)
Kinck, J. J.; Husebye, E. S.; Lund, C.-E.
1991-04-01
Pioneering work on mapping the Scandinavian crust commenced in the early 1960s and since then numerous profiling surveys have been undertaken, particularly as part of the on-going EUGENO-S project. However, the most significant contribution to mapping crustal structural details came from the M.V. Mobil Search cruises in the Skagerrak and off the West coast of Norway (16 s TWT reflection profiling). All past and present crustal profiling results have been integrated to produce detailed maps of Moho depths and crustal thicknesses for South Scandinavia. The thinnest crust is found in the North Sea and Skagerrak (approximately 20 km), while East-central Sweden features very thick crust (approximately 50 km). Other interesting features are the apparent correlation between crustal thinning and sedimentation/subsidence, magmatic activity, earthquake occurrences and the tectonic age of the crust. Moho depths and the crustal thicknesses clearly reflect the tectonic evolution and the present structural features of the region investigated.
Use of MAGSAT anomaly data for crustal structure and mineral resources in the US midcontinent
NASA Technical Reports Server (NTRS)
Carmichael, R. S.
1983-01-01
Magnetic field data acquired by NASA's MAGSAT satellite is used to construct a long-wavelength magnetic anomaly map for the U.S. midcontinent. This aids in interpretation of gross crustal geology (structure, lithologic composition, resource potential) of the region. Magnetic properties of minerals and rocks are investigated and assessed, to help in evaluation and modelling of crustal magnetization sources and depth to the Curie-temperature isotherm.
Modeling the blockage of Lg waves from 3-D variations in crustal structure
NASA Astrophysics Data System (ADS)
Sanborn, Christopher J.; Cormier, Vernon F.
2018-05-01
Comprised of S waves trapped in Earth's crust, the high frequency (2-10 Hz) Lg wave is important to discriminating earthquakes from explosions by comparing its amplitude and waveform to those of Pg and Pn waves. Lateral variations in crustal structure, including variations in crustal thickness, intrinsic attenuation, and scattering, affect the efficiency of Lg propagation and its consistency as a source discriminant at regional (200-1500 km) distances. To investigate the effects of laterally varying Earth structure on the efficiency of propagation of Lg and Pg, we apply a radiative transport algorithm to model complete, high-frequency (2-4 Hz), regional coda envelopes. The algorithm propagates packets of energy with ray theory through large-scale 3-D structure, and includes stochastic effects of multiple-scattering by small-scale heterogeneities within the large-scale structure. Source-radiation patterns are described by moment tensors. Seismograms of explosion and earthquake sources are synthesized in canonical models to predict effects on waveforms of paths crossing regions of crustal thinning (pull-apart basins and ocean/continent transitions) and thickening (collisional mountain belts), For paths crossing crustal thinning regions, Lg is amplified at receivers within the thinned region but strongly disrupted and attenuated at receivers beyond the thinned region. For paths crossing regions of crustal thickening, Lg amplitude is attenuated at receivers within the thickened region, but experiences little or no reduction in amplitude at receivers beyond the thickened region. The length of the Lg propagation within a thickened region and the complexity of over- and under-thrust crustal layers, can produce localized zones of Lg amplification or attenuation. Regions of intense scattering within laterally homogeneous models of the crust increase Lg attenuation but do not disrupt its coda shape.
Rodriguez, Brian D.; Sampson, Jay A.; Williams, Jackie M.
2007-01-01
The Great Basin physiographic province covers a large part of the western United States and contains one of the world's leading gold-producing areas, the Carlin Trend. In the Great Basin, many sedimentary-rock-hosted disseminated gold deposits occur along such linear mineral-occurrence trends. The distribution and genesis of these deposits is not fully understood, but most models indicate that regional tectonic structures play an important role in their spatial distribution. Over 100 magnetotelluric (MT) soundings were acquired between 1994 and 2001 by the U.S. Geological Survey to investigate crustal structures that may underlie the linear trends in north-central Nevada. MT sounding data were used to map changes in electrical resistivity as a function of depth that are related to subsurface lithologic and structural variations. Two-dimensional (2-D) resistivity modeling of the MT data reveals primarily northerly and northeasterly trending narrow 2-D conductors (1 to 30 ohm-m) extending to mid-crustal depths (5-20 km) that are interpreted to be major crustal fault zones. There are also a few westerly and northwesterly trending 2-D conductors. However, the great majority of the inferred crustal fault zones mapped using MT are perpendicular or oblique to the generally accepted trends. The correlation of strike of three crustal fault zones with the strike of the Carlin and Getchell trends and the Alligator Ridge district suggests they may have been the root fluid flow pathways that fed faults and fracture networks at shallower levels where gold precipitated in favorable host rocks. The abundant northeasterly crustal structures that do not correlate with the major trends may be structures that are open to fluid flow at the present time.
Wang, Chun-Yong; Yang, Zhu-En; Luo, Hai; Mooney, W.D.
2004-01-01
The Tien Shan orogenic belt is the most active intracontinental mountain belt in the world. We describe an 86-km-long N–S-trending deep seismic reflection profile (which passes through the southern Junggar basin) located on the northeastern Tien Shan piedmont. Two distinct anticlines beneath the northern margin of the Tien Shan are clearly imaged in the seismic section. In addition, we have imaged two detachment surfaces at depths of ∼7 and ∼16 km. The detachment surface at 16-km depth corresponds to the main detachment that converges with the steep angle reverse fault (the Junggar Southern Marginal Fault) on which the 1906 M~7.7 Manas earthquake occurred. A 12–14-km-thick sedimentary basin is imaged beneath the southern Junggar basin near Shihezi. The crust beneath the northern margin of the Tien Shan is 50–55-km thick, and decreases beneath the Junggar basin to 40–45-km thick. The crustal image of the deep seismic reflection profile is consistent with models derived from nearby seismic refraction data and Bouguer gravity anomalies in the same region. The faulting associated with the 1906 Manas earthquake also fits within the structural framework imaged by the seismic reflection profile. Present-day micro-seismicity shows a hypocentral depth-distribution between 5 and 35 km, with a peak at 20 km. We hypothesize that the 1906 Manas earthquake initiated at a depth of ∼20 km and propagated upwards, causing northward slip on the sub-horizontal detachments beneath the southern Junggar basin. Thus, in accord with regional geological mapping, the current shortening within the eastern Tien Shan is accommodated both by high-angle reverse faulting and detachment faulting that can be clearly imaged at depth in seismic reflection data.
NASA Astrophysics Data System (ADS)
Miller, Robert B.; Paterson, Scott R.
2001-12-01
Many aspects of crustal dynamics are dependent on changes in rheology and strength with depth in the lithosphere. Several of the controlling factors for rheology are difficult to study experimentally, particularly lithological heterogeneity, mechanical anisotropy, and magmatism, and we focus on these in a study of the deformation patterns in a thick crustal section (˜5- to 40-km paleodepth) through the Cretaceous Cascades core of the NW Cordillera. This magmatic arc consists of metamorphosed oceanic and arc terranes intruded by magmatic bodies ranging from <10-cm-thick sheets to large plutons. Heterogeneous brittle deformation marked by serpentinite melange characterizes the shallowest part of the crustal section, and the remainder of the section is characterized by heterogeneous, fold-dominated ductile deformation. Early tight to isoclinal recumbent folds and associated axial-planar fabrics are refolded by one or more cycles of nearly coaxial, open to isoclinal, upright to overturned folds. Layering played a mechanically active role during folding at all levels, as indicated by cleavage refraction, boudinaged layers, and kinematic indicators that record fold-related shear. Ductile deformation intensifies in the narrow structural aureoles of plutons, and SW-directed, reverse shear was partitioned into some of the aureoles. The poor strain memory of these magmatic bodies makes it difficult to determine if deformation was focused in the pluton magma chambers before they reached the solidus, as commonly predicted. All of the plutons have magmatic foliations that at least in part reflect regional strains, and these foliations are strong in the deeper plutons. The thinner sheets acted as competent bodies during folding and boudinage, after they reached the solidus, but generally did not cause marked strain gradients in their hosts. A relative strength profile constructed for the Cascades crustal section shows an overall decrease in strength with depth for the ductile part of the arc that fits idealized strength profiles. However, in more detail relative strengths are markedly variable. Units were able to accumulate large ductile strains, but even small variations in the physical properties of interlayered rock types exerted a strong influence on deformation patterns throughout the mid- to deep-crustal part of the profile. This profile thus emphasizes the complex vertical rheological stratification of arcs at the crustal to thin section scale, and should be applicable to many other magmatic arcs.
NASA Astrophysics Data System (ADS)
Whalen, Joseph B.; Wodicka, Natasha; Taylor, Bruce E.; Jackson, Garth D.
2010-06-01
Large volume, plutonic belts, such as the ˜ 221,000 km 2, ca. 1.865-1.845 Ga Cumberland batholith (CB) of the Trans-Hudson Orogen in Canada, are major components of Paleoproterozoic orogenic belts. In many cases, they have been interpreted as continental arc batholiths. The petrogenesis and tectonic context of the CB and implications for crustal growth and recycling are interpreted herein based on a 900 km geochemical-isotopic (Nd-O) transect across it and into granitoid plutons within bounding Archean cratons in central and southern Baffin Island. The mainly granulite grade CB, emplaced over an age span of between 14 and 24 Ma, consists mainly of high-K to shoshonitic monzogranite and granodiorite, but also includes low- and medium-K granitoid rocks. Metaluminous to slightly peraluminous compositions and δ 18O (VSMOW) values (+ 6 to + 10‰) indicate derivation from infracrustal (I-type) sources. ɛ Nd 1.85 Ga signatures (- 12 to - 2) of both mafic and felsic units suggest a dominance of evolved sources. Isotopic signatures in the interior of the CB (- 2 to - 7) are more radiogenic than those within Archean domains in central (- 8 to - 15) and southern (- 5 to - 19) Baffin Island. The isotopic transect is interpreted as 'imaging' an accreted microcontinental block (Meta Incognita) and bounding Archean cratons. The CB includes granites of arc, within-plate (A-type) and post-collisional affinity and volumetrically minor mafic rocks with both arc and non-arc features. (La/Yb) CN and Sr/Y values range from < 1 to 225 and < 1 to 611, respectively. In these respects, some CB granitoid rocks resemble Paleozoic adakitic granites, interpreted as partial melts of greatly thickened crust within post-collisional settings, such as Tibet. Thus, the CB likely encompasses various non-consanguineous magmatic suites generated at deep- to mid-crustal depths. Although CB granitoid rocks undoubtedly had important crustal sources, it is hard to assess the relative contribution of mantle-derived magmas. The CB is best interpreted as a post-accretion batholith resulting from large-scale lithospheric mantle delamination followed by the upwelling of hot asthenospheric mantle leading to voluminous crustal partial melting. Contributors to crustal instability which may have facilitated such delamination included: (a) a collage of recently assembled small cratons underlain by hot, weak lithosphere with mantle-depth structural breaks within this segment of the Trans-Hudson Orogen; (b) the gabbro-eclogite phase transformation, and (c) a greatly thickened crustal section (> 60 km), as evidenced by adakitic granites.
Deep Structures of The Angola Margin
NASA Astrophysics Data System (ADS)
Moulin, M.; Contrucci, I.; Olivet, J.-L.; Aslanian, D.; Géli, L.; Sibuet, J.-C.
1 Ifremer Centre de Brest, DRO/Géosciences Marines, B.P. 70, 29280 Plouzané cedex (France) mmoulin@ifremer.fr/Fax : 33 2 98 22 45 49 2 Université de Bretagne Occidentale, Institut Universitaire Europeen de la Mer, Place Nicolas Copernic, 29280 Plouzane (France) 3 Total Fina Elf, DGEP/GSR/PN -GEOLOGIE, 2,place de la Coupole-La Defense 6, 92078 Paris la Defense Cedex Deep reflection and refraction seismic data were collected in April 2000 on the West African margin, offshore Angola, within the framework of the Zaiango Joint Project, conducted by Ifremer and Total Fina Elf Production. Vertical multichannel reflection seismic data generated by a « single-bubble » air gun array array (Avedik et al., 1993) were recorded on a 4.5 km long, digital streamer, while refraction and wide angle reflection seismic data were acquired on OBSs (Ocean Bottom Seismometers). Despite the complexity of the margin (5 s TWT of sediment, salt tectonics), the combination of seismic reflection and refraction methods results in an image and a velocity model of the ground structures below the Aptian salt layer. Three large seismic units appear in the reflection seismic section from the deep part on the margin under the base of salt. The upper seismic unit is layered with reflectors parallel to the base of the salt ; it represents unstructured sediments, filling a basin. The middle unit is seismically transparent. The lower unit is characterized by highly energetic reflectors. According to the OBS refraction data, these two units correspond to the continental crust and the base of the high energetic unit corresponds to the Moho. The margin appears to be divided in 3 domains, from east to west : i) a domain with an unthinned, 30 km thick, continental crust ; ii) a domain located between the hinge line and the foot of the continental slope, where the crust thins sharply, from 30 km to less than 7 km, this domain is underlain by an anormal layer with velocities comprising between 7,2 and 7,4 km/s. The maximum thickness of this layer is located where the crust shows the strongest thinning at the foot of the continental slope ; and iii) a transitional domain, 160 km wide, with an average crustal thickness of 6 km. Moreover, no tilted blocks nor detachment faults are observed on the reflection seismic sections. The consequences of these observations on the models of crustal thinning classically used in the litterature are examined. Avedik, F., V. Renard, J-P. Allenou, B. Morvan, "Single bubble" air gun for deep exploration, Geophysics, 58, 366-382, 1993.
Fragmentation of wall rock garnets during deep crustal earthquakes
Austrheim, Håkon; Dunkel, Kristina G.; Plümper, Oliver; Ildefonse, Benoit; Liu, Yang; Jamtveit, Bjørn
2017-01-01
Fractures and faults riddle the Earth’s crust on all scales, and the deformation associated with them is presumed to have had significant effects on its petrological and structural evolution. However, despite the abundance of directly observable earthquake activity, unequivocal evidence for seismic slip rates along ancient faults is rare and usually related to frictional melting and the formation of pseudotachylites. We report novel microstructures from garnet crystals in the immediate vicinity of seismic slip planes that transected lower crustal granulites during intermediate-depth earthquakes in the Bergen Arcs area, western Norway, some 420 million years ago. Seismic loading caused massive dislocation formations and fragmentation of wall rock garnets. Microfracturing and the injection of sulfide melts occurred during an early stage of loading. Subsequent dilation caused pervasive transport of fluids into the garnets along a network of microfractures, dislocations, and subgrain and grain boundaries, leading to the growth of abundant mineral inclusions inside the fragmented garnets. Recrystallization by grain boundary migration closed most of the pores and fractures generated by the seismic event. This wall rock alteration represents the initial stages of an earthquake-triggered metamorphic transformation process that ultimately led to reworking of the lower crust on a regional scale. PMID:28261660
NASA Astrophysics Data System (ADS)
Simancas, F.; Carbonell, R.; Gonzalez-Lodeiro, F.; Perez-Estaun, A.; Ayarza, P.; Juhlin, C.; Azor, A.; Saez, R.; Martinez-Poyatos, D.; Pascual, E.
The recently acquired IBERSEIS Seismic Reflection Profile runs across major do- mains of the Variscan Orogen in SW Iberia. Geological studies indicate that the seis- mically surveyed region has been built up from three terranes, namely the South Por- tuguese Zone (SPZ), the Ossa-Morena Zone (OMZ) and the Central Iberian Zone (CIZ). These terranes became sutured after a complex, mainly transpressive (left- lateral), collisional history in Devonian-Carboniferous time. The deep seismic reflec- tion profile IBERSEIS has successfully imaged the sutures between these terranes as well as the structure of their crust. The following main features emerge from the pre- liminary integration of seismic and geological data: 1) The suture between the SPZ and OMZ terranes, marked by oceanic amphibolites, appears at present as a north- dipping left-lateral thrust merging in a mid-crustal detachment; the continuity of this suture-contact in the lower crust is not well defined in the seismic image. 2) The OMZ/CIZ suture, a shear zone with eclogites, is clearly imaged in the upper crust as a band of reflectivity dipping to the NE which, after a flat geometry in the middle crust, may continue downwards to the Moho as NE-dipping lower crustal reflections. 3) The SPZ upper crust has an imbricate structure merging into a mid-crustal detachment at constant depth in the surveyed profile. 4) The structure of the OMZ upper crust is dominated by large-scale recumbent folds affected by late upright folds, as fore- seen by geology and fully confirmed by the seismic image. 5) A general mid-crustal detachment exists in the whole surveyed area, whose geometry varies from a sharp detachment-level in the SPZ to a pinching and swelling horizontal band of reflectivity -a melting layer?- in the OMZ; in any case, a strong decoupling between upper and lower crust characterizes this transect of the Variscan orogen. 6) The lower crust of the SPZ has an intense seismic fabric, in accordance with the consideration of this ter- rane as an external orogenic domain with discrete shear bands preserved in the whole crust. 7) The lower crust of the OMZ is much less reflective than the lower crust of the SPZ. 8) The Moho is flat all along the surveyed area, which means that crustal 1 roots formed during the collisional processes were eliminated later on, probably in Late Carboniferous-Permian times. Despite the disturbance due to the generation of a post-orogenic flat Moho, the IBERSEIS seismic image seems to be a good snapshot of the Variscan collision, with very minor reworking by alpine processes. 2
The East African rift system in the light of KRISP 90
Keller, Gordon R.; Prodehl, C.; Mechie, J.; Fuchs, K.; Khan, M.A.; Maguire, Peter K.H.; Mooney, W.D.; Achauer, U.; Davis, P.M.; Meyer, R.P.; Braile, L.W.; Nyambok, I.O.; Thompson, G.A.
1994-01-01
On the basis of a test experiment in 1985 (KRISP 85) an integrated seismic-refraction/teleseismic survey (KRISP 90) was undertaken to study the deep structure beneath the Kenya rift down to depths of 100-150 km. This paper summarizes the highlights of KRISP 90 as reported in this volume and discusses their broad implications as well as the structure of the Kenya rift in the general framework of other continental rifts. Major scientific goals of this phase of KRISP were to reveal the detailed crustal and upper mantle structure under the Kenya rift, to study the relationship between mantle updoming and the development of sedimentary basins and other shallow structures within the rift, to understand the role of the Kenya rift within the Afro-Arabian rift system and within a global perspective and to elucidate fundamental questions such as the mode and mechanism of continental rifting. The KRISP results clearly demonstrate that the Kenya rift is associated with sharply defined lithospheric thinning and very low upper mantle velocities down to depths of over 150 km. In the south-central portion of the rift, the lithospheric mantle has been thinned much more than the crust. To the north, high-velocity layers detected in the upper mantle appear to require the presence of anistropy in the form of the alignment of olivine crystals. Major axial variations in structure were also discovered, which correlate very well with variations in the amount of extension, the physiographic width of the rift valley, the regional topography and the regional gravity anomalies. Similar relationships are particularly well documented in the Rio Grande rift. To the extent that truly comparable data sets are available, the Kenya rift shares many features with other rift zones. For example, crustal structure under the Kenya, Rio Grande and Baikal rifts and the Rhine Graben is generally symmetrically centered on the rift valleys. However, the Kenya rift is distinctive, but not unique, in terms of the amount of volcanism. This volcanic activity would suggest large-scale modification of the crust by magmatism. Although there is evidence of underplating in the form of a relatively high-velocity lower crustal layer, there are no major seismic velocity anomalies in the middle and upper crust which would suggest pervasive magmatism. This apparent lack of major modification is an enigma which requires further study. ?? 1994.
Moho Depth and Bulk Crustal Properties in Northern Quebec and Labrador
NASA Astrophysics Data System (ADS)
Vervaet, F.; Darbyshire, F. A.
2016-12-01
Northern Quebec and Labrador lie at the heart of the Laurentian landmass and preserve over 3 billion years of continental evolution. In this region the Archean Superior and Nain cratons are surrounded by Paleoproterozoic orogens such as New-Quebec, Trans-Hudson and Torngat, as well as the younger Grenville orogen to the SE. Study of crustal structure in this region provides valuable information on the assembly of the North American continent. We use data from 8 seismic stations installed in summer 2011 as part of the QUiLLE (Quebec-Labrador Lithospheric Experiment) project to investigate crustal structure, using receiver function analysis. The data set covers 5 years (2011-2016) for most of the stations, comprising several hundred events of magnitude ≥5 and epicentral distance 30-90°. After initial data processing and quality control, several tens of events per station were used in an H-κ stacking analysis to estimate Moho depth and bulk crustal properties. Some stations show significant complexity in their receiver functions, leading to inconclusive H-κ results, but the majority show a consistent Moho signal from which crustal parameters are successfully extracted. Crustal thickness varies from 33 to 49 km, with the thickest crust associated with the Trans-Hudson orogen in the Ungava region of northernmost Quebec and the thinnest beneath the central Labrador coast. Vp/Vs ratios (κ) lie in the range 1.71-1.86, with the majority of values consistent with granite-gneiss-tonalite bulk crustal compositions. The receiver functions are combined with surface-wave group velocity data to model the crustal structures in more detail beneath each station, allowing us to investigate crustal layering, Moho complexity and lateral heterogeneity.
New view on tectonic structure of Siberian Sector of the Amerasian Basin (Arctic Ocean)
NASA Astrophysics Data System (ADS)
Vinokurov, Yu. I.
2014-05-01
In 2012, JSC Sevmorgeo with assistance of several research institutions of Federal Agency of Mineral Resources (Rosnedra) and Ministry of Defense carried out a unique set of offshore seismic and geological studies in the Mendeleev Rise area and adjacent areas of the Amerasia Basin. Two specially re-equipped icebreakers ("Kapitan Dranitsin" and "Dixon") were used in this campaign. The main results of the expedition were 5315 km of multichannel seismic profiles both with long and short streamers (4500 m and 600 m, respectively), 480 km long refraction profile crossing Mendeleev Rise. Seismic acquisition with short streamers was accompanied by deployment of sonobuoys. Geological studies included deep-water drilling and sea-bottom sampling by dredge, gravity corer, grab and by specially equipped research submarine. The newly acquired geological and geophysical data allowed for the following conclusions: 1. The Mendeleev Rise, the adjacent Lomonosov Ridge and Chukchi Plateau are the direct continuations of the East Siberian Sea tectonic structures. It is confirmed by direct tracking of some morphostructures, faults, gravity and magnetic anomalies from the shelf to deep-water highs. 2. The East Arctic Shelf and the adjacent Arctic Ocean represent offshore extent of the Verkhoyansk-Kolyma crustal domain constituted by a mosaic of separate blocks of the Pre-Cambrian basement (Okhotsk, Omulevka, Omolon, Wrangel-Gerald and Central Arctic) and Late Mesozoic orogens. This area differs significantly from the Ellesmerian crustal domain located to the east (including the Northwind Ridge, which coincides with inferred eastern boundary of the Mesozoides). The Central Arctic domain includes structures of the Mendeleev Ridge and the Chukchi Plateau. Western boundary of this block is inferred along the Spur of Geophysicists, which separates the Podvodnikov Basin into two unequal parts with different basement structure. From the south, southwest and west, the Central Arctic domain is surrounded by younger sedimentary basins: the Vilkitski Megatrough and Podvodnikov Basin, which may have been developing simultaneously. In the Cretaceous, the sediments were delivered mostly from deeply eroded areas of Central Arctic highs, including the Mendeleev Rise. In the beginning of Cenozoic, there was a dramatic reorganization in sediment supply to the Arctic Ocean with Siberian continental margin becoming the major provenance area leading to significant increase of the transported. The general pattern of the magnetic anomalies allows drawing a conclusion about similarity of the Mendeleev Rise and the neighboring De Long Uplift and Wrangel-Gerald Terrain, which constitute parts of HALIP magmatic province. The latter includes both offshore structures of the East Arctic and the structures of the Alpha-Mendeleev Rise. This conclusion is supported by results of sea-bottom geological sampling carried out as a part of our investigations. The crustal thickness and seismic velocity profile of the Mendeleev Rise and adjacent Lomonosov Ridge, Chukchi Plateau and Northwind Ridge are typical for the thinned continental crust. Thus, according to new data available today, the Central Arctic domain may be considered as a part of the deeply subsided Eurasian continental margin characterized by close relationship with the adjacent offshore and onshore structures.
An oceanic plateau subduction offshore Eastern Java
NASA Astrophysics Data System (ADS)
Shulgin, A.; Kopp, H.; Mueller, C.; Planert, L.; Lueschen, E.; Flueh, E. R.; Djajadihardja, Y.
2010-12-01
The area offshore Java represents one of a few places globally where the early stage of subduction of an oceanic plateau is observed. We study the little investigated Roo Rise oceanic plateau on the Indian plate, subducting beneath Eurasia.Our study area is located south of eastern Java and covers the edge of the Roo Rise plateau, the Java trench and the entire forearc section. For the first time the detailed deep structure of the Roo Rise is studied, subduction of which has a significant effect on the forearc dynamics and evolution and the increase of the geohazards risks. The tsunamogenic earthquakes of 1994 and 2006 are associated with the oceanic plateau edge been subducted. We present integrated results of a refraction/wide-angle reflection tomography, gravity modeling, and multichannel reflection seismic imaging using data acquired in 2006 along a corridor centered around 113°E and composed of a 340 km long N-S profile and a 130 km long E-W oriented profile. The composite structural models reveal the previously unresolved deep geometry of the collision zone and the structure of the oceanic plateau. The crustal thickness of the Roo Rise plateau is ranging from 18 to 12 km. The structure of the upper crust of the incoming oceanic plate shows the extreme degree of fracturing in its top section, and is associated with a plate bending. The forearc Moho has a depth range from 16 to 20 km. The gravity modeling requires a sharp crustal thickness increase below Java. Within our profiles we do not recover any direct evidence for the presence of the bathymetric features on the oceanic plate currently present below the accretionary prism, responsible for the tsunamogenic earthquake triggering. However vertical variations of the forearc basement edge are observed on the trench-parallel profile, which opens a discussion on the origin of such basement undulations, together with a localized patchy uplift character of the forearc high.The complex geometry of the backstop suggests two models for the structural formation within this segment of the margin. The subducting plateau is affecting the stress field within the accretionary complex and the backstop edge, which favors the initiation of large, potentially tsunamogenic earthquakes such as the 1994 Mw=7.8 tsunamogenic event.
Imaging the Variscan suture at the KTB deep drilling site, Germany
NASA Astrophysics Data System (ADS)
Bianchi, Irene; Bokelmann, Götz
2018-03-01
The upper crust of the KTB (Kontinentales Tiefbohrprogramm) area in Southeastern Germany is a focal point for the Earth Science community due to the huge amount of information collected throughout the last thirty years. In this study we explore the crustal structure of the KTB area through the application of the receiver function (RF) technique to a new data set recorded by 9 temporary seismic stations and 1 permanent station. We aim to unravel the isotropic structure and compare our results with previous information from the reflection profiles collected during the initial site investigations. Due to the large amount of information collected by previous studies, in terms of P-wave velocity, depth and location of major reflectors, depth reconstruction of major faults zones, this area represents a unique occasion to test the resolution capability of a passive seismological study performed by the application of the RF. We aim to verify which contribution could be given by the application of the receiver functions technique, for future studies, in order to get clear images of the deep structure, and up to which resolution. The RF technique has apparently not been applied in the area before, yet it may give useful additional insight in subsurface structure, particularly at depths larger than the maximum depth reached by drilling, but also on structures in the upper crust, around the area that has been studied in detail previously. In our results vS-depth profiles for stations located on the same geological units display common features and show shallow S-wave velocities typical of the outcropping geological units (i.e. sedimentary basin, granites, metamorphic rocks). At around 10 km depth we observe a strong velocity increase beneath all stations. For the stations located in the center of the area, this variation is weaker, which we assume to be the signature of the main tectonic suture in the area (i.e. the Saxothuringian-Moldanubian suture), along an West-to-East extended region, may be due to the presence of the allochthonous klippe trapped between the main crustal terrains that came in touch during the Variscan orogeny. In the lower crust we see only small variations throughout the area, at the resolution that is possible with a small temporary experiment with just 10 stations.
Imaging the Variscan suture at the KTB deep drilling site, Germany
NASA Astrophysics Data System (ADS)
Bianchi, Irene; Bokelmann, Götz
2018-06-01
The upper crust of the KTB (Kontinentales Tiefbohrprogramm) area in the Southeastern Germany is a focal point for the Earth Science community due to the huge amount of information collected throughout the last 30 yr. In this study, we explore the crustal structure of the KTB area through the application of the Receiver Function (RF) technique to a new data set recorded by nine temporary seismic stations and one permanent station. We aim to unravel the isotropic structure and compare our results with previous information from the reflection profiles collected during the initial site investigations. Due to the large amount of information collected by previous studies, in terms of P-wave velocity, depth and location of major reflectors, depth reconstruction of major faults zones, this area represents a unique occasion to test the resolution capability of a passive seismological study performed by the application of the RF. We aim to verify which contribution could be given by the application of the RF technique, for future studies, in order to get clear images of the deep structure and up to which resolution. The RF technique has apparently not been applied in the area before, yet it may give useful additional insight in subsurface structure, particularly at depths larger than the maximum depth reached by drilling, but also on structures in the upper crust, around the area that has been studied in detail previously. In our results vS-depth profiles for stations located on the same geological units display common features and show shallow S-wave velocities typical of the outcropping geological units (i.e. sedimentary basin, granites and metamorphic rocks). At around 10 km depth, we observe a strong velocity increase beneath all stations. For the stations located in the centre of the area, this variation is weaker, which we assume to be the signature of the main tectonic suture in the area (i.e. the Saxothuringian-Moldanubian suture), along a west-to-east extended region, may be due to the presence of the allochthonous klippe trapped between the main crustal terrains that came in touch during the Variscan orogeny. In the lower crust we see only small variations throughout the area, at the resolution that is possible with a small temporary experiment with just 10 stations.
Crustal growth of the Izu-Ogasawara arc estimated from structural characteristics of Oligocene arc
NASA Astrophysics Data System (ADS)
Takahashi, N.; Yamashita, M.; Kodaira, S.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.
2011-12-01
Japan Agency for Marine-Earth Science and Technology (JAMSTEC) carried out seismic surveys using a multichannel reflection system and ocean bottom seismographs, and we have clarified crustal structures of whole Izu-Ogasawara (Bonin)-Marina (IBM) arc since 2002. These refection images and velocity structures suggest that the crustal evolution in the intra-oceanic island arc accompanies with much interaction of materials between crust and mantle. Slow mantle velocity identified beneath the thick arc crusts suggests that dense crustal materials transformed into the mantle. On the other hand, high velocity lower crust can be seen around the bottom of the crust beneath the rifted region, and it suggests that underplating of mafic materials occurs there. Average crustal production rate of the entire arc is larger than expected one and approximately 200 km3/km/Ma. The production rate of basaltic magmas corresponds to that of oceanic ridge. Repeated crustal differentiation is indispensable to produce much light materials like continental materials, however, the real process cannot still be resolved yet. We, therefore, submitted drilling proposals to obtain in-situ middle crust with P-wave velocity of 6 km/s. In the growth history of the IBM arc, it is known by many papers that boninitic volcanisms preceded current bimodal volcanisms based on basaltic magmas. The current volcanisms accompanied with basaltic magmas have been occurred since Oligocene age, however, the tectonic differences to develop crustal architecture between Oligocene and present are not understood yet. We obtained new refraction/reflection data along an arc strike of N-S in fore-arc region. Then, we estimate crustal structure with severe change of the crustal thickness from refraction data, which are similar to that along the volcanic front. Interval for location of the thick arc crust along N-S is very similar to that along the volcanic front. The refection image indicates that the basement of the fore-arc is covered with thick sediments with the age of Oligocene and that half graben structures are much identified between the Oligocene arc and the current volcanic front. This may suggest that the Oligocene arc in current fore-arc basin is cut off from the current volcanic arc. Therefore, the Oligocene arc in the fore-arc may still keep structural characteristics inside the body since Oligocene age, which are before cutting off from the current volcanic front.
NASA Astrophysics Data System (ADS)
Bedrosian, P.; Peacock, J.; Bowles-martinez, E.; Schultz, A.; Hill, G.
2017-12-01
Worldwide, arc volcanism occurs along relatively narrow magmatic arcs, the locations of which are considered to mark the onset of dehydration reactions within the subducting slab. This `bottom-up' approach, in which the location of arc volcanism reflects where fluids and melt are generated, explains first-order differences in trench-to-arc distance and is consistent with known variations in the thermal structure and geometry of subducting slabs. At a finer scale, arc segmentation, magmatic gaps, and anomalous forearc and backarc magmatism are also frequently interpreted in terms of variations in slab geometry, composition, or thermal structure.The role of inherited crustal structure in controlling faulting and deformation is well documented; less well examined is the role of crustal structure in controlling magmatism. While the source distribution of melt and subduction fluids is critical to determining the location of arc magmatism, we argue that crustal structure provides `top-down' control on patterns or seismicity and deformation as well as the channeling and ascent of arc magmas. We present evidence within the Washington Cascades based upon correlation between a new three-dimensional resistivity model, potential-field data, seismicity, and Quaternary volcanism. We image a mid-Tertiary batholith, intruded within an Eocene crustal suture zone, and extending throughout much of the crustal column. This and neighboring plutons are interpreted to channel crustal fluids and melt along their margins within steeply dipping zones of marine to transitional metasedimentary rock. Mount St. Helens is interpreted to be fed by fluids and melt generated further east at greater slab depths, migrating laterally (underplating?) beneath the Spirit Lake batholith, and ascending through metasedimentary rocks within the brittle crust. At a regional scale, we argue that this concealed suture zone controls present-day deformation and seismicity as well as the distribution of forearc magmatism. More generally, our results highlight the control that inherited crustal structure has on both the location and style of arc magmatism. We also address divergent interpretations of the Southern Washington Cascades Conductor, which we show results from limited data density and modeling assumptions in previous studies.
NASA Astrophysics Data System (ADS)
Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.
2018-04-01
Pre-existing structures within sub-crustal lithosphere may localise stresses during subsequent tectonic events, resulting in complex fault systems at upper-crustal levels. As these sub-crustal structures are difficult to resolve at great depths, the evolution of kinematically and perhaps geometrically linked upper-crustal fault populations can offer insights into their deformation history, including when and how they reactivate and accommodate stresses during later tectonic events. In this study, we use borehole-constrained 2-D and 3-D seismic reflection data to investigate the structural development of the Farsund Basin, offshore southern Norway. We use throw-length (T-x) analysis and fault displacement backstripping techniques to determine the geometric and kinematic evolution of N-S- and E-W-striking upper-crustal fault populations during the multiphase evolution of the Farsund Basin. N-S-striking faults were active during the Triassic, prior to a period of sinistral strike-slip activity along E-W-striking faults during the Early Jurassic, which represented a hitherto undocumented phase of activity in this area. These E-W-striking upper-crustal faults are later obliquely reactivated under a dextral stress regime during the Early Cretaceous, with new faults also propagating away from pre-existing ones, representing a switch to a predominantly dextral sense of motion. The E-W faults within the Farsund Basin are interpreted to extend through the crust to the Moho and link with the Sorgenfrei-Tornquist Zone, a lithosphere-scale lineament, identified within the sub-crustal lithosphere, that extends > 1000 km across central Europe. Based on this geometric linkage, we infer that the E-W-striking faults represent the upper-crustal component of the Sorgenfrei-Tornquist Zone and that the Sorgenfrei-Tornquist Zone represents a long-lived lithosphere-scale lineament that is periodically reactivated throughout its protracted geological history. The upper-crustal component of the lineament is reactivated in a range of tectonic styles, including both sinistral and dextral strike-slip motions, with the geometry and kinematics of these faults often inconsistent with what may otherwise be inferred from regional tectonics alone. Understanding these different styles of reactivation not only allows us to better understand the influence of sub-crustal lithospheric structure on rifting but also offers insights into the prevailing stress field during regional tectonic events.
NASA Astrophysics Data System (ADS)
Ferranti, L.; Milano, G.; Pierro, M.
2017-11-01
We assess the seismotectonics of the western part of the border area between the Southern Apennines and Calabrian Arc, centered on the Mercure extensional basin, by integrating recent seismicity with a reconstruction of the structural frame from surface to deep crust. The analysis of low-magnitude (ML ≤ 3.5) events occurred in the area during 2013-2017, when evaluated in the context of the structural model, has revealed an unexpected complexity of seismotectonics processes. Hypocentral distribution and kinematics allow separating these events into three groups. Focal mechanisms of the shallower (< 9 km) set of events show extensional kinematics. These results are consistent with the last kinematic event recorded on outcropping faults, and with the typical depth and kinematics of normal faulting earthquakes in the axial part of southern Italy. By contrast, intermediate ( 9-17 km) and deep ( 17-23 km) events have fault plane solutions characterized by strike- to reverse-oblique slip, but they differ from each other in the orientation of the principal axes. The intermediate events have P axes with a NE-SW trend, which is at odds with the NW-SE trend recorded by strike-slip earthquakes affecting the Apulia foreland plate in the eastern part of southern Italy. The intermediate events are interpreted to reflect reactivation of faults in the Apulia unit involved in thrust uplift, and appears aligned along an WNW-ESE trending deep crustal, possibly lithospheric boundary. Instead, deep events beneath the basin, which have P-axis with a NW-SE trend, hint to the activity of a deep overthrust of the Tyrrhenian back-arc basin crust over the continental crust of the Apulia margin, or alternatively, to a tear fault in the underthrust Apulia plate. Results of this work suggest that extensional faulting, as believed so far, does not solely characterizes the seismotectonics of the axial part of the Southern Apennines.
Orphan Basin crustal structure from a dense wide-angle seismic profile - Tomographic inversion
NASA Astrophysics Data System (ADS)
Watremez, Louise; Lau, K. W. Helen; Nedimović, Mladen R.; Louden, Keith E.; Karner, Garry D.
2014-05-01
Orphan Basin is located on the eastern margin of Canada, offshore of Newfoundland and East of Flemish Cap. It is an aborted continental rift formed by multiple episodes of rifting. The crustal structure across the basin has been determined by an earlier refraction study using 15 instruments on a 550 km long line. It shows that the continental crust was extended over an unusually wide region but did not break apart. The crustal structure of the basin thus documents stages in the formation of a magma-poor rifted margin up to crustal breakup. The OBWAVE (Orphan Basin Wide-Angle Velocity Experiment) survey was carried out to image crustal structures across the basin and better understand the processes of formation of this margin. The spacing of the 89 recording stations varies from 3 to 5 km along this 500-km-long line, which was acquired along a pre-existing reflection line. The highest resolution section corresponds to the part of the profile where the crust was expected to be the thinnest. We present the results from a joint tomography inversion of first and Moho reflected arrival times. The high data density allows us to define crustal structures with greater detail than for typical studies and to improve the understanding of the processes leading to the extreme stretching of continental crust. The final model was computed following a detailed parametric study to determine the optimal parameters controlling the ray-tracing and the inversion processes. The final model shows very good resolution. In particular, Monte Carlo standard deviations of crustal velocities and Moho depths are generally < 50 m/s and within 1 km, respectively. In comparison to the velocity models of typical seismic refraction profiles, results from the OBWAVE study show a notable improvement in the resolution of the velocity model and in the level of detail observed using the least a priori information possible. The final model allows us to determine the crustal thinning and variable structures across the basin. In particular, we observe (1) a zone of extreme thinning, where the crust is thinner than 7 km; (2) basement highs and lows highlighting the blocks that accommodate the crustal thinning; (3) a central block that is thicker compared to the rest of the basin; (4) lower crustal thinning that is highly variable, which suggests a ductile deformation in the lower crust and an extensional discrepancy between the upper and lower crust (DDS); and (5) no evidence for upper-mantle serpentinization under the ultra-thinned crust. Furthermore, we show the importance of structural inheritance in rifting of the Avalon crust. Thus, we suggest that Orphan Basin is the result of rifting of a non-homogeneous Avalon terrane where the lower crust is primarily ductile.
Body and Surface Wave Modeling of Observed Seismic Events
1980-09-01
with a deep root of the Sierra Nevada mountains or crustal transitions along the continental oceanic boundaries. These paths can be identified by...suggests that the Adriatic Sea is a separate microplate , the Apulian plate which may move independently of the larger plates. Except for the existence of
Seismic crustal structure of the Limpopo mobile belt, Zimbabwe
NASA Astrophysics Data System (ADS)
Stuart, G. W.; Zengeni, T. G.
1987-12-01
A 145 km N-S seismic traverse was deployed to determine the crustal structure of the Limpopo mobile belt in southern Zimbabwe and the nature of its northern boundary with the Zimbabwean craton. Rockbursts from South African gold mines to the south and regional seismicity from the Kariba-South Zambia belt to the north were used as seismic sources. P-wave relative teleseismic residuals were also measured to assess whether any velocity contrast between the craton and the mobile belt extended into the upper mantle. Interpretation of reduced travel times from the local Buchwa iron-ore mine blasts, which were broadside to the traverse, revealed an upper crustal interface in the Limpopo mobile belt at a depth of 5.8 ± 0.6 km, dividing material with a velocity of about 5.8 km/s from that of about 6.4 km/s. On the craton, arrivals from the same source showed a 4.4 ± 0.5 km thick 5.5 km/s layer overlying crust of about velocity 6.5 km/s. P-wave arrivals from the regional seismicity were used to construct a crustal cross-section. Absolute crustal thickness was tentatively estimated from the identification of a Moho reflection on the mine blast recordings. To the south of Rutenga, the crust thins from around 34 km to 29 km in association with a positive gravity anomaly centred over the late-Karoo Nuanetsi Igneous Province and Karoo Tuli Syncline. North of Rutenga to the boundary with the Zimbabwean craton, the crust is about 34 km thick. The craton boundary was found to be a steeply southerly dipping zone associated with high-velocity material, which could either be deep-seated greenstones or mafic material associated with the margin in the region studied. This zone divides cratonic crust, which was found to be about 40 km thick, from that typical of the mobile belt and implies a step in the Moho of around 6 km. Analysis of relative teleseismic residuals showed that the velocity contrasts are not confined to the crust but extend into the uppermost upper mantle with the cratonic lithosphere being about 4% faster than that of the Limpopo mobile belt. The resolution of the technique is such that it is difficult to ascertain whether these differences are features of Precambrian evolution or are due to reactivation of the upper mantle during Karoo igneous and tectonic activity.
NASA Astrophysics Data System (ADS)
LI, Honglei; Fang, Jian; Braitenberg, Carla; Wang, Xinsheng
2015-04-01
As the highest, largest and most active plateau on Earth, the Qinghai-Tibet Plateau has a complex crust-mantle structure, especially in its eastern part. In response to the subduction of the lithospheric mantle of the Indian plate, large-scale crustal motion occurs in this area. Despite the many previous studies, geodynamic processes at depth remain unclear. Knowledge of crust and upper mantle density distribution allows a better definition of the deeper geological structure and thus provides critically needed information for understanding of the underlying geodynamic processes. With an unprecedented precision of 1-2 mGal and a spatial resolution better than 100 km, GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission products can be used to constrain the crust-mantle density distribution. Here we used GOCE gravitational gradients at an altitude of 10km after reducing the effects of terrain, sediment thickness variations, and Moho undulations to image the density structures of eastern Tibet up to 200 km depths. We inverted the residual satellite gravitational gradients using a least square approach. The initial density model for the inversion is based on seismic velocities from the tomography. The model is composed of rectangular blocks, having a uniform density, with widths of about 100 km and variable thickness and depths. The thickness of the rectangular cells changes from10 to 60km in accordance with the seismic model. Our results reveal some large-scale, structurally controlled density variations at depths. The lithospheric root defined by higher-density contrast features from southwest to northeast, with shallowing in the central part: base of lithosphere reaches a depth of180 km, less than 100km, and 200 km underneath the Lhasa, Songpan-Ganzi, and Ordos crustal blocks, respectively. However, these depth values only represent a first-order parameterization because they depend on model discretization inherited from the original seismic tomography model. For example, the thickness of the uniform density blocks centered at140 km depth is as large as 60 km. Low-density crustal anomalies beneath the southern Lhasa and Songpan-Ganzi blocks in our model support the idea of weak lower crust and possible crustal flow, as a result of the thermal anomalies caused by the upwelling of hot deep materials. The weak lower crust may cause the decoupling of the upper crust and the mantle. These results are consistent with many other geophysical studies, confirming the effectiveness of the GOCE gravitational gradient data. Using these data in combination with other geodynamic constraints (e.g., gravity and seismic structure and preliminary reference Earth model), an improved dynamic model can be derived.
Fast Spreading Mid Ocean Ridge Magma Chamber Processes: New Constraints from Hess Deep
NASA Astrophysics Data System (ADS)
MacLeod, C. J.; Lissenberg, J. C.; Howard, K. A.; Ildefonse, B.; Morris, A.; JC21 Scientific Party
2011-12-01
Hess Deep, on the northern edge of the Galapagos Microplate, is a rift valley located at the tip of the Cocos Nazca spreading centre. It is actively propagating westwards into young lithosphere formed at the East Pacific Rise (EPR). Previous studies have shown that the centre of Hess Deep, in the vicinity of a horst block termed the intra-rift ridge (IRR), is characterised by outcrops of gabbro and (minor) peridotite that form the most extensive and complete exposure yet known of lower crust and shallow mantle from a fast spreading mid-ocean ridge. In the absence of a total crustal penetration borehole, the tectonic window of Hess Deep provides our best opportunity to study fast-spreading magma chamber processes and lower crustal accretion by direct observation. Using the Isis ROV we collected high-resolution bathymetry and video data from an 11 sq km area of seafloor, from the nadir of Hess Deep (5400 mbsl) up to the IRR, and sampled outcrops from the region in detail. Of 145 samples in total 94 were gabbro (s.l.). Accounting as much as possible for the complex tectonic disruption of the region we have reassembled these gabbros into a stratigraphic section through an EPR lower crust that we estimate to have been originally about 4350 m thick. The upper half of this plutonic section, which includes a dyke to gabbro transition at the top, is more or less intact on the IRR; however the lower half has been tectonically thinned by active gravity driven faulting and is incomplete. Within this lower section we nevertheless believe we have representative samples from the entire interval. At its base, in addition to primitive olivine gabbro we also recovered dunite, troctolite and residual mantle harzburgite. We here present a synthesis of the petrography and whole rock and mineral compositions of the gabbros from the reconstructed lower crustal section, coupled with a quantitative (electron backscatter diffraction and magnetic) study of their petrofabrics. From this, in conjunction with the mineral trace element constraints presented elsewhere in this session by Lissenberg et al., we review the constraints they provide upon magma chamber models derived from the Oman ophiolite. Whether through sheeted sills or otherwise we conclude that in situ crystallisation mechanisms dominate, and that wholesale gabbro glacier crystal subsidence is unlikely to be an important mechanism.
NASA Astrophysics Data System (ADS)
Bai, Z. M.; Zhang, Z. Z.; Wang, C. Y.; Klemperer, S. L.
2012-04-01
The weakened lithosphere around eastern syntax of Tibet plateau has been revealed by the Average Pn and Sn velocities, the 3D upper mantle velocity variations of P wave and S wave, and the iimaging results of magnetotelluric data. Tengchong volcanic area is neighboring to core of eastern syntax and famous for its springs, volcanic-geothermal activities and remarkable seismicity in mainland China. To probe the deep environment for the Tengchong volcanic-geothermal activity a deep seismic sounding (DSS) project was carried out across the this area in 1999. In this paper the seismic signature of crustal magma and fluid is explored from the DSS data with the seismic attribute fusion (SAF) technique, hence four possible positions for magma generation together with some locations for porous and fractured fluid beneath the Tengchong volcanic area were disclosed from the final fusion image of multi seismic attributes. The adopted attributes include the Vp, Vs and Vp/Vs results derived from a new inversion method based on the No-Ray-Tomography technique, and the migrated instantaneous attributes of central frequency, bandwidth and high frequency energy of pressure wave. Moreover, the back-projected ones which are mainly consisted by the attenuation factor Qp , the delay-time of shear wave splitting, and the amplitude ratio between S wave and P wave + S wave were also considered in this fusion process. Our fusion image indicates such a mechanism for the surface springs: a large amount of heat and the fluid released by the crystallization of magma were transmitted upward into the fluid-filled rock, and the fluid upwells along some pipeline since the high pressure in deep, thus the widespread springs of Tengchong volcanic area were developed. Moreover, the fusion image, regional volcanic and geothermal activities, and the seismicity suggest that the main risk of volcanic eruption was concentrated to the south of Tengchong city, especially around the shot point (SP) Tuantian. There are typical tectonic and deep origin mechanisms for the moderate-strong earthquakes nearby SP Tuantian, and precaution should be added on this area in case of the potential earthquake. Our fusion image also clearly revealed that there exist two remarkable positions on the Moho discontinuity through which the heat from the upper mantle was transmitted upward, and this is attributed to the widely distributed hot material within the crust and upper mantle. We acknowledge the financial support of the Ministry of Land and Resources of China (SinoProbe-02-02), and the National Nature Science Foundation of China (No. 41074033 and No. 40830315). Key Words: Seismic Signature, Magma, Tengchong Volcanic Area, Deep Seismic Sounding, Seismic Attribute Fusion Li, Chang, van der Hilst, D., Meltzer, A.S., Engdahl, E.R., 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett. 274. doi:10.1016/j.epsl.2008.07.016. Lebedev, S., van der Hilst, R.D., 2008. Global upper-mantle tomography with the automated multi-mode surface and S waveforms. Geophys. J. Int. 173 (2), 505-518. Wang C.Y. and Huangfu G.. 2004. Crustal structure in Tengchong Volcano-Geothermal Area, western Yunnan, China. Tectonophysics, 380: 69-87.
Reconstructing the plumbing system of Krakatau volcano
NASA Astrophysics Data System (ADS)
Troll, Valentin R.; Dahrén, Börje; Deegan, Frances M.; Jolis, Ester M.; Blythe, Lara S.; Harris, Chris; Berg, Sylvia E.; Hilton, David R.; Freda, Carmela
2014-05-01
Crustal contamination of ascending arc magmas is generally thought to be significant at lower- to mid-crustal magma storage levels where magmas inherit their chemical and isotopic character by blending, assimilation and differentiation [1]. Anak Krakatau, like many other volcanoes, erupts shallow-level crustal xenoliths [2], indicating a potential role for upper crustal modification and hence late-stage changes to magma rheology and thus eruptive behaviour. Distinguishing deep vs. shallow crustal assimilation processes at Krakatau, and elsewhere, is therefore crucial to understand and assess pre-eruptive magmatic conditions and their associated hazard potential. Here we report on a multi-disciplinary approach to unravel the crustal plumbing system of the persistently-active and dominantly explosive Anak Krakatau volcano [2, 3]. We employ rock-, mineral- and gas-isotope geochemistry and link these results with seismic tomography [4]. We show that pyroxene crystals formed at mid- and lower-crustal levels (9-11 km) and carry almost mantle-like isotope signatures (O, Sr, Nd, He), while feldspar crystals formed dominantly at shallow levels (< 5km) and display unequivocal isotopic evidence for late stage contamination (O, Sr, Nd). Coupled with tomographic evidence, the petrological and geochemical data place a significant element of magma-crust interaction (and hence magma storage) into the uppermost, sediment-rich crust beneath the volcano. Magma - sediment interaction in the uppermost crust offers a likely explanation for the compositional variations in recent Krakatau magmas and most probably provides extra impetus to increased explosivity at Anak Krakatau. [1] Annen, et al., 2006. J. Petrol. 47, 505-539. [2] Gardner, et al., 2013. J. Petrol. 54, 149-182. [3] Dahren, et al., 2012. Contrib. Mineral. Petrol. 163, 631-651. [4] Jaxybulatov, et al., 2011. J. Volcanol. Geoth. Res. 206, 96-105.
Shallow-level magma-sediment interaction and explosive behaviour at Anak Krakatau (Invited)
NASA Astrophysics Data System (ADS)
Troll, V. R.; Jolis, E. M.; Dahren, B.; Deegan, F. M.; Blythe, L. S.; Harris, C.; Berg, S. E.; Hilton, D. R.; Freda, C.
2013-12-01
Crustal contamination of ascending arc magmas is generally thought to be a significant process which occurs at lower- to mid-crustal magma storage levels where magmas inherit their chemical and isotopic character by blending, assimilation and differentiation [1]. Anak Krakatau, like many other volcanoes, erupts shallow-level crustal xenoliths [2], indicating a potential role for upper crustal modification and hence late-stage changes to magma rheology and thus potential eruptive behaviour. Distinguishing deep vs. shallow crustal contamination processes at Krakatau, and elsewhere, is therefore crucial to understand and assess pre-eruptive magmatic conditions and their associated hazard potential. Here we report on a multi-disciplinary approach to unravel the crustal plumbing system of the persistently-active and dominantly explosive Anak Krakatau volcano [2, 3], employing rock-, mineral- and gas-isotope geochemistry and link these results with seismic tomography [4]. We show that pyroxene crystals formed at mid- and lower-crustal levels (9-11 km) and carry almost mantle-like isotope signatures (O, Sr, Nd, He), while feldspar crystals formed dominantly at shallow levels (< 5km) and display unequivocal isotopic evidence for late stage contamination (O, Sr, Nd). This obeservation places a significant element of magma-crust interaction into the uppermost, sediment-rich crust beneath the volcano. Magma storage in the uppermost crust can thus offer a possible explanation for the compositional modifications of primitive Krakatau magmas, and likely provides extra impetus to increased explosivity at Anak Krakatau. [1] Annen, et al., 2006. J. Petrol. 47, 505-539. [2] Gardner, et al., 2013. J. Petrol. 54, 149-182. [3] Dahren, et al., 2012. Contrib. Mineral. Petrol. 163, 631-651. [4] Jaxybulatov, et al., 2011. J. Volcanol. Geoth. Res. 206, 96-105.
NASA Astrophysics Data System (ADS)
Wilgus, J. T.; Schmandt, B.; Jiang, C.
2017-12-01
The relative importance of potential controls on crustal seismic anisotropy, such as deformational fabrics in polycrystalline crustal rocks and the contemporary state of stress, remain poorly constrained. Recent regional western US lithospheric seismic anisotropy studies have concluded that the distribution of strain in the lower crust is diffuse throughout the Basin and Range (BR) and that deformation in the crust and mantle are largely uncoupled. To further contribute to our understanding of crustal anisotropy we are conducting a detailed local study of seismic anisotropy within the BR using surface waves at the Ruby Mountain Core Complex (RMCC), located in northeast Nevada. The RMCC is one of many distinctive uplifts within the North American cordillera called metamorphic core complexes which consist of rocks exhumed from middle to lower crustal depths adjacent to mylonitic shear zones. The RMCC records exhumation depths up to 30 km indicating an anomalously high degree of extension relative to the BR average. This exhumation, the geologic setting of the RMCC, and the availability of dense broadband data from the Transportable Array (TA) and the Ruby Mountain Seismic Experiment (RMSE) coalesce to form an ideal opportunity to characterize seismic anisotropy as a function of depth beneath RMCC and evaluate the degree to which anisotropy deviates from regional scale properties of the BR. Preliminary azimuthal anisotropy results using Rayleigh waves reveal clear anisotropic signals at periods between 5-40 s, and demonstrate significant rotations of fast orientations relative to prior regional scale results. Moving forward we will focus on quantification of depth-dependent radial anisotropy from inversion of Rayleigh and Love waves. These results will be relevant to identification of the deep crustal distribution of strain associated with RMCC formation and may aid interpretation of controls on crustal anisotropy in other regions.
NASA Astrophysics Data System (ADS)
Korchinski, M.; Rey, P. F.; Teyssier, C. P.; Mondy, L. S.; Whitney, D.
2016-12-01
Flow of orogenic crust is a critical geodynamic process in the chemical and physical evolution of continents. Deeply sourced rocks are transported to the near surface within gneiss domes, which are ubiquitous features in orogens and extensional regions. Exhumation of material within a gneiss dome can occur as the result of tectonic stresses, where material moves into space previously occupied by the shallow crust as the result of extension localized along a detachment system. Gravitationally driven flow may also contribute to exhumation. This research addresses how physical parameters (density, viscosity) of the deep crust (base of brittle crust to Moho) impact (1) the localization of extension in the shallow crust, and (2) the flow of deep crust by tectonic and non-tectonic stresses. We present 2D numerical experiments in which the density (2900-3100 kg m-3) and viscosity (1e19-1e21 Pa s) of the deep crust are systematically varied. Lateral and vertical transport of deep crustal rocks toward the gneiss dome occurs across the entire parameter space. A low viscosity deep crust yields localized extension in the upper crust and crustal-scale upward flow; this case produces the highest exhumation. A high viscosity deep crust results in distributed thinning of the upper crust, which suppresses upward mass transport. The density of the deep crust has only a second-order effect on the shallow crust extension regime. We capture the flow field generated after the cessation of extension to evaluate mass transport that is not driven by tectonic stresses. Upward transport of material within the gneiss dome is present across the entire parameter space. In the case of a low-viscosity deep crust, horizontal flow occurs adjacent to the dome above the Moho; this flow is an order of magnitude higher than that within the dome. Density variations do not drastically alter the flow field in the low viscosity lower crust. However, a high density and high viscosity deep crust results in boudinage of the whole crust, which generates significant upward flow from the buoyant asthenosphere.
NASA Astrophysics Data System (ADS)
Zhou, Z.; Mei, L.; Liu, J.; Chen, L.; Zheng, J.
2016-12-01
Three episodes of rifting started from the latest Cretaceous and contributed to final breakup of the South China Sea in Early Oligocene. The Baiyun Sag developed in the continental slope of northern South China Sea was supposed to be only affected by the second and third rifting events and defined as a hyper-extended rift basin with extremely thinned crust through a deep seismic reflection profile by former researchers. In this paper, 19 supplementary deep seismic images were used to investigate the deep crustal structure. The results suggest that only 4-km-thick continental crust is preserved in the middle of the Baiyun Sag, whereas about 26-km-thick in the adjacent relatively unextended regions, such as Panyu Low Uplift in the north and Shunhe Uplift in the southwest. Furthermore, recently gathered 2D/3D offshore seismic data almost cover the whole research region, allowing us to recognize a Cenozoic detachment system which consists of six major detachment faults. In contrast to the performance of the distal domains in the Iberia and Mid-Norway rifted margins, all of these detachment faults dipped toward the continent and thinned the crust effectively, indicating that the extension of the Baiyun Sag was independent of the future lithospheric breakup zone. Consequently, we define the Baiyun Sag as an aborted hyper-extended rift basin formed during Paleocene to Early Oligocene. The inherited basement structures will clearly influence the evolution process of new born rift basin. Under the top basement, a pre-Cenozoic detachment system is also well described in our research area and act as a series of surface with strong amplitude in seismic imaging. We argue that the Cenozoic detachment system was built on the basis of the pre-rift detachment system which is speculated to have formed in the Late Cretaceous. Extensional style of a conveyor belt is recognized in this sediment-rich, aborted hyper-extended supra-detachment basin, showing that the breakaway blocks or extensional allochthons move gradually away from the footwall upon the major detachment surface. This study provides valuable insights into the processes that are related to the evolution of extremely crustal thinning under the constraint of pre-existing fabrics.
Spectral analysis of magnetic anomalies in and around the Philippine Sea
NASA Astrophysics Data System (ADS)
Tanaka, A.; Ishihara, T.
2009-12-01
Regional compilations of lithospheric structure from various methods and data and comparison among them are useful to understand lithospheric structure and the processes behind its formation and evolution. We present constraints on the regional variations of the magnetic thicknesses in and around the Philippine Sea. We used a new global magnetic anomaly data [Quesnel et al, 2009], which is CM4-corrected [Comprehensive Model 4; Sabaka et al., 2004], cleaned and leveled to clarify the three-dimensional crustal magnetic structure of the Philippine Sea. The Philippine Sea is one of the largest marginal seas of the world. The north-south-trending Kyushu-Palau Ridge divides it into two parts: the West Philippine Basin and the Daito Ridge province in the west and the Shikoku and Parece Vela Basins in the east. The age of the basins increases westward [Karig, 1971]. And, there are three ridges in the Daito Ridge province west of the Kyushu-Palau Ridge; the Oki-Daito, Daito Ridges and the Amami Plateau from south to north, and small basins among them. Two-dimensional spectral analysis of marine magnetic anomalies is used to estimate the centroid of magnetic sources (Zo) to constrain the lithospheric structure [Tanaka and Ishihara, 2008]. The method is based on that of Spector and Grant [1970]. Zo distribution of the Philippine Sea shows occurrence of shallow magnetic layer areas with approximately less than 10 km in the Shikoku Basin. It also shows variations in deep and shallow magnetic layer areas in the Amami-Daito Province. These patters correspond to spatial variations of the crustal thickness deduced from the three-dimensional gravity modeling [Ishihara and Koda, 2007] and acoustic basement structures [Higuchi et al., 2007]. These three spatial distributions are roughly consistent with each other, although they may contain some scatters and bias due to the different characteristics and errors. This two-dimensional spectral analysis method is based upon an assumption that source distribution is random; therefore when magnetic anomalies represent linear features, this analysis based on ensembles of thin prisms may produce unreliable results. In this case, one-dimensional spectrum analysis based on a thin plate model composed of long bars is preferable. Makino and Okubo [1988] developed one-dimensional spectral analysis for marine linear magnetic anomalies. A linear relationship between the natural log of (power-density spectrum of magnetic profile) and wavelength gives the centroid depth of magnetic sources. The same method is applied to this area. This analysis requires a long profile to see deeper structure. It may not be possible to find good enough data. However, both methods give consistent results, and the obtained Zo distribution provides a comprehensive view of regional-scale features. The correlation between crustal thickness and Zo and its correspondence with tectonic regime indicates that Zo is useful to delineate regional crustal thermal structure. It is expected that Zo combined with multidisciplinary data should help to infer geophysical and geological information in the less explored regions.
NASA Astrophysics Data System (ADS)
Amato, Alessandro; Bianchi, Irene; Agostinetti, Nicola Piana
2014-12-01
We investigate the crustal seismic structure of the Adria plate using teleseismic receiver functions (RF) recorded at 12 broadband seismic stations in the Apulia region. Detailed models of the Apulian crust, e.g. the structure of the Apulian Multi-layer Platform (AMP), are crucial for assessing the presence of potential décollements at different depth levels that may play a role in the evolution of the Apenninic orogen. We reconstruct S-wave velocity profiles applying a trans-dimensional Monte Carlo method for the inversion of RF data. Using this method, the resolution at the different depth level is completely dictated by the data and we avoid introducing artifacts in the crustal structure. We focus our study on three different key-elements: the Moho depth, the lower crust S-velocity, and the fine-structure of the AMP. We find a well defined and relatively flat Moho discontinuity below the region at 28-32 km depth, possibly indicating that the original Moho is still preserved in the area. The lower crust appears as a generally low velocity layer (average Vs = 3.7 km/s in the 15-26 km depth interval), likely suggestive of a felsic composition, with no significant velocity discontinuities except for its upper and lower boundaries where we find layering. Finally, for the shallow structure, the comparison of RF results with deep well stratigraphic and sonic log data allowed us to constrain the structure of the AMP and the presence of underlying Permo-Triassic (P-T) sediments. We find that the AMP structure displays small-scale heterogeneities in the region, with a thickness of the carbonates layers varying between 4 and 12 km, and is underlain by a thin, discontinuous layer of P-T terrigenous sediments, that are lacking in some areas. This fact may be due to the roughness in the original topography of the continental margins or to heterogeneities in its shallow structure due to the rifting process.
MAVEN Observations of the Effects of Crustal Magnetic Fields on the Mars Ionosphere
NASA Astrophysics Data System (ADS)
Vogt, M. F.; Flynn, C. L.; Withers, P.; Andersson, L.; Girazian, Z.; Mitchell, D. L.; Xu, S.; Connerney, J. E. P.; Espley, J. R.
2017-12-01
Mars lacks a global intrinsic magnetic field but possesses regions of strong crustal magnetic field that influence the planetary interaction with the solar wind and affect the structure and dynamics of the ionosphere. Since entering Mars orbit in 2014, the MAVEN spacecraft has collected comprehensive measurements of the local plasma and magnetic field properties in the Martian dayside ionosphere. Here we discuss how crustal magnetic fields affect the structure, composition, and electrodynamics of the Martian ionosphere as seen by MAVEN. We present a survey of 17 months of MAVEN LPW measurements of the electron density and temperature in the dayside ionosphere and show that, above 200 km altitude, regions of strong crustal magnetic fields feature cooler electron temperatures and enhanced electron densities compared to regions with little or no crustal magnetic field. We also report on the influence of the magnetic field direction and topology on MAVEN electron density measurements in the southern crustal field areas, particularly in magnetic cusp regions. Finally, we discuss the effects of crustal magnetic fields on plasma boundaries like the ionopause, located at the top of the ionosphere and marked by a sharp and substantial gradient in the electron density.
Parsons, T.; McCarthy, J.; Kohler, W.M.; Ammon, C.J.; Benz, H.M.; Hole, J.A.; Criley, E.E.
1996-01-01
The Colorado Plateau is a large crustal block in the southwestern United States that has been raised intact nearly 2 km above sea level since Cretaceous marine sediments were deposited on its surface. Controversy exists concerning the thickness of the plateau crust and the source of its buoyancy. Interpretations of seismic data collected on the plateau vary as to whether the crust is closer to 40 or 50 km thick. A thick crust could support the observed topography of the Colorado Plateau isostatically, while a thinner crust would indicate the presence of an underlying low-density mantle. This paper reports results on long-offset seismic data collected during the 1989 segment of the U.S. Geological Survey Pacific to Arizona Crustal Experiment that extended from the Transition Zone into the Colorado Plateau in northwest Arizona. We apply two new methods to analyze long-offset data that employ finite difference travel time calculations: (1) a first-arrival time inverter to find upper crustal velocity structure and (2) a forward-modeling technique that allows the direct use of the inverted upper crustal solution in modeling secondary reflected arrivals. We find that the crustal thickness increases from 30 km beneath the metamorphic core complexes in the southern Basin and Range province to about 42 km beneath the northern Transition Zone and southern Colorado Plateau margin. We observe some crustal thinning (to ???37 km thick) and slightly higher lower crustal velocities farther inboard; beneath the Kaibab uplift on the north rim of the Grand Canyon the crust thickens to a maximum of 48 km. We observe a nonuniform crustal thickness beneath the Colorado Plateau that varies by ???15% and corresponds approximately to variations in topography with the thickest crust underlying the highest elevations. Crustal compositions (as inferred from seismic velocities) appear to be the same beneath the Colorado Plateau as those in the Basin and Range province to the southwest, implying that the plateau crust represents an unextended version of the Basin and Range. Some of the variability in crustal structure appears to correspond to preserved lithospheric discontinuities that date back to the Proterozoic Era.
Brocher, Thomas M.; Allen, Richard M.; Stone, David B.; Wolf, Lorraine W.; Galloway, Brian K.
1995-01-01
This report presents fourteen deep-crustal wide-angle seismic reflection and refraction profiles recorded onland in western Alaska and eastern Siberia from marine air gun sources in the Bering-Chukchi Seas. During a 20-day period in August, 1994, the R/V Ewing acquired two long (a total of 3754 km) deep-crustal seismic-reflection profiles on the continental shelf of the Bering and Chukchi Seas, in a collaborative project between Stanford University and the United States Geological Survey (USGS). The Ewing's 137.7 liter (8355 cu. in.) air gun array was the source for both the multichannel reflection and the wide-angle seismic data. The Ewing, operated by the Lamont-Doherty Earth Observatory, steamed northward from Nunivak Island to Barrow, and returned, firing the air gun array at intervals of either 50 m or 75 m. About 37,700 air gun shots were fired along the northward directed Lines 1 and 2, and more than 40,000 air gun shots were fired along the southward directed Line 3. The USGS and the University of Alaska, Fairbanks (UAF), deployed an array of twelve 3-component REFTEK and PDAS recorders in western Alaska and eastern Siberia which continuously recorded the air gun signals fired during the northward bound Lines 1 and 2. Seven of these recorders also continuously recorded the southward bound Line 3. These wide-angle seismic data were acquired to: (1) image reflectors in the upper to lower crust, (2) determine crustal and upper mantle refraction velocities, and (3) provide important constraints on the geometry of the Moho along the seismic lines. In this report, we describe the land recording of wide-angle data conducted by the USGS and the UAF, describe in detail how the wide-angle REFTEK and PDAS data were reduced to common receiver gather seismic sections, and illustrate the wide-angle seismic data obtained by the REFTEKs and PDAS's. Air gun signals were observed to ranges in excess of 400 km, and crustal and upper /mantle refractions indicate substantial variation in the crustal thickness along the transect.
Dynamic Topography at Earth's Surface: Fact or Fiction? (Invited)
NASA Astrophysics Data System (ADS)
Lithgow-Bertelloni, C. R.; Silver, P. G.
2009-12-01
Contributions to Earth’s surface topography range from short-wavelength uncompensated features due to tectonic activity, to variations in crustal structure and long-wavelength deflections of the lithosphere caused by mantle dynamics. The latter we call dynamic topography. Dynamic topography elevates or depresses the surface even if the density anomaly giving rise to flow is deep in the mantle. Dynamic topography is also a major contributor to Earth’s gravitational potential and to surface deformation. However, direct observations of dynamic topography are elusive, because signals are obscured by the isostatic contribution due to crustal and lithospheric structure. The only seemingly unequivocal signals of dynamically supported topography have been found over mantle upwellings on both continents (Africa [Lithgow-Bertelloni and Silver, 1998] and Arabia [Daradich et al., 2004]) and oceanic basins (North-Atlantic [Conrad et al., 2004]). Recent work on Africa’s geomorphic history [Moore et al., 2009] and North Atlantic gravity and topography have called even these results into questions. In downwelling regions (near slabs) no clear signals have been found. I will explore why this dichotomy may exist and relate it to the need for dynamic topography in mantle flow models, with an eye towards the effects of phase transitions, lateral variations in viscosity and layered convection. I will also present recent results on dynamic topography over flat slab segments that overturn the conventional wisdom and explain basin topography in the Andean foreland. Along with the new models I will discuss a recent global lithospheric structure model with which to compute the residual topography, i.e. the “observed” dynamic topography.
NASA Astrophysics Data System (ADS)
Belkhiria, W.; Boussiga, H.; Inoubli, M. H.
2017-05-01
The transition zone between western and central Mediterranean domains presents a key area to investigate kinematic interactions within the adjacent orogen systems such as the easternmost Atlas foreland-and-thrust belt. Gravity and seismic data revealed a highly structured basement, characterizing a series of structural highs and lows delimited by high-angle N-S, E-W, and NW-SE extensional faults. This basement architecture is inherited from successive extensional events related to the openings of the Triassic-Early Cretaceous Tethys oceans (i.e., Alpine Tethys, Ligurian Tethys, and Mesogea). Throughout this period, this mosaic of continental blocks significantly controlled the thickness and facies distributions. Early stages of diapirism took place along these basement faults and allowed maximum subsidence in minibasins revealed by the development of growth strata. In response to the Late Cretaceous-Eocene shortenings, these extensional faults have been reactivated as trasnpressional shear zones, giving rise to narrow pop-up structures. In addition, gravity modeling indicates crustal thinning and deep-rooted faults affecting the crust south of the Zaghouan Thrust and along E-W transfer zones. From the late Miocene, a drastic change in the stress regime is attributed to the effect of the adjacent Sicily channel on the study area. This promotes crustal thinning, basin subsidence, and channeling up of mantle-derived helium along lithospheric-scale weak zones. Our results give rise to new insights into the reactivation of inherited weakness zones of southern Tethys margin in response to the complex interaction between African and Eurasian plates accommodated by subduction, rollback, collision, and slab segmentation.
NASA Astrophysics Data System (ADS)
Davy, R. G.; Minshull, T. A.; Bayrakci, G.; Bull, J. M.; Klaeschen, D.; Papenberg, C.; Reston, T. J.; Sawyer, D. S.; Zelt, C. A.
2016-05-01
Hyperextension of continental crust at the Deep Galicia rifted margin in the North Atlantic has been accommodated by the rotation of continental fault blocks, which are underlain by the S reflector, an interpreted detachment fault, along which exhumed and serpentinized mantle peridotite is observed. West of these features, the enigmatic Peridotite Ridge has been inferred to delimit the western extent of the continent-ocean transition. An outstanding question at this margin is where oceanic crust begins, with little existing data to constrain this boundary and a lack of clear seafloor spreading magnetic anomalies. Here we present results from a 160 km long wide-angle seismic profile (Western Extension 1). Travel time tomography models of the crustal compressional velocity structure reveal highly thinned and rotated crustal blocks separated from the underlying mantle by the S reflector. The S reflector correlates with the 6.0-7.0 km s-1 velocity contours, corresponding to peridotite serpentinization of 60-30%, respectively. West of the Peridotite Ridge, shallow and sparse Moho reflections indicate the earliest formation of an anomalously thin oceanic crustal layer, which increases in thickness from ~0.5 km at ~20 km west of the Peridotite Ridge to ~1.5 km, 35 km further west. P wave velocities increase smoothly and rapidly below top basement, to a depth of 2.8-3.5 km, with an average velocity gradient of 1.0 s-1. Below this, velocities slowly increase toward typical mantle velocities. Such a downward increase into mantle velocities is interpreted as decreasing serpentinization of mantle rock with depth.
Mercury's Crustal Magnetic Field from MESSENGER Data
NASA Astrophysics Data System (ADS)
Plattner, A.; Johnson, C.
2017-12-01
We present a regional spherical-harmonic based crustal magnetic field model for Mercury between latitudes 45° and 70° N, derived from MESSENGER magnetic field data. In addition to contributions from the core dynamo, the bow shock, and the magnetotail, Mercury's magnetic field is also influenced by interactions with the solar wind. The resulting field-aligned currents generate magnetic fields that are typically an order of magnitude stronger at spacecraft altitude than the field from sources within Mercury's crust. These current sources lie within the satellite path and so the resulting magnetic field can not be modeled using potential-field approaches. However, these fields are organized in the local-time frame and their spatial structure differs from that of the smaller-scale crustal field. We account for large-scale magnetic fields in the local-time reference frame by subtracting from the data a low-degree localized vector spherical-harmonic model including curl components fitted at satellite altitude. The residual data exhibit consistent signals across individual satellite tracks in the body fixed reference frame, similar to those obtained via more rudimentary along-track filtering approaches. We fit a regional internal-source spherical-harmonic model to the night-time radial component of the residual data, allowing a maximum spherical-harmonic degree of L = 150. Due to the cross-track spacing of the satellite tracks, spherical-harmonic degrees beyond L = 90 are damped. The strongest signals in the resulting model are in the region around the Caloris Basin and over Suisei Planitia, as observed previously. Regularization imposed in the modeling allows the field to be downward continued to the surface. The strongest surface fields are 30 nT. Furthermore, the regional power spectrum of the model shows a downward dipping slope between spherical-harmonic degrees 40 and 80, hinting that the main component of the crustal field lies deep within the crust.
NASA Astrophysics Data System (ADS)
McCurry, M. O.; Pearson, D. M.; Welhan, J. A.; Kobs-Nawotniak, S. E.; Fisher, M. A.
2014-12-01
The Snake River Plain and neighboring regions are well known for their high heat flow and robust Neogene-Quaternary tectonic and magmatic activity. Interestingly, however, there are comparatively few surficial manifestations of geothermal activity. This study is part of a renewed examination of this region as a possible hidden or blind geothermal resource. We present a testable, integrated volcanological, petrogenetic, tectonic and hydrothermal conceptual model for 57 ka China Hat and cogenetic topaz rhyolite lava domes of the Blackfoot Volcanic Field. This field is well suited for analysis as a blind resource because of its distinctive combination of (1) young bimodal volcanism, petrogenetic evidence of shallow magma storage and evolution, presence of coeval extension, voluminous travertine deposits, and C- and He-isotopic evidence of active magma degassing; (2) a paucity of hot springs or other obvious indicators of a geothermal resource in the immediate vicinity of the lava domes; and (3) proximity to a region of high crustal heat flow, high-T geothermal fluids at 2.5-5 km depth and micro-seismicity characterized by its swarming nature. Eruptions of both basalt and rhyolite commonly evolve from minor phreatomagmatic to effusive. In our model, transport of both magmatic and possible deep crustal aqueous fluids may be controlled by preexisting crustal structures, including west-dipping thrust faults. Geochemical evolution of rhyolite magma is dominated by mid- to upper-crustal fractional crystallization (with pre-eruption storage and phenocryst formation at ~14 km). Approximately 1.2 km3 of topaz rhyolite have been erupted since 1.4 Ma, yielding an average eruption rate of 0.8 km3/m.y. Given reasonable assumptions of magma cumulate formation and eruption rates, and initial and final volatile concentrations, we infer average H2O and CO2 volatile fluxes from the rhyolite source region of ~2MT/year and 340 T/day, respectively. Lithium flux may be comparable to CO2.
Crustal Structure of Iraq from Receiver Functions and Surface Wave Dispersion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gok, R; Mahdi, H; Al-Shukri, H
2006-08-31
We report the crustal structure of Iraq, located in the northeastern Arabian plate, estimated by joint inversion of P-wave receiver functions and surface wave group velocity dispersion. Receiver functions were computed from teleseismic recordings at two temporary broadband seismic stations in Mosul (MSL) and Baghdad (BHD), separated by approximately 360 km. Group velocity dispersion curves at the sites were derived from continental-scale tomography of Pasyanos (2006). The inversion results show that the crustal thicknesses are 39 km at MSL and 43 km at BHD. Both sites reveal low velocity surface layers consistent with sedimentary thickness of about 3 km atmore » station MSL and 7 km at BHD, agreeing well with the existing models. Ignoring the sediments, the crustal velocities and thicknesses are remarkably similar between the two stations, suggesting that the crustal structure of the proto-Arabian Platform in northern Iraq was uniform before subsidence and deposition of the sediments in the Cenozoic. Deeper low velocity sediments at BHD are expected to result in higher ground motions for earthquakes.« less
NASA Astrophysics Data System (ADS)
Bhattacharya, Shrema; Kemp, A. I. S.; Collins, W. J.
2018-04-01
The Cretaceous Mount Daniel Complex (MDC) in northern Fiordland, New Zealand was emplaced as a 50 m-thick dyke and sheet complex into an active shear zone at the base of a Cordilleran magmatic arc. It was emplaced below the 20-25 km-thick, 125.3 ± 1.3 Ma old Western Fiordland Orthogneiss (WFO) and is characterized by metre-scale sheets of sodic, low and high Sr/Y diorites and granites. 119.3 ± 1.2 Ma old, pre-MDC lattice dykes and 117.4 ± 3.1 Ma late-MDC lattice dykes constrain the age of the MDC itself. Most dykes were isoclinally folded as they intruded, but crystallised within this deep-crustal, magma-transfer zone as the terrain cooled and was buried from 25 to 50 km (9-14 kbar), based on published P-T estimated from the surrounding country rocks. Zircon grains formed under these magmatic/granulite facies metamorphic conditions were initially characterized by conservatively assigning zircons with oscillatory zoning as igneous and featureless rims as metamorphic, representing 54% of the analysed grains. Further petrological assignment involved additional parameters such as age, morphology, Th/U ratios, REE patterns and Ti-in-zircon temperature estimates. Using this integrative approach, assignment of analysed grains to metamorphic or igneous groupings improved to 98%. A striking feature of the MDC is that only 2% of all igneous zircon grains reflect emplacement, so that the zircon cargo was almost entirely inherited, even in dioritic magmas. Metamorphic zircons of MDC show a cooler temperature range of 740-640 °C, reflects the moderate ambient temperature of the lower crust during MDC emplacement. The MDC also provides a cautionary tale: in the absence of robust field and microstructural relations, the igneous-zoned zircon population at 122.1 ± 1.3 Ma, derived mostly from inherited zircons of the WFO, would be meaningless in terms of actual magmatic emplacement age of MDC, where the latter is further obscured by younger (ca. 114 Ma) metamorphic overgrowths. Thus, our integrative approach provides the opportunity to discriminate between igneous and metamorphic zircon within deep-crustal complexes. Also, without the tight field relations at Mt Daniel, the scatter beyond a statistically coherent group might be ascribed to the presence of "antecrysts", but it is clear that the WFO solidified before the MDC was emplaced, and these older "igneous" grains are inherited. The bimodal age range of inherited igneous grains, dominated by 125 Ma and 350-320 Ma age clusters, indicate that the adjacent WFO and a Carboniferous metaigneous basement were the main sources of the MDC magmas. Mafic lenses, stretched and highly attenuated into wisps within the MDC and dominated by 124 Ma inherited zircons, are considered to be entrained restitic material from the WFO. A comparison with lower- and upper-crustal, high Sr/Y metaluminous granites elsewhere in Fiordland shows that zircon inheritance is common in the deep crust, near the source region, but generally much less so in coeval, shallow magma chambers (plutons). This is consistent with previous modelling on rapid zircon dissolution rates and high Zr saturation concentrations in metaluminous magmas. Accordingly, unless unusual circumstances exist, such as MDC preservation in the deep crust, low temperatures of magma generation, or rapid emplacement and crystallization at higher structural levels, information on zircon inheritance in upper crustal, Cordilleran plutons is lost during zircon dissolution, along with information on the age, nature and variety of the source material. The observation that dioritic magmas can form at these low temperatures (< 750 °C) also suggests that the petrogenesis of mafic rocks in the arc root might need to be re-assessed.
Crustal Structure of Southern Baja California Peninsula, Mexico, and its Margins
NASA Astrophysics Data System (ADS)
Gonzalez, A.; Robles-Vazquez, L. N.; Requena-Gonzalez, N. A.; Fletcher, J.; Lizarralde, D.; Kent, G.; Harding, A.; Holbrook, S.; Umhoefer, P.; Axen, G.
2007-05-01
Data from 6 deep 2D multichannel seismic (MCS) lines, 1 wide-angle seismic transect and gravity were used to investigate the crustal structure and stratigraphy of the southern Baja California peninsula and its margins. An array of air guns was used as seismic source shooting each 50 m. Each signal was recorded during 16 s by a 6 km long streamer with 480 channels and a spacing of 12.5 m. Seismic waves were also recorded by Ocean Bottom Seismometers (OBS) in the Pacific and the Gulf of California and by portable seismic instruments onshore southern Baja California. MCS data were conventionally processed, to obtain post-stack time-migrated seismic sections. We used a direct method for the interpretation of the wide-angle data, including ray tracing and travel times calculation. In addition to the gravity data recorded onboard, satellite and land public domain data were also used in the gravity modeling. The combined MCS, wide-angle and gravity transect between the Magdalena microplate to the center of Farallon basin in the Gulf of California, crossing the southern Baja California Peninsula to the north of La Paz, allows to verify the existence of the Magdalena microplate under Baja California. We have also confirmed an extensional component of the Tosco-Abreojos fault zone and we have calculated crustal thicknesses. We have also observed the continuation to the south of the Santa Margarita detachment. The MCS seismic sections show a number of fault scarps, submarine canyons and grabens and horsts associated to normal faults offshore southern Baja California peninsula. The normal displacement observed in the Tosco-Abreojos fault zone and some basins in the continental platform, as well as the presence of faulted acoustic basement blocks, evidence that not all extension was accommodated by the Gulf Extensional Province during the middle to late Miocene. Part of the extension was (and is) accommodated in the Baja California Pacific margin. This confirms the observations from previous seismic lines that suggest that the peninsula is a tectonic block not completely transferred to the Pacific plate. In agreement with the seismic facies and the correlations with the available stratigraphic columns of Deep Sea Drilling Program 471 and 474, we generally identify at least three seismostratigraphic units over the acoustic basement. The lower unit reflectors dip towards the palaeo-trench. We identified a Bottom Simulating Reflector (BSR) probably associated to the presence of gas hydrates, which extends at least 200 km along three seismic lines.
Crustal structure along the geosciences transect from Altay to Altun Tagh
Wang, Y.-X.; Han, G.-H.; Jiang, M.; Yuan, X.-C.; Mooney, W.D.; Coleman, R.G.
2004-01-01
Based upon the P- and S-wave data acquired along the geoscience transect from Altay to Altun Tagh in Northwest China, the crustal structures of velocities and Poisson's ratio are determined. The crustal velocity structure features an obvious three-layer structure with velocities of 6. 0 ??? 6. 3km/s, 6. 3 ??? 6. 6km/s and 6.9 ??? 7. Okm/s from surface to depth, respectively. The crustal thickness along the. entire profile is mostly 50km with the thickest crust (56km) beneath the Altay and the thinnest (46km) beneath the Junggar basin. The velocities underlying Moho are 7.7 to 7.8km/s between the Tianshan and the Junggar basin, and 7.9 to 8.0km/s below the Altay Mountains and eastern margin of the Tarim basin. The southern half of the profile, including the eastern Tianshan Mountains and eastern margin of the Tarim basin, shows low P-wave velocities and ?? = 0. 25 to a depth, of 30km, which suggests a quartz-rich, granitic upper crustal composition. The northern half of the profile below the Altay Mountains and Junggar Accretional Belt has a higher Poisson's ratio of ?? = 0.26 ??? 0.27 to a depth of 30km, indicative of an intermediate crustal composition, The entire profile is underlain by a 15 to 30km thick high-velocity (6.9 ??? 7.0km/s; ?? = 0. 26 - 0.28) lower crustal layer that we interpret to have a bulk composition of mafic granulite. At the southern end of the profile a 5km-thick midcrustal low-velocity layer ( Vp, = 5.9km/s, ?? = 0.25) underlies the Tianshan and the region to the south, and may be indicative of granitic intrusive in Late Paleozoic.
The Under-side of the Andes: Using Receiver Functions to Map the North Central Andean Subsurface
NASA Astrophysics Data System (ADS)
Ryan, J. C.; Beck, S. L.; Zandt, G.; Wagner, L. S.; Minaya, E.; Tavera, H.
2012-12-01
The Central Andean Uplift and Geodynamics of High Topography (CAUGHT) project is an interdisciplinary project to investigate connections between lithospheric removal, crustal shortening and surface uplift in the northern Bolivia and southern Peru region of the South American Andean orogen. The central Andes are defined by six major tectonomorphic provinces; the forearc, the volcanically active Western Cordillera (WC, ~6 km elevation), the internally drained Altiplano (~4 km elevation), an inactive fold and thrust belt in the Eastern Cordillera (EC, ~6 km elevation), a lower elevation active fold and thrust belt in the Subandean (SA) zone and the Beni, a foreland basin. Forty seismic stations installed for the CAUGHT project were deployed between 13° and 18° S latitude, covering the transition zone where the Altiplano region pinches out in southern Peru, in an effort to better constrain the changing character of the crust and mantle lithosphere. Geologic studies across the northern Bolivian portion of the eastern Andean margin (15-17° S) have documented a total of 275 km of upper crustal shortening (McQuarrie et al, Tectonics, v27, 2008), which may be associated with crustal thickening and/or the removal of lithospheric material as a thickened lithosphere root becomes unstable. For this receiver function (converted wave) study, we have little coverage in the forearc and foreland, ~75 km spacing in most of the array, and a relatively dense ~20 km spaced profile along the Charaña-La Paz-Yucumo transect, the eastern portion of which is nearly coincident with the balanced cross-section of McQuarrie et al. (2008). Using the first year of available data, more than 1200 receiver functions have been calculated using an iterative deconvolution method, and stacked using the common conversion point (CCP) method, along profiles parallel to and nearly coincident to those used for the geologic shortening estimates. We identified arrivals for the Moho and generated a 3D map of crustal thickness underneath the array that reveals distinct characteristics for the 4 major tectonomorphic provinces. The SA crust thickens westward from 40 km adjacent to the foreland to 50 km adjacent to the EC. The crust beneath the EC varies between 50-65 km, generally thickening westward. The crustal thickness beneath the Altiplano is variable along strike between 60-70 km, with a rapid change within the southern part of the eastern Altiplano with a northerly strike crossing into the EC east of Lake Titicaca. The crust under the WC is equally variable between 60-70 km, with numerous intracrustal interfaces. Comparisons with results from teleseismic tomography (Scire et al., this mtg.) and ambient noise tomography (Ward et al., this mtg.) show that this rapid Moho change is associated with changes in lower crustal and upper mantle velocities, suggesting it is an important deep-seated structure. We consider two possible interpretations of this structure; underthrusting of the Brazilian cratonic crust or a delamination structure. With a second year of data and enhanced processing we expect to improve the resolution of our receiver function study.
Synthesis of inverse ringwoodite sheds light on the subduction history of Tibetan ophiolites.
Bindi, Luca; Griffin, William L; Panero, Wendy R; Sirotkina, Ekaterina; Bobrov, Andrey; Irifune, Tetsuo
2018-04-03
Tibetan ophiolites are shallow mantle material and crustal slabs that were subducted as deep as the mantle transition zone, a conclusion supported by the discovery of high-pressure phases like inverse ringwoodite in these sequences. Ringwoodite, Mg 2 SiO 4 , exhibits the normal spinel structure, with Mg in the octahedral A site and Si in the tetrahedral B site. Through A and B site-disorder, the inverse spinel has four-coordinated A cations and the six-coordinated site hosts a mixture of A and B cations. This process affects the density and impedance contrasts across the boundaries in the transition zone and seismic-wave velocities in this portion of the Earth. We report the first synthesis at high pressure (20 GPa) and high temperature (1600 °C) of a Cr-bearing ringwoodite with a completely inverse-spinel structure. Chemical, structural, and computational analysis confirm the stability of inverse ringwoodite and add further constraints to the subduction history of the Luobusa peridotite of the Tibetan ophiolites.
Lithospheric and crustal thinning
NASA Technical Reports Server (NTRS)
Moretti, I.
1985-01-01
In rift zones, both the crust and the lithosphere get thinner. The amplitude and the mechanism of these two thinning situations are different. The lithospheric thinning is a thermal phenomenon produced by an asthenospherical uprising under the rift zone. In some regions its amplitude can exceed 200%. This is observed under the Baikal rift where the crust is directly underlaid by the mantellic asthenosphere. The presence of hot material under rift zones induces a large negative gravity anomaly. A low seismic velocity zone linked to this thermal anomaly is also observed. During the rifting, the magmatic chambers get progressively closer from the ground surface. Simultaneously, the Moho reflector is found at shallow depth under rift zones. This crustal thinning does not exceed 50%. Tectonic stresses and vertical movements result from the two competing effects of the lithospheric and crustal thinning. On the one hand, the deep thermal anomaly induces a large doming and is associated with extensive deviatoric stresses. On the other hand, the crustal thinning involves the formation of a central valley. This subsidence is increased by the sediment loading. The purpose here is to quantify these two phenomena in order to explain the morphological and thermal evolution of rift zones.
ten Brink, Uri S.; Al-Zoubi, A. S.; Flores, C.H.; Rotstein, Y.; Qabbani, I.; Harder, S.H.; Keller, Gordon R.
2006-01-01
New seismic observations from the Dead Sea basin (DSB), a large pull-apart basin along the Dead Sea transform (DST) plate boundary, show a low velocity zone extending to a depth of 18 km under the basin. The lower crust and Moho are not perturbed. These observations are incompatible with the current view of mid-crustal strength at low temperatures and with support of the basin's negative load by a rigid elastic plate. Strain softening in the middle crust is invoked to explain the isostatic compensation and the rapid subsidence of the basin during the Pleistocene. Whether the deformation is influenced by the presence of fluids and by a long history of seismic activity on the DST, and what the exact softening mechanism is, remain open questions. The uplift surrounding the DST also appears to be an upper crustal phenomenon but its relationship to a mid-crustal strength minimum is less clear. The shear deformation associated with the transform plate boundary motion appears, on the other hand, to cut throughout the entire crust. Copyright 2006 by the American Geophysical Union.
Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone
Lowenstern, Jacob B.; Evans, William C.; Bergfeld, D.; Hunt, Andrew G.
2014-01-01
Helium is used as a critical tracer throughout the Earth sciences, where its relatively simple isotopic systematics is used to trace degassing from the mantle, to date groundwater and to time the rise of continents1. The hydrothermal system at Yellowstone National Park is famous for its high helium-3/helium-4 isotope ratio, commonly cited as evidence for a deep mantle source for the Yellowstone hotspot2. However, much of the helium emitted from this region is actually radiogenic helium-4 produced within the crust by α-decay of uranium and thorium. Here we show, by combining gas emission rates with chemistry and isotopic analyses, that crustal helium-4 emission rates from Yellowstone exceed (by orders of magnitude) any conceivable rate of generation within the crust. It seems that helium has accumulated for (at least) many hundreds of millions of years in Archaean (more than 2.5 billion years old) cratonic rocks beneath Yellowstone, only to be liberated over the past two million years by intense crustal metamorphism induced by the Yellowstone hotspot. Our results demonstrate the extremes in variability of crustal helium efflux on geologic timescales and imply crustal-scale open-system behaviour of helium in tectonically and magmatically active regions.
NASA Astrophysics Data System (ADS)
Li, Y.; Yang, J.; Nida, K.; Yamamoto, S.; Lin, Y.; Li, Q.; Tian, M.; Kon, Y.; Komiya, T.; Maruyama, S.
2017-12-01
The Horoman peridotite complex is an Alpine-type orogenic lherzolite massif of upper-mantle in the Hidaka metamorphic belt, Hokkaido, Japan. The peridotite complex is composed of dunite, harzburgite, spinel lherzolite and plagioclase lherzolite, exhibits a conspicuous layered structure, which is a product of a Cretaceous to early Paleogene arc-trench system formed by westward subduction of an oceanic plate between the paleo-Eurasian and paleo-North American Plates. Various combinations of diamond, corundum, moissanite, zircon, monazite, rutile, and kyanite have been separated from spinel harzburgite (700 kg) and lherzolite (500 kg), respectively. The carbon isotopes analyses of diamond grains by Nano-SIMS yielded significant light carbon isotopes feature as δ13 CPDB values ranging from -29.2 ‰ to -17.2 ‰, with an average of -22.8±0.32 ‰. Zircon grains occur as sub-angular to round in morphological characteristics, similar to zircons of crustal sedimentary rocks. Many zircons contain small inclusions, comprise of quartz, apatite, rutile and muscovite. The U-Pb age of zircon grains analyzed using LA-ICP-MS and SIMS gave a wide age range, from the Jurassic to Archean (ca 159 - 3131 Ma). In the zircon age histogram, four age groups were identified; the age peaks are 2385 Ma, 1890 Ma, 1618 Ma and 1212 Ma, respectively. On the other hand, U-Pb ages of rutile grains analyzed using SIMS gave a peak of 370 Ma in age histogram. The mineralogical and chronological evidences of numerous crustal minerals in peridotite of Horoman suggest that the ancient continent material was subducted in deep mantle and recycled through the upper mantle by multicycle subduction processes.
NASA Astrophysics Data System (ADS)
Miller, N. C.; Lizarralde, D.; McGuire, J.; Hole, J. A.
2006-12-01
We consider methodologies, including survey design and processing algorithms, which are best suited to imaging vertical reflectors in oceanic crust using marine seismic techniques. The ability to image the reflectivity structure of transform faults as a function of depth, for example, may provide new insights into what controls seismicity along these plate boundaries. Turning-wave migration has been used with success to image vertical faults on land. With synthetic datasets we find that this approach has unique difficulties in the deep ocean. The fault-reflected crustal refraction phase (Pg-r) typically used in pre-stack migrations is difficult to isolate in marine seismic data. An "imagable" Pg-r is only observed in a time window between the first arrivals and arrivals from the sediments and the thick, slow water layer at offsets beyond ~25 km. Ocean- bottom seismometers (OBSs), as opposed to a long surface streamer, must be used to acquire data suitable for crustal-scale vertical imaging. The critical distance for Moho reflections (PmP) in oceanic crust is also ~25 km, thus Pg-r and PmP-r are observed with very little separation, and the fault-reflected mantle refraction (Pn-r) arrives prior to Pg-r as the observation window opens with increased OBS-to-fault distance. This situation presents difficulties for "first-arrival" based Kirchoff migration approaches and suggests that wave- equation approaches, which in theory can image all three phases simultaneously, may be more suitable for vertical imaging in oceanic crust. We will present a comparison of these approaches as applied to a synthetic dataset generated from realistic, stochastic velocity models. We will assess their suitability, the migration artifacts unique to the deep ocean, and the ideal instrument layout for such an experiment.
Lithospheric architecture of the Levant Basin (Eastern Mediterranean region): A 2D modeling approach
NASA Astrophysics Data System (ADS)
Inati, Lama; Zeyen, Hermann; Nader, Fadi Henri; Adelinet, Mathilde; Sursock, Alexandre; Rahhal, Muhsin Elie; Roure, François
2016-12-01
This paper discusses the deep structure of the lithosphere underlying the easternmost Mediterranean region, in particular the Levant Basin and its margins, where the nature of the crust, continental versus oceanic, remains debated. Crustal thickness and the depth of the lithosphere-asthenosphere boundary (LAB) as well as the crustal density distribution were calculated by integrating surface heat flow data, free-air gravity anomaly, geoid and topography. Accordingly, two-dimensional, lithospheric models of the study area are discussed, demonstrating the presence of a progressively attenuated crystalline crust from E to W (average thickness from 35 to 8 km). The crystalline crust is best interpreted as a strongly thinned continental crust under the Levant Basin, represented by two distinct components, an upper and a lower crust. Further to the west, the Herodotus Basin is believed to be underlain by an oceanic crust, with a thickness between 6 and 10 km. The Moho under the Arabian Plate is 35-40 km deep and becomes shallower towards the Mediterranean coast. It appears to be situated at depths ranging between 20 and 23 km below the Levant Basin and 26 km beneath the Herodotus Basin, based on our proposed models. At the Levantine margin, the thinning of the crust in the transitional domain between the onshore and the offshore is gradual, indicating successive extensional regimes that did not reach the beak up stage. In addition, the depth to LAB is around 120 km under the Arabian and the Eurasian Plates, 150 km under the Levant Basin, and it plunges to 180 km under the Herodotus Basin. This study shows that detailed 2D lithosphere modeling using integrated geophysical data can help understand the mechanisms responsible for the modelled lithospheric architecture when constrained with geological findings.
NASA Astrophysics Data System (ADS)
Cao, Shuyun; Neubauer, Franz; Liu, Junlai; Bernroider, Manfred; Genser, Johann
2016-04-01
The presence of deep exhumed crustal rocks with a dominant but contrasting mineralogy results in shear concentration in the rheological weakest layer, which exhibits contrasting patterns of fabrics and thermal conditions during their formation. We tested a combination of methodologies including microstructural and textural investigations, geochronology and geothermometry on deformed rocks from exhumed strike-slip fault, Ailao Shan-Red River, SE, Asian. Results indicate that the exhumed deep crustal rocks since late Oligocene (ca. 28 Ma) to Pliocene (ca. 4 Ma) typically involve dynamic microstructural, textural and thermal evolution processes, which typically record a progressive deformation and syn-kinematic reactions from ductile to semi-ductile and brittle behavior during exhumation. This transformation also resulted in dramatic strength reduction that promoted strain localization along the strike-slip and transtensional faults. Detailed analysis has revealed the co-existence of microfabrics ranging from high-temperatures (granulite facies conditions) to overprinting low-temperatures (lower greenschist facies conditions). The high-temperature microstructures and textures are in part or entirely altered by subsequent, overprinting low-temperature shearing. In quartz-rich rocks, quartz was deformed in the dislocation creep regime and records transition of microfabrics and slip systems during decreasing temperature, which lasted until retrogression related to final exhumation. As a result, grain-size reduction associated by fluids circulating within the strike-slip fault zone at brittle-ductile transition leads to rock softening, which resulted in strain localization, weak rock rheology and the overall hot thermal structure of the crust. Decompression occurred during shearing and as a result of tectonic exhumation. All these results demonstrate that the ductile to ductile-brittle transition involves a combination of different deformation mechanisms, rheological transition features and feedbacks between deformation, decreasing temperature and fluids.
Global rates of mantle serpentinization and H2 release at oceanic transform faults
NASA Astrophysics Data System (ADS)
Ruepke, Lars; Hasenclever, Joerg
2017-04-01
The cycling of seawater through the ocean floor is the dominant mechanism of biogeochemical exchange between the solid earth and the global ocean. Crustal fluid flow appears to be typically associated with major seafloor structures, and oceanic transform faults (OTF) are one of the most striking yet poorly understood features of the global mid-ocean ridge systems. Fracture zones and transform faults have long been hypothesized to be sites of substantial biogeochemical exchange between the solid Earth and the global ocean. This is particularly interesting with regard to the ocean biome. Deep ocean ecosystems constitute 60% of it but their role in global ocean biogeochemical cycles is much overlooked. There is growing evidence that life is supported by chemosynthesis at hydrothermal vents but also in the crust, and therefore this may be a more abundant process than previously thought. In this context, the serpentine forming interaction between seawater and cold lithospheric mantle rocks is particularly interesting as it is also a mechanism of abiotic hydrogen and methane formation. Interestingly, a quantitative global assessment of mantle serpentinization at oceanic transform faults in the context of the biogeochemical exchange between the seafloor and the global ocean is still largely missing. Here we present the results of a set of 3-D thermo-mechanical model calculations that investigate mantle serpentinization at OTFs for the entire range of globally observed slip rates and fault lengths. These visco-plastic models predict the OTF thermal structure and the location of crustal-scale brittle deformation, which is a prerequisite for mantle serpentinization to occur. The results of these simulations are integrated with information on the global distribution of OTF lengths and slip rates yielding global estimates on mantle serpentinization and associated H2 release. We find that OTFs are potentially sites of intense crustal fluid flow and are in terms of H2 release almost as important as MOR-related serpentinization.
NASA Astrophysics Data System (ADS)
Bhadra, Subhadip; Nasipuri, Pritam
2017-03-01
We present mesoscale structural development across the Nilgiri Block and the flanking Moyar and Bhavani shear zones in south India, and detailed mineral-chemical and geothermobarometric studies of a garnet-bearing quartzofeldspathic gneiss from the easternmost part of the Moyar shear zone. Barring a narrow (< 100 μm) rim domain, major element distribution within garnet porphyroblasts reveals complete chemical homogenization. The absence of growth zoning in garnet porphyroblasts may suggest a protracted post-garnet growth residence period of the rock at elevated temperatures. Chemical zoning near garnet rim reflects the signature of both retrograde net-transfer (ReNTR) and retrograde exchange (ReER) equilibria. The ReNTR-equilibrium is recognized by prominent Mn kick-up in garnet, whereas the ReER-equilibrium is identified by divergence of Fe and Mg between garnet and biotite. Diffusion modelling, though qualitative, of the observed chemical zoning in garnet suggests an initial phase of rapid ( 150 °C/Ma) cooling, which may have been achieved by tectonic-extrusion-induced exhumation. Pressure-temperature conditions for peak, ReNTR and ReER are constrained, respectively, at 900 °C; 9-11 kbar, 735 °C; 8 kbar and 685 °C; 7.8 kbar. Analyses of structural fabrics establish oppositely verging nature of the Moyar and Bhavani shear zone and may suggest a doubly vergent orogenic development, with the former as prowedge and the latter as retrowedge. The presence of the Nilgiri Block as a topographically elevated region between these oppositely dipping thrust faults indeed corroborates a doubly vergent orogenic setup. The tectonic scenario is comparable with a continent-continent collision type accretionary tectonics. Peak high-P granulite facies metamorphism and post-peak long residence period of the studied quartzofeldspathic gneiss at deep crustal level suitably fit into the Neoarchean crustal dynamics resulting in crustal thickening, in the order of 41 km, within the Nilgiri Block.
Imaging the Magmatic System of Erebus Volcano, Antarctica using the Magnetotelluric Method
NASA Astrophysics Data System (ADS)
Hill, G.; Wannamaker, P. E.; Stodt, J. A.; Unsworth, M. J.; Maris, V.; Bedrosian, P.; Wallin, E.; Kordy, M. A.; Ogawa, Y.; Kyle, P. R.; Uhlmann, D. F.
2017-12-01
Erebus volcano, on Ross Island, Antarctica, in the south west Ross Sea, offers a unique opportunity to understand the magmatic system of an active alkaline volcano, and rifting within the West Antarctica Rift System. Erebus has the world's only persistent phonolite lava lake in its summit crater, and thus provides a window into the heart of a degassing volcano's magmatic system. Phonolite magmas like those at Erebus have been responsible for devastating eruptions (e.g. Pompeii 79 AD; Tambora 1815). Petrologic models suggest that Erebus is undergoing fractional crystallisation of deep mantle-derived parental basanite magma in one or more crustal magma chambers. We are using magnetotelluric (MT) methods and instrumentation, especially developed for use in Antarctica, to image the resistivity structure (magmatic system) of Erebus and the older volcanoes forming Ross Island. In addition, we mapping the rifted crustal structure and examining the mantle source of the magma and the role that the Terror Rift system plays in the active volcanism. Data collection occurred over three field seasons from 2014-2017. Measurements were made at 129 locations on Ross Island and vicinity. A pool of 11 Phoenix Geophysics V5 systems coupled with Numeric Resources high impedance preamplifiers were used. A primary goal of this work is to constrain the distribution of melt within and beneath the volcanic edifice. In addition, we are imaging the interpreted mantle source region for Erebus magmas and investigating the role that the Terror Rift system plays in generating and focusing magmatism. Preliminary modelling suggests that we are able to resolve the crustal residence zones and the path taken by the magma as it ascends from the mantle to the surface. Our work provides new insight into the formation of phonolite magma and has implications for understanding the magmatic process occurring in rift systems globally. It further provides an opportunity to compare volcanic processes in both compressional and extensional tectonics settings.
NASA Astrophysics Data System (ADS)
Arnoux, G. M.; Toomey, D. R.; Hooft, E. E. E.; Wilcock, W. S. D.
2017-12-01
We present tomographic images of the intermediate-spreading Endeavour Segment that constrain the nature of an axial magmatic system as it transitions from asthenospheric- to lithospheric-dominated rheologies. We use seismic energy from 5500 air gun shots refracted through the crust (Pg), reflected off the Moho (PmP), and refracted below the Moho (Pn)—as recorded by 64 OBSs from the Endeavour tomography experiment—to image the isotropic and anisotropic P-wave velocity structure of the topmost mantle and crust, as well as crustal thickness. At crustal depths, results reveal a low-velocity zone (LVZ)—inferred to be the axial magmatic system—that: (i) is continuous along the entire Endeavour Segment at depths of 2-3 km below seafloor and closely follows the axis of spreading, (ii) broadens and becomes more discontinuous at lower crustal depths, and (iii) has its largest amplitude from the mid- to lower-crust at the segment center. The ridge-tracking trend of the mid-crustal LVZ is in contrast to the crustal thickness pattern; in particular, a swath of thin crust is skewed with respect to both the ridge axis and the mid-crustal magmatic system and connects two overlapping spreading centers bounding the segment. The trend of thinner crust, however, is aligned with the mantle LVZ, which constrains the thermal structure and distribution of melt within the topmost mantle. The systematic depth variation of the map-view orientation and structure of the magmatic system indicates a distinct transition from a broad, cross-axis regime in the topmost asthenosphere governed by a regional, north-south trending thermal structure, to a narrow, cross-axis regime in the mid- to upper-crust governed by lithospheric rifting, magma injection, and hydrothermal processes. The lower-crustal magmatic system connects these two regimes. We also postulate that accumulation and differentiation of magma immediately beneath the crust-mantle boundary increases temperatures and suppresses plagioclase crystallization, thereby reducing the depth of lower crustal accretion and resulting in the observed north-south trending swath of thinner crust.
Paleomagnetic constraints on deformation of superfast-spread oceanic crust exposed at Pito Deep Rift
NASA Astrophysics Data System (ADS)
Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J. A.
2011-12-01
The uppermost oceanic crust produced at the superfast spreading (˜142 km Ma-1, full-spreading rate) southern East Pacific Rise (EPR) during the Gauss Chron is exposed in a tectonic window along the northeastern wall of the Pito Deep Rift. Paleomagnetic analysis of fully oriented dike (62) and gabbro (5) samples from two adjacent study areas yield bootstrapped mean remanence directions of 38.9° ± 8.1°, -16.7° ± 15.6°, n = 23 (Area A) and 30.4° ± 8.0°, -25.1° ± 12.9°, n = 44 (Area B), both are significantly distinct from the Geocentric Axial Dipole expected direction at 23° S. Regional tectonics and outcrop-scale structural data combined with bootstrapped remanence directions constrain models that involve a sequence of three rotations that result in dikes restored to subvertical orientations related to (1) inward-tilting of crustal blocks during spreading (Area A = 11°, Area B = 22°), (2) clockwise, vertical-axis rotation of the Easter Microplate (A = 46°, B = 44°), and (3) block tilting at Pito Deep Rift (A = 21°, B = 10°). These data support a structural model for accretion at the southern EPR in which outcrop-scale faulting and block rotation accommodates spreading-related subaxial subsidence that is generally less than that observed in crust generated at a fast spreading rate exposed at Hess Deep Rift. These data also support previous estimates for the clockwise rotation of crust adjacent to the Easter Microplate. Dike sample natural remanent magnetization (NRM) has an arithmetic mean of 5.96 A/m ± 3.76, which suggests that they significantly contribute to observed magnetic anomalies from fast- to superfast-spread crust.
NASA Astrophysics Data System (ADS)
Muñoz, Gerard; Weckmann, Ute; Pek, Josef; Kováčiková, Světlana; Klanica, Radek
2018-03-01
The West Bohemia/Vogtland region, characterized by the intersection of the Eger (Ohře) Rift and the Mariánské Lázně fault, is a geodynamically active area exhibiting repeated occurrence of earthquake swarms, massive CO2 emanations and mid Pleistocene volcanism. The Eger Rift is the only known intra-continental region in Europe where such deep seated, active lithospheric processes currently take place. We present an image of electrical resistivity obtained from two-dimensional inversion of magnetotelluric (MT) data acquired along a regional profile crossing the Eger Rift. At the near surface, the Cheb basin and the aquifer feeding the mofette fields of Bublák and Hartoušov have been imaged as part of a region of very low resistivity. The most striking resistivity feature, however, is a deep reaching conductive channel which extends from the surface into the lower crust spatially correlated with the hypocentres of the seismic events of the Nový Kostel Focal Zone. This channel has been interpreted as imaging a pathway from a possible mid-crustal fluid reservoir to the surface. The resistivity model reinforces the relation between the fluid circulation along deep-reaching faults and the generation of the earthquakes. Additionally, a further conductive channel has been revealed to the south of the profile. This other feature could be associated to fossil hydrothermal alteration related to Mýtina and/or Neualbenreuth Maar structures or alternatively could be the signature of a structure associated to the suture between the Saxo-Thuringian and Teplá-Barrandian zones, whose surface expression is located only a few kilometres away.
Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle
Merlini, Marco; Crichton, Wilson A.; Hanfland, Michael; Gemmi, Mauro; Müller, Harald; Kupenko, Ilya; Dubrovinsky, Leonid
2012-01-01
Carbon-bearing solids, fluids, and melts in the Earth's deep interior may play an important role in the long-term carbon cycle. Here we apply synchrotron X-ray single crystal micro-diffraction techniques to identify and characterize the high-pressure polymorphs of dolomite. Dolomite-II, observed above 17 GPa, is triclinic, and its structure is topologically related to CaCO3-II. It transforms above 35 GPa to dolomite-III, also triclinic, which features carbon in [3 + 1] coordination at the highest pressures investigated (60 GPa). The structure is therefore representative of an intermediate between the low-pressure carbonates and the predicted ultra-high pressure carbonates, with carbon in tetrahedral coordination. Dolomite-III does not decompose up to the melting point (2,600 K at 43 GPa) and its thermodynamic stability demonstrates that this complex phase can transport carbon to depths of at least up to 1,700 km. Dolomite-III, therefore, is a likely occurring phase in areas containing recycled crustal slabs, which are more oxidized and Ca-enriched than the primitive lower mantle. Indeed, these phases may play an important role as carbon carriers in the whole mantle carbon cycling. As such, they are expected to participate in the fundamental petrological processes which, through carbon-bearing fluids and carbonate melts, will return carbon back to the Earth’s surface. PMID:22869705
Rayleigh-wave tomography of the Ontong-Java Plateau
NASA Astrophysics Data System (ADS)
Richardson, W. Philip; Okal, Emile A.; Van der Lee, Suzan
2000-02-01
The deep structure of the Ontong-Java Plateau (OJP) in the westcentral Pacific is investigated through a 2-year deployment of four PASSCAL seismic stations used in a passive tomographic experiment. Single-path inversions of 230 Rayleigh waveforms from 140 earthquakes mainly located in the Solomon Trench confirm the presence of an extremely thick crust, with an average depth to the Mohorovičić discontinuity of 33 km. The thickest crusts (38 km) are found in the southcentral part of the plateau, around 2°S, 157°E. Lesser values remaining much thicker than average oceanic crust (15-26 km) are found on either side of the main structure, suggesting that the OJP spills over into the Lyra Basin to the west. Such thick crustal structures are consistent with formation of the plateau at the Pacific-Phoenix ridge at 121 Ma, while its easternmost part may have formed later (90 Ma) on more mature lithosphere. Single-path inversions also reveal a strongly developed low-velocity zone at asthenospheric depths in the mantle. A three-dimensional tomographic inversion resolves a low-velocity root of the OJP extending as deep as 300 km, with shear velocity deficiencies of ˜5%, suggesting the presence of a keel, dragged along with the plateau as the latter moves as part of the drift of the Pacific plate over the mantle.
NASA Astrophysics Data System (ADS)
Ma, X.; Lowry, A. R.
2015-12-01
The composition and thickness of crustal layering is fundamental to understanding the evolution and dynamics of continental lithosphere. Lowry and Pérez-Gussinyé (2011) found that the western Cordillera of the United States, characterized by active deformation and high heat flow, is strongly correlated with low bulk crustal seismic velocity ratio. They interpreted this observation as evidence that quartz controls continental tectonism and deformation. We will present new imaging of two-layer crustal composition and structure from cross-correlation of observed receiver functions and model synthetics. The cross-correlation coefficient of the two-layer model increases significantly relative to an assumed one-layer model, and the lower crustal thickness map from raw two-layer modeling (prior to Bayesian filtering with gravity models and Optimal Interpolation) clearly shows Colorado plateau and Appalachian boundaries, which are not apparent in upper crustal models, and also the high vP/vS fill the most of middle continental region while low vP/vS are on the west and east continental edge. In the presentation, we will show results of a new algorithm for joint Bayesian inversion of thickness and vP/vS of two-layer continental crustal structure. Recent thermodynamical modeling of geophysical models based on lab experiment data (Guerri et al., 2015) found that a large impedance contrast can be expected in the midcrust due to a phase transition that decreases plagioclase and increases clinopyroxene, without invoking any change in crustal chemistry. The depth of the transition depends on pressure, temperature and hydration, and in this presentation we will compare predictions of layer thicknesses and vP/vS predicted by mineral thermodynamics to those we observe in the USArray footprint.
Constraining the crustal root geometry beneath Northern Morocco
NASA Astrophysics Data System (ADS)
Díaz, J.; Gil, A.; Carbonell, R.; Gallart, J.; Harnafi, M.
2016-10-01
Consistent constraints of an over-thickened crust beneath the Rif Cordillera (N. Morocco) are inferred from analyses of recently acquired seismic datasets including controlled source wide-angle reflections and receiver functions from teleseismic events. Offline arrivals of Moho-reflected phases recorded in RIFSIS project provide estimations of the crustal thicknesses in 3D. Additional constraints on the onshore-offshore transition are inferred from shots in a coeval experiment in the Alboran Sea recorded at land stations in northern Morocco. A regional crustal thickness map is computed from all these results. In parallel, we use natural seismicity data collected throughout TopoIberia and PICASSO experiments, and from a new RIFSIS deployment, to obtain receiver functions and explore the crustal thickness variations with a H-κ grid-search approach. This larger dataset provides better resolution constraints and reveals a number of abrupt crustal changes. A gridded surface is built up by interpolating the Moho depths inferred for each seismic station, then compared with the map from controlled source experiments. A remarkably consistent image is observed in both maps, derived from completely independent data and methods. Both approaches document a large crustal root, exceeding 50 km depth in the central part of the Rif, in contrast with the rather small topographic elevations. This large crustal thickness, consistent with the available Bouguer anomaly data, favors models proposing that the high velocity slab imaged by seismic tomography beneath the Alboran Sea is still attached to the lithosphere beneath the Rif, hence pulling down the lithosphere and thickening the crust. The thickened area corresponds to a quiet seismic zone located between the western Morocco arcuate seismic zone, the deep seismicity area beneath western Alboran Sea and the superficial seismicity in Alhoceima area. Therefore, the presence of a crustal root seems to play also a major role in the seismicity distribution in northern Morocco.
NASA Astrophysics Data System (ADS)
Elbra, Tiiu; Karlqvist, Ronnie; Lassila, Ilkka; Høgström, Edward; Pesonen, Lauri J.
2011-01-01
Petrophysical, in particular seismic velocity, measurements of the Outokumpu deep drill core (depth 2.5 km) have been carried out to characterize the geophysical nature of the Paleoproterozoic crustal section of eastern Finland and to find lithological and geophysical interpretations to the distinct crustal reflectors as observed in seismic surveys. The results show that different lithological units can be identified based on the petrophysical data. The density of the samples remained nearly constant throughout the drilled section. Only diopside-tremolite skarns and black schists exhibit higher densities. The samples are dominated by the paramagnetic behaviour with occasional ferromagnetic signature caused by serpentinitic rocks. Large variations in seismic velocities, both at ambient pressure and under in situ crustal conditions are observed. The porosity of the samples, which is extremely low, is either intrinsic by nature or caused by decompaction related to fracturing during the core retrieval. It is noteworthy that these microfractures have dramatically lowered the VP and VS values. From the measured velocities and density data we have calculated the seismic impedances, Young's modulus and Poisson's ratios for the lithological units of the Outokumpu section and from these data the reflection coefficients for the major lithological boundaries, evident in the surveyed section, were determined. The data show that the strong and distinct reflections visible in wide-angle seismic surveys are caused by interfaces between diopside-tremolite skarn and either serpentinites, mica schist or black schist.
CRUST 5.1: A global crustal model at 5° x 5°
Mooney, Walter D.; Laske, Gabi; Masters, T. Guy
1998-01-01
We present a new global model for the Earth's crust based on seismic refraction data published in the period 1948–1995 and a detailed compilation of ice and sediment thickness. An extensive compilation of seismic refraction measurements has been used to determine the crustal structure on continents and their margins. Oceanic crust is modeled with both a standard model for normal oceanic crust, and variants for nonstandard regions, such as oceanic plateaus. Our model (CRUST 5.1) consists of 2592 5° × 5° tiles in which the crust and uppermost mantle are described by eight layers: (1) ice, (2) water, (3) soft sediments, (4) hard sediments, (5) crystalline upper, (6) middle, (7) lower crust, and (8) uppermost mantle. Topography and bathymetry are adopted from a standard database (ETOPO-5). Compressional wave velocity in each layer is based on field measurements, and shear wave velocity and density are estimated using recently published empirical Vp- Vs and Vp-density relationships. The crustal model differs from previous models in that (1) the thickness and seismic/density structure of sedimentary basins is accounted for more completely, (2) the velocity structure of unmeasured regions is estimated using statistical averages that are based on a significantly larger database of crustal structure, (3) the compressional wave, shear wave, and density structure have been explicitly specified using newly available constraints from field and laboratory studies. Thus this global crustal model is based on substantially more data than previous models and differs from them in many important respects. A new map of the thickness of the Earth's crust is presented, and we illustrate the application of this model by using it to provide the crustal correction for surface wave phase velocity maps. Love waves at 40 s are dominantly sensitive to crustal structure, and there is a very close correspondence between observed phase velocities at this period and those predicted by CRUST 5.1. We find that the application of crustal corrections to long-period (167 s) Rayleigh waves significantly increases the variance in the phase velocity maps and strengthens the upper mantle velocity anomalies beneath stable continental regions. A simple calculation of crustal isostacy indicates significant lateral variations in upper mantle density. The model CRUST 5.1 provides a complete description of the physical properties of the Earth's crust at a scale of 5° × 5° and can be used for a wide range of seismological and nonseismological problems.
Use of MAGSAT anomaly data for crustal structure and mineral resources in the US Midcontinent
NASA Technical Reports Server (NTRS)
Carmichael, R. S. (Principal Investigator)
1982-01-01
Personnel matters related to the processing and interpretation of MAGSAT data are reported. Efforts are being initiated to determine the crustal geology, structure, and potential economic consequences to be deduced from the satellite magnetic anomalies in conjuction with correlative data.
NASA Astrophysics Data System (ADS)
Seillé, Hoël; Salas, Ramon; Pous, Jaume; Guimerà, Joan; Gallart, Josep; Torne, Montserrat; Romero-Ruiz, Ivan; Diaz, Jordi; Ruiz, Mario; Carbonell, Ramon; Mas, Ramón
2015-11-01
The Iberian Chain is a Cenozoic intraplate thrust belt located within the Iberian plate. Unlike other belts in the Iberia Peninsula, the scarcity of geophysical studies in this area results in a number of unknowns about its crustal structure. The Iberian Chain crust was investigated by means of a NE-SW refraction/wide-angle reflection seismic transect and two magnetotelluric profiles across the chain, oriented along the same direction. The seismic profile was designed to sample the crust by means of three shots designed to obtain a reversed profile. The resulting velocity-depth model shows a moderate thickening of the crust toward the central part of the profile, where crustal thickness reaches values above 40 km, thinning toward de SW Tajo and NE Ebro foreland basins. The crustal thickening is concentrated in the upper crust. The seismic results are in overall agreement with regional trends of Bouguer gravity anomaly and the main features of the seismic model were reproduced by gravity modeling. The magnetotelluric data consist of 39 sites grouped into two profiles, with periods ranging from 0.01 s to 1000 s. Dimensionality analyses show significant 3D effects in the resistivity structure and therefore we carried out a joint 3D inversion of the full impedance tensor and magnetic transfer functions. The Mesozoic and Cenozoic basins along the Chain are well characterized by shallow high conductive zones and low velocities. Elongated conductors reaching mid-crustal depths evidence the presence of major faults dominating the crustal structure. The results from the interpretation of these complementary geophysical data sets provided the first images of the crustal structure of the Iberian Chain. They are consistent with a Cenozoic shortening responsible of the upper crust thickening as well as of the uplift of the Iberian Chain and the generation of its present day topography.
Mantle downwelling and crustal convergence - A model for Ishtar Terra, Venus
NASA Technical Reports Server (NTRS)
Kiefer, Walter S.; Hager, Bradford H.
1991-01-01
Models of viscous crustal flow driven by gradients in topography are presented in order to explore quantitatively the implications of the hypothesis that Ishtar is a crustal convergence zone overlying a downwelling mantle. Assuming a free-slip surface boundary condition, it is found that, if the crustal convergence hypothesis is correct, then the crustal thickness in the plains surrounding Ishtar can be no more than about 25 km thick. If the geothermal gradient is larger or the rheology is weaker, the crust must be even thinner for net crustal convergence to be possible. This upper bound is in good agreement with the several independent estimates of crustal thickness of 15-30 km in the plains of Venus based on modeling of the spacing of tectonic features and of impact crater relaxation. Although Ishtar is treated as a crustal convergence zone, this crustal flow model shows that under some circumstances, near-surface material may actually flow away from Ishtar, providing a possible explanation for the grabenlike structures in Fortuna Tessera.
NASA Astrophysics Data System (ADS)
Toy, Virginia; Billia, Marco; Easingwood, Richard; Kirilova, Martina; Kluge, Emma; Sauer, Katrina; Sutherland, Rupert; Timms, Nicholas; Townend, John
2017-04-01
Our current knowledge of microstructural and mechanical controls on rock resistivity is such that identical magnetotelluric (MT) anomalies could result from a highly mineralized but extinct shear zone, or from an unmineralized, fluid saturated, active shear zone. In pursuit of the ability to interpret the structure and activity (rather than just the presence) of buried geological structures from electromagnetic data, we are investigating correlations between rock structure and electrical properties of ductile shear zone rocks recovered from the active Alpine Fault Zone, New Zealand. Multi-scale measurements of resistivity exist for this zone: its ductile portions have anomalously high electrical conductivity identified in MT models constructed as part of the South Island Geophysical Transect (SIGHT). Additionally wireline resistivities were measured in situ to 820 m depth during the recent Deep Fault Drilling Project (DFDP-2), and resisistivity of hand samples has been measured at laboratory conditions [Kluge et al., Abstract EGU2017-10139]. In exhumed and borehole samples, the distributions and arrangements of conductivity carriers - graphite, amorphous carbon, and grain boundary pores that would have contained brines or other conductive fluids at depth, have been characterised. These vary systematically according to the total ductile shear strain they have accommodated [Kirilova et al., Abstract EGU2017-5773; Sauer et al., Abstract EGU2017-10485]. Transmission electron microscopy analyses of grain boundaries also indicate that they contain carbon. The next phases of our investigation involve: (i) construction of crustal fluid composition models by quantitative microstructural and compositional/mineralogical mapping of fluid remnants and their solid residues and calibration of these using in situ measurements of fluid composition in DFDP-2 at depths to 820 m; (ii) calculation of resistivities for real microstructures based on electrical properties of the individual component minerals and fluids - for microstructures fully characterised in three-dimensions; (iii) measurement of the effects of dynamic linking of phases during ductile creep of solid rock on complex resistivity of DFDP samples at a range of realistic crustal temperatures and pressures. A particular challenge in this study is to determine appropriate scaling relationships of electrical properties among samples, boreholes, and MT models because dielectric constants of minerals depend on frequency of the imposed current, which varies with scale and, consequently, measurement method. We invite discussion of strategies to overcome this.
NASA Astrophysics Data System (ADS)
Abdelmalak, M. M.; Planke, S.; Millett, J.; Jerram, D. A.; Maharjan, D.; Zastrozhnov, D.; Schmid, D. W.; Faleide, J. I.; Svensen, H.; Myklebust, R.
2017-12-01
The Vøring Margin offshore mid-Norway is a classic volcanic rifted margin, characterized by voluminous Paleogene igneous rocks present on both sides of the continent-ocean boundary. The margin displays (1) thickened transitional crust with a well-defined lower crustal high-velocity body and prominent deep crustal reflections, the so-called T-Reflection, (2) seaward dipping reflector (SDR) wedges and a prominent northeast-trending escarpment on the Vøring Marginal High, and (3) extensive sill complexes in the adjacent Cretaceous Vøring Basin. During the last decade, new 2D and 3D industry seismic data along with improved processing techniques, such as broadband processing and noise reduction processing sequences, have made it possible to image and map the breakup igneous complex in much greater detail than previously possible. Our interpretation includes a combination of (1) seismic horizon picking, (2) integrated seismic-gravity-magnetic (SGM) interpretation, (3) seismic volcanostratigraphy, and (4) igneous seismic geomorphology. The results are integrated with published wide-angle seismic data, re-analyzed borehole data including new geochronology, and new geodynamic modeling of the effects of magmatism on the thermal history and subsidence of the margin. The extensive sill complexes and associated hydrothermal vent complexes in the Vøring Basin have a Paleocene-Eocene boundary age based on high-precision U/Pb dating combined with seismic mapping constraints. On the marginal high, our results show a highly variable crustal structure, with a pre-breakup configuration consisting of large-scale structural highs and sedimentary basins. These structures were in-filled and covered by basalt flows and volcanogenic sediments during the early stages of continental breakup in the earliest Eocene. Subsequently, rift basins developed along the continent-ocean boundary and where infilled by up to ca. 6 km thick basalt sequences, currently imaged as SDRs fed by a dike swarm imaged on seismic data. The addition of magma within the crust had a prominent effect on the thermal history and hydrocarbon maturation of the sedimentary basin, causing uplift, delayed subsidence, and possibly contributing to the triggering of global warming during the Paleocene-Eocene Thermal Maximum (PETM).
Drilling the Oceanic Lower Crust and Mantle
1989-11-01
East Pacific Rise near 21 ...A. Bideau, R.D. and Hekinian, R. 1983, Ultramafics and mafic rocks from the Garret transform fault near 13’S on the East Pacific Rise : igneous...Science Foundation. older crust formed at the East Pacific Rise . The JOIDES Planning Committee should immediately constitute a Deep Crustal
NASA Astrophysics Data System (ADS)
Rochette, P.
1994-12-01
In their letter Lorio et al. (1993) recently explored the likelihood that the deflection with respect to present day magnetic North of dipolar lower crustal magnetic anomalies are caused by an induced magnetization deflected by strong anisotropy of magnetic susceptibility (AMS) rather than the usual explanation of an ancient natural remanent magnetization of a rotated body. Such an alternative would solve the theoretical problems raised by the stability of Natural Remanent Magnetization (NRM) at high temperature in the usually coarse grained magnetite bearing source rocks necessary to create large magnetic anomalies (Shive, 1989). They present a case study of two deep anomalies in southern Italy where the deflection is 30 to 40 deg. From a model of an anisotropic cubic source and an AMS dataset from representative deep crustal rocks from various part of the world, they conclude that no significant deflection of anomaly axis can be due to the average anisotropy ratio P(prime) = 1.5 observed in the dataset.
NASA Astrophysics Data System (ADS)
Patro, Prasanta K.; Sarma, S. V. S.; Naganjaneyulu, K.
2014-01-01
crustal as well as the upper mantle lithospheric electrical structure of the Southern Granulite Terrain (SGT) is evaluated, using the magnetotelluric (MT) data from two parallel traverses: one is an 500 km long N-S trending traverse across SGT and another a 200 km long traverse. Data space Occam 3-D inversion was used to invert the MT data. The electrical characterization of lithospheric structure in SGT shows basically a highly resistive (several thousands of Ohm meters) upper crustal layer overlying a moderately resistive (a few hundred Ohm meters) lower crustal layer which in turn is underlain by the upper mantle lithosphere whose resistivity shows significant changes along the traverse. The highly resistive upper crustal layer is interspersed with four major conductive features with three of them cutting across the crustal column, bringing out a well-defined crustal block structure in SGT with individual highly resistive blocks showing correspondence to the geologically demarcated Salem, Madurai, and Trivandrum blocks. The 3-D model also brought out a well-defined major crustal conductor located in the northern half of the Madurai block. The electrical characteristics of this south dipping conductor and its close spatial correlation with two of the major structural elements, viz., Karur-Oddanchatram-Kodaikanal Shear Zone and Karur-Kamban-Painavu-Trichur Shear Zone, suggest that this conductive feature is closely linked to the subduction-collision tectonic processes in the SGT, and it is inferred that the Archean Dharwar craton/neoproterozoic SGT terrain boundary lies south of the Palghat-Cauvery shear zone. The results also showed that the Achankovil shear zone is characterized by a well-defined north dipping conductive feature. The resistive block adjoining this conductor on the southern side, representing the Trivandrum block, is shown to be downthrown along this north dipping crustal conductor relative to the Madurai block, suggesting a northward movement of Trivandrum block colliding against the Madurai block. The lithospheric upper mantle electrical structure of the SGT up to a depth of 100 km may be broadly divided into two distinctly different segments, viz., northern and southern segments. The northern lithospheric segment, over a major part, is characterized by a thick resistive upper mantle, while the southern one is characterized by a dominantly conductive medium suggesting a relatively thinned lithosphere in the southern segment.
Compilation of seismic-refraction crustal data in the Soviet Union
Rodriguez, Robert; Durbin, William P.; Healy, J.H.; Warren, David H.
1964-01-01
The U.S. Geological Survey is preparing a series of terrain atlases of the Sino-Soviet bloc of nations for use in a possible nuclear-test detection program. Part of this project is concerned with the compilation and evaluation of crustal-structure data. To date, a compilation has been made of data from Russian publications that discuss seismic refraction and gravity studies of crustal structure. Although this compilation deals mainly with explosion seismic-refraction measurements, some results from earthquake studies are also included. None of the data have been evaluated.
Receiver Function Study of the Crustal Structure Beneath the Northern Andes (colombia)
NASA Astrophysics Data System (ADS)
Poveda, E.; Monsalve, G.; Vargas-Jimenez, C. A.
2013-05-01
We have investigated crustal thickness beneath the Northern Andes with the teleseismic receiver function technique. We used teleseismic data recorded by an array of 18 broadband stations deployed by the Colombian Seismological Network, and operated by the Colombian Geological Survey. We used the primary P-to-S conversion and crustal reverberations to estimate crustal thickness and average Vp/Vs ratio; using Wadati diagrams, we also calculated the mean crustal Vp/Vs ratio around stations to further constrain the crustal thickness estimation. In northern Colombia, near the Caribbean coast, the estimated crustal thickness ranges from 25 to 30 km; in the Middle Magdalena Valley, crustal thickness is around 40 km; beneath the northern Central Cordillera, the Moho depth is nearly 40 km; at the Ecuador-Colombia border, beneath the western flank of the Andes, the estimated thickness is about 46 km. Receiver functions at a station at the craton in South East Colombia, near the foothills of the Eastern Cordillera, clearly indicate the presence of the Moho discontinuity at a depth near 36 km. The greatest values of crustal thickness occur beneath a plateau (Altiplano Cundiboyacense) on the Eastern Cordillera, near the location of Bogota, with values around 58 km. Receiver functions in the volcanic areas of the south-western Colombian Andes do not show a systematic signal from the Moho, indicating abrupt changes in Moho geometry. Signals at stations on the Eastern Cordillera near Bogota reveal a highly complex crustal structure, with a combination of sedimentary layers up to 9 km thick, dipping interfaces, low velocity layers, anisotropy and/or lateral heterogeneity that still remain to be evaluated. This complexity obeys to the location of these stations at a region of a highly deformed fold and thrust belt.
Inverse models of gravity data from the Red Sea-Aden-East African rifts triple junction zone
NASA Astrophysics Data System (ADS)
Tiberi, Christel; Ebinger, Cynthia; Ballu, Valérie; Stuart, Graham; Oluma, Befekadu
2005-11-01
The combined effects of stretching and magmatism permanently modify crustal structure in continental rifts and volcanic passive margins. The Red Sea-Gulf of Aden-Ethiopian rift triple junction zone provides a unique opportunity to examine incipient volcanic margin formation above or near an asthenospheric upwelling. We use gravity inversions and forward modelling to examine lateral variations in crust and upper mantle structure across the Oligocene flood basalt province, which has subsequently been extended to form the Red Sea, Gulf of Aden and Main Ethiopian rifts. We constrain and test the obtained models with new and existing seismic estimates of crustal thickness. In particular, we predict crustal thickness across the uplifted plateaux and rift valleys, and calibrate our results with recent receiver function analyses. We discuss the results together with a 3-D distribution of density contrasts in terms of magmatic margin structure. The main conclusions are: (1) a denser (+240 kg m-3) and/or a thinner crust (23 km) in the triple junction zone of the Afar depression; (2) a shallower Moho is found along the Main Ethiopian rift axis, with crustal thickness values decreasing from 32-33 km in the south to 24 km beneath the southern Afar depression; (3) thicker crust (~40 km) is present beneath the broad uplifted Oligocene flood basalt province, suggesting that crustal underplating compensates most of the plateau uplift and (4) possible magmatic underplating or a segmentation in the rift structure is observed at ~8°N, 39°W beneath several collapsed caldera complexes. These results indicate that magmatism has profoundly changed crustal structure throughout the flood basalt province.
Zhao, J.; Mooney, W.D.; Zhang, X.; Li, Z.; Jin, Z.; Okaya, N.
2006-01-01
We present new seismic refraction/wide-angle-reflection data across the Altyn Tagh Range and its adjacent basins. We find that the crustal velocity structure, and by inference, the composition of the crust changes abruptly beneath the Cherchen fault, i.e., ???100 km north of the northern margin of the Tibetan plateau. North of the Cherchen fault, beneath the Tarim basin, a platform-type crust is evident. In contrast, south the Cherchen fault the crust is characterized by a missing high-velocity lower-crustal layer. Our seismic model indicates that the high topography (???3 km) of the Altyn Tagh Range is supported by a wedge-shaped region with a seismic velocity of 7.6-7.8 km/s that we interpret as a zone of crust-mantle mix. We infer that the Altyn Tagh Range formed by crustal-scale strike-slip motion along the North Altyn Tagh fault and northeast-southwest contraction over the range. The contraction is accommodated by (1) crustal thickening via upper-crustal thrusting and lower-crustal flow (i.e., creep), and (2) slip-parallel (SW-directed) underthrusting of only the lower crust and mantle of the eastern Tarim basin beneath the Altyn Tagh Range. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Renqi; Xu, Xiwei; He, Dengfa; Liu, Bo; Tan, Xibin; Wang, Xiaoshan
2016-04-01
On 3 July 2015, the Mw 6.5 Pishan earthquake occurred in the western Kunlun Mountains front, at the northern margin of the Tibetan Plateau. To reveal the sedimentary-tectonic framework of the seismically active structure, three high-resolution seismic reflection profiles and well drilling data were collected for seismic interpretation. The western Kunlun Mountains and Tarim Basin have two gypseous detachments and one basement detachment that control the tectonic framework and structural deformation. The upper gypseous detachment (D1) is in the lower Paleocene, and the middle gypseous detachment (D2) is in the Middle to Lower Cambrian. A Neogene shallow thrust system is developing above D1 and includes the Zepu fault (F2) and Mazar Tagh fault (F3). A deep thrust system is developing between D1 and D2 and forms a large-scale structural wedge beneath the western Kunlun Mountains front. The Pishan Mw 6.5 earthquake was triggered on a frontal blind fault of this deep thrust system. The lower detachment is in the Proterozoic basement (D3), which extends into the Tarim Basin and develops another deep thrust (F4) beneath the F3 belt. D1, D2, D3, and the Tiekelike fault (F1) merge together at depth. Crustal shortening of the western Kunlun Mountains front continues for approximately 54 km. Two tectonic evolutionary stages have occurred since the Miocene according to sedimentary unconformity, axial analysis, and fault interpretation. The results of this study indicate a regime of episodic growth of the western Kunlun Mountains and Tarim Basin during the Cenozoic.
A deep towed explosive source for seismic experiments on the ocean floor
NASA Astrophysics Data System (ADS)
Koelsch, Donald E.; Witzell, Warren E.; Broda, James E.; Wooding, Frank B.; Purdy, G. M.
1986-12-01
A new seismic source for carrying out high resolution measurements of deep ocean crustal structure has been constructed and successfully used in a number of ocean bottom refraction experiments on the Mid Atlantic Ridge near 23° N. The source is towed within 100 m of the ocean floor on a conventional 0.68″ coaxial cable and is capable of firing, upon command from the research vessel, up to 48 individual 2.3 kg explosive charges. The explosive used was commercially available Penta-Erythritol-Tetra Nitrate (PETN) that was activated by 14.9 gm m-1 Primacord and DuPont E-97 electrical detonators. For safety reasons each detonator was fitted with a pressure switch that maintained a short until the source was at depth in excess of approximately 300 m. In addition, a mechanical protector isolated the detonator from the main charge and was only removed by the physical release of the explosive from the source package. These and other safety precautions resulted in several misfires but three experiments were successfully completed during the summer of 1985 at source depths of 3000 4000 m.
Seismic measurements of the internal properties of fault zones
Mooney, W.D.; Ginzburg, A.
1986-01-01
The internal properties within and adjacent to fault zones are reviewed, principally on the basis of laboratory, borehole, and seismic refraction and reflection data. The deformation of rocks by faulting ranges from intragrain microcracking to severe alteration. Saturated microcracked and mildly fractured rocks do not exhibit a significant reduction in velocity, but, from borehole measurements, densely fractured rocks do show significantly reduced velocities, the amount of reduction generally proportional to the fracture density. Highly fractured rock and thick fault gouge along the creeping portion of the San Andreas fault are evidenced by a pronounced seismic low-velocity zone (LVZ), which is either very thin or absent along locked portions of the fault. Thus there is a correlation between fault slip behavior and seismic velocity structure within the fault zone; high pore pressure within the pronounced LVZ may be conductive to fault creep. Deep seismic reflection data indicate that crustal faults sometimes extend through the entire crust. Models of these data and geologic evidence are consistent with a composition of deep faults consisting of highly foliated, seismically anisotropic mylonites. ?? 1986 Birkha??user Verlag, Basel.
Is the Local Seismicity in Haiti Capable of Imaging the Northern Caribbean Subduction?
NASA Astrophysics Data System (ADS)
Corbeau, J.; Clouard, V.; Rolandone, F.; Leroy, S. D.; de Lepinay, B. M.
2017-12-01
The boundary between the Caribbean (CA) and North American (NAM) plates in the Hispaniola region is the western prolongation of the NAM plate subduction evolving from a frontal subduction in the Lesser Antilles to an oblique collision against the Bahamas platform in Cuba. We analyze P-waveforms arriving at 27 broadband seismic temporary stations deployed along a 200 km-long N-S transect across Haiti, during the Trans-Haiti project. We compute teleseismic receiver functions using the ETMTRF method, and determine crustal thickness and bulk composition (Vp/Vs) using the H-k stacking method. Three distinctive crustal domains are imaged. We relate these domains to crustal terranes that have been accreted along the plate boundary during the northeastwards displacement of the CA plate. We propose a N-S crustal profile across Haiti accounting for the surface geology, shallow structural history and these new seismological constraints. Local seismicity recorded by the temporary network from April 2013 to June 2014 is used to relocate the seismicity. A total of 593 events were identified with magnitudes ranging from 1.6 to 4.5. This local seismicity, predominantly shallow (< 20 km) and situated in the southern part of Haiti along the major Enriquillo-Plantain-Garden strike-slip fault zone (EPGFZ) and offshore in Gonâve Bay, helps us to image deep active structures. Moment tensors for earthquakes with magnitudes between 3 and 4 were calculated by full waveform inversion using the ISOLA software. The analysis of the new moment tensors for the Haiti upper lithosphere indicates that normal, thrust and strike-slip faulting are equitably distributed. We found strike-slip events along the EPGFZ, near the location of the January 12th, 2010 earthquake. Most of the normal events are located in the area of Enriquillo and Azuei lakes, while the thrust events are located on both sides of the southern Peninsula of Haiti. The preliminary seismic data of our Haitian network, even noisy, tend to confirm that the North American slab in western Hispaniola is disappearing and that the scarcity of the seismic events could not be only the effect of the lack of a seismic network. Due to the geometry of the plate boundary, the deformation is predominantly strike-slip and there is no accommodation of an important part of convergence in this area.
Combined Gravimetric-Seismic Crustal Model for Antarctica
NASA Astrophysics Data System (ADS)
Baranov, Alexey; Tenzer, Robert; Bagherbandi, Mohammad
2018-01-01
The latest seismic data and improved information about the subglacial bedrock relief are used in this study to estimate the sediment and crustal thickness under the Antarctic continent. Since large parts of Antarctica are not yet covered by seismic surveys, the gravity and crustal structure models are used to interpolate the Moho information where seismic data are missing. The gravity information is also extended offshore to detect the Moho under continental margins and neighboring oceanic crust. The processing strategy involves the solution to the Vening Meinesz-Moritz's inverse problem of isostasy constrained on seismic data. A comparison of our new results with existing studies indicates a substantial improvement in the sediment and crustal models. The seismic data analysis shows significant sediment accumulations in Antarctica, with broad sedimentary basins. According to our result, the maximum sediment thickness in Antarctica is about 15 km under Filchner-Ronne Ice Shelf. The Moho relief closely resembles major geological and tectonic features. A rather thick continental crust of East Antarctic Craton is separated from a complex geological/tectonic structure of West Antarctica by the Transantarctic Mountains. The average Moho depth of 34.1 km under the Antarctic continent slightly differs from previous estimates. A maximum Moho deepening of 58.2 km under the Gamburtsev Subglacial Mountains in East Antarctica confirmed the presence of deep and compact orogenic roots. Another large Moho depth in East Antarctica is detected under Dronning Maud Land with two orogenic roots under Wohlthat Massif (48-50 km) and the Kottas Mountains (48-50 km) that are separated by a relatively thin crust along Jutulstraumen Rift. The Moho depth under central parts of the Transantarctic Mountains reaches 46 km. The maximum Moho deepening (34-38 km) in West Antarctica is under the Antarctic Peninsula. The Moho depth minima in East Antarctica are found under the Lambert Trench (24-28 km), while in West Antarctica the Moho depth minima are along the West Antarctic Rift System under the Bentley depression (20-22 km) and Ross Sea Ice Shelf (16-24 km). The gravimetric result confirmed a maximum extension of the Antarctic continental margins under the Ross Sea Embayment and the Weddell Sea Embayment with an extremely thin continental crust (10-20 km).
Seismic crustal structure of the North China Craton and surrounding area: Synthesis and analysis
NASA Astrophysics Data System (ADS)
Xia, B.; Thybo, H.; Artemieva, I. M.
2017-07-01
We present a new digital model (NCcrust) of the seismic crustal structure of the Neoarchean North China Craton (NCC) and its surrounding Paleozoic-Mesozoic orogenic belts (30°-45°N, 100°-130°E). All available seismic profiles, complemented by receiver function interpretations of crustal thickness, are used to constrain a new comprehensive crustal model NCcrust. The model, presented on a 0.25° × 0.25°grid, includes the Moho depth and the internal structure (thickness and velocity) of the crust specified for four layers (the sedimentary cover, upper, middle, and lower crust) and the Pn velocity in the uppermost mantle. The crust is thin (30-32 km) in the east, while the Moho depth in the western part of the NCC is 38-44 km. The Moho depth of the Sulu-Dabie-Qinling-Qilian orogenic belt ranges from 31 km to 51 km, with a general westward increase in crustal thickness. The sedimentary cover is 2-5 km thick in most of the region, and typical thicknesses of the upper crust, middle crust, and lower crust are 16-24 km, 6-24 km, and 0-6 km, respectively. We document a general trend of westward increase in the thickness of all crustal layers of the crystalline basement and as a consequence, the depth of the Moho. There is no systematic regional pattern in the average crustal Vp velocity and the Pn velocity. We examine correlation between the Moho depth and topography for seven tectonic provinces in the North China Craton and speculate on mechanisms of isostatic compensation.
Biogeochemical Signals from Deep Microbial Life in Terrestrial Crust
Fukuda, Akari; Komatsu, Daisuke D.; Hirota, Akinari; Watanabe, Katsuaki; Togo, Yoko; Morikawa, Noritoshi; Hagiwara, Hiroki; Aosai, Daisuke; Iwatsuki, Teruki; Tsunogai, Urumu; Nagao, Seiya; Ito, Kazumasa; Mizuno, Takashi
2014-01-01
In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low supply of energy is unknown. We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep meteoric groundwater was collected from underground boreholes drilled into Cretaceous Toki granite (central Japan). A large sulfur isotopic fractionation of 20–60‰ diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation (<30‰) is not indicative of methanogenesis. Except for 2011, the concentrations of H2 ranged mostly from 1 to 5 nM, which is also consistent with an aquifer where a terminal electron accepting process is dominantly controlled by ongoing sulfate reduction. High isotopic ratios of mantle-derived 3He relative to radiogenic 4He in groundwater and the flux of H2 along adjacent faults suggest that, in addition to low concentrations of organic matter (<70 µM), H2 from deeper sources might partly fuel metabolic activities. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low-energy fluxes. PMID:25517230
Mars - Crustal structure inferred from Bouguer gravity anomalies.
NASA Technical Reports Server (NTRS)
Phillips, R. J.; Saunders, R. S.; Conel, J. E.
1973-01-01
Bouguer gravity has been computed for the equatorial region of Mars by differencing free air gravity and the gravity predicted from topographic variations. The free air gravity was generated from an eighth-order set of spherical harmonic coefficients. The gravity from topographic variations was generated by integrating a two-dimensional Green's function over each contour level. The Bouguer gravity indicates crustal inhomogeneities on Mars that are postulated to be variations in crustal thickness. The Tharsis ridge is a region of thick continental type crust. The gravity data, structural patterns, topography, and surface geology of this region lead to the interpretation of the Tharsis topographic high as a broad crustal upwarp possibly associated with local formation of lower-density crustal material and subsequent rise of a thicker crust. The Amazonis region is one of several basins of relatively thin crust, analogous to terrestrial ocean basins. The Libya and Hellas basins, which are probable impact features, are also underlain by thin crust and are possible regions of mantle upwelling.
Imaging the crustal and lithospheric structures beneath the Alboran Domain and its surrounding area
NASA Astrophysics Data System (ADS)
Dündar, Süleyman; Kind, Rainer; Yuan, Xiaohui
2010-05-01
The knowledge of the crustal and lithospheric structures plays an important role in understanding the geodynamic evolution of the Earth's interiors within the framework of plate tectonics. The receiver function method is used to resolve the seismic discontinuity structure of the crust and upper mantle beneath a recording station and to infer possible geodynamic processes within the Earth. The methodology is developed based on the conversion of elastic body waves (P and S) at an interface which represents a boundary between different elastic properties. In this study, we analyze the P- and S-wave receiver functions in order to investigate seismic deep structures beneath the Alboran Domain which is still in debate despite a large amount of research effort conducted along the region of interest. The Alboran Domain is located at the western end of the Mediterranean and Betic-Rif orogenic system. The study area is on the edge of a prominent plate boundary, which is dominated by the tectonic interaction between the Africa and Iberian plates. Thus, it represents a complex tectonic process consisting of composite compressional and extensional regimes. The teleseismic recordings are extracted from the database of IRIS and GEOFON data centers according to the earthquake catalog obtained from U.S. Geological Survey. We analyzed totally 4976 P- and 12673 S- receiver functions.To achieve the sufficient energy in waveforms, we analyze events greater than M5.7, located at epicentral distance ranging from 35° to 90°, from 60° to 85° and from 85° to 120° for P-, S- and SKS phases, respectively. The data quality is manually checked to restrict the event database to the clear P-, S and SKS- onsets. The seismograms are rotated into P-, SH- and SV components of local ray coordinate system in order to get the highest energy of converted phases. We perform a time-domain deconvolution approach to derive the receiver functions in order to eliminate the source and path effects. Move-out correction is applied prior to stacking the individual traces in order to compare and then to better identify the coherent phases. We alternatively use piercing-point approach for stacking process subdividing the region into the grids with a size of 1°x1° and stack the individual traces based on their corresponding grids (piercing-points). The S-receiver function is used to avoid complications due to the crustal-reverberations and thus to better resolve the variation of lithosphere-asthenosphere boundary (LAB). The variation of crustal thickness derived from P-wave receiver functions is well-correlated with the pattern obtained from S-wave receiver functions.The results suggest that the thickness of the crust as well as the depth of LAB systematically decreases towards the east. The greatest crustal thickness is observed along the Betic and Rift mountains. The relatively shallow Moho as well as the shallow LAB beneath the Alboran Sea are consistent with the extensional nature of the boundary between Iberian and African plates.
The stress field below the NE German Basin: effects induced by the Alpine collision
NASA Astrophysics Data System (ADS)
Marotta, A. M.; Bayer, U.; Scheck, M.; Thybo, H.
2001-02-01
We use a thin-sheet approach for a viscous lithosphere to investigate the effects induced by the Alpine collision on the vertical deformation and regional stress in northern Europe, focusing on the NE German Basin. New seismic studies indicate a flexural-type deep crustal structure under the basin, which may be induced by compressive forces transmitted from the south and related to Alpine tectonics. Finite element techniques are used to solve the vertical deformation and stress field for a viscous European lithosphere with horizontal rheological heterogeneities. Our results support the idea that a relatively strong lithosphere below the northern margin of the German Basin at the transition into the Baltic Shield may explain the characteristic regional stress field, especially the fan-like pattern that is observed within the region.
Sorting Out the Ocean Crust Deep Biosphere with Single Cell Omics Approaches
NASA Astrophysics Data System (ADS)
Orcutt, B.; D'Angelo, T.; Goordial, J.; Jones, R. M.; Carr, S. A.
2017-12-01
Although oceanic crust comprises a large habitat for subsurface life, the structure, function, and dynamics of microbial communities living on rocks in the subsurface are poorly understood. Single cell level approaches can overcome limitations of low biomass in subsurface systems. Coupled with incubation experiments with amino acid orthologs, single cell level sorting can reveal high resolution information about identity, functional potential, and growth. Leveraging collaboration with the Single Cell Genomics Center and the Facility for Aquatic Cytometry at Bigelow Laboratory, we present recent results from single cell level sorting and -omics sequencing from several crustal environments, including the Atlantis Massif and the Juan de Fuca Ridge flank. We will also highlight new experiments conducted with samples recovered from the flank of the Mid-Atlantic Ridge.
NASA Astrophysics Data System (ADS)
Huang, Y.; Yao, H.; Wu, F. T.; Liang, W.; Huang, B.; Lin, C.; Wen, K.
2013-12-01
Although orogeny seems to have stopped in western Taiwan large and small earthquakes do occur in the Taiwan Strait. Limited studies have focused on this region before and were barely within reach for comprehensive projects like TAICRUST and TAIGER for logistical reasons; thus, the overall crustal structures of the Taiwan Strait remain unknown. Time domain empirical Green's function (TDEGF) from ambient seismic noise to determine crustal velocity structure allows us to study an area using station pairs on its periphery. This research aims to resolve 1-D average crustal and upper mantle S-wave velocity (Vs) structures alone paths of several broadband station-pairs across the Taiwan Strait; 5-120 s Rayleigh wave phase velocity dispersion data derived by combining TDEGF and traditional surface wave two-station method (TS). The average Vs structures show significant differences in the upper 15 km as expected. In general, the highest Vs are observed in the coastal area of Mainland China and the lowest Vs appear along the southwest offshore of the Taiwan Island; they differ by about 0.6-1.1 km/s. For different parts of the Strait, the Vs are lower in the middle by about 0.1-0.2 km/s relative to those in the northern and southern parts. The overall crustal thickness is approximately 30 km, much thinner and less variable than under the Taiwan Island.
Deep crustal structure of the northeastern margin of the Arabian plate from seismic and gravity data
NASA Astrophysics Data System (ADS)
Pilia, Simone; Ali, Mohammed; Watts, Anthony; Keats, Brook; Searle, Mike
2017-04-01
The United Arab Emirates-Oman mountains constitute a 700 km long, 50 km wide compressional orogenic belt that developed during the Cainozoic on an underlying extensional Tethyan rifted margin. It contains the world's largest and best-exposed thrust sheet of oceanic crust and upper mantle (Semail Ophiolite), which was obducted onto the Arabian rifted continental margin during the Late Cretaceous. Although the shallow structure of the UAE-Oman mountain belt is reasonably well known through the exploitation of a diverse range of techniques, information on deeper structure remains little. Moreover, the mechanisms by which dense oceanic crustal and mantle rocks are emplaced onto less dense and more buoyant continental crust are still controversial and remain poorly understood. The focus here is on an active-source seismic and gravity E-W transect extending from the UAE-mountain belt to the offshore. Seismic refraction data were acquired using the survey ship M/V Hawk Explorer, which was equipped with a large-volume airgun array (7060 cubic inches, 116 liters). About 400 air gun shots at 50-second time interval were recorded on land by eight broadband seismometers. In addition, reflection data were acquired at 20 seconds interval and recorded by a 5-km-long multichannel streamer. Results presented here include an approximately 85 km long (stretching about 35 km onshore and 50 km offshore) P-wave velocity crustal profile derived by a combination of forward modelling and inversion of both diving and reflected wave traveltimes using RAYINVR software. We employ a new robust algorithm based on a Monte Carlo approach (VMONTECARLO) to address the velocity model uncertainties. We find ophiolite seismic velocities of about 5.5 km/s and a thick sedimentary package in the offshore. Furthermore, the velocity model reveals a highly stretched crust with the Moho discontinuity lying at about 20 km. A prestack depth-migrated profile (about 50 km long) coincident with the offshore part of the refraction profile shows a thick sequence (up to about 10 km) of seaward dipping sediments that are offset by a number of listric (normal) faults, some of which intersect the seabed and so reflect recent tectonic activity. The trend of the Bouguer anomaly provides further constraints on the deeper structure of the margin and appears to confirm the presence of a stretched crust.
Deep crustal structure of the UAE-Oman mountain belt from seismic and gravity data
NASA Astrophysics Data System (ADS)
Pilia, S.; Tanveer, M.; Ali, M.; Watts, A. B.; Searle, M. P.; Keats, B. S.
2016-12-01
The UAE-Oman mountains constitute a 700 km long, 50 km wide compressional orogenic belt that developed during the Cenozoic on an underlying extensional Tethyan rifted margin. It contains the world's largest and best-exposed thrust sheet of oceanic crust and upper mantle (Semail Ophiolite), which was obducted onto the Arabian rifted continental margin during the Late Cretaceous. Although the shallow structure of the UAE-Oman mountain belt is reasonably well known through the exploitation of a diverse range of techniques, information on deeper structure remains little. Moreover, the mechanisms by which dense oceanic crustal and mantle rocks are emplaced onto less dense and more buoyant continental crust are still controversial and remain poorly understood. The focus here is on an active-source seismic and gravity E-W transect extending from the UAE-mountain belt to the offshore. Seismic refraction data were acquired using the survey ship M/V Hawk Explorer, which was equipped with a large-volume airgun array (116 liters). About 400 air gun shots at 50-second time interval were recorded on land by eight broadband seismometers. In addition, reflection data were acquired at 20 seconds interval and recorded by a 5-km-long multichannel streamer. Results presented here include an approximately 85 km long (stretching about 35 km onshore and 50 km offshore) P-wave velocity crustal profile derived by a combination of forward modelling and inversion of both diving and reflected wave traveltimes using RAYINVR software. We employ a new robust algorithm based on a Monte Carlo approach (VMONTECARLO) to address the velocity model uncertainties. We find ophiolite seismic velocities of about 5.5 km/s, underlain by a thin layer of slower material (about 4.5 km/s). Furthermore, the velocity model reveals a Moho depth that rises from ca 30 km in the west to ca 20 km in the east. A poststack depth-migrated profile (about 50 km long) coincident with the offshore part of the refraction profile shows a thick sequence (up to 6 km) of seaward dipping sediments that are offset by a number of listric (normal) faults, some of which intersect the seabed and so reflect recent tectonic activity. The trend of the Bouguer anomaly provides further constraints on the deeper structure of the margin and appears to confirm the presence of a stretched crust.
Deep continental margin reflectors
Ewing, J.; Heirtzler, J.; Purdy, M.; Klitgord, Kim D.
1985-01-01
In contrast to the rarity of such observations a decade ago, seismic reflecting and refracting horizons are now being observed to Moho depths under continental shelves in a number of places. These observations provide knowledge of the entire crustal thickness from the shoreline to the oceanic crust on passive margins and supplement Consortium for Continental Reflection Profiling (COCORP)-type measurements on land.
NASA Astrophysics Data System (ADS)
Funnell, M.; Peirce, C.; Robinson, A. H.; Watts, A. B.; Grevemeyer, I.
2016-12-01
Variations in tectonic forces and inputs to subduction systems generate, alter, and deform overriding crustal material. Although these processes are recorded in the crustal structure of volcanic arcs and their backarcs, the continuous nature of plate convergence superimposes subsequent episodes of crustal evolution on older features. Seismic imaging at modern subduction zones enhances our understanding of forearc development and variations in present-day deformation caused by inherited structures. In 2011 a set of multichannel and wide-angle seismic profiles imaged the forearc-arc crust and upper mantle structure along the 2700 km-long NNE-SSW trending Tonga-Kermadec subduction zone. The Tonga forearc region exhibits an 100 km-wide, 2 km high bathymetric elevation, with a 3 km-thick upper and mid-crust (Vp <6 km s-1), and a lower-crustal ridge 30 km wide comprising velocities up to 7.4 km s-1 that characterize an extinct Eocene ( 50 Ma) arc. By contrast, the active arc is <10 km wide and exhibits lower-crustal velocities below 7.0 km s-1, most likely representing intermediate compositions. This structural change suggests significant evolution, alteration, and modification of the overriding crust since the onset of subduction at this margin. Gravity anomaly modelling suggests that the extinct arc within the Tonga forearc region comprises relatively dense mafic-ultrabasic material that extends south beneath the Kermadec forearc and terminates at 32°S. The apparent southern termination of the extinct arc coincides with the partitioning of morphological features at 32°S, including a 10-km westward-step of the active arc and a 1.5 km deeper backarc to the south. We propose that tectonic partitioning about the 32°S boundary is the result of variations in the inherited crustal structure, which is divided by the presence and absence, to the north and south respectively, of the extinct volcanic arc.
Fault offsets and lateral crustal movement on Europa - Evidence for a mobile ice shell
NASA Technical Reports Server (NTRS)
Schenk, Paul M.; Mckinnon, William B.
1989-01-01
An examination is conducted of Europa's cross-cutting structural relationships between various lineament types, in order to constrain the type of structure involved in each such case and, where possible, to also constrain the degree of extension across the lineaments. Evidence is adduced for significant lateral crustal movement, allowing alternative models and mechanisms for lineament formation to be discussed, as well as plausible lithospheric and crustal models. The question as to whether any of the water-ice layer has been, or currently is, liquid, is also treated in light of the evidence obtained.
NASA Astrophysics Data System (ADS)
Hori, Takane; Ichimura, Tsuyoshi; Takahashi, Narumi
2017-04-01
Here we propose a system for monitoring and forecasting of crustal activity, such as spatio-temporal variation in slip velocity on the plate interface including earthquakes, seismic wave propagation, and crustal deformation. Although, we can obtain continuous dense surface deformation data on land and partly on the sea floor, the obtained data are not fully utilized for monitoring and forecasting. It is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate interface and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1) & (2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Actually, Ichimura et al. (2015, SC15) has developed unstructured FE non-linear seismic wave simulation code, which achieved physics-based urban earthquake simulation enhanced by 1.08 T DOF x 6.6 K time-step. Ichimura et al. (2013, GJI) has developed high fidelity FEM simulation code with mesh generator to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. Fujita et al. (2016, SC16) has improved the code for crustal deformation and achieved 2.05 T-DOF with 45m resolution on the plate interface. This high-resolution analysis enables computation of change of stress acting on the plate interface. Further, for inverse analyses, Errol et al. (2012, BSSA) has developed waveform inversion code for modeling 3D crustal structure, and Agata et al. (2015, AGU Fall Meeting) has improved the high-fidelity FEM code to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. Furthermore, we are developing the methods for forecasting the slip velocity variation on the plate interface. Basic concept is given in Hori et al. (2014, Oceanography) introducing ensemble based sequential data assimilation procedure. Although the prototype described there is for elastic half space model, we are applying it for 3D heterogeneous structure with the high-fidelity FE model.
NASA Astrophysics Data System (ADS)
Worthington, L. L.; van Avendonk, H. J.; Gulick, S. P.; Christeson, G. L.; Pavlis, T. L.
2010-12-01
Flat-slab subduction and accretion of the Yakutat (YAK) microplate in southern Alaska characterizes the most recent iteration in the process of terrane accretion that has built the tectonic assemblage of the Canada-Alaska Cordillera since the Mesozoic. Despite the potentially pivotal role of the Yakutat collision in the evolution and deformation of the North American Cordillera, major questions regarding locations of active faults and velocity structure and thickness of the Yakutat block itself have gone unanswered. We present results of a 2008 marine seismic reflection/refraction survey acquired as part of the St. Elias Erosion and Tectonics Project (STEEP), a multi-disciplinary NSF-Continental Dynamics project aimed at structural evolution and geodynamics related to the YAK collision. An onshore-offshore wide-angle refraction profile shows YAK crustal thickness ranging from ~15 km near the Bering Glacier to ~35 km east of the Dangerous River Zone (DRZ), with calculated lower crustal velocities potentially >7km/s. Crustal velocity and structure are continuous across the DRZ on the YAK shelf, which is historically described as a vertical boundary between continental crust on the east and oceanic basement on the west. Instead, we observe a gradual shallowing of elevated crustal velocities associated with a basement high observed on coincident marine reflection data near the DRZ. Crustal velocity and thicknesses are comparable to the Kerguelen oceanic plateau and the Siletz terrane, thus supporting the oceanic plateau theory for the origin of the YAK microplate. The observed variable crustal thickness indicates that the YAK slab may be slightly wedge-shaped, thinning in the direction of subduction. The thickest portion of the offshore YAK is entering the orogen near the eastern syntaxis, where the Fairweather fault system encounters a restraining bend as its orientation changes from north-south to east-west. It follows that observations of elevated exhumation rates and concentrated seismicity in the vicinity of the syntaxis may not be the exclusive result of this corner geometry. Instead, we must consider that underlying crustal structure of the YAK indentor partially determines the large-scale patterns of mountain building in southern Alaska. These observations also imply that uplift and deformation have intensified through time as thicker, more buoyant YAK crust attempts to subduct.
NASA Astrophysics Data System (ADS)
Hori, T.; Agata, R.; Ichimura, T.; Fujita, K.; Yamaguchi, T.; Takahashi, N.
2017-12-01
Recently, we can obtain continuous dense surface deformation data on land and partly on the sea floor, the obtained data are not fully utilized for monitoring and forecasting of crustal activity, such as spatio-temporal variation in slip velocity on the plate interface including earthquakes, seismic wave propagation, and crustal deformation. For construct a system for monitoring and forecasting, it is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate inter-face and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1) & (2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Unstructured FE non-linear seismic wave simulation code has been developed. This achieved physics-based urban earthquake simulation enhanced by 1.08 T DOF x 6.6 K time-step. A high fidelity FEM simulation code with mesh generator has also been developed to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. This code has been improved the code for crustal deformation and achieved 2.05 T-DOF with 45m resolution on the plate interface. This high-resolution analysis enables computation of change of stress acting on the plate interface. Further, for inverse analyses, waveform inversion code for modeling 3D crustal structure has been developed, and the high-fidelity FEM code has been improved to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. We are developing the methods for forecasting the slip velocity variation on the plate interface. Although the prototype is for elastic half space model, we are applying it for 3D heterogeneous structure with the high-fidelity FE model. Furthermore, large-scale simulation codes for monitoring are being implemented on the GPU clusters and analysis tools are developing to include other functions such as examination in model errors.
NASA Astrophysics Data System (ADS)
Borisova, Anastassia Y.; Bohrson, Wendy A.; Grégoire, Michel
2017-07-01
Chemical Geodynamics relies on a paradigm that the isotopic composition of ocean island basalt (OIB) represents equilibrium with its primary mantle sources. However, the discovery of huge isotopic heterogeneity within olivine-hosted melt inclusions in primitive basalts from Kerguelen, Iceland, Hawaii and South Pacific Polynesia islands implies open-system behavior of OIBs, where during magma residence and transport, basaltic melts are contaminated by surrounding lithosphere. To constrain the processes of crustal assimilation by OIBs, we employed the Magma Chamber Simulator (MCS), an energy-constrained thermodynamic model of recharge, assimilation and fractional crystallization. For a case study of the 21-19 Ma basaltic series, the most primitive series ever found among the Kerguelen OIBs, we performed sixty-seven simulations in the pressure range from 0.2 to 1.0 GPa using compositions of olivine-hosted melt inclusions as parental magmas, and metagabbro xenoliths from the Kerguelen Archipelago as wallrock. MCS modeling requires that the assimilant is anatectic crustal melts (P2O5 ≤ 0.4 wt.% contents) derived from the Kerguelen oceanic metagabbro wallrock. To best fit the phenocryst assemblage observed in the investigated basaltic series, recharge of relatively large masses of hydrous primitive basaltic melts (H2O = 2-3 wt%; MgO = 7-10 wt.%) into a middle crustal chamber at 0.2 to 0.3 GPa is required. Our results thus highlight the important impact that crustal gabbro assimilation and mantle recharge can have on the geochemistry of mantle-derived olivine-phyric OIBs. The importance of crustal assimilation affecting primitive plume-derived basaltic melts underscores that isotopic and chemical equilibrium between ocean island basalts and associated deep plume mantle source(s) may be the exception rather than the rule.
Hissar-Alai and the Pamirs: Junction and Position in the System of Mobile Belts of Central Asia
NASA Astrophysics Data System (ADS)
Leonov, M. G.; Rybin, A. K.; Batalev, V. Yu.; Matyukov, V. E.; Shchelochkov, G. G.
2018-01-01
The position of the Pamirs and the Hissar-Alai mountainous system in the structure of Central Asia and features of their junction are considered. It is shown that their outer contours and tectonic infrastructure are significantly distinct in the planar pattern: latitudinally linear and arched for the Hissar-Alai and the Pamirs, respectively. These structures logically match those of the Central Asian and Alpine-Himalayan belts, respectively. The Pamir orogen is a relatively autonomous structural element of the crust, which is located discordantly relative to the country lithospheric blocks. Most of the Pamirs (at least, the Northern and Central) probably form a giant allochthon on the ancient basement of the Tarim and Afghan-Tajik blocks. The junction zone of these two "hard" crustal segments is reflected in the transverse Transpamir threshold, which is expressed in the relief, deep structure, and seismicity. The specific geological structure of the junction zone of the Pamirs and Hissar-Alai (systems of the Tarim, Alai, and Afghan-Tajik troughs) is shown. It suggested that this zone is a damper, which significantly neutralizes the dynamic influence of the Pamir and the southernmost elements of the Pamir-Punjab syntax on Hissar-Alai structures.
NASA Astrophysics Data System (ADS)
Zhu, L.; Aziz Zanjani, A.; Hu, S.; Liu, Y.; Herrmann, R. B.; Conder, J. A.
2015-12-01
As part of a on-going EarthScope FlexArray project, we deployed 45 broadband seismographs in a 300-km-long linear profile across the Wabash Valley Seismic Zone (WVSZ). Here we present preliminary results of crustal structure beneath WVSZ based on teleseismic receiver functions and ambient noise tomography. We combined waveform data of the temporary stations in 2014 with those of permanent seismic stations and the transportable array stations in our study area since 2011. We found 656 teleseismic events with clear P-wave signals and obtained 2657 good-quality receiver functions of 84 stations using a time-domain iterative deconvolution method. We estimated crustal thickness and Vp/Vs ratio beneath each station using the H-κ stacking method. A high-resolution crustal structural image along the linear profile was obtained using the Common-Conversion-Point (CCP) stacking method. We also measured Rayleigh-wave phase and group velocities from 5 to 50 s by cross-correlating ambient noises between stations and did joint-inversion of receiver functions and surface wave dispersions for S-velocity structures beneath selected stations. The results show that the average crustal thickness in the region is 47 km with a gentle increase of crustal thickness from southeast to northwest. A mid-crustal interface is identified in the CCP image that also deepens from 15 km in the southeastern end to >20 km in the northwest. The CCP image shows that the low-velocity sedimentary layer along the profile is broad and is thickest (~10 km) near the center of the Wabash Valley. Beneath the center of the Valley there is a 40-km-wide positive velocity discontinuity at a depth of 40 km in the lower crust that might be the top of a rift pillow in this failed continental rift. Further results using 3D joint inversion and CCP migration will be presented at the meeting.
Proterozoic crustal boundary in the southern part of the Illinois Basin
Heigold, P.C.; Kolata, Dennis R.
1993-01-01
Recently acquired COCORP and proprietary seismic reflection data in the southern part of the Illinois Basin, combined with other geological and geophysical data, indicate that a WNW-trending Proterozoic terrane boundary (40 km wide) lies within basement. The boundary is characterized by the termination of subhorizontal Proterozoic reflectors and associated diffraction patterns along a line coinciding with the major magnetic lineament in this region (South Central Magnetic Lineament). North of the boundary, where reflectors thought to represent a sequence of layered Proterozoic rocks in the upper crust are widespread and as much as 11 km thick, total magnetic intensity values are relatively high, suggesting layers of rock with high magnetic susceptibility. To the south, the Proterozoic rocks are acoustically transparent on seismic reflection sections and total magnetic intensity values are relatively low. Moreover, relatively high Bouguer gravity anomaly values to the south may be caused by a dense, altered, lower crustal layer similar to that interpreted from deep seismic refraction studies to underlie the northern Mississippi Embayment. The boundary lies along the projected trend of the northern margin of the Early Proterozoic Central Plains orogen and we suggest that it marks the convergent margin of this orogen. Reactivation of the boundary and the associated zone of weakness during late Paleozoic times apparently resulted in structural deformation in the southern part of the Illinois Basin, including movement along the Cottage Grove Fault System and Ste. Genevieve Fault Zone and igneous activity at Hicks Dome. In addition to the role played by this crustal boundary in the evolution of the Illinois Basin, its location between the Wabash Valley Seismic Zone to the northeast and the New Madrid Seismic Zone to the southwest may be a significant factor in present-day seismicity. ?? 1993.
Three-dimensional Gravity Modeling of Ocean Core Complexes at the Central Indian Ridge
NASA Astrophysics Data System (ADS)
Kim, S. S.; Chandler, M. T.; Pak, S. J.; Son, S. K.
2017-12-01
The spatial distribution of ocean core complexes (OCCs) on mid-ocean ridge flanks can indicate the variation of magmatism and tectonic extension at a given spreading center. A recent study revealed 11 prominent OCCs developed along the middle portion of the Central Indian Ridge (CIR) based on the high-resolution shipboard bathymetry. The CIR is located between the Carlsberg Ridge and the Indian Ocean triple junction. The detailed morphotectonic interpretations from the recent study suggested that the middle ridge segments of the CIR were mainly developed through tectonic extension with little magmatism. Furthermore, the OCCs exposed by detachment faults appear to the main host for active off-axis hydrothermal circulations. Here we form a three-dimensional gravity model to investigate the crustal structures of OCCs developed between 12oS and 14oS at the CIR. These OCCs exhibit domal topographic highs with corrugated surface. The rock samples from these areas include deep-seated rocks such as serpentinized harzburgite and gabbro. A typical gravity study on mid-ocean ridges assumes a constant density contrast along the water-crust interface and constant crustal thickness and removes its gravitational contributions and thermal effects of lithospheric cooling from the free-air gravity anomaly. This approach is effective to distinguish anomalous regions that deviate from the applied crustal and thermal models. The oceanic crust around the OCCs, however, tends to be thinned due to detachment faulting and tectonic extension. In this study, we include multi-layers with different density contrast and variable thickness to approximate gravity anomalies resulting from the OCCs. In addition, we aim to differentiate the geophysical characteristics of the OCCs from the nearby ridge segments and infer tectonic relationship between the OCCs and ridges.
Geomorphic Evidences of Pleistocene Deformations in the Western Pyrenees (France)
NASA Astrophysics Data System (ADS)
Lacan, P.; Nivière, B.; Rousset, D.; Sénéchal, P.
2007-12-01
Due to its intraplate position, the on-going tectonic activity of the Western Pyrenees is only revealed by a moderate and diffuse seismicity. This seismicity presents a general E-W pattern and is distributed along the northern flank of the chain in the western part. We focus here on the Arudy area that suffered from one of the major Pyrenean instrumental earthquakes (M=5,1) in 1980. An early Cretaceous normal fault of the Iberian margin is probably the seismic source of this event. The late Cretaceous inversion of the margin, first in a left-lateral strike-slip mode and then in a more frontal convergence, resulted in a shallow pop-up geometry near Arudy. This pop-up attests of the presence in depth of a crustal discontinuity. The present-day geodynamic arrangement might reactivate this accident in a right lateral mode. This reactivation leads to a strain partitioning between the deep crustal discontinuity and the shallow pop-up that achieved respectively the lateral and frontal components of the displacement. Folding of Quaternary terrace remnants above the thrusts limiting the pop-up, attests of the Pleistocene activity of the structure. Growth of alluvial depocenters in the footwall of these thrusts revealed by near-surface geophysical surveys (electric tomography and ground penetrating radar) attest too of this activity. This deformation resulted in ca 1500 m long and 5-10 m high folds during the middle to late Pleistocene. Using a strain partitioning model, this quantification of the near-surface deformation allows to estimate the displacement achieved by the blind crustal discontinuity. So the seismic hazard due to this fault is better constrained. Project funded by Région Aquitaine and TTI Production.
NASA Astrophysics Data System (ADS)
Larsen, Jessica F.
2016-11-01
The magmatic systems feeding arc volcanoes are complex, leading to a rich diversity in eruptive products and eruption styles. This review focuses on examples from the Aleutian subduction zone, encompassed within the state of Alaska, USA because it exhibits a rich diversity in arc structure and tectonics, sediment and volatile influx feeding primary magma generation, crustal magma differentiation processes, with the resulting outcome the production of a complete range in eruption styles from its diverse volcanic centers. Recent and ongoing investigations along the arc reveal controls on magma production that result in diversity of eruptive products, from crystal-rich intermediate andesites to phenocryst-poor, melt-rich silicic and mafic magmas and a spectrum in between. Thus, deep to shallow crustal "processing" of arc magmas likely greatly influences the physical and chemical character of the magmas as they accumulate in the shallow crust, the flow physics of the magmas as they rise in the conduit, and eruption style through differences in degassing kinetics of the bubbly magmas. The broad spectrum of resulting eruption styles thus depends on the bulk magma composition, melt phase composition, and the bubble and crystal content (phenocrysts and/or microlites) of the magma. Those fundamental magma characteristics are in turn largely determined by the crustal differentiation pathway traversed by the magma as a function of tectonic location in the arc, and/or the water content and composition of the primary magmas. The physical and chemical character of the magma, set by the arc differentiation pathway, as it ascends towards eruption determines the kinetic efficiency of degassing versus the increasing internal gas bubble overpressure. The balance between degassing rate and the rate at which gas bubble overpressure builds then determines the conditions of fragmentation, and ultimately eruption intensity.
NASA Astrophysics Data System (ADS)
Bhatti, Zahid Imran; Zhao, Junmeng; Khan, Nangyal Ghani; Shah, Syed Tallataf Hussain
2018-08-01
The India-Asia collision and subsequent subduction initiated the evolution of major tectonic features in the Western Syntaxis. The complex tectonic structure and shallow to deep seismicity have attracted geoscientists over the past two decades. The present research is based on a 3D tomographic inversion of P-wave arrival time data to constrain the crustal and upper mantle structure beneath the NW Himalayas and Pamir-Hindukush region using the Double-difference tomography. We utilized a very large multi-scale dataset comprising 19,080 earthquakes recorded at 397 local and regional seismic stations from 1950 to 2017. The northward dipping seismic zone coinciding with the low velocity anomaly suggests the subduction of the Indian lower crust beneath the Hindukush. The extent of the northward advancing Indian slab increases from east to west in this region. We observed no signs of northward subduction of the Indian plate under the Hindukush beyond 71°E longitude. The Indian plate overturns due south after interacting with the Asian plate beneath the southern Pamir, which correlates with the counter-clockwise rotation of the Indian plate. The Asian plate is also imaged as a southward subducting seismic zone beneath the southern Pamir. In the NW Himalayas, the northward subducting Indian plate appears as a gently dipping low velocity anomaly beneath the Karakoram Block. The stresses caused by the collision and subduction along the Shyok Suture and Indus Suture are translated to the south. The crustal scale seismicity and high velocity anomalies indicate an intense deformation in the crust, which is manifested by syntaxial bends and thrust faults to the south of the Main Mantle Thrust.
Fuis, G.S.; Murphy, J.M.; Lutter, W.J.; Moore, Thomas E.; Bird, K.J.; Christensen, N.I.
1997-01-01
Seismic reflection and refraction and laboratory velocity data collected along a transect of northern Alaska (including the east edge of the Koyukuk basin, the Brooks Range, and the North Slope) yield a composite picture of the crustal and upper mantle structure of this Mesozoic and Cenozoic compressional orogen. The following observations are made: (1) Northern Alaska is underlain by nested tectonic wedges, most with northward vergence (i.e., with their tips pointed north). (2) High reflectivity throughout the crust above a basal decollement, which deepens southward from about 10 km depth beneath the northern front of the Brooks Range to about 30 km depth beneath the southern Brooks Range, is interpreted as structural complexity due to the presence of these tectonic wedges, or duplexes. (3) Low reflectivity throughout the crust below the decollement is interpreted as minimal deformation, which appears to involve chiefly bending of a relatively rigid plate consisting of the parautochthonous North Slope crust and a 10- to 15-km-thick section of mantle material. (4) This plate is interpreted as a southward verging tectonic wedge, with its tip in the lower crust or at the Moho beneath the southern Brooks Range. In this interpretation the middle and upper crust, or all of the crust, is detached in the southern Brooks Range by the tectonic wedge, or indentor: as a result, crust is uplifted and deformed above the wedge, and mantle is depressed and underthrust beneath this wedge. (5) Underthrusting has juxtaposed mantle of two different origins (and seismic velocities), giving rise to a prominent sub-Moho reflector. Copyright 1997 by the American Geophysical Union.
The KRISP 90 seismic experiment-a technical review
Prodehl, C.; Mechie, J.; Achauer, U.; Keller, Gordon R.; Khan, M.A.; Mooney, W.D.; Gaciri, S.J.; Obel, J.D.
1994-01-01
On the basis of a preliminary experiment in 1985 (KRISP 85), a seismic refraction/wide-angle reflection survey and a teleseismic tomography experiment were jointly undertaken to study the lithospheric structure of the Kenya rift down to depths of greater than 200 km. This report serves as an introduction to a series of subsequent papers and will focus on the technical description of the seismic surveys of the main KRISP 90 effort. The seismic refraction/wide-angle reflection survey was carried out in a 4-week period in January and February 1990. It consisted of three profiles: one extending along the rift valley from Lake Turkana to Lake Magadi, one crossing the rift at Lake Baringo, and one located on the eastern flank of the rift proper. A total of 206 mobile vertical-component seismographs, with an average station interval of about 2 km, recorded the energy of underwater and borehole explosions to distances of up to about 550 km. During the teleseismic survey an array of 65 seismographs was deployed to record teleseismic, regional and local events for a period of about 7 months from October 1989 to April 1990. The elliptical array spanned the central portion of the rift, with Nakuru at its center, and covered an area about 300 ?? 200 km, with an average station spacing of 10-30 km. Major scientific goals of the project were to reveal the detailed crustal and upper-mantle structure under the Kenya rift, to study the relationship between deep crustal and mantle structure and the development of sedimentary basins and volcanic features within the rift, to understand the role of the Kenya rift within the Afro-Arabian rift system, and to answer fundamental questions such as the mode and mechanism of continental rifting. ?? 1994.
NASA Astrophysics Data System (ADS)
Watremez, L.; Chen, C.; Prada, M.; Minshull, T. A.; O'Reilly, B.; Reston, T. J.; Wagner, G.; Gaw, V.; Klaeschen, D.; Shannon, P.
2015-12-01
The Porcupine Basin is a narrow V-shaped failed rifted basin located offshore SW Ireland. It is of Permo-Triassic to Cenozoic age, with the main rifting phase in the Late Jurassic to Early Cretaceous. Porcupine Basin is a key study area to learn about the processes of continental extension and to understand the thermal history of this rifted basin. Previous studies show increasing stretching factors, from less than 1.5 to the North to more than 6 to the South. A ridge feature, the Porcupine Median Ridge, has been identified in the middle of the southernmost part of the basin. During the last three decades, this ridge has been successively interpreted as a volcanic structure, a diapir of partially serpentinized mantle, or a block of continental crust. Its nature still remains debated today. In this study, we use arrival times from refractions and wide-angle reflections in the sedimentary, crustal and mantle layers to image the crustal structure of the thinnest part of the basin, the geometry of the continental thinning from margin to margin, and the Porcupine Median Ridge. The final velocity model is then compared with coincident seismic reflection data. We show that (1) the basin is asymmetric, (2) P-wave velocities in the uppermost mantle are lower than expected for unaltered peridotites, implying upper-mantle serpentinisation, (3) the nature of Porcupine Median Ridge is probably volcanic, and (4) the amount of thinning is greater than shown in previous studies. We discuss the thermal implications of these results for the evolution of this rift system and the processes leading to the formation of failed rifts. This project is funded by the Irish Shelf Petroleum Studies Group (ISPSG) of the Irish Petroleum Infrastructure Programme Group 4.