Sample records for deep deep area

  1. The suborbicularis oculi fat (SOOF) and the fascial planes: has everything already been explained?

    PubMed

    Andretto Amodeo, Chiara; Casasco, Andrea; Icaro Cornaglia, Antonia; Kang, Robert; Keller, Gregory S

    2014-01-01

    During anatomic and surgical dissections, a connection was seen between the superficial layer of the deep temporal fascia and the prezygomatic area. These findings were in contrast to previous evaluations. This study defines this connection, which is important to understand from both surgical and anatomic standpoints. To define the connection between the superficial layer of the deep temporal fascia and the prezygomatic area and demonstrate the presence of a deep fascial layer in the midface. Anatomical study performed at the Laboratoire d'Anatomie de la Faculté de Médecine de Nice, Sophia Antipolis, France; at the Centre du Don des Corps de l'Université Paris Descartes, Paris, France; and at the Department of Experimental Medicine, Histology, and Embryology Unit of the University of Pavia, Pavia, Italy. Twenty-four hemifaces of 14 white cadavers were dissected to define the relationship between deep temporal fascia and the midface. Four biopsy samples were harvested for histologic analysis. Dissection of 24 hemifaces from the fresh cadavers revealed the following findings. There is a connection of the deep fascia of the temple (superficial layer of deep temporal fascia) to the midface that divides the fat deep to the orbicularis muscle into 2 layers. One layer of fat is the so-called suborbicularis oculi fat (SOOF), which is superficial to the deep fascia, and the other layer of fat (preperiosteal) is deep to the deep fascia and adherent to malar bone. These findings are in contrast to previous anatomical findings. RESULTS In 12 hemifaces, the superficial layer of the deep temporal fascia directly reached the prezygomatic area as a continuous fascial layer. In 16 hemifaces, the superficial sheet of the deep temporal fascia inserted at the level of the zygomatic and lateral orbital rim and continued as a deep fascial layer over the prezygomatic area. In all specimens, a deep fascial layer was present in the prezygomatic-infraorbital area. This deep fascial layer is adherent to the muscles of the infraorbital area, and it divided the fat located deep to the orbicularis oculi muscle into 2 layers: the SOOF and a deeper layer. Histologic examination of the biopsy samples confirmed these findings. This study demonstrates the existence of a deep fascial layer in the midface. This fascia is connected to the superficial layer of the deep temporal fascia, and it divides the fat deep to the orbicularis oculi muscle into 2 layers. This new finding carries interesting implications related to the classic concept of the superficial musculoaponeurotic system. NA.

  2. WFIRST: Science from Deep Field Surveys

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Foley, Ryan; WFIRST Deep Field Working Group

    2018-06-01

    WFIRST will enable deep field imaging across much larger areas than those previously obtained with Hubble, opening up completely new areas of parameter space for extragalactic deep fields including cosmology, supernova and galaxy evolution science. The instantaneous field of view of the Wide Field Instrument (WFI) is about 0.3 square degrees, which would for example yield an Ultra Deep Field (UDF) reaching similar depths at visible and near-infrared wavelengths to that obtained with Hubble, over an area about 100-200 times larger, for a comparable investment in time. Moreover, wider fields on scales of 10-20 square degrees could achieve depths comparable to large HST surveys at medium depths such as GOODS and CANDELS, and would enable multi-epoch supernova science that could be matched in area to LSST Deep Drilling fields or other large survey areas. Such fields may benefit from being placed on locations in the sky that have ancillary multi-band imaging or spectroscopy from other facilities, from the ground or in space. The WFIRST Deep Fields Working Group has been examining the science considerations for various types of deep fields that may be obtained with WFIRST, and present here a summary of the various properties of different locations in the sky that may be considered for future deep fields with WFIRST.

  3. WFIRST: Science from Deep Field Surveys

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton; Foley, Ryan; WFIRST Deep Field Working Group

    2018-01-01

    WFIRST will enable deep field imaging across much larger areas than those previously obtained with Hubble, opening up completely new areas of parameter space for extragalactic deep fields including cosmology, supernova and galaxy evolution science. The instantaneous field of view of the Wide Field Instrument (WFI) is about 0.3 square degrees, which would for example yield an Ultra Deep Field (UDF) reaching similar depths at visible and near-infrared wavelengths to that obtained with Hubble, over an area about 100-200 times larger, for a comparable investment in time. Moreover, wider fields on scales of 10-20 square degrees could achieve depths comparable to large HST surveys at medium depths such as GOODS and CANDELS, and would enable multi-epoch supernova science that could be matched in area to LSST Deep Drilling fields or other large survey areas. Such fields may benefit from being placed on locations in the sky that have ancillary multi-band imaging or spectroscopy from other facilities, from the ground or in space. The WFIRST Deep Fields Working Group has been examining the science considerations for various types of deep fields that may be obtained with WFIRST, and present here a summary of the various properties of different locations in the sky that may be considered for future deep fields with WFIRST.

  4. Does a conservative tibial cut in conventional total knee arthroplasty violate the deep medial collateral ligament?

    PubMed

    Maes, Michael; Luyckx, Thomas; Bellemans, Johan

    2014-11-01

    Based on the anatomy of the deep medial collateral ligament (MCL), it was hypothesized that at least part of its cross-sectional insertion area is jeopardized while performing a standard tibial cut in conventional total knee arthroplasty (TKA). The aim of this study was to determine whether it is anatomically possible to preserve the tibial deep MCL insertion during conventional TKA. Thirty-three unpaired cadaveric knee specimens were used for this study. Knees with severe varus/valgus deformity or damage to the medial structures of the knee were excluded. In the first part of the study, the dimensions of the tibial insertion of the deep MCL and its relationship to the joint line were recorded. Next, the cross-sectional area of the deep MCL insertion was determined using calibrated digital photographic analysis. In the second part, the effect of a standard 9-mm 3° sloped tibial cut on the structural integrity of the deep MCL cross-sectional insertion area was determined using conventional instrumentation. The proximal border of the deep MCL insertion site on the tibia was located on average 4.7 ± 1.2 mm distally to the joint line. After performing a standard 9-mm 3° sloped tibial cut, on average 54% of the deep MCL insertion area was resected. In 29% of the cases, the deep MCL insertion area was completely excised. The deep MCL cannot routinely be preserved in conventional TKA. The deep MCL insertion is at risk and may be jeopardized in case of a tibial cut 9 mm below the native joint line. As the deep MCL is a distinct medial stabilizer and plays an important role in rotational stability, this may have implications in future designs of both unicondylar and total knee arthroplasty, but further research is necessary.

  5. The development of deep karst in the anticlinal aquifer structure based on the coupling of multistage flow systems

    NASA Astrophysics Data System (ADS)

    Xu, M.; Zhong, L.; Yang, Y.

    2017-12-01

    Under the background of neotectonics, the multistage underground flow system has been form due the different responses of main stream and tributaries to crust uplift. The coupling of multistage underground flow systems influences the development of karst thoroughly. At first, the research area is divided into vadose area, shunted area and exorheic area based on the development characteristics of transverse valley. Combining the controlling-drain action with topographic index and analyzing the coupling features of multistage underground flow system. And then, based on the coupling of multistage underground flow systems, the characteristics of deep karst development were verified by the lossing degree of surface water, water bursting and karst development characteristics of tunnels. The vadose area is regional water system based, whose deep karst developed well. It resulted the large water inflow of tunnels and the surface water drying up. The shunted area, except the region near the transverse valleys, is characterized by regional water system. The developed deep karst make the surface water connect with deep ground water well, Which caused the relatively large water flow of tunnels and the serious leakage of surface water. The deep karst relatively developed poor in the regions near transverse valleys which is characterized by local water system. The exorheic area is local water system based, whose the deep karst developed poor, as well as the connection among surface water and deep ground water. It has result in the poor lossing of the surface water under the tunnel construction. This study broadens the application field of groundwater flow systems theory, providing a new perspective for the study of Karst development theory. Meanwhile it provides theoretical guidance for hazard assessment and environmental negative effect in deep-buried Karst tunnel construction.

  6. Low-flow characteristics and profiles for the Deep River in the Cape Fear River basin, North Carolina

    USGS Publications Warehouse

    Weaver, J.C.

    1997-01-01

    Drainage area and low-flow discharge profiles are presented for the Deep River. The drainage-area profile shows downstream increases in basin size. At the mouth, the drainage area for the Deep River is 1,441 square miles. Low-flow discharge profiles for the Deep River include 7Q10, 30Q2, W7Q10, and 7Q2 discharges in a continuous profile with contributions from major tributaries included.

  7. 15 CFR 970.300 - Purposes and definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Procedures for Applications... procedures which the Administrator will apply to applications filed with NOAA covering areas of the deep... the Administrator and a reciprocating state; and (ii) In which the deep seabed areas applied for...

  8. 15 CFR 970.300 - Purposes and definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Procedures for Applications... procedures which the Administrator will apply to applications filed with NOAA covering areas of the deep... the Administrator and a reciprocating state; and (ii) In which the deep seabed areas applied for...

  9. 15 CFR 970.300 - Purposes and definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Procedures for Applications... procedures which the Administrator will apply to applications filed with NOAA covering areas of the deep... the Administrator and a reciprocating state; and (ii) In which the deep seabed areas applied for...

  10. 15 CFR 970.300 - Purposes and definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the Administrator and a reciprocating state; and (ii) In which the deep seabed areas applied for... ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR EXPLORATION LICENSES Procedures for Applications... procedures which the Administrator will apply to applications filed with NOAA covering areas of the deep...

  11. 30 CFR 203.2 - How can I obtain royalty relief?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 203.49). (g) Located in a designated GOM shallow water area Drill and produce gas from an ultra-deep...) Located in a designated GOM deep water area (i.e., 200 meters or greater) and acquired in a lease sale... 203.79). (c) Located in a designated GOM deep water area and acquired in a lease sale held before...

  12. Deep-sea genetic resources: New frontiers for science and stewardship in areas beyond national jurisdiction

    NASA Astrophysics Data System (ADS)

    Harden-Davies, Harriet

    2017-03-01

    The deep-sea is a large source of marine genetic resources (MGR), which have many potential uses and are a growing area of research. Much of the deep-sea lies in areas beyond national jurisdiction (ABNJ), including 65% of the global ocean. MGR in ABNJ occupy a significant gap in the international legal framework. Access and benefit sharing of MGR is a key issue in the development of a new international legally-binding instrument under the United Nations Convention on the Law of the Sea (UNCLOS) for the conservation and sustainable use of marine biological diversity in ABNJ. This paper examines how this is relevant to deep-sea scientific research and identifies emerging challenges and opportunities. There is no internationally agreed definition of MGR, however, deep-sea genetic resources could incorporate any biological material including genes, proteins and natural products. Deep-sea scientific research is the key actor accessing MGR in ABNJ and sharing benefits such as data, samples and knowledge. UNCLOS provides the international legal framework for marine scientific research, international science cooperation, capacity building and marine technology transfer. Enhanced implementation could support access and benefit sharing of MGR in ABNJ. Deep-sea scientific researchers could play an important role in informing practical new governance solutions for access and benefit sharing of MGR that promote scientific research in ABNJ and support deep-sea stewardship. Advancing knowledge of deep-sea biodiversity in ABNJ, enhancing open-access to data and samples, standardisation and international marine science cooperation are significant potential opportunity areas.

  13. Stem Cubic-Volume Tables for Tree Species in the Deep South Area

    Treesearch

    Alexander Clark; Ray A. Souter

    1996-01-01

    Stemwood cubic-foot volume inside bark tables are presented for 21 species and 8 species groups based on equations used to estimate timber sale volumes on national forests in the Deep South Area. Tables are based on form class measurement data for 2,390 trees sampled in the Deep South Area and taper data collected across the South. A series of tables is presented for...

  14. Overview of deep learning in medical imaging.

    PubMed

    Suzuki, Kenji

    2017-09-01

    The use of machine learning (ML) has been increasing rapidly in the medical imaging field, including computer-aided diagnosis (CAD), radiomics, and medical image analysis. Recently, an ML area called deep learning emerged in the computer vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in virtually all fields, including medical imaging, have started actively participating in the explosively growing field of deep learning. In this paper, the area of deep learning in medical imaging is overviewed, including (1) what was changed in machine learning before and after the introduction of deep learning, (2) what is the source of the power of deep learning, (3) two major deep-learning models: a massive-training artificial neural network (MTANN) and a convolutional neural network (CNN), (4) similarities and differences between the two models, and (5) their applications to medical imaging. This review shows that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is the learning of image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The class of ML with image input (or image-based ML) including deep learning has a long history, but recently gained popularity due to the use of the new terminology, deep learning. There are two major models in this class of ML in medical imaging, MTANN and CNN, which have similarities as well as several differences. In our experience, MTANNs were substantially more efficient in their development, had a higher performance, and required a lesser number of training cases than did CNNs. "Deep learning", or ML with image input, in medical imaging is an explosively growing, promising field. It is expected that ML with image input will be the mainstream area in the field of medical imaging in the next few decades.

  15. Thrombophlebitis

    MedlinePlus

    ... the surface of your skin (superficial thrombophlebitis) or deep within a muscle (deep vein thrombosis, or DVT). Causes include trauma, surgery ... pain in the affected area Redness and swelling Deep vein thrombosis signs and symptoms include: Pain Swelling ...

  16. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand.

    PubMed

    Radloff, K A; Zheng, Y; Michael, H A; Stute, M; Bostick, B C; Mihajlov, I; Bounds, M; Huq, M R; Choudhury, I; Rahman, M W; Schlosser, P; Ahmed, K M; van Geen, A

    2011-10-01

    Drinking shallow groundwater with naturally elevated concentrations of arsenic is causing widespread disease in many parts of South and Southeast Asia. In the Bengal Basin, growing reliance on deep (>150 m) groundwater has lowered exposure. In the most affected districts of Bangladesh, shallow groundwater concentrations average 100 to 370 μg L(-1), while deep groundwater is typically < 10 μg L(-1). Groundwater flow simulations have suggested that, even when deep pumping is restricted to domestic use, deep groundwater in some areas of the Bengal Basin is at risk of contamination. However, these simulations have neglected the impedance of As migration by adsorption to aquifer sediments. Here we quantify for the first time As sorption on deeper sediments in situ by replicating the intrusion of shallow groundwater through injection of 1,000 L of deep groundwater modified with 200 μg L(-1) of As into a deeper aquifer. Arsenic concentrations in the injected water were reduced by 70% due to adsorption within a single day. Basin-scale modelling indicates that while As adsorption extends the sustainable use of deep groundwater, some areas remain vulnerable; these areas can be prioritized for management and monitoring.

  17. Interactions between deep bedrock aquifers and surface water in function of recharge and topography: a numerical study

    NASA Astrophysics Data System (ADS)

    Goderniaux, P.; Davy, P.; Le Borgne, T.; Bresciani, E.; Jimenez-Martinez, J.

    2011-12-01

    In crystalline rock regions, such as Brittany (France), important reserves of groundwater into deep fractured aquifers are increasingly used and provide high quality water compared to shallow aquifers which can be subject to agricultural contamination. However, recharge processes of these deep aquifers and interactions with surface water are not yet fully understood. In some areas, intensive pumping is carried out without guarantee of the resource quantity and quality. Understanding these processes is crucial for sustainable management of the resource. In this study, we study how deep groundwater fluxes, pathways, ages, and river-aquifer interactions vary according to recharge. We assume that water flowing from the ground surface is distributed between shallow more permeable layers and deep layers. This repartition mostly depends on recharge rates. With high recharge, groundwater levels are high and subsurface streamlines are relatively short between recharge areas and existing draining rivers, which constitutes a very dense network. Therefore, most of the groundwater fluxes occur through the more permeable shallow layers. With low recharge, groundwater levels are lower, and river and shallow permeable levels are partly disconnected from each other. This induces a general increase of the groundwater streamlines length from the recharge areas to more sporadic discharge areas, and more fluxes occur through the deep layers. Recharge conditions and river-aquifer interactions have changed over the last thousands of years, due to change in precipitation, temperatures, existence of permafrost, etc. They have strongly influenced deep groundwater fluxes and can explain current groundwater age and flux distribution. To study these interactions, a regional-scale finite difference flow model was implemented. The model covers an area of 1400 km 2 , a depth of 1 km, and the topography is characteristic of Brittany. As rivers are mainly fed by groundwater drainage, seepages faces are used on the whole modelled area, so that the river network is not prescribed but dependent on simulated groundwater conditions. Different recharge conditions were tested (from 20 to 500 mm/yr). Results show that streamline lengths and groundwater ages have exponential distributions with characteristic lengths increasing with decreasing recharge. The total area of discharge zones decreases with recharge. Groundwater age is quite variable and increases with depth, but the variability is much more important in discharge areas than recharge areas. The proportion of groundwater discharge into the sea (compared to total recharge) increases when total recharge decreases. The model was also used to test the influence of heterogeneity or hydraulic conductivity contrast between shallow and deep layers on deep groundwater fluxes. In a completely homogeneous model, deep fluxes are correlated with recharge fluxes. Correlation decreases while contrast increases. If the permeability of the shallow weather zone is now 3 orders of magnitude larger than of deep aquifer, we observed that simulated deep groundwater fluxes increase locally, despite total recharge at the level of the ground surface decreases.

  18. Referred pain and cutaneous responses from deep tissue electrical pain stimulation in the groin.

    PubMed

    Aasvang, E K; Werner, M U; Kehlet, H

    2015-08-01

    Persistent postherniotomy pain is located around the scar and external inguinal ring and is often described as deep rather than cutaneous, with frequent complaints of pain in adjacent areas. Whether this pain is due to local pathology or referred/projected pain is unknown, hindering mechanism-based treatment. Deep tissue electrical pain stimulation by needle electrodes in the right groin (rectus muscle, ilioinguinal/iliohypogastric nerve and perispermatic cord) was combined with assessment of referred/projected pain and the cutaneous heat pain threshold (HPT) at three prespecified areas (both groins and the lower right arm) in 19 healthy subjects. The assessment was repeated 10 days later to assess the reproducibility of individual responses. Deep electrical stimulation elicited pain at the stimulation site in all subjects, and in 15 subjects, pain from areas outside the stimulation area was reported, with 90-100% having the same response on both days, depending on the location. Deep pain stimulation significantly increased the cutaneous HPT (P<0.014). Individual HPT responses before and during deep electrical pain stimulation were significantly correlated (ρ>0.474, P≤0.040) at the two test days for the majority of test areas. Our results corroborate a systematic relationship between deep pain and changes in cutaneous nociception. The individual referred/projected pain patterns and cutaneous responses are variable, but reproducible, supporting individual differences in anatomy and sensory processing. Future studies investigating the responses to deep tissue electrical stimulation in persistent postherniotomy pain patients may advance our understanding of underlying pathophysiological mechanisms and strategies for treatment and prevention. ClinicalTrials.gov (NCT01701427). © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. [Effects of unified surgical scheme for wounds on the treatment outcome of patients with extensive deep burn].

    PubMed

    Tang, Wenbin; Li, Xiaojian; Deng, Zhongyuan; Zhang, Zhi; Zhang, Xuhui; Zhang, Tao; Zhong, Xiaomin; Chen, Bin; Liu, Changling

    2015-08-01

    To investigate the effects of unified surgical scheme for wounds on the outcome of patients with extensive deep partial-thickness to full-thickness (briefly referred to as deep) burn. One hundred and thirty-seven patients with extensive deep burn hospitalized from July 2007 to November 2012 underwent unified surgery according to area of deep wound (unified scheme group, US). Among them, 57 patients with deep wound area less than 51% TBSA received escharectomy or tangential excision by stages followed by autologous mesh skin grafting; 52 patients with deep wound area from 51% to 80% TBSA underwent escharectomy or tangential excision by stages followed by autologous mesh skin grafting and/or small skin grafting, or escharectomy or tangential excision followed by large sheet of allogeneic skin covering plus autologous mesh skin grafting and/or small skin grafting after the removal of allogeneic skin; 28 patients with deep wound area larger than 80% TBSA received escharectomy or tangential excision by stages followed by autologous microskin grafting plus coverage of large sheet of allogeneic skin, or escharectomy or tangential excision followed by small autologous skin grafting and/or intermingled grafting with small autologous and/or allogeneic skin. Another 120 patients with extensive deep burn hospitalized from January 2002 to June 2007 who did not receive unified surgical scheme were included as control group (C). Except for the surgical methods in group US, in 53 patients with deep wound area less than 51% TBSA in group C escharectomy or tangential excision was performed followed by autologous small skin grafting; in 40 patients with deep wound area from 51% to 80% TBSA in group C escharectomy or tangential excision was performed followed by autologous microskin grafting plus large sheet of allogeneic skin covering, or escharectomy or tangential excision followed by large sheet of allogeneic skin embedded with stamp-like autologous skin; in 27 patients with deep wound area larger than 80% TBSA in group C escharectomy or tangential excision was performed followed by covering with large sheet of allogeneic skin embedded with stamp-like autologous skin without intermingled grafting with small autologous and allogeneic skin in group US. In group US, escharectomy of full-thickness wound in extremities was performed with the use of tourniquet in every patient; saline containing adrenaline was subcutaneously injected when performing escharectomy or tangential excision over the trunk and skin excision; normal skin and healed superficial-thickness wound were used as donor sites for several times of skin excision. The baseline condition of patients and their treatment in the aspects of fluid resuscitation, nutrition support, anti-inflammation, and organ function support were similar between the two groups. The mortality and incidence of complications of all patients and wound healing time and times of surgery of healed patients were compared between the two groups. Data were processed with independent sample t test, Mann-Whitney U test, and Fisher's exact test. (1) Both the mortality and the incidence of complications of patients with deep wound area less than 51% TBSA in group US were 0, which were close to those of group C (with P values above 0.05). The number of times of surgery of healed patients with deep wound area less than 51% TBSA in group US was 2.4 ± 0.9, which was obviously fewer than that of group C (3.5 ± 1.8, U=-5.085, P<0.001), but with wound healing time close to that of group C (U=-1.480, P>0.05). (2) Both the mortality and the incidence of complications of patients with deep wound area from 51% to 80% TBSA in group US were 0, which were significantly lower than those of group C [both as 20.0% (8/40), with P values below 0.01]. The number of times of surgery and wound healing time of healed patients with deep wound area from 51% to 80% TBSA in group US were respectively 3.0 ± 1.0 and (43 ± 13) d, which were obviously fewer or shorter than those in group C [4.2 ± 2.3 and (61 ± 34) d, with U values respectively -2.491 and -2.186, P values below 0.05]. (3) Both the mortality and the incidence of complications of patients with deep wound area larger than 80% TBSA in group US were 25.0% (7/28), which were close to those of group C [both as 25.9% (7/27), with P values above 0.05]. The number of times of surgery and wound healing time of healed patients with deep wound area larger than 80% TBSA in group US were close to those of group C (with U values respectively -0.276 and -0.369, P values above 0.05). Unified surgical scheme can indirectly decrease the mortality and the incidence of complications of burn patients with deep wound area from 51% to 80% TBSA; it can reduce times of surgery of healed patients of this type and shorten their wound healing time.

  20. The types of the landslide by the heavy rain presumed from geographical and geological features in Japan

    NASA Astrophysics Data System (ADS)

    Doshida, S.

    2014-12-01

    Various types of a landslide, such as a deep-seated landslide, a shallow landslide, and a debris flow, exist. And the risk and the damage area of a landslide change greatly with the types. Therefore it is very important to guess the type of a landslide generated in the future, in order to decrease the damage of a landslide. In this research, I investigated and studied the landslide disaster which occurred in the typhoon No.12 disaster in 2011 and the northern Kyusyu-island heavy rain disaster 2012, in Japan. The purpose of the study presumes the types of a landslide generated in the future by analyzing geographical and geological features.  Many deep-seated landslides and shallow landslides (debris flows) occurred by the typhoon No.12, 2011 in Japan. The precipitation exceeds 1,800 mm in four days in part regionally. Landslides occurred frequently in the Totsukawa area (Northern part) and Nachi-Katsuura area (Southern part), both area were the precipitation of about 1000 mm in four days. In the Totsukawa area, deep-seated landslides occurred frequently, and in Nachi-Katsuura area, shallow landslides (debris flows) occurred frequently. On the other hand, many deep-seated landslides and shallow landslides occurred by the northern Kyusyu-island heavy rain disaster 2012 in Japan too. Landslides occurred frequently in the Hoshino village area (Northern part) and Asodani area (Southern part). In both area, the total precipitation exceeds 500 mm and the hourly precipitation is about 80 mm. In the Hoshino village area, deep-seated landslides occurred frequently, and in Asodani area, shallow landslides occurred frequently.  The result compared with the deep-seated landslide area (Totsukawa and Hoshino village) and the shallow landslide area (Nachi-Katsuura and Asodani), area of landslide is larger and number of landslide is fewer in the deep-seated landslide area. In the shallow landslide area, the slope is steeper and the drainage network is more developed. It is surmised that these geographical differentiations are the geographical features formed of the past landslide. Therefore, it is important to read and analyze the past landslide disaster hysteresis from geographical feature for specifying the type of a landslide.

  1. The deep space network, volume 13

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives, functions, and organization of the Deep Space Network are summarized. The deep space instrumentation facility, the ground communications facility, and the network control system are described. Other areas reported include: Helios Mission support, DSN support of the Mariner Mars 1971 extended mission, Mariner Venus/Mercury 1973 mission support, Viking mission support, radio science, tracking and ground-based navigation, network control and data processing, and deep space stations.

  2. 77 FR 56791 - Main Hawaiian Islands Deep 7 Bottomfish Annual Catch Limits and Accountability Measures for 2012-13

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-14

    ... of the State's bottomfish restricted areas. The analyses in the most recent (2010) MHI Deep 7.... 120628195-2414-02] RIN 0648-XC089 Main Hawaiian Islands Deep 7 Bottomfish Annual Catch Limits and... specifies a quota of 325,000 lb of Deep 7 bottomfish in the main Hawaiian Islands for the 2012-13 fishing...

  3. Computer Aided Process Planning for Non-Axisymmetric Deep Drawing Products

    NASA Astrophysics Data System (ADS)

    Park, Dong Hwan; Yarlagadda, Prasad K. D. V.

    2004-06-01

    In general, deep drawing products have various cross-section shapes such as cylindrical, rectangular and non-axisymmetric shapes. The application of the surface area calculation to non-axisymmetric deep drawing process has not been published yet. In this research, a surface area calculation for non-axisymmetric deep drawing products with elliptical shape was constructed for a design of blank shape of deep drawing products by using an AutoLISP function of AutoCAD software. A computer-aided process planning (CAPP) system for rotationally symmetric deep drawing products has been developed. However, the application of the system to non-axisymmetric components has not been reported yet. Thus, the CAPP system for non-axisymmetric deep drawing products with elliptical shape was constructed by using process sequence design. The system developed in this work consists of four modules. The first is recognition of shape module to recognize non-axisymmetric products. The second is a three-dimensional (3-D) modeling module to calculate the surface area for non-axisymmetric products. The third is a blank design module to create an oval-shaped blank with the identical surface area. The forth is a process planning module based on the production rules that play the best important role in an expert system for manufacturing. The production rules are generated and upgraded by interviewing field engineers. Especially, the drawing coefficient, the punch and die radii for elliptical shape products are considered as main design parameters. The suitability of this system was verified by applying to a real deep drawing product. This CAPP system constructed would be very useful to reduce lead-time for manufacturing and improve an accuracy of products.

  4. Advances in Planetary Protection at the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Spry, J. A.; Siegel, B.; Race, M.; Rummel, J. D.; Pugel, D. E.; Groen, F. J.; Kminek, G.; Conley, C. A.; Carosso, N. J.

    2018-02-01

    Planetary protection knowledge gaps that can be addressed by science performed at the Deep Space Gateway in the areas of human health and performance, space biology, and planetary sciences that enable future exploration in deep space, at Mars, and other targets.

  5. The deep space network

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The progress is reported of Deep Space Network (DSN) research in the following areas: (1) flight project support, (2) spacecraft/ground communications, (3) station control and operations technology, (4) network control and processing, and (5) deep space stations. A description of the DSN functions and facilities is included.

  6. Space Biology Model Organism Research on the Deep Space Gateway to Pioneer Discovery and Advance Human Space Exploration

    NASA Astrophysics Data System (ADS)

    Sato, K. Y.; Tomko, D. L.; Levine, H. G.; Quincy, C. D.; Rayl, N. A.; Sowa, M. B.; Taylor, E. M.; Sun, S. C.; Kundrot, C. E.

    2018-02-01

    Model organisms are foundational for conducting physiological and systems biology research to define how life responds to the deep space environment. The organisms, areas of research, and Deep Space Gateway capabilities needed will be presented.

  7. Benthic communities in chemical munitions dumping site areas within the Baltic deeps with special focus on nematodes

    NASA Astrophysics Data System (ADS)

    Kotwicki, Lech; Grzelak, Katarzyna; Bełdowski, Jacek

    2016-06-01

    Assessment of biological effects of chemical warfare agents (CWAs) dumped in the Baltic Sea has been one of the tasks of the Chemical Munitions Search & Assessment (CHEMSEA) project. Three sites have been selected for investigation: Bornholm Deep, Gotland Deep and Gdansk Deep. Fauna collected from these locations were compared with the reference area located between the studied regions at similar depths below 70 m. In total, four scientific cruises occurred in different seasons between 2011 and 2013. The total lack of any representatives of macrozoobenthos in all of the investigated dumping sites was noted. As a practical matter, the Baltic deeps were inhabited by nematodes as the only meiofauna representatives. Therefore, nematodes were used as a key group to explore the faunal communities inhabiting chemical dumping sites in the Baltic deeps. In total, 42 nematode genera belonging to 18 families were identified, and the dominant genus was Sabatieria (Comesomatidae), which constituted 37.6% of the overall nematode community. There were significant differences in nematode community structure (abundance and taxa composition) between the dumping areas and the reference site (Kruskal-Wallis H=30.96, p<0.0001). Such clear differences suggest that nematode assemblages could mirror the environmental conditions.

  8. Regional Variation of CH4 and N2 Production Processes in the Deep Aquifers of an Accretionary Prism

    PubMed Central

    Matsushita, Makoto; Ishikawa, Shugo; Nagai, Kazushige; Hirata, Yuichiro; Ozawa, Kunio; Mitsunobu, Satoshi; Kimura, Hiroyuki

    2016-01-01

    Accretionary prisms are mainly composed of ancient marine sediment scraped from the subducting oceanic plate at a convergent plate boundary. Large amounts of anaerobic groundwater and natural gas, mainly methane (CH4) and nitrogen gas (N2), are present in the deep aquifers associated with an accretionary prism; however, the origins of these gases are poorly understood. We herein revealed regional variations in CH4 and N2 production processes in deep aquifers in the accretionary prism in Southwest Japan, known as the Shimanto Belt. Stable carbon isotopic and microbiological analyses suggested that CH4 is produced through the non-biological thermal decomposition of organic matter in the deep aquifers in the coastal area near the convergent plate boundary, whereas a syntrophic consortium of hydrogen (H2)-producing fermentative bacteria and H2-utilizing methanogens contributes to the significant production of CH4 observed in deep aquifers in midland and mountainous areas associated with the accretionary prism. Our results also demonstrated that N2 production through the anaerobic oxidation of organic matter by denitrifying bacteria is particularly prevalent in deep aquifers in mountainous areas in which groundwater is affected by rainfall. PMID:27592518

  9. Regional Variation of CH4 and N2 Production Processes in the Deep Aquifers of an Accretionary Prism.

    PubMed

    Matsushita, Makoto; Ishikawa, Shugo; Nagai, Kazushige; Hirata, Yuichiro; Ozawa, Kunio; Mitsunobu, Satoshi; Kimura, Hiroyuki

    2016-09-29

    Accretionary prisms are mainly composed of ancient marine sediment scraped from the subducting oceanic plate at a convergent plate boundary. Large amounts of anaerobic groundwater and natural gas, mainly methane (CH4) and nitrogen gas (N2), are present in the deep aquifers associated with an accretionary prism; however, the origins of these gases are poorly understood. We herein revealed regional variations in CH4 and N2 production processes in deep aquifers in the accretionary prism in Southwest Japan, known as the Shimanto Belt. Stable carbon isotopic and microbiological analyses suggested that CH4 is produced through the non-biological thermal decomposition of organic matter in the deep aquifers in the coastal area near the convergent plate boundary, whereas a syntrophic consortium of hydrogen (H2)-producing fermentative bacteria and H2-utilizing methanogens contributes to the significant production of CH4 observed in deep aquifers in midland and mountainous areas associated with the accretionary prism. Our results also demonstrated that N2 production through the anaerobic oxidation of organic matter by denitrifying bacteria is particularly prevalent in deep aquifers in mountainous areas in which groundwater is affected by rainfall.

  10. The quantitative measurements of foveal avascular zone using optical coherence tomography angiography in normal volunteers.

    PubMed

    Ghassemi, Fariba; Mirshahi, Reza; Bazvand, Fatemeh; Fadakar, Kaveh; Faghihi, Houshang; Sabour, Siamak

    2017-12-01

    To provide normative data of foveal avascular zone (FAZ) and thickness. In this cross-sectional study both eyes of each normal subject were scanned with optical coherence tomography angiography (OCTA) for foveal superficial and deep avascular zone (FAZ) and central foveal thickness (CFT) and parafoveal thickness (PFT). Out of a total of 224 eyes of 112 volunteers with a mean age of 37.03 (12-67) years, the mean superficial FAZ area was 0.27 mm 2 , and deep FAZ area was 0.35 mm 2 ( P  < 0.001), with no difference between both eyes. Females had a larger superficial (0.32 ± 0.11 mm 2 versus 0.23 ± 0.09 mm 2 ) and deep FAZ (0.40 ± 0.14 mm 2 versus 0.31 ± 0.10 mm 2 ) ( P  < 0.001) than males. By multivariate linear regression analysis, in normal eyes, superficial FAZ area varied significantly with the gender, CFT, and deep FAZ. Deep FAZ varied with the gender and CFT. The gender and CFT influence the size of normal superficial and deep FAZ of capillary network.

  11. DeepSurveyCam--A Deep Ocean Optical Mapping System.

    PubMed

    Kwasnitschka, Tom; Köser, Kevin; Sticklus, Jan; Rothenbeck, Marcel; Weiß, Tim; Wenzlaff, Emanuel; Schoening, Timm; Triebe, Lars; Steinführer, Anja; Devey, Colin; Greinert, Jens

    2016-01-28

    Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor), and the limitations of localization technologies (no GPS). The absence of natural light complicates energy budget considerations for deep diving flash-equipped drones. Refraction effects influence geometric image formation considerations with respect to field of view and focus, while attenuation and scattering degrade the radiometric image quality and limit the effective visibility. As an improvement on the stated issues, we present an AUV-based optical system intended for autonomous visual mapping of large areas of the seafloor (square kilometers) in up to 6000 m water depth. We compare it to existing systems and discuss tradeoffs such as resolution vs. mapped area and show results from a recent deployment with 90,000 mapped square meters of deep ocean floor.

  12. The spatial-temporal evolution law of microseismic activities in the failure process of deep rock masses

    NASA Astrophysics Data System (ADS)

    Yuan-hui, Li; Gang, Lei; Shi-da, Xu; Da-wei, Wu

    2018-07-01

    Under high stress and blasting disturbance, the failure of deep rock masses is a complex, dynamic evolutionary process. To reveal the relation between macroscopic failure of deep rock masses and spatial-temporal evolution law of micro-cracking within, the initiation, extension, and connection of micro-cracks under blasting disturbance and the deformation and failure mechanism of deep rock masses were studied. The investigation was carried out using the microseismic (MS) monitoring system established in the deep mining area of Ashele Copper Mine (Xinjiang Uygur Autonomous Region, China). The results showed that the failure of the deep rock masses is a dynamic process accompanied with stress release and stress adjustment. It is not only related to the blasting-based mining, but also associated with zones of stress concentration formed due to the mining. In that space, the concentrated area in the cloud chart for the distribution of MS event density before failure of the rocks shows the basically same pattern with the damaged rocks obtained through scanning of mined-out areas, which indicates that the cloud chart can be used to determine potential risk areas of rocks in the spatial domain. In the time domain, relevant parameters of MS events presented different changes before the failure of the rocks: the energy index decreased while the cumulative apparent volume gradually increased, the magnitude distribution of microseismic events decreased rapidly, and the fractal dimension decreased at first and then remained stable. This demonstrates that the different changes in relevant MS parameters allow researchers to predict the failure time of the rocks. By analysing the dynamic evolution process of the failure of the deep rock masses, areas at potential risk can be predicted spatially and temporally. The result provides guidance for those involved in the safe production and management of underground engineering and establishes a theoretical basis for the study on the stability of deep rock masses.

  13. The immediate effects of deep breathing exercises on atelectasis and oxygenation after cardiac surgery.

    PubMed

    Westerdahl, Elisabeth; Lindmark, Birgitta; Eriksson, Tomas; Hedenstierna, Göran; Tenling, Arne

    2003-12-01

    Objective--To investigate the effects of deep breathing performed on the second postoperative day after coronary artery bypass graft surgery. Design--The immediate effects of 30 deep breaths performed without a mechanical device (n = 21), with a blow bottle device (n = 20) and with an inspiratory resistance-positive expiratory pressure mask (n = 20) were studied. Spiral computed tomography and arterial blood gas analyses were performed immediately before and after the intervention. Results--Deep breathing caused a significant decrease in atelectatic area from 12.3 +/- 7.3% to 10.2 +/- 6.7% (p < 0.0001) of total lung area 1 cm above the diaphragm and from 3.9 +/- 3.5% to 3.3 +/- 3.1% (p < 0.05) 5 cm above the diaphragm. No difference between the breathing techniques was found. The aerated lung area increased by 5% (p < 0.001). The PaO (2) increased by 0.2 kPa (p < 0.05), while PaCO (2) was unchanged in the three groups. Conclusion--A significant decrease of atelectatic area, increase in aerated lung area and a small increase in PaO (2) were found after performance of 30 deep breaths. No difference between the three breathing techniques was found.

  14. Tectonic Evolution of the Southern tip of the Parece Vela Basin

    NASA Astrophysics Data System (ADS)

    Okino, K.; Ohara, Y.; Fujiwara, T.; Lee, S.; Nakamura, Y.; Wu, S.

    2005-12-01

    The southern tip of the Parece Vela Basin was mapped using state-of-the-art instruments for the first time. The basin is known as an extinct backarc basin behind the Mariana arc-trench system and has developed from ~26 to 12 Ma. The backarc spreading consists of two stages: early east-west spreading and later NE-SW spreading accompanied by several oceanic core complexes. The remnant spreading center, the Parece Vela Rift, seems to connect the Yap Trench at its southern end (~12°N) and is not traceable in the southern tip of the basin (9~11°N) west of the Yap Trench. The evolution of the area seems to be linked to the collision of the Caroline Ridge to the Yap Trench, however no systematic mapping had been done before and the tectonics of the area remained enigmatic. New mapping/seismic reflection/dredging results reveal the complex structure of the area, which cannot be seen in northern part of the basin. Relatively continuous N-S fabrics are found in the northern part of the studied area and these fabrics develops within a V-shaped triangle zone. The short NW-SE abyssal hills offset by the NE-SW fracture zones are recognized in the very narrow area just east of the V-shaped area of N-S fabrics. These fabrics indicate the southward propagation of the N-S trending ridge and following NE-SW opening as same as seen in the northern part of the basin, although the eastern wing of the basin was lost. The western part of the area is completely different from the other part of the basin. The most prominent morphology is en echelon, curved deeps near the Kyushu-Palau Ridge. Two deeps are crescent-shaped and curve towards northward. The northern deep is ~6100 m and the abyssal hills seem approximately perpendicular to the deep. The southwestern extension of the northern deep is a narrow curved rift trending 030° and the rift develops within a topographic high. The southern deep is characterized with voluminous dome, which consists of branched topographic highs. The morphological pattern with curved deeps is very much like those of the Pito Deep in the Easter Microplate and of the Endeavor Deep in the Juan Fernandez Microplate. It is likely that the rotational deformation associated with continuous rift propagation and with some finite broad transform zone is related to the origin of the deeps. The area may be the remnant old lithosphere created before the Parece Vela Basin formation and indicate the robust magmatism in the past.

  15. Quantitative evaluation of deep and shallow tissue layers' contribution to fNIRS signal using multi-distance optodes and independent component analysis.

    PubMed

    Funane, Tsukasa; Atsumori, Hirokazu; Katura, Takusige; Obata, Akiko N; Sato, Hiroki; Tanikawa, Yukari; Okada, Eiji; Kiguchi, Masashi

    2014-01-15

    To quantify the effect of absorption changes in the deep tissue (cerebral) and shallow tissue (scalp, skin) layers on functional near-infrared spectroscopy (fNIRS) signals, a method using multi-distance (MD) optodes and independent component analysis (ICA), referred to as the MD-ICA method, is proposed. In previous studies, when the signal from the shallow tissue layer (shallow signal) needs to be eliminated, it was often assumed that the shallow signal had no correlation with the signal from the deep tissue layer (deep signal). In this study, no relationship between the waveforms of deep and shallow signals is assumed, and instead, it is assumed that both signals are linear combinations of multiple signal sources, which allows the inclusion of a "shared component" (such as systemic signals) that is contained in both layers. The method also assumes that the partial optical path length of the shallow layer does not change, whereas that of the deep layer linearly increases along with the increase of the source-detector (S-D) distance. Deep- and shallow-layer contribution ratios of each independent component (IC) are calculated using the dependence of the weight of each IC on the S-D distance. Reconstruction of deep- and shallow-layer signals are performed by the sum of ICs weighted by the deep and shallow contribution ratio. Experimental validation of the principle of this technique was conducted using a dynamic phantom with two absorbing layers. Results showed that our method is effective for evaluating deep-layer contributions even if there are high correlations between deep and shallow signals. Next, we applied the method to fNIRS signals obtained on a human head with 5-, 15-, and 30-mm S-D distances during a verbal fluency task, a verbal working memory task (prefrontal area), a finger tapping task (motor area), and a tetrametric visual checker-board task (occipital area) and then estimated the deep-layer contribution ratio. To evaluate the signal separation performance of our method, we used the correlation coefficients of a laser-Doppler flowmetry (LDF) signal and a nearest 5-mm S-D distance channel signal with the shallow signal. We demonstrated that the shallow signals have a higher temporal correlation with the LDF signals and with the 5-mm S-D distance channel than the deep signals. These results show the MD-ICA method can discriminate between deep and shallow signals. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. A Deep Hydrographic Section Across the Tasman Sea.

    DTIC Science & Technology

    1985-09-01

    the same cruise, TC1, as that on which the magneto- telluric moorings (plus a RANRL recording current-meter) were deployed. A small number of deep...that of Wyrtki (1961) who described the different water masses of this area and the northward movement of deep waters from Antarctica. Boland and

  17. 77 FR 34281 - Airworthiness Directives; Schweizer Aircraft Corporation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... brackets, inspecting the mounting brackets for wear greater than 0.002-inch deep, and replacing the mounting bracket if the bracket wear exceeds 0.002-inch deep. [cir] Modifying the aft fuselage assembly by... areas, and replacing the spar if the wear exceeds 0.002-inch deep. [cir] Inspecting for rivet...

  18. Composite Megathrust Rupture From Deep Interplate to Trench of the 2016 Solomon Islands Earthquake

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Lin, Tzu-Chi; Feng, Kuan-Fu; Liu, Ting-Yu

    2018-01-01

    The deep plate boundary has usually been recognized as an aseismic area, with few large earthquakes occurring at the 60-100 km depth interface. In contrast, we use a finite-fault rupture model to demonstrate that large slip in the 2016 M7.9 Solomon Islands earthquake may have originated from the deep subduction interface and propagated all the way up to the trench. The initial rupture occurred at a depth of about 100 km, forming a deep asperity and then propagating updip to the middle-depth large coseismic slip area. Our proposed source model indicates that the depth-varying rupture characteristics of this event could shift to deeper depths with respect to other subduction zones. This result also implied that the deep subducting plate boundary could also be seismogenic, which might trigger rupture at the typical middle-depth stress-locked zone and develop into rare composite megathrust events.

  19. Hydrogeologic and geochemical characterization of groundwater resources in Deep Creek Valley and adjacent areas, Juab and Tooele Counties, Utah, and Elko and White Pine Counties, Nevada

    USGS Publications Warehouse

    Gardner, Philip M.; Masbruch, Melissa D.

    2015-09-18

    Water-level altitude contours and groundwater ages indicate the potential for a long flow path from southwest to northeast between northern Spring and Deep Creek Valleys through Tippett Valley. Although information gathered during this study is insufficient to conclude whether or not groundwater travels along this interbasin flow path, dissolved sulfate and chloride data indicate that a small fraction of the lower altitude, northern Deep Creek Valley discharge may be sourced from these areas. Despite the uncertainty due to limited data collection points, a hydraulic connection between northern Spring Valley, Tippett Valley, and Deep Creek Valley appears likely, and potential regional effects resulting from future groundwater withdrawals in northern Spring Valley warrant ongoing monitoring of groundwater levels across this area.

  20. Too Deep or Not Too Deep?: A Propensity-Matched Comparison of the Analgesic Effects of a Superficial Versus Deep Serratus Fascial Plane Block for Ambulatory Breast Cancer Surgery.

    PubMed

    Abdallah, Faraj W; Cil, Tulin; MacLean, David; Madjdpour, Caveh; Escallon, Jaime; Semple, John; Brull, Richard

    2018-07-01

    Serratus fascial plane block can reduce pain following breast surgery, but the question of whether to inject the local anesthetic superficial or deep to the serratus muscle has not been answered. This cohort study compares the analgesic benefits of superficial versus deep serratus plane blocks in ambulatory breast cancer surgery patients at Women's College Hospital between February 2014 and December 2016. We tested the joint hypothesis that deep serratus block is noninferior to superficial serratus block for postoperative in-hospital (pre-discharge) opioid consumption and pain severity. One hundred sixty-six patients were propensity matched among 2 groups (83/group): superficial and deep serratus blocks. The cohort was used to evaluate the effect of blocks on postoperative oral morphine equivalent consumption and area under the curve for rest pain scores. We considered deep serratus block to be noninferior to superficial serratus block if it were noninferior for both outcomes, within 15 mg morphine and 4 cm·h units margins. Other outcomes included intraoperative fentanyl requirements, time to first analgesic request, recovery room stay, and incidence of postoperative nausea and vomiting. Deep serratus block was associated with postoperative morphine consumption and pain scores area under the curve that were noninferior to those of the superficial serratus block. Intraoperative fentanyl requirements, time to first analgesic request, recovery room stay, and postoperative nausea and vomiting were not different between blocks. The postoperative in-hospital analgesia associated with deep serratus block is as effective (within an acceptable margin) as superficial serratus block following ambulatory breast cancer surgery. These new findings are important to inform both current clinical practices and future prospective studies.

  1. Wisdom in the Open Air: The Norwegian Roots of Deep Ecology.

    ERIC Educational Resources Information Center

    Reed, Peter, Ed.; Rothenberg, David, Ed.

    This book traces the Norwegian roots of "deep ecology": the search for solutions to environmental problems by examining fundamental tenets of culture. Deep ecology contributes to the philosophical foundations of environmental education and outdoor education, and much writing in this area has focused on promoting awareness of the human…

  2. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis.

    PubMed

    Sun, Wenqing; Zheng, Bin; Qian, Wei

    2017-10-01

    This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists' markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well. Copyright © 2017. Published by Elsevier Ltd.

  3. Deep-water longline fishing has reduced impact on Vulnerable Marine Ecosystems

    PubMed Central

    Pham, Christopher K.; Diogo, Hugo; Menezes, Gui; Porteiro, Filipe; Braga-Henriques, Andreia; Vandeperre, Frederic; Morato, Telmo

    2014-01-01

    Bottom trawl fishing threatens deep-sea ecosystems, modifying the seafloor morphology and its physical properties, with dramatic consequences on benthic communities. Therefore, the future of deep-sea fishing relies on alternative techniques that maintain the health of deep-sea ecosystems and tolerate appropriate human uses of the marine environment. In this study, we demonstrate that deep-sea bottom longline fishing has little impact on vulnerable marine ecosystems, reducing bycatch of cold-water corals and limiting additional damage to benthic communities. We found that slow-growing vulnerable species are still common in areas subject to more than 20 years of longlining activity and estimate that one deep-sea bottom trawl will have a similar impact to 296–1,719 longlines, depending on the morphological complexity of the impacted species. Given the pronounced differences in the magnitude of disturbances coupled with its selectivity and low fuel consumption, we suggest that regulated deep-sea longlining can be an alternative to deep-sea bottom trawling. PMID:24776718

  4. DeepSurveyCam—A Deep Ocean Optical Mapping System

    PubMed Central

    Kwasnitschka, Tom; Köser, Kevin; Sticklus, Jan; Rothenbeck, Marcel; Weiß, Tim; Wenzlaff, Emanuel; Schoening, Timm; Triebe, Lars; Steinführer, Anja; Devey, Colin; Greinert, Jens

    2016-01-01

    Underwater photogrammetry and in particular systematic visual surveys of the deep sea are by far less developed than similar techniques on land or in space. The main challenges are the rough conditions with extremely high pressure, the accessibility of target areas (container and ship deployment of robust sensors, then diving for hours to the ocean floor), and the limitations of localization technologies (no GPS). The absence of natural light complicates energy budget considerations for deep diving flash-equipped drones. Refraction effects influence geometric image formation considerations with respect to field of view and focus, while attenuation and scattering degrade the radiometric image quality and limit the effective visibility. As an improvement on the stated issues, we present an AUV-based optical system intended for autonomous visual mapping of large areas of the seafloor (square kilometers) in up to 6000 m water depth. We compare it to existing systems and discuss tradeoffs such as resolution vs. mapped area and show results from a recent deployment with 90,000 mapped square meters of deep ocean floor. PMID:26828495

  5. Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning.

    PubMed

    Wang, Xinggang; Yang, Wei; Weinreb, Jeffrey; Han, Juan; Li, Qiubai; Kong, Xiangchuang; Yan, Yongluan; Ke, Zan; Luo, Bo; Liu, Tao; Wang, Liang

    2017-11-13

    Prostate cancer (PCa) is a major cause of death since ancient time documented in Egyptian Ptolemaic mummy imaging. PCa detection is critical to personalized medicine and varies considerably under an MRI scan. 172 patients with 2,602 morphologic images (axial 2D T2-weighted imaging) of the prostate were obtained. A deep learning with deep convolutional neural network (DCNN) and a non-deep learning with SIFT image feature and bag-of-word (BoW), a representative method for image recognition and analysis, were used to distinguish pathologically confirmed PCa patients from prostate benign conditions (BCs) patients with prostatitis or prostate benign hyperplasia (BPH). In fully automated detection of PCa patients, deep learning had a statistically higher area under the receiver operating characteristics curve (AUC) than non-deep learning (P = 0.0007 < 0.001). The AUCs were 0.84 (95% CI 0.78-0.89) for deep learning method and 0.70 (95% CI 0.63-0.77) for non-deep learning method, respectively. Our results suggest that deep learning with DCNN is superior to non-deep learning with SIFT image feature and BoW model for fully automated PCa patients differentiation from prostate BCs patients. Our deep learning method is extensible to image modalities such as MR imaging, CT and PET of other organs.

  6. Predicted deep-sea coral habitat suitability for the U.S. West coast.

    PubMed

    Guinotte, John M; Davies, Andrew J

    2014-01-01

    Regional scale habitat suitability models provide finer scale resolution and more focused predictions of where organisms may occur. Previous modelling approaches have focused primarily on local and/or global scales, while regional scale models have been relatively few. In this study, regional scale predictive habitat models are presented for deep-sea corals for the U.S. West Coast (California, Oregon and Washington). Model results are intended to aid in future research or mapping efforts and to assess potential coral habitat suitability both within and outside existing bottom trawl closures (i.e. Essential Fish Habitat (EFH)) and identify suitable habitat within U.S. National Marine Sanctuaries (NMS). Deep-sea coral habitat suitability was modelled at 500 m×500 m spatial resolution using a range of physical, chemical and environmental variables known or thought to influence the distribution of deep-sea corals. Using a spatial partitioning cross-validation approach, maximum entropy models identified slope, temperature, salinity and depth as important predictors for most deep-sea coral taxa. Large areas of highly suitable deep-sea coral habitat were predicted both within and outside of existing bottom trawl closures and NMS boundaries. Predicted habitat suitability over regional scales are not currently able to identify coral areas with pin point accuracy and probably overpredict actual coral distribution due to model limitations and unincorporated variables (i.e. data on distribution of hard substrate) that are known to limit their distribution. Predicted habitat results should be used in conjunction with multibeam bathymetry, geological mapping and other tools to guide future research efforts to areas with the highest probability of harboring deep-sea corals. Field validation of predicted habitat is needed to quantify model accuracy, particularly in areas that have not been sampled.

  7. Predicted Deep-Sea Coral Habitat Suitability for the U.S. West Coast

    PubMed Central

    Guinotte, John M.; Davies, Andrew J.

    2014-01-01

    Regional scale habitat suitability models provide finer scale resolution and more focused predictions of where organisms may occur. Previous modelling approaches have focused primarily on local and/or global scales, while regional scale models have been relatively few. In this study, regional scale predictive habitat models are presented for deep-sea corals for the U.S. West Coast (California, Oregon and Washington). Model results are intended to aid in future research or mapping efforts and to assess potential coral habitat suitability both within and outside existing bottom trawl closures (i.e. Essential Fish Habitat (EFH)) and identify suitable habitat within U.S. National Marine Sanctuaries (NMS). Deep-sea coral habitat suitability was modelled at 500 m×500 m spatial resolution using a range of physical, chemical and environmental variables known or thought to influence the distribution of deep-sea corals. Using a spatial partitioning cross-validation approach, maximum entropy models identified slope, temperature, salinity and depth as important predictors for most deep-sea coral taxa. Large areas of highly suitable deep-sea coral habitat were predicted both within and outside of existing bottom trawl closures and NMS boundaries. Predicted habitat suitability over regional scales are not currently able to identify coral areas with pin point accuracy and probably overpredict actual coral distribution due to model limitations and unincorporated variables (i.e. data on distribution of hard substrate) that are known to limit their distribution. Predicted habitat results should be used in conjunction with multibeam bathymetry, geological mapping and other tools to guide future research efforts to areas with the highest probability of harboring deep-sea corals. Field validation of predicted habitat is needed to quantify model accuracy, particularly in areas that have not been sampled. PMID:24759613

  8. Estimates of deep percolation beneath native vegetation, irrigated fields, and the Amargosa-River Channel, Amargosa Desert, Nye County, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Prudic, David E.; Laczniak, Randell J.; Akstin, Katherine C.; Boyd, Robert A.; Henkelman, Katherine K.

    2003-01-01

    The presence and approximate rates of deep percolation beneath areas of native vegetation, irrigated fields, and the Amargosa-River channel in the Amargosa Desert of southern Nevada were evaluated using the chloride mass-balance method and inferred downward velocities of chloride and nitrate peaks. Estimates of deep-percolation rates in the Amargosa Desert are needed for the analysis of regional ground-water flow and transport. An understanding of regional flow patterns is important because ground water originating on the Nevada Test Site may pass through the area before discharging from springs at lower elevations in the Amargosa Desert and in Death Valley. Nine boreholes 10 to 16 meters deep were cored nearly continuously using a hollow-stem auger designed for gravelly sediments. Two boreholes were drilled in each of three irrigated fields in the Amargosa-Farms area, two in the Amargosa-River channel, and one in an undisturbed area of native vegetation. Data from previously cored boreholes beneath undisturbed, native vegetation were compared with the new data to further assess deep percolation under current climatic conditions and provide information on spatial variability.The profiles beneath native vegetation were characterized by large amounts of accumulated chloride just below the root zone with almost no further accumulation at greater depths. This pattern is typical of profiles beneath interfluvial areas in arid alluvial basins of the southwestern United States, where salts have been accumulating since the end of the Pleistocene. The profiles beneath irrigated fields and the Amargosa-River channel contained more than twice the volume of water compared to profiles beneath native vegetation, consistent with active deep percolation beneath these sites. Chloride profiles beneath two older fields (cultivated since the 1960’s) as well as the upstream Amargosa-River site were indicative of long-term, quasi-steady deep percolation. Chloride profiles beneath the newest field (cultivated since 1993), the downstream Amargosa-River site, and the edge of an older field were indicative of recently active deep percolation moving previously accumulated salts from the upper profile to greater depths.Results clearly indicate that deep percolation and ground-water recharge occur not only beneath areas of irrigation but also beneath ephemeral stream channels, despite the arid climate and infrequency of runoff. Rates of deep percolation beneath irrigated fields ranged from 0.1 to 0.5 m/yr. Estimated rates of deep percolation beneath the Amargosa-River channel ranged from 0.02 to 0.15 m/yr. Only a few decades are needed for excess irrigation water to move through the unsaturated zone and recharge ground water. Assuming vertical, one-dimensional flow, the estimated time for irrigation-return flow to reach the water table beneath the irrigated fields ranged from about 10 to 70 years. In contrast, infiltration from present-day runoff takes centuries to move through the unsaturated zone and reach the water table. The estimated time for water to reach the water table beneath the channel ranged from 140 to 1000 years. These values represent minimum times, as they do not take lateral flow into account. The estimated fraction of irrigation water becoming deep percolation averaged 8 to 16 percent. Similar fractions of infiltration from ephemeral flow events were estimated to become deep percolation beneath the normally dry Amargosa-River channel. In areas where flood-induced channel migration occurs at sub-centennial frequencies, residence times in the unsaturated zone beneath the Amargosa channel could be longer. Estimates of deep percolation presented herein provide a basis for evaluating the importance of recharge from irrigation and channel infiltration in models of ground-water flow from the Nevada Test Site.

  9. Descending projections from the dysgranular zone of rat primary somatosensory cortex processing deep somatic input.

    PubMed

    Lee, Taehee; Kim, Uhnoh

    2012-04-01

    In the mammalian somatic system, peripheral inputs from cutaneous and deep receptors ascend via different subcortical channels and terminate in largely separate regions of the primary somatosensory cortex (SI). How these inputs are processed in SI and then projected back to the subcortical relay centers is critical for understanding how SI may regulate somatic information processing in the subcortex. Although it is now relatively well understood how SI cutaneous areas project to the subcortical structures, little is known about the descending projections from SI areas processing deep somatic input. We examined this issue by using the rodent somatic system as a model. In rat SI, deep somatic input is processed mainly in the dysgranular zone (DSZ) enclosed by the cutaneous barrel subfields. By using biotinylated dextran amine (BDA) as anterograde tracer, we characterized the topography of corticostriatal and corticofugal projections arising in the DSZ. The DSZ projections terminate mainly in the lateral subregions of the striatum that are also known as the target of certain SI cutaneous areas. This suggests that SI processing of deep and cutaneous information may be integrated, to a certain degree, in this striatal region. By contrast, at both thalamic and prethalamic levels as far as the spinal cord, descending projections from DSZ terminate in areas largely distinguishable from those that receive input from SI cutaneous areas. These subcortical targets of DSZ include not only the sensory but also motor-related structures, suggesting that SI processing of deep input may engage in regulating somatic and motor information flow between the cortex and periphery. Copyright © 2011 Wiley-Liss, Inc.

  10. Characterization of the Growth of Deep and Subcortical White Matter Hyperintensity on MR Imaging: A Retrospective Cohort Study.

    PubMed

    Adachi, Michito; Sato, Takamichi

    2017-07-10

    In elderly patients, deep and subcortical white matter hyperintense lesions are frequently observed on MRI; however, the growth process of these lesions is unclear. The aims of this retrospective cohort study were to elucidate the growth characteristics of deep and subcortical white matter hyperintense lesions, and to insight their etiology. We enrolled 103 patients (1610 lesions) whose deep and subcortical white matter hyperintense lesions were monitored for 3 or more years by MRI examination. The area of each hyperintense lesion was measured using a tracing method in the first and last MRI examinations. The annual rate of increase in the area of each lesion was calculated, and using the Pearson product-moment correlation coefficient the correlation between the annual rate of increase in area and the interval between the first and last MRI examinations was determined. The paired t-test showed a significant increase in the mean area of all the deep and subcortical white matter hyperintense lesions between the first and last MRI examinations (P < 0.001). However, hyperintense lesions had decreased in the area or disappeared in 227 (14.1%) lesions in the last MRI examination, particularly in patients with diabetes. The mean annual rate of increase in area of all hyperintense lesions was 0.013 ± 0.021 cm 2 per year. The annual rate of increase in area and the interval between the first and last MRI examinations showed a weak negative correlation (r = -0.121; P < 0.01). Decrease in the area and the disappearance of the subcortical white matter hyperintense lesions, and a decline in the annual rate of increase in the lesion area with time suggest that the interstitial fluid accumulation associated with dysfunctional drainage around the vessels may be involved in the possible etiologies of deep and subcortical white matter hyperintense lesions.

  11. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand

    NASA Astrophysics Data System (ADS)

    Radloff, K. A.; Zheng, Y.; Michael, H. A.; Stute, M.; Bostick, B. C.; Mihajlov, I.; Bounds, M.; Huq, M. R.; Choudhury, I.; Rahman, M. W.; Schlosser, P.; Ahmed, K. M.; van Geen, A.

    2011-11-01

    The consumption of shallow groundwater with elevated concentrations of arsenic is causing widespread disease in many parts of South and Southeast Asia. In the Bengal Basin, a growing reliance on groundwater sourced below 150-m depth--where arsenic concentrations tend to be lower--has reduced exposure. Groundwater flow simulations have suggested that these deep waters are at risk of contamination due to replenishment with high-arsenic groundwater from above, even when deep water pumping is restricted to domestic use. However, these simulations have neglected the influence of sediment adsorption on arsenic migration. Here, we inject arsenic-bearing groundwater into a deep aquifer zone in Bangladesh, and monitor the reduction in arsenic levels over time following stepwise withdrawal of the water. Arsenic concentrations in the injected water declined by 70% after 24h in the deep aquifer zone, owing to adsorption on sediments; concentrations of a co-injected inert tracer remain unchanged. We incorporate the experimentally determined adsorption properties of sands in the deep aquifer zone into a groundwater flow and transport model covering the Bengal Basin. Simulations using present and future scenarios of water-use suggest that arsenic adsorption significantly retards transport, thereby extending the area over which deep groundwater can be used with low risk of arsenic contamination. Risks are considerably lower when deep water is pumped for domestic use alone. Some areas remain vulnerable to arsenic intrusion, however, and we suggest that these be prioritized for monitoring.

  12. Repeating Earthquake and Nonvolcanic Tremor Observations of Aseismic Deep Fault Transients in Central California.

    NASA Astrophysics Data System (ADS)

    Nadeau, R. M.; Traer, M.; Guilhem, A.

    2005-12-01

    Seismic indicators of fault zone deformation can complement geodetic measurements by providing information on aseismic transient deformation: 1) from deep within the fault zone, 2) on a regional scale, 3) with intermediate temporal resolution (weeks to months) and 4) that spans over 2 decades (1984 to early 2005), including pre- GPS and INSAR coverage. Along the San Andreas Fault (SAF) in central California, two types of seismic indicators are proving to be particularly useful for providing information on deep fault zone deformation. The first, characteristically repeating microearthquakes, provide long-term coverage (decades) on the evolution of aseismic fault slip rates at seismogenic depths along a large (~175 km) stretch of the SAF between the rupture zones of the ~M8 1906 San Francisco and 1857 Fort Tejon earthquakes. In Cascadia and Japan the second type of seismic indicator, nonvolcanic tremors, have shown a remarkable correlation between their activity rates and GPS and tiltmeter measurements of transient deformation in the deep (sub-seismogenic) fault zone. This correlation suggests that tremor rate changes and deep transient deformation are intimately related and that deformation associated with the tremor activity may be stressing the seismogenic zone in both areas. Along the SAF, nonvolcanic tremors have only recently been discovered (i.e., in the Parkfield-Cholame area), and knowledge of their full spatial extent is still relatively limited. Nonetheless the observed temporal correlation between earthquake and tremor activity in this area is consistent with a model in which sub-seismogenic deformation and seismogenic zone stress changes are closely related. We present observations of deep aseismic transient deformation associated with the 28 September 2004, M6 Parkfield earthquake from both repeating earthquake and nonvolcanic tremor data. Also presented are updated deep fault slip rate estimates from prepeating quakes in the San Juan Bautista area with an assessment of their significance to previously reported quasi-periodic slip rate pulses and small to moderate magnitude (> M3.5) earthquake occurrence in the area.

  13. Development and Validation of a Deep Neural Network Model for Prediction of Postoperative In-hospital Mortality.

    PubMed

    Lee, Christine K; Hofer, Ira; Gabel, Eilon; Baldi, Pierre; Cannesson, Maxime

    2018-04-17

    The authors tested the hypothesis that deep neural networks trained on intraoperative features can predict postoperative in-hospital mortality. The data used to train and validate the algorithm consists of 59,985 patients with 87 features extracted at the end of surgery. Feed-forward networks with a logistic output were trained using stochastic gradient descent with momentum. The deep neural networks were trained on 80% of the data, with 20% reserved for testing. The authors assessed improvement of the deep neural network by adding American Society of Anesthesiologists (ASA) Physical Status Classification and robustness of the deep neural network to a reduced feature set. The networks were then compared to ASA Physical Status, logistic regression, and other published clinical scores including the Surgical Apgar, Preoperative Score to Predict Postoperative Mortality, Risk Quantification Index, and the Risk Stratification Index. In-hospital mortality in the training and test sets were 0.81% and 0.73%. The deep neural network with a reduced feature set and ASA Physical Status classification had the highest area under the receiver operating characteristics curve, 0.91 (95% CI, 0.88 to 0.93). The highest logistic regression area under the curve was found with a reduced feature set and ASA Physical Status (0.90, 95% CI, 0.87 to 0.93). The Risk Stratification Index had the highest area under the receiver operating characteristics curve, at 0.97 (95% CI, 0.94 to 0.99). Deep neural networks can predict in-hospital mortality based on automatically extractable intraoperative data, but are not (yet) superior to existing methods.

  14. The effects of voluntary control of respiration on the excitability of the primary motor hand area, evaluated by end-tidal CO2 monitoring.

    PubMed

    Ozaki, Isamu; Kurata, Kiyoshi

    2015-11-01

    To investigate the effects of voluntary deep breathing on the excitability of the hand area in the primary motor cortex (M1). We applied near-threshold transcranial magnetic stimulation (TMS) over M1 during the early phase of inspiration or expiration in both normal automatic and voluntary deep, but not "forced", breathing in eight healthy participants at rest. We monitored exhaled CO2 levels continuously, and recorded motor-evoked potentials (MEPs) simultaneously from the abductor pollicis brevis, first dorsal interosseous, abductor digiti minimi, flexor digitorum superficialis, and extensor incidis muscles. We observed that, during voluntary deep breathing, MEP amplitude increased by up to 50% for all recorded muscles and the latency of MEPs decreased by approximately 1ms, compared with normal automatic breathing. We found no difference in the amplitude or latency of MEPs between inspiratory and expiratory phases in either normal automatic or voluntary deep breathing. Voluntary deep breathing at rest facilitates MEPs following TMS over the hand area of M1, and MEP enhancement occurs throughout the full respiratory cycle. The M1 hand region is continuously driven by top-down neural signals over the entire respiratory cycle of voluntary deep breathing. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Vulnerability of deep groundwater in the Bengal Aquifer System to contamination by arsenic

    USGS Publications Warehouse

    Burgess, W.G.; Hoque, M.A.; Michael, H.A.; Voss, C.I.; Breit, G.N.; Ahmed, K.M.

    2010-01-01

    Shallow groundwater, the primary water source in the Bengal Basin, contains up to 100 times the World Health Organization (WHO) drinking-water guideline of 10g l 1 arsenic (As), threatening the health of 70 million people. Groundwater from a depth greater than 150m, which almost uniformly meets the WHO guideline, has become the preferred alternative source. The vulnerability of deep wells to contamination by As is governed by the geometry of induced groundwater flow paths and the geochemical conditions encountered between the shallow and deep regions of the aquifer. Stratification of flow separates deep groundwater from shallow sources of As in some areas. Oxidized sediments also protect deep groundwater through the ability of ferric oxyhydroxides to adsorb As. Basin-scale groundwater flow modelling suggests that, over large regions, deep hand-pumped wells for domestic supply may be secure against As invasion for hundreds of years. By contrast, widespread deep irrigation pumping might effectively eliminate deep groundwater as an As-free resource within decades. Finer-scale models, incorporating spatial heterogeneity, are needed to investigate the security of deep municipal abstraction at specific urban locations. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  16. 15 CFR 971.204 - Environmental and use conflict analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... If the permit area lies within the area of NOAA's Deep Ocean Mining Environmental Study (DOMES), the... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS... Administrator to prepare an environmental impact statement (EIS) on the proposed mining activities, and to...

  17. 15 CFR 971.204 - Environmental and use conflict analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... If the permit area lies within the area of NOAA's Deep Ocean Mining Environmental Study (DOMES), the... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS... Administrator to prepare an environmental impact statement (EIS) on the proposed mining activities, and to...

  18. 15 CFR 971.204 - Environmental and use conflict analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... If the permit area lies within the area of NOAA's Deep Ocean Mining Environmental Study (DOMES), the... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS... Administrator to prepare an environmental impact statement (EIS) on the proposed mining activities, and to...

  19. 15 CFR 971.204 - Environmental and use conflict analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... If the permit area lies within the area of NOAA's Deep Ocean Mining Environmental Study (DOMES), the... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS... Administrator to prepare an environmental impact statement (EIS) on the proposed mining activities, and to...

  20. The biodiversity of the deep Southern Ocean benthos.

    PubMed

    Brandt, A; De Broyer, C; De Mesel, I; Ellingsen, K E; Gooday, A J; Hilbig, B; Linse, K; Thomson, M R A; Tyler, P A

    2007-01-29

    Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae.

  1. The biodiversity of the deep Southern Ocean benthos

    PubMed Central

    Brandt, A; De Broyer, C; De Mesel, I; Ellingsen, K.E; Gooday, A.J; Hilbig, B; Linse, K; Thomson, M.R.A; Tyler, P.A

    2006-01-01

    Our knowledge of the biodiversity of the Southern Ocean (SO) deep benthos is scarce. In this review, we describe the general biodiversity patterns of meio-, macro- and megafaunal taxa, based on historical and recent expeditions, and against the background of the geological events and phylogenetic relationships that have influenced the biodiversity and evolution of the investigated taxa. The relationship of the fauna to environmental parameters, such as water depth, sediment type, food availability and carbonate solubility, as well as species interrelationships, probably have shaped present-day biodiversity patterns as much as evolution. However, different taxa exhibit different large-scale biodiversity and biogeographic patterns. Moreover, there is rarely any clear relationship of biodiversity pattern with depth, latitude or environmental parameters, such as sediment composition or grain size. Similarities and differences between the SO biodiversity and biodiversity of global oceans are outlined. The high percentage (often more than 90%) of new species in almost all taxa, as well as the high degree of endemism of many groups, may reflect undersampling of the area, and it is likely to decrease as more information is gathered about SO deep-sea biodiversity by future expeditions. Indeed, among certain taxa such as the Foraminifera, close links at the species level are already apparent between deep Weddell Sea faunas and those from similar depths in the North Atlantic and Arctic. With regard to the vertical zonation from the shelf edge into deep water, biodiversity patterns among some taxa in the SO might differ from those in other deep-sea areas, due to the deep Antarctic shelf and the evolution of eurybathy in many species, as well as to deep-water production that can fuel the SO deep sea with freshly produced organic matter derived not only from phytoplankton, but also from ice algae. PMID:17405207

  2. Studies Show Steps to More Success Planting Oak Forests

    Treesearch

    Robert L. Johnson

    1986-01-01

    As Ann Nestelroad observes in a preceding article, acorns sown 6 inches deep can germinate and produce seedlings. I believe, however, that the best oak establishment comes from acorns sown 1 to 2 inches deep in open areas. Deep sowing does not substantially reduce acorn depredation by rodents, but two ongoing studies at Stoneville, Mississippi, indicate that sowing in...

  3. The deep lymphatic anatomy of the hand.

    PubMed

    Ma, Chuan-Xiang; Pan, Wei-Ren; Liu, Zhi-An; Zeng, Fan-Qiang; Qiu, Zhi-Qiang

    2018-07-01

    The deep lymphatic anatomy of the hand still remains the least described in medical literature. Eight hands were harvested from four nonembalmed human cadavers amputated above the wrist. A small amount of 6% hydrogen peroxide was employed to detect the lymphatic vessels around the superficial and deep palmar vascular arches, in webs from the index to little fingers, the thenar and hypothenar areas. A 30-gauge needle was inserted into the vessels and injected with a barium sulphate compound. Each specimen was dissected, photographed and radiographed to demonstrate deep lymphatic distribution of the hand. Five groups of deep collecting lymph vessels were found in the hand: superficial palmar arch lymph vessel (SPALV); deep palmar arch lymph vessel (DPALV); thenar lymph vessel (TLV); hypothenar lymph vessel (HTLV); deep finger web lymph vessel (DFWLV). Each group of vessels drained in different directions first, then all turned and ran towards the wrist in different layers. The deep lymphatic drainage of the hand has been presented. The results will provide an anatomical basis for clinical management, educational reference and scientific research. Copyright © 2018 Elsevier GmbH. All rights reserved.

  4. Diabetic retinopathy screening using deep neural network.

    PubMed

    Ramachandran, Nishanthan; Hong, Sheng Chiong; Sime, Mary J; Wilson, Graham A

    2017-09-07

    There is a burgeoning interest in the use of deep neural network in diabetic retinal screening. To determine whether a deep neural network could satisfactorily detect diabetic retinopathy that requires referral to an ophthalmologist from a local diabetic retinal screening programme and an international database. Retrospective audit. Diabetic retinal photos from Otago database photographed during October 2016 (485 photos), and 1200 photos from Messidor international database. Receiver operating characteristic curve to illustrate the ability of a deep neural network to identify referable diabetic retinopathy (moderate or worse diabetic retinopathy or exudates within one disc diameter of the fovea). Area under the receiver operating characteristic curve, sensitivity and specificity. For detecting referable diabetic retinopathy, the deep neural network had an area under receiver operating characteristic curve of 0.901 (95% confidence interval 0.807-0.995), with 84.6% sensitivity and 79.7% specificity for Otago and 0.980 (95% confidence interval 0.973-0.986), with 96.0% sensitivity and 90.0% specificity for Messidor. This study has shown that a deep neural network can detect referable diabetic retinopathy with sensitivities and specificities close to or better than 80% from both an international and a domestic (New Zealand) database. We believe that deep neural networks can be integrated into community screening once they can successfully detect both diabetic retinopathy and diabetic macular oedema. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  5. Hourly air pollution concentrations and their important predictors over Houston, Texas using deep neural networks: case study of DISCOVER-AQ time period

    NASA Astrophysics Data System (ADS)

    Eslami, E.; Choi, Y.; Roy, A.

    2017-12-01

    Air quality forecasting carried out by chemical transport models often show significant error. This study uses a deep-learning approach over the Houston-Galveston-Brazoria (HGB) area to overcome this forecasting challenge, for the DISCOVER-AQ period (September 2013). Two approaches, deep neural network (DNN) using a Multi-Layer Perceptron (MLP) and Restricted Boltzmann Machine (RBM) were utilized. The proposed approaches analyzed input data by identifying features abstracted from its previous layer using a stepwise method. The approaches predicted hourly ozone and PM in September 2013 using several predictors of prior three days, including wind fields, temperature, relative humidity, cloud fraction, precipitation along with PM, ozone, and NOx concentrations. Model-measurement comparisons for available monitoring sites reported Indexes of Agreement (IOA) of around 0.95 for both DNN and RBM. A standard artificial neural network (ANN) (IOA=0.90) with similar architecture showed poorer performance than the deep networks, clearly demonstrating the superiority of the deep approaches. Additionally, each network (both deep and standard) performed significantly better than a previous CMAQ study, which showed an IOA of less than 0.80. The most influential input variables were identified using their associated weights, which represented the sensitivity of ozone to input parameters. The results indicate deep learning approaches can achieve more accurate ozone forecasting and identify the important input variables for ozone predictions in metropolitan areas.

  6. Detection of deep water formation from remote sensing chlorophyll in the NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Bernardello, Raffaele; Bahamon, Nixon; Ahumada, Miguel-Angel; Martin, Adrian; Henson, Stephanie

    2015-04-01

    The Northwestern Mediterranean Sea is one of the few regions in the world where Deep Water Formation (DWF) occurs. During wintertime cold and dry winds that typically occur in strong bursts lasting a few days, are able to erode the near-surface stability over this area, exposing the weakly stratified underwaters and initiate a phase of violent mixing and deep convection. DWF is not a steady-state process that recurs every year. Variations in wind stress and heat flux over the winter can induce a marked interannual variability: during some years the process is specially intense and completely absent during others. The extent of the area over which DWF occurs is also uncertain. The interannual variability of the DWF process is also associated to the variability in the seasonal phytoplankton dynamics over the area. The extent of the vertical mixing set the total amount of nutrients available for the phytoplankton during the following spring bloom. However, before the bloom, when deep convection is still active, surface chlorophyll (an index for phytoplankton biomass) is vertically diluted showing low surface concentration. The occurrence of these patches of anomalously low chlorophyll concentration can, in principle, be associated to the presence of active deep convection. In this study we investigate the possibility of exploiting such association in order to quantify the duration of deep convection and the extent of the area over which it occurs. These goals will be achieved through the analysis of remote sensing chlorophyll data and in-situ Argo-floats profiles.

  7. Using chloride and chlorine-36 as soil-water tracers to estimate deep percolation at selected locations on the U.S. Department of Energy Hanford site, Washington

    USGS Publications Warehouse

    Prych, Edmund A.

    1995-01-01

    Long-term average deep-percolation rates of water from precipitation on the U.S. Department of Energy Hanford Site in semiarid south-central Washington, as estimated by a chloride mass-balance method, range from 0.008 to 0.30 mm/yr (millimeters per year) at nine locations covered by a variety of fine-grain soils and vegetated with sagebrush and other deep-rooted plants plus sparse shallow-rooted grasses. Deep-percolation rates estimated using a chlorine-36 bomb-pulse method at three of the nine locations range from 2.1 to 3.4 mm/yr. Because the mass-balance method may underestimate percolation rates and the bomb-pulse method probably overestimates percolation rates, estimates by the two methods probably bracket actual rates. These estimates, as well as estimates by previous investigators who used different methods, are a small fraction of mean annual precipitation, which ranges from about 160 to 210 mm/yr at the different test locations. Estimates by the mass-balance method at four locations in an area that is vegetated only with sparse shallow-rooted grasses range from 0.39 to 2.0 mm/yr. Chlorine-36 data at one location in this area were sufficient only to determine that the upper limit of deep percolation is more than 5.1 mm/yr. Although estimates for locations in this area are larger than the estimates for locations with deep-rooted plants, they are at the lower end of the range of estimates for this area made by previous investigators.

  8. Deep learning methods for protein torsion angle prediction.

    PubMed

    Li, Haiou; Hou, Jie; Adhikari, Badri; Lyu, Qiang; Cheng, Jianlin

    2017-09-18

    Deep learning is one of the most powerful machine learning methods that has achieved the state-of-the-art performance in many domains. Since deep learning was introduced to the field of bioinformatics in 2012, it has achieved success in a number of areas such as protein residue-residue contact prediction, secondary structure prediction, and fold recognition. In this work, we developed deep learning methods to improve the prediction of torsion (dihedral) angles of proteins. We design four different deep learning architectures to predict protein torsion angles. The architectures including deep neural network (DNN) and deep restricted Boltzmann machine (DRBN), deep recurrent neural network (DRNN) and deep recurrent restricted Boltzmann machine (DReRBM) since the protein torsion angle prediction is a sequence related problem. In addition to existing protein features, two new features (predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments) are used as input to each of the four deep learning architectures to predict phi and psi angles of protein backbone. The mean absolute error (MAE) of phi and psi angles predicted by DRNN, DReRBM, DRBM and DNN is about 20-21° and 29-30° on an independent dataset. The MAE of phi angle is comparable to the existing methods, but the MAE of psi angle is 29°, 2° lower than the existing methods. On the latest CASP12 targets, our methods also achieved the performance better than or comparable to a state-of-the art method. Our experiment demonstrates that deep learning is a valuable method for predicting protein torsion angles. The deep recurrent network architecture performs slightly better than deep feed-forward architecture, and the predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments are useful features for improving prediction accuracy.

  9. SPRUCE Deep Peat Heating Manipulations: in situ Methods to Characterize the Response of Deep Peat to Warming

    NASA Astrophysics Data System (ADS)

    Hanson, P. J.; Riggs, J. S.; Barbier, C. N.; Nettles, W. R., IV; Phillips, J. R.; Hook, L.

    2014-12-01

    Deep soil heating infrastructure was completed in 2014 for a peatland whole-ecosystem warming study that will include air warming starting in 2015 (SPRUCE; http://mnspruce.ornl.gov). In June 2014, we initiated deep soil heating to test the responsiveness of deep peat carbon stocks, microbial communities and biogeochemical cycling processes to heating at 4 warming levels (+2.25, +4.5, +6.75 and +9 °C; 2 replicate plots) compared to fully-constructed control plots (+0 °C; 2 replicate plots). The warming treatments were deployed over eight 113 m2 areas using circular arrays of low-wattage (W) electrical resistance heaters. Perimeter heating was achieved by an exterior circle of 48 100W heaters that apply heat from the surface to a depth of 3 meters. Heating within the study area was accomplished utilizing three zones of 100W "deep only" heaters: an intermediate circle of 12 units, an interior circle of 6 units and one unit placed at the plot center. Heating elements inside the study area apply heat only from -2 to -3 m to keep active heater surfaces away from measured peat volumes. With an average peat depth of 2.5 meters this system was able to warm approximately 113 of the 282 m3 of peat within each target plot. In the absence of the air warming cap, in situ deep peat heating is only effective at sustaining warming in the deep peat layers. Warming levels at depth were achieved over a 25-day (+ 2.25 °C) to a 60-day (+9 °C) period depending on the target treatment temperatures in agreement with a priori energy balance model simulations. Homogeneous temperature distributions between heaters at a given depth interval continued to develop after these targets were reached. Biological and biogeochemical responses to these manipulations are being actively assessed. After one month of transient heating, data for ground-level surface flux of CO2 and CH4 had not shown changes from deep peat heating, but they continue to be tracked and will be summarized in this and related talks.

  10. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    PubMed

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  11. AEGIS-X: Deep Chandra Imaging of the Central Groth Strip

    NASA Astrophysics Data System (ADS)

    Nandra, K.; Laird, E. S.; Aird, J. A.; Salvato, M.; Georgakakis, A.; Barro, G.; Perez-Gonzalez, P. G.; Barmby, P.; Chary, R.-R.; Coil, A.; Cooper, M. C.; Davis, M.; Dickinson, M.; Faber, S. M.; Fazio, G. G.; Guhathakurta, P.; Gwyn, S.; Hsu, L.-T.; Huang, J.-S.; Ivison, R. J.; Koo, D. C.; Newman, J. A.; Rangel, C.; Yamada, T.; Willmer, C.

    2015-09-01

    We present the results of deep Chandra imaging of the central region of the Extended Groth Strip, the AEGIS-X Deep (AEGIS-XD) survey. When combined with previous Chandra observations of a wider area of the strip, AEGIS-X Wide (AEGIS-XW), these provide data to a nominal exposure depth of 800 ks in the three central ACIS-I fields, a region of approximately 0.29 deg2. This is currently the third deepest X-ray survey in existence; a factor ∼ 2-3 shallower than the Chandra Deep Fields (CDFs), but over an area ∼3 times greater than each CDF. We present a catalog of 937 point sources detected in the deep Chandra observations, along with identifications of our X-ray sources from deep ground-based, Spitzer, GALEX, and Hubble Space Telescope imaging. Using a likelihood ratio analysis, we associate multiband counterparts for 929/937 of our X-ray sources, with an estimated 95% reliability, making the identification completeness approximately 94% in a statistical sense. Reliable spectroscopic redshifts for 353 of our X-ray sources are available predominantly from Keck (DEEP2/3) and MMT Hectospec, so the current spectroscopic completeness is ∼38%. For the remainder of the X-ray sources, we compute photometric redshifts based on multiband photometry in up to 35 bands from the UV to mid-IR. Particular attention is given to the fact that the vast majority the X-ray sources are active galactic nuclei and require hybrid templates. Our photometric redshifts have mean accuracy of σ =0.04 and an outlier fraction of approximately 5%, reaching σ =0.03 with less than 4% outliers in the area covered by CANDELS . The X-ray, multiwavelength photometry, and redshift catalogs are made publicly available.

  12. Prediction of Occult Invasive Disease in Ductal Carcinoma in Situ Using Deep Learning Features.

    PubMed

    Shi, Bibo; Grimm, Lars J; Mazurowski, Maciej A; Baker, Jay A; Marks, Jeffrey R; King, Lorraine M; Maley, Carlo C; Hwang, E Shelley; Lo, Joseph Y

    2018-03-01

    The aim of this study was to determine whether deep features extracted from digital mammograms using a pretrained deep convolutional neural network are prognostic of occult invasive disease for patients with ductal carcinoma in situ (DCIS) on core needle biopsy. In this retrospective study, digital mammographic magnification views were collected for 99 subjects with DCIS at biopsy, 25 of which were subsequently upstaged to invasive cancer. A deep convolutional neural network model that was pretrained on nonmedical images (eg, animals, plants, instruments) was used as the feature extractor. Through a statistical pooling strategy, deep features were extracted at different levels of convolutional layers from the lesion areas, without sacrificing the original resolution or distorting the underlying topology. A multivariate classifier was then trained to predict which tumors contain occult invasive disease. This was compared with the performance of traditional "handcrafted" computer vision (CV) features previously developed specifically to assess mammographic calcifications. The generalization performance was assessed using Monte Carlo cross-validation and receiver operating characteristic curve analysis. Deep features were able to distinguish DCIS with occult invasion from pure DCIS, with an area under the receiver operating characteristic curve of 0.70 (95% confidence interval, 0.68-0.73). This performance was comparable with the handcrafted CV features (area under the curve = 0.68; 95% confidence interval, 0.66-0.71) that were designed with prior domain knowledge. Despite being pretrained on only nonmedical images, the deep features extracted from digital mammograms demonstrated comparable performance with handcrafted CV features for the challenging task of predicting DCIS upstaging. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  13. The effect of adjunctive noncontact low frequency ultrasound on deep tissue pressure injury.

    PubMed

    Honaker, Jeremy S; Forston, Michael R; Davis, Emily A; Weisner, Michelle M; Morgan, Jennifer A; Sacca, Emily

    2016-11-01

    The optimal treatment for deep tissue pressure injuries has not been determined. Deep tissue pressure injuries represent a more ominous early stage pressure injury that may evolve into full thickness ulceration despite implementing the standard of care for pressure injury. A longitudinal prospective historical case control study design was used to determine the effectiveness of noncontact low frequency ultrasound plus standard of care (treatment group) in comparison to standard of care (control group) in reducing deep tissue pressure injury severity, total surface area, and final pressure injury stage. The Honaker Suspected Deep Tissue Injury Severity Scale (range 3-18[more severe]) was used to determine deep tissue pressure injury severity at enrollment (Time 1) and discharge (Time 2). A total of 60 subjects (Treatment = 30; Control= 30) were enrolled in the study. In comparison to the control group mean deep tissue pressure injury total surface area change at Time 2 (0.3 cm 2 ), the treatment group had a greater decrease (8.8 cm 2 ) that was significant (t = 2.41, p = 0.014, r 2  = 0.10). In regards to the Honaker Suspected Deep Tissue Injury Severity Scale scores, the treatment group had a significantly lower score (7.6) in comparison to the control group (11.9) at time 2, with a mean difference of 4.6 (t = 6.146, p = 0.0001, r 2  = 0.39). When considering the final pressure ulcer stage at Time 2, the control group were mostly composed of unstageable pressure ulcer (57%) and deep tissue pressure injury severity (27%). In contrast, the treatment group final pressure ulcer stages were less severe and were mostly composed of stage 2 pressure injury (50%) and deep tissue pressure injury severity (23%) were the most common at time 2. The results of this study have shown that deep tissue pressure injury severity treated with noncontact low frequency ultrasound within 5 days of onset and in conjunction with standard of care may improve outcomes as compared to standard of care only. © 2016 by the Wound Healing Society.

  14. Toolkits and Libraries for Deep Learning.

    PubMed

    Erickson, Bradley J; Korfiatis, Panagiotis; Akkus, Zeynettin; Kline, Timothy; Philbrick, Kenneth

    2017-08-01

    Deep learning is an important new area of machine learning which encompasses a wide range of neural network architectures designed to complete various tasks. In the medical imaging domain, example tasks include organ segmentation, lesion detection, and tumor classification. The most popular network architecture for deep learning for images is the convolutional neural network (CNN). Whereas traditional machine learning requires determination and calculation of features from which the algorithm learns, deep learning approaches learn the important features as well as the proper weighting of those features to make predictions for new data. In this paper, we will describe some of the libraries and tools that are available to aid in the construction and efficient execution of deep learning as applied to medical images.

  15. Fluorescence characteristics in the deep waters of South Gulf of México.

    PubMed

    Schifter, I; Sánchez-Reyna, G; González-Macías, C; Salazar-Coria, L; González-Lozano, C

    2017-10-15

    Vertical profiles of deep-water fluorescence determined by the chlorophyll sensor, polycyclic aromatic hydrocarbons, biomarkers, and other miscellaneous parameters measured in the southern Gulf of Mexico are reported. In the course of the survey, unexpected deep fluorescences were recorded (>1100m depth) in half of the 40 stations studied, a novel finding in this area of the Gulf. Currently, the deep-water fluorescence phenomenon is not completely understood, however we observe linear correlation between the fluorescence intensity and chlorophyll-α concentrations and coincidence of higher number of hydrocarbonoclastic bacteria in samples collected precisely in the deep-water fluorescence. This information is particularly interesting in relation to the Deepwater Horizon oil spill in 2010, in view that the aftermaths of the spill can be observed till today as oil plumes trapped in deep water layers that may disturb the natural water ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Deep learning for neuroimaging: a validation study.

    PubMed

    Plis, Sergey M; Hjelm, Devon R; Salakhutdinov, Ruslan; Allen, Elena A; Bockholt, Henry J; Long, Jeffrey D; Johnson, Hans J; Paulsen, Jane S; Turner, Jessica A; Calhoun, Vince D

    2014-01-01

    Deep learning methods have recently made notable advances in the tasks of classification and representation learning. These tasks are important for brain imaging and neuroscience discovery, making the methods attractive for porting to a neuroimager's toolbox. Success of these methods is, in part, explained by the flexibility of deep learning models. However, this flexibility makes the process of porting to new areas a difficult parameter optimization problem. In this work we demonstrate our results (and feasible parameter ranges) in application of deep learning methods to structural and functional brain imaging data. These methods include deep belief networks and their building block the restricted Boltzmann machine. We also describe a novel constraint-based approach to visualizing high dimensional data. We use it to analyze the effect of parameter choices on data transformations. Our results show that deep learning methods are able to learn physiologically important representations and detect latent relations in neuroimaging data.

  17. Sediments and fossiliferous rocks from the eastern side of the Tongue of the Ocean, Bahamas

    USGS Publications Warehouse

    Gibson, T.G.; Schlee, J.

    1967-01-01

    In August 1966, two dives were made with the deep-diving submersible Alvin along the eastern side of the Tongue of the Ocean to sample the rock and sediment. Physiographically, the area is marked by steep slopes of silty carbonate sediment and precipitous rock cliffs dusted by carbonate debris. Three rocks, obtained from the lower and middle side of the canyon (914-1676 m depth), are late Miocene-early Pliocene to late Pleistocene-Recent in age; all are deep-water pelagic limestones. They show (i) that the Tongue of the Ocean has been a deep-water area at least back into the Miocene, and (ii) that much shallow-water detritus has been swept off neighbouring banks to be incorporated with the deep-water fauna in the sediment. ?? 1967 Pergamon Press Ltd.

  18. A unified spectral,parameterization for wave breaking: from the deep ocean to the surf zone

    NASA Astrophysics Data System (ADS)

    Filipot, J.

    2010-12-01

    A new wave-breaking dissipation parameterization designed for spectral wave models is presented. It combines wave breaking basic physical quantities, namely, the breaking probability and the dissipation rate per unit area. The energy lost by waves is fi[|#12#|]rst calculated in the physical space before being distributed over the relevant spectral components. This parameterization allows a seamless numerical model from the deep ocean into the surf zone. This transition from deep to shallow water is made possible by a dissipation rate per unit area of breaking waves that varies with the wave height, wavelength and water depth.The parameterization is further tested in the WAVEWATCH III TM code, from the global ocean to the beach scale. Model errors are smaller than with most specialized deep or shallow water parameterizations.

  19. RETINAL DEEP CAPILLARY ISCHEMIA ASSOCIATED WITH AN OCCLUDED CONGENITAL RETINAL MACROVESSEL.

    PubMed

    Hasegawa, Taiji; Ogata, Nahoko

    2017-01-01

    To report the case of a patient with an occluded congenital retinal macrovessel accompanied by retinal deep capillary ischemia. A 38-year-old woman presented with a 2-day history of a paracentral scotoma of her right eye. Fundus photograph showed a dilated congenital retinal macrovessel with arteriovenous anastomosis, an intravascular white region indicating the thrombus at arteriovenous anastomotic region, and an area of retinal whitening temporal to the fovea. The spectral domain optical coherence tomography images through the area of retinal whitening showed a thickening and highly reflectivity at the level of the inner nuclear layer, which is likely due to the deep capillary ischemia. After 6 weeks, spectral domain optical coherence tomography images through the same area demonstrated a thinning and atrophy of only the inner nuclear layer, and the patient's paracentral scotoma persisted. Acute capillary hemodynamic changes caused deep capillary ischemia. The spectral domain optical coherence tomography showed a highly reflective lesion at the level of the inner nuclear layer in the acute phase.

  20. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction.

    PubMed

    Wang, Duolin; Zeng, Shuai; Xu, Chunhui; Qiu, Wangren; Liang, Yanchun; Joshi, Trupti; Xu, Dong

    2017-12-15

    Computational methods for phosphorylation site prediction play important roles in protein function studies and experimental design. Most existing methods are based on feature extraction, which may result in incomplete or biased features. Deep learning as the cutting-edge machine learning method has the ability to automatically discover complex representations of phosphorylation patterns from the raw sequences, and hence it provides a powerful tool for improvement of phosphorylation site prediction. We present MusiteDeep, the first deep-learning framework for predicting general and kinase-specific phosphorylation sites. MusiteDeep takes raw sequence data as input and uses convolutional neural networks with a novel two-dimensional attention mechanism. It achieves over a 50% relative improvement in the area under the precision-recall curve in general phosphorylation site prediction and obtains competitive results in kinase-specific prediction compared to other well-known tools on the benchmark data. MusiteDeep is provided as an open-source tool available at https://github.com/duolinwang/MusiteDeep. xudong@missouri.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  1. Multiscale Observations of Deep Convection in the Northwestern Mediterranean Sea During Winter 2012-2013 Using Multiple Platforms

    NASA Astrophysics Data System (ADS)

    Testor, Pierre; Bosse, Anthony; Houpert, Loïc.; Margirier, Félix; Mortier, Laurent; Legoff, Hervé; Dausse, Denis; Labaste, Matthieu; Karstensen, Johannes; Hayes, Daniel; Olita, Antonio; Ribotti, Alberto; Schroeder, Katrin; Chiggiato, Jacopo; Onken, Reiner; Heslop, Emma; Mourre, Baptiste; D'ortenzio, Fabrizio; Mayot, Nicolas; Lavigne, Héloise; de Fommervault, Orens; Coppola, Laurent; Prieur, Louis; Taillandier, Vincent; Durrieu de Madron, Xavier; Bourrin, Francois; Many, Gael; Damien, Pierre; Estournel, Claude; Marsaleix, Patrick; Taupier-Letage, Isabelle; Raimbault, Patrick; Waldman, Robin; Bouin, Marie-Noelle; Giordani, Hervé; Caniaux, Guy; Somot, Samuel; Ducrocq, Véronique; Conan, Pascal

    2018-03-01

    During winter 2012-2013, open-ocean deep convection which is a major driver for the thermohaline circulation and ventilation of the ocean, occurred in the Gulf of Lions (Northwestern Mediterranean Sea) and has been thoroughly documented thanks in particular to the deployment of several gliders, Argo profiling floats, several dedicated ship cruises, and a mooring array during a period of about a year. Thanks to these intense observational efforts, we show that deep convection reached the bottom in winter early in February 2013 in a area of maximum 28 ± 3 109m2. We present new quantitative results with estimates of heat and salt content at the subbasin scale at different time scales (on the seasonal scale to a 10 days basis) through optimal interpolation techniques, and robust estimates of the deep water formation rate of 2.0±0.2 Sv. We provide an overview of the spatiotemporal coverage that has been reached throughout the seasons this year and we highlight some results based on data analysis and numerical modeling that are presented in this special issue. They concern key circulation features for the deep convection and the subsequent bloom such as Submesoscale Coherent Vortices (SCVs), the plumes, and symmetric instability at the edge of the deep convection area.

  2. The question of recharge to the deep thermal reservoir underlying the geysers and hot springs of Yellowstone National Park: Chapter H in Integrated geoscience studies in Integrated geoscience studies in the Greater Yellowstone Area—Volcanic, tectonic, and hydrothermal processes in the Yellowstone geoecosystem

    USGS Publications Warehouse

    Rye, Robert O.; Truesdell, Alfred Hemingway; Morgan, Lisa A.

    2007-01-01

    The extraordinary number, size, and unspoiled beauty of the geysers and hot springs of Yellowstone National Park (the Park) make them a national treasure. The hydrology of these special features and their relation to cold waters of the Yellowstone area are poorly known. In the absence of deep drill holes, such information is available only indirectly from isotope studies. The δD-δ18O values of precipitation and cold surface-water and ground-water samples are close to the global meteoric water line (Craig, 1961). δD values of monthly samples of rain and snow collected from 1978 to 1981 at two stations in the Park show strong seasonal variations, with average values for winter months close to those for cold waters near the collection sites. δD values of more than 300 samples from cold springs, cold streams, and rivers collected during the fall from 1967 to 1992 show consistent north-south and east-west patterns throughout and outside of the Park, although values at a given site vary by as much as 8 ‰ from year to year. These data, along with hot-spring data (Truesdell and others, 1977; Pearson and Truesdell, 1978), show that ascending Yellowstone thermal waters are modified isotopically and chemically by a variety of boiling and mixing processes in shallow reservoirs. Near geyser basins, shallow recharge waters from nearby rhyolite plateaus dilute the ascending deep thermal waters, particularly at basin margins, and mix and boil in reservoirs that commonly are interconnected. Deep recharge appears to derive from a major deep thermal-reservoir fluid that supplies steam and hot water to all geyser basins on the west side of the Park and perhaps in the entire Yellowstone caldera. This water (T ≥350°C; δD = –149±1 ‰) is isotopically lighter than all but the farthest north, highest altitude cold springs and streams and a sinter-producing warm spring (δD = –153 ‰) north of the Park. Derivation of this deep fluid solely from present-day recharge is problematical. The designation of source areas depends on assumptions about the age of the deep water, which in turn depend on assumptions about the nature of the deep thermal system. Modeling, based on published chloride-flux studies of thermal waters, suggests that for a 0.5- to 4-km-deep reservoir the residence time of most of the thermal water could be less than 1,900 years, for a piston-flow model, to more than 10,000 years, for a well-mixed model. For the piston-flow model, the deep system quickly reaches the isotopic composition of the recharge in response to climate change. For this model, stable-isotope data and geologic considerations suggest that the most likely area of recharge for the deep thermal water is in the northwestern part of the Park, in the Gallatin Range, where major north-south faults connect with the caldera. This possible recharge area for the deep thermal water is at least 20 km, and possibly as much as 70 km, from outflow in the thermal areas, indicating the presence of a hydrothermal system as large as those postulated to have operated around large, ancient igneous intrusions. For this model, the volume of isotopically light water infiltrating in the Gallatin Range during our sampling period is too small to balance the present outflow of deep water. This shortfall suggests that some recharge possibly occurred during a cooler time characterized by greater winter precipitation, such as during the Little Ice Age in the 15th century. However, this scenario requires exceptionally fast flow rates of recharge into the deep system. For the well-mixed model, the composition of the deep reservoir changes slowly in response to climate change, and a significant component of the deep thermal water could have recharged during Pleistocene glaciation. The latter interpretation is consistent with the recent discovery of warm waters in wells and springs in southern Idaho that have δD values 10–20 ‰ lower than the winter snow for their present-day high-level recharge. These waters have been interpreted to be Pleistocene in age (Smith and others, 2002). The well-mixed model permits a significant component of recharge water for the deep system to have δD values less negative than –150 ‰ and consequently for the deep system recharge to be closer to the caldera at a number of possible localities in the Park.

  3. Developing Deep Learning Applications for Life Science and Pharma Industry.

    PubMed

    Siegismund, Daniel; Tolkachev, Vasily; Heyse, Stephan; Sick, Beate; Duerr, Oliver; Steigele, Stephan

    2018-06-01

    Deep Learning has boosted artificial intelligence over the past 5 years and is seen now as one of the major technological innovation areas, predicted to replace lots of repetitive, but complex tasks of human labor within the next decade. It is also expected to be 'game changing' for research activities in pharma and life sciences, where large sets of similar yet complex data samples are systematically analyzed. Deep learning is currently conquering formerly expert domains especially in areas requiring perception, previously not amenable to standard machine learning. A typical example is the automated analysis of images which are typically produced en-masse in many domains, e. g., in high-content screening or digital pathology. Deep learning enables to create competitive applications in so-far defined core domains of 'human intelligence'. Applications of artificial intelligence have been enabled in recent years by (i) the massive availability of data samples, collected in pharma driven drug programs (='big data') as well as (ii) deep learning algorithmic advancements and (iii) increase in compute power. Such applications are based on software frameworks with specific strengths and weaknesses. Here, we introduce typical applications and underlying frameworks for deep learning with a set of practical criteria for developing production ready solutions in life science and pharma research. Based on our own experience in successfully developing deep learning applications we provide suggestions and a baseline for selecting the most suited frameworks for a future-proof and cost-effective development. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Travel Distance to Cancer Treatment Facilities in the Deep South.

    PubMed

    Wills, Mary J; Whitman, Marilyn V; English, Thomas M

    Despite ongoing efforts to improve rural healthcare, the health problems facing rural communities persist. The lack of healthcare providers and infrastructure in rural areas has been linked to a number of negative consequences. Among the elderly rural population, the lack of proximal access presents greater barriers because many elderly people are further limited in their ability to travel and pay for services. In the Deep South specifically, rural residents experience limited access to care and overall poor health outcomes. With cancer in particular, the Deep South has been dubbed the "cancer belt," faring far worse in prevalence and mortality rates than other areas of the country. The present study examines the average travel distance for rural elderly patients residing in the Deep South who are receiving treatment for prostate, breast, or colorectal cancer. We analyzed Medicare claims data of beneficiaries residing in the five Deep South states who had received a primary diagnosis of prostate, breast, or colorectal cancer, with a service date ranging from January 1, 2011, through December 31, 2014. The findings reveal that rural Medicare beneficiaries in the Deep South travel significantly greater distances than do their urban counterparts. In addition, travel distances to prostate cancer treatment facilities are significantly greater than those to breast or colorectal cancer treatment facilities. With cancer incidence predicted to increase, the need to reduce travel distances to treatment is vital in efforts to curb the mortality rate in the Deep South.

  5. Condition and biochemical profile of blue mussels (Mytilus edulis L.) cultured at different depths in a cold water coastal environment

    NASA Astrophysics Data System (ADS)

    Gallardi, Daria; Mills, Terry; Donnet, Sebastien; Parrish, Christopher C.; Murray, Harry M.

    2017-08-01

    The growth and health of cultured blue mussels (Mytilus edulis) are affected by environmental conditions. Typically, culture sites are situated in sheltered areas near shore (i.e., < 1 km distance from land, < 20 m depth); however, land runoff, user conflicts and environmental impact in coastal areas are concerns and interest in developing deep water (> 20 m depth) mussel culture has been growing. This study evaluated the effect of culture depth on blue mussels in a cold water coastal environment (Newfoundland, Canada). Culture depth was examined over two years from September 2012 to September 2014; mussels from three shallow water (5 m) and three deep water (15 m) sites were compared for growth and biochemical composition; culture depths were compared for temperature and chlorophyll a. Differences between the two years examined were noted, possibly due to harsh winter conditions in the second year of the experiment. In both years shallow and deep water mussels presented similar condition; in year 2 deep water mussels had a significantly better biochemical profile. Lipid and glycogen analyses showed seasonal variations, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a significantly higher content of omega-3 s (20:5ω3; EPA) and lower content of bacterial fatty acids in deep water sites in year 2. Everything considered, deep water appeared to provide a more favorable environment for mussel growth than shallow water under harsher weather conditions.

  6. Histological changes to the skin of Merino sheep following deep dermal and subcutaneous injections of sodium lauryl sulfate.

    PubMed

    Lee, E J; Rothwell, J T

    2010-04-01

    To characterise the changes caused to sheep skin by deep dermal and subcutaneous injections of sodium lauryl sulfate (SLS) and describe the subsequent healing process. On 6 sheep 20 small areas of skin were each given deep dermal and subcutaneous injections of 0.2 mL of 7% SLS. Biopsies were collected at intervals up to 28 days after treatment and the histological changes in each of the treated skin samples were assessed and graded. There was no evidence of alterations in behaviour, weight gain or appetite of the sheep following the injections. Initial swelling of the treated site subsided by day 14, leaving a firm, slightly raised crust. At day 21, the treated area was depressed and covered by a scab, which sloughed completely by day 28. There was necrosis of the subcutis and deep dermis 2 min after treatment, followed by inflammation, fibroplasia, angiogenesis and tissue remodelling. Injection of SLS caused almost immediate local necrosis followed by eschar formation, sloughing and scarring of treated skin. Deep dermal and subcutaneous SLS is potentially useful as a chemical alternative to mulesing.

  7. Assessing Deep Sea Communities Through Seabed Imagery

    NASA Astrophysics Data System (ADS)

    Matkin, A. G.; Cross, K.; Milititsky, M.

    2016-02-01

    The deep sea still remains virtually unexplored. Human activity, such as oil and gas exploration and deep sea mining, is expanding further into the deep sea, increasing the need to survey and map extensive areas of this habitat in order to assess ecosystem health and value. The technology needed to explore this remote environment has been advancing. Seabed imagery can cover extensive areas of the seafloor and investigate areas where sampling with traditional coring methodologies is just not possible (e.g. cold water coral reefs). Remotely operated vehicles (ROVs) are an expensive option, so drop or towed camera systems can provide a more viable and affordable alternative, while still allowing for real-time control. Assessment of seabed imagery in terms of presence, abundance and density of particular species can be conducted by bringing together a variety of analytical tools for a holistic approach. Sixteen deep sea transects located offshore West Africa were investigated with a towed digital video telemetry system (DTS). Both digital stills and video footage were acquired. An extensive data set was obtained from over 13,000 usable photographs, allowing for characterisation of the different habitats present in terms of community composition and abundance. All observed fauna were identified to the lowest taxonomic level and enumerated when possible, with densities derived after the seabed area was calculated for each suitable photograph. This methodology allowed for consistent assessment of the different habitat types present, overcoming constraints, such as specific taxa that cannot be enumerated, such as sponges, corals or bryozoans, the presence of mobile and sessile species, or the level of taxonomic detail. Although this methodology will not enable a full characterisation of a deep sea community, in terms of species composition for instance, itt will allow a robust assessment of large areas of the deep sea in terms of sensitive habitats present and community characteristics of each habitat. Such data can be readily utilised for planning and licensing purposes and be potentially revisited in the future when taxonomic resolution increases, for a more detailed characterisation or monitoring of this poorly described environment.

  8. Functional correlates of the therapeutic and adverse effects evoked by thalamic stimulation for essential tremor

    PubMed Central

    Gibson, William S.; Jo, Hang Joon; Testini, Paola; Cho, Shinho; Felmlee, Joel P.; Welker, Kirk M.; Klassen, Bryan T.; Min, Hoon-Ki

    2016-01-01

    Deep brain stimulation is an established neurosurgical therapy for movement disorders including essential tremor and Parkinson’s disease. While typically highly effective, deep brain stimulation can sometimes yield suboptimal therapeutic benefit and can cause adverse effects. In this study, we tested the hypothesis that intraoperative functional magnetic resonance imaging could be used to detect deep brain stimulation-evoked changes in functional and effective connectivity that would correlate with the therapeutic and adverse effects of stimulation. Ten patients receiving deep brain stimulation of the ventralis intermedius thalamic nucleus for essential tremor underwent functional magnetic resonance imaging during stimulation applied at a series of stimulation localizations, followed by evaluation of deep brain stimulation-evoked therapeutic and adverse effects. Correlations between the therapeutic effectiveness of deep brain stimulation (3 months postoperatively) and deep brain stimulation-evoked changes in functional and effective connectivity were assessed using region of interest-based correlation analysis and dynamic causal modelling, respectively. Further, we investigated whether brain regions might exist in which activation resulting from deep brain stimulation might correlate with the presence of paraesthesias, the most common deep brain stimulation-evoked adverse effect. Thalamic deep brain stimulation resulted in activation within established nodes of the tremor circuit: sensorimotor cortex, thalamus, contralateral cerebellar cortex and deep cerebellar nuclei (FDR q < 0.05). Stimulation-evoked activation in all these regions of interest, as well as activation within the supplementary motor area, brainstem, and inferior frontal gyrus, exhibited significant correlations with the long-term therapeutic effectiveness of deep brain stimulation (P < 0.05), with the strongest correlation (P < 0.001) observed within the contralateral cerebellum. Dynamic causal modelling revealed a correlation between therapeutic effectiveness and attenuated within-region inhibitory connectivity in cerebellum. Finally, specific subregions of sensorimotor cortex were identified in which deep brain stimulation-evoked activation correlated with the presence of unwanted paraesthesias. These results suggest that thalamic deep brain stimulation in tremor likely exerts its effects through modulation of both olivocerebellar and thalamocortical circuits. In addition, our findings indicate that deep brain stimulation-evoked functional activation maps obtained intraoperatively may contain predictive information pertaining to the therapeutic and adverse effects induced by deep brain stimulation. PMID:27329768

  9. Occurrence Prospect of HDR and Target Site Selection Study in Southeastern of China

    NASA Astrophysics Data System (ADS)

    Lin, W.; Gan, H.

    2017-12-01

    Hot dry rock (HDR) geothermal resource is one of the most important clean energy in future. Site selection a HDR resource is a fundamental work to explore the HDR resources. This paper compiled all the HDR development projects domestic and abroad, and summarized the location of HDR geothermal geological index. After comparing the geological background of HDR in the southeast coastal area of China, Yangjiang Xinzhou in Guangdong province, Leizhou Peninsula area, Lingshui in Hainan province and Huangshadong in Guangzhou were selected from some key potential target area along the southeast coast of China. Deep geothermal field model of the study area is established based on the comprehensive analysis of the target area of deep geothermal geological background and deep thermal anomalies. This paper also compared the hot dry rock resources target locations, and proposed suggestions for the priority exploration target area and exploration scheme.

  10. [Distribution Characteristics and Source of Fluoride in Groundwater in Lower Plain Area of North China Plain: A Case Study in Nanpi County].

    PubMed

    Kong, Xiao-le; Wang, Shi-qin; Zhao, Huan; Yuan, Rui-qiang

    2015-11-01

    There is an obvious regional contradiction between water resources and agricultural produce in lower plain area of North China, however, excessive fluorine in deep groundwater further limits the use of regional water resources. In order to understand the spatial distribution characteristics and source of F(-) in groundwater, study was carried out in Nanpi County by field survey and sampling, hydrogeochemical analysis and stable isotopes methods. The results showed that the center of low fluoride concentrations of shallow groundwater was located around reservoir of Dalang Lake, and centers of high fluoride concentrations were located in southeast and southwest of the study area. The region with high fluoride concentration was consistent with the over-exploitation region of deep groundwater. Point source pollution of subsurface drainage and non-point source of irrigation with deep groundwater in some regions were the main causes for the increasing F(-) concentrations of shallow groundwater in parts of the sampling sites. Rock deposition and hydrogeology conditions were the main causes for the high F(-) concentrations (1.00 mg x L(-1), threshold of drinking water quality standard in China) in deep groundwater. F(-) released from clay minerals into the water increased the F(-) concentrations in deep groundwater because of over-exploitation. With the increasing exploitation and utilization of brackish shallow groundwater and the compressing and restricting of deep groundwater exploitation, the water environment in the middle and east lower plain area of North China will undergo significant change, and it is important to identify the distribution and source of F(-) in surface water and groundwater for reasonable development and use of water resources in future.

  11. Analysis of Potential Deep-Seated Landslide in Hekeng Watershed by Environment Indices

    NASA Astrophysics Data System (ADS)

    Hsieh, C. J.; Chompuchan, C.

    2014-12-01

    Landslides are a major natural disaster in Taiwan relevant to the human life. After the catastrophic Xiaolin landslide during Typhoon Morakot in August 2009 caused around 400 casualties, the deep-seated landslide has become a serious issue. This study explored the potential deep-seated landslide in Hekeng watershed extracted from SPOT-5 imageries. The empirical topographic correction was applied to minimize effect of the mountain shaded area due to the difference of sun elevation and terrain angle. Consequently the multi-temporal environmental indices, i.e., modified Normalized Difference Vegetation Index (mNDVI) and modified Normalized Difference Water Index (mNDWI) were corrected. Seasonal vegetation cover and surface moisture change were analyzed incorporate with a slope which obtain from DEM data. The result showed that the distribution of potential deep-seated landslide vulnerable area mainly located at headstream watershed. It could be explained that the headstream watershed has less human interference, therefore the environmental indices interpreted those area as deep soil layer and dense vegetation coverage. However, the upstream canal could suffer from the long-term erosion and possibly cause slope toe collapse. In addition, the western watershed is the afforestation zone whereas the eastern watershed is natural forest zone with higher development ratio. The upslope forest management of eastern and western watershed should be discussed variously.

  12. Stable groundwater quality in deep aquifers of Southern Bangladesh: the case against sustainable abstraction.

    PubMed

    Ravenscroft, P; McArthur, J M; Hoque, M A

    2013-06-01

    In forty six wells >150 m deep, from across the arsenic-polluted area of south-central Bangladesh, groundwater composition remained unchanged between 1998 and 2011. No evidence of deteriorating water quality was found in terms of arsenic, iron, manganese, boron, barium or salinity over this period of 13 years. These deep tubewells have achieved operating lives of more than 20 years with minimal institutional support. These findings confirm that tubewells tapping the deep aquifers in the Bengal Basin provide a safe, popular, and economic, means of arsenic mitigation and are likely to do so for decades to come. Nevertheless, concerns remain about the sustainability of a resource that could serve as a source of As-safe water to mitigate As-pollution in shallower aquifers in an area where tens of millions of people are exposed to dangerous levels of arsenic in well water. The conjunction of the stable composition in deep groundwater and the severe adverse health effects of arsenic in shallow groundwater lead us to challenge the notion that strong sustainability principles should be applied to the management of deep aquifer abstraction in Bangladesh is, the notion that the deep groundwater resource should be preserved for future generations by protecting it from adverse impacts, probably of a minor nature, that could occur after a long time and might not happen at all. Instead, we advocate an ethical approach to development of the deep aquifer, based on adaptive abstraction management, which allows possibly unsustainable exploitation now in order to alleviate crippling disease and death from arsenic today while also benefiting future generations by improving the health, education and economy of living children. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface

    PubMed Central

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L.; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C.; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q.; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J.; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Motz, Holger; Neff, Max; Nezri, Emma nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E.; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G.; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J. M.; Stolarczyk, Thierry; Taiuti, Mauro G. F.; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as “open-sea convection”. It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts. PMID:23874425

  14. Meteorological variables to aid forecasting deep slab avalanches on persistent weak layers

    USGS Publications Warehouse

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2015-01-01

    Deep slab avalanches are particularly challenging to forecast. These avalanches are difficult to trigger, yet when they release they tend to propagate far and can result in large and destructive avalanches. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl ski area in southwest Montana to test the usefulness of meteorological variables for predicting seasons and days with deep slab avalanches. We defined deep slab avalanches as those that failed on persistent weak layers deeper than 0.9 m, and that occurred after February 1st. Previous studies often used meteorological variables from days prior to avalanches, but we also considered meteorological variables over the early months of the season. We used classification trees and random forests for our analyses. Our results showed seasons with either dry or wet deep slabs on persistent weak layers typically had less precipitation from November through January than seasons without deep slabs on persistent weak layers. Days with deep slab avalanches on persistent weak layers often had warmer minimum 24-hour air temperatures, and more precipitation over the prior seven days, than days without deep slabs on persistent weak layers. Days with deep wet slab avalanches on persistent weak layers were typically preceded by three days of above freezing air temperatures. Seasonal and daily meteorological variables were found useful to aid forecasting dry and wet deep slab avalanches on persistent weak layers, and should be used in combination with continuous observation of the snowpack and avalanche activity.

  15. North Atlantic deep water formation and AMOC in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline

    2017-07-01

    Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC) is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.

  16. DSMS science operations concept

    NASA Technical Reports Server (NTRS)

    Connally, M. J.; Kuiper, T. B.

    2001-01-01

    The Deep Space Mission System (DSMS) Science Operations Concept describes the vision for enabling the use of the DSMS, particularly the Deep Space Network (DSN) for direct science observations in the areas of radio astronomy, planetary radar, radio science and VLBI.

  17. Earth Observation and Science: Monitoring Vegetation Dynamics from Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Knyazikhin, Y.; Park, T.; Hu, B.

    2018-02-01

    Retrieving diurnal courses of sunlit (SLAI) and shaded (ShLAI) leaf area indices, fraction of photosynthetically active radiation (PAR) absorbed by vegetation (FPAR), and Normalized Difference Vegetation Index (NDVI) from Deep Space Gateway data.

  18. Earth observations taken from Space Shuttle Columbia during STS-80 mission

    NASA Image and Video Library

    1996-12-03

    STS080-742-070 (19 Nov.-7 Dec. 1996) --- A view of the Tongue of the Ocean in the Bahama Islands east of Florida. The lines leading from the flat bottom of the Great Bahama Bank, leading into the Tongue, are caused by rapid transfer of ocean water caused by both temperature changes in the water and hurricanes that periodically cross the area. The water is about 30 feet deep on the Great Bahama Bank, and nearly a mile deep in the tongue. To the left is the Exuma Sound, over a mile deep, and a series of islands along its edge with Great Exuma Island the easiest to see. Green Cay, the small dot lower left, leaving a wake to the southeast of light colored coral. The deep blue area to the top right center is the southeastern edge of the Great Bahama Bank.

  19. Drilling a deep geologic test well at Hilton Head Island, South Carolina

    USGS Publications Warehouse

    Schultz, Arthur P.; Seefelt, Ellen L.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC), is drilling a deep geologic test well at Hilton Head Island, S.C. The test well is scheduled to run between mid-March and early May 2011. When completed, the well will be about 1,000 feet deep. The purpose of this test well is to gain knowledge about the regional-scale Floridan aquifer, an important source of groundwater in the Hilton Head area. Also, cores obtained during drilling will enable geologists to study the last 60 million years of Earth history in this area.

  20. Meteorological variables associated with deep slab avalanches on persistent weak layers

    USGS Publications Warehouse

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2014-01-01

    Deep slab avalanches are a particularly challenging avalanche forecasting problem. These avalanches are typically difficult to trigger, yet when they are triggered they tend to propagate far and result in large and destructive avalanches. For this work we define deep slab avalanches as those that fail on persistent weak layers deeper than 0.9m (3 feet), and that occur after February 1st. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl Ski Area to test the usefulness of meteorological variables for predicting deep slab avalanches. As in previous studies, we used data from the days preceding deep slab cycles, but we also considered meteorological metrics over the early months of the season. We utilized classification trees for our analyses. Our results showed warmer temperatures in the prior twenty-four hours and more loading over the seven days before days with deep slab avalanches on persistent weak layers. In line with previous research, extended periods of above freezing temperatures led to days with deep wet slab avalanches on persistent weak layers. Seasons with either dry or wet avalanches on deep persistent weak layers typically had drier early months, and often had some significant snow depth prior to those dry months. This paper provides insights for ski patrollers, guides, and avalanche forecasters who struggle to forecast deep slab avalanches on persistent weak layers late in the season.

  1. Accurate identification of RNA editing sites from primitive sequence with deep neural networks.

    PubMed

    Ouyang, Zhangyi; Liu, Feng; Zhao, Chenghui; Ren, Chao; An, Gaole; Mei, Chuan; Bo, Xiaochen; Shu, Wenjie

    2018-04-16

    RNA editing is a post-transcriptional RNA sequence alteration. Current methods have identified editing sites and facilitated research but require sufficient genomic annotations and prior-knowledge-based filtering steps, resulting in a cumbersome, time-consuming identification process. Moreover, these methods have limited generalizability and applicability in species with insufficient genomic annotations or in conditions of limited prior knowledge. We developed DeepRed, a deep learning-based method that identifies RNA editing from primitive RNA sequences without prior-knowledge-based filtering steps or genomic annotations. DeepRed achieved 98.1% and 97.9% area under the curve (AUC) in training and test sets, respectively. We further validated DeepRed using experimentally verified U87 cell RNA-seq data, achieving 97.9% positive predictive value (PPV). We demonstrated that DeepRed offers better prediction accuracy and computational efficiency than current methods with large-scale, mass RNA-seq data. We used DeepRed to assess the impact of multiple factors on editing identification with RNA-seq data from the Association of Biomolecular Resource Facilities and Sequencing Quality Control projects. We explored developmental RNA editing pattern changes during human early embryogenesis and evolutionary patterns in Drosophila species and the primate lineage using DeepRed. Our work illustrates DeepRed's state-of-the-art performance; it may decipher the hidden principles behind RNA editing, making editing detection convenient and effective.

  2. The economic implications of changing regulations for deep sea fishing under the European Common Fisheries Policy: UK case study.

    PubMed

    Mangi, Stephen C; Kenny, Andrew; Readdy, Lisa; Posen, Paulette; Ribeiro-Santos, Ana; Neat, Francis C; Burns, Finlay

    2016-08-15

    Economic impact assessment methodology was applied to UK fisheries data to better understand the implications of European Commission proposal for regulations to fishing for deep-sea stocks in the North-East Atlantic (EC COM 371 Final 2012) under the Common Fisheries Policy (CFP). The aim was to inform the on-going debate to develop the EC proposal, and to assist the UK fishing industry and Government in evaluating the most effective options to manage deep sea fish stocks. Results indicate that enforcing the EC proposal as originally drafted results in a number of implications for the UK fleet. Because of the proposed changes to the list of species defined as being deep sea species, and a new definition of what constitutes a vessel targeting deep sea species, a total of 695 active UK fishing vessels would need a permit to fish for deep sea species. However, due to existing and capped capacity limits many vessels would potentially not be able to obtain such a permit. The economic impact of these changes from the status quo reveals that in the short term, landings would decrease by 6540 tonnes, reducing gross value added by £3.3 million. Alternative options were also assessed that provide mitigation measures to offset the impacts of the proposed regulations whilst at the same time providing more effective protection of deep sea Vulnerable Marine Ecosystems (VMEs). The options include setting a 400m depth rule that identifies a depth beyond which vessels would potentially be classified as fishing for deep sea species and designating 'core areas' for deep sea fishing at depths>400m to minimise the risk of further impacts of bottom fishing gear on deep sea habitats. Applying a 400m depth limit and 'core fishing' area approach deeper than 400m, the impact of the EC proposal would essentially be reduced to zero, that is, on average no vessels (using the status quo capacity baseline) would be impacted by the proposal. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning

    PubMed Central

    Preuer, Kristina; Lewis, Richard P I; Hochreiter, Sepp; Bender, Andreas; Bulusu, Krishna C; Klambauer, Günter

    2018-01-01

    Abstract Motivation While drug combination therapies are a well-established concept in cancer treatment, identifying novel synergistic combinations is challenging due to the size of combinatorial space. However, computational approaches have emerged as a time- and cost-efficient way to prioritize combinations to test, based on recently available large-scale combination screening data. Recently, Deep Learning has had an impact in many research areas by achieving new state-of-the-art model performance. However, Deep Learning has not yet been applied to drug synergy prediction, which is the approach we present here, termed DeepSynergy. DeepSynergy uses chemical and genomic information as input information, a normalization strategy to account for input data heterogeneity, and conical layers to model drug synergies. Results DeepSynergy was compared to other machine learning methods such as Gradient Boosting Machines, Random Forests, Support Vector Machines and Elastic Nets on the largest publicly available synergy dataset with respect to mean squared error. DeepSynergy significantly outperformed the other methods with an improvement of 7.2% over the second best method at the prediction of novel drug combinations within the space of explored drugs and cell lines. At this task, the mean Pearson correlation coefficient between the measured and the predicted values of DeepSynergy was 0.73. Applying DeepSynergy for classification of these novel drug combinations resulted in a high predictive performance of an AUC of 0.90. Furthermore, we found that all compared methods exhibit low predictive performance when extrapolating to unexplored drugs or cell lines, which we suggest is due to limitations in the size and diversity of the dataset. We envision that DeepSynergy could be a valuable tool for selecting novel synergistic drug combinations. Availability and implementation DeepSynergy is available via www.bioinf.jku.at/software/DeepSynergy. Contact klambauer@bioinf.jku.at Supplementary information Supplementary data are available at Bioinformatics online. PMID:29253077

  4. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint.

    PubMed

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt

    2017-01-01

    Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.

  5. Gyre-scale deep convection in the subpolar North Atlantic Ocean during winter 2014-2015

    NASA Astrophysics Data System (ADS)

    Piron, A.; Thierry, V.; Mercier, H.; Caniaux, G.

    2017-02-01

    Using Argo floats, we show that a major deep convective activity occurred simultaneously in the Labrador Sea (LAB), south of Cape Farewell (SCF), and the Irminger Sea (IRM) during winter 2014-2015. Convection was driven by exceptional heat loss to the atmosphere (up to 50% higher than the climatological mean). This is the first observation of deep convection over such a widespread area. Mixed layer depths exceptionally reached 1700 m in SCF and 1400 m in IRM. The deep thermocline density gradient limited the mixed layer deepening in the Labrador Sea to 1800 m. Potential densities of deep waters were similar in the three basins (27.73-27.74 kg m-3) but warmer by 0.3°C and saltier by 0.04 in IRM than in LAB and SCF, meaning that each basin formed locally its own deep water. The cold anomaly that developed recently in the North Atlantic Ocean favored and was enhanced by this exceptional convection.

  6. Coral communities as indicators of ecosystem-level impacts of the Deepwater Horizon spill

    USGS Publications Warehouse

    Fisher, Charles R.; Demopoulos, Amanda W.J.; Cordes, Erik E.; Baums, Iliana B.; White, Helen K.; Bourque, Jill R.

    2014-01-01

    The Macondo oil spill released massive quantities of oil and gas from a depth of 1500 meters. Although a buoyant plume carried released hydrocarbons to the sea surface, as much as half stayed in the water column and much of that in the deep sea. After the hydrocarbons reached the surface, weathering processes, burning, and the use of a dispersant caused hydrocarbon-rich marine snow to sink into the deep sea. As a result, this spill had a greater potential to affect deep-sea communities than had any previous spill. Here, we review the literature on impacts on deep-sea communities from the Macondo blowout and provide additional data on sediment hydrocarbon loads and the impacts on sediment infauna in areas with coral communities around the Macondo well. We review the literature on the genetic connectivity of deep-sea species in the Gulf of Mexico and discuss the potential for wider effects on deep Gulf coral communities.

  7. Before the Deep Impact Collision

    NASA Image and Video Library

    2011-02-18

    This series of images shows the area where NASA Deep Impact probe collided with the surface of comet Tempel 1 in 2005. The view zooms in as the images progress from top left to right, and then bottom left to right.

  8. How does mesoscale impact deep convection? Answers from ensemble Northwestern Mediterranean Sea simulations.

    NASA Astrophysics Data System (ADS)

    Waldman, Robin; Herrmann, Marine; Somot, Samuel; Arsouze, Thomas; Benshila, Rachid; Bosse, Anthony; Chanut, Jérôme; Giordani, Hervé; Pennel, Romain; Sevault, Florence; Testor, Pierre

    2017-04-01

    Ocean deep convection is a major process of interaction between surface and deep ocean. The Gulf of Lions is a well-documented deep convection area in the Mediterranean Sea, and mesoscale dynamics is a known factor impacting this phenomenon. However, previous modelling studies don't allow to address the robustness of its impact with respect to the physical configuration and ocean intrinsic variability. In this study, the impact of mesoscale on ocean deep convection in the Gulf of Lions is investigated using a multi-resolution ensemble simulation of the northwestern Mediterranean sea. The eddy-permitting Mediterranean model NEMOMED12 (6km resolution) is compared to its eddy-resolving counterpart with the 2-way grid refinement AGRIF in the northwestern Mediterranean (2km resolution). We focus on the well-documented 2012-2013 period and on the multidecadal timescale (1979-2013). The impact of mesoscale on deep convection is addressed in terms of its mean and variability, its impact on deep water transformations and on associated dynamical structures. Results are interpreted by diagnosing regional mean and eddy circulation and using buoyancy budgets. We find a mean inhibition of deep convection by mesoscale with large interannual variability. It is associated with a large impact on mean and transient circulation and a large air-sea flux feedback.

  9. Function and structure of the deep cervical extensor muscles in patients with neck pain.

    PubMed

    Schomacher, Jochen; Falla, Deborah

    2013-10-01

    The deep cervical extensors are anatomically able to control segmental movements of the cervical spine in concert with the deep cervical flexors. Several investigations have confirmed changes in cervical flexor muscle control in patients with neck pain and as a result, effective evidence-based therapeutic exercises have been developed to address such dysfunctions. However, knowledge on how the deep extensor muscles behave in patients with neck pain disorders is scare. Structural changes such as higher concentration of fat within the muscle, variable cross-sectional area and higher proportions of type II fibres have been observed in the deep cervical extensors of patients with neck pain compared to healthy controls. These findings suggest that the behaviour of the deep extensors may be altered in patients with neck pain. Consistent with this hypothesis, a recent series of studies confirm that patients display reduced activation of the deep cervical extensors as well as less defined activation patterns. This article provides an overview of the various different structural and functional changes in the deep neck extensor muscles documented in patients with neck pain. Relevant recommendations for the management of muscle dysfunction in patients with neck pain are presented. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. AUC-Maximized Deep Convolutional Neural Fields for Protein Sequence Labeling.

    PubMed

    Wang, Sheng; Sun, Siqi; Xu, Jinbo

    2016-09-01

    Deep Convolutional Neural Networks (DCNN) has shown excellent performance in a variety of machine learning tasks. This paper presents Deep Convolutional Neural Fields (DeepCNF), an integration of DCNN with Conditional Random Field (CRF), for sequence labeling with an imbalanced label distribution. The widely-used training methods, such as maximum-likelihood and maximum labelwise accuracy, do not work well on imbalanced data. To handle this, we present a new training algorithm called maximum-AUC for DeepCNF. That is, we train DeepCNF by directly maximizing the empirical Area Under the ROC Curve (AUC), which is an unbiased measurement for imbalanced data. To fulfill this, we formulate AUC in a pairwise ranking framework, approximate it by a polynomial function and then apply a gradient-based procedure to optimize it. Our experimental results confirm that maximum-AUC greatly outperforms the other two training methods on 8-state secondary structure prediction and disorder prediction since their label distributions are highly imbalanced and also has similar performance as the other two training methods on solvent accessibility prediction, which has three equally-distributed labels. Furthermore, our experimental results show that our AUC-trained DeepCNF models greatly outperform existing popular predictors of these three tasks. The data and software related to this paper are available at https://github.com/realbigws/DeepCNF_AUC.

  11. AUC-Maximized Deep Convolutional Neural Fields for Protein Sequence Labeling

    PubMed Central

    Wang, Sheng; Sun, Siqi

    2017-01-01

    Deep Convolutional Neural Networks (DCNN) has shown excellent performance in a variety of machine learning tasks. This paper presents Deep Convolutional Neural Fields (DeepCNF), an integration of DCNN with Conditional Random Field (CRF), for sequence labeling with an imbalanced label distribution. The widely-used training methods, such as maximum-likelihood and maximum labelwise accuracy, do not work well on imbalanced data. To handle this, we present a new training algorithm called maximum-AUC for DeepCNF. That is, we train DeepCNF by directly maximizing the empirical Area Under the ROC Curve (AUC), which is an unbiased measurement for imbalanced data. To fulfill this, we formulate AUC in a pairwise ranking framework, approximate it by a polynomial function and then apply a gradient-based procedure to optimize it. Our experimental results confirm that maximum-AUC greatly outperforms the other two training methods on 8-state secondary structure prediction and disorder prediction since their label distributions are highly imbalanced and also has similar performance as the other two training methods on solvent accessibility prediction, which has three equally-distributed labels. Furthermore, our experimental results show that our AUC-trained DeepCNF models greatly outperform existing popular predictors of these three tasks. The data and software related to this paper are available at https://github.com/realbigws/DeepCNF_AUC. PMID:28884168

  12. Deep-Sea Coral Image Catalog: Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Freed, J. C.

    2016-02-01

    In recent years, deep-sea exploration in the Northeast Pacific ocean has been on the rise using submersibles and remotely operated vehicles (ROVs), acquiring a plethora of underwater videos and photographs. Analysis of deep-sea fauna revealed by this research has been hampered by the lack of catalogs or guides that allow identification of species in the field. Deep-sea corals are of particular conservation concern, but currently, there are few catalogs which describe and provide detailed information on deep-sea corals from the Northeast Pacific and those that exist are focused on small, specific areas. This project, in collaboration with NOAA's Deep-Sea Coral Ecology Laboratory at the Center for Coastal Environmental Health and Biomolecular Research (CCEHBR) and the Southwest Fisheries Science Center (SWFSC), developed pages for a deep-sea coral identification guide that provides photos and information on the visual identification, distributions, and habitats of species found in the Northeast Pacific. Using online databases, photo galleries, and literature, this catalog has been developed to be a living document open to future additions. This project produced 12 entries for the catalog on a variety of different deep-sea corals. The catalog is intended to be used during underwater surveys in the Northeast Pacific, but will also assist in identification of deep-sea coral by-catch by fishing vessels, and for general educational use. These uses will advance NOAA's ability to identify and protect sensitive deep-sea habitats that act as biological hotspots. The catalog is intended to be further developed into an online resource with greater interactive features with links to other resources and featured on NOAA's Deep-Sea Coral Data Portal.

  13. 49 CFR 195.248 - Cover over buried pipeline.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... waters less than 15 feet (4.6 meters) deep as measured from mean low water 36 (914) 18 (457) Other offshore areas under water less than 12 ft (3.7 meters) deep as measured from mean low water 36 (914) 18... residential areas 36 (914) 30 (762) Crossing of inland bodies of water with a width of at least 100 feet (30...

  14. Deep-water oilfield development cost analysis and forecasting —— Take gulf of mexico for example

    NASA Astrophysics Data System (ADS)

    Shi, Mingyu; Wang, Jianjun; Yi, Chenggao; Bai, Jianhui; Wang, Jing

    2017-11-01

    Gulf of Mexico (GoM) is the earliest offshore oilfield which has ever been developed. It tends to breed increasingly value of efficient, secure and cheap key technology of deep-water development. Thus, the analyze of development expenditure in this area is significantly important the evaluation concept of deep-water oilfield all over the world. This article emphasizes on deep-water development concept and EPC contract value in GoM in recent 10 years in case of comparison and selection to the economic efficiency. Besides, the QUETOR has been put into use in this research processes the largest upstream cost database to simulate and calculate the calculating examples’ expenditure. By analyzing and forecasting the deep-water oilfield development expenditure, this article explores the relevance between expenditure index and oil price.

  15. Deep learning guided stroke management: a review of clinical applications.

    PubMed

    Feng, Rui; Badgeley, Marcus; Mocco, J; Oermann, Eric K

    2018-04-01

    Stroke is a leading cause of long-term disability, and outcome is directly related to timely intervention. Not all patients benefit from rapid intervention, however. Thus a significant amount of attention has been paid to using neuroimaging to assess potential benefit by identifying areas of ischemia that have not yet experienced cellular death. The perfusion-diffusion mismatch, is used as a simple metric for potential benefit with timely intervention, yet penumbral patterns provide an inaccurate predictor of clinical outcome. Machine learning research in the form of deep learning (artificial intelligence) techniques using deep neural networks (DNNs) excel at working with complex inputs. The key areas where deep learning may be imminently applied to stroke management are image segmentation, automated featurization (radiomics), and multimodal prognostication. The application of convolutional neural networks, the family of DNN architectures designed to work with images, to stroke imaging data is a perfect match between a mature deep learning technique and a data type that is naturally suited to benefit from deep learning's strengths. These powerful tools have opened up exciting opportunities for data-driven stroke management for acute intervention and for guiding prognosis. Deep learning techniques are useful for the speed and power of results they can deliver and will become an increasingly standard tool in the modern stroke specialist's arsenal for delivering personalized medicine to patients with ischemic stroke. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. White Matter Tract Injury is Associated with Deep Gray Matter Iron Deposition in Multiple Sclerosis.

    PubMed

    Bergsland, Niels; Tavazzi, Eleonora; Laganà, Maria Marcella; Baglio, Francesca; Cecconi, Pietro; Viotti, Stefano; Zivadinov, Robert; Baselli, Giuseppe; Rovaris, Marco

    2017-01-01

    With respect to healthy controls (HCs), increased iron concentrations in the deep gray matter (GM) and decreased white matter (WM) integrity are common findings in multiple sclerosis (MS) patients. The association between these features of the disease remains poorly understood. We investigated the relationship between deep iron deposition in the deep GM and WM injury in associated fiber tracts in MS patients. Sixty-six MS patients (mean age 50.0 years, median Expanded Disability Status Scale 5.25, mean disease duration 19.1 years) and 29 HCs, group matched for age and sex were imaged on a 1.5T scanner. Susceptibility-weighted imaging and diffusion tensor imaging (DTI) were used for assessing high-pass filtered phase values in the deep GM and normal appearing WM (NAWM) integrity in associated fiber tracts, respectively. Correlation analyses investigated the associations between filtered phase values (suggestive of iron content) and WM damage. Areas indicative of increased iron levels were found in the left and right caudates as well as in the left thalamus. MS patients presented with decreased DTI-derived measures of tissue integrity in the associated WM tracts. Greater mean, axial and radial diffusivities were associated with increased iron levels in all three GM areas (r values .393 to .514 with corresponding P values .003 to <.0001). Global NAWM diffusivity measures were not related to mean filtered phase values within the deep GM. Increased iron concentration in the deep GM is associated with decreased tissue integrity of the connected WM in MS patients. Copyright © 2016 by the American Society of Neuroimaging.

  17. Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk

    NASA Astrophysics Data System (ADS)

    Gehlen, M.; Séférian, R.; Jones, D. O. B.; Roy, T.; Roth, R.; Barry, J.; Bopp, L.; Doney, S. C.; Dunne, J. P.; Heinze, C.; Joos, F.; Orr, J. C.; Resplandy, L.; Segschneider, J.; Tjiputra, J.

    2014-12-01

    This study aims to evaluate the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCPs). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding -0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environments. We report on major pH reductions over the deep North Atlantic seafloor (depth >500 m) and at important deep-sea features, such as seamounts and canyons. By 2100, and under the high CO2 scenario RCP8.5, pH reductions exceeding -0.2 (-0.3) units are projected in close to 23% (~15%) of North Atlantic deep-sea canyons and ~8% (3%) of seamounts - including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity, implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.

  18. North Atlantic demersal deep-water fish distribution and biology: present knowledge and challenges for the future.

    PubMed

    Bergstad, O A

    2013-12-01

    This paper summarizes knowledge and knowledge gaps on benthic and benthopelagic deep-water fishes of the North Atlantic Ocean, i.e. species inhabiting deep continental shelf areas, continental and island slopes, seamounts and the Mid-Atlantic Ridge. While several studies demonstrate that distribution patterns are species specific, several also show that assemblages of species can be defined and such assemblages are associated with circulatory features and water mass distributions. In many subareas, sampling has, however, been scattered, restricted to shallow areas or soft substrata, and results from different studies tend to be difficult to compare quantitatively because of sampler differences. Particularly, few studies have been conducted on isolated deep oceanic seamounts and in Arctic deep-water areas. Time series of data are very few and most series are short. Recent studies of population structure of widely distributed demersal species show less than expected present connectivity and considerable spatial genetic heterogeneity and complexity for some species. In other species, genetic homogeneity across wide ranges was discovered. Mechanisms underlying the observed patterns have been proposed, but to test emerging hypotheses more species should be investigated across their entire distribution ranges. Studies of population biology reveal greater diversity in life-history strategies than often assumed, even between co-occurring species of the same family. Some slope and ridge-associated species are rather short-lived, others very long-lived, and growth patterns also show considerable variation. Recent comparative studies suggest variation in life-history strategies along a continuum correlated with depth, ranging from shelf waters to the deep sea where comparatively more species have extended lifetimes, and slow rates of growth and reproduction. Reproductive biology remains too poorly known for most deep-water species, and temporal variation in recruitment has only been studied for few deep-water species. A time series of roundnose grenadier Coryphaenoides rupestris recruitment spanning three decades of fisheries-independent data suggests that abundant year classes occur rarely and may influence size structure and abundance even for this long-lived species. © 2013 The Fisheries Society of the British Isles.

  19. Testing deep-sea biodiversity paradigms on abyssal nematode genera and Acantholaimus species

    NASA Astrophysics Data System (ADS)

    Lins, Lidia; da Silva, Maria Cristina; Neres, Patrícia; Esteves, André Morgado; Vanreusel, Ann

    2018-02-01

    Biodiversity patterns in the deep sea have been extensively studied in the last decades. In this study, we investigated whether reputable concepts in deep-sea ecology also explain diversity and distribution patterns of nematode genera and species in the abyss. Among them, three paradigms were tackled: (1) the deep sea is a highly diverse environment at a local scale, while on a regional and even larger geographical scale, species and genus turnover is limited; (2) the biodiversity of deep-sea nematode communities changes with the nature and amount of organic matter input from the surface; and (3) patch-mosaic dynamics of the deep-sea environment drive local diversity. To test these hypotheses, diversity and density of nematode assemblages and of species of the genus Acantholaimus were studied along two abyssal E-W transects. These two transects were situated in the Southern Ocean ( 50°S) and the North Atlantic ( 10°N). Four different hierarchical scales were used to compare biodiversity: at the scale of cores, between stations from the same region, and between regions. Results revealed that the deep sea harbours a high diversity at a local scale (alpha diversity), but that turnover can be shaped by different environmental drivers. Therefore, these results question the second part of the paradigm about limited species turnover in the deep sea. Higher surface primary productivity was correlated with greater nematode densities, whereas diversity responses to the augmentation of surface productivity showed no trend. Areas subjected to a constant and low food input revealed similar nematode communities to other oligotrophic abyssal areas, while stations under high productivity were characterized by different dominant genera and Acantholaimus species, and by a generally low local diversity. Our results corroborate the species-energy hypothesis, where productivity can set a limit to the richness of an ecosystem. Finally, we observed no correlation between sediment variability and local diversity. Although differences in sediment variability were significant across stations, these had to be considered without effect on the nematode community structure in the studied abyssal areas.

  20. Late 20th Century Deep-seated Vertical Motions in New Orleans and implications for Gulf Coast Subsidence

    NASA Astrophysics Data System (ADS)

    Dokka, R. K.

    2010-12-01

    Subsidence of the Mississippi River delta and adjoining coastal areas is widely thought to be dominated by compaction of Holocene sediments. Current public policies regarding hurricane protection and ecosystems restoration are founded on this interpretation. To test this hypothesis, monuments that penetrate the entire Holocene section were measured using geodetic leveling and water gauges attached to bridge foundations. Results show that the entire sampling area subsided between 1955 and 1995 in amounts unanticipated by previous models. Subsidence due to processes originating below the Holocene section locally exceeded 0.9 m between 1955 and 1995. The maxima of deep subsidence occurred in the urbanized and industrialized sections of eastern New Orleans. Subsidence decreased away from urbanized areas and north of the belt of active basin margin normal faults; this decrease in subsidence continued to the north and east along the Mississippi coast. These independent measurements provide insights into the complexity and causes of modern landscape change in the region. Modern subsidence is clearly not dominated solely by shallow processes such as natural compaction, Deep subsidence occurring east and north of the basin margin faults can be explained by regional tectonic loading of the lithosphere by the modern Mississippi River delta and local groundwater withdrawal. Sharp, local changes in subsidence coincide with strands of the basin margin normal fault system. Deep subsidence of the New Orleans area can be explained by a combination of groundwater withdrawal from shallow upper Pleistocene aquifers, the aforementioned lithospheric loading, and non-groundwater-related faulting. Subsidence due to groundwater extraction from aquifers ~160 to 200 m deep dominated the urbanized areas from ~1960 to the early 1990s and is likely responsible for lowering flood protection structures and bridges in the area by as much as ~0.8 m.

  1. Deep-sea macrourid fishes scavenge on plant material: Evidence from in situ observations

    NASA Astrophysics Data System (ADS)

    Jeffreys, Rachel M.; Lavaleye, Marc S. S.; Bergman, Magda J. N.; Duineveld, Gerard C. A.; Witbaard, Rob; Linley, Thom

    2010-04-01

    Deep-sea benthic communities primarily rely on an allochthonous food source. This may be in the form of phytodetritus or as food falls e.g. sinking carcasses of nekton or debris of marine macrophyte algae. Deep-sea macrourids are the most abundant demersal fish in the deep ocean. Macrourids are generally considered to be the apex predators/scavengers in deep-sea communities. Baited camera experiments and stable isotope analyses have demonstrated that animal carrion derived from the surface waters is an important component in the diets of macrourids; some macrourid stomachs also contained vegetable/plant material e.g. onion peels, oranges, algae. The latter observations led us to the question: is plant material an attractive food source for deep-sea scavenging fish? We simulated a plant food fall using in situ benthic lander systems equipped with a baited time-lapse camera. Abyssal macrourids and cusk-eels were attracted to the bait, both feeding vigorously on the bait, and the majority of the bait was consumed in <30 h. These observations indicate (1) plant material can produce an odour plume similar to that of animal carrion and attracts deep-sea fish, and (2) deep-sea fish readily eat plant material. This represents to our knowledge the first in situ documentation of deep-sea fish ingesting plant material and highlights the variability in the scavenging nature of deep-sea fishes. This may have implications for food webs in areas where macrophyte/seagrass detritus is abundant at the seafloor e.g. canyon systems and continental shelves close to seagrass meadows (Bahamas and Mediterranean).

  2. Climate, carbon cycling, and deep-ocean ecosystems.

    PubMed

    Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S

    2009-11-17

    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

  3. Deep Pyriform Space: Anatomical Clarifications and Clinical Implications.

    PubMed

    Surek, Christopher K; Vargo, James; Lamb, Jerome

    2016-07-01

    The purpose of this study was to define the anatomical boundaries, transformation in the aging face, and clinical implications of the Ristow space. The authors propose a title of deep pyriform space for anatomical continuity. The deep pyriform space was dissected in 12 hemifacial fresh cadaver dissections. Specimens were divided into three separate groups. For group 1, dimensions were measured and plaster molds were fashioned to evaluate shape and contour. For group 2, the space was injected percutaneously with dyed hyaluronic acid to examine proximity relationships to adjacent structures. For group 3, the space was pneumatized to evaluate its cephalic extension. The average dimensions of the deep pyriform space are 1.1 × 0.9 cm. It is bounded medially by the depressor septi nasi and cradled laterally and superficially in a "half-moon" shape by the deep medial cheek fat and lip elevators. The angular artery courses on the roof of the space within a septum between the space and deep medial cheek fat. Pneumatization of the space traverses cephalic to the level of the tear trough ligament in a plane deep to the premaxillary space. The deep pyriform space is a midface cavity cradled by the pyriform aperture and deep medial cheek compartment. Bony recession of the maxilla with age predisposes this space for use as a potential area of deep volumization to support overlying cheek fat and draping lip elevators. The position of the angular artery in the roof of the space allows safe injection on the bone without concern for vascular injury.

  4. Deep level defects in dilute GaAsBi alloys grown under intense UV illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooney, P. M.; Tarun, Marianne; Beaton, D. A.

    2016-07-21

    Dilute GaAs1-xBix alloys exhibiting narrow band edge photoluminescence (PL) were recently grown by molecular beam epitaxy (MBE) with the growth surface illuminated by intense UV radiation. To investigate whether the improved optical quality of these films results from a reduction in the concentration of deep level defects, p+/n and n+/p junction diodes were fabricated on both the illuminated and dark areas of several samples. Deep Level Transient Spectroscopy (DLTS) measurements show that the illuminated and dark areas of both the n- and p-type GaAs1-xBix epi-layers have similar concentrations of near mid-gap electron and hole traps, in the 1015 cm-3 range.more » Thus the improved PL spectra cannot be explained by a reduction in non-radiative recombination at deep level defects. We note that carrier freeze-out above 35 K is significantly reduced in the illuminated areas of the p-type GaAs1-xBix layers compared to the dark areas, allowing the first DLTS measurements of defect energy levels close to the valence band edge. These defect levels may account for differences in the PL spectra from the illuminated and dark areas of un-doped layers with a similar Bi fraction.« less

  5. SMUVS: Spitzer Matching survey of the UltraVISTA ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Caputi, Karina; Ashby, Matthew; Fazio, Giovanni; Huang, Jiasheng; Dunlop, James; Franx, Marijn; Le Fevre, Olivier; Fynbo, Johan; McCracken, Henry; Milvang-Jensen, Bo; Muzzin, Adam; Ilbert, Olivier; Somerville, Rachel; Wechsler, Risa; Behroozi, Peter; Lu, Yu

    2014-12-01

    We request 2026.5 hours to homogenize the matching ultra-deep IRAC data of the UltraVISTA ultra-deep stripes, producing a final area of ~0.6 square degrees with the deepest near- and mid-IR coverage existing in any such large area of the sky (H, Ks, [3.6], [4.5] ~ 25.3-26.1 AB mag; 5 sigma). The UltraVISTA ultra-deep stripes are contained within the larger COSMOS field, which has a rich collection of multi-wavelength, ancillary data, making it ideal to study different aspects of galaxy evolution with high statistical significance and excellent redshift accuracy. The UltraVISTA ultra-deep stripes are the region of the COSMOS field where these studies can be pushed to the highest redshifts, but securely identifying high-z galaxies, and determining their stellar masses, will only be possible if ultra-deep mid-IR data are available. Our IRAC observations will allow us to: 1) extend the galaxy stellar mass function at redshifts z=3 to z=5 to the intermediate mass regime (M~5x10^9-10^10 Msun), which is critical to constrain galaxy formation models; 2) gain a factor of six in the area where it is possible to effectively search for z>=6 galaxies and study their properties; 3) measure, for the first time, the large-scale structure traced by an unbiased galaxy sample at z=5 to z=7, and make the link to their host dark matter haloes. This cannot be done in any other field of the sky, as the UltraVISTA ultra-deep stripes form a quasi-contiguous, regular-shape field, which has a unique combination of large area and photometric depth. 4) provide a unique resource for the selection of secure z>5 targets for JWST and ALMA follow up. Our observations will have an enormous legacy value which amply justifies this new observing-time investment in the COSMOS field. Spitzer cannot miss this unique opportunity to open up a large 0.6 square-degree window to the early Universe.

  6. Discoveries and Conservation Efforts of Extensive Deep-Sea Coral Habitat off the Southeastern U.S.

    NASA Astrophysics Data System (ADS)

    Reed, J. K.; Messing, C. G.; Walker, B. K.; Farrington, S.; Brooke, S.; Correa, T.; Brouwer, M.

    2012-12-01

    The deep-sea floor of the Western Atlantic off the southeastern U.S. supports a variety of deep-sea coral ecosystem (DSCE) habitats, including: coral mounds, rock terraces (Miami and Pourtalès Terraces), canyons (Agassiz and Tortugas Valleys), and island slopes (western Bahamas and northern Cuba). We used NOAA bathymetric contour maps and digital elevation models to identify and delineate the areal extent of potential DSCE habitat (50-1000 m) from northeastern Florida through the Straits of Florida. Recently, shipboard and AUV side-scan and multibeam sonar have further documented portions of the region. The resulting maps have been ground-truthed with over 250 submersible and remotely operated vehicle (ROV) dives, revealing that high-relief topographic features, including steep escarpments and rocky terraces, are good predictors of DSCE habitat in this region. The benthic biota is diverse but locally variable; for example, Lophelia and Enallopsammia stony corals dominate the deep-water mounds, whereas stylasterid corals dominate the rocky terraces where Lophelia is sporadic. Octocorals, black corals, and sponges are common at most sites but different species exhibit site-specific distributional variability. In 2011, the first of two NOAA-sponsored cruises using sonar mapping and an ROV discovered the southernmost Lophelia coral mound in the continental United States, south of the Florida Keys, offering the possibility that more Lophelia mounds may exist in this region where they were previously thought to be absent. The second cruise discovered that deep-water Oculina varicosa coral reefs extend over 70 nmi north of the current boundaries of the Oculina Habitat Area of Particular Concern (OHAPC), which was first designated as a marine protected area in 1984. These studies indicate that cold-water coral mounds are significantly more diverse and abundant in this region than previously thought. These research results were presented to NOAA and the South Atlantic Fishery Management Council (SAFMC), which led to the designation of some of these areas as HAPCs or marine protected areas, restricting bottom trawling, longlines and traps that could be destructive to the fragile coral and sponge habitat. In 2010, NOAA established five deep-water Coral HAPCs encompassing a total area of 62,714 km2 from North Carolina to south Florida; an estimated 69% of the total area of the CHAPCs is off Florida. However, we estimate that ~6,554 km2 (29.7%) of DSCE habitat remains unprotected and outside the boundaries of the CHAPCs in U.S. waters off Florida. Many activities may impact DCSEs, including bottom trawling, energy production, and even global warming. Cuba has recently opened its north slope for deep-sea oil/gas drilling, which could have serious impacts upon both deep and shallow water reefs and coastal areas of the U.S. upstream of these drilling sites. Baseline data is critical to understanding the effects of these anthropogenic activities son DSCEs. High-resolution sonar surveys combined with visual ground-truthing to create deep-water benthic habitat maps are necessary to further define the extent of DSCEs in order to protect and conserve these critical habitats.

  7. Computational analysis of transcranial magnetic stimulation in the presence of deep brain stimulation probes

    NASA Astrophysics Data System (ADS)

    Syeda, F.; Holloway, K.; El-Gendy, A. A.; Hadimani, R. L.

    2017-05-01

    Transcranial Magnetic Stimulation is an emerging non-invasive treatment for depression, Parkinson's disease, and a variety of other neurological disorders. Many Parkinson's patients receive the treatment known as Deep Brain Stimulation, but often require additional therapy for speech and swallowing impairment. Transcranial Magnetic Stimulation has been explored as a possible treatment by stimulating the mouth motor area of the brain. We have calculated induced electric field, magnetic field, and temperature distributions in the brain using finite element analysis and anatomically realistic heterogeneous head models fitted with Deep Brain Stimulation leads. A Figure of 8 coil, current of 5000 A, and frequency of 2.5 kHz are used as simulation parameters. Results suggest that Deep Brain Stimulation leads cause surrounding tissues to experience slightly increased E-field (Δ Emax =30 V/m), but not exceeding the nominal values induced in brain tissue by Transcranial Magnetic Stimulation without leads (215 V/m). The maximum temperature in the brain tissues surrounding leads did not change significantly from the normal human body temperature of 37 °C. Therefore, we ascertain that Transcranial Magnetic Stimulation in the mouth motor area may stimulate brain tissue surrounding Deep Brain Stimulation leads, but will not cause tissue damage.

  8. Deepwater Program: Lophelia II, continuing ecological research on deep-sea corals and deep-reef habitats in the Gulf of Mexico

    USGS Publications Warehouse

    Demopoulos, Amanda W.J.; Ross, Steve W.; Kellogg, Christina A.; Morrison, Cheryl L.; Nizinski, Martha S.; Prouty, Nancy G.; Bourque, Jill R.; Galkiewicz, Julie P.; Gray, Michael A.; Springmann, Marcus J.; Coykendall, D. Katharine; Miller, Andrew; Rhode, Mike; Quattrini, Andrea; Ames, Cheryl L.; Brooke, Sandra D.; McClain Counts, Jennifer; Roark, E. Brendan; Buster, Noreen A.; Phillips, Ryan M.; Frometa, Janessy

    2017-12-11

    The deep sea is a rich environment composed of diverse habitat types. While deep-sea coral habitats have been discovered within each ocean basin, knowledge about the ecology of these habitats and associated inhabitants continues to grow. This report presents information and results from the Lophelia II project that examined deep-sea coral habitats in the Gulf of Mexico. The Lophelia II project focused on Lophelia pertusa habitats along the continental slope, at depths ranging from 300 to 1,000 meters. The chapters are authored by several scientists from the U.S. Geological Survey, National Oceanic and Atmospheric Administration, University of North Carolina Wilmington, and Florida State University who examined the community ecology (from microbes to fishes), deep-sea coral age, growth, and reproduction, and population connectivity of deep-sea corals and inhabitants. Data from these studies are presented in the chapters and appendixes of the report as well as in journal publications. This study was conducted by the Ecosystems Mission Area of the U.S. Geological Survey to meet information needs identified by the Bureau of Ocean Energy Management.

  9. Comparative histometric analysis of the effects of high-intensity focused ultrasound and radiofrequency on skin.

    PubMed

    Suh, Dong Hye; Choi, Jeong Hwee; Lee, Sang Jun; Jeong, Ki-Heon; Song, Kye Yong; Shin, Min Kyung

    2015-01-01

    High-intensity focused ultrasound (HIFU) and radiofrequency (RF) are used for non-invasive skin tightening. Neocollagenesis and neoelastogenesis have been reported to have a mechanism of controlled thermal injury. To compare neocollagenesis and neoelastogenesis in each layer of the dermis after each session of HIFU and monopolar RF. We analyzed the area fraction of collagen and elastic fibers using the Masson's Trichrome and Victoria blue special stains, respectively, before and after 2 months of treatments. Histometric analyses were performed in each layer of the dermis, including the papillary dermis, and upper, mid, and deep reticular dermis. Monopolar RF led to neocollagenesis in the papillary dermis, and upper, mid, and deep reticular dermis, and neoelastogenesis in the papillary dermis, and upper and mid reticular dermis. HIFU led to neocollagenesis in the mid and deep reticular dermis and neoelastogenesis in the deep reticular dermis. Among these treatment methods, HIFU showed the highest level of neocollagenesis and neoelastogenesis in the deep reticular dermis. HIFU affects deep tissues and impacts focal regions. Monopolar RF also affects deep tissues, but impacts diffuse regions. We believe these data provide further insight into effective skin tightening.

  10. Facial Expression Recognition with Fusion Features Extracted from Salient Facial Areas.

    PubMed

    Liu, Yanpeng; Li, Yibin; Ma, Xin; Song, Rui

    2017-03-29

    In the pattern recognition domain, deep architectures are currently widely used and they have achieved fine results. However, these deep architectures make particular demands, especially in terms of their requirement for big datasets and GPU. Aiming to gain better results without deep networks, we propose a simplified algorithm framework using fusion features extracted from the salient areas of faces. Furthermore, the proposed algorithm has achieved a better result than some deep architectures. For extracting more effective features, this paper firstly defines the salient areas on the faces. This paper normalizes the salient areas of the same location in the faces to the same size; therefore, it can extracts more similar features from different subjects. LBP and HOG features are extracted from the salient areas, fusion features' dimensions are reduced by Principal Component Analysis (PCA) and we apply several classifiers to classify the six basic expressions at once. This paper proposes a salient areas definitude method which uses peak expressions frames compared with neutral faces. This paper also proposes and applies the idea of normalizing the salient areas to align the specific areas which express the different expressions. As a result, the salient areas found from different subjects are the same size. In addition, the gamma correction method is firstly applied on LBP features in our algorithm framework which improves our recognition rates significantly. By applying this algorithm framework, our research has gained state-of-the-art performances on CK+ database and JAFFE database.

  11. The rise of deep learning in drug discovery.

    PubMed

    Chen, Hongming; Engkvist, Ola; Wang, Yinhai; Olivecrona, Marcus; Blaschke, Thomas

    2018-06-01

    Over the past decade, deep learning has achieved remarkable success in various artificial intelligence research areas. Evolved from the previous research on artificial neural networks, this technology has shown superior performance to other machine learning algorithms in areas such as image and voice recognition, natural language processing, among others. The first wave of applications of deep learning in pharmaceutical research has emerged in recent years, and its utility has gone beyond bioactivity predictions and has shown promise in addressing diverse problems in drug discovery. Examples will be discussed covering bioactivity prediction, de novo molecular design, synthesis prediction and biological image analysis. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Water resources data of the Seward area, Alaska

    USGS Publications Warehouse

    Dearborn, Larry L.; Anderson, Gary S.; Zenone, Chester

    1979-01-01

    Seward, Alaska, obtains a water supply of about 2 million gallons per day primarily from Marathon Springs and the Fort Raymond well field. The springs have supplied up to 800 gallons per minute, and the city 's deep wells currently have a combined capacity of about 3,000 gallons per minute. Freshwater is abundant in the area; future public supplies could be derived from both shallow and deep ground water and from stream impoundment with diversion. High deep-aquifer transmissivity at the Fort Raymond well field indicates that additional wells could be developed there. Water quality is generally not a problem for public consumption. A flood potential exists along several streams having broad alluvial fans. (Woodard-USGS)

  13. A survey on deep learning in medical image analysis.

    PubMed

    Litjens, Geert; Kooi, Thijs; Bejnordi, Babak Ehteshami; Setio, Arnaud Arindra Adiyoso; Ciompi, Francesco; Ghafoorian, Mohsen; van der Laak, Jeroen A W M; van Ginneken, Bram; Sánchez, Clara I

    2017-12-01

    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The deep space network, volume 19

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The progress is reported in the DSN for Nov. and Dec. 1973. Research is described for the following areas: functions and facilities, mission support for flight projects, tracking and ground-based navigation, spacecraft/ground communication, network control and operations technology, and deep space stations.

  15. 50 CFR 679.28 - Equipment and operational requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... observer must be able to stand upright and have a work area at least 0.9 m deep in the area in front of the table and scale. (4) Table. The observer sampling station must include a table at least 0.6 m deep, 1.2... Station available on the NMFS Alaska Region Web site at http://www.fakr.noaa.gov. Inspections will be...

  16. Environmental Assessment, East Coast Basing of C-17 Aircraft. Volume 1

    DTIC Science & Technology

    2005-09-01

    hydrogeologic units have been identified in the McGuire AFB area, particularly three shallow units and one deep unit (the Potomac-Raritan- Magothy System...McGuire AFB 2003c). The depth to groundwater is relatively shallow (less than five feet in some areas). The Potomac-Raritan- Magothy aquifer is...the primary source of potable water in the McGuire AFB area. The Base obtains water from four deep wells in the Potomac-Raritan- Magothy aquifer at

  17. Environmental Assessment East Coast Basing of C-17 Aircraft. Volume 1

    DTIC Science & Technology

    2005-09-01

    hydrogeologic units have been identified in the McGuire AFB area, particularly three shallow units and one deep unit (the Potomac-Raritan- Magothy System...McGuire AFB 2003c). The depth to groundwater is relatively shallow (less than five feet in some areas). The Potomac-Raritan- Magothy aquifer is...the primary source of potable water in the McGuire AFB area. The Base obtains water from four deep wells in the Potomac-Raritan- Magothy aquifer at

  18. The Effect of Borehole Flow on Salinity Profiles From Deep Monitor Wells in Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Hunt, C. D.; El-Kadi, A. I.

    2008-12-01

    Ground-water resource management in Hawaii is based partly on salinity profiles from deep wells that are used to monitor the thickness of freshwater lenses and the transition zone between freshwater and saltwater. Vertical borehole flow in these wells may confound understanding of the actual salinity-depth profiles in the basaltic aquifers and lead to misinterpretations that hamper effective water-resource management. Causes and effects of borehole flow on salinity profiles are being evaluated at 40 deep monitor wells in Hawaii. Step- like changes in fluid electrical conductivity with respect to depth are indicative of borehole flow and are evident in almost all available salinity profiles. A regional trend in borehole flow direction, expected from basin-wide ground-water flow dynamics, is evident as major downward flow components in inland recharge areas and major upward flow components in discharge areas near the coast. The midpoint of the transition zone in one deep monitor well showed inconsequential depth displacements in response to barometric pressure and tidal fluctuations and to pumping from nearby wellfields. Commonly, the 1 mS/cm conductivity value is used to indicate the top of the transition zone. Contrary to the more stable midpoint, the depth of the 1 mS/cm conductivity value may be displaced by as much as 200 m in deep monitor wells near pumping wellfields. The displacement is complemented with an increase in conductivity at a particular depth in the upper part of the profile. The observed increase in conductivity is linear with increase in nearby pumpage. The largest deviations from expected aquifer-salinity profiles occur in deep monitor wells located in the area extending from east Pearl Harbor to Kalihi on Oahu, which coincides with the most heavily pumped part of the aquifer.

  19. Deep learning for healthcare applications based on physiological signals: A review.

    PubMed

    Faust, Oliver; Hagiwara, Yuki; Hong, Tan Jen; Lih, Oh Shu; Acharya, U Rajendra

    2018-07-01

    We have cast the net into the ocean of knowledge to retrieve the latest scientific research on deep learning methods for physiological signals. We found 53 research papers on this topic, published from 01.01.2008 to 31.12.2017. An initial bibliometric analysis shows that the reviewed papers focused on Electromyogram(EMG), Electroencephalogram(EEG), Electrocardiogram(ECG), and Electrooculogram(EOG). These four categories were used to structure the subsequent content review. During the content review, we understood that deep learning performs better for big and varied datasets than classic analysis and machine classification methods. Deep learning algorithms try to develop the model by using all the available input. This review paper depicts the application of various deep learning algorithms used till recently, but in future it will be used for more healthcare areas to improve the quality of diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Southern Ocean Bottom Water Characteristics in CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline; Heywood, Karen; Stevens, David; Ridley, Jeff

    2013-04-01

    The depiction of Southern Ocean deep water properties and formation processes in climate models is an indicator of their capability to simulate future climate, heat and carbon uptake, and sea level rise. Southern Ocean potential temperature and density averaged over 1986-2005 from fifteen CMIP5 climate models are compared with an observed climatology, focusing on bottom water properties. The mean bottom properties are reasonably accurate for half of the models, but the other half may not yet have approached an equilibrium state. Eleven models create dense water on the Antarctic shelf, but it does not spill off and propagate northwards, alternatively mixing rapidly with less dense water. Instead most models create deep water by open ocean deep convection. Models with large deep convection areas are those with a strong seasonal cycle in sea ice. The most accurate bottom properties occur in models hosting deep convection in the Weddell and Ross gyres.

  1. Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Roark, E. Brendan; Guilderson, Thomas P.; Flood-Page, Sarah; Dunbar, Robert B.; Ingram, B. Lynn; Fallon, Stewart J.; McCulloch, Malcolm

    2005-02-01

    Deep-sea coral communities have long been recognized by fisherman as areas that support large populations of commercial fish. As a consequence, many deep-sea coral communities are threatened by bottom trawling. Successful management and conservation of this widespread deep-sea habitat requires knowledge of the age and growth rates of deep-sea corals. These organisms also contain important archives of intermediate and deep-water variability, and are thus of interest in the context of decadal to century-scale climate dynamics. Here, we present Δ14C data that suggest that bamboo corals from the Gulf of Alaska are long-lived (75-126 years) and that they acquire skeletal carbon from two distinct sources. Independent verification of our growth rate estimates and coral ages is obtained by counting seasonal Sr/Ca cycles and probable lunar cycle growth bands.

  2. Radiocarbon-Based Ages and Growth Rates of Bamboo Corals from the Gulf of Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roark, E B; Guilderson, T P; Flood-Page, S

    2004-12-12

    Deep-sea coral communities have long been recognized by fisherman as areas that support large populations of commercial fish. As a consequence, many deep-sea coral communities are threatened by bottom trawling. Successful management and conservation of this widespread deep-sea habitat requires knowledge of the age and growth rates of deep-sea corals. These organisms also contain important archives of intermediate and deep-water variability, and are thus of interest in the context of decadal to century-scale climate dynamics. Here, we present {Delta}{sup 14}C data that suggest that bamboo corals from the Gulf of Alaska are long-lived (75-126 years) and that they acquire skeletalmore » carbon from two distinct sources. Independent verification of our growth rate estimates and coral ages is obtained by counting seasonal Sr/Ca cycles and probable lunar cycle growth bands.« less

  3. Conservation of deep pelagic biodiversity.

    PubMed

    Robison, Bruce H

    2009-08-01

    The deep ocean is home to the largest ecosystems on our planet. This vast realm contains what may be the greatest number of animal species, the greatest biomass, and the greatest number of individual organisms in the living world. Humans have explored the deep ocean for about 150 years, and most of what is known is based on studies of the deep seafloor. In contrast, the water column above the deep seabed comprises more than 90% of the living space, yet less than 1% of this biome has been explored. The deep pelagic biota is the largest and least-known major faunal group on Earth despite its obvious importance at the global scale. Pelagic species represent an incomparable reservoir of biodiversity. Although we have yet to discover and describe the majority of these species, the threats to their continued existence are numerous and growing. Conserving deep pelagic biodiversity is a problem of global proportions that has never been addressed comprehensively. The potential effects of these threats include the extensive restructuring of entire ecosystems, changes in the geographical ranges of many species, large-scale elimination of taxa, and a decline in biodiversity at all scales. This review provides an initial framework of threat assessment for confronting the challenge of conserving deep pelagic biodiversity; and it outlines the need for baseline surveys and protected areas as preliminary policy goals.

  4. Brain networks modulated by subthalamic nucleus deep brain stimulation.

    PubMed

    Accolla, Ettore A; Herrojo Ruiz, Maria; Horn, Andreas; Schneider, Gerd-Helge; Schmitz-Hübsch, Tanja; Draganski, Bogdan; Kühn, Andrea A

    2016-09-01

    Deep brain stimulation of the subthalamic nucleus is an established treatment for the motor symptoms of Parkinson's disease. Given the frequent occurrence of stimulation-induced affective and cognitive adverse effects, a better understanding about the role of the subthalamic nucleus in non-motor functions is needed. The main goal of this study is to characterize anatomical circuits modulated by subthalamic deep brain stimulation, and infer about the inner organization of the nucleus in terms of motor and non-motor areas. Given its small size and anatomical intersubject variability, functional organization of the subthalamic nucleus is difficult to investigate in vivo with current methods. Here, we used local field potential recordings obtained from 10 patients with Parkinson's disease to identify a subthalamic area with an analogous electrophysiological signature, namely a predominant beta oscillatory activity. The spatial accuracy was improved by identifying a single contact per macroelectrode for its vicinity to the electrophysiological source of the beta oscillation. We then conducted whole brain probabilistic tractography seeding from the previously identified contacts, and further described connectivity modifications along the macroelectrode's main axis. The designated subthalamic 'beta' area projected predominantly to motor and premotor cortical regions additional to connections to limbic and associative areas. More ventral subthalamic areas showed predominant connectivity to medial temporal regions including amygdala and hippocampus. We interpret our findings as evidence for the convergence of different functional circuits within subthalamic nucleus' portions deemed to be appropriate as deep brain stimulation target to treat motor symptoms in Parkinson's disease. Potential clinical implications of our study are illustrated by an index case where deep brain stimulation of estimated predominant non-motor subthalamic nucleus induced hypomanic behaviour. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Is there a quasi-biennial oscillation in tropical deep convection?

    NASA Astrophysics Data System (ADS)

    Collimore, Christopher C.; Hitchman, Matthew H.; Martin, David W.

    We investigate the possibility that the stratospheric Quasi-Biennial Oscillation (QBO) modulates deep convection in the tropics. Interannual variations of outgoing longwave radiation (OLR) in the tropics during 1975-87 are compared with stratospheric zonal winds at Singapore (a measure of the QBO), and with the Tahiti-Darwin sea level pressure difference (the Southern Oscillation Index, or SOI). A monthly time series of anomalous OLR was constructed for regions of consistently low OLR, thus targeting areas of chronic deep convection. This “chronic cold” index and the SOI correlate at -0.6 for zero lag. The “chronic cold” index correlates with 30 hPa Singapore winds at +0.3 and with 50 hPa-70 hPa wind differences at +0.4, both near zero lag. These results are not inconsistent with the hypothesis that deep convection may be enhanced in chronically cold areas when QBO westward shear exists in the lower stratosphere, and diminished during eastward shear.

  6. Solar-blind deep-UV band-pass filter (250 - 350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography.

    PubMed

    Li, Wen-Di; Chou, Stephen Y

    2010-01-18

    We designed, fabricated and demonstrated a solar-blind deep-UV pass filter, that has a measured optical performance of a 27% transmission peak at 290 nm, a pass-band width of 100 nm (from 250 to 350 nm), and a 20dB rejection ratio between deep-UV wavelength and visible wavelength. The filter consists of an aluminum nano-grid, which was made by coating 20 nm Al on a SiO(2) square grid with 190 nm pitch, 30 nm linewidth and 250 nm depth. The performances agree with a rigorous coupled wave analysis. The wavelength for the peak transmission and the pass-bandwidth can be tuned through adjusting the metal nano-grid dimensions. The filter was fabricated by nanoimprint lithography, hence is large area and low cost. Combining with Si photodetectors, the filter offers simple yet effective and low cost solar-blind deep-UV detection at either a single device or large-area complex integrated imaging array level.

  7. Measurement of fish movements at depths to 6000 m using a deep-ocean lander incorporating a short base-line sonar utilizing miniature code-activated transponder technology

    NASA Astrophysics Data System (ADS)

    Bagley, P. M.; Bradley, S.; Priede, I. G.; Gray, P.

    1999-12-01

    Most research on animal behaviour in the deep ocean (to depths of 6000 m) is restricted to the capture of dead specimens or viewing activity over small areas of the sea floor by means of cameras or submersibles. This paper describes the use of a miniature acoustic code-activated transponder (CAT) tag and short base-line sonar to track the movements of deep-sea fish in two dimensions over an area 1 km in diameter centred on a lander platform. The CAT tags and sonar are transported to the deep-sea floor by means of a subsea mooring which is ballasted so that it lands and remains on the sea floor for the duration of the tracking experiment (the lander). A description of the CAT, lander and short base-line sonar is given. Results are presented to illustrate the operation of the system.

  8. A unified spectral parameterization for wave breaking: From the deep ocean to the surf zone

    NASA Astrophysics Data System (ADS)

    Filipot, J.-F.; Ardhuin, F.

    2012-11-01

    A new wave-breaking dissipation parameterization designed for phase-averaged spectral wave models is presented. It combines wave breaking basic physical quantities, namely, the breaking probability and the dissipation rate per unit area. The energy lost by waves is first explicitly calculated in physical space before being distributed over the relevant spectral components. The transition from deep to shallow water is made possible by using a dissipation rate per unit area of breaking waves that varies with the wave height, wavelength and water depth. This parameterization is implemented in the WAVEWATCH III modeling framework, which is applied to a wide range of conditions and scales, from the global ocean to the beach scale. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Model errors are comparable to those of other specialized deep or shallow water parameterizations. This work shows that it is possible to have a seamless parameterization from the deep ocean to the surf zone.

  9. Tritium in the western Mediterranean Sea during 1981 Phycemed cruise

    NASA Astrophysics Data System (ADS)

    Andrie, Chantal; Merlivat, Liliane

    1988-02-01

    We report on simultaneous hydrological and tritium data taken in the western Mediterranean Sea during April 1981 and which implement our knowledge of the spatial and temporal variability of the convection process occurring in the Northern Basin (Gulf of Lion, Ligurian Sea). The renewal time of the deep waters in the Medoc area is calculated to be 11 ± 2 years using a box-model assymption. An important local phenomenon of "cascading" off the Ebro River near the Spanish coast is, noticeable by the use of tritium data. In the Sardinia Straits area tritium data indicate very active mixing between 100 and 500 m depth. The tritium subsurface maxima in Sardinia Straits suggests the influence of not only the Levantine Intermediate Water (LIW) but also an important shallower component. In waters deeper than 500m, an active mixing occurs between the deep water and the LIW via an intermediate water mass from the Tyrrhenian Sea by "salt-fingering". Assuming a two end-member mixing. We determine the deep tritium content in the Sardinia Channel to be 1.8 TU. For comparison, the deep tritium content of the Northern Basin is equal to 1.3 TU. Tritium data relative to the Alboran Sea show that a layer of high tritium content persists all along its path from Sardifia to Gibraltar on a density surface shallower than the intermediate water. The homogeneity of the deep tritium concentrations between 1200 m depth and the bottom corroborate the upward "pumping" and westward circulation of deep waters along the continental slope of the North African Shelf. From the data measured in the Sardinia Straits and in the Alboran Sea, and upper limit of the deep advection rate of the order of 0.5 cm s-1 is estimated.

  10. VizieR Online Data Catalog: Spitzer-CANDELS catalog within 5 deep fields (Ashby+, 2015)

    NASA Astrophysics Data System (ADS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Dunlop, J. S.; Egami, E.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Hora, J. L.; Huang, J.-S.; Koekemoer, A. M.; Labbe, I.; Wang, Z.

    2015-08-01

    We chose to locate S-CANDELS inside the wider and shallower fields already covered by Spitzer Extended Deep Survey (SEDS), in regions that enjoy deep optical and NIR imaging from HST/CANDELS. These S-CANDELS fields are thus the Extended GOODS-south (aka the GEMS field, hereafter ECDFS; Rix et al. 2004ApJS..152..163R; Castellano et al. 2010A&A...511A..20C), the Extended GOODS-north (HDFN; Giavalisco et al. 2004, II/261; Wang et al. 2010, J/ApJS/187/251; Hathi et al. 2012ApJ...757...43H; Lin et al. 2012ApJ...756...71L), the UKIDSS UDS (aka the Subaru/XMM Deep Field, Ouchi et al. 2001ApJ...558L..83O; Lawrence et al. 2007, II/319), a narrow field within the EGS (Davis et al. 2007ApJ...660L...1D; Bielby et al. 2012A&A...545A..23B), and a strip within the UltraVista deep survey of the larger COSMOS field (Scoville et al. 2007ApJS..172...38S; McCracken et al. 2012, J/A+A/544/A156). The S-CANDELS observing strategy was designed to maximize the area covered to full depth within the CANDELS area. Each field was visited twice with six months separating the two visits. Table 1 lists the epochs for each field. All of the IRAC full-depth coverage is within the SEDS area (Ashby et al. 2013, J/ApJ/769/80), and almost all is within the area covered by HST for CANDELS. (6 data files).

  11. Interannual variability (1979-2013) of the North-Western Mediterranean deep water mass formation: past observation reanalysis and coupled ocean-atmosphere high-resolution modelling

    NASA Astrophysics Data System (ADS)

    Somot, Samuel; Houpert, Loic; Sevault, Florence; Testor, Pierre; Bosse, Anthony; Durrieu de Madron, Xavier; Dubois, Clotilde; Herrmann, Marine; Waldman, Robin; Bouin, Marie-Noëlle; Cassou, Christophe

    2015-04-01

    The North-Western Mediterranean Sea is known as one of the only place in the world where open-sea deep convection occurs (often up to more than 2000m) with the formation of the Western Mediterranean Deep Water (WMDW). This phenomena is mostly driven by local preconditioning of the water column and strong buoyancy losses during Winter. At the event scale, the WMDW formation is characterized by different phases (preconditioning, strong mixing, restratification and spreading), intense air-sea interaction and strong meso-scale activity but, on a longer time scale, it also shows a large interannual variability and may be strongly affected by climate change with impact on the regional biogeochemistry. Therefore observing, simulating and understanding the long-term temporal variability of the North-Western Mediterranean deep water formation is still today a very challenging task. We try here to tackle those issues thanks to (1) a thorough reanalysis of past in-situ observations (CTD, Argo, surface and deep moorings, gliders) and (2) an ERA-Interim driven simulation using a recently-developed fully coupled Regional Climate System Model (CNRM-RCSM4, Sevault et al. 2014). The multi-decadal simulation (1979-2013) is designed to be temporally and spatially homogeneous with a realistic chronology, a high resolution representation of both the regional ocean and atmosphere, specific initial conditions, a long-term spin-up and a full ocean-atmosphere coupling without constraint at the air-sea interface. The observation reanalysis allows to reconstruct interannual time series of deep water formation indicators (ocean surface variables, mixed layer depth, surface of the convective area, dense water volumes and characteristics of the deep water). Using the observation-based indicators and the model outputs, the 34 Winters of the period 1979-2013 are analysed in terms of weather regimes, related Winter air-sea fluxes, ocean preconditioning, mixed layer depth, surface of the convective area, deep water formation rate and long-term evolution of the deep water hydrology.

  12. Deep diving odontocetes foraging strategies and their prey field as determined by acoustic techniques

    NASA Astrophysics Data System (ADS)

    Giorli, Giacomo

    Deep diving odontocetes, like sperm whales, beaked whales, Risso's dolphins, and pilot whales are known to forage at deep depths in the ocean on squid and fish. These marine mammal species are top predators and for this reason are very important for the ecosystems they live in, since they can affect prey populations and control food web dynamics through top-down effects. The studies presented in this thesis investigate deep diving odontocetes. foraging strategies, and the density and size of their potential prey in the deep ocean using passive and active acoustic techniques. Ecological Acoustic Recorders (EAR) were used to monitor the foraging activity of deep diving odontocetes at three locations around the world: the Josephine Seamount High Sea Marine Protected Area (JHSMPA), the Ligurian Sea, and along the Kona coast of the island of Hawaii. In the JHSMPA, sperm whales. and beaked whales. foraging rates do not differ between night-time and day-time. However, in the Ligurian Sea, sperm whales switch to night-time foraging as the winter approaches, while beaked whales alternate between hunting mainly at night, and both at night and at day. Spatial differences were found in deep diving odontocetes. foraging activity in Hawaii where they forage most in areas with higher chlorophyll concentrations. Pilot whales (and false killer whales, clustered together in the category "blackfishes") and Risso's dolphins forage mainly at night at all locations. These two species adjust their foraging activity with the length of the night. The density and size of animals living in deep sea scattering layers was studied using a DIDSON imaging sonar at multiple stations along the Kona coast of Hawaii. The density of animals was affected by location, depth, month, and the time of day. The size of animals was influenced by station and month. The DIDSON proved to be a successful, non-invasive technique to study density and size of animals in the deep sea. Densities were found to be an order of magnitude higher than previously found with trawls, and sizes of animals were found to be 3-4 times larger than in trawl data.

  13. Learning better deep features for the prediction of occult invasive disease in ductal carcinoma in situ through transfer learning

    NASA Astrophysics Data System (ADS)

    Shi, Bibo; Hou, Rui; Mazurowski, Maciej A.; Grimm, Lars J.; Ren, Yinhao; Marks, Jeffrey R.; King, Lorraine M.; Maley, Carlo C.; Hwang, E. Shelley; Lo, Joseph Y.

    2018-02-01

    Purpose: To determine whether domain transfer learning can improve the performance of deep features extracted from digital mammograms using a pre-trained deep convolutional neural network (CNN) in the prediction of occult invasive disease for patients with ductal carcinoma in situ (DCIS) on core needle biopsy. Method: In this study, we collected digital mammography magnification views for 140 patients with DCIS at biopsy, 35 of which were subsequently upstaged to invasive cancer. We utilized a deep CNN model that was pre-trained on two natural image data sets (ImageNet and DTD) and one mammographic data set (INbreast) as the feature extractor, hypothesizing that these data sets are increasingly more similar to our target task and will lead to better representations of deep features to describe DCIS lesions. Through a statistical pooling strategy, three sets of deep features were extracted using the CNNs at different levels of convolutional layers from the lesion areas. A logistic regression classifier was then trained to predict which tumors contain occult invasive disease. The generalization performance was assessed and compared using repeated random sub-sampling validation and receiver operating characteristic (ROC) curve analysis. Result: The best performance of deep features was from CNN model pre-trained on INbreast, and the proposed classifier using this set of deep features was able to achieve a median classification performance of ROC-AUC equal to 0.75, which is significantly better (p<=0.05) than the performance of deep features extracted using ImageNet data set (ROCAUC = 0.68). Conclusion: Transfer learning is helpful for learning a better representation of deep features, and improves the prediction of occult invasive disease in DCIS.

  14. Permeability Surface of Deep Middle Cerebral Artery Territory on Computed Tomographic Perfusion Predicts Hemorrhagic Transformation After Stroke.

    PubMed

    Li, Qiao; Gao, Xinyi; Yao, Zhenwei; Feng, Xiaoyuan; He, Huijin; Xue, Jing; Gao, Peiyi; Yang, Lumeng; Cheng, Xin; Chen, Weijian; Yang, Yunjun

    2017-09-01

    Permeability surface (PS) on computed tomographic perfusion reflects blood-brain barrier permeability and is related to hemorrhagic transformation (HT). HT of deep middle cerebral artery (MCA) territory can occur after recanalization of proximal large-vessel occlusion. We aimed to determine the relationship between HT and PS of deep MCA territory. We retrospectively reviewed 70 consecutive acute ischemic stroke patients presenting with occlusion of the distal internal carotid artery or M1 segment of the MCA. All patients underwent computed tomographic perfusion within 6 hours after symptom onset. Computed tomographic perfusion data were postprocessed to generate maps of different perfusion parameters. Risk factors were identified for increased deep MCA territory PS. Receiver operating characteristic curve analysis was performed to calculate the optimal PS threshold to predict HT of deep MCA territory. Increased PS was associated with HT of deep MCA territory. After adjustments for age, sex, onset time to computed tomographic perfusion, and baseline National Institutes of Health Stroke Scale, poor collateral status (odds ratio, 7.8; 95% confidence interval, 1.67-37.14; P =0.009) and proximal MCA-M1 occlusion (odds ratio, 4.12; 95% confidence interval, 1.03-16.52; P =0.045) were independently associated with increased deep MCA territory PS. Relative PS most accurately predicted HT of deep MCA territory (area under curve, 0.94; optimal threshold, 2.89). Increased PS can predict HT of deep MCA territory after recanalization therapy for cerebral proximal large-vessel occlusion. Proximal MCA-M1 complete occlusion and distal internal carotid artery occlusion in conjunction with poor collaterals elevate deep MCA territory PS. © 2017 American Heart Association, Inc.

  15. Topsoil and Deep Soil Organic Carbon Concentration and Stability Vary with Aggregate Size and Vegetation Type in Subtropical China

    PubMed Central

    Fang, Xiang-Min; Chen, Fu-Sheng; Wan, Song-Ze; Yang, Qing-Pei; Shi, Jian-Min

    2015-01-01

    The impact of reforestation on soil organic carbon (OC), especially in deep layer, is poorly understood and deep soil OC stabilization in relation with aggregation and vegetation type in afforested area is unknown. Here, we collected topsoil (0–15 cm) and deep soil (30–45 cm) from six paired coniferous forests (CF) and broad-leaved forests (BF) reforested in the early 1990s in subtropical China. Soil aggregates were separated by size by dry sieving and OC stability was measured by closed-jar alkali-absorption in 71 incubation days. Soil OC concentration and mean weight diameter were higher in BF than CF. The cumulative carbon mineralization (Cmin, mg CO2-C kg-1 soil) varied with aggregate size in BF and CF topsoils, and in deep soil, it was higher in larger aggregates than in smaller aggregates in BF, but not CF. The percentage of soil OC mineralized (SOCmin, % SOC) was in general higher in larger aggregates than in smaller aggregates. Meanwhile, SOCmin was greater in CF than in BF at topsoil and deep soil aggregates. In comparison to topsoil, deep soil aggregates generally exhibited a lower Cmin, and higher SOCmin. Total nitrogen (N) and the ratio of carbon to phosphorus (C/P) were generally higher in BF than in CF in topsoil and deep soil aggregates, while the same trend of N/P was only found in deep soil aggregates. Moreover, the SOCmin negatively correlated with OC, total N, C/P and N/P. This work suggests that reforested vegetation type might play an important role in soil OC storage through internal nutrient cycling. Soil depth and aggregate size influenced OC stability, and deep soil OC stability could be altered by vegetation reforested about 20 years. PMID:26418563

  16. Coverage of Deep Cutaneous Wounds Using Dermal Template in Combination with Negative-pressure Therapy and Subsequent Skin Graft

    PubMed Central

    Chang, Alexandre A.; Lobato, Rodolfo C.; Nakamoto, Hugo A.; Tuma, Paulo; Ferreira, Marcus C.

    2014-01-01

    Background: We consider the use of dermal matrix associated with a skin graft to cover deep wounds in the extremities when tendon and bone are exposed. The objective of this article was to evaluate the efficacy of covering acute deep wounds through the use of a dermal regeneration template (Integra) associated with vacuum therapy and subsequent skin grafting. Methods: Twenty patients were evaluated prospectively. All of them had acute (up to 3 weeks) deep wounds in the limbs. We consider a deep wound to be that with exposure of bone, tendon, or joint. Results: The average area of integration of the dermal regeneration template was 86.5%. There was complete integration of the skin graft over the dermal matrix in 14 patients (70%), partial integration in 5 patients (25%), and total loss in 1 case (5%). The wound has completely closed in 95% of patients. Conclusions: The use of Integra dermal template associated with negative-pressure therapy and skin grafting showed an adequate rate of resolution of deep wounds with low morbidity. PMID:25289363

  17. Deep-sea Hexactinellida (Porifera) of the Weddell Sea

    NASA Astrophysics Data System (ADS)

    Janussen, Dorte; Tabachnick, Konstantin R.; Tendal, Ole S.

    2004-07-01

    New Hexactinellida from the deep Weddel Sea are described. This moderately diverse hexactinellid fauna includes 14 species belonging to 12 genera, of which five species and one subgenus are new to science: Periphragella antarctica n. sp., Holascus pseudostellatus n. sp., Caulophacus (Caulophacus) discohexactinus n. sp., C. ( Caulodiscus) brandti n. sp., C. ( Oxydiscus) weddelli n. sp., and C. ( Oxydiscus) n. subgen. So far, 20 hexactinellid species have been reported from the deep Weddell Sea, 15 are known from the northern part and 10 only from here, while 10 came from the southern area, and five of these only from there. However, this apparent high "endemism" of Antarctic hexactinellid sponges is most likely the result of severe undersampling of the deep-sea fauna. We find no reason to believe that a division between an oceanic and a more continental group of species exists. The current poor database indicates that a substantial part of the deep hexactinellid fauna of the Weddell Sea is shared with other deep-sea regions, but it does not indicate a special biogeographic relationship with any other ocean.

  18. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease.

    PubMed

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter

    2016-05-01

    Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the possibility that cortical connectivity with the subthalamic nucleus in the high and low beta bands may reflect coupling mediated predominantly by the hyperdirect and indirect pathways to subthalamic nucleus, respectively, and that subthalamic nucleus deep brain stimulation predominantly suppresses the former. Yet only the change in strength of local subthalamic nucleus oscillations correlates with the degree of improvement during deep brain stimulation, compatible with the current view that a strengthened hyperdirect pathway is a prerequisite for locally generated beta activity but that it is the severity of the latter that may determine or index motor impairment. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  19. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease

    PubMed Central

    Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir

    2016-01-01

    Abstract Chronic dopamine depletion in Parkinson’s disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus–cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the possibility that cortical connectivity with the subthalamic nucleus in the high and low beta bands may reflect coupling mediated predominantly by the hyperdirect and indirect pathways to subthalamic nucleus, respectively, and that subthalamic nucleus deep brain stimulation predominantly suppresses the former. Yet only the change in strength of local subthalamic nucleus oscillations correlates with the degree of improvement during deep brain stimulation, compatible with the current view that a strengthened hyperdirect pathway is a prerequisite for locally generated beta activity but that it is the severity of the latter that may determine or index motor impairment. PMID:27017189

  20. A summary of chemical and biological testing of proposed disposal of sediment from Richmond Harbor relative to the Deep Off-Shelf Reference Area, the Bay Farm Borrow Area, and the Alcatraz Environs Reference Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhew, H.L.; Karle, L.M.; Gruendell, B.D.

    The US Army Corps of Engineers was authorized to dredge Richmond Harbor to accomodate large, deep-draft vessels. An ecological evaluation of the Harbor sediments was performed describing the physical characteristics, toxic substances, effects on aquatic organisms,and potential for bioaccumulation of chemical contaminants. The objective of this report is to compare the sediment chemistry, acute toxicity, and bioaccumulation results of the Richmond Harbor sediments to each of the reference areas; i.e., the Deep Off-Shelf Reference Area, the Bay Farm Borrow Area, and the Alcatraz Environs Reference Area. This report will enable the US Army Corps of Engineers to determine whether disposalmore » at a reference area is appropriate for all or part of the dredged material from Richmond Harbor. Chemical analyses were performed on 30 sediment samples; 28 of those samples were then combined to form 7 composites. The seven composites plus sediment from two additional stations received both chemical and biological evaluations.« less

  1. [Responses of Cynodon dactylon population in hydro-fluctuation belt of Three Gorges Reservoir area to flooding-drying habitat change].

    PubMed

    Hong, Ming; Guo, Quan-Shu; Nie, Bi-Hong; Kang, Yi; Pei, Shun-Xiang; Jin, Jiang-Qun; Wang, Xiang-Fu

    2011-11-01

    This paper studied the population density, morphological characteristics, and biomass and its allocation of Cynodon dactylon at different altitudinal sections of the hydro-fluctuation belt in Three Gorges Reservoir area, based on located observations. At the three altitudinal sections, the population density of C. dactylon was in the order of shallow water section (165-170 m elevation) > non-flooded section (above 172 m elevation) > deep water section (145-150 m elevation), the root diameter and root length were in the order of deep water section > shallow water section > non-flooded section, the total biomass, root biomass, stem biomass, leaf biomass, and stem biomass allocation ratio were in the order of the shallow water section > non-flooded section > deep water section, and the root biomass allocation ratio, leaf biomass allocation ratio, and underground biomass/aboveground biomass were in the order of deep water section > shallow water section > non-flooded section. The unique adaption strategies of C. dactylon to the flooding-drying habitat change in the shallow water section were the accelerated elongation growth and the increased stem biomass allocation, those in the deep water section were the increased node number of primary and secondary branches, increased number of the branches, and increased leaf biomass allocation, whereas the common strategies in the shallow and deep water sections were the accelerated root growth and the increased tillering and underground biomass allocation for preparing nutrition and energy for the rapid growth in terrestrial environment.

  2. Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk

    NASA Astrophysics Data System (ADS)

    Gehlen, M.; Séférian, R.; Jones, D. O. B.; Roy, T.; Roth, R.; Barry, J.; Bopp, L.; Doney, S. C.; Dunne, J. P.; Heinze, C.; Joos, F.; Orr, J. C.; Resplandy, L.; Segschneider, J.; Tjiputra, J.

    2014-06-01

    This study aims at evaluating the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCP). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully-coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding -0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environment. We report major potential consequences of pH reductions for deep-sea biodiversity hotspots, such as seamounts and canyons. By 2100 and under the high CO2 scenario RCP8.5 pH reductions exceeding -0.2, (respectively -0.3) units are projected in close to 23% (~ 15%) of North Atlantic deep-sea canyons and ~ 8% (3%) of seamounts - including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.

  3. Influence of ocean surface conditions on atmospheric vertical thermodynamic structure and deep convection

    NASA Technical Reports Server (NTRS)

    Fu, Rong; Del Genio, Anthony D.; Rossow, William B.

    1994-01-01

    The authors analyze the influence of Sea Surface Temperature (SST) and surface wind divergence on atmospheric thermodynamic structure and the resulting effects on the occurrence of deep convection using National Meteorological Center radiosonde data and International Satellite Cloud Climatology Program data for July 1983-July 1985. The onset of deep convection requires not only the existence of positive convective available potential energy (CAPE), but also an unstable planetary boundary layer (PBL). A stable PBL is observed to suppress deep convection even when CAPE is positive. Variations of SST have a major effect on CAPE, but surface wind divergence can also affect deep convection by changing the lapse rate in the lower troposphere and humidity in the PBL. Specifically, when SST is greater than or equal to 28 C, CAPE is always positive, and surface wind divergence does not qualitatively change the buoyancy profile above the PBL. Strong surface wind divergence, however, stabilizes the PBL so as to suppress the initiation of deep convection. In warm SST regions, CAPE is greater than 0 regardless of assumptions about condensate loading, although the pseudoadiabatic limit is more consistent with the observed deep convection than the reversible moist-adiabatic limit under these circumstances. When SST is less than 27 C, CAPE is usually negative and inhibits convection, but strong surface wind convergence can destabilize the inversion layer and moisten the PBL enough to make the atmosphere neutrally stable in the mean. As a result, deep convection is generally enhanced either when SST is greater than or equal to 28 C in the absence of strong surface wind divergence or when strong surface wind convergence occurs even if SST is less than 27 C. The anomalous suppression of deep convection in the warm area of the equatorial west Pacific lying between the intertropical convergence zone (ITCZ) and south Pacific convergence zone (SPCZ) is probably caused by dryness in the PBL and an inversion in that area. The seasonal cycles of deep convection and surface wind divergence are in phase with the maximum solar radiation and lead SST for one to three months in the central Pacific. The change of PBL relative humidity plays a critical role in the changeover to convective instability in this case. The seasonal change of deep convection and associated clouds seems not to have important effects on the seasonal change of local SST in the central Pacific.

  4. 50 CFR 679.28 - Equipment and operational requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... sampling table. The observer must be able to stand upright and have a work area at least 0.9 m deep in the... least 0.6 m deep, 1.2 m wide and 0.9 m high and no more than 1.1 m high. The entire surface area of the... Station available on the NMFS Alaska Region Web site at http://www.fakr.noaa.gov. Inspections will be...

  5. 78 FR 35018 - GB Energy Park, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... new 3,000-foot-long, 1,000-foot- wide, 50- to 75-foot-deep upper reservoir, with a surface area of 50...-foot-long, 1,000-foot- wide, 50- to 75-foot-deep lower reservoir with a surface area of 80 acres and a... instructions on the Commission's Web site http://www.ferc.gov/docs-filing/efiling.asp . Commenters can submit...

  6. Effects of remediation amendments on vadose zone microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Hannah M.; Tilton, Fred A.

    2012-08-10

    Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had nomore » affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.« less

  7. SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY REVEALS INTERNAL LIMITING MEMBRANE PEELING ALTERS DEEP RETINAL VASCULATURE.

    PubMed

    Michalewska, Zofia; Nawrocki, Jerzy

    2018-04-30

    To describe morphology of retinal and choroidal vessels in swept-source optical coherence tomography angiography before and after vitrectomy with the temporal inverted internal limiting membrane (ILM) flap technique for full-thickness macular holes. Prospective, observational study of 36 eyes of 33 patients with full-thickness macular holes swept-source optical coherence tomography angiography was performed in patients before and 1 month after vitrectomy. Vitrectomy with the temporal inverted ILM flap technique was performed. In this method, ILM is peeled only at one side of the fovea. An ILM flap is created to cover the macular hole. Comparison of retina vasculature in the areas of ILM peeling vs. no ILM peeling at 1 and 3 months after successful vitrectomy was performed. The study demonstrated lower density of vessels in the deep retinal plexus in the area where ILM was peeled as compared to the rest of the fovea. Visual acuity and central retinal thickness 1 month after surgery correlates with fovea avascular zone diameter in deep retinal layers at the same time point (P = 0.001). This study confirmed that ILM peeling might alter blood flow in deep retinal vessels below the peeling area in the early postoperative period. The area of the fovea avascular zone corresponds to functional results at the same time point.

  8. Detection of tuberculosis patterns in digital photographs of chest X-ray images using Deep Learning: feasibility study.

    PubMed

    Becker, A S; Blüthgen, C; Phi van, V D; Sekaggya-Wiltshire, C; Castelnuovo, B; Kambugu, A; Fehr, J; Frauenfelder, T

    2018-03-01

    To evaluate the feasibility of Deep Learning-based detection and classification of pathological patterns in a set of digital photographs of chest X-ray (CXR) images of tuberculosis (TB) patients. In this prospective, observational study, patients with previously diagnosed TB were enrolled. Photographs of their CXRs were taken using a consumer-grade digital still camera. The images were stratified by pathological patterns into classes: cavity, consolidation, effusion, interstitial changes, miliary pattern or normal examination. Image analysis was performed with commercially available Deep Learning software in two steps. Pathological areas were first localised; detected areas were then classified. Detection was assessed using receiver operating characteristics (ROC) analysis, and classification using a confusion matrix. The study cohort was 138 patients with human immunodeficiency virus (HIV) and TB co-infection (median age 34 years, IQR 28-40); 54 patients were female. Localisation of pathological areas was excellent (area under the ROC curve 0.82). The software could perfectly distinguish pleural effusions from intraparenchymal changes. The most frequent misclassifications were consolidations as cavitations, and miliary patterns as interstitial patterns (and vice versa). Deep Learning analysis of CXR photographs is a promising tool. Further efforts are needed to build larger, high-quality data sets to achieve better diagnostic performance.

  9. Scratching the surface: the processing of pain from deep tissues.

    PubMed

    Sikandar, Shafaq; Aasvang, Eske Kvanner; Dickenson, Anthony H

    2016-04-01

    Although most pain research focuses on skin, muscles, joints and viscerae are major sources of pain. We discuss the mechanisms of deep pains arising from somatic and visceral structures and how this can lead to widespread manifestations and chronification. We include how both altered peripheral and central sensory neurotransmission lead to deep pain states and comment on key areas such as top-down modulation where little is known. It is vital that the clinical characterization of deep pain in patients is improved to allow for back translation to preclinical models so that the missing links can be ascertained. The contribution of deeper somatic and visceral tissues to various chronic pain syndromes is common but there is much we need to know.

  10. Sediment Transportation Induced by Deep-Seated Landslides in a Debris Flow Basin in Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Meei Ling; Chen, Te Wei; Chen, Yong Sheng; Sin Jhuang, Han

    2016-04-01

    Typhoon Morakot brought huge amount of rainfall to the southern Taiwan in 2009 and caused severe landslides and debris flow hazard. After Typhoon Morakot, it was found that the volume of sediment transported by the debris flow and its effects on the affected area were much more significant compared to previous case history, which may due to the huge amount of rainfall causing significant deep-seated landslides in the basin. In this study, the effects and tendency of the sediment transportation in a river basin following deep-seated landslides caused by typhoon Morakot were evaluated. We used LiDAR, DEM, and aerial photo to identify characteristics of deep-seated landslides in a debris flow river basin, KSDF079 in Liuoguey District, Kaohsiung City, Taiwan. Eight deep-seated landslides were identified in the basin. To estimate the potential landslide volume associated with the deep-seated landslides, the stability analysis was conducted to locate the critical sliding surface, and the potential landside volume was estimated based on the estimation equation proposed by the International Geotechnical Societies' UNESCO Working Party on World Landslide Inventory (WP/WLI, 1990). The total potential landslide volume of the eight deep-seated landslides in KSDF079 basin was about 28,906,856 m3. Topographic analysis was performed by using DEM before and LiDAR derived DEM after typhoon Morakot to calculate the landslide volume transported. The result of erosion volume and deposition volume lead to a run out volume of 5,832,433 m3. The results appeared to consist well with the field condition and aerial photo. Comparing the potential landslide volume and run out volume of eight deep-seated landslides, it was found that the remaining potential landslide volume was about 80%. Field investigation and topographic analysis of the KSDF079 debris flow revealed that a significant amount of sediment deposition remained in the river channel ranging from the middle to the downstream section of the channel, and the channel has been widen. Such large proportion of landslide volume remained in the basin on deep-seated landslide scars and debris flow river channel would likely to cause further debris transportation in the future events. The stability analysis used in this study provided a feasible method and satisfactory results for estimating sediment volume transportation associated with the deep-seated landslides in the study area. Combination of the stability analysis results and the topographic analysis provided estimation of sediment transportation caused by the deep-seated landslides, and trend variation of further sediment transport of the basin, which could provide vital information for hazard mitigation. Keyword: deep-seated landslide, sediment transport, DEM, LiDAR, stability analysis

  11. Method for gasification of deep, thin coal seams. [DOE patent

    DOEpatents

    Gregg, D.W.

    1980-08-29

    A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face is given. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

  12. Method for gasification of deep, thin coal seams

    DOEpatents

    Gregg, David W.

    1982-01-01

    A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

  13. Monitoring of Deep Foundation Pit Support and Construction Process in Soft Soil Area of Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Weiyi, Xie; Pengcheng

    2018-03-01

    The deep foundation pit supporting technology in the soft soil area of the Pearl River Delta is more complicated, and many factors influence and restrict it. In this project as an example, according to the geological conditions and the surrounding circumstances, the main foundation using bored piles and pre-stressed anchor cable supporting structure + five axis cement mixing pile curtain supporting form; partial use of double row piles supporting structure + five axis cement mixing pile curtain support type. Through the monitoring results of construction show that the foundation pit, the indicators of environmental changes are in the design range, the supporting scheme of deep foundation pit technology is feasible and reliable.

  14. Computer aided lung cancer diagnosis with deep learning algorithms

    NASA Astrophysics Data System (ADS)

    Sun, Wenqing; Zheng, Bin; Qian, Wei

    2016-03-01

    Deep learning is considered as a popular and powerful method in pattern recognition and classification. However, there are not many deep structured applications used in medical imaging diagnosis area, because large dataset is not always available for medical images. In this study we tested the feasibility of using deep learning algorithms for lung cancer diagnosis with the cases from Lung Image Database Consortium (LIDC) database. The nodules on each computed tomography (CT) slice were segmented according to marks provided by the radiologists. After down sampling and rotating we acquired 174412 samples with 52 by 52 pixel each and the corresponding truth files. Three deep learning algorithms were designed and implemented, including Convolutional Neural Network (CNN), Deep Belief Networks (DBNs), Stacked Denoising Autoencoder (SDAE). To compare the performance of deep learning algorithms with traditional computer aided diagnosis (CADx) system, we designed a scheme with 28 image features and support vector machine. The accuracies of CNN, DBNs, and SDAE are 0.7976, 0.8119, and 0.7929, respectively; the accuracy of our designed traditional CADx is 0.7940, which is slightly lower than CNN and DBNs. We also noticed that the mislabeled nodules using DBNs are 4% larger than using traditional CADx, this might be resulting from down sampling process lost some size information of the nodules.

  15. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint

    PubMed Central

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan RT

    2016-01-01

    Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function. PMID:29805194

  16. Infrasound associated with the deep M 7.3 northeastern China earthquake of June 28, 2002

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Kim, Geunyoung; Le Pichon, Alexis

    2013-02-01

    On 28 June, 2002, a deep-focus (566 km) earthquake with a moment magnitude of 7.3 occurred in the China-Russia-North Korea border region. Despite its deep focus, the earthquake produced an infrasound signal that was observed by the remote infrasound array (CHNAR), 682 km from the epicenter, in South Korea. Coherent infrasound signals were detected sequentially at the receiver, with different arrival times and azimuths indicating that the signals were generated both near the epicenter and elsewhere. On the basis of the azimuth, arrival time measurements, and atmospheric ray simulation results, the source area of the infrasonic signals that arrived earlier were located along the eastern coastal areas of North Korea and Russia, whereas later signals were sourced throughout Japan. The geographically-constrained, and discrete, distribution of the sources identified is explained by infrasound propagation effects caused by a westward zonal wind that was active when the event occurred. The amplitude of the deep quake's signal was equivalent to that of a shallow earthquake with a magnitude of approximately 5. This study expands the breadth of seismically-associated infrasound to include deep earthquakes, and also supports the possibility that infrasound measurements could help determine the depth of earthquakes.

  17. Regional ground-water discharge to large streams in the upper coastal plain of South Carolina and parts of North Carolina and Georgia

    USGS Publications Warehouse

    Aucott, W.R.; Meadows, R.S.; Patterson, G.G.

    1987-01-01

    Base flow was computed to estimate discharge from regional aquifers for six large streams in the upper Coastal Plain of South Carolina and parts of North Carolina and Georgia. Aquifers that sustain the base flow of both large and small streams are stratified into shallow and deep flow systems. Base-flow during dry conditions on main stems of large streams was assumed to be the discharge from the deep groundwater flow system. Six streams were analyzed: the Savannah, South and North Fork Edisto, Lynches, Pee Dee, and the Luber Rivers. Stream reaches in the Upper Coastal Plain were studied because of the relatively large aquifer discharge in these areas in comparison to the lower Coastal Plain. Estimates of discharge from the deep groundwater flow system to the six large streams averaged 1.8 cu ft/sec/mi of stream and 0.11 cu ft/sec/sq mi of surface drainage area. The estimates were made by subtracting all tributary inflows from the discharge gain between two gaging stations on a large stream during an extreme low-flow period. These estimates pertain only to flow in the deep groundwater flow system. Shallow flow systems and total base flow are > flow in the deep system. (USGS)

  18. Seafloor heterogeneity influences the biodiversity–ecosystem functioning relationships in the deep sea

    PubMed Central

    Zeppilli, Daniela; Pusceddu, Antonio; Trincardi, Fabio; Danovaro, Roberto

    2016-01-01

    Theoretical ecology predicts that heterogeneous habitats allow more species to co-exist in a given area. In the deep sea, biodiversity is positively linked with ecosystem functioning, suggesting that deep-seabed heterogeneity could influence ecosystem functions and the relationships between biodiversity and ecosystem functioning (BEF). To shed light on the BEF relationships in a heterogeneous deep seabed, we investigated variations in meiofaunal biodiversity, biomass and ecosystem efficiency within and among different seabed morphologies (e.g., furrows, erosional troughs, sediment waves and other depositional structures, landslide scars and deposits) in a narrow geo-morphologically articulated sector of the Adriatic Sea. We show that distinct seafloor morphologies are characterized by highly diverse nematode assemblages, whereas areas sharing similar seabed morphologies host similar nematode assemblages. BEF relationships are consistently positive across the entire region, but different seabed morphologies are characterised by different slope coefficients of the relationship. Our results suggest that seafloor heterogeneity, allowing diversified assemblages across different habitats, increases diversity and influence ecosystem processes at the regional scale, and BEF relationships at smaller spatial scales. We conclude that high-resolution seabed mapping and a detailed analysis of the species distribution at the habitat scale are crucial for improving management of goods and services delivered by deep-sea ecosystems. PMID:27211908

  19. A hybrid deep learning approach to predict malignancy of breast lesions using mammograms

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Heidari, Morteza; Mirniaharikandehei, Seyedehnafiseh; Gong, Jing; Qian, Wei; Qiu, Yuchen; Zheng, Bin

    2018-03-01

    Applying deep learning technology to medical imaging informatics field has been recently attracting extensive research interest. However, the limited medical image dataset size often reduces performance and robustness of the deep learning based computer-aided detection and/or diagnosis (CAD) schemes. In attempt to address this technical challenge, this study aims to develop and evaluate a new hybrid deep learning based CAD approach to predict likelihood of a breast lesion detected on mammogram being malignant. In this approach, a deep Convolutional Neural Network (CNN) was firstly pre-trained using the ImageNet dataset and serve as a feature extractor. A pseudo-color Region of Interest (ROI) method was used to generate ROIs with RGB channels from the mammographic images as the input to the pre-trained deep network. The transferred CNN features from different layers of the CNN were then obtained and a linear support vector machine (SVM) was trained for the prediction task. By applying to a dataset involving 301 suspicious breast lesions and using a leave-one-case-out validation method, the areas under the ROC curves (AUC) = 0.762 and 0.792 using the traditional CAD scheme and the proposed deep learning based CAD scheme, respectively. An ensemble classifier that combines the classification scores generated by the two schemes yielded an improved AUC value of 0.813. The study results demonstrated feasibility and potentially improved performance of applying a new hybrid deep learning approach to develop CAD scheme using a relatively small dataset of medical images.

  20. The effects of deep network topology on mortality prediction.

    PubMed

    Hao Du; Ghassemi, Mohammad M; Mengling Feng

    2016-08-01

    Deep learning has achieved remarkable results in the areas of computer vision, speech recognition, natural language processing and most recently, even playing Go. The application of deep-learning to problems in healthcare, however, has gained attention only in recent years, and it's ultimate place at the bedside remains a topic of skeptical discussion. While there is a growing academic interest in the application of Machine Learning (ML) techniques to clinical problems, many in the clinical community see little incentive to upgrade from simpler methods, such as logistic regression, to deep learning. Logistic regression, after all, provides odds ratios, p-values and confidence intervals that allow for ease of interpretation, while deep nets are often seen as `black-boxes' which are difficult to understand and, as of yet, have not demonstrated performance levels far exceeding their simpler counterparts. If deep learning is to ever take a place at the bedside, it will require studies which (1) showcase the performance of deep-learning methods relative to other approaches and (2) interpret the relationships between network structure, model performance, features and outcomes. We have chosen these two requirements as the goal of this study. In our investigation, we utilized a publicly available EMR dataset of over 32,000 intensive care unit patients and trained a Deep Belief Network (DBN) to predict patient mortality at discharge. Utilizing an evolutionary algorithm, we demonstrate automated topology selection for DBNs. We demonstrate that with the correct topology selection, DBNs can achieve better prediction performance compared to several bench-marking methods.

  1. Haiyang Qiangguo: China as a Maritime Power

    DTIC Science & Technology

    2016-03-15

    areas, including provincial development projects in coastal areas, much of China’s offshore oil and gas industry, and a large range of other maritime...it clear that resource extraction extends to deep ocean mining, deep sea fishing, and oil and gas extraction beyond Chinese-claimed waters.40...Promote the Reaching of New Height in China’s Polar Scientific Survey Undertaking.”; Wang Yilin. “CNOOC: How the Maritime Oil Industry Can Assist in

  2. Origin and distribution of the organic matter in the distal lobe of the Congo deep-sea fan - A Rock-Eval survey

    NASA Astrophysics Data System (ADS)

    Baudin, François; Stetten, Elsa; Schnyder, Johann; Charlier, Karine; Martinez, Philippe; Dennielou, Bernard; Droz, Laurence

    2017-08-01

    The Congo River, the second largest river in the world, is a major source of organic matter for the deep Atlantic Ocean because of the connection of its estuary to the deep offshore area by a submarine canyon which feeds a vast deep-sea fan. The lobe zone of this deep-sea fan is the final receptacle of the sedimentary inputs presently channelled by the canyon and covers an area of 2500 km². The quantity and the source of organic matter preserved in recent turbiditic sediments from the distal lobe of the Congo deep-sea fan were assessed using Rock-Eval pyrolysis analyses. Six sites, located at approximately 5000 m water-depth, were investigated. The mud-rich sediments of the distal lobe contain high amounts of organic matter ( 3.5 to 4% Corg), the origin of which is a mixture of terrestrial higher-plant debris, soil organic matter and deeply oxidized phytoplanktonic material. Although the respective contribution of terrestrial and marine sources of organic matter cannot be precisely quantified using Rock-Eval analyses, the terrestrial fraction is dominant according to similar hydrogen and oxygen indices of both suspended and bedload sediments from the Congo River and that deposited in the lobe complex. The Rock-Eval signature supports the 70% to 80% of the terrestrial fraction previously estimated using C/N and δ13Corg data. In the background sediment, the organic matter distribution is homogeneous at different scales, from a single turbiditic event to the entire lobe, and changes in accumulation rates only have a limited effect on the quantity and quality of the preserved organic matter. Peculiar areas with chemosynthetic bivalves and/or bacterial mats, explored using ROV Victor 6000, show a Rock-Eval signature similar to background sediment. This high organic carbon content associated to high sedimentation rates (> 2 to 20 mm.yr-1) in the Congo distal lobe complex implies a high burial rate for organic carbon. Consequently, the Congo deep-sea fan represents an enormous sink of terrestrial organic matter when compared to other turbiditic systems over the world.

  3. Deep Space Wide Area Search Strategies

    NASA Astrophysics Data System (ADS)

    Capps, M.; McCafferty, J.

    There is an urgent need to expand the space situational awareness (SSA) mission beyond catalog maintenance to providing near real-time indications and warnings of emerging events. While building and maintaining a catalog of space objects is essential to SSA, this does not address the threat of uncatalogued and uncorrelated deep space objects. The Air Force therefore has an interest in transformative technologies to scan the geostationary (GEO) belt for uncorrelated space objects. Traditional ground based electro-optical sensors are challenged in simultaneously detecting dim objects while covering large areas of the sky using current CCD technology. Time delayed integration (TDI) scanning has the potential to enable significantly larger coverage rates while maintaining sensitivity for detecting near-GEO objects. This paper investigates strategies of employing TDI sensing technology from a ground based electro-optical telescope, toward providing tactical indications and warnings of deep space threats. We present results of a notional wide area search TDI sensor that scans the GEO belt from three locations: Maui, New Mexico, and Diego Garcia. Deep space objects in the NASA 2030 debris catalog are propagated over multiple nights as an indicative data set to emulate notional uncatalogued near-GEO orbits which may be encountered by the TDI sensor. Multiple scan patterns are designed and simulated, to compare and contrast performance based on 1) efficiency in coverage, 2) number of objects detected, and 3) rate at which detections occur, to enable follow-up observations by other space surveillance network (SSN) sensors. A step-stare approach is also modeled using a dedicated, co-located sensor notionally similar to the Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) tower. Equivalent sensitivities are assumed. This analysis quantifies the relative benefit of TDI scanning for the wide area search mission.

  4. Assessment of potential catastrophic landslides in Taiwan by airborne LiDAR-derived DEM

    NASA Astrophysics Data System (ADS)

    Hou, Chin-Shyong; Hsieh, Yu-Chung; Hu, Jyr-Ching; Chiu, Cheng-Lung; Chen, Hung-Jen; Fei, Li-Yuan

    2013-04-01

    The heavy rainfall of Typhoon Morakot caused severe damage to infrastructures, property and human lives in southern Taiwan in 2009. The most atrocious incident was the Hsiaolin landslide, which buried more than 400 victims. After this catastrophic event, the recognition of localities of deep-seated landslides becomes a critical issue in landslide hazard mitigation induced from extreme climate events. Consequently the airborne LiDAR survey was carried out in first phase from 2010 to 2012 by Central Geological Survey, MOEA in Taiwan in order to assess the potential catastrophic deep-seated landslides in the steep and rocky terrain in south-central Taiwan. The second phase of LiDAR survey is ongoing from 2013 to 2015 for the recognition and the assessment of possible impact area induced by deep-seated landslide in the mountainous area of whole Taiwan. Transitionally, the recognition of potential deep-seated landslide sites is adopted in term of landslide inventories from space-borne images, aerial photographs and field investigation. However, it is difficult to produce robust landslide inventories due to the poor spatial resolution of ground elevation and highly dense vegetation in mountainous area in Taiwan. In this study, the 1 m LiDAR-derived DEM is used to extract key geomorphological features such as crown cracks, minor scarps, toe of surface rupture at meter to sub-meter scale hidden under forests with high degree of accuracy. Preliminary result shows that about 400 potential landslide sites have been recognized to improve the quality of landslide inventories. In addition, detailed contour maps and visualized images are reproduced to outline the shape of potential deep-seated landslides. Further geomorphometric analyses based on hillshade, aspect, slope, eigenvalue ratio (ER) and openness will be integrated to easily create landslide inventories to mitigate landslide disasters in Taiwan mountainous area.

  5. Classification of Clouds and Deep Convection from GEOS-5 Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Putman, William; Suarez, Max

    2010-01-01

    With the increased resolution of global atmospheric models and the push toward global cloud resolving models, the resemblance of model output to satellite observations has become strikingly similar. As we progress with our adaptation of the Goddard Earth Observing System Model, Version 5 (GEOS-5) as a high resolution cloud system resolving model, evaluation of cloud properties and deep convection require in-depth analysis beyond a visual comparison. Outgoing long-wave radiation (OLR) provides a sufficient comparison with infrared (IR) satellite imagery to isolate areas of deep convection. We have adopted a binning technique to generate a series of histograms for OLR which classify the presence and fraction of clear sky versus deep convection in the tropics that can be compared with a similar analyses of IR imagery from composite Geostationary Operational Environmental Satellite (GOES) observations. We will present initial results that have been used to evaluate the amount of deep convective parameterization required within the model as we move toward cloud system resolving resolutions of 10- to 1-km globally.

  6. Quick acquisition and recognition method for the beacon in deep space optical communications.

    PubMed

    Wang, Qiang; Liu, Yuefei; Ma, Jing; Tan, Liying; Yu, Siyuan; Li, Changjiang

    2016-12-01

    In deep space optical communications, it is very difficult to acquire the beacon given the long communication distance. Acquisition efficiency is essential for establishing and holding the optical communication link. Here we proposed a quick acquisition and recognition method for the beacon in deep optical communications based on the characteristics of the deep optical link. To identify the beacon from the background light efficiently, we utilized the maximum similarity between the collecting image and the reference image for accurate recognition and acquisition of the beacon in the area of uncertainty. First, the collecting image and the reference image were processed by Fourier-Mellin. Second, image sampling and image matching were applied for the accurate positioning of the beacon. Finally, the field programmable gate array (FPGA)-based system was used to verify and realize this method. The experimental results showed that the acquisition time for the beacon was as fast as 8.1s. Future application of this method in the system design of deep optical communication will be beneficial.

  7. Sublayer-Specific Coding Dynamics during Spatial Navigation and Learning in Hippocampal Area CA1.

    PubMed

    Danielson, Nathan B; Zaremba, Jeffrey D; Kaifosh, Patrick; Bowler, John; Ladow, Max; Losonczy, Attila

    2016-08-03

    The mammalian hippocampus is critical for spatial information processing and episodic memory. Its primary output cells, CA1 pyramidal cells (CA1 PCs), vary in genetics, morphology, connectivity, and electrophysiological properties. It is therefore possible that distinct CA1 PC subpopulations encode different features of the environment and differentially contribute to learning. To test this hypothesis, we optically monitored activity in deep and superficial CA1 PCs segregated along the radial axis of the mouse hippocampus and assessed the relationship between sublayer dynamics and learning. Superficial place maps were more stable than deep during head-fixed exploration. Deep maps, however, were preferentially stabilized during goal-oriented learning, and representation of the reward zone by deep cells predicted task performance. These findings demonstrate that superficial CA1 PCs provide a more stable map of an environment, while their counterparts in the deep sublayer provide a more flexible representation that is shaped by learning about salient features in the environment. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Trophic segregation of a fish assemblage along lateral depth gradients in a subtropical coastal lagoon revealed by stable isotope analyses.

    PubMed

    Mont'Alverne, R; Pereyra, P E R; Garcia, A M

    2016-07-01

    Stable isotopes were used to evaluate the hypothesis that fish assemblages occurring in shallow and deep areas of a large coastal lagoon are structured in partially segregated trophic modules with consumers showing contrasting reliance on benthic or pelagic food sources. The results revealed that fishes in deep areas were mainly dependent on particulate organic matter in the sediment (SOM), whereas emergent macrophytes were as important as SOM to fish consumers in shallow areas. Conceptual trophic diagrams depicting relationships among basal food sources and consumers in different regions of the lagoon highlighted the greater use of multiple basal food sources by more feeding mode functional guilds in shallow water compared with the use of predominantly benthic resources (SOM) in deep areas. The findings appear to corroborate the initial hypothesis and offer complementary perspectives in understanding the role of spatial ecology in structuring coastal ecosystem function and productivity. © 2016 The Fisheries Society of the British Isles.

  9. Endolithic Boring Enhance the Deep-sea Carbonate Lithification on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Peng, X.; Xu, H.

    2017-12-01

    Deep-sea carbonates represent an important type of sedimentary rock due to their effect on the composition of upper oceanic crust and their contribution to deep-sea geochemical cycles. However, the lithification of deep-sea carbonates at the seafloor has remained a mystery for many years. A large lithified carbonate area, characterized by thriving benthic faunas and tremendous amount of endolithic borings, was discovered in 2008, blanketed on the seafloor of ultraslow spreading Southwest Indian Ridge (SWIR). Macrofaunal inhabitants including echinoids, polychaetes, gastropods as well as crustaceans, are abundant in the sample. The most readily apparent feature of the sample is the localized enhancement of density around the borings. The boring features of these carbonate rocks and factors that may enhance deep-sea carbonate lithification are reported. The δ13CPDB values of 46 bulk samples are -0.37 to 1.86‰, while these samples have a relatively narrow δ18OPDB range of 1.35 to 3.79‰. The bulk δ13CPDB values of chalk and gray excrements are positively correlated with bulk δ18OPDB values (r = 0.91) (Fig. 8), which reflects that endolithic boring is possibly a critical factor influence the lithification. We suggest that active boring may trigger the dissolution of the original calcite and thus accelerate deep-sea carbonate lithification on mid-ocean ridges. Our study reports an unfamiliar phenomenon of non-burial carbonate lithification and interested by the observation that it is often associated with boring feature. These carbonate rocks may provide a novel mechanism for deep-sea carbonate lithification at the deep-sea seafloor and also illuminate the geological and biological importance of deep-sea carbonate rocks on mid-ocean ridges.

  10. The unique deep sea—land connection: interactive 3D visualization and molecular phylogeny of Bathyhedyle boucheti n. sp. (Bathyhedylidae n. fam.)—the first panpulmonate slug from bathyal zones

    PubMed Central

    Jörger, Katharina M.; Lodde-Bensch, Eva; Schrödl, Michael

    2016-01-01

    The deep sea comprises vast unexplored areas and is expected to conceal significant undescribed invertebrate species diversity. Deep waters may act as a refuge for many relictual groups, including elusive and enigmatic higher taxa, but the evolutionary pathways by which colonization of the deep sea has occurred have scarcely been investigated. Sister group relationships between shallow water and deep sea taxa have been documented in several invertebrate groups, but are unknown between amphibious/terrestrial and deep-sea species. Here we describe in full and interactive 3D morphoanatomical detail the new sea slug species Bathyhedyle boucheti n. sp., dredged from the continental slope off Mozambique. Molecular and morphological analyses reveal that it represents a novel heterobranch gastropod lineage which we establish as the new family Bathyhedylidae. The family is robustly supported as sister to the recently discovered panpulmonate acochlidian family Aitengidae, which comprises amphibious species living along the sea shore as well as fully terrestrial species. This is the first marine-epibenthic representative among hedylopsacean Acochlidiida, the first record of an acochlidian from deep waters and the first documented panpulmonate deep-sea slug. Considering a marine mesopsammic ancestor, the external morphological features of Bathyhedyle n. gen. may be interpreted as independent adaptations to a benthic life style in the deep sea, including the large body size, broad foot and propodial tentacles. Alternatively, the common ancestor of Bathyhedylidae and Aitengidae may have been a macroscopic amphibious or even terrestrial species. We hypothesize that oophagy in the common ancestor of Aitengidae and Bathyhedylidae might explain the impressive ecological and evolutionary flexibility in habitat choice in the Acochlidiida. PMID:27957391

  11. Hot, deep origin of petroleum: deep basin evidence and application

    USGS Publications Warehouse

    Price, Leigh C.

    1978-01-01

    Use of the model of a hot deep origin of oil places rigid constraints on the migration and entrapment of crude oil. Specifically, oil originating from depth migrates vertically up faults and is emplaced in traps at shallower depths. Review of petroleum-producing basins worldwide shows oil occurrence in these basins conforms to the restraints of and therefore supports the hypothesis. Most of the world's oil is found in the very deepest sedimentary basins, and production over or adjacent to the deep basin is cut by or directly updip from faults dipping into the basin deep. Generally the greater the fault throw the greater the reserves. Fault-block highs next to deep sedimentary troughs are the best target areas by the present concept. Traps along major basin-forming faults are quite prospective. The structural style of a basin governs the distribution, types, and amounts of hydrocarbons expected and hence the exploration strategy. Production in delta depocenters (Niger) is in structures cut by or updip from major growth faults, and structures not associated with such faults are barren. Production in block fault basins is on horsts next to deep sedimentary troughs (Sirte, North Sea). In basins whose sediment thickness, structure and geologic history are known to a moderate degree, the main oil occurrences can be specifically predicted by analysis of fault systems and possible hydrocarbon migration routes. Use of the concept permits the identification of significant targets which have either been downgraded or ignored in the past, such as production in or just updip from thrust belts, stratigraphic traps over the deep basin associated with major faulting, production over the basin deep, and regional stratigraphic trapping updip from established production along major fault zones.

  12. The unique deep sea-land connection: interactive 3D visualization and molecular phylogeny of Bathyhedyle boucheti n. sp. (Bathyhedylidae n. fam.)-the first panpulmonate slug from bathyal zones.

    PubMed

    Neusser, Timea P; Jörger, Katharina M; Lodde-Bensch, Eva; Strong, Ellen E; Schrödl, Michael

    2016-01-01

    The deep sea comprises vast unexplored areas and is expected to conceal significant undescribed invertebrate species diversity. Deep waters may act as a refuge for many relictual groups, including elusive and enigmatic higher taxa, but the evolutionary pathways by which colonization of the deep sea has occurred have scarcely been investigated. Sister group relationships between shallow water and deep sea taxa have been documented in several invertebrate groups, but are unknown between amphibious/terrestrial and deep-sea species. Here we describe in full and interactive 3D morphoanatomical detail the new sea slug species Bathyhedyle boucheti n. sp., dredged from the continental slope off Mozambique. Molecular and morphological analyses reveal that it represents a novel heterobranch gastropod lineage which we establish as the new family Bathyhedylidae. The family is robustly supported as sister to the recently discovered panpulmonate acochlidian family Aitengidae, which comprises amphibious species living along the sea shore as well as fully terrestrial species. This is the first marine-epibenthic representative among hedylopsacean Acochlidiida, the first record of an acochlidian from deep waters and the first documented panpulmonate deep-sea slug. Considering a marine mesopsammic ancestor, the external morphological features of Bathyhedyle n. gen. may be interpreted as independent adaptations to a benthic life style in the deep sea, including the large body size, broad foot and propodial tentacles. Alternatively, the common ancestor of Bathyhedylidae and Aitengidae may have been a macroscopic amphibious or even terrestrial species. We hypothesize that oophagy in the common ancestor of Aitengidae and Bathyhedylidae might explain the impressive ecological and evolutionary flexibility in habitat choice in the Acochlidiida.

  13. Incorporating ecosystem services into environmental management of deep-seabed mining

    NASA Astrophysics Data System (ADS)

    Le, Jennifer T.; Levin, Lisa A.; Carson, Richard T.

    2017-03-01

    Accelerated exploration of minerals in the deep sea over the past decade has raised the likelihood that commercial mining of the deep seabed will commence in the near future. Environmental concerns create a growing urgency for development of environmental regulations under commercial exploitation. Here, we consider an ecosystem services approach to the environmental policy and management of deep-sea mineral resources. Ecosystem services link the environment and human well-being, and can help improve sustainability and stewardship of the deep sea by providing a quantitative basis for decision-making. This paper briefly reviews ecosystem services provided by habitats targeted for deep-seabed mining (hydrothermal vents, seamounts, nodule provinces, and phosphate-rich margins), and presents practical steps to incorporate ecosystem services into deep-seabed mining regulation. The linkages and translation between ecosystem structure, ecological function (including supporting services), and ecosystem services are highlighted as generating human benefits. We consider criteria for identifying which ecosystem services are vulnerable to potential mining impacts, the role of ecological functions in providing ecosystem services, development of ecosystem service indicators, valuation of ecosystem services, and implementation of ecosystem services concepts. The first three steps put ecosystem services into a deep-seabed mining context; the last two steps help to incorporate ecosystem services into a management and decision-making framework. Phases of environmental planning discussed in the context of ecosystem services include conducting strategic environmental assessments, collecting baseline data, monitoring, establishing marine protected areas, assessing cumulative impacts, identifying thresholds and triggers, and creating an environmental damage compensation regime. We also identify knowledge gaps that need to be addressed in order to operationalize ecosystem services concepts in deep-seabed mining regulation and propose potential tools to fill them.

  14. Three-Dimensional Analysis of Deep Space Network Antenna Coverage

    NASA Technical Reports Server (NTRS)

    Kegege, Obadiah; Fuentes, Michael; Meyer, Nicholas; Sil, Amy

    2012-01-01

    There is a need to understand NASA s Deep Space Network (DSN) coverage gaps and any limitations to provide redundant communication coverage for future deep space missions, especially for manned missions to Moon and Mars. The DSN antennas are required to provide continuous communication coverage for deep space flights, interplanetary missions, and deep space scientific observations. The DSN consists of ground antennas located at three sites: Goldstone in USA, Canberra in Australia, and Madrid in Spain. These locations are not separated by the exactly 120 degrees and some DSN antennas are located in the bowl-shaped mountainous terrain to shield against radiofrequency interference resulting in a coverage gap in the southern hemisphere for the current DSN architecture. To analyze the extent of this gap and other coverage limitations, simulations of the DSN architecture were performed. In addition to the physical properties of the DSN assets, the simulation incorporated communication forward link calculations and azimuth/elevation masks that constrain the effects of terrain for each DSN antenna. Analysis of the simulation data was performed to create coverage profiles with the receiver settings at a deep space altitudes ranging from 2 million to 10 million km and a spherical grid resolution of 0.25 degrees with respect to longitude and latitude. With the results of these simulations, two- and three-dimensional representations of the area without communication coverage and area with coverage were developed, showing the size and shape of the communication coverage gap projected in space. Also, the significance of this communication coverage gap is analyzed from the simulation data.

  15. Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence.

    PubMed

    Erban, Laura E; Gorelick, Steven M; Zebker, Howard A; Fendorf, Scott

    2013-08-20

    Deep aquifers in South and Southeast Asia are increasingly exploited as presumed sources of pathogen- and arsenic-free water, although little is known of the processes that may compromise their long-term viability. We analyze a large area (>1,000 km(2)) of the Mekong Delta, Vietnam, in which arsenic is found pervasively in deep, Pliocene-Miocene-age aquifers, where nearly 900 wells at depths of 200-500 m are contaminated. There, intensive groundwater extraction is causing land subsidence of up to 3 cm/y as measured using satellite-based radar images from 2007 to 2010 and consistent with transient 3D aquifer simulations showing similar subsidence rates and total subsidence of up to 27 cm since 1988. We propose a previously unrecognized mechanism in which deep groundwater extraction is causing interbedded clays to compact and expel water containing dissolved arsenic or arsenic-mobilizing solutes (e.g., dissolved organic carbon and competing ions) to deep aquifers over decades. The implication for the broader Mekong Delta region, and potentially others like it across Asia, is that deep, untreated groundwater will not necessarily remain a safe source of drinking water.

  16. Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence

    PubMed Central

    Erban, Laura E.; Gorelick, Steven M.; Zebker, Howard A.; Fendorf, Scott

    2013-01-01

    Deep aquifers in South and Southeast Asia are increasingly exploited as presumed sources of pathogen- and arsenic-free water, although little is known of the processes that may compromise their long-term viability. We analyze a large area (>1,000 km2) of the Mekong Delta, Vietnam, in which arsenic is found pervasively in deep, Pliocene–Miocene-age aquifers, where nearly 900 wells at depths of 200–500 m are contaminated. There, intensive groundwater extraction is causing land subsidence of up to 3 cm/y as measured using satellite-based radar images from 2007 to 2010 and consistent with transient 3D aquifer simulations showing similar subsidence rates and total subsidence of up to 27 cm since 1988. We propose a previously unrecognized mechanism in which deep groundwater extraction is causing interbedded clays to compact and expel water containing dissolved arsenic or arsenic-mobilizing solutes (e.g., dissolved organic carbon and competing ions) to deep aquifers over decades. The implication for the broader Mekong Delta region, and potentially others like it across Asia, is that deep, untreated groundwater will not necessarily remain a safe source of drinking water. PMID:23918360

  17. KSC-05PD-0113

    NASA Technical Reports Server (NTRS)

    2005-01-01

    JET PROPULSION LABORATORY, CALIF. At Ball Aerospace in Boulder, Colo., the infrared (IR) spectrometer for the Deep Impact flyby spacecraft is inspected in the instrument assembly area in the Fisher Assembly building clean room. Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. The spectrometer is part of the High Resolution Instrument in the spacecraft. This imager will be aimed at the ejected matter as the crater forms, and an infrared 'fingerprint' of the material from inside of the comet's nucleus will be taken. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission. Launch of Deep Impact is scheduled for Jan. 12 from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla.

  18. Bathyal sea urchins of the Bahamas, with notes on covering behavior in deep sea echinoids (Echinodermata: Echinoidea)

    NASA Astrophysics Data System (ADS)

    Pawson, David L.; Pawson, Doris J.

    2013-08-01

    In a survey of the bathyal echinoderms of the Bahama Islands region using manned submersibles, approximately 200 species of echinoderms were encountered and documented; 33 species were echinoids, most of them widespread in the general Caribbean area. Three species were found to exhibit covering behavior, the piling of debris on the upper surface of the body. Active covering is common in at least 20 species of shallow-water echinoids, but it has been reliably documented previously only once in deep-sea habitats. Images of covered deep-sea species, and other species of related interest, are provided. Some of the reasons adduced in the past for covering in shallow-water species, such as reduction of incident light intensity, physical camouflage, ballast in turbulent water, protection from desiccation, presumably do not apply in bathyal species. The main reasons for covering in deep, dark, environments are as yet unknown. Some covering behavior in the deep sea may be related to protection of the genital pores, ocular plates, or madreporite. Covering in some deep-sea species may also be merely a tactile reflex action, as some authors have suggested for shallow-water species.

  19. Development and applications of an acoustic package for deep-sea sub-bottom profiling and detailed seafloor imaging

    NASA Astrophysics Data System (ADS)

    Nishimura, Kiyokazu; Kisimoto, Kiyoyuki; Joshima, Masato; Arai, Kohsaku

    In the deep-sea geological survey, good survey results are difficult to obtain by a conventional surface-towed acoustic survey system, because the horizontal resolution is limited due to the long distance between the sensor and the target (seafloor). In order to improve the horizontal resolution, a deep-tow system, which tows the sensor in the vicinity of seafloor, is most practical, and many such systems have been developed and used until today. It is not easy, however, to carry out a high-density survey in a small area by maneuvering the towing body altitude sufficiently close to the seafloor with rugged topography. A ROV (Remotely Operated Vehicle) can be used to solve this problem. The ROV makes a high-density 2D survey feasible because of its maneuverability, although a long-distance survey is difficult with it. Accordingly, we have developed an acoustic survey system installed on a ROV. The system named DAIPACK (Deep-sea Acoustic Imaging Package) consists of (1) a deep-sea sub-bottom profiler and (2) a deep-sea sidescan sonar. (1) Deep-sea sub-bottom profiler A light-weight and compact sub-bottom profiler for shallow water was chosen to improve and repackage for the deep sea usage. The system is composed of three units; a transducer, an electronic unit and a notebook computer for system control and data acquisition. The source frequency is 10kHz. To convert the system for the deep sea, the transducer was exchanged for the deep sea model, and the electronic unit was improved accordingly. The electronic unit and the notebook computer were installed in a spherical pressure vessel. (2) Deep-sea sidescan sonar We remodeled a compact shallow sea sidescan sonar(water depth limitation is 30m ) into a deep sea one. This sidescan sonar is composed of a sonar towfish (transducers and an electronic unit ), a cable and a notebook computer (data processor). To accommodate in the deep water, the transducers were remodeled into a high pressure resistance type, and the electronic unit and the computer unit were stored in a spherical pressure vessel. The frequency output of the sidescan sonar is 330kHz, and the ranging distance is variable from 15m to 120m (one side).

  20. Gravity Data from the Teboursouk Area ("Diapirs Zone", Northern Tunisia): Characterization of Deep Structures and Updated Tectonic Pattern

    NASA Astrophysics Data System (ADS)

    Hachani, Fatma; Balti, Hadhemi; Kadri, Ali; Gasmi, Mohamed

    2016-04-01

    Located between eastern segments of the Atlas and Tell-Rif oro-genic belts, the "Dome zone" of northern Tunisia is characterized by the juxtaposition of various structures that mainly controlled the long geody-namic history of this part of the south-Tethyan Margin. To better understand the organization and deep extension of these structures, gravity data from the Teboursouk key area are proposed. These data include the plotting of Bouguer anomaly map and related parameters such as vertical and horizontal gradients, upward continuation and Euler solution. Compared to geological and structural maps available, they allow the identification of new deep structures and greater precision regarding the characteristics and organization of known ones; consequently, an updated structural pattern is proposed.

  1. WINDIGO-THIELSEN ROADLESS AREA, OREGON.

    USGS Publications Warehouse

    Sherrod, David R.; Benham, John R.

    1984-01-01

    The results of a mineral survey indicate that the Windigo-Thielsen Roadless Area, in Oregon has little promise for the occurrence of metallic mineral or fossil fuel resources. Abundant cinder deposits occur in the area, but numerous other large volume deposits are available in the region, closer to markets. The geothermal potential of the High Cascades province cannot be realistically evaluated without data on the subsurface thermal and hydrologic regime that can only be provided by deep drill holes. Several deep holes could be drilled outside the roadless areas of the High Cascades from which extrapolations of the geothermal potential of the province could be made.

  2. Perceived Deep-Level Dissimilarity: Personality Antecedents and Impact on Overall Job Attitude, Helping, Work Withdrawal, and Turnover

    ERIC Educational Resources Information Center

    Liao, Hui; Chuang, Aichia; Joshi, Aparna

    2008-01-01

    The current research extends three research areas in relational demography: considering deep-level dissimilarity in theory building, assessing dissimilarity perceptions directly in theory testing, and examining the antecedents of dissimilarity perceptions. The results, based on two field studies using diverse samples, demonstrate the effects of…

  3. 33 CFR 110.134 - Portland Harbor, Maine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... point of beginning. (2) Anchorage B (general—primarily intended for deep draft vessels). Beginning at... intended for general purposes, but especially for use by oil tankers and other large deep-draft ships... anchored in this area as to leave at all times an open usable channel at least 100 feet wide for passage of...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Haeryong; Lee, Eunyong; Jeong, YiYeong

    Korea Radioactive-waste Management Corporation (KRMC) established in 2009 has started a new project to collect information on long-term stability of deep geological environments on the Korean Peninsula. The information has been built up in the integrated natural barrier database system available on web (www.deepgeodisposal.kr). The database system also includes socially and economically important information, such as land use, mining area, natural conservation area, population density, and industrial complex, because some of this information is used as exclusionary criteria during the site selection process for a deep geological repository for safe and secure containment and isolation of spent nuclear fuel andmore » other long-lived radioactive waste in Korea. Although the official site selection process has not been started yet in Korea, current integrated natural barrier database system and socio-economic database is believed that the database system will be effectively utilized to narrow down the number of sites where future investigation is most promising in the site selection process for a deep geological repository and to enhance public acceptance by providing readily-available relevant scientific information on deep geological environments in Korea. (authors)« less

  5. Pb-isotopic Features of Primitive Rocks from Hess Deep: Distinguishing between EPR and Cocos-Nazca Mantle Source(s)

    NASA Astrophysics Data System (ADS)

    Jean, M. M.; Falloon, T.; Gillis, K. M.

    2014-12-01

    We have acquired high-precision Pb-isotopic signatures of primitive lithologies (basalts/gabbros) recovered from IODP Expedition 345.The Hess Deep Rift, located in the vicinity of the Galapagos triple junction (Cocos, Nazca, and Pacific), is viewed as one the best-studied tectonic windows into fast-spreading crust because a relatively young (<1.5 Ma) cross section of oceanic crust. This allows for (1) characterization of the mantle source(s) at Hess Deep, (2) insight into the extent of isotopic homogeneity or heterogeneity in the area, and (3) constrain the relative contributions from the intruding Cocos-Nazca spreading center. The observed Pb-isotopic variation at Hess Deep covers almost the entire range of EPR MORB (10°N to -5°S). Hess Deep samples range from 208Pb (37.3-38.25), 207Pb (15.47-15.58), 206Pb (17.69-18.91). These compositions suggest that this part of Hess Deep mantle is no more isotopically homogeneous than EPR mantle. Two distinct arrays are also observed: 208Pb-enriched (r2=0.985; n=30) and 208Pb-depleted (r2=0.988; n=6). The 208Pb/204Pb isotopes indicates that the Pb-source for some of the samples at Hess Deep had very low Th/U ratios, whereas other areas around the Galapagos microplate seem to have more "normal" ratios. These trends are less apparent when viewed with 207Pb-isotopes. Instead, the majority of basalts and gabbros follow the NHRL, however, at the depleted-end of this array a negative excursion to more enriched compositions is observed. This negative but linear trend could signify an alteration trend or mixing with an EMI-type mantle source, yet this mixing is not observed with 208Pb. This trend is also observed at Pito Deep, which has similar origins to Hess Deep (Barker et al., 2008; Pollack et al., 2009). The Galapagos region has been considered a testing ground for mixing of HIMU, Enriched Mantle, and Depleted Mantle reservoirs (e.g., Schilling et al., 2002). According to our data, however, an EPR-component must also be considered. We model Hess Deep Pb-isotopes as a 4-component system. EPR-DM-EM comprise a 'local' reservoir, but the majority of samples contain a mixture of modified-HIMU-EM-EPR, a product of incoming plume material entrained within the Galapagos Spreading Center.

  6. Deep-sea diversity patterns are shaped by energy availability.

    PubMed

    Woolley, Skipton N C; Tittensor, Derek P; Dunstan, Piers K; Guillera-Arroita, Gurutzeta; Lahoz-Monfort, José J; Wintle, Brendan A; Worm, Boris; O'Hara, Timothy D

    2016-05-19

    The deep ocean is the largest and least-explored ecosystem on Earth, and a uniquely energy-poor environment. The distribution, drivers and origins of deep-sea biodiversity remain unknown at global scales. Here we analyse a database of more than 165,000 distribution records of Ophiuroidea (brittle stars), a dominant component of sea-floor fauna, and find patterns of biodiversity unlike known terrestrial or coastal marine realms. Both patterns and environmental predictors of deep-sea (2,000-6,500 m) species richness fundamentally differ from those found in coastal (0-20 m), continental shelf (20-200 m), and upper-slope (200-2,000 m) waters. Continental shelf to upper-slope richness consistently peaks in tropical Indo-west Pacific and Caribbean (0-30°) latitudes, and is well explained by variations in water temperature. In contrast, deep-sea species show maximum richness at higher latitudes (30-50°), concentrated in areas of high carbon export flux and regions close to continental margins. We reconcile this structuring of oceanic biodiversity using a species-energy framework, with kinetic energy predicting shallow-water richness, while chemical energy (export productivity) and proximity to slope habitats drive deep-sea diversity. Our findings provide a global baseline for conservation efforts across the sea floor, and demonstrate that deep-sea ecosystems show a biodiversity pattern consistent with ecological theory, despite being different from other planetary-scale habitats.

  7. 77 FR 41332 - Fisheries of the Exclusive Economic Zone Off Alaska; Arrowtooth Flounder, Flathead Sole, Rex Sole...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ...NMFS is prohibiting directed fishing for arrowtooth flounder, flathead sole, rex sole, deep-water flatfish, and shallow-water flatfish in the Western Regulatory Area of the Gulf of Alaska (GOA). This action is necessary to limit incidental catch of Pacific ocean perch by vessels fishing for arrowtooth flounder, flathead sole, rex sole, deep-water flatfish, and shallow-water flatfish in the Western Regulatory Area of the GOA.

  8. Development of Deep-tow Autonomous Cable Seismic (ACS) for Seafloor Massive Sulfides (SMSs) Exploration.

    NASA Astrophysics Data System (ADS)

    Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hitoshi; Saito, Shutaro; Lee, Sangkyun; Tara, Kenji; Kato, Masafumi; Jamali Hondori, Ehsan; Sumi, Tomonori; Kadoshima, Kazuyuki; Kose, Masami

    2017-04-01

    Within the EEZ of Japan, numerous surveys exploring ocean floor resources have been conducted. The exploration targets are gas hydrates, mineral resources (manganese, cobalt or rare earth) and especially seafloor massive sulphide (SMS) deposits. These resources exist in shallow subsurface areas in deep waters (>1500m). For seismic explorations very high resolution images are required. These cannot be effectively obtained with conventional marine seismic techniques. Therefore we have been developing autonomous seismic survey systems which record the data close to the seafloor to preserve high frequency seismic energy. Very high sampling rate (10kHz) and high accurate synchronization between recording systems and shot time are necessary. We adopted Cs-base atomic clock considering its power consumption. At first, we developed a Vertical Cable Seismic (VCS) system that uses hydrophone arrays moored vertically from the ocean bottom to record close to the target area. This system has been successfully applied to SMS exploration. Specifically it fixed over known sites to assess the amount of reserves with the resultant 3D volume. Based on the success of VCS, we modified the VCS system to use as a more efficient deep-tow seismic survey system. Although there are other examples of deep-tow seismic systems, signal transmission cables present challenges in deep waters. We use our autonomous recording system to avoid these problems. Combining a high frequency piezoelectric source (Sub Bottom Profiler:SBP) that automatically shots with a constant interval, we achieve the high resolution deep-tow seismic without data transmission/power cable to the board. Although the data cannot be monitored in real-time, the towing system becomes very simple. We have carried out survey trial, which showed the systems utility as a high-resolution deep-tow seismic survey system. Furthermore, the frequency ranges of deep-towed source (SBP) and surface towed sparker are 700-2300Hz and 10-200Hz respectively. Therefore we can use these sources simultaneously and distinguish the records of each source in the data processing stage. We have developed new marine seismic survey systems with autonomous recording for the exploration of the ocean floor resources. The applications are vertical cable seismic (VCS) and deep-tow seismic (ACS). These enable us the recording close to the seafloor and give the high resolution results with a simple, cost-effective configuration.

  9. An examination of photoacclimatory responses of Zostera marina transplants along a depth gradient for transplant-site selection in a disturbed estuary

    NASA Astrophysics Data System (ADS)

    Li, Wen-Tao; Kim, Seung Hyeon; Kim, Jae Woo; Kim, Jong-Hyeob; Lee, Kun-Seop

    2013-02-01

    Growth and photosynthetic responses of Zostera marina transplants along a depth gradient were examined to determine appropriate transplanting areas for seagrass restoration. Seagrass Z. marina was once widely distributed in the Taehwa River estuary in southeastern Korea, but has disappeared since the 1960s due to port construction and large scale pollutant inputs from upstream industrial areas. Recently, water quality has been considerably improved as a result of effective sewage treatment, and the local government is attempting to restore Z. marina to the estuary. For seagrass restoration in this estuary, a pilot transplantation trial of Z. marina at three water depths (shallow: 0.5 m; intermediate: 1.5 m; deep: 2.5 m relative to MLLW) was conducted in November 2008. The transplant shoot density increased gradually at the intermediate and deep sites, whereas the transplants at the shallow site disappeared after 3 months. To find the optimal transplantation locations in this estuary, the growth and photosynthetic responses of the transplants along a depth gradient were examined for approximately 4 months following transplantation in March 2009. In the 2009 experimental transplantation trial, shoot density of transplants at the shallow site was significantly higher than those at the intermediate and deep sites during the first 3 months following transplantation, but rapidly decreased approximately 4 months after transplantation. The chlorophyll content, photosynthetic efficiency (α), and maximum quantum yield (Fv/Fm) of the transplants were significantly higher at the deep site than at the shallow site. Shoot size, biomass and leaf productivity were also significantly higher at the deep site than at the shallow site. Although underwater irradiance was significantly lower at the deep site than at the shallow site, transplants at the deep site were morphologically and physiologically acclimated to the low light. Transplants at the shallow site exhibited high mortality during the early period of transplantation perhaps due to high physical disturbances at the site, but transplants at the intermediate and deep sites showed higher growth through more efficient photosynthesis and morphological adaptation. Thus, the intermediate and deep sites (1.5-2.5 m relative to MLLW) appeared to be more appropriate seagrass transplantation sites in this estuary.

  10. Efficacy of enzymatic debridement of deeply burned hands.

    PubMed

    Krieger, Yuval; Bogdanov-Berezovsky, Alexander; Gurfinkel, Reuven; Silberstein, Eldad; Sagi, Amiram; Rosenberg, Lior

    2012-02-01

    The burned hand is a common and difficult to care-for entity in the field of burns. Due to the anatomy of the hand (important and delicate structures crowded in a small limited space without sub-dermal soft tissue), surgical debridement of the burned tissue is technically difficult and may cause considerable complications and, therefore, should be performed judiciously. Selective enzymatic debridement of the burn wound can preserve the spontaneous epithelialisation potential and reduce the added injury to the traumatised tissue added by a surgical debridement. The aim of the study was to assess the implication of a selective enzymatic compound (Debrase(®) - Ds) in the special field of deep hand burns, by comparing the actual burn area that required surgical coverage after enzymatic debridement to the burn area clinically judged to require skin grafting prior to debridement. This was a retrospective data collection and analysis from 154 complete files of prospective, open-label study in 275 hospitalised, Ds-treated burn patients. A total of 69 hand burns diagnosed as 'deep' was analysed; 36% of the wounds required surgical intervention after enzymatic debridement; 28.6% of the total burned area estimated initially as deep was covered by skin graft (statistically significant p<0.001). Debridement of deep-hand burns with a selective enzymatic agent decreased the perceived full-thickness wound area and skin-graft use. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  11. Deep sea habitats in the chemical warfare dumping areas of the Baltic Sea.

    PubMed

    Czub, Michał; Kotwicki, Lech; Lang, Thomas; Sanderson, Hans; Klusek, Zygmunt; Grabowski, Miłosz; Szubska, Marta; Jakacki, Jaromir; Andrzejewski, Jan; Rak, Daniel; Bełdowski, Jacek

    2018-03-01

    The Baltic Sea is a severely disturbed marine ecosystem that has previously been used as a dumping ground for Chemical Warfare Agents (CW). The presence of unexploded underwater ordnance is an additional risk factor for offshore activities and an environmental risk for the natural resources of the sea. In this paper, the focus is on descriptions of the marine habitat based on the observations arising from studies linked to the CHEMSEA, MODUM and DAIMON projects. Investigated areas of Bornholm, Gotland and Gdańsk Deeps are similarly affected by the Baltic Sea eutrophication, however, at depths greater than 70m several differences in local hydrological regimes and pore-water heavy metal concentrations between those basins were observed. During the lifespan of presented studies, we were able to observe the effects of Major Baltic Inflow, that started in December 2014, on local biota and their habitats, especially in the Bornholm Deep area. Reappearance of several meiofauna taxa and one macrofauna specimen was observed approximately one year after this phenomenon, however it's ecological effects already disappeared in March 2017. According to our findings and to the EUNIS Habitat Classification, the three reviewed areas should be characterized as Deep Sea Muddy Sands, while the presence of suspicious bomb-like objects both beneath and on top of the sediments confirms their CW dumpsite status. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Surface oceanographic fronts influencing deep-sea biological activity: Using fish stable isotopes as ecological tracers

    NASA Astrophysics Data System (ADS)

    Louzao, Maite; Navarro, Joan; Delgado-Huertas, Antonio; de Sola, Luis Gil; Forero, Manuela G.

    2017-06-01

    Ecotones can be described as transition zones between neighbouring ecological systems that can be shaped by environmental gradients over a range of space and time scales. In the marine environment, the detection of ecotones is complex given the highly dynamic nature of marine systems and the paucity of empirical data over ocean-basin scales. One approach to overcome these limitations is to use stable isotopes from animal tissues since they can track spatial oceanographic variability across marine systems and, in turn, can be used as ecological tracers. Here, we analysed stable isotopes of deep-sea fishes to assess the presence of ecological discontinuities across the western Mediterranean. We were specifically interested in exploring the connection between deep-sea biological activity and particular oceanographic features (i.e., surface fronts) occurring in the pelagic domain. We collected samples for three different abundant deep-sea species in May 2004 from an experimental oceanographic trawling cruise (MEDITS): the Mictophydae jewel lanternfish Lampanyctus crocodilus and two species of the Gadidae family, the silvery pout Gadiculus argenteus and the blue whiting Micromesistius poutassou. The experimental survey occurred along the Iberian continental shelf and the upper and middle slopes, from the Strait of Gibraltar in the SW to the Cape Creus in the NE. The three deep-sea species were highly abundant throughout the study area and they showed geographic variation in their isotopic values, with decreasing values from north to south disrupted by an important change point around the Vera Gulf. Isotopic latitudinal gradients were explained by pelagic oceanographic conditions along the study area and confirm the existence of an ecotone at the Vera Gulf. This area could be considered as an oceanographic boundary where waters of Atlantic origin meet Mediterranean surface waters forming important frontal structures such as the Almeria-Oran front. In fact, our results relate geographical variation in stable isotopes of deep-sea fishes to regional changes in surface oceanography, highlighting the importance of mesoscale oceanographic features.

  13. Area Estimation of Deep-Sea Surfaces from Oblique Still Images

    PubMed Central

    Souto, Miguel; Afonso, Andreia; Calado, António; Madureira, Pedro; Campos, Aldino

    2015-01-01

    Estimating the area of seabed surfaces from pictures or videos is an important problem in seafloor surveys. This task is complex to achieve with moving platforms such as submersibles, towed or remotely operated vehicles (ROV), where the recording camera is typically not static and provides an oblique view of the seafloor. A new method for obtaining seabed surface area estimates is presented here, using the classical set up of two laser devices fixed to the ROV frame projecting two parallel lines over the seabed. By combining lengths measured directly from the image containing the laser lines, the area of seabed surfaces is estimated, as well as the camera’s distance to the seabed, pan and tilt angles. The only parameters required are the distance between the parallel laser lines and the camera’s horizontal and vertical angles of view. The method was validated with a controlled in situ experiment using a deep-sea ROV, yielding an area estimate error of 1.5%. Further applications and generalizations of the method are discussed, with emphasis on deep-sea applications. PMID:26177287

  14. Magnetic resonance elastography to observe deep areas: comparison of external vibration systems.

    PubMed

    Suga, Mikio; Obata, Takayuki; Hirano, Masaya; Tanaka, Takashi; Ikehira, Hiroo

    2007-01-01

    MRE methods deform the sample using an external vibration system. We have been using a transverse driver, which generates shear waves at the object surface. One of the problems is that shear waves rapidly attenuate at the surface of tissue and do not propagate into the body. In this study, we compared the shear waves generated by transverse and longitudinal drivers. The longitudinal driver was found to induce shear waves deep inside a porcine liver phantom. These results suggest that the longitudinal driver will allow measurement of the shear modulus deep inside the body.

  15. Opportunities and obstacles for deep learning in biology and medicine.

    PubMed

    Ching, Travers; Himmelstein, Daniel S; Beaulieu-Jones, Brett K; Kalinin, Alexandr A; Do, Brian T; Way, Gregory P; Ferrero, Enrico; Agapow, Paul-Michael; Zietz, Michael; Hoffman, Michael M; Xie, Wei; Rosen, Gail L; Lengerich, Benjamin J; Israeli, Johnny; Lanchantin, Jack; Woloszynek, Stephen; Carpenter, Anne E; Shrikumar, Avanti; Xu, Jinbo; Cofer, Evan M; Lavender, Christopher A; Turaga, Srinivas C; Alexandari, Amr M; Lu, Zhiyong; Harris, David J; DeCaprio, Dave; Qi, Yanjun; Kundaje, Anshul; Peng, Yifan; Wiley, Laura K; Segler, Marwin H S; Boca, Simina M; Swamidass, S Joshua; Huang, Austin; Gitter, Anthony; Greene, Casey S

    2018-04-01

    Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems-patient classification, fundamental biological processes and treatment of patients-and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network's prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine. © 2018 The Authors.

  16. Opportunities and obstacles for deep learning in biology and medicine

    PubMed Central

    2018-01-01

    Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems—patient classification, fundamental biological processes and treatment of patients—and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network's prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine. PMID:29618526

  17. Evaluation of the Effects of Honey on Acute-Phase Deep Burn Wounds

    PubMed Central

    Nakajima, Yukari; Mukai, Kanae; Nasruddin; Komatsu, Emi; Iuchi, Terumi; Kitayama, Yukie; Sugama, Junko; Nakatani, Toshio

    2013-01-01

    This study aimed to clarify the effects of honey on acute-phase deep burn wounds. Two deep burn wounds were created on mice which were divided into four groups: no treatment, silver sulfadiazine, manuka honey, and Japanese acacia honey. Wound sizes were calculated as expanded wound areas and sampled 30 minutes and 1–4 days after wounding for histological observation. The wound sections were subjected to hematoxylin and eosin and immunohistological staining to detect necrotic cells, apoptotic cells, neutrophils, and macrophages. The no treatment group formed a scar. The redness around the wound edges in the silver sulfadiazine group was the most intense. All groups exhibited increased wound areas after wounding. The proportions of necrotic cells and the numbers of neutrophils in the manuka and acacia honey groups were lower than those in the no treatment and silver sulfadiazine groups until day 3; however, there were no significant differences between all groups on day 4. These results show that honey treatment on deep burn wounds cannot prevent wound progression. Moreover, comparing our observations with those of Jackson, there are some differences between humans and animals in this regard, and the zone of hyperemia and its surrounding area fall into necrosis, which contributes to burn wound progression. PMID:24348720

  18. Evaluation of the effects of honey on acute-phase deep burn wounds.

    PubMed

    Nakajima, Yukari; Mukai, Kanae; Nasruddin; Komatsu, Emi; Iuchi, Terumi; Kitayama, Yukie; Sugama, Junko; Nakatani, Toshio

    2013-01-01

    This study aimed to clarify the effects of honey on acute-phase deep burn wounds. Two deep burn wounds were created on mice which were divided into four groups: no treatment, silver sulfadiazine, manuka honey, and Japanese acacia honey. Wound sizes were calculated as expanded wound areas and sampled 30 minutes and 1-4 days after wounding for histological observation. The wound sections were subjected to hematoxylin and eosin and immunohistological staining to detect necrotic cells, apoptotic cells, neutrophils, and macrophages. The no treatment group formed a scar. The redness around the wound edges in the silver sulfadiazine group was the most intense. All groups exhibited increased wound areas after wounding. The proportions of necrotic cells and the numbers of neutrophils in the manuka and acacia honey groups were lower than those in the no treatment and silver sulfadiazine groups until day 3; however, there were no significant differences between all groups on day 4. These results show that honey treatment on deep burn wounds cannot prevent wound progression. Moreover, comparing our observations with those of Jackson, there are some differences between humans and animals in this regard, and the zone of hyperemia and its surrounding area fall into necrosis, which contributes to burn wound progression.

  19. From principles to practice: a spatial approach to systematic conservation planning in the deep sea.

    PubMed

    Wedding, L M; Friedlander, A M; Kittinger, J N; Watling, L; Gaines, S D; Bennett, M; Hardy, S M; Smith, C R

    2013-12-22

    Increases in the demand and price for industrial metals, combined with advances in technological capabilities have now made deep-sea mining more feasible and economically viable. In order to balance economic interests with the conservation of abyssal plain ecosystems, it is becoming increasingly important to develop a systematic approach to spatial management and zoning of the deep sea. Here, we describe an expert-driven systematic conservation planning process applied to inform science-based recommendations to the International Seabed Authority for a system of deep-sea marine protected areas (MPAs) to safeguard biodiversity and ecosystem function in an abyssal Pacific region targeted for nodule mining (e.g. the Clarion-Clipperton fracture zone, CCZ). Our use of geospatial analysis and expert opinion in forming the recommendations allowed us to stratify the proposed network by biophysical gradients, maximize the number of biologically unique seamounts within each subregion, and minimize socioeconomic impacts. The resulting proposal for an MPA network (nine replicate 400 × 400 km MPAs) covers 24% (1 440 000 km(2)) of the total CCZ planning region and serves as example of swift and pre-emptive conservation planning across an unprecedented area in the deep sea. As pressure from resource extraction increases in the future, the scientific guiding principles outlined in this research can serve as a basis for collaborative international approaches to ocean management.

  20. From principles to practice: a spatial approach to systematic conservation planning in the deep sea

    PubMed Central

    Wedding, L. M.; Friedlander, A. M.; Kittinger, J. N.; Watling, L.; Gaines, S. D.; Bennett, M.; Hardy, S. M.; Smith, C. R.

    2013-01-01

    Increases in the demand and price for industrial metals, combined with advances in technological capabilities have now made deep-sea mining more feasible and economically viable. In order to balance economic interests with the conservation of abyssal plain ecosystems, it is becoming increasingly important to develop a systematic approach to spatial management and zoning of the deep sea. Here, we describe an expert-driven systematic conservation planning process applied to inform science-based recommendations to the International Seabed Authority for a system of deep-sea marine protected areas (MPAs) to safeguard biodiversity and ecosystem function in an abyssal Pacific region targeted for nodule mining (e.g. the Clarion–Clipperton fracture zone, CCZ). Our use of geospatial analysis and expert opinion in forming the recommendations allowed us to stratify the proposed network by biophysical gradients, maximize the number of biologically unique seamounts within each subregion, and minimize socioeconomic impacts. The resulting proposal for an MPA network (nine replicate 400 × 400 km MPAs) covers 24% (1 440 000 km2) of the total CCZ planning region and serves as example of swift and pre-emptive conservation planning across an unprecedented area in the deep sea. As pressure from resource extraction increases in the future, the scientific guiding principles outlined in this research can serve as a basis for collaborative international approaches to ocean management. PMID:24197407

  1. Hydro-geochemical modeling of subalpine urbanized area: geochemical characterization of the shallow and deep aquifers of the urban district of Como (first results).

    NASA Astrophysics Data System (ADS)

    Terrana, Silvia; Brunamonte, Fabio; Frascoli, Francesca; Ferrario, Maria Francesca; Michetti, Alessandro Maria; Pozzi, Andrea; Gambillara, Roberto; Binda, Gilberto

    2016-04-01

    One of the greatest environmental and social-economics threats is climate change. This topic, in the next few years, will have a significant impact on the availability of water resources of many regions. This is compounded by the strong anthropization of water systems that shows an intensification of conflicts for water resource exploitation. Therefore, it is necessary a sustainable manage of natural resources thorough knowledge of the hosting territories. The development of investigation and data processing methods are essential to reduce costs for the suitable use and protection of resources. Identify a sample area for testing the best approach is crucial. This research aims to find a valid methodology for the characterization, modeling and management of subalpine urban aquifers, and the urban district of Como appears perfect. The city of Como is located at the southern end of the western sector of Lake Como (N Italy). It is a coastal town, placed on a small alluvial plain, therefore in close communication with the lake. The plain is drained by two streams, which are presently artificially buried, and have an underground flow path in the urban section till the mouth. This city area, so, is suitable for this project as it is intensely urbanized, its dimensions is not too extensive and it is characterized by two aquifers very important and little known. These are a shallow aquifer and a deep aquifer, which are important not only for any water supply, but also for the stability of the ground subsidence in the city. This research is also the opportunity to work in a particular well-known area with high scientific significance; however, there is complete absence of information regarding the deep aquifer. Great importance has also the chosen and used of the more powerful open source software for this type of area, such as PHREEQC, EnvironInsite, PHREEQE etc., used for geological and geochemical data processing. The main goal of this preliminary work is the characterization of both aquifers and the comprehension of the interaction between the shallow one and deep one. The first results of geochemical and hydrological analyses in nine piezometer, seven in the shallow aquifer and two in the deep one, permit to identify a general characterization of groundwater: the waters of both the aquifers are calcium bicarbonate, with discontinuous enrichment in sulphate and silicate. The conductibility values are higher in the shallow aquifer then in the deep aquifer, this is an indication of the high flow rate of the deep one and of the higher level of vulnerability of the shallow water respect the urban pollutant. Particular is also the relatively high temperature for the deep water (15.5°C to 16.1°C). The next steps of work are an increase of geochemical analysis, with trace element, and the correlation with hydro-chemical surface water.

  2. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.

    PubMed

    German, Christopher R; Ramirez-Llodra, Eva; Baker, Maria C; Tyler, Paul A

    2011-01-01

    The ChEss project of the Census of Marine Life (2002-2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB), the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N) showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N) are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i) continued exploration of the deep-ocean ridge-crest; (ii) increased focus on anthropogenic impacts; (iii) concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but also the world's least investigated deep-ocean basin.

  3. Postoperative shoulder pain after laparoscopic hysterectomy with deep neuromuscular blockade and low-pressure pneumoperitoneum: A randomised controlled trial.

    PubMed

    Madsen, Matias V; Istre, Olav; Staehr-Rye, Anne K; Springborg, Henrik H; Rosenberg, Jacob; Lund, Jørgen; Gätke, Mona R

    2016-05-01

    Postoperative shoulder pain remains a significant problem after laparoscopy. Pneumoperitoneum with insufflation of carbon dioxide (CO2) is thought to be the most important cause. Reduction of pneumoperitoneum pressure may, however, compromise surgical visualisation. Recent studies indicate that the use of deep neuromuscular blockade (NMB) improves surgical conditions during a low-pressure pneumoperitoneum (8 mmHg). The aim of this study was to investigate whether low-pressure pneumoperitoneum (8 mmHg) and deep NMB (posttetanic count 0 to 1) compared with standard-pressure pneumoperitoneum (12 mmHg) and moderate NMB (single bolus of rocuronium 0.3 mg kg with spontaneous recovery) would reduce the incidence of shoulder pain and improve recovery after laparoscopic hysterectomy. A randomised, controlled, double-blinded study. Private hospital in Denmark. Ninety-nine patients. Randomisation to either deep NMB and 8 mmHg pneumoperitoneum (Group 8-Deep) or moderate NMB and 12 mmHg pneumoperitoneum (Group 12-Mod). Pain was assessed on a visual analogue scale (VAS) for 14 postoperative days. The primary endpoint was the incidence of shoulder pain during 14 postoperative days. Secondary endpoints included area under curve VAS scores for shoulder, abdominal, incisional and overall pain during 4 and 14 postoperative days; opioid consumption; incidence of nausea and vomiting; antiemetic consumption; time to recovery of activities of daily living; length of hospital stay; and duration of surgery. Shoulder pain occurred in 14 of 49 patients (28.6%) in Group 8-Deep compared with 30 of 50 (60%) patients in Group 12-Mod. Absolute risk reduction was 0.31 (95% confidence interval 0.12 to 0.48; P = 0.002). There were no differences in any secondary endpoints including area under the curve for VAS scores. Deep NMB and low-pressure pneumoperitoneum (8 mmHg) reduced the incidence of shoulder pain after laparoscopic hysterectomy in comparison to moderate NMB and standard-pressure pneumoperitoneum (12 mmHg). Clinicaltrials.gov identifier: NCT01722097.

  4. Large-Scale Distribution and Activity of Prokaryotes in Deep-Sea Surface Sediments of the Mediterranean Sea and the Adjacent Atlantic Ocean

    PubMed Central

    Giovannelli, Donato; Molari, Massimiliano; d’Errico, Giuseppe; Baldrighi, Elisa; Pala, Claudia; Manini, Elena

    2013-01-01

    The deep-sea represents a substantial portion of the biosphere and has a major influence on carbon cycling and global biogeochemistry. Benthic deep-sea prokaryotes have crucial roles in this ecosystem, with their recycling of organic matter from the photic zone. Despite this, little is known about the large-scale distribution of prokaryotes in the surface deep-sea sediments. To assess the influence of environmental and trophic variables on the large-scale distribution of prokaryotes, we investigated the prokaryotic assemblage composition (Bacteria to Archaea and Euryarchaeota to Crenarchaeota ratio) and activity in the surface deep-sea sediments of the Mediterranean Sea and the adjacent North Atlantic Ocean. Prokaryotic abundance and biomass did not vary significantly across the Mediterranean Sea; however, there were depth-related trends in all areas. The abundance of prokaryotes was positively correlated with the sedimentary concentration of protein, an indicator of the quality and bioavailability of organic matter. Moving eastwards, the Bacteria contribution to the total prokaryotes decreased, which appears to be linked to the more oligotrophic conditions of the Eastern Mediterranean basins. Despite the increased importance of Archaea, the contributions of Crenarchaeota Marine Group I to the total pool was relatively constant across the investigated stations, with the exception of Matapan-Vavilov Deep, in which Euryarchaeota Marine Group II dominated. Overall, our data suggest that deeper areas of the Mediterranean Sea share more similar communities with each other than with shallower sites. Freshness and quality of sedimentary organic matter were identified through Generalized Additive Model analysis as the major factors for describing the variation in the prokaryotic community structure and activity in the surface deep-sea sediments. Longitude was also important in explaining the observed variability, which suggests that the overlying water masses might have a critical role in shaping the benthic communities. PMID:24039667

  5. Deep-Water Chemosynthetic Ecosystem Research during the Census of Marine Life Decade and Beyond: A Proposed Deep-Ocean Road Map

    PubMed Central

    German, Christopher R.; Ramirez-Llodra, Eva; Baker, Maria C.; Tyler, Paul A.

    2011-01-01

    The ChEss project of the Census of Marine Life (2002–2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB), the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71°N) showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72°N) are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i) continued exploration of the deep-ocean ridge-crest; (ii) increased focus on anthropogenic impacts; (iii) concerted effort to coordinate a major investigation of the deep South Pacific Ocean – the largest contiguous habitat for life within Earth's biosphere, but also the world's least investigated deep-ocean basin. PMID:21829722

  6. Palynofacies reveal fresh terrestrial organic matter inputs in the terminal lobes of the Congo deep-sea fan

    NASA Astrophysics Data System (ADS)

    Schnyder, Johann; Stetten, Elsa; Baudin, François; Pruski, Audrey M.; Martinez, Philippe

    2017-08-01

    The Congo deep-sea fan is directly connected to the Congo River by a unique submarine canyon. The Congo River delivers up to 2×1012gPOC/yr, a part of which is funnelled by the submarine canyon and feeds the deep-sea environments. The more distal part of the Congo deep-sea fan, the terminal lobe area, has a surface of 2500 km2 and is situated up to 800 km offshore at depths of 4750-5000 m. It is a remarkable place to study the fate and distribution of the organic matter transferred from the continent to the deep ocean via turbidity currents. Forty-two samples were analyzed from the terminal lobes, including sites from the active channel, one of its levees and an abandoned distal channel. Samples were collected using multitube cores and push-cores using a Victor 6000 ROV, which surveyed the dense chemosynthetic habitats that locally characterize the terminal lobes. Palynofacies reveal a remarkably well-preserved, dominantly terrestrial particulate organic matter assemblage, that has been transferred from the continent into the deep-sea by turbidity currents. Delicate plant structures, cuticle fragments and plant cellular material is often preserved, highlighting the efficiency of turbidity currents to transfer terrestrial organic matter to the sea-floor, where it is preserved. Moreover, the palynofacies data reveal a general sorting by density or buoyancy of the organic particles, as the turbulent currents escaped the active channel, feeding the levees and the more distal, abandoned channel area. Finally, in addition to aforementioned hydrodynamic factors controlling the organic matter accumulation, a secondary influence of chemosynthetic habitats on organic matter preservation is also apparent. Palynofacies is therefore a useful tool to record the distribution of organic matter in recent and ancient deep-sea fan environments, an important topic for both academic and petroleum studies.

  7. Tractography patterns of subthalamic nucleus deep brain stimulation.

    PubMed

    Vanegas-Arroyave, Nora; Lauro, Peter M; Huang, Ling; Hallett, Mark; Horovitz, Silvina G; Zaghloul, Kareem A; Lungu, Codrin

    2016-04-01

    Deep brain stimulation therapy is an effective symptomatic treatment for Parkinson's disease, yet the precise mechanisms responsible for its therapeutic effects remain unclear. Although the targets of deep brain stimulation are grey matter structures, axonal modulation is known to play an important role in deep brain stimulation's therapeutic mechanism. Several white matter structures in proximity to the subthalamic nucleus have been implicated in the clinical benefits of deep brain stimulation for Parkinson's disease. We assessed the connectivity patterns that characterize clinically beneficial electrodes in Parkinson's disease patients, after deep brain stimulation of the subthalamic nucleus. We evaluated 22 patients with Parkinson's disease (11 females, age 57 ± 9.1 years, disease duration 13.3 ± 6.3 years) who received bilateral deep brain stimulation of the subthalamic nucleus at the National Institutes of Health. During an initial electrode screening session, one month after deep brain stimulation implantation, the clinical benefits of each contact were determined. The electrode was localized by coregistering preoperative magnetic resonance imaging and postoperative computer tomography images and the volume of tissue activated was estimated from stimulation voltage and impedance. Brain connectivity for the volume of tissue activated of deep brain stimulation contacts was assessed using probabilistic tractography with diffusion-tensor data. Areas most frequently connected to clinically effective contacts included the thalamus, substantia nigra, brainstem and superior frontal gyrus. A series of discriminant analyses demonstrated that the strength of connectivity to the superior frontal gyrus and the thalamus were positively associated with clinical effectiveness. The connectivity patterns observed in our study suggest that the modulation of white matter tracts directed to the superior frontal gyrus and the thalamus is associated with favourable clinical outcomes and may contribute to the therapeutic effects of deep brain stimulation. Our method can be further developed to reliably identify effective deep brain stimulation contacts and aid in the programming process. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Study on Seismogenesis of 2013 Ms5.1 Badong Earthquake in the Three Gorges Reservoir Region

    NASA Astrophysics Data System (ADS)

    Li, X.; Zeng, Z.; Xu, S.; He, C.

    2015-12-01

    On 16 December, 2013, an earthquake of Ms5.1 occurred in Badong County, the Three Gorges Reservoir area, China. We collected all the 150 published focal mechanism solutions (FMS) and inversed the tectonic stress field in Badong, the Three Gorges Dam and Huangling anticline area using the software SATSI (Hardebeck and Michael, 2006). Inversion results show that the orientations of maximum principle stress axis (σ1) in Badong plunge to NNE or SSW. Detailed characteristics of the stress field indicate that the σ1 axis is almost vertical in the center of Huangling anticline and turns horizontal to the west. As to deep structures, we studied the satellite gravity anomalies of 8-638 order in this area using the EIGEN-6C2 model provided by ICGRM. Combining the seismic sounding profile through the epicenter of Badong earthquake and the petrology data, we reinterpreted the deep structure in the study area. The results show that the deep crust in Badong is unstable and the deep material's upwelling leads to Huangling anticline continued uplifting, which is consistent with the result indicated from the stress filed. Both of them provide energy for the preparation of earthquake. The FMS shows that Gaoqiao Fault is the causative fault of this Ms5.1 earthquake. Field investigations indicated that the lithology and fracture characteristic in Badong is beneficial to reservoir water infiltration. Before the earthquake, reservoir water level raised to 175m, the highest storage level, which increased the loading. Based on above researches, we believe that the Ms5.1 Badong earthquake is controlled by deep tectonic environment and stress field in shallow crust. The reservoir water infiltration and uploading increase generated by water storage of the Three Gorges area reduced the strength of Gaoqiao Fault and changed its stress state. These factors jointly promoted an abrupt movement of the fault in the critical stress state, and triggered the Ms5.1 Badong earthquake.

  9. 78 FR 40396 - Safety Zone; America's Cup Safety Zone and No Loitering Area, San Francisco, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... were issued for this series of races. Only after the Coast Guard learned that the racing vessels.... Additionally, members of the deep-draft commercial shipping community raised concerns pertaining to the... associated with the viewing of the America's Cup in vicinity of buoys ``1'' and ``2'', marking the deep water...

  10. Robust Deep Semantics for Language Understanding

    DTIC Science & Technology

    focus on five areas: deep learning, textual inferential relations, relation and event extraction by distant supervision , semantic parsing and...ontology expansion, and coreference resolution. As time went by, the program focus converged towards emphasizing technologies for knowledge base...natural logic methods for text understanding, improved mention coreference algorithms, and the further development of multilingual tools in CoreNLP.

  11. SPECIAL ACTIVITIES SUPPLEMENTAL TO AND RELATED TO THE ART PROGRAM AT DEEP RIVER OUTDOOR EDUCATION CENTER.

    ERIC Educational Resources Information Center

    Gary City Public School System, IN.

    A CURRICULUM GUIDE DEALING WITH VARIOUS SUBJECT AREAS WAS PREPARED FOR POSSIBLE STUDY ACTIVITIES THAT WOULD USE THE LEARNING RESOURCES AVAILABLE AT THE DEEP RIVER OUTDOOR EDUCATION CENTER IN GARY, INDIANA. ACTIVITIES GUIDES ARE PRESENTED FOR (1) ART ACTITIVIES RELATED TO DESIGN, COLOR, LANDSCAPE REPRESENTATION, PAPER CONSTRUCTION, DRAWING, PRINT…

  12. Analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek (ID-111-006), Big Jacks Creek (ID-111-007C), Duncan Creek (ID-111-0007B), and Upper Deep Creek (ID-111-044) Wilderness Study Areas, Owyhee County, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, M.S.; Gent, C.A.; Bradley, L.A.

    1989-01-01

    A U.S. Geological Survey report detailing the analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek, Big Jacks Creek, Duncan Creek, and Upper Deep Creek Wilderness Study Areas, Owyhee County, Idaho

  13. Environmental Impact Study of the Northern Section of the Upper Mississippi River. Pool 5A.

    DTIC Science & Technology

    1973-11-01

    the 1930’s the river bottoms were primarily wooded islands separated by deep sloughs. Hundreds of lakes and ponds were scattered through the wooded ...and the old condition of deep sloughs and wooded islands is found. In the middle of each pool, water backs up over the islands and old hay meadows...Each impoundment consists of three distinct ecological areas. The tailweter areas just downstream from the dams show the river in relatively unmodified

  14. Environmental Impact Study of the Northern Section of the Upper Mississippi River. Pool 5.

    DTIC Science & Technology

    1973-11-01

    Prior to the 1930’s the river bottoms were primarily wooded islands separated by deep sloughs. Hundreds of lakes and ponds were scattered through the... wooded bottoms. Bay meadows and small farming areas occupied some areas on larger islands. Marshes were limited to the shores of lakes and guts...the old condition of deep sloughs and wooded islands is found. In the middle of each pool, water backs up over the islands and old hay meadows

  15. Evaluation of macular and peripapillary vessel flow density in eyes with no known pathology using optical coherence tomography angiography.

    PubMed

    Hassan, Muhammad; Sadiq, Mohammad Ali; Halim, Muhammad Sohail; Afridi, Rubbia; Soliman, Mohamed K; Sarwar, Salman; Agarwal, Aniruddha; Do, Diana V; Nguyen, Quan Dong; Sepah, Yasir Jamal

    2017-01-01

    To assess normal vessel flow density (VFD) in macular and peripapillary regions of eyes with no known ocular pathology using optical coherence tomography angiography (OCTA). AngioVue (Optovue, Fremont, CA, USA) was used to capture OCTA images. A 3 × 3 mm grid and a 4.5 × 4.5 mm grid was used to scan parafoveal and peripapillary regions, respectively. ReVue software was utilized to measure VFD in five sectors within the inner two circles of ETDRS grid in macular region and correlated to retinal thickness of same sectors. At optic disc, VFD was calculated in six sectors based on Garway-Heath map. Area and morphology of foveal avascular zone (FAZ) was correlated with VFD in central 1 mm. The influence of myopia on mean VFD was also assessed. Twenty-four eyes (mean age: 30 years) were analyzed. Mean VFD in macular sectors was 43.5 (±4.5) and 45.8 (±5.0) % in superficial and deep retinal plexuses, respectively. Mean VFD was significantly higher in deep retinal plexus compared to superficial retinal plexus in all sectors except central 1 mm (p < 0.05). Mean VFD in central 1 mm increases with an increase in central retinal thickness in both superficial and deep retinal plexuses (p < 0.001). Mean parafoveal VFD at level of both superficial and deep retinal plexuses decrease with an increase in spherical equivalent in myopics (p < 0.05). Mean VFD in myopics was found to be significantly lower in parafoveal region of deep retinal plexus (p < 0.05). Mean area of FAZ was 0.33 (±0.15) and 0.47 mm 2 (±0.15) in superficial and deep retinal plexuses, respectively. Area of FAZ decreases with an increase in central 1 mm thickness and foveal VFD (p < 0.001). OCTA may be used to measure VFD in macular and peripapillary regions. Vessels in the parafoveal region are more densely packed in the deep retinal plexus leading to higher VFD compared to superficial plexus. Thicker retina in fovea translates into higher foveal VFD due to more compact arrangement of retinal layers and continuity of inner nuclear layer (INL). Myopia is associated with lower VFD in parafoveal region at level of deep retinal plexuses which may explain thinning of INL in myopics.

  16. Does the ocean-atmosphere system have more than one stable mode of operation?

    NASA Technical Reports Server (NTRS)

    Broecker, W. S.; Peteet, D. M.; Rind, D.

    1985-01-01

    The climate record obtained from two long Greenland ice cores reveals several brief climate oscillations during glacial time. The most recent of these oscillations, also found in continental pollen records, has greatest impact in the area under the meteorological influence of the northern Atlantic, but none in the United States. This suggests that these oscillations are caused by fluctuations in the formation rate of deep water in the northern Atlantic. As the present production of deep water in this area is driven by an excess of evaporation over precipitation and continental runoff, atmospheric water transport may be an important element in climate change. Changes in the production rate of deep water in this sector of the ocean may push the climate system from one quasi-stable mode of operation to another.

  17. A warm Spitzer survey of the LSST/DES 'Deep drilling' fields

    NASA Astrophysics Data System (ADS)

    Lacy, Mark; Farrah, Duncan; Brandt, Niel; Sako, Masao; Richards, Gordon; Norris, Ray; Ridgway, Susan; Afonso, Jose; Brunner, Robert; Clements, Dave; Cooray, Asantha; Covone, Giovanni; D'Andrea, Chris; Dickinson, Mark; Ferguson, Harry; Frieman, Joshua; Gupta, Ravi; Hatziminaoglou, Evanthia; Jarvis, Matt; Kimball, Amy; Lubin, Lori; Mao, Minnie; Marchetti, Lucia; Mauduit, Jean-Christophe; Mei, Simona; Newman, Jeffrey; Nichol, Robert; Oliver, Seb; Perez-Fournon, Ismael; Pierre, Marguerite; Rottgering, Huub; Seymour, Nick; Smail, Ian; Surace, Jason; Thorman, Paul; Vaccari, Mattia; Verma, Aprajita; Wilson, Gillian; Wood-Vasey, Michael; Cane, Rachel; Wechsler, Risa; Martini, Paul; Evrard, August; McMahon, Richard; Borne, Kirk; Capozzi, Diego; Huang, Jiashang; Lagos, Claudia; Lidman, Chris; Maraston, Claudia; Pforr, Janine; Sajina, Anna; Somerville, Rachel; Strauss, Michael; Jones, Kristen; Barkhouse, Wayne; Cooper, Michael; Ballantyne, David; Jagannathan, Preshanth; Murphy, Eric; Pradoni, Isabella; Suntzeff, Nicholas; Covarrubias, Ricardo; Spitler, Lee

    2014-12-01

    We propose a warm Spitzer survey to microJy depth of the four predefined Deep Drilling Fields (DDFs) for the Large Synoptic Survey Telescope (LSST) (three of which are also deep drilling fields for the Dark Energy Survey (DES)). Imaging these fields with warm Spitzer is a key component of the overall success of these projects, that address the 'Physics of the Universe' theme of the Astro2010 decadal survey. With deep, accurate, near-infrared photometry from Spitzer in the DDFs, we will generate photometric redshift distributions to apply to the surveys as a whole. The DDFs are also the areas where the supernova searches of DES and LSST are concentrated, and deep Spitzer data is essential to obtain photometric redshifts, stellar masses and constraints on ages and metallicities for the >10000 supernova host galaxies these surveys will find. This 'DEEPDRILL' survey will also address the 'Cosmic Dawn' goal of Astro2010 through being deep enough to find all the >10^11 solar mass galaxies within the survey area out to z~6. DEEPDRILL will complete the final 24.4 square degrees of imaging in the DDFs, which, when added to the 14 square degrees already imaged to this depth, will map a volume of 1-Gpc^3 at z>2. It will find ~100 > 10^11 solar mass galaxies at z~5 and ~40 protoclusters at z>2, providing targets for JWST that can be found in no other way. The Spitzer data, in conjunction with the multiwavelength surveys in these fields, ranging from X-ray through far-infrared and cm-radio, will comprise a unique legacy dataset for studies of galaxy evolution.

  18. Origin and assessment of deep groundwater inflow in the Ca' Lita landslide using hydrochemistry and in situ monitoring

    NASA Astrophysics Data System (ADS)

    Cervi, F.; Ronchetti, F.; Martinelli, G.; Bogaard, T. A.; Corsini, A.

    2012-06-01

    Changes in soil water content, groundwater flow and a rise in pore water pressure are well-known causal or triggering factors for hillslope instability. Rainfall and snowmelt are generally assumed as the only sources of groundwater recharge. This assumption neglects the role of deep water inflow in highly tectonized areas, a factor that can influence long-term pore-pressure regimes and play a role on local slope instability. This paper aims to assess the origin of groundwater in the Ca' Lita landslide (northern Italian Apennines) and to qualify and quantify the aliquot attributable to deep water inflow. The research is essentially based on in situ monitoring and hydrochemical analyses. It involved 5 yr of continuous monitoring of groundwater levels, electrical conductivity and temperature, and with groundwater sampling followed by determination of major ions, tracers (such as Boron and Strontium), and isotopes (Oxygen, Deuterium, Tritium). Leaching experiments on soil samples and water recharge estimation were also carried out. Results show that the groundwater balance in the Ca' Lita landslide must take into account an inflow of highly mineralized Na-SO4 water (more than 9500 μS cm-1) with non-negligible amounts of Chloride (up to 800 mg l-1). The deep water inflow recharges the aquifer hosted in the bedrock underlying the sliding surface (at a rate of about 7800-17 500 m3 yr-1). It also partly recharges the landslide body, where the hydrochemical imprint of deep water mixed with rainfall and snowmelt water was observed. This points to a probable influence of deep water inflow on the mobility of the Ca' Lita landslide, a finding that could be applicable to other large landslides occurring in highly tectonized areas in the northern Apennines or in other mountain chains.

  19. Terrestrial source to deep-sea sink sediment budgets at high and low sea levels: Insights from tectonically active Southern California

    USGS Publications Warehouse

    Covault, J.A.; Romans, B.W.; Graham, S.A.; Fildani, A.; Hilley, G.E.

    2011-01-01

    Sediment routing from terrestrial source areas to the deep sea influences landscapes and seascapes and supply and filling of sedimentary basins. However, a comprehensive assessment of land-to-deep-sea sediment budgets over millennia with significant climate change is lacking. We provide source to sink sediment budgets using cosmogenic radionuclide-derived terrestrial denudation rates and submarine-fan deposition rates through sea-level fluctuations since oxygen isotope stage 3 (younger than 40 ka) in tectonically active, spatially restricted sediment-routing systems of Southern California. We show that source-area denudation and deep-sea deposition are balanced during a period of generally falling and low sea level (40-13 ka), but that deep-sea deposition exceeds terrestrial denudation during the subsequent period of rising and high sea level (younger than 13 ka). This additional supply of sediment is likely owed to enhanced dispersal of sediment across the shelf caused by seacliff erosion during postglacial shoreline transgression and initiation of submarine mass wasting. During periods of both low and high sea level, land and deep-sea sediment fluxes do not show orders of magnitude imbalances that might be expected in the wake of major sea-level changes. Thus, sediment-routing processes in a globally significant class of small, tectonically active systems might be fundamentally different from those of larger systems that drain entire orogens, in which sediment storage in coastal plains and wide continental shelves can exceed millions of years. Furthermore, in such small systems, depositional changes offshore can reflect onshore changes when viewed over time scales of several thousand years to more than 10 k.y. ?? 2011 Geological Society of America.

  20. Economic contribution of 'artificial upwelling' mariculture to sea-thermal power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roels, O.A.

    1976-07-01

    Deep-sea water has two valuable properties: it is uniformly cold and, compared to surface water, it is rich in nutrients such as nitrate and phosphate which are necessary for plant growth. In tropical and subtropical areas, the temperature difference between the warm surface water and the cold deep water can be used for sea-thermal power generation or other cooling applications such as air-conditioning, ice-making, desalination, and cooling of refineries, power plants, etc. Once the deep water is brought to the surface, utilization of both the cold temperature and the nutrient content is likely to be more advantageous than the usemore » of only one of them. Claude demonstrated the technical feasibility of sea-thermal power generation in Cuba in 1930. The technical feasibility of artificial upwelling mariculture in the St. Croix installation has been demonstrated. Results to date demonstrate that the gross sales value of the potential mariculture yield from a given volume of deep-sea water is many times that of the sales value of the power which can be generated by the Claude process from the same volume of deep water. Utilizing both the nutrient content and the cold temperature of the deep water may therefore make sea-thermal power generation economically feasible.« less

  1. RaptorX-Property: a web server for protein structure property prediction.

    PubMed

    Wang, Sheng; Li, Wei; Liu, Shiwang; Xu, Jinbo

    2016-07-08

    RaptorX Property (http://raptorx2.uchicago.edu/StructurePropertyPred/predict/) is a web server predicting structure property of a protein sequence without using any templates. It outperforms other servers, especially for proteins without close homologs in PDB or with very sparse sequence profile (i.e. carries little evolutionary information). This server employs a powerful in-house deep learning model DeepCNF (Deep Convolutional Neural Fields) to predict secondary structure (SS), solvent accessibility (ACC) and disorder regions (DISO). DeepCNF not only models complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent property labels. Our experimental results show that, tested on CASP10, CASP11 and the other benchmarks, this server can obtain ∼84% Q3 accuracy for 3-state SS, ∼72% Q8 accuracy for 8-state SS, ∼66% Q3 accuracy for 3-state solvent accessibility, and ∼0.89 area under the ROC curve (AUC) for disorder prediction. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Inhibition of Frying Oil Oxidation by Carbon Dioxide Blanketing.

    PubMed

    Totani, Nagao; Inoue, Ryota; Yawata, Miho

    2016-06-01

    The oxidation of oil starts, in general, from the penetration of atmospheric oxygen into oil. Inhibition of the vigorous oxidation of oil at deep-frying temperature under carbon dioxide flow, by disrupting the contact between oil and air, was first demonstrated using oil in a round bottom flask. Next, the minimum carbon dioxide flow rate necessary to blanket 4 L of frying oil in an electric fryer (surface area 690 cm(2)) installed with nonwoven fabric cover, was found to be 40 L/h. Then deep-frying of potato was done accordingly; immediately after deep-frying, an aluminum cover was placed on top of the nonwoven fabric cover to prevent the loss of carbon dioxide and the carbon dioxide flow was shut off. In conclusion, the oxidation of oil both at deep-frying temperature and during standing was remarkably inhibited by carbon dioxide blanketing at a practical flow rate and volume. Under the deep-frying conditions employed in this study, the increase in polar compound content was reduced to half of that of the control.

  3. Using deep learning for content-based medical image retrieval

    NASA Astrophysics Data System (ADS)

    Sun, Qinpei; Yang, Yuanyuan; Sun, Jianyong; Yang, Zhiming; Zhang, Jianguo

    2017-03-01

    Content-Based medical image retrieval (CBMIR) is been highly active research area from past few years. The retrieval performance of a CBMIR system crucially depends on the feature representation, which have been extensively studied by researchers for decades. Although a variety of techniques have been proposed, it remains one of the most challenging problems in current CBMIR research, which is mainly due to the well-known "semantic gap" issue that exists between low-level image pixels captured by machines and high-level semantic concepts perceived by human[1]. Recent years have witnessed some important advances of new techniques in machine learning. One important breakthrough technique is known as "deep learning". Unlike conventional machine learning methods that are often using "shallow" architectures, deep learning mimics the human brain that is organized in a deep architecture and processes information through multiple stages of transformation and representation. This means that we do not need to spend enormous energy to extract features manually. In this presentation, we propose a novel framework which uses deep learning to retrieval the medical image to improve the accuracy and speed of a CBIR in integrated RIS/PACS.

  4. Optimizing interplanetary trajectories with deep space maneuvers. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Navagh, John

    1993-01-01

    Analysis of interplanetary trajectories is a crucial area for both manned and unmanned missions of the Space Exploration Initiative. A deep space maneuver (DSM) can improve a trajectory in much the same way as a planetary swingby. However, instead of using a gravitational field to alter the trajectory, the on-board propulsion system of the spacecraft is used when the vehicle is not near a planet. The purpose is to develop an algorithm to determine where and when to use deep space maneuvers to reduce the cost of a trajectory. The approach taken to solve this problem uses primer vector theory in combination with a non-linear optimizing program to minimize Delta(V). A set of necessary conditions on the primer vector is shown to indicate whether a deep space maneuver will be beneficial. Deep space maneuvers are applied to a round trip mission to Mars to determine their effect on the launch opportunities. Other studies which were performed include cycler trajectories and Mars mission abort scenarios. It was found that the software developed was able to locate quickly DSM's which lower the total Delta(V) on these trajectories.

  5. Pre-cementation of deep shaft

    NASA Astrophysics Data System (ADS)

    Heinz, W. F.

    1988-12-01

    Pre-cementation or pre-grouting of deep shafts in South Africa is an established technique to improve safety and reduce water ingress during shaft sinking. The recent completion of several pre-cementation projects for shafts deeper than 1000m has once again highlighted the effectiveness of pre-grouting of shafts utilizing deep slimline boreholes and incorporating wireline technique for drilling and conventional deep borehole grouting techniques for pre-cementation. Pre-cementation of deep shaft will: (i) Increase the safety of shaft sinking operation (ii) Minimize water and gas inflow during shaft sinking (iii) Minimize the time lost due to additional grouting operations during sinking of the shaft and hence minimize costly delays and standing time of shaft sinking crews and equipment. (iv) Provide detailed information of the geology of the proposed shaft site. Informations on anomalies, dykes, faults as well as reef (gold bearing conglomerates) intersections can be obtained from the evaluation of cores of the pre-cementation boreholes. (v) Provide improved rock strength for excavations in the immediate vicinity of the shaft area. The paper describes pre-cementation techniques recently applied successfully from surface and some conclusions drawn for further considerations.

  6. Optimizing interplanetary trajectories with deep space maneuvers

    NASA Astrophysics Data System (ADS)

    Navagh, John

    1993-09-01

    Analysis of interplanetary trajectories is a crucial area for both manned and unmanned missions of the Space Exploration Initiative. A deep space maneuver (DSM) can improve a trajectory in much the same way as a planetary swingby. However, instead of using a gravitational field to alter the trajectory, the on-board propulsion system of the spacecraft is used when the vehicle is not near a planet. The purpose is to develop an algorithm to determine where and when to use deep space maneuvers to reduce the cost of a trajectory. The approach taken to solve this problem uses primer vector theory in combination with a non-linear optimizing program to minimize Delta(V). A set of necessary conditions on the primer vector is shown to indicate whether a deep space maneuver will be beneficial. Deep space maneuvers are applied to a round trip mission to Mars to determine their effect on the launch opportunities. Other studies which were performed include cycler trajectories and Mars mission abort scenarios. It was found that the software developed was able to locate quickly DSM's which lower the total Delta(V) on these trajectories.

  7. The use of muscle dynamometer for correction of muscle imbalances in the area of deep stabilising spine system.

    PubMed

    Malátová, Renata; Rokytová, Jitka; Stumbauer, Jan

    2013-08-01

    Dorsal pain caused by spine dysfunctions belongs to most frequent chronic illnesses. The muscles of the deep stabilising spine system work as a single functional unit where a dysfunction of only one muscle causes dysfunction of the whole system. Non-invasive, objective and statistically measurable evaluation of the condition of deep stabilising spine system has been made possible by the construction of muscular dynamometer. The aim of our work has been the assessment of deep stabilising spine system by diaphragm test and muscular dynamometer measurements. Based on an initial examination, a 6-week intervention programme was established including instructions on physiological body posture and correct basic body stabilisation for the given exercises and muscle strengthening. Consecutive measurements are then compared with the initial ones. It was presumed that a smaller number of the tested subjects would be able to correctly activate the deep stabilising spine system muscles before the intervention programme when compared to those after the intervention programme. A positive change of 87% has been found. It is clear that if a person actively approaches the programme, then positive adaptation changes on the deep stabilising spine system are seen only after 6 weeks. With the muscular dynamometer, activation of deep stabilising spine system can be objectively measured. Changes between the initial condition of a subject and the difference after some exercise or rehabilitation are especially noticeable. Also, the effect of given therapy or correct performance of the exercise can be followed and observed.

  8. Geomicrobiology and Metagenomics of Terrestrial Deep Subsurface Microbiomes.

    PubMed

    Itävaara, M; Salavirta, H; Marjamaa, K; Ruskeeniemi, T

    2016-01-01

    Fractures in the deep subsurface of Earth's crust are inhabited by diverse microbial communities that participate in biogeochemical cycles of the Earth. Life on Earth, which arose c. 3.5-4.0 billion years ago, reaches down at least 5 km in the crust. Deep mines, caves, and boreholes have provided scientists with opportunities to sample deep subsurface microbiomes and to obtain information on the species diversity and functions. A wide variety of bacteria, archaea, eukaryotes, and viruses are now known to reside in the crust, but their functions are still largely unknown. The crust at different depths has varying geological composition and hosts endemic microbiomes accordingly. The diversity is driven by geological formations and gases evolving from deeper depths. Cooperation among different species is still mostly unexplored, but viruses are known to restrict density of bacterial and archaeal populations. Due to the complex growth requirements of the deep subsurface microbiomes, the new knowledge about their diversity and functions is mostly obtained by molecular methods, eg, meta'omics'. Geomicrobiology is a multidisciplinary research area combining disciplines from geology, mineralogy, geochemistry, and microbiology. Geomicrobiology is concerned with the interaction of microorganisms and geological processes. At the surface of mineralogical or rock surfaces, geomicrobial processes occur mainly under aerobic conditions. In the deep subsurface, however, the environmental conditions are reducing and anaerobic. The present chapter describes the world of microbiomes in deep terrestrial geological environments as well as metagenomic and metatranscriptomic methods suitable for studies of these enigmatic communities. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A promising tool for subsurface permafrost mapping-An application of airborne geophysics from the Yukon River Basin, Alaska

    USGS Publications Warehouse

    Abraham, Jared E.

    2011-01-01

    In the area of Fort Yukon, the AEM survey shows elevated resistivities extending to depth, likely indicative of thick permafrost. This depth corresponds well to observations from a borehole drilled in the area in the late 1990s, which detected permafrost to a depth of about 100 meters (Clark and others, 2009). In contrast to the area of Fort Yukon, the Yukon River and its floodplain are not associated with deep resistive sediments, suggesting a lack of deep permafrost, at least within the depth range of the AEM mapping (fig. 3).

  10. New constraints on the structure of Hess Deep from regional- and micro-bathymetry data acquired during RRS James Cook in Jan-Feb 2008 (JC021)

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Ferrini, V. L.; MacLeod, C. J.; Teagle, D. A.; Gillis, K. M.; Cazenave, P. W.; Hurst, S. D.; Scientific Party, J.

    2008-12-01

    In January-February 2008, new geophysical and geological data were acquired in Hess Deep using the RRS James Cook and the British ROV Isis. Hess Deep provides a tectonic window into oceanic crust emplaced by fast seafloor spreading at the East Pacific Rise, thereby offering the opportunity to test competing hypotheses for oceanic crustal accretion. The goal of this cruise was to collect datasets that can constrain the structure and composition of the lower crustal section exposed in the south-facing slope of the Intrarift Ridge just north of the Deep, and thus provide insights into the emplacement of gabbroic lower crust at fast spreading rates. Additionally, the acquired datasets provide site survey data for IODP Proposal 551-Full. The following datasets were acquired during JC021: 1) regional multibeam bathymetry survey complemented with sub-bottom profiler (SBP) data (in selected areas), 2) two micro-bathymetry surveys, and 3) seafloor rock samples acquired with an ROV. Here we present grids of regional multibeam and microbathymetry data following post-cruise processing. Regional multibeam bathymetry were acquired using the hull-mounted Kongsberg Simrad EM120 system (12 kHz). These data provide new coverage of the northern flank of the rift as far east as 100°W, which show that it comprises of a series of 50- to 100-km-long en echelon segments. Both E-W and NE-SW striking features are observed in the immediate vicinity of the Deep, including in a newly covered region to the SW of the rift tip. Such features might arise due to the rotation of the Galapagos microplate(s), as proposed by other authors. The ROV Isis acquired micro-bathymetry data in two areas using a Simrad SM2000 (200 kHz) multibeam sonar. Data were acquired at a nominal altitude of ~100 m and speed of 0.3 kts to facilitate high-resolution mapping of seabed features and also permit coverage of two relatively large areas. Swath widths were ~200- 350 m depending on noise and seabed characteristics. Following the cruise, we reprocessed navigation and sonar data using software tools developed through National Deep Submergence Facility (USA) to 1) regenerate seafloor picks with more robust algorithm, 2) incorporate high-resolution navigation (which could not be included in shipboard processing) and 3) correct for attitude variations. The first survey covers a ~15 km2 area on the south-facing slope of the Intrarift Ridge immediately north of the Deep, where lower crustal gabbros have been sampled by Isis during JC021 and by dredging and other deep submergence vehicles during previous cruises. This area also contains the highest priority drill sites from IODP Proposal 551-Full. The second survey covers a ~5.5 km2 area on the Intrarift Ridge and its southern flank, including the location of ODP Site 894. Both grids show structures that strike both E-W and NE-SW, similar to what is observed at a larger scale in the regional bathymetry data. The first survey area also contains a series of sedimented benches, which might be suitable drilling targets. The second survey is characterized by steep scarps that predominantly strike NE-SW. These features were observed to correspond to sizable cliffs during seafloor operations with Isis.

  11. Urban Area Detection in Very High Resolution Remote Sensing Images Using Deep Convolutional Neural Networks.

    PubMed

    Tian, Tian; Li, Chang; Xu, Jinkang; Ma, Jiayi

    2018-03-18

    Detecting urban areas from very high resolution (VHR) remote sensing images plays an important role in the field of Earth observation. The recently-developed deep convolutional neural networks (DCNNs), which can extract rich features from training data automatically, have achieved outstanding performance on many image classification databases. Motivated by this fact, we propose a new urban area detection method based on DCNNs in this paper. The proposed method mainly includes three steps: (i) a visual dictionary is obtained based on the deep features extracted by pre-trained DCNNs; (ii) urban words are learned from labeled images; (iii) the urban regions are detected in a new image based on the nearest dictionary word criterion. The qualitative and quantitative experiments on different datasets demonstrate that the proposed method can obtain a remarkable overall accuracy (OA) and kappa coefficient. Moreover, it can also strike a good balance between the true positive rate (TPR) and false positive rate (FPR).

  12. SEDS: The Spitzer Extended Deep Survey. Survey Design, Photometry, and Deep IRAC Source Counts

    NASA Technical Reports Server (NTRS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Huang, J.-S.; Arendt, A.; Barmby, P.; Barro, G; Bell, E. F.; Bouwens, R.; Cattaneo, A.; hide

    2013-01-01

    The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg(exp 2) to a depth of 26 AB mag (3sigma) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 micron. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 +/- 1.0 and 4.4 +/- 0.8 nW / square m/sr at 3.6 and 4.5 micron to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component.

  13. Impact of Deepwater Horizon Spill on food supply to deep-sea benthos communities

    USGS Publications Warehouse

    Prouty, Nancy G.; Swarzenski, Pamela; Mienis, Furu; Duineveld, Gerald; Demopoulos, Amanda W.J.; Ross, Steve W.; Brooke, Sandra

    2016-01-01

    Deep-sea ecosystems encompass unique and often fragile communities that are sensitive to a variety of anthropogenic and natural impacts. After the 2010 Deepwater Horizon (DWH) oil spill, sampling efforts documented the acute impact of the spill on some deep-sea coral colonies. To investigate the impact of the DWH spill on quality and quantity of biomass delivered to the deep-sea, a suite of geochemical tracers (e.g., stable and radio-isotopes, lipid biomarkers, and compound specific isotopes) was measured from monthly sediment trap samples deployed near a high-density deep-coral site in the Viosca Knoll area of the north-central Gulf of Mexico prior to (Oct-2008 to Sept-2009) and after the spill (Oct-10 to Sept-11). Marine (e.g., autochthonous) sources of organic matter dominated the sediment traps in both years, however after the spill, there was a pronounced reduction in marinesourced OM, including a reduction in marine-sourced sterols and n-alkanes and a concomitant decrease in sediment trap organic carbon and pigment flux. Results from this study indicate a reduction in primary production and carbon export to the deep-sea in 2010-2011, at least 6-18 months after the spill started. Whereas satellite observations indicate an initial increase in phytoplankton biomass, results from this sediment trap study define a reduction in primary production and carbon export to the deep-sea community. In addition, a dilution from a low-14C carbon source (e.g., petrocarbon) was detected in the sediment trap samples after the spill, in conjunction with a change in the petrogenic composition. The data presented here fills a critical gap in our knowledge of biogeochemical processes and sub-acute impacts to the deep-sea that ensued after the 2010 DWH spill.

  14. An Evaluation of Deep-Sea Benthic Megafaunal Communities in the Northern Gulf of Mexico Using Industrial ROVS and Video Imagery

    NASA Astrophysics Data System (ADS)

    Sharuga, S. M.; Benfield, M. C.

    2016-02-01

    The Deepwater Horizon oil spill in 2010 created a need for more thorough studies of deep-sea benthic biota, especially in soft-sediment areas of the Northern Gulf of Mexico (GoM). These benthic environments are increasingly vulnerable as demand and exploitation of resources in these areas grow. A 15°, 250 m long radial transect survey design was developed for use with industrial remotely operated vehicles (ROVs) to quantify benthic megafaunal communities in the vicinity of the MC252 well. Further, a customized database system was developed to explore natural and anthropogenic factors potentially responsible for influencing benthic megafaunal characteristics in this area. Biotic and abiotic characteristics were extracted from ROV videos collected one year after the Deepwater Horizon spill at seven study sites ranging from 2-39 km away from MC252, and located at depths from 850-1500 m. Seafloor environments differed amongst the sites, with differences found to be related to location and depth. Benthic megafauna in ten taxonomic categories were evaluated in order to compare benthic community characteristics, including density and diversity. Overall, community composition was found to be primarily related to depth and, to a lesser degree, site location. Results from this study suggest that depth, location, and the abiotic environment (ex. seafloor features, including anthropogenic disturbance) play important roles in the abundances and diversity of deep-sea benthic megafauna in the Northern GoM and should be considered when conducting environmental studies. This study demonstrates the utility of industrial-based deep-sea imaging platforms as a readily accessible option for collecting valuable information on deep-sea environments. These platforms exhibit excellent potential for use in determining baseline data and evaluating ecosystem changes and/or recovery.

  15. CAPILLARY NETWORK ANOMALIES IN BRANCH RETINAL VEIN OCCLUSION ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    PubMed

    Rispoli, Marco; Savastano, Maria Cristina; Lumbroso, Bruno

    2015-11-01

    To analyze the foveal microvasculature features in eyes with branch retinal vein occlusion (BRVO) using optical coherence tomography angiography based on split spectrum amplitude decorrelation angiography technology. A total of 10 BRVO eyes (mean age 64.2 ± 8.02 range between 52 years and 76 years) were evaluated by optical coherence tomography angiography (XR-Avanti; Optovue). The macular angiography scan protocol covered a 3 mm × 3 mm area. The focus of angiography analysis were two retinal layers: superficial vascular network and deep vascular network. The following vascular morphological congestion parameters were assessed in the vein occlusion area in both the superficial and deep networks: foveal avascular zone enlargement, capillary non-perfusion occurrence, microvascular abnormalities appearance, and vascular congestion signs. Image analyses were performed by 2 masked observers and interobserver agreement of image analyses was 0.90 (κ = 0.225, P < 0.01). In both superficial and deep network of BRVO, a decrease in capillary density with foveal avascular zone enlargement, capillary non-perfusion occurrence, and microvascular abnormalities appearance was observed (P < 0.01). The deep network showed the main vascular congestion at the boundary between healthy and nonperfused retina. Optical coherence tomography angiography in BRVO allows to detect foveal avascular zone enlargement, capillary nonperfusion, microvascular abnormalities, and vascular congestion signs both in the superficial and deep capillary network in all eyes. Optical coherence tomography angiography technology is a potential clinical tool for BRVO diagnosis and follow-up, providing stratigraphic vascular details that have not been previously observed by standard fluorescein angiography. The normal retinal vascular nets and areas of nonperfusion and congestion can be identified at various retinal levels. Optical coherence tomography angiography provides noninvasive images of the retinal capillaries and vascular networks.

  16. Patterns of Deep-Sea Genetic Connectivity in the New Zealand Region: Implications for Management of Benthic Ecosystems

    PubMed Central

    Bors, Eleanor K.; Rowden, Ashley A.; Maas, Elizabeth W.; Clark, Malcolm R.; Shank, Timothy M.

    2012-01-01

    Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), deep-sea communities at upper bathyal depths (<2000 m) are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand’s EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region. PMID:23185341

  17. Language context modulates reading route: an electrical neuroimaging study

    PubMed Central

    Buetler, Karin A.; de León Rodríguez, Diego; Laganaro, Marina; Müri, René; Spierer, Lucas; Annoni, Jean-Marie

    2014-01-01

    Introduction: The orthographic depth hypothesis (Katz and Feldman, 1983) posits that different reading routes are engaged depending on the type of grapheme/phoneme correspondence of the language being read. Shallow orthographies with consistent grapheme/phoneme correspondences favor encoding via non-lexical pathways, where each grapheme is sequentially mapped to its corresponding phoneme. In contrast, deep orthographies with inconsistent grapheme/phoneme correspondences favor lexical pathways, where phonemes are retrieved from specialized memory structures. This hypothesis, however, lacks compelling empirical support. The aim of the present study was to investigate the impact of orthographic depth on reading route selection using a within-subject design. Method: We presented the same pseudowords (PWs) to highly proficient bilinguals and manipulated the orthographic depth of PW reading by embedding them among two separated German or French language contexts, implicating respectively, shallow or deep orthography. High density electroencephalography was recorded during the task. Results: The topography of the ERPs to identical PWs differed 300–360 ms post-stimulus onset when the PWs were read in different orthographic depth context, indicating distinct brain networks engaged in reading during this time window. The brain sources underlying these topographic effects were located within left inferior frontal (German > French), parietal (French > German) and cingular areas (German > French). Conclusion: Reading in a shallow context favors non-lexical pathways, reflected in a stronger engagement of frontal phonological areas in the shallow versus the deep orthographic context. In contrast, reading PW in a deep orthographic context recruits less routine non-lexical pathways, reflected in a stronger engagement of visuo-attentional parietal areas in the deep versus shallow orthographic context. These collective results support a modulation of reading route by orthographic depth. PMID:24600377

  18. Inclusion of the fitness sharing technique in an evolutionary algorithm to analyze the fitness landscape of the genetic code adaptability.

    PubMed

    Santos, José; Monteagudo, Ángel

    2017-03-27

    The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered. The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape. Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape.

  19. Encoding-related brain activity during deep processing of verbal materials: a PET study.

    PubMed

    Fujii, Toshikatsu; Okuda, Jiro; Tsukiura, Takashi; Ohtake, Hiroya; Suzuki, Maki; Kawashima, Ryuta; Itoh, Masatoshi; Fukuda, Hiroshi; Yamadori, Atsushi

    2002-12-01

    The recent advent of neuroimaging techniques provides an opportunity to examine brain regions related to a specific memory process such as episodic memory encoding. There is, however, a possibility that areas active during an assumed episodic memory encoding task, compared with a control task, involve not only areas directly relevant to episodic memory encoding processes but also areas associated with other cognitive processes for on-line information. We used positron emission tomography (PET) to differentiate these two kinds of regions. Normal volunteers were engaged in deep (semantic) or shallow (phonological) processing of new or repeated words during PET. Results showed that deep processing, compared with shallow processing, resulted in significantly better recognition performance and that this effect was associated with activation of various brain areas. Further analyses revealed that there were regions directly relevant to episodic memory encoding in the anterior part of the parahippocampal gyrus, inferior frontal gyrus, supramarginal gyrus, anterior cingulate gyrus, and medial frontal lobe in the left hemisphere. Our results demonstrated that several regions, including the medial temporal lobe, play a role in episodic memory encoding.

  20. Anatomical relation between S1 sacroiliac screws' entrance points and superior gluteal artery.

    PubMed

    Zhao, Yong; You, Libo; Lian, Wei; Zou, Dexin; Dong, Shengjie; Sun, Tao; Zhang, Shudong; Wang, Dan; Li, Jingning; Li, Wenliang; Zhao, Yuchi

    2018-01-18

    To conduct radiologic anatomical study on the relation between S1 sacroiliac screws' entry points and the route of the pelvic outer superior gluteal artery branches with the aim to provide the anatomical basis and technical reference for the avoidance of damage to the superior gluteal artery during the horizontal sacroiliac screw placement. Superior gluteal artery CTA (CT angiography) vascular imaging of 74 healthy adults (37 women and 37 men) was done with 128-slice spiral CT (computed tomography). The CT attendant-measuring software was used to portray the "safe bony entrance area" (hereinafter referred to as "Safe Area") of the S1 segment in the standard lateral pelvic view of three-dimensional reconstruction. The anatomical relation between S1 sacroiliac screws' Safe Area and the pelvic outer superior gluteal artery branches was observed and recorded. The number of cases in which artery branches intersected the Safe Area was counted. The cases in which superior gluteal artery branches disjointed from the Safe Area were identified, and the shortest distance between the Safe Area and the superior gluteal artery branch closest to the Safe Area was measured. Three cases out of the 74 sample cases were excluded from this study as they were found to have no bony space for horizontal screw placement in S1 segment. Among the remaining 71 sample cases, there are 32 cases (45.1%) where the deep superior branch of superior gluteal artery passes through the Safe Area of S1 entrance point. There was no distinguishing feature and rule on how the deep superior branches and the Safe Area overlapped. In the 39 cases in which superior gluteal artery branches disjointed from the Safe Area, the deep superior branches of superior gluteal artery were the branches closest to the Safe Area and the part of the branch closest to the Safe Area was located in front of the widest part of the Safe Area. The shortest distance between the deep superior branch and the Safe Area is 0.86 ± 0.84 cm. There is a high risk of accidental injury of the deep superior branches of superior gluteal artery in the process of S1 sacroiliac screw placement. Even if the entry points are located in the safe bony entrance area, the absolute secure placement cannot be assured. We suggest that great attention should be paid to make thorough preoperative plans.

  1. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Young, R. R.; Huth, N.

    2011-11-01

    The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr-1 rainfall), such as parts of Australia's Murray-Darling Basin (MDB). In this unique study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8-1.2 m depth under perennial vegetation and at 2.0-2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91-229 t ha-1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥10 m depth that is not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m-1 at 21 to 37 m depth (N = 5), whereas deeper groundwater was less saline (290 mS m-1) with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM) software package predicted deep drainage of 3.3-9.5 mm yr-1 (0.7-2.1% rainfall) based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total), and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge negligible due to low rainfall and large potential evapotranspiration, transient hydrological conditionsafter changes in land use and a thick clay dominated vadose zone. This is in contrast to regional groundwater modelling that assumes annual recharge of 0.5% of rainfall. Importantly, it was found that leaching from episodic deep drainage could not cause discharge of saline groundwater in the area, since the water table was several meters below the incised river bed.

  2. Origin and assessment of deep groundwater inflow in the Ca' Lita landslide using hydrochemistry and in situ monitoring

    NASA Astrophysics Data System (ADS)

    Cervi, F.; Ronchetti, F.; Martinelli, G.; Bogaard, T. A.; Corsini, A.

    2012-11-01

    Changes in soil water content, groundwater flow and a rise in pore water pressure are well-known causal or triggering factors for hillslope instability. Rainfall and snowmelt are generally assumed as the main sources of groundwater recharge. This assumption neglects the role of deep water inflow in highly tectonized areas, a factor that can influence long-term pore-pressure regimes and play a role on local slope instability. This paper aims to assess the origin of groundwater in the Ca' Lita landslide (northern Italian Apennines) and to qualify and quantify the aliquot attributable to deep water inflow. The research is essentially based on in situ monitoring and hydrochemical analyses. It involved 5 yr of continuous monitoring of groundwater levels, electrical conductivity and temperature and with groundwater sampling followed by determination of major ions (Na+, K+, Mg2+, Ca2+, Cl-, HCO3-, SO42-), tracers (such as Btot and Sr2+), and isotopes (δ18O, δ2H and 3H). Leaching experiments on soil samples, hydrochemical modelling and water recharge estimation were also carried out. Results show that the groundwater balance in the Ca' Lita landslide must take into account an inflow of deep and highly mineralised Na-SO4 water (more than 9500 μS cm-1) with non-negligible amounts of Cl- (up to 800 mg l-1). The chemical and isotopic fingerprint of this water points to oilfield water hosted at large depths in the Apennine chain and that uprises through a regional fault line crossing the landslide area. It recharges the aquifer hosted in the bedrock underlying the sliding surface (at a rate of about 49 000-85 700 m3 yr-1) and it also partly recharges the landslide body. In both the aquifers, the hydrochemical imprint of deep water mixed with rainfall and snowmelt water was observed. This indicates a probable influence of deep water inflow on the mobility of the Ca' Lita landslide, a finding that could be applicable to other large landslides occurring in highly tectonized areas in the northern Apennines or in other mountain chains. The paper demonstrates that hydrochemistry should, therefore, be considered as a valuable investigation method to define hydrogeological limits and the groundwater sources in hillslope and to assess groundwater flow patterns in deep-seated landslides.

  3. Nitrogen and Phosphorus Budgets in the Northwestern Mediterranean Deep Convection Region

    NASA Astrophysics Data System (ADS)

    Kessouri, Faycal; Ulses, Caroline; Estournel, Claude; Marsaleix, Patrick; Severin, Tatiana; Pujo-Pay, Mireille; Caparros, Jocelyne; Raimbault, Patrick; Pasqueron de Fommervault, Orens; D'Ortenzio, Fabrizio; Taillandier, Vincent; Testor, Pierre; Conan, Pascal

    2017-12-01

    The aim of this study is to understand the biogeochemical cycles of the northwestern Mediterranean Sea (NW Med), where a recurrent spring bloom related to dense water formation occurs. We used a coupled physical-biogeochemical model at high resolution to simulate realistic 1 year period and analyze the nitrogen (N) and phosphorus (P) cycles. First, the model was evaluated using cruises carried out in winter, spring, and summer and a Bio-Argo float deployed in spring. Then, the annual cycle of meteorological and hydrodynamical forcing and nutrients stocks in the upper layer were analyzed. Third, the effect of biogeochemical and physical processes on N and P was quantified. Fourth, we quantified the effects of the physical and biological processes on the seasonal changes of the molar NO3:PO4 ratio, particularly high compared to the global ocean. The deep convection reduced the NO3:PO4 ratio of upper waters, but consumption by phytoplankton increased it. Finally, N and P budgets were estimated. At the annual scale, this area constituted a sink of inorganic and a source of organic N and P for the peripheral area. NO3 and PO4 were horizontally advected from the peripheral regions into the intermediate waters (130-800 m) of the deep convection area, while organic matter was exported throughout the whole water column toward the surrounding areas. The annual budget suggests that the NW Med deep convection constitutes a major source of nutrients for the photic zone of the Mediterranean Sea.

  4. Assimilation of Long-Range Lightning Data over the Pacific

    DTIC Science & Technology

    2011-09-30

    convective rainfall analyses over the Pacific, and (iii) to improve marine prediction of cyclogenesis of both tropical and extratropical cyclones through...data over the North Pacific Ocean, refine the relationships between lightning and storm hydrometeor characteristics, and assimilate lightning...unresolved storm -scale areas of deep convection over the data-sparse open oceans. Diabatic heating sources, especially latent heat release in deep

  5. NRL Fact Book

    DTIC Science & Technology

    1985-04-01

    characteristics of targets Tank 9.1 m (30 ft) in diameter by 6.7 m (22 ft) deep , automated with computer con- trol and analysis for detailed studies of acoustic...structures; and conducts experiments in the deep ocean, in acoustically shallow water, and in the Arctic. The Division carries out theoretical and...Laser Materials-Application Center Failure Analysis and Fractography Staff Research Activity Areas Environmental Effects Microstructural characterization

  6. Eclipsing cataclysmic variables. Deep eclipses in H0928+501. YY Draconis, the whirling dervish. New x ray pulsar candidates from HEAO-1

    NASA Technical Reports Server (NTRS)

    Patterson, Joseph

    1993-01-01

    The status report covering the period from 1 June 1992 to 31 May 1993 is included. Areas of research include: (1) eclipsing cataclysmic variables; (2) deep eclipses in H0928+501; (3) YY Draconis, the Whirling Dervish; and (4) new x ray pulsar candidates from HEAO-1.

  7. Low temperature hydrothermal maturation of organic matter in sediments from the Atlantis II Deep, Red Sea.

    PubMed

    Simoneit, B R; Grimalt, J O; Hayes, J M; Hartman, H

    1987-01-01

    Hydrocarbons and bulk organic matter of two sediment cores (No. 84 and 126, CHAIN 61 cruise) located within the Atlantis II Deep have been analyzed. Although the brines overlying the coring areas were reported to be sterile, microbial inputs and minor terrestrial sources the major sedimentary organic material. This input is derived from the upper water column above the brines. Both steroid and triterpenoid hydrocarbons show that extensive acid-catalyzed reactions are occurring in the sediments. In comparison with other hydrothermal (Guaymas Basin) or intrusive systems (Cape Verde Rise), the Atlantis II Deep exhibits a lower degree of thermal maturation. This is easily deduced from the elemental composition of the kerogens and the absence of polynuclear aromatic hydrocarbons of a pyrolytic origin in the bitumen. The lack of carbon number preference among the n-alkanes suggests, especially in the case of the long chain homologs, that the organic matter of Atlantis II Deep sediments has undergone some degree of catagenesis. However, the yields of hydrocarbons are much lower than those observed in other hydrothermal areas. The effect of lower temperature and poor source-rock characteristics appear to be responsible for the differences.

  8. The use of Hyalomatrix PA in the treatment of deep partial-thickness burns.

    PubMed

    Gravante, Gianpiero; Delogu, Daniela; Giordan, Nicola; Morano, Giuseppina; Montone, Antonio; Esposito, Gaetano

    2007-01-01

    Since 2001, Hyalomatrix PA (Fidia Advanced Biopolymers, Abano Terme, Italy) has been used in our center on pediatric burned patients as a temporary dermal substitute to cover deep partial-thickness burns after dermabrasion. This "bridge" treatment was adopted to remove necrotic debris (dermabrasion) and to stimulate regeneration in a humid and protected environment (Hyalomatrix PA). We present results obtained with this approach. On the third to fifth day after admission, dermabrasion was practiced on deep burned areas, which were covered with Hyalomatrix PA. Change of dressings was performed every 7 days. On day 21, those areas still without signs of recovery were removed with classic escharectomy and covered with thin skin grafts. We treated 300 patients. Sixty-one percent needed only one dermabrasion treatment, 22.3% (67 patients) more than one, and 16.7% (50 patients) the classic escharectomy. A total of 83% of patients healed within 21 days. Our study suggests that the combination of dermabrasion with a temporary dermal substitute could be a good and feasible approach for treatment of deep partial-thickness burns. Prospective randomized studies are now necessary to compare our protocol with the gold standard treatment of topical dressings.

  9. Fate of copper complexes in hydrothermally altered deep-sea sediments from the Central Indian Ocean Basin.

    PubMed

    Chakraborty, Parthasarathi; Sander, Sylvia G; Jayachandran, Saranya; Nath, B Nagender; Nagaraju, G; Chennuri, Kartheek; Vudamala, Krushna; Lathika, N; Mascarenhas-Pereira, Maria Brenda L

    2014-11-01

    The current study aims to understand the speciation and fate of Cu complexes in hydrothermally altered sediments from the Central Indian Ocean Basin and assess the probable impacts of deep-sea mining on speciation of Cu complexes and assess the Cu flux from this sediment to the water column in this area. This study suggests that most of the Cu was strongly associated with different binding sites in Fe-oxide phases of the hydrothermally altered sediments with stabilities higher than that of Cu-EDTA complexes. The speciation of Cu indicates that hydrothermally influenced deep-sea sediments from Central Indian Ocean Basin may not significantly contribute to the global Cu flux. However, increasing lability of Cu-sediment complexes with increasing depth of sediment may increase bioavailability and Cu flux to the global ocean during deep-sea mining. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Deep seawater inherent optical properties in the Southern Ionian Sea

    NASA Astrophysics Data System (ADS)

    Riccobene, G.; Capone, A.; Aiello, S.; Ambriola, M.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Avanzini, C.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhadef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; de Bonis, G.; de Marzo, C.; de Rosa, G.; de Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galeotti, S.; Gandolfi, E.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raffaelli, F.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Russo, S.; Sapienza, P.; Sedita, M.; Schuller, J.-P.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.

    2007-02-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration has been carrying out since 1998 an evaluation programme of deep sea sites suitable for the construction of the future Mediterranean km3 Čerenkov neutrino telescope. We investigated the seawater optical and oceanographic properties of several deep sea marine areas close to the Italian Coast. Inherent optical properties (light absorption and attenuation coefficients) have been measured as a function of depth using an experimental apparatus equipped with standard oceanographic probes and the commercial transmissometer AC9 manufactured by WETLabs. This paper reports on the visible light absorption and attenuation coefficients measured in deep seawater of a marine region located in the Southern Ionian Sea, 60 100 km SE of Capo Passero (Sicily). Data show that blue light absorption coefficient is about 0.015 m-1 (corresponding to an absorption length of 67 m) close to the one of optically pure water and it does not show seasonal variation.

  11. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.

    PubMed

    Kang, Min-Joo; Kang, Je-Won

    2016-01-01

    A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus.

  12. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security

    PubMed Central

    Kang, Min-Joo

    2016-01-01

    A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus. PMID:27271802

  13. Habitat associations of juvenile Burbot in a tributary of the Kootenai River

    USGS Publications Warehouse

    Beard, Zachary S.; Quist, Michael C.; Hardy, Ryan S.; Ross, Tyler J.

    2017-01-01

    Burbot Lota lota in the lower Kootenai River, Idaho, have been the focus of extensive conservation efforts, particularly conservation aquaculture. One of the primary management strategies has been the release of Burbot into small tributaries in the Kootenai River basin, such as Deep Creek. Since 2012, approximately 12,000 juvenile Burbot have been stocked into Deep Creek; however, little is known about the habitat use of stocked Burbot. The objective of this study was to evaluate habitat associations of juvenile Burbot in Deep Creek. Fish and habitat were sampled from 58 reaches of the creek. Regression models suggested that Burbot moved little after stocking and were associated with areas of high mean depth and coarse substrate. This study provides additional knowledge on habitat associations of juvenile Burbot and suggests that managers should consider selecting deep habitats with coarse substrate for stocking locations.

  14. Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT: A Multicenter Study.

    PubMed

    Betancur, Julian; Commandeur, Frederic; Motlagh, Mahsaw; Sharir, Tali; Einstein, Andrew J; Bokhari, Sabahat; Fish, Mathews B; Ruddy, Terrence D; Kaufmann, Philipp; Sinusas, Albert J; Miller, Edward J; Bateman, Timothy M; Dorbala, Sharmila; Di Carli, Marcelo; Germano, Guido; Otaki, Yuka; Tamarappoo, Balaji K; Dey, Damini; Berman, Daniel S; Slomka, Piotr J

    2018-03-12

    The study evaluated the automatic prediction of obstructive disease from myocardial perfusion imaging (MPI) by deep learning as compared with total perfusion deficit (TPD). Deep convolutional neural networks trained with a large multicenter population may provide improved prediction of per-patient and per-vessel coronary artery disease from single-photon emission computed tomography MPI. A total of 1,638 patients (67% men) without known coronary artery disease, undergoing stress 99m Tc-sestamibi or tetrofosmin MPI with new generation solid-state scanners in 9 different sites, with invasive coronary angiography performed within 6 months of MPI, were studied. Obstructive disease was defined as ≥70% narrowing of coronary arteries (≥50% for left main artery). Left ventricular myocardium was segmented using clinical nuclear cardiology software and verified by an expert reader. Stress TPD was computed using sex- and camera-specific normal limits. Deep learning was trained using raw and quantitative polar maps and evaluated for prediction of obstructive stenosis in a stratified 10-fold cross-validation procedure. A total of 1,018 (62%) patients and 1,797 of 4,914 (37%) arteries had obstructive disease. Area under the receiver-operating characteristic curve for disease prediction by deep learning was higher than for TPD (per patient: 0.80 vs. 0.78; per vessel: 0.76 vs. 0.73: p < 0.01). With deep learning threshold set to the same specificity as TPD, per-patient sensitivity improved from 79.8% (TPD) to 82.3% (deep learning) (p < 0.05), and per-vessel sensitivity improved from 64.4% (TPD) to 69.8% (deep learning) (p < 0.01). Deep learning has the potential to improve automatic interpretation of MPI as compared with current clinical methods. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  15. Deep-sea coral research and technology program: Alaska deep-sea coral and sponge initiative final report

    USGS Publications Warehouse

    Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.

    2017-01-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).

  16. Deep-breathing exercises reduce atelectasis and improve pulmonary function after coronary artery bypass surgery.

    PubMed

    Westerdahl, Elisabeth; Lindmark, Birgitta; Eriksson, Tomas; Friberg, Orjan; Hedenstierna, Göran; Tenling, Arne

    2005-11-01

    To investigate the effects of deep-breathing exercises on pulmonary function, atelectasis, and arterial blood gas levels after coronary artery bypass graft (CABG) surgery. In a prospective, randomized trial, patients performing deep-breathing exercises (n = 48) were compared to a control group (n = 42) who performed no breathing exercises postoperatively. Patient management was similar in the groups in terms of assessment, positioning, and mobility. The patients in the deep-breathing group were instructed to perform breathing exercises hourly during daytime for the first 4 postoperative days. The exercises consisted of 30 slow, deep breaths performed with a positive expiratory pressure blow-bottle device (+ 10 cm H(2)O). Spirometric measurements, spiral CT (three transverse levels), arterial blood gas analysis, and scoring of subjective experience of the breathing exercises were performed on the fourth postoperative day. Atelectasis was only half the size in the deep-breathing group compared to the control group, amounting to 2.6 +/- 2.2% vs 4.7 +/- 5.7% (p = 0.045) at the basal level and 0.1 +/- 0.2% vs 0.3 +/- 0.5% (mean +/- SD) [p = 0.01] at the apical level. Compared to the control subjects, the patients in the deep-breathing group had a significantly smaller reduction in FVC (to 71 +/- 12%, vs 64 +/- 13% of the preoperative values; p = 0.01) and FEV(1) (to 71 +/- 11%, vs 65 +/- 13% of the preoperative values; p = 0.01). Arterial oxygen tension, carbon dioxide tension, fever, or length of ICU or hospital stay did not differ between the groups. In the deep-breathing group, 72% of the patients experienced a subjective benefit from the exercises. Patients performing deep-breathing exercises after CABG surgery had significantly smaller atelectatic areas and better pulmonary function on the fourth postoperative day compared to a control group performing no exercises.

  17. A Deep Learning Method to Automatically Identify Reports of Scientifically Rigorous Clinical Research from the Biomedical Literature: Comparative Analytic Study.

    PubMed

    Del Fiol, Guilherme; Michelson, Matthew; Iorio, Alfonso; Cotoi, Chris; Haynes, R Brian

    2018-06-25

    A major barrier to the practice of evidence-based medicine is efficiently finding scientifically sound studies on a given clinical topic. To investigate a deep learning approach to retrieve scientifically sound treatment studies from the biomedical literature. We trained a Convolutional Neural Network using a noisy dataset of 403,216 PubMed citations with title and abstract as features. The deep learning model was compared with state-of-the-art search filters, such as PubMed's Clinical Query Broad treatment filter, McMaster's textword search strategy (no Medical Subject Heading, MeSH, terms), and Clinical Query Balanced treatment filter. A previously annotated dataset (Clinical Hedges) was used as the gold standard. The deep learning model obtained significantly lower recall than the Clinical Queries Broad treatment filter (96.9% vs 98.4%; P<.001); and equivalent recall to McMaster's textword search (96.9% vs 97.1%; P=.57) and Clinical Queries Balanced filter (96.9% vs 97.0%; P=.63). Deep learning obtained significantly higher precision than the Clinical Queries Broad filter (34.6% vs 22.4%; P<.001) and McMaster's textword search (34.6% vs 11.8%; P<.001), but was significantly lower than the Clinical Queries Balanced filter (34.6% vs 40.9%; P<.001). Deep learning performed well compared to state-of-the-art search filters, especially when citations were not indexed. Unlike previous machine learning approaches, the proposed deep learning model does not require feature engineering, or time-sensitive or proprietary features, such as MeSH terms and bibliometrics. Deep learning is a promising approach to identifying reports of scientifically rigorous clinical research. Further work is needed to optimize the deep learning model and to assess generalizability to other areas, such as diagnosis, etiology, and prognosis. ©Guilherme Del Fiol, Matthew Michelson, Alfonso Iorio, Chris Cotoi, R Brian Haynes. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 25.06.2018.

  18. Ecohydrological control of deep drainage in arid and semiarid regions

    USGS Publications Warehouse

    Seyfried, M.S.; Schwinning, S.; Walvoord, Michelle Ann; Pockman, W. T.; Newman, B.D.; Jackson, R.B.; Phillips, F.M.

    2005-01-01

    The amount and spatial distribution of deep drainage (downward movement of water across the bottom of the root zone) and groundwater recharge affect the quantity and quality of increasingly limited groundwater in arid and semiarid regions. We synthesize research from the fields of ecology and hydrology to address the issue of deep drainage in arid and semiarid regions. We start with a recently developed hydrological model that accurately simulates soil water potential and geochemical profiles measured in thick (>50 m), unconsolidated vadose zones. Model results indicate that, since the climate change that marked the onset of the Holocene period 10 000–15 000 years ago, there has been no deep drainage in vegetated interdrainage areas and that continuous, relatively low (<−1 MPa) soil water potentials have been maintained at depths of 2–3 m. A conceptual model consistent with these results proposes that the native, xeric‐shrub‐dominated, plant communities that gained dominance during the Holocene generated and maintained these conditions. We present three lines of ecological evidence that support the conceptual model. First, xeric shrubs have sufficiently deep rooting systems with low extraction limits to generate the modeled conditions. Second, the characteristic deep‐rooted soil–plant systems store sufficient water to effectively buffer deep soil from climatic fluctuations in these dry environments, allowing stable conditions to persist for long periods of time. And third, adaptations resulting in deep, low‐extraction‐limit rooting systems confer significant advantages to xeric shrubs in arid and semiarid environments. We then consider conditions in arid and semiarid regions in which the conceptual model may not apply, leading to the expectation that portions of many arid and semiarid watersheds supply some deep drainage. Further ecohydrologic research is required to elucidate critical climatic and edaphic thresholds, evaluate the role of important physiological processes (such as hydraulic redistribution), and evaluate the role of deep roots in terms of carbon costs, nutrient uptake, and whole‐plant development.

  19. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens

    PubMed Central

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-01-01

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse. PMID:27327255

  20. Diversity in deep-sea benthic macrofauna: the importance of local ecology, the larger scale, history and the Antarctic

    NASA Astrophysics Data System (ADS)

    Gage, John D.

    2004-07-01

    High diversity in macrobenthos in the deep sea still lacks satisfactory explanation, even if this richness may not be exceptional compared to that in coastal soft sediments. Explanations have assumed a highly ecologically interactive, saturated local community with co-existence controlled by either niche heterogeneity, or spatio-temporal heterogeneity embodying disturbance. All have failed to provide convincing support. Local/regional scale biodiversity relationships support the idea of local richness in macrobenthos being predominantly dependent on the larger, rather local scale. Local-scale ecological interactions seem unlikely to have overriding importance in co-existence of species in the deep sea, even for relatively abundant, 'core' species with wide distributions. Variety in observed larger-scale pattern and the strong inter-regional pattern, particularly in the poorly known southern hemisphere, seem to have a pluralistic causation. These include regional-scale barriers and extinctions (e.g., Arctic), and ongoing adaptive zone re-colonisation (e.g., Mediterranean), along with other historical constraints on speciation and migration of species caused by changes in ocean and ocean-basin geometry. At the global scale lack of knowledge of the Antarctic deep sea, for example, blocks coherent understanding of latitudinal species diversity gradients. We need to reconcile emerging understanding of large-scale historical variability in the deep-sea environment—with massive extinctions among microfossil indicators as recently as the Pliocene—to results from cladistic studies indicating ancient lineages, such as asellote isopods, that have evolved entirely within the deep sea. The degree to which the great age, diversity, and high degree of endemism in Antarctic shelf benthos might have enriched biodiversity in the adjacent deep seas basins remains unclear. Basin confluence with the Atlantic, Indian and Pacific Oceans may have encouraged northwards dispersion of species from and into the deep Antarctic basins so that any regional identity is superficial. Interpretation of the Antarctic deep sea as a diversity pump for global deep-sea biodiversity may simply reflect re-colonisation, via basin confluence, of northern hemisphere areas impoverished by the consequences of rapid environmental change during the Quaternary.

  1. Usefulness of DWI in preoperative assessment of deep myometrial invasion in patients with endometrial carcinoma: a systematic review and meta-analysis

    PubMed Central

    2014-01-01

    Background The objective of this study was to perform a systematic review and a meta-analysis in order to estimate the diagnostic accuracy of diffusion weighted imaging (DWI) in the preoperative assessment of deep myometrial invasion in patients with endometrial carcinoma. Methods Studies evaluating DWI for the detection of deep myometrial invasion in patients with endometrial carcinoma were systematically searched for in the MEDLINE, EMBASE, and Cochrane Library from January 1995 to January 2014. Methodologic quality was assessed by using the Quality Assessment of Diagnostic Accuracy Studies tool. Bivariate random-effects meta-analytic methods were used to obtain pooled estimates of sensitivity, specificity, diagnostic odds ratio (DOR) and receiver operating characteristic (ROC) curves. The study also evaluated the clinical utility of DWI in preoperative assessment of deep myometrial invasion. Results Seven studies enrolling a total of 320 individuals met the study inclusion criteria. The summary area under the ROC curve was 0.91. There was no evidence of publication bias (P = 0.90, bias coefficient analysis). Sensitivity and specificity of DWI for detection of deep myometrial invasion across all studies were 0.90 and 0.89, respectively. Positive and negative likelihood ratios with DWI were 8 and 0.11 respectively. In patients with high pre-test probabilities, DWI enabled confirmation of deep myometrial invasion; in patients with low pre-test probabilities, DWI enabled exclusion of deep myometrial invasion. The worst case scenario (pre-test probability, 50%) post-test probabilities were 89% and 10% for positive and negative DWI results, respectively. Conclusion DWI has high sensitivity and specificity for detecting deep myometrial invasion and more importantly can reliably rule out deep myometrial invasion. Therefore, it would be worthwhile to add a DWI sequence to the standard MRI protocols in preoperative evaluation of endometrial cancer in order to detect deep myometrial invasion, which along with other poor prognostic factors like age, tumor grade, and LVSI would be useful in stratifying high risk groups thereby helping in the tailoring of surgical approach in patient with low risk of endometrial carcinoma. PMID:25608571

  2. Exploring frontiers of the deep biosphere through scientific ocean drilling

    NASA Astrophysics Data System (ADS)

    Inagaki, F.; D'Hondt, S.; Hinrichs, K. U.

    2015-12-01

    Since the first deep biosphere-dedicated Ocean Drilling Program (ODP) Leg 201 using the US drill ship JOIDES Resolution in 2002, scientific ocean drilling has offered unique opportunities to expand our knowledge of the nature and extent of the deep biosphere. The latest estimate of the global subseafloor microbial biomass is ~1029cells, accounting for 4 Gt of carbon and ~1% of the Earth's total living biomass. The subseafloor microbial communities are evolutionarily diverse and their metabolic rates are extraordinarily slow. Nevertheless, accumulating activity most likely plays a significant role in elemental cycles over geological time. In 2010, during Integrated Ocean Drilling Program (IODP) Expedition 329, the JOIDES Resolutionexplored the deep biosphere in the open-ocean South Pacific Gyre—the largest oligotrophic province on our planet. During Expedition 329, relatively high concentrations of dissolved oxygen and significantly low biomass of microbial populations were observed in the entire sediment column, indicating that (i) there is no limit to life in open-ocean sediment and (ii) a significant amount of oxygen reaches through the sediment to the upper oceanic crust. This "deep aerobic biosphere" inhabits the sediment throughout up to ~37 percent of the world's oceans. The remaining ~63 percent of the oceans is comprised of higher productivity areas that contain the "deep anaerobic biosphere". In 2012, during IODP Expedition 337, the Japanese drill ship Chikyu explored coal-bearing sediments down to 2,466 meters below the seafloor off the Shimokita Peninsula, Japan. Geochemical and microbiological analyses consistently showed the occurrence of methane-producing communities associated with the coal beds. Cell concentrations in deep sediments were notably lower than those expected from the global regression line, implying that the bottom of the deep biosphere is approached in these beds. Taxonomic composition of the deep coal-bearing communities profoundly differs from those in shallower marine sediments and instead resembles organotrophic communities in forest soils. These findings suggest that the terrigenous microbial ecosystem has been partly retained from the original depositional setting over 20 million years and contributed to deep carbon cycling ever since.

  3. Plastic pollution of the Kuril-Kamchatka Trench area (NW pacific)

    NASA Astrophysics Data System (ADS)

    Fischer, Viola; Elsner, Nikolaus O.; Brenke, Nils; Schwabe, Enrico; Brandt, Angelika

    2015-01-01

    During the German-Russian expedition KuramBio (Kuril-Kamchatka Biodiversity Studies) to the northwest Pacific Kuril-Kamchatka Trench and its adjacent abyssal plain, we found several kinds and sizes of plastic debris ranging from fishing nets and packaging to microplastic in the sediment of the deep-sea floor. Microplastics were ubiquitous in the smaller fractions of the box corer samples from every station from depths between 4869 and 5766 m. They were found on the abyssal plain and in the sediments of the trench slope on both sides. The amount of microplastics differed between the stations, with lowest concentration of 60 pieces per m2 and highest concentrations of more than 2000 pieces per m2. Around 75% of the microplastics (defined here as particles <1 mm) we isolated from the sediment samples were fibers. Other particles were paint chips or small cracked pieces of unknown origin. The Kuril-Kamchatka Trench area is known for its very rich marine fauna (Zenkevich, 1963). Yet we can only guess how these microplastics accumulated in the deep sea of the Kuril-Kamchatka Trench area and what consequences the microplastic itself and its adsorbed chemicals will have on this very special and rich deep-sea fauna. But we herewith present an evaluation of the different kinds of plastic debris we found, as a documentation of human impact into the deep sea of this region of the Northwest Pacific.

  4. CAPILLARY NETWORK ALTERATIONS IN X-LINKED RETINOSCHISIS IMAGED ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY.

    PubMed

    Romano, Francesco; Arrigo, Alessandro; Chʼng, Soon Wai; Battaglia Parodi, Maurizio; Manitto, Maria Pia; Martina, Elisabetta; Bandello, Francesco; Stanga, Paulo E

    2018-06-05

    To assess foveal and parafoveal vasculature at the superficial capillary plexus, deep capillary plexus, and choriocapillaris of patients with X-linked retinoschisis by means of optical coherence tomography angiography. Six patients with X-linked retinoschisis (12 eyes) and seven healthy controls (14 eyes) were recruited and underwent complete ophthalmologic examination, including best-corrected visual acuity, dilated fundoscopy, and 3 × 3-mm optical coherence tomography angiography macular scans (DRI OCT Triton; Topcon Corp). After segmentation and quality review, optical coherence tomography angiography slabs were imported into ImageJ 1.50 (NIH; Bethesda) and digitally binarized. Quantification of vessel density was performed after foveal avascular zone area measurement and exclusion. Patients were additionally divided into "responders" and "nonresponders" to dorzolamide therapy. Foveal avascular zone area resulted markedly enlarged at the deep capillary plexus (P < 0.001), particularly in nonresponders. Moreover, patients disclosed a significant deep capillary plexus rarefaction, when compared with controls (P: 0.04); however, a subanalysis revealed that this damage was limited to the fovea (P: 0.006). Finally, the enlargement of foveal avascular zone area positively correlated with a decline in best-corrected visual acuity (P: 0.01). Prominent foveal vascular impairment is detectable in the deep capillary plexus of patients with X-linked retinoschisis. Our results correlate with functional outcomes, suggesting a possible vascular role in X-linked retinoschisis clinical manifestations.

  5. The Comparison Study of gas source between two hydrate expeditions in ShenHu area, SCS

    NASA Astrophysics Data System (ADS)

    Cong, X. R.

    2016-12-01

    Two gas hydrate expeditions (GMGS 01&03) were conducted in the Pearl River Mouth Basin, SCS, which were organized by Guangzhou Marine Geological Survey in 2007 and 2015, respectively. Compared with the drilling results of "mixed bio-thermogenic gas and generally dominated by biogenic gas" in 2007, hydrocarbon component measurements revealed a higher content of ethane and propane in 2015 drilling, providing direct evidence that deep thermogenic gas was the source for shallow hydrate formation. According to the geochemical analyses of the results obtained from the industrial boreholes in Baiyun sag, the deep hydrocarbon gas obviously leaked from the reservoir as escape caused by Dongsha movement in the late Miocene, as a result thermogenic gas from Wenchang, Enping and Zhuhai hydrocarbon source rocks migrated to late Miocene shallow strata through faults, diapirs and gas chimney vertically migration. In this paper we report the differences in fluid migration channel types and discuss their effect in fluid vertical migration efficiency in the two Shenhu hydrate drilling areas. For the drilling area in 2007,when the limited deep thermogenic gas experienced long distance migration process from bottom to up along inefficient energy channel, the gas composition might have changed and the carbon isotope fractionation might have happened, which were reflected in the results of higher C1/C2 ratios and lighter carbon isotope in gas hydrate bearing sediments. As a result the gas is with more "biogenic gas" features. It means thermogenic gases in the deep to contributed the formation of shallow gas hydrate indirectly in 2007 Shenhu drill area. On another hand, the gases were transported to the shallow sediment layers efficiently, where gas hydrate formed, through faults and fractures from deep hydrocarbon reservoirs, and as the result they experienced less changes in both components and isotopes in 2015 drilling site.

  6. Water Quality Assessment for Deep-water Channel area of Guangzhou Port based on the Comprehensive Water Quality Identification Index Method

    NASA Astrophysics Data System (ADS)

    Chen, Yi

    2018-03-01

    The comprehensive water quality identification index method is able to assess the general water quality situation comprehensively and represent the water quality classification; water environment functional zone achieves pollution level and standard objectively and systematically. This paper selects 3 representative zones along deep-water channel of Guangzhou port and applies comprehensive water quality identification index method to calculate sea water quality monitoring data for different selected zones from year 2006 to 2014, in order to investigate the temporal variation of water quality along deep-water channel of Guangzhou port. The comprehensive water quality level from north to south presents an increased trend, and the water quality of the three zones in 2014 is much better than in 2006. This paper puts forward environmental protection measurements and suggestions for Pearl River Estuary, provides data support and theoretical basis for studied sea area pollution prevention and control.

  7. Using Argo-O2 data to examine the impact of deep-water formation events on oxygen uptake in the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Wolf, M. K.; Hamme, R. C.; Gilbert, D.; Yashayaev, I.

    2016-02-01

    Deep-water formation allows the deep ocean to communicate with the atmosphere, facilitating exchanges of heat as well as important gases such as CO2 and oxygen. The Labrador Sea is the most studied location of deep convection in the North Atlantic Ocean and a strong contributor to the global thermohaline circulation. Since there are no internal sources of oxygen below the euphotic zone, deep-water formation is vital for oxygen transport to the deep ocean. Recent studies document large interannual variability in the strength and depth of convection in the Labrador Sea, from mixed layers of 100m to greater than 1000m. A weakening of this deep convection starves the deep ocean of oxygen, disrupting crucial deep sea biological processes, as well as reducing oceanic CO2 uptake and ocean circulation. We used data from the extensive Argo float network to examine these deep-water formation events in the Labrador Sea. The oxygen optodes onboard many Argo floats suffer from biases whose amplitude must be determined; therefore we investigated and applied various optode calibration methods. Using calibrated vertical profiles of oxygen, temperature, and salinity, we observed the timing, magnitude, and location of deep convection, restratification, and spring phytoplankton blooms. In addition, we used surface oxygen values along with NCEP wind speeds to calculate the air-sea oxygen flux using a range of air-sea gas exchange parameterizations. We then compared this oxygen flux to the rate of change of the measured oxygen inventory. Where the inventory and flux did not agree, we identified other oceanic processes such as biological activity or lateral advection of water masses occurring, or advection of the float itself into a new area. The large role that horizontal advection of water or the float has on oxygen uptake and cycling leads us to conclude that this data cannot be easily interpreted as a 1-D system. Oxygen exchanges with the atmosphere at a faster rate than CO2, is more affected by bubble injection, and reacts differently to temperature change. Oxygen is also produced and consumed by photosynthesis and respiration respectively at a specific ratio to CO2. These properties enable us to use oxygen as a separate constraint from carbon to determine the effect these various processes have on gas cycling, and the global ocean circulation.

  8. The T-Reflection and the deep crustal structure of the Vøring Margin offshore Mid-Norway

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Faleide, J. I.; Planke, S.; Gernigon, L.; Zastrozhnov, D.; Shephard, G. E.; Myklebust, R.

    2017-12-01

    Volcanic passive margins are characterized by massive occurrence of mafic extrusive and intrusive rocks, before and during plate breakup, playing major role in determining the evolution pattern and the deep structure of magma-rich margins. Deep seismic reflection data frequently provide imaging of strong continuous reflections in the middle/lower crust. In this context, we have completed a detailed 2D seismic interpretation of the deep crustal structure of the Vøring volcanic margin, offshore mid-Norway, where high-quality seismic data allow the identification of high-amplitude reflections, locally referred to as the T-Reflection (TR). Using the dense seismic grid we have mapped the top of the TR in order to compare it with filtered Bouguer gravity anomalies and seismic refraction data. The TR is identified between 7 and 10 s. Sometimes it consists of one single smooth reflection. However, it is frequently associated with a set of rough multiple reflections displaying discontinuous segments with varying geometries, amplitude and contact relationships. The TR seems to be connected to deep sill networks and locally located at the continuation of basement high structures or terminates over fractures and faults. The spatial correlation between the filtered positive Bouguer gravity anomalies and the TR indicates that the latter represents a high impedance boundary contrast associated with a high-density/velocity body. Within an uncertainty of ± 2.5 km, the depth of the mapped TR is found to correspond to the depth of the top of the Lower Crustal Body (LCB), characterized by high P-wave velocities (>7 km/s), in 50% of the outer Vøring Margin areas, whereas different depths between the TR and the top LCB are estimated for the remaining areas. We present a tectonic scenario, where a large part of the deep structure could be composed of preserved upper continental basement and middle to lower crustal lenses of inherited and intruded high-grade metamorphic rocks. Deep intrusions into the faulted crustal blocks are responsible for the rough character of the TR, whereas intrusions into the lower crust and detachment faults are likely responsible for its smoother appearance. Deep magma intrusions can be responsible for metamorphic processes leading to an increased velocity of the lower crust of more than 7 km/s.

  9. Marine geodesy a multipurpose approach to solve oceanic problems. [including submersible navigation under iced seas, demarcation and determination of boundaries in deep ocean, tsunamis, and ecology

    NASA Technical Reports Server (NTRS)

    Saxena, N.

    1974-01-01

    Various current and future problem areas of marine geodesy are identified. These oceanic problem areas are highly diversified and include submersible navigation under ice seas, demarcation and determination of boundaries in deep ocean, tsunamis, ecology, etc., etc. Their achieved as well as desired positional accuracy estimates, based upon publications and discussions, are also given. A multipurpose approach to solve these problems is described. An optimum configuration of an ocean-bottom control-net unit is provided.

  10. Tectonics, Deep-Seated Structure and Recent Geodynamics of the Caucasus

    NASA Astrophysics Data System (ADS)

    Amanatashvili, I.; Adamia, Sh.; Lursmanashvili, N.; Sadradze, N.; Meskhia, V.; Koulakov, I.; Zabelina, I.; Jakovlev, A.

    2012-04-01

    The tectonics and deep-seated structure of the Caucasus are determined by its position between the still converging Eurasian and Africa-Arabian plates, within a wide zone of continental collision. The region in the Late Proterozoic - Early Cenozoic belonged to the Tethys Ocean and its Eurasian and Africa-Arabian margins. During Oligocene-Middle Miocene and Late Miocene-Quaternary time as a result of collision back-arc basins were inverted to form fold-thrust mountain belts and the Transcaucasian intermontane lowlands. The Caucasus is divided into platform and fold-thrust units, and forelands superimposed mainly on the rigid platform zones. The youngest structural units composed of Neogene-Quaternary continental volcanic formations of the Armenian and Javakheti highlands and extinct volcanoes of the Great Caucasus. As a result of detailed geophysical study of the gravity, magnetic, seismic, and thermal fields, the main features of the deep crustal structure of the Caucasus have been determined. Knowledge on the deep lithospheric structure of the Caucasus region is based on surface geology and deep and super deep drilling data combined with gravity, seismic, heat flow, and magnetic investigations. Close correlation between the geology and its deep-seated structures appears in the peculiarities of spatial distribution of gravitational, thermal and magnetic fields, particularly generally expressed in orientation of regional anomalies that is in good agreement with general tectonic structures. In this study we present two tomographic models derived for the region based on two different tomographic approaches. In the first case, we use the travel time data on regional seismicity recorded by networks located in Caucasus. The tomographic inversion is based on the LOTOS code which enables simultaneous determination of P and S velocity distributions and source locations. The obtained model covers the crustal and uppermost mantle depths. The second model, which is constructed for the upper mantle down to 700 km depth, is based on the data from the global ISC catalogue. We use travel times corresponding to rays which travel, at least partly, through the study volume. These data include rays from events in the study area recorded by worldwide stations, as well as teleseismic data recorded at regional stations. The computed seismic models reveal some deep traces of recent tectonic processes in the Caucasus: • For the 5, 15, 25 and 60-km-depth, there appears a clear coincidence between anomalous low velocities of P and S-waves with the fold-thrust mountainous belts of the Great and Lesser Caucasus, and also connection of high-velocity anomalies with the Trasncaucasian forelands. • Lowest-velocity anomalies are characteristic of the areas of Neogene-Quaternary volcanism of the Great and Lesser Caucasus. Areas with the lowest velocities of P- and S-waves coincide with the mountainous-folded belts, whereas the areas of high-velocity predominantly coincide with the platformal structures and forelands, as well as with basins of the Black and Caspian Seas. • Clear spatial correlation of the areas of lowest values of P- and S-velocities with the areas of Neogene-Quaternary volcanism occurs up to the depth of 150-200km that evidences location of magma sources within the crust - upper mantle - asthenosphere. • Tomographic data unambiguously confirm spatial unity of the main structures of the Caucasus and its basement, the location of the structures in situ in Late Cenozoic and connection of the volcanic constructions with their roots - magma chambers.

  11. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial.

    PubMed

    Weaver, Frances M; Follett, Kenneth; Stern, Matthew; Hur, Kwan; Harris, Crystal; Marks, William J; Rothlind, Johannes; Sagher, Oren; Reda, Domenic; Moy, Claudia S; Pahwa, Rajesh; Burchiel, Kim; Hogarth, Penelope; Lai, Eugene C; Duda, John E; Holloway, Kathryn; Samii, Ali; Horn, Stacy; Bronstein, Jeff; Stoner, Gatana; Heemskerk, Jill; Huang, Grant D

    2009-01-07

    Deep brain stimulation is an accepted treatment for advanced Parkinson disease (PD), although there are few randomized trials comparing treatments, and most studies exclude older patients. To compare 6-month outcomes for patients with PD who received deep brain stimulation or best medical therapy. Randomized controlled trial of patients who received either deep brain stimulation or best medical therapy, stratified by study site and patient age (< 70 years vs > or = 70 years) at 7 Veterans Affairs and 6 university hospitals between May 2002 and October 2005. A total of 255 patients with PD (Hoehn and Yahr stage > or = 2 while not taking medications) were enrolled; 25% were aged 70 years or older. The final 6-month follow-up visit occurred in May 2006. Bilateral deep brain stimulation of the subthalamic nucleus (n = 60) or globus pallidus (n = 61). Patients receiving best medical therapy (n = 134) were actively managed by movement disorder neurologists. The primary outcome was time spent in the "on" state (good motor control with unimpeded motor function) without troubling dyskinesia, using motor diaries. Other outcomes included motor function, quality of life, neurocognitive function, and adverse events. Patients who received deep brain stimulation gained a mean of 4.6 h/d of on time without troubling dyskinesia compared with 0 h/d for patients who received best medical therapy (between group mean difference, 4.5 h/d [95% CI, 3.7-5.4 h/d]; P < .001). Motor function improved significantly (P < .001) with deep brain stimulation vs best medical therapy, such that 71% of deep brain stimulation patients and 32% of best medical therapy patients experienced clinically meaningful motor function improvements (> or = 5 points). Compared with the best medical therapy group, the deep brain stimulation group experienced significant improvements in the summary measure of quality of life and on 7 of 8 PD quality-of-life scores (P < .001). Neurocognitive testing revealed small decrements in some areas of information processing for patients receiving deep brain stimulation vs best medical therapy. At least 1 serious adverse event occurred in 49 deep brain stimulation patients and 15 best medical therapy patients (P < .001), including 39 adverse events related to the surgical procedure and 1 death secondary to cerebral hemorrhage. In this randomized controlled trial of patients with advanced PD, deep brain stimulation was more effective than best medical therapy in improving on time without troubling dyskinesias, motor function, and quality of life at 6 months, but was associated with an increased risk of serious adverse events. clinicaltrials.gov Identifier: NCT00056563.

  12. Cruise Report; RV Moana Wave cruise M1-01-GM; the bathymetry and acoustic backscatter of the mid shelf to upper slope off Panama City, Florida, northeastern Gulf of Mexico; September 3, through October 12, 2001, Panama City, FL to Panama City, FL

    USGS Publications Warehouse

    Gardner, James V.; Mayer, Larry A.; Hughes-Clarke, John E.; Dartnell, Peter; Sulak, Kenneth J.

    2001-01-01

    A zone of deep-water reefs is thought to extend from the mid and outer shelf south of Mississippi and Alabama to at least the northwestern Florida shelf off Panama City, Florida (Figure 1, 67kb). The reefs off Mississippi and Alabama are found in water depths of 60 to 120 m (Ludwick and Walton, 1957; Gardner et al., in press) and were the focus of a multibeam echosounder (MBES) mapping survey by the U.S. Geological Survey (USGS) in 2000 (Gardner et al., 2000; in press). If this deep-water-reef trend does exist along the northwestern Florida shelf, then it is critical to determine the accurate geomorphology and type of the reefs that occur because of their importance as benthic habitats for fisheries. Precisely georeferenced high-resolution mapping of bathymetry is a fundamental first step in the study of areas suspected to be critical habitats. Morphology is thought to be critical to defining the distribution of dominant demersal plankton/planktivores communities. Fish faunas of shallow hermatypic reefs have been well studied, but those of deep ahermatypic reefs have been relatively ignored. The ecology of deep-water ahermatypic reefs is fundamentally different from hermatypic reefs because autochthonous intracellular symbiotic zooxanthellae (the carbon source for hermatypic corals) do not form the base of the trophic web in ahermatypic reefs. Instead, exogenous plankton, transported to the reef by currents, serves as the primary carbon source. Thus, one of the principle uses of the morphology data will be to identify whether any reefs found are hermatypic or ahermatypic in origin. Community structure and trophodynamics of demersal fishes of the outer continental of the northeastern Gulf of Mexico presently are the focus of a major USGS reseach project. A goal of the project is to answer questions concerning the relative roles played by morphology and surficial geology in controling biological differentiation. Deep-water reefs are important because they are fish havens, key spawning sites, and are critical early larval and juvenile habitats for economically important sport/food fishes. It is known that deep-water reefs function as a key source for re-population (via seasonal and ontogenetic migration) of heavily impacted inshore reefs. The deep-water reefs south of Mississippi and Alabama support a lush fauna of ahermatypic hard corals, soft corals, black corals, sessile crinoids and sponges, that together form a living habitat for a well-developed fish fauna. The fish fauna comprises typical Caribbean reef fishes and Carolinian shelf fishes, plus epipelagic fishes, and a few deep-sea fishes. The base of the megafaunal invertebrate food web is plankton, borne by essentially continuous semi-laminar currents generated by eddies, spawned off the Loop Current, that periodically travel across the shelf edge. A few, sidescan-sonar surveys have been made of areas locally identified as Destin Pinnacles, Steamboat Lumps Marine Reserve (Koenig et al., 2000; Scanlon, et al., 2000; 2001), Twin Ridges (Briere, et al., 2000; Scanlon, et al., 2000), and Madison-Swanson Marine Reserve (Koenig et al., 2000; Scanlon, et al., 2000; 2001). However, no quantitative and little qualitative information about the geomorphology and surficial geology can be gained from these data. Existing bathymetry along the northwestern Florida shelf suggests the existence of areas of possible isolated deep-water reefs. NOAA bathymetric maps NOS NH16-9 and NG16-12 show geomorphic expressions that hint of the presence of reefs in isolated areas rather than in a continuous zone. There has been no systematic, high-resolution bathymetry collected in this area, prior to this cruise. After the successful mapping of the deep-water reefs on the Mississippi and Alabama shelf (Gardner et al., 2000; in press), a partnership composed of the USGS, Minerals Management Service, and NOAA was formed to continue the deep-reef mapping to the northwest Florida mid shelf and upper slope. This cruise is the first fruit of that partnership.

  13. Deep Learning in Gastrointestinal Endoscopy.

    PubMed

    Patel, Vivek; Armstrong, David; Ganguli, Malika; Roopra, Sandeep; Kantipudi, Neha; Albashir, Siwar; Kamath, Markad V

    2016-01-01

    Gastrointestinal (GI) endoscopy is used to inspect the lumen or interior of the GI tract for several purposes, including, (1) making a clinical diagnosis, in real time, based on the visual appearances; (2) taking targeted tissue samples for subsequent histopathological examination; and (3) in some cases, performing therapeutic interventions targeted at specific lesions. GI endoscopy is therefore predicated on the assumption that the operator-the endoscopist-is able to identify and characterize abnormalities or lesions accurately and reproducibly. However, as in other areas of clinical medicine, such as histopathology and radiology, many studies have documented marked interobserver and intraobserver variability in lesion recognition. Thus, there is a clear need and opportunity for techniques or methodologies that will enhance the quality of lesion recognition and diagnosis and improve the outcomes of GI endoscopy. Deep learning models provide a basis to make better clinical decisions in medical image analysis. Biomedical image segmentation, classification, and registration can be improved with deep learning. Recent evidence suggests that the application of deep learning methods to medical image analysis can contribute significantly to computer-aided diagnosis. Deep learning models are usually considered to be more flexible and provide reliable solutions for image analysis problems compared to conventional computer vision models. The use of fast computers offers the possibility of real-time support that is important for endoscopic diagnosis, which has to be made in real time. Advanced graphics processing units and cloud computing have also favored the use of machine learning, and more particularly, deep learning for patient care. This paper reviews the rapidly evolving literature on the feasibility of applying deep learning algorithms to endoscopic imaging.

  14. "They Get You out of Courage:" Persistent Deep Poverty among Former Welfare-Reliant Women

    ERIC Educational Resources Information Center

    Blalock, Lydia L.; Tiller, Vicky R.; Monroe, Pamel A.

    2004-01-01

    We looked closely at families who remain in persistent deep poverty in the remote rural areas of one state, using welfare reform as the contextual backdrop. We examined the lives of 10 women who have participated in this qualitative research for over 6 years. The woman heading each family was a welfare program participant; she engaged (more or…

  15. Relationship between deep structure and oil-gas in the eastern Tarim Basin

    NASA Astrophysics Data System (ADS)

    Yu, Changqing; Qu, Chen; Han, Jianguang

    2017-04-01

    The Tarim Basin is a large composite superimposed basin which developed in the Presinian continental basement. It is an important area for oil and gas replacement in China. In the eastern part of Tarim Basin, the exploration and research degree is very low and less system, especially in the study of tectonic evolution and physical property change. Basing on the study of geophysics, drilling and regional geological data in this area, analysis of comprehensive geophysical, geological and geophysical analysis comparison are lunched by new methods and new technology of geophysical exploration. Fault, tectonic evolution and change of deep character in the eastern Tarim Basin are analyzed in system. Through in-depth study and understanding of the deep structure and physical changes of the eastern region, we obtain the fault characteristics in the study area and the deep structure and physical change maps to better guide the oil and gas exploration in this area. The east area is located in the eastern Tarim Basin, west from the Garr Man depression, Well Kunan 1 - Well Gucheng 4 line to the East, north to Kuruketage uplift group near Qunke 1 wells, south to Cherchen fault zone, east to Lop Nor depression, an area of about 9 * 104 square kilometres, Including the East of Garr Man sag, Yingjisu depression, Kongquehe slope, Tadong low uplift and the Lop Nor uplift, five two grade tectonic units. The east area of Tarim is belonging to Tarim plate. It changes with the evolution of the Tarim plate. The Tarim plate is closely related to the collision between the Yining - the Junggar plate, the Siberia plate and the southern Qiangtang - the central Kunlun plate. Therefore, it creates a complex tectonic pattern in the eastern Tarim basin. Earth electromagnetic, gravity, deep seismic and other geophysical data are processed by a new generation of geophysical information theory and method, including multi-scale inversion of potential field inversion (Hou and Yang, 2011), 3D magnetotelluric data (Yang et al., 2012) and micro seismic wave field information recognition technology in the eastern Tarim Basin. Combining the information of the deep faults, tectonic evolution characteristics of the study area and the physical changes from geological data, we analyze the relationship between the change of the physical structure and the oil and gas, and predict the favorable oil and gas area and the exploration target area by information extraction, processing and interpretation analysis based on integrated geophysical technology. References 1. Hou, Z. Z., W. C. Yang, 2011, multi scale gravity field inversion and density structure in Tarim Basin: Chinese science, 41, 29-39. 2. Yang W. C., J. L. Wang, H. Z. Zhong, 2012, The main port of the Tarim Basin Analysis of magnetic field and magnetic source structure: Chinese Journal of Geophysics, 55, 1278-1287.

  16. Survey report of NOAA Ship McArthur II cruises AR-04-04, AR-05-05 and AR-06-03: habitat classification of side scan sonar imagery in support of deep-sea coral/sponge explorations at the Olympic Coast National Marine Sanctuary

    USGS Publications Warehouse

    Intelmann, Steven S.; Cochrane, Guy R.; Bowlby, C. Edward; Brancato, Mary Sue; Hyland, Jeffrey

    2007-01-01

    Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral-sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises, Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed.

  17. Fungal communities from the calcareous deep-sea sediments in the Southwest India Ridge revealed by Illumina sequencing technology.

    PubMed

    Zhang, Likui; Kang, Manyu; Huang, Yangchao; Yang, Lixiang

    2016-05-01

    The diversity and ecological significance of bacteria and archaea in deep-sea environments have been thoroughly investigated, but eukaryotic microorganisms in these areas, such as fungi, are poorly understood. To elucidate fungal diversity in calcareous deep-sea sediments in the Southwest India Ridge (SWIR), the internal transcribed spacer (ITS) regions of rRNA genes from two sediment metagenomic DNA samples were amplified and sequenced using the Illumina sequencing platform. The results revealed that 58-63 % and 36-42 % of the ITS sequences (97 % similarity) belonged to Basidiomycota and Ascomycota, respectively. These findings suggest that Basidiomycota and Ascomycota are the predominant fungal phyla in the two samples. We also found that Agaricomycetes, Leotiomycetes, and Pezizomycetes were the major fungal classes in the two samples. At the species level, Thelephoraceae sp. and Phialocephala fortinii were major fungal species in the two samples. Despite the low relative abundance, unidentified fungal sequences were also observed in the two samples. Furthermore, we found that there were slight differences in fungal diversity between the two sediment samples, although both were collected from the SWIR. Thus, our results demonstrate that calcareous deep-sea sediments in the SWIR harbor diverse fungi, which augment the fungal groups in deep-sea sediments. This is the first report of fungal communities in calcareous deep-sea sediments in the SWIR revealed by Illumina sequencing.

  18. Towards Scalable Deep Learning via I/O Analysis and Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pumma, Sarunya; Si, Min; Feng, Wu-Chun

    Deep learning systems have been growing in prominence as a way to automatically characterize objects, trends, and anomalies. Given the importance of deep learning systems, researchers have been investigating techniques to optimize such systems. An area of particular interest has been using large supercomputing systems to quickly generate effective deep learning networks: a phase often referred to as “training” of the deep learning neural network. As we scale existing deep learning frameworks—such as Caffe—on these large supercomputing systems, we notice that the parallelism can help improve the computation tremendously, leaving data I/O as the major bottleneck limiting the overall systemmore » scalability. In this paper, we first present a detailed analysis of the performance bottlenecks of Caffe on large supercomputing systems. Our analysis shows that the I/O subsystem of Caffe—LMDB—relies on memory-mapped I/O to access its database, which can be highly inefficient on large-scale systems because of its interaction with the process scheduling system and the network-based parallel filesystem. Based on this analysis, we then present LMDBIO, our optimized I/O plugin for Caffe that takes into account the data access pattern of Caffe in order to vastly improve I/O performance. Our experimental results show that LMDBIO can improve the overall execution time of Caffe by nearly 20-fold in some cases.« less

  19. The deep-sea as a final global sink of semivolatile persistent organic pollutants? Part I: PCBs in surface and deep-sea dwelling fish of the north and south Atlantic and the Monterey Bay Canyon (California).

    PubMed

    Froescheis, O; Looser, R; Cailliet, G M; Jarman, W M; Ballschmiter, K

    2000-03-01

    The understanding of the global environmental multiphase distribution of persistent organic pollutants (POPs) as a result of the physico-chemical properties of the respective compounds is well established. We have analysed the results of a vertical transport of POPs from upper water layers (0-200 m) to the deepwater region (> 800 m) in terms of the contamination of the biophase in both water layers. The contents of persistent organochlorine compounds like polychlorinated biphenyls (PCBs) in fish living in the upper water layers of the North Atlantic and the South Atlantic, and at the continental shelf of California (Marine Sanctuary Monterey Bay and its deep-sea Canyon) are compared to the levels in deep-sea or bottom dwelling fish within the same geographic area. The deep-sea biota show significantly higher burdens as compared to surface-living species of the same region. There are also indications for recycling processes of POPs--in this case the PCBs--in the biophase of the abyss as well. It can be concluded that the bio- and geo phase of the deep-sea may act similarly as the upper horizons of forest and grasslands on the continents as an ultimate global sink for POPs in the marine environment.

  20. Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data.

    PubMed

    Aliper, Alexander; Plis, Sergey; Artemov, Artem; Ulloa, Alvaro; Mamoshina, Polina; Zhavoronkov, Alex

    2016-07-05

    Deep learning is rapidly advancing many areas of science and technology with multiple success stories in image, text, voice and video recognition, robotics, and autonomous driving. In this paper we demonstrate how deep neural networks (DNN) trained on large transcriptional response data sets can classify various drugs to therapeutic categories solely based on their transcriptional profiles. We used the perturbation samples of 678 drugs across A549, MCF-7, and PC-3 cell lines from the LINCS Project and linked those to 12 therapeutic use categories derived from MeSH. To train the DNN, we utilized both gene level transcriptomic data and transcriptomic data processed using a pathway activation scoring algorithm, for a pooled data set of samples perturbed with different concentrations of the drug for 6 and 24 hours. In both pathway and gene level classification, DNN achieved high classification accuracy and convincingly outperformed the support vector machine (SVM) model on every multiclass classification problem, however, models based on pathway level data performed significantly better. For the first time we demonstrate a deep learning neural net trained on transcriptomic data to recognize pharmacological properties of multiple drugs across different biological systems and conditions. We also propose using deep neural net confusion matrices for drug repositioning. This work is a proof of principle for applying deep learning to drug discovery and development.

  1. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data

    PubMed Central

    Aliper, Alexander; Plis, Sergey; Artemov, Artem; Ulloa, Alvaro; Mamoshina, Polina; Zhavoronkov, Alex

    2016-01-01

    Deep learning is rapidly advancing many areas of science and technology with multiple success stories in image, text, voice and video recognition, robotics and autonomous driving. In this paper we demonstrate how deep neural networks (DNN) trained on large transcriptional response data sets can classify various drugs to therapeutic categories solely based on their transcriptional profiles. We used the perturbation samples of 678 drugs across A549, MCF‐7 and PC‐3 cell lines from the LINCS project and linked those to 12 therapeutic use categories derived from MeSH. To train the DNN, we utilized both gene level transcriptomic data and transcriptomic data processed using a pathway activation scoring algorithm, for a pooled dataset of samples perturbed with different concentrations of the drug for 6 and 24 hours. In both gene and pathway level classification, DNN convincingly outperformed support vector machine (SVM) model on every multiclass classification problem, however, models based on a pathway level classification perform better. For the first time we demonstrate a deep learning neural net trained on transcriptomic data to recognize pharmacological properties of multiple drugs across different biological systems and conditions. We also propose using deep neural net confusion matrices for drug repositioning. This work is a proof of principle for applying deep learning to drug discovery and development. PMID:27200455

  2. Investigation on the real-time prediction of ground motions using seismic records observed in deep boreholes

    NASA Astrophysics Data System (ADS)

    Miyakoshi, H.; Tsuno, S.

    2013-12-01

    The present method of the EEW system installed in the railway field of Japan predicts seismic ground motions based on the estimated earthquake information about epicentral distances and magnitudes using initial P-waves observed on the surface. In the case of local earthquakes beneath the Tokyo Metropolitan Area, however, a method to directly predict seismic ground motions using P-waves observed in deep boreholes could issue EEWs more simply and surely. Besides, a method to predict seismic ground motions, using S-waves observed in deep boreholes and S-wave velocity structures beneath seismic stations, could show planar distributions of ground motions for train operation control areas in the aftermath of earthquakes. This information is available to decide areas in which the emergency inspection of railway structures should be performed. To develop those two methods, we investigated relationships between peak amplitudes on the surface and those in deep boreholes, using seismic records of KiK-net stations in the Kanto Basin. In this study, we used earthquake accelerograms observed in boreholes whose depths are deeper than the top face of Pre-Neogene basement and those on the surface at 12 seismic stations of KiK-net. We selected 243 local earthquakes whose epicenters are located around the Kanto Region. Those JMA magnitudes are in the range from 4.5 to 7.0. We picked the on-set of P-waves and S-waves using a vertical component and two horizontal components, respectively. Peak amplitudes of P-waves and S-waves were obtained using vertical components and vector sums of two horizontal components, respectively. We estimated parameters which represent site amplification factors beneath seismic stations, using peak amplitudes of S-waves observed in the deep borehole and those on the surface, to minimize the residuals between calculations by the theoretical equation and observations. Correlation coefficients between calculations and observations are high values in the range from 0.8 to 0.9. This result suggests that we could predict ground motions with the high accuracy using peak amplitudes of S-waves in deep boreholes and site amplification factors based on S-wave velocity structures. Also, we estimated parameters which represent radiation coefficients and the P/S velocity ratios around hypocentral regions, using peak amplitudes of P-waves and S-waves observed in deep boreholes, to minimize the residuals between calculations and observations. Correlation coefficients between calculations and observations are slightly lower values in the range from 0.7 to 0.9 than those for site amplification factors. This result suggests that the variability of radiation patterns for individual earthquakes affects the accuracy to predict ground motions using P-waves in deep boreholes.

  3. Stereotactically Standard Areas: Applied Mathematics in the Service of Brain Targeting in Deep Brain Stimulation.

    PubMed

    Mavridis, Ioannis N

    2017-12-11

    The concept of stereotactically standard areas (SSAs) within human brain nuclei belongs to the knowledge of the modern field of stereotactic brain microanatomy. These are areas resisting the individual variability of the nuclear location in stereotactic space. This paper summarizes the current knowledge regarding SSAs. A mathematical formula of SSAs was recently invented, allowing for their robust, reproducible, and accurate application to laboratory studies and clinical practice. Thus, SSAs open new doors for the application of stereotactic microanatomy to highly accurate brain targeting, which is mainly useful for minimally invasive neurosurgical procedures, such as deep brain stimulation.

  4. Fos expression in the rat brain and spinal cord evoked by noxious stimulation to low back muscle and skin.

    PubMed

    Ohtori, S; Takahashi, K; Chiba, T; Takahashi, Y; Yamagata, M; Sameda, H; Moriya, H

    2000-10-01

    Acute noxious stimulation delivered to lumbar muscles and skin of rats was used to study Fos expression patterns in the brain and spinal cord. The present study was conducted to determine the differences in Fos expression in the brain and spinal cord as evoked by stimuli delivered to lumbar muscles and skin in rats. Patients with low back pain sometimes show psychological symptoms, such as quiescence, loss of interest, decreased activities, appetite loss, and restlessness. The pathway of deep somatic pain to the brain has been reported to be different from that of cutaneous pain. However, Fos expression has not been studied in the central nervous systems after stimulation of low back muscles. Rats were injected with 100 L of 5% formalin into the multifidus muscle (deep pain group; n = 10) and into the back skin of the L5 dermatome (cutaneous pain group; n = 10). Two hours after injection, the distribution of Fos-immunoreactive neurons was studied in the brain and spinal cord. Fos-immunoreactive neurons were observed in laminae I-V in the spinal cord in the cutaneous pain group, but they were not seen in lamina II in the deep pain group. In the brain, Fos-immunoreactive neurons were significantly more numerous in the deep pain group than in the cutaneous pain group in the piriform cortex, the accumbens nucleus core, the basolateral nucleus of amygdala, the paraventricular hypothalamic nucleus, the ventral tegmental area, and the ventrolateral periaqueductal gray. The finding that Fos-immunoreactive neurons were absent from lamina II of the spinal cord in the deep pain group is similar to that of the projection pattern of the visceral pain pathway. Fos expression in the ventrolateral periaqueductal gray in the deep pain group may represent a reaction of quiescence and a loss of interest, activities, or appetite. Furthermore, the detection of large numbers of Fos-immunoreactive neurons in the core of accumbens nucleus, basolateral nucleus of amygdala, paraventricular hypothalamic nucleus, and ventral tegmental area in the deep pain group may suggest a dominant reaction of dopaminergic neurons to stress, and a different information processing pathway than from that of cutaneous pain.

  5. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning.

    PubMed

    van Ginneken, Bram

    2017-03-01

    Half a century ago, the term "computer-aided diagnosis" (CAD) was introduced in the scientific literature. Pulmonary imaging, with chest radiography and computed tomography, has always been one of the focus areas in this field. In this study, I describe how machine learning became the dominant technology for tackling CAD in the lungs, generally producing better results than do classical rule-based approaches, and how the field is now rapidly changing: in the last few years, we have seen how even better results can be obtained with deep learning. The key differences among rule-based processing, machine learning, and deep learning are summarized and illustrated for various applications of CAD in the chest.

  6. Evaluation of Human and AutomationRobotics Integration Needs for Future Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Marquez, Jessica J.; Adelstein, Bernard D.; Ellis, Stephen; Chang, Mai Lee; Howard, Robert

    2016-01-01

    NASA employs Design Reference Missions (DRMs) to define potential architectures for future human exploration missions to deep space, the Moon, and Mars. While DRMs to these destinations share some components, each mission has different needs. This paper focuses on the human and automation/robotic integration needs for these future missions, evaluating them with respect to NASA research gaps in the area of space human factors engineering. The outcomes of our assessment is a human and automation/robotic (HAR) task list for each of the four DRMs that we reviewed (i.e., Deep Space Sortie, Lunar Visit/Habitation, Deep Space Habitation, and Planetary), a list of common critical HAR factors that drive HAR design.

  7. Land Desertification and it’s Control in Gonghe Basin of Qinghai Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Gao, S.; Lu, R.

    2009-12-01

    Land desertification is an important environmental and social-economic problems that threatening people’s living conditions and impacting social sustainable development. The Gonghe basin in Qinghai Plateau is a fragile cold alpine area which is one of the places seriously threatened by desertification in China. This paper selected Gonghe basin as a study area to study land sandy desertification and its controlling measures. The engineering measures for sandy desertification control include setting clay sand barrier, Salix cheilophila sand barrier, Tamarix sand barrier, Artemisia sand barrier and straw-checker sand-barriers to fix dunes; the biological measures include closure for natural vegetation recovery, direct seeding forestation, transplanting seedlings, and so on. The combination of engineering and biologic measures can fix dunes 2~3 years earlier than the common single measure; and the costs were basically identical. A synthesized evaluation system established based on experimental results and experience in recent years indicated that the effectiveness of the four kinds of sand barrier for prevention and control of sand in study area were: Tamarix sand barrier > Artemisia sand barrier > clay sand barrier > straw-checker sand-barriers. In addition, different optimized management model can be selected according to local material and geographical place. New plants such as Salix cheilophila and Tamarix, which are available in study area, can change from dead sand barrier to live one set in proper seasons, changing engineering measure to biological one directly speeds the progress of forestation and dunes fixation. In addition, we developed new technique of deep planting Salix cheilophila and Tamarix with their long stem, which can effectively resist drought. We found that it had lower cost and higher live rate, and has a better sand prevention effect than deep planting of Poplar. Finally we choose the optimize management model as follows: Artemisia direct seeding > Caragana direct seeding, Tamarix cutting and seedling > Salix cheilophila deep planting, Sea-buckthorn seedling > Tamarix deep planting > Tamarix seedling > Poplar deep planting > Salix cheilophila seedling > Poplar seedling. It has resolved the key problem of control sand flow speed and low efficiency, sand burying and wind erosion and low conservation rate for forestation in the sandy area.

  8. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.

    PubMed

    Pang, Bo; Becker, Frank

    2017-04-28

    Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Robust hepatic vessel segmentation using multi deep convolution network

    NASA Astrophysics Data System (ADS)

    Kitrungrotsakul, Titinunt; Han, Xian-Hua; Iwamoto, Yutaro; Foruzan, Amir Hossein; Lin, Lanfen; Chen, Yen-Wei

    2017-03-01

    Extraction of blood vessels of the organ is a challenging task in the area of medical image processing. It is really difficult to get accurate vessel segmentation results even with manually labeling by human being. The difficulty of vessels segmentation is the complicated structure of blood vessels and its large variations that make them hard to recognize. In this paper, we present deep artificial neural network architecture to automatically segment the hepatic vessels from computed tomography (CT) image. We proposed novel deep neural network (DNN) architecture for vessel segmentation from a medical CT volume, which consists of three deep convolution neural networks to extract features from difference planes of CT data. The three networks have share features at the first convolution layer but will separately learn their own features in the second layer. All three networks will join again at the top layer. To validate effectiveness and efficiency of our proposed method, we conduct experiments on 12 CT volumes which training data are randomly generate from 5 CT volumes and 7 using for test. Our network can yield an average dice coefficient 0.830, while 3D deep convolution neural network can yield around 0.7 and multi-scale can yield only 0.6.

  10. Deep learning based tissue analysis predicts outcome in colorectal cancer.

    PubMed

    Bychkov, Dmitrii; Linder, Nina; Turkki, Riku; Nordling, Stig; Kovanen, Panu E; Verrill, Clare; Walliander, Margarita; Lundin, Mikael; Haglund, Caj; Lundin, Johan

    2018-02-21

    Image-based machine learning and deep learning in particular has recently shown expert-level accuracy in medical image classification. In this study, we combine convolutional and recurrent architectures to train a deep network to predict colorectal cancer outcome based on images of tumour tissue samples. The novelty of our approach is that we directly predict patient outcome, without any intermediate tissue classification. We evaluate a set of digitized haematoxylin-eosin-stained tumour tissue microarray (TMA) samples from 420 colorectal cancer patients with clinicopathological and outcome data available. The results show that deep learning-based outcome prediction with only small tissue areas as input outperforms (hazard ratio 2.3; CI 95% 1.79-3.03; AUC 0.69) visual histological assessment performed by human experts on both TMA spot (HR 1.67; CI 95% 1.28-2.19; AUC 0.58) and whole-slide level (HR 1.65; CI 95% 1.30-2.15; AUC 0.57) in the stratification into low- and high-risk patients. Our results suggest that state-of-the-art deep learning techniques can extract more prognostic information from the tissue morphology of colorectal cancer than an experienced human observer.

  11. Zooplankton community response to the winter 2013 deep convection process in the NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Donoso, Katty; Carlotti, François; Pagano, Marc; Hunt, Brian P. V.; Escribano, Rubén.; Berline, Léo.

    2017-03-01

    The Gulf of Lion is an important area of deep convection, where intense winter vertical mixing brings nutrients up from deeper layers, promoting the largest bloom in the Mediterranean at the end of winter/early spring. The DEWEX program conducted cruises in February and April 2013 to investigate the ecosystem level impacts of deep water convection. Zooplankton data were collected through net sampling and imaging with an Underwater Vision Profiler. In winter, low zooplankton abundance and biomass were observed in the Deep Convection Zone (DCZ) and higher values on its periphery. In spring, this pattern reversed with high biomass in the DCZ and lower values on the periphery. On average for the whole area, the potential grazing impact was estimated to increase by one order of magnitude from winter to spring. In April, all areas except the DCZ incurred top-down control by zooplankton on the phytoplankton stock. In the DCZ, the chlorophyll-a values remained high despite the high zooplankton biomass and carbon demand, indicating a sustained bottom-up control. The zooplankton community composition was comparable for both periods, typified by high copepod dominance, but with some differences between the DCZ and peripheral regions. In spring the DCZ was characterized by a strong increase in herbivorous species such as Centropages typicus and Calanus helgolandicus, and an increase in the number of large zooplankton individuals. Our study indicates that the DCZ is likely an area of both enhanced energy transfer to higher trophic levels and organic matter export in the North Western Mediterranean Sea.

  12. Molecular diversity and distribution pattern of ciliates in sediments from deep-sea hydrothermal vents in the Okinawa Trough and adjacent sea areas

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Xu, Kuidong

    2016-10-01

    In comparison with the macrobenthos and prokaryotes, patterns of diversity and distribution of microbial eukaryotes in deep-sea hydrothermal vents are poorly known. The widely used high-throughput sequencing of 18S rDNA has revealed a high diversity of microeukaryotes yielded from both living organisms and buried DNA in marine sediments. More recently, cDNA surveys have been utilized to uncover the diversity of active organisms. However, both methods have never been used to evaluate the diversity of ciliates in hydrothermal vents. By using high-throughput DNA and cDNA sequencing of 18S rDNA, we evaluated the molecular diversity of ciliates, a representative group of microbial eukaryotes, from the sediments of deep-sea hydrothermal vents in the Okinawa Trough and compared it with that of an adjacent deep-sea area about 15 km away and that of an offshore area of the Yellow Sea about 500 km away. The results of DNA sequencing showed that Spirotrichea and Oligohymenophorea were the most diverse and abundant groups in all the three habitats. The proportion of sequences of Oligohymenophorea was the highest in the hydrothermal vents whereas Spirotrichea was the most diverse group at all three habitats. Plagiopyleans were found only in the hydrothermal vents but with low diversity and abundance. By contrast, the cDNA sequencing showed that Plagiopylea was the most diverse and most abundant group in the hydrothermal vents, followed by Spirotrichea in terms of diversity and Oligohymenophorea in terms of relative abundance. A novel group of ciliates, distinctly separate from the 12 known classes, was detected in the hydrothermal vents, indicating undescribed, possibly highly divergent ciliates may inhabit this environment. Statistical analyses showed that: (i) the three habitats differed significantly from one another in terms of diversity of both the rare and the total ciliate taxa, and; (ii) the adjacent deep sea was more similar to the offshore area than to the hydrothermal vents. In terms of the diversity of abundant taxa, however, there was no significant difference between the hydrothermal vents and the adjacent deep sea, both of which differed significantly from the offshore area. As abundant ciliate taxa can be found in several sampling sites, they are likely adapted to large environmental variations, while rare taxa are found in specific habitat and thus are potentially more sensitive to varying environmental conditions.

  13. Paleomagnetic constraints on deformation of superfast-spread oceanic crust exposed at Pito Deep Rift

    NASA Astrophysics Data System (ADS)

    Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J. A.

    2011-12-01

    The uppermost oceanic crust produced at the superfast spreading (˜142 km Ma-1, full-spreading rate) southern East Pacific Rise (EPR) during the Gauss Chron is exposed in a tectonic window along the northeastern wall of the Pito Deep Rift. Paleomagnetic analysis of fully oriented dike (62) and gabbro (5) samples from two adjacent study areas yield bootstrapped mean remanence directions of 38.9° ± 8.1°, -16.7° ± 15.6°, n = 23 (Area A) and 30.4° ± 8.0°, -25.1° ± 12.9°, n = 44 (Area B), both are significantly distinct from the Geocentric Axial Dipole expected direction at 23° S. Regional tectonics and outcrop-scale structural data combined with bootstrapped remanence directions constrain models that involve a sequence of three rotations that result in dikes restored to subvertical orientations related to (1) inward-tilting of crustal blocks during spreading (Area A = 11°, Area B = 22°), (2) clockwise, vertical-axis rotation of the Easter Microplate (A = 46°, B = 44°), and (3) block tilting at Pito Deep Rift (A = 21°, B = 10°). These data support a structural model for accretion at the southern EPR in which outcrop-scale faulting and block rotation accommodates spreading-related subaxial subsidence that is generally less than that observed in crust generated at a fast spreading rate exposed at Hess Deep Rift. These data also support previous estimates for the clockwise rotation of crust adjacent to the Easter Microplate. Dike sample natural remanent magnetization (NRM) has an arithmetic mean of 5.96 A/m ± 3.76, which suggests that they significantly contribute to observed magnetic anomalies from fast- to superfast-spread crust.

  14. Understanding wetland sub-surface hydrology using geologic and isotopic signatures

    NASA Astrophysics Data System (ADS)

    Sikdar, P. K.; Sahu, P.

    2009-07-01

    This paper attempts to utilize hydrogeology and isotope composition of groundwater to understand the present hydrological processes prevalent in a freshwater wetland, source of wetland groundwater, surface water/groundwater interaction and mixing of groundwater of various depth zones in the aquifer. This study considers East Calcutta Wetlands (ECW) - a freshwater peri-urban inland wetland ecosystem located at the lower part of the deltaic alluvial plain of South Bengal Basin and east of Kolkata city. This wetland is well known over the world for its resource recovery systems, developed by local people through ages, using wastewater of the city. Geological investigations reveal that the sub-surface geology is completely blanketed by the Quaternary sediments comprising a succession of silty clay, sand of various grades and sand mixed with occasional gravels and thin intercalations of silty clay. At few places the top silty clay layer is absent due to scouring action of past channels. In these areas sand is present throughout the geological column and the areas are vulnerable to groundwater pollution. Groundwater mainly flows from east to west and is being over-extracted to the tune of 65×103 m3/day. δ18O and δD values of shallow and deep groundwater are similar indicating resemblance in hydrostratigraphy and climate of the recharge areas. Groundwater originates mainly from monsoonal rain with some evaporation prior to or during infiltration and partly from bottom of ponds, canals and infiltration of groundwater withdrawn for irrigation. Relatively high tritium content of the shallow groundwater indicates local recharge, while the deep groundwater with very low tritium is recharged mainly from distant areas. At places the deep aquifer has relatively high tritium, indicating mixing of groundwater of shallow and deep aquifers. Metals such as copper, lead, arsenic, cadmium, aluminium, nickel and chromium are also present in groundwater of various depths. Therefore, aquifers of wetland and surrounding urban areas which are heavily dependent on groundwater are vulnerable to pollution. In the area south of ECW isotope data indicates no interaction between shallow and deep aquifer and hence this area may be a better location to treat sewage water than within ECW. To reduce the threat of pollution in ECW's aquifer, surface water-groundwater interaction should be minimized by regulating tubewell operation time, introducing treated surface water supply system and artificial recharging of the aquifer.

  15. Potential Deep Seated Landslide Mapping from Various Temporal Data - Benchmark, Aerial Photo, and SAR

    NASA Astrophysics Data System (ADS)

    Wang, Kuo-Lung; Lin, Jun-Tin; Lee, Yi-Hsuan; Lin, Meei-Ling; Chen, Chao-Wei; Liao, Ray-Tang; Chi, Chung-Chi; Lin, Hsi-Hung

    2016-04-01

    Landslide is always not hazard until mankind development in highly potential area. The study tries to map deep seated landslide before the initiation of landslide. Study area in central Taiwan is selected and the geological condition is quite unique, which is slate. Major direction of bedding in this area is northeast and the dip ranges from 30-75 degree to southeast. Several deep seated landslides were discovered in the same side of bedding from rainfall events. The benchmarks from 2002 ~ 2009 are in this study. However, the benchmarks were measured along Highway No. 14B and the road was constructed along the peak of mountains. Taiwan located between sea plates and continental plate. The elevation of mountains is rising according to most GPS and benchmarks in the island. The same trend is discovered from benchmarks in this area. But some benchmarks are located in landslide area thus the elevation is below average and event negative. The aerial photos from 1979 to 2007 are used for orthophoto generation. The changes of land use are obvious during 30 years and enlargement of river channel is also observed in this area. Both benchmarks and aerial photos have discovered landslide potential did exist this area but how big of landslide in not easy to define currently. Thus SAR data utilization is adopted in this case. DInSAR and SBAS sar analysis are used in this research and ALOS/PALSAR from 2006 to 2010 is adopted. DInSAR analysis shows that landslide is possible mapped but the error is not easy to reduce. The error is possibly form several conditions such as vegetation, clouds, vapor, etc. To conquer the problem, time series analysis, SBAS, is adopted in this research. The result of SBAS in this area shows that large deep seated landslides are easy mapped and the accuracy of vertical displacement is reasonable.

  16. Mammalian niche conservation through deep time.

    PubMed

    DeSantis, Larisa R G; Beavins Tracy, Rachel A; Koontz, Cassandra S; Roseberry, John C; Velasco, Matthew C

    2012-01-01

    Climate change alters species distributions, causing plants and animals to move north or to higher elevations with current warming. Bioclimatic models predict species distributions based on extant realized niches and assume niche conservation. Here, we evaluate if proxies for niches (i.e., range areas) are conserved at the family level through deep time, from the Eocene to the Pleistocene. We analyze the occurrence of all mammalian families in the continental USA, calculating range area, percent range area occupied, range area rank, and range polygon centroids during each epoch. Percent range area occupied significantly increases from the Oligocene to the Miocene and again from the Pliocene to the Pleistocene; however, mammalian families maintain statistical concordance between rank orders across time. Families with greater taxonomic diversity occupy a greater percent of available range area during each epoch and net changes in taxonomic diversity are significantly positively related to changes in percent range area occupied from the Eocene to the Pleistocene. Furthermore, gains and losses in generic and species diversity are remarkably consistent with ~2.3 species gained per generic increase. Centroids demonstrate southeastern shifts from the Eocene through the Pleistocene that may correspond to major environmental events and/or climate changes during the Cenozoic. These results demonstrate range conservation at the family level and support the idea that niche conservation at higher taxonomic levels operates over deep time and may be controlled by life history traits. Furthermore, families containing megafauna and/or terminal Pleistocene extinction victims do not incur significantly greater declines in range area rank than families containing only smaller taxa and/or only survivors, from the Pliocene to Pleistocene. Collectively, these data evince the resilience of families to climate and/or environmental change in deep time, the absence of terminal Pleistocene "extinction prone" families, and provide valuable insights to understanding mammalian responses to current climate change.

  17. Mammalian Niche Conservation through Deep Time

    PubMed Central

    DeSantis, Larisa R. G.; Beavins Tracy, Rachel A.; Koontz, Cassandra S.; Roseberry, John C.; Velasco, Matthew C.

    2012-01-01

    Climate change alters species distributions, causing plants and animals to move north or to higher elevations with current warming. Bioclimatic models predict species distributions based on extant realized niches and assume niche conservation. Here, we evaluate if proxies for niches (i.e., range areas) are conserved at the family level through deep time, from the Eocene to the Pleistocene. We analyze the occurrence of all mammalian families in the continental USA, calculating range area, percent range area occupied, range area rank, and range polygon centroids during each epoch. Percent range area occupied significantly increases from the Oligocene to the Miocene and again from the Pliocene to the Pleistocene; however, mammalian families maintain statistical concordance between rank orders across time. Families with greater taxonomic diversity occupy a greater percent of available range area during each epoch and net changes in taxonomic diversity are significantly positively related to changes in percent range area occupied from the Eocene to the Pleistocene. Furthermore, gains and losses in generic and species diversity are remarkably consistent with ∼2.3 species gained per generic increase. Centroids demonstrate southeastern shifts from the Eocene through the Pleistocene that may correspond to major environmental events and/or climate changes during the Cenozoic. These results demonstrate range conservation at the family level and support the idea that niche conservation at higher taxonomic levels operates over deep time and may be controlled by life history traits. Furthermore, families containing megafauna and/or terminal Pleistocene extinction victims do not incur significantly greater declines in range area rank than families containing only smaller taxa and/or only survivors, from the Pliocene to Pleistocene. Collectively, these data evince the resilience of families to climate and/or environmental change in deep time, the absence of terminal Pleistocene “extinction prone” families, and provide valuable insights to understanding mammalian responses to current climate change. PMID:22539985

  18. Fauna and habitat types driven by turbidity currents in the lobe complex of the Congo deep-sea fan

    NASA Astrophysics Data System (ADS)

    Sen, Arunima; Dennielou, Bernard; Tourolle, Julie; Arnaubec, Aurélien; Rabouille, Christophe; Olu, Karine

    2017-08-01

    This study characterizes the habitats and megafaunal community of the Congo distal lobe complex driven by turbidity currents through the use of remotely operated vehicle (ROV) still imagery transects covering distances in the order of kilometers. In this sedimentary, abyssal area about 5000 m deep and 750 km offshore from western Africa, large quantities of deposited organic material supplied by the Congo River canyon and channel support aggregations of large sized foraminifers (Bathysiphon sp.) and vesicomyid clams (Christineconcha regab, Abyssogena southwardae) often associated with methane cold seeps, as well as opportunistic deep-sea scavengers. Additionally, bacterial mats, assumed to be formed by large sulfur-oxidizing filamentous bacteria (Beggiatoa type), and black patches of presumably reduced sediment were seen which are, together with sulfur-oxidizing symbiont- bearing vesicomyids, indicators of sulfide-rich sediments. Habitat and faunal distribution were analyzed in relation to the microtopography obtained with the ROV multibeam echosounder, at three sites from the entrance of the lobe complex where the channel is still deep, to the main, flatter area of turbidite deposition. Specific characteristics of the system influence animal distributions: both the forams and the vesicomyid clams tended to avoid the channels characterized by high-speed currents, and are therefore preferentially located along channel flanks affected by sliding, and on levees formed by channel overspill. Foram fields are found in flat areas and form large fields, whereas the vesicomyids have a patchy distribution and appear to show a preference for regions of local topographical relief such as slide scars or collapsed blocks of sediments, which likely facilitate sulfide exhumation. The colonization of sulfide rich sediments by vesicomyids is limited, but nonetheless was seen to occur in the main deposition area where they have to cope with very high sedimentation rates (up to 20 cm/yr) and frequent turbidity currents. Other biological adaptations to the local conditions likely determine the presence and survival of animals in the system: large agglutinated forams are known to be adept at quickly colonizing disturbed sediment and capitalizing on abundant but irregular food sources, and vesicomyid clams have a mobile lifestyle that enables them to maintain their population in the ever changing landscape of sulfide-rich sediment outcrops. Turbiditic systems appear to be intermediate between other energy rich habitats sustaining chemosynthesis in the deep sea, being locally less stable in terms of energy supply than cold seeps, limiting the number of cold-seep specialists able to colonize, but constituting a longer lived habitat than food falls. Turbidite fans therefore represent distinct deep sea habitats that contribute to sustaining populations of both chemosynthesis-based and opportunistic taxa in the deep-sea.

  19. VizieR Online Data Catalog: AKARI NEP Survey sources at 18um (Pearson+, 2014)

    NASA Astrophysics Data System (ADS)

    Pearson, C. P.; Serjeant, S.; Oyabu, S.; Matsuhara, H.; Wada, T.; Goto, T.; Takagi, T.; Lee, H. M.; Im, M.; Ohyama, Y.; Kim, S. J.; Murata, K.

    2015-04-01

    The NEP-Deep survey at 18u in the IRC-L18W band is constructed from a total of 87 individual pointed observations taken between May 2006 to August 2007, using the IRC Astronomical Observing Template (AOT) designed for deep observations (IRC05), with approximately 2500 second exposures per IRC filter in all mid-infrared bands. The deep imaging IRC05 AOT has no explicit dithering built into the AOT operation, therefore dithering is achieved by layering separate pointed observations on at least three positions on a given piece of sky. The NEP-Wide survey consists of 446 pointed observations with .300 second exposures for each filter. The NEP-Wide survey uses the shallower IRC03 AOT optimized for large area multi-band mapping with the dithering included within the AOT. Note that for both surveys, although images are taken simultaneously in all three IRC channels, the target area of sky in the MIR-L channel is offset from the corresponding area of sky in the NIR/MIR-S channel by ~20arcmin. (2 data files).

  20. First step to understand the importance of new deep aquifer pumping regime in groundwater system in a developing country, Kwale, Kenya.

    NASA Astrophysics Data System (ADS)

    Ferrer, Nuria; Folch, Albert; Lane, Mike; Thomas, Mike; Sasaka, Willie; Wara, Calvince; Banje, Said; Olago, Dan; Katuva, Jacob; Thomson, Patrick; Hope, Rob

    2016-04-01

    The population growth in the world carries on the one hand, an increased demand of fresh water and on the other hand, a decrease of quality and quantity of this resource. To avoid this deterioration it is essential doing a good management of surface water and groundwater, specially the second one, which has become the major source of water supply for domestic, industrial and agricultural sectors of many countries (UNEP 1999). This groundwater management starts with an accurate hydrogeological characterization of aquifer systems, mainly in that aquifer systems in which is changing the abstraction regime. In this context of population growth and new abstraction regimes on aquifer system is where the project "Gro for Good: Groundwater Risk for Growth and Development" is founded by UPGro. This interdisciplinary project has the main goal to design, test and transfer to the society an innovative Groundwater Risk Management Tool to improve and get by new governance transformations the balance between economic growth, groundwater sustainability (in terms of quality and quantity) and human development (http://upgro.org/consortium/gro-for-good/). The study area is located on the south eastern coast of Kenya, in Kwale County. The Kwale coastal groundwater system formed by a shallow and deep aquifer systems has long served urban water demands and an established tourism industry but now faces unprecedented ground and surface water resource demands especially from KISCOL's (5,500 hectares of irrigated sugarcane) and the country's largest mining operation (Base Titanium Ltd.). Despite both companies have drilled deep boreholes around the study area (416 km2) to extract groundwater from deep aquifer; no major pumping activity has started yet, allowing baseline evaluation. Scattered around the study are 440 handpumps providing drinking water to over 90,000 people. The relationship between the shallow and deep aquifers remains uncertain and so, the future influence on groundwater level and its quality either. So, in order to define the system and start to understand the different complex interactions, we present the initial results of the first complete water sampling field campaign (September 2015). Water isotope data and major ions were analyzed from 78 shallow and deep wells and surface water spread around study area. This field survey has been useful to understand the recharge, discharge areas and groundwater quality of deep aquifer system and which will have an important role for sustainable water management in the of Kwale area. Acknowledgements The research is primarily supported under the NERC/ESRC/DFID Unlocking the Potential of Groundwater for the Poor (UPGro) as a Catalyst Grant (NE/L001950/1) with work extending until 2019 as a Consortium Grant (NE/M008894/1), see http://www.upgro.org. Data for the paper will be publicly posted on the National Geoscience Data Centre and the UK Data Archive under the terms of the UPGro data management agreement.

  1. Ground-water levels and direction of ground-water flow in the central part of Bernalillo County, New Mexico, summer 1983

    USGS Publications Warehouse

    Kues, Georginna E.

    1986-01-01

    In 1980, toxic chemicals were detected in water samples from wells in and near Albuquerque 's San Jose well field. At the request of the Environmental Improvement Division of the New Mexico Health and Environment Department, the U.S. Geological Survey conducted a study to determine groundwater levels and flow direction. Water levels were measured in 44 wells in a 64 sq mi area along the Rio Grande and adjacent areas during a period of near maximum municipal pumpage. Based on the altitude of screened interval, wells were grouped into shallow (screened internal above an altitude of 4,800 ft) or deep (screened internal below an altitude of 4,800 ft) zones. Groundwater in the shallow zone generally moves from north to south parallel to flow in the Rio Grande. Groundwater in the deep zone generally moves from the northwest to the east and southeast. A poorly developed cone of depression within the deep zone was present in the northeast. Water levels in wells were as much as 18 feet higher in the shallow zone than in the deep zone in the vicinity of the San Jose well field, indicating a downward gradient. (Author 's abstract)

  2. Strategies for restoration of deep-water coral ecosystems based on a global survey of oil and gas regulations

    NASA Astrophysics Data System (ADS)

    Cordes, E. E.; Jones, D.; Levin, L. A.

    2016-02-01

    The oil and gas industry is one of the most active agents of the global industrialization of the deep sea. The wide array of impacts following the Deepwater Horizon oil spill highlighted the need for a systematic review of existing regulations both in US waters and internationally. Within different exclusive economic zones, there are a wide variety of regulations regarding the survey of deep-water areas prior to leasing and the acceptable set-back distances from vulnerable marine ecosystems once they are discovered. There are also varying mitigation strategies for accidental release of oil and gas, including active monitoring systems, temporary closings of oil and gas production, and marine protected areas. The majority of these regulations are based on previous studies of typical impacts from oil and gas drilling, rather than accidental releases. However, the probability of an accident from standard operations increases significantly with depth. The Oil & Gas working group of the Deep Ocean Stewardship Initiative is an international partnership of scientists, managers, non-governmental organizations, and industry professionals whose goal is to review existing regulations for the oil & gas industry and produce a best practices document to advise both developed and developing nations on their regulatory structure as energy development moves into deeper waters.

  3. Pacing of deep marine sedimentation in the middle Eocene synorogenic Ainsa Basin, Spanish Pyrenees: deconvolving a 6myr record of tectonic and climate controls

    NASA Astrophysics Data System (ADS)

    Mac Niocaill, C.; Cantalejo, B.; Pickering, K. T.; Grant, M.; Johansen, K.

    2016-12-01

    The Middle Eocene thrust-top Ainsa Basin of Northern Spain preserves world-class exposures of deep-marine submarine fan and related deposits. Detailed paleomagnetic, micropaleontologic, and time-series analysis enable us to deconvolve, for the first time in any ancient deep-marine basin worldwide, both the pacing on deposition of the fine-grained interfan sediments and the main sandbodies (submarine fans) through the history of the deep-marine basin. Our magnetostratigraphy and faunal constraints provide a chronological framework for sedimentation in the basin. We use time-series analysis of a range of geochemical and sedimentologic data to identify likely climatic signals in the sedimentary archive. This has enabled us to test the likely importance of climate versus tectonics in controlling deposition. We show that the fine-grained interfan sedimentation preserves a dominant Milankovitch-like cyclicity, whereas the sandbodies (fans) reflect a complex interplay of controls such as tectonics and climate in the sediment source area, including shallow-marine staging areas for sediment redeposition into deeper water. These results not only provide critical information about the timing of substantial coarse clastic delivery into the Ainsa Basin but also give constraints on sediment flux over a 6 Myr window.

  4. Hydrologic sections through Lee County and adjacent areas of Hendry and Collier counties, Florida

    USGS Publications Warehouse

    Boggess, Durward H.; Missimer, T.M.; O'Donnell, T. H.

    1981-01-01

    The freshwater underlying Lee, western Hendry, and northern Collier Counties occurs within the marine terrace sands, the Fort Thompson, Caloosahatchee, Tamiami, and Hawthorn Formations. These are, respectively, the water-table aquifer, an aquifer in the Tamiami Formation, and an aquifer in the upper part of the Hawthorn Formation. These aquifers are separated by clay, marl, and marly limestone. Wells tapping the water-table aquifer are commonly less than 50 feet deep, with yields ranging from 5 to 500 gallons per minute. The water quality in the aquifer is usually good, except for iron, which generally exceeds 1 milligram per liter, and color, which ranges from 30 to 600 Platinum-Cobalt units. Wells tapping the Tamiami aquifer range in depth from about 60 to 300 feet; most are less than 100 feet deep. Yields range from 20 to 500 gallons per minute. The water quality in the Tamiami aquifer is good, except where affected by leakage from deep artesian wells. Wells tapping the upper Hawthorn aquifer range in depth from about 100 to 300 feet. Yields range from 10 to 500 gallons per minute. The water quality from the upper Hawthorn aquifer is good, except in areas where upward leakage from the deep artesian aquifer has occurred. (USGS)

  5. Brain organization and specialization in deep-sea chondrichthyans.

    PubMed

    Yopak, Kara E; Montgomery, John C

    2008-01-01

    Chondrichthyans occupy a basal place in vertebrate evolution and offer a relatively unexplored opportunity to study the evolution of vertebrate brains. This study examines the brain morphology of 22 species of deep-sea sharks and holocephalans, in relation to both phylogeny and ecology. Both relative brain size (expressed as residuals) and the relative development of the five major brain areas (telencephalon, diencephalon, mesencephalon, cerebellum, and medulla) were assessed. The cerebellar-like structures, which receive projections from the electroreceptive and lateral line organs, were also examined as a discrete part of the medulla. Although the species examined spanned three major chondrichthyan groupings (Squalomorphii, Galeomorphii, Holocephali), brain size and the relative development of the major brain areas did not track phylogenetic groupings. Rather, a hierarchical cluster analysis performed on the deep-sea sharks and holocephalans shows that these species all share the common characteristics of a relatively reduced telencephalon and smooth cerebellar corpus, as well as extreme relative enlargement of the medulla, specifically the cerebellar-like lobes. Although this study was not a functional analysis, it provides evidence that brain variation in deep-sea chondichthyans shows adaptive patterns in addition to underlying phylogenetic patterns, and that particular brain patterns might be interpreted as 'cerebrotypes'. (c) 2008 S. Karger AG, Basel

  6. Insights on the seismotectonics of the western part of northern Calabria (southern Italy) by integrated geological and geophysical data: Coexistence of shallow extensional and deep strike-slip kinematics

    NASA Astrophysics Data System (ADS)

    Ferranti, L.; Milano, G.; Pierro, M.

    2017-11-01

    We assess the seismotectonics of the western part of the border area between the Southern Apennines and Calabrian Arc, centered on the Mercure extensional basin, by integrating recent seismicity with a reconstruction of the structural frame from surface to deep crust. The analysis of low-magnitude (ML ≤ 3.5) events occurred in the area during 2013-2017, when evaluated in the context of the structural model, has revealed an unexpected complexity of seismotectonics processes. Hypocentral distribution and kinematics allow separating these events into three groups. Focal mechanisms of the shallower (< 9 km) set of events show extensional kinematics. These results are consistent with the last kinematic event recorded on outcropping faults, and with the typical depth and kinematics of normal faulting earthquakes in the axial part of southern Italy. By contrast, intermediate ( 9-17 km) and deep ( 17-23 km) events have fault plane solutions characterized by strike- to reverse-oblique slip, but they differ from each other in the orientation of the principal axes. The intermediate events have P axes with a NE-SW trend, which is at odds with the NW-SE trend recorded by strike-slip earthquakes affecting the Apulia foreland plate in the eastern part of southern Italy. The intermediate events are interpreted to reflect reactivation of faults in the Apulia unit involved in thrust uplift, and appears aligned along an WNW-ESE trending deep crustal, possibly lithospheric boundary. Instead, deep events beneath the basin, which have P-axis with a NW-SE trend, hint to the activity of a deep overthrust of the Tyrrhenian back-arc basin crust over the continental crust of the Apulia margin, or alternatively, to a tear fault in the underthrust Apulia plate. Results of this work suggest that extensional faulting, as believed so far, does not solely characterizes the seismotectonics of the axial part of the Southern Apennines.

  7. Human Activities on the Deep Seafloor in the North East Atlantic: An Assessment of Spatial Extent

    PubMed Central

    Benn, Angela R.; Weaver, Philip P.; Billet, David S. M.; van den Hove, Sybille; Murdock, Andrew P.; Doneghan, Gemma B.; Le Bas, Tim

    2010-01-01

    Background Environmental impacts of human activities on the deep seafloor are of increasing concern. While activities within waters shallower than 200 m have been the focus of previous assessments of anthropogenic impacts, no study has quantified the extent of individual activities or determined the relative severity of each type of impact in the deep sea. Methodology The OSPAR maritime area of the North East Atlantic was chosen for the study because it is considered to be one of the most heavily impacted by human activities. In addition, it was assumed data would be accessible and comprehensive. Using the available data we map and estimate the spatial extent of five major human activities in the North East Atlantic that impact the deep seafloor: submarine communication cables, marine scientific research, oil and gas industry, bottom trawling and the historical dumping of radioactive waste, munitions and chemical weapons. It was not possible to map military activities. The extent of each activity has been quantified for a single year, 2005. Principal Findings Human activities on the deep seafloor of the OSPAR area of the North Atlantic are significant but their footprints vary. Some activities have an immediate impact after which seafloor communities could re-establish, while others can continue to make an impact for many years and the impact could extend far beyond the physical disturbance. The spatial extent of waste disposal, telecommunication cables, the hydrocarbon industry and marine research activities is relatively small. The extent of bottom trawling is very significant and, even on the lowest possible estimates, is an order of magnitude greater than the total extent of all the other activities. Conclusions/Significance To meet future ecosystem-based management and governance objectives for the deep sea significant improvements are required in data collection and availability as well as a greater awareness of the relative impact of each human activity. PMID:20856885

  8. Human activities on the deep seafloor in the North East Atlantic: an assessment of spatial extent.

    PubMed

    Benn, Angela R; Weaver, Philip P; Billet, David S M; van den Hove, Sybille; Murdock, Andrew P; Doneghan, Gemma B; Le Bas, Tim

    2010-09-13

    Environmental impacts of human activities on the deep seafloor are of increasing concern. While activities within waters shallower than 200 m have been the focus of previous assessments of anthropogenic impacts, no study has quantified the extent of individual activities or determined the relative severity of each type of impact in the deep sea. The OSPAR maritime area of the North East Atlantic was chosen for the study because it is considered to be one of the most heavily impacted by human activities. In addition, it was assumed data would be accessible and comprehensive. Using the available data we map and estimate the spatial extent of five major human activities in the North East Atlantic that impact the deep seafloor: submarine communication cables, marine scientific research, oil and gas industry, bottom trawling and the historical dumping of radioactive waste, munitions and chemical weapons. It was not possible to map military activities. The extent of each activity has been quantified for a single year, 2005. Human activities on the deep seafloor of the OSPAR area of the North Atlantic are significant but their footprints vary. Some activities have an immediate impact after which seafloor communities could re-establish, while others can continue to make an impact for many years and the impact could extend far beyond the physical disturbance. The spatial extent of waste disposal, telecommunication cables, the hydrocarbon industry and marine research activities is relatively small. The extent of bottom trawling is very significant and, even on the lowest possible estimates, is an order of magnitude greater than the total extent of all the other activities. To meet future ecosystem-based management and governance objectives for the deep sea significant improvements are required in data collection and availability as well as a greater awareness of the relative impact of each human activity.

  9. Into the deep: A coarse-grained carbonate turbidite thalweg generated by gigantic submarine chutes

    NASA Astrophysics Data System (ADS)

    Mulder, Thierry; Gillet, Hervé; Reijmer, John; Droxler, André; cavailhes, Thibault; Hanquiez, Vincent; Fauquembergue, Kelly; Bujan, Stéphane; Blanck, David; bashah, Sara; Guiastrennec, Léa; Fabregas, Natacha; Recouvreur, Audrey; Seibert, Chloé

    2017-04-01

    New high-resolution multibeam mapping, in the Southeastern Bahamas, images in exquisite details the southern part of Exuma Sound, and its unchartered transition area to the deep abyssal plain of the Western North Atlantic bounded by the Bahama Escarpment (BE) between San Salvador Island and Samana Cay, referred here to the San Salvador abyssal plain. The transition area is locally referred to as Crooked Island Passage, loosely delineated by Crooked, Long, and Conception Islands, Rum and Samana Cays. Surprisingly in such a pure carbonate landscape, the newly established map reveals the detailed and complex morphology of a giant valley formed by numerous gravity flows originated in Exuma Sound itself, in addition to many secondary slope gullies and smaller tributaries draining the surrounding upper slopes. The valley referred here as the Exuma canyon system starts with a perched valley with low sinuosity, characterized by several flow restrictions and knickpoints initiated by the presence of drowned isolated platforms and merging tributaries. The valley abruptly transforms itself into a deep incised canyon, rivaling the depth of the Colorado Grand Canyon, through two major knickpoints with outsized chutes exceeding several hundred of meters in height, a total of 1600-1800 m. The sudden transformation of the wide valley into a deep narrow canyon, occurring when the flows incised deep into an underlying lower Cretaceous drowned carbonate platform, generates a huge hydraulic jump and creates an enormous plunge pool and related deposits with mechanisms comparable to the ones operating along giant subaerial waterfalls. The high kinetic flow energy, constrained by this narrow and deeply incised canyon, formed, when it is released at its mouth in the abyssal plain, a wide deep-sea channel with well-developed levees and fan, made of coarse-grained carbonate defined layers separated by fine carbonate sediments mixed with fine siliciclastics transported along the BE by the energetic Western Boundary Undercurrent.

  10. Extreme Event impacts on Seafloor Ecosystems

    NASA Astrophysics Data System (ADS)

    Canals, Miquel; Sanchez-Vidal, Anna; Calafat, Antoni; Pedrosa-Pàmies, Rut; Lastras, Galderic

    2013-04-01

    The Mediterranean region is among those presenting the highest concentration of cyclogenesis during the northern hemisphere winter, thus is frequently subjected to sudden events of extreme weather. The highest frequency of storm winds occur in its northwestern basin, and is associated to NE and NW storms. The occurrence of such extreme climatic events represents an opportunity of high scientific value to investigate how natural processes at their peaks of activity transfer matter and energy, as well as how impact ecosystems. Due to the approximately NE-SW orientation of the western Mediterranean coast, windforced motion coming from eastern storms generate the most intense waves and with very long fetch in the continental shelf and the coast, causing beach erosion, overwash and inundation of low-lying areas, and damage to infrastructures and coastal resources. On December 26, 2008 a huge storm afforded us the opportunity to understand the effect of storms on the deep sea ecosystems, as impacted violently an area of the Catalan coast covered by a dense network of monitoring devices including sediment traps and currentmeters. The storm, with measured wind gusts of more than 70 km h-1 and associated storm surge reaching 8 m, lead to the remobilisation of a shallow water large reservoir of marine organic carbon associated to fine particles and to its redistribution across the deep basin, and also ignited the motion of large amounts of coarse shelf sediment resulting in the abrasion and burial of benthic communities. In addition to eastern storms, increasing evidence has accumulated during the last few years showing the significance of Dense Shelf Water Cascading (DSWC), a type of marine current driven exclusively by seawater density contrast caused by strong and persistent NW winds, as a key driver of the deep Mediterranean Sea in many aspects. A network of mooring lines with sediment traps and currentmeters deployed in the Cap de Creus canyon in winter 2005-06 recorded a major DSWC event, the latest to date. Data show that DSWC modifies the properties of intermediate and deep waters, carries massive amounts of organic carbon to the basin thus fuelling the deep ecosystem, transports huge quantities of coarse and fine sedimentary particles that abrade canyon floors and rise the load of suspended particles, and also exports pollutants from the coastal area to deeper compartment. Our findings demonstrate that both types of climate-driven extreme events (coastal storms and DSWC) are highly efficient in transporting organic carbon from shallow to deep, thus contributing to its sequestration, and have the potential to tremendously impact the deep-sea ecosystems.

  11. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment, Australia

    NASA Astrophysics Data System (ADS)

    Timms, W. A.; Young, R. R.; Huth, N.

    2012-04-01

    The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr-1 rainfall, potential evapotranspiration >2000 mm yr-1) such as parts of Australia's Murray-Darling Basin (MDB). In this rare study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8-1.2 m depth under perennial vegetation and at 2.0-2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91-229 t ha-1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥ 10 m depth that was not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m-1 at 21 to 37 m depth (N = 5), whereas deeper groundwater was less saline (290 mS m-1) with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM) software package predicted deep drainage of 3.3-9.5 mm yr-1 (0.7-2.1% rainfall) based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent soil water content, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total), and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge appears to be negligible due to low rainfall and large potential evapotranspiration, transient hydrological conditions after changes in land use and a thick clay dominated vadose zone. This is in contrast to regional groundwater modelling that assumes annual recharge of 0.5% of rainfall. Importantly, it was found that leaching from episodic deep drainage could not cause discharge of saline groundwater in the area, since the water table was several meters below the incised river bed.

  12. The Great Easter Egg Hunt: The Void's Incredible Richness

    NASA Astrophysics Data System (ADS)

    2006-04-01

    An image made of about 300 million pixels is being released by ESO, based on more than 64 hours of observations with the Wide-Field Camera on the 2.2m telescope at La Silla (Chile). The image covers an 'empty' region of the sky five times the size of the full moon, opening an exceptionally clear view towards the most distant part of our universe. It reveals objects that are 100 million times fainter than what the unaided eye can see. Easter is in many countries a time of great excitement for children who are on the big hunt for chocolate eggs, hidden all about the places. Astronomers, however, do not need to wait this special day to get such an excitement: it is indeed daily that they look for faraway objects concealed in deep images of the sky. And as with chocolate eggs, deep sky objects, such as galaxies, quasars or gravitational lenses, come in the wildest variety of colours and shapes. ESO PR Photo 11/06 ESO PR Photo 14a/06 The Deep 3 'Empty' Field The image presented here is one of such very deep image of the sky. It is the combination of 714 frames for a total exposure time of 64.5 hours obtained through four different filters (B, V, R, and I)! It consists of four adjacent Wide-Field Camera pointings (each 33x34 arcmin), covering a total area larger than one square degree. Yet, if you were to look at this large portion of the firmament with the unaided eye, you would just see... nothing. The area, named Deep 3, was indeed chosen to be a random but empty, high galactic latitude field, positioned in such a way that it can be observed from the La Silla observatory all over the year. Together with two other regions, Deep 1 and Deep 2, Deep 3 is part of the Deep Public Survey (DPS), based on ideas submitted by the ESO community and covering a total sky area of 3 square degrees. Deep 1 and Deep 2 were selected because they overlapped with regions of other scientific interest. For instance, Deep 1 was chosen to complement the deep ATESP radio survey carried out with the Australia Telescope Compact Array (ATCA) covering the region surveyed by the ESO Slice Project, while Deep 2 included the CDF-S field. Each region is observed in the optical, with the WFI, and in the near-infrared, with SOFI on the 3.5-m New Technology Telescope also at La Silla. Deep 3 is located in the Crater ('The Cup'), a southern constellation with very little interest (the brightest star is of fourth magnitude, i.e. only a factor six brighter than what a keen observer can see with the unaided eye), in between the Virgo, Corvus and Hydra constellations. Such comparatively empty fields provide an unusually clear view towards the distant regions in the Universe and thus open a window towards the earliest cosmic times. The deep imaging data can for example be used to pre-select objects by colour for follow-up spectroscopy with ESO's Very Large Telescope instruments. ESO PR Photo 11/06 ESO PR Photo 14b/06 Galaxy ESO 570-19 and Variable Star UW Crateris But being empty is only a relative notion. True, on the whole image, the SIMBAD Astronomical database references less than 50 objects, clearly a tiny number compared to the myriad of anonymous stars and galaxies that can be seen in the deep image obtained by the Survey! Among the objects catalogued is the galaxy visible in the top middle right (see also PR Photo 14b/06) and named ESO 570-19. Located 60 million light-years away, this spiral galaxy is the largest in the image. It is located not so far - on the image! - from the brightest star in the field, UW Crateris. This red giant is a variable star that is about 8 times fainter than what the unaided eye can see. The second and third brightest stars in this image are visible in the lower far right and in the lower middle left. The first is a star slightly more massive than the Sun, HD 98081, while the other is another red giant, HD 98507. ESO PR Photo 11/06 ESO PR Photo 14c/06 The DPS Deep 3 Field (Detail) In the image, a vast number of stars and galaxies are to be studied and compared. They come in a variety of colours and the stars form amazing asterisms (a group of stars forming a pattern), while the galaxies, which are to be counted by the tens of thousands come in different shapes and some even interact or form part of a cluster. The image and the other associated data will certainly provide a plethora of new results in the years to come. In the meantime, why don't you explore the image with the zoom-in facility, and start your own journey into infinity? Just be careful not to get lost. And remember: don't eat too many of these chocolate eggs! High resolution images and their captions are available on this page.

  13. Distribution and assessment of marine debris in the deep Tyrrhenian Sea (NW Mediterranean Sea, Italy).

    PubMed

    Angiolillo, Michela; Lorenzo, Bianca di; Farcomeni, Alessio; Bo, Marzia; Bavestrello, Giorgio; Santangelo, Giovanni; Cau, Angelo; Mastascusa, Vincenza; Cau, Alessandro; Sacco, Flavio; Canese, Simonepietro

    2015-03-15

    Marine debris is a recognized global ecological concern. Little is known about the extent of the problem in the Mediterranean Sea regarding litter distribution and its influence on deep rocky habitats. A quantitative assessment of debris present in the deep seafloor (30-300 m depth) was carried out in 26 areas off the coast of three Italian regions in the Tyrrhenian Sea, using a Remotely Operated Vehicle (ROV). The dominant type of debris (89%) was represented by fishing gears, mainly lines, while plastic objects were recorded only occasionally. Abundant quantities of gears were found on rocky banks in Sicily and Campania (0.09-0.12 debris m(-2)), proving intense fishing activity. Fifty-four percent of the recorded debris directly impacted benthic organisms, primarily gorgonians, followed by black corals and sponges. This work provides a first insight on the impact of marine debris in Mediterranean deep ecosystems and a valuable baseline for future comparisons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Halomonhystera disjuncta - a young-carrying nematode first observed for the Baltic Sea in deep basins within chemical munitions disposal sites

    NASA Astrophysics Data System (ADS)

    Grzelak, Katarzyna; Kotwicki, Lech

    2016-06-01

    Three deep basins in the Baltic Sea were investigated within the framework of the CHEMSEA project (Chemical Munitions Search & Assessment), which aims to evaluate the ecological impact of chemical warfare agents dumped after World War II. Nematode communities, which comprise the most numerous and diverse organisms in the surveyed areas, were investigated as a key group of benthic fauna. One of the most successful nematode species was morphologically identified as Halomonhystera disjuncta (Bastian, 1865). The presence of this species, which is an active coloniser that is highly resistant to disturbed environments, may indicate that the sediments of these disposal sites are characterised by toxic conditions that are unfavourable for other metazoans. Moreover, ovoviviparous reproductive behaviour in which parents carry their brood internally, which is an important adaptation to harsh environmental conditions, was observed for specimens from Gdansk Deep and Gotland Deep. This reproductive strategy, which is uncommon for marine nematodes, has not previously been reported for nematodes from the Baltic Sea sediment.

  15. Applications of Deep Learning and Reinforcement Learning to Biological Data.

    PubMed

    Mahmud, Mufti; Kaiser, Mohammed Shamim; Hussain, Amir; Vassanelli, Stefano

    2018-06-01

    Rapid advances in hardware-based technologies during the past decades have opened up new possibilities for life scientists to gather multimodal data in various application domains, such as omics, bioimaging, medical imaging, and (brain/body)-machine interfaces. These have generated novel opportunities for development of dedicated data-intensive machine learning techniques. In particular, recent research in deep learning (DL), reinforcement learning (RL), and their combination (deep RL) promise to revolutionize the future of artificial intelligence. The growth in computational power accompanied by faster and increased data storage, and declining computing costs have already allowed scientists in various fields to apply these techniques on data sets that were previously intractable owing to their size and complexity. This paper provides a comprehensive survey on the application of DL, RL, and deep RL techniques in mining biological data. In addition, we compare the performances of DL techniques when applied to different data sets across various application domains. Finally, we outline open issues in this challenging research area and discuss future development perspectives.

  16. Possible deep fault slip preceding the 2004 Parkfield earthquake, inferred from detailed observations of tectonic tremor

    USGS Publications Warehouse

    Shelly, David R.

    2009-01-01

    Earthquake predictability depends, in part, on the degree to which sudden slip is preceded by slow aseismic slip. Recently, observations of deep tremor have enabled inferences of deep slow slip even when detection by other means is not possible, but these data are limited to certain areas and mostly the last decade. The region near Parkfield, California, provides a unique convergence of several years of high-quality tremor data bracketing a moderate earthquake, the 2004 magnitude 6.0 event. Here, I present detailed observations of tectonic tremor from mid-2001 through 2008 that indicate deep fault slip both before and after the Parkfield earthquake that cannot be detected with surface geodetic instruments. While there is no obvious short-term precursor, I find unidirectional tremor migration accompanied by elevated tremor rates in the 3 months prior to the earthquake, which suggests accelerated creep on the fault ∼16 km beneath the eventual earthquake hypocenter.

  17. Excess plutonium disposition: The deep borehole option

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, K.L.

    1994-08-09

    This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues relatedmore » to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.« less

  18. Ecosystem function and services provided by the deep sea

    NASA Astrophysics Data System (ADS)

    Thurber, A. R.; Sweetman, A. K.; Narayanaswamy, B. E.; Jones, D. O. B.; Ingels, J.; Hansman, R. L.

    2014-07-01

    The deep sea is often viewed as a vast, dark, remote, and inhospitable environment, yet the deep ocean and seafloor are crucial to our lives through the services that they provide. Our understanding of how the deep sea functions remains limited, but when treated synoptically, a diversity of supporting, provisioning, regulating and cultural services becomes apparent. The biological pump transports carbon from the atmosphere into deep-ocean water masses that are separated over prolonged periods, reducing the impact of anthropogenic carbon release. Microbial oxidation of methane keeps another potent greenhouse gas out of the atmosphere while trapping carbon in authigenic carbonates. Nutrient regeneration by all faunal size classes provides the elements necessary for fueling surface productivity and fisheries, and microbial processes detoxify a diversity of compounds. Each of these processes occur on a very small scale, yet considering the vast area over which they occur they become important for the global functioning of the ocean. The deep sea also provides a wealth of resources, including fish stocks, enormous bioprospecting potential, and elements and energy reserves that are currently being extracted and will be increasingly important in the near future. Society benefits from the intrigue and mystery, the strange life forms, and the great unknown that has acted as a muse for inspiration and imagination since near the beginning of civilization. While many functions occur on the scale of microns to meters and timescales up to years, the derived services that result are only useful after centuries of integrated activity. This vast dark habitat, which covers the majority of the globe, harbors processes that directly impact humans in a variety of ways; however, the same traits that differentiate it from terrestrial or shallow marine systems also result in a greater need for integrated spatial and temporal understanding as it experiences increased use by society. In this manuscript we aim to provide a foundation for informed conservation and management of the deep sea by summarizing the important role of the deep sea in society.

  19. Enhancing arsenic mitigation in Bangladesh: findings from institutional, psychological, and technical investigations.

    PubMed

    Johnston, Richard; Hug, Stephan J; Inauen, Jennifer; Khan, Nasreen I; Mosler, Hans-Joachim; Yang, Hong

    2014-08-01

    As part of a trans-disciplinary research project, a series of surveys and interventions were conducted in different arsenic-affected regions of rural Bangladesh. Surveys of institutional stakeholders identified deep tubewells and piped water systems as the most preferred options, and the same preferences were found in household surveys of populations at risk. Psychological surveys revealed that these two technologies were well-supported by potential users, with self-efficacy and social norms being the principal factors driving behavior change. The principal drawbacks of deep tubewells are that installation costs are too high for most families to own private wells, and that for various socio-cultural-religious reasons, people are not willing to walk long distances to access communal tubewells. In addition, water sector planners have reservations about greater exploitation of the deep aquifer, out of concern for current or future geogenic contamination. Groundwater models and field studies have shown that in the great majority of the affected areas, the risk of arsenic contamination of deep groundwater is small; salinity, iron, and manganese are more likely to pose problems. These constituents can in some cases be avoided by exploiting an intermediate depth aquifer of good chemical quality, which is hydraulically and geochemically separate from the arsenic-contaminated shallow aquifer. Deep tubewells represent a technically sound option throughout much of the arsenic-affected regions, and future mitigation programs should build on and accelerate construction of deep tubewells. Utilization of deep tubewells, however, could be improved by increasing the tubewell density (which requires stronger financial support) to reduce travel times, by considering water quality in a holistic way, and by accompanying tubewell installation with motivational interventions based on psychological factors. By combining findings from technical and social sciences, the efficiency and success of arsenic mitigation in general - and installation of deep tubewells in particular - can be significantly enhanced. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Deep erosions of the palmar aspect of the navicular bone diagnosed by standing magnetic resonance imaging.

    PubMed

    Sherlock, C; Mair, T; Blunden, T

    2008-11-01

    Erosion of the palmar (flexor) aspect of the navicular bone is difficult to diagnose with conventional imaging techniques. To review the clinical, magnetic resonance (MR) and pathological features of deep erosions of the palmar aspect of the navicular bone. Cases of deep erosions of the palmar aspect of the navicular bone, diagnosed by standing low field MR imaging, were selected. Clinical details, results of diagnostic procedures, MR features and pathological findings were reviewed. Deep erosions of the palmar aspect of the navicular bone were diagnosed in 16 mature horses, 6 of which were bilaterally lame. Sudden onset of lameness was recorded in 63%. Radiography prior to MR imaging showed equivocal changes in 7 horses. The MR features consisted of focal areas of intermediate or high signal intensity on T1-, T2*- and T2-weighted images and STIR images affecting the dorsal aspect of the deep digital flexor tendon, the fibrocartilage of the palmar aspect, subchondral compact bone and medulla of the navicular bone. On follow-up, 7/16 horses (44%) had been subjected to euthanasia and only one was being worked at its previous level. Erosions of the palmar aspect of the navicular bone were confirmed post mortem in 2 horses. Histologically, the lesions were characterised by localised degeneration of fibrocartilage with underlying focal osteonecrosis and fibroplasia. The adjacent deep digital flexor tendon showed fibril formation and fibrocartilaginous metaplasia. Deep erosions of the palmar aspect of the navicular bone are more easily diagnosed by standing low field MR imaging than by conventional radiography. The lesions involve degeneration of the palmar fibrocartilage with underlying osteonecrosis and fibroplasia affecting the subchondral compact bone and medulla, and carry a poor prognosis for return to performance. Diagnosis of shallow erosive lesions of the palmar fibrocartilage may allow therapeutic intervention earlier in the disease process, thereby preventing progression to deep erosive lesions.

  1. Monitoring controlled graves representing common burial scenarios with ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Schultz, John J.; Martin, Michael M.

    2012-08-01

    Implementing controlled geophysical research is imperative to understand the variables affecting detection of clandestine graves during real-life forensic searches. This study focused on monitoring two empty control graves (shallow and deep) and six burials containing a small pig carcass (Sus scrofa) representing different burial forensic scenarios: a shallow buried naked carcass, a deep buried naked carcass, a deep buried carcass covered by a layer of rocks, a deep buried carcass covered by a layer of lime, a deep buried carcass wrapped in an impermeable tarpaulin and a deep buried carcass wrapped in a cotton blanket. Multi-frequency, ground penetrating radar (GPR) data were collected monthly over a 12-month monitoring period. The research site was a cleared field within a wooded area in a humid subtropical environment, and the soil consisted of a Spodosol, a common soil type in Florida. This study compared 2D GPR reflection profiles and horizontal time slices obtained with both 250 and 500 MHz dominant frequency antennae to determine the utility of both antennae for grave detection in this environment over time. Overall, a combination of both antennae frequencies provided optimal detection of the targets. Better images were noted for deep graves, compared to shallow graves. The 250 MHz antenna provided better images for detecting deep graves, as less non-target anomalies were produced with lower radar frequencies. The 250 MHz antenna also provided better images detecting the disturbed ground. Conversely, the 500 MHz antenna provided better images when detecting the shallow pig grave. The graves that contained a pig carcass with associated grave items provided the best results, particularly the carcass covered with rocks and the carcass wrapped in a tarpaulin. Finally, during periods of increased soil moisture levels, there was increased detection of graves that was most likely related to conductive decompositional fluid from the carcasses.

  2. Prediction of Tissue Outcome and Assessment of Treatment Effect in Acute Ischemic Stroke Using Deep Learning.

    PubMed

    Nielsen, Anne; Hansen, Mikkel Bo; Tietze, Anna; Mouridsen, Kim

    2018-06-01

    Treatment options for patients with acute ischemic stroke depend on the volume of salvageable tissue. This volume assessment is currently based on fixed thresholds and single imagine modalities, limiting accuracy. We wish to develop and validate a predictive model capable of automatically identifying and combining acute imaging features to accurately predict final lesion volume. Using acute magnetic resonance imaging, we developed and trained a deep convolutional neural network (CNN deep ) to predict final imaging outcome. A total of 222 patients were included, of which 187 were treated with rtPA (recombinant tissue-type plasminogen activator). The performance of CNN deep was compared with a shallow CNN based on the perfusion-weighted imaging biomarker Tmax (CNN Tmax ), a shallow CNN based on a combination of 9 different biomarkers (CNN shallow ), a generalized linear model, and thresholding of the diffusion-weighted imaging biomarker apparent diffusion coefficient (ADC) at 600×10 -6 mm 2 /s (ADC thres ). To assess whether CNN deep is capable of differentiating outcomes of ±intravenous rtPA, patients not receiving intravenous rtPA were included to train CNN deep, -rtpa to access a treatment effect. The networks' performances were evaluated using visual inspection, area under the receiver operating characteristic curve (AUC), and contrast. CNN deep yields significantly better performance in predicting final outcome (AUC=0.88±0.12) than generalized linear model (AUC=0.78±0.12; P =0.005), CNN Tmax (AUC=0.72±0.14; P <0.003), and ADC thres (AUC=0.66±0.13; P <0.0001) and a substantially better performance than CNN shallow (AUC=0.85±0.11; P =0.063). Measured by contrast, CNN deep improves the predictions significantly, showing superiority to all other methods ( P ≤0.003). CNN deep also seems to be able to differentiate outcomes based on treatment strategy with the volume of final infarct being significantly different ( P =0.048). The considerable prediction improvement accuracy over current state of the art increases the potential for automated decision support in providing recommendations for personalized treatment plans. © 2018 American Heart Association, Inc.

  3. Intermediate to deep water hydrographic changes of the Japan Sea over the past 10 Myr, inferred from radiolarian data (IODP Exp. 346, Site U1425)

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Kenji M.; Itaki, Takuya; Tada, Ryuji; Kurokawa, Shunsuke

    2017-04-01

    The Japan Sea is a back-arc basin opened under a continental rifting during the Early to Middle Miocene (ca. 25-13 Ma). This area is characterized by active tectonism, which drastically modified the Japan Sea paleogeography such as the sill depth of its key straits. In modern condition, the Japan Sea is connected to adjacent marginal seas and the Pacific Ocean by four straits shallower than 130 m. These straits are the Tsushima Strait connecting to the East China Sea, the Tsugaru Strait connecting to the Pacific, and the Soya and Mamiya Straits connecting to the Sea of Okhotsk. Therefore, the intermediate and deep water of the Japan Sea is isolated, leading the formation of a unique and regional deep sea water, known as the Japan Sea Proper Water. However, past studies show that during the late Miocene and Pliocene, only the Tsugaru Strait connecting to the North Pacific was opened. This strait was deeper during Plio-Miocene and have likely enable inflow of deep to intermediate water of the North Pacific in the Japan Sea. Radiolarians are one of the planktic micro-organisms group bearing siliceous skeletons. Their species comprise shallow to deep water dwellers, sensitive to changes in sea water physical/ecological properties forced by climate changes. Their fossils are known for be well preserved in the deep-sea sediments of the North Pacific. Therefore, in this study we propose to monitor changes in intermediate to deep water hydrography of the Japan Sea since the late Miocene, using radiolarian as an environmental proxy. In 2013 the IODP Expedition 346 retrieved sediment cores at different sites in the Japan Sea. In this study, we have analyzed 139 core sediments samples collected at Site U1425. This site is situated in the middle of the Yamato Bank. We selected this site because the past 10 Myr could be recovered continuously without hiatuses. Changes in radiolarian assemblages reveal that the oceanographic setting of the Japan Sea changed drastically at ca. 2.7 Ma. For older interval (2.7- 10 Ma), deep water species of the North Pacific could be identified at site U1425, inferring influences of deep water from the North Pacific and consequently a deeper sill depths of the connecting strait. Radiolarian assemblages also show that the intermediate water of the Japan sea is characterized by taxa living in equatorial to mid latitude area of the Northwest Pacific during the time interval between 2.7-10 Ma. While between 4 and 5 Ma, taxa related to the Sea of Okhotsk show very high abundances, inferring also inflow of intermediate water from the Sea of Okhotsk in the Japan Sea.

  4. Atmospheric and Oceanic Response to Southern Ocean Deep Convection Oscillations on Decadal to Centennial Time Scales in Climate Models

    NASA Astrophysics Data System (ADS)

    Martin, T.; Reintges, A.; Park, W.; Latif, M.

    2014-12-01

    Many current coupled global climate models simulate open ocean deep convection in the Southern Ocean as a recurring event with time scales ranging from a few years to centennial (de Lavergne et al., 2014, Nat. Clim. Ch.). The only observation of such event, however, was the occurrence of the Weddell Polynya in the mid-1970s, an open water area of 350 000 km2 within the Antarctic sea ice in three consecutive winters. Both the wide range of modeled frequency of occurrence and the absence of deep convection in the Weddell Sea highlights the lack of understanding concerning the phenomenon. Nevertheless, simulations indicate that atmospheric and oceanic responses to the cessation of deep convection in the Southern Ocean include a strengthening of the low-level atmospheric circulation over the Southern Ocean (increasing SAM index) and a reduction in the export of Antarctic Bottom Water (AABW), potentially masking the regional effects of global warming (Latif et al., 2013, J. Clim.; Martin et al., 2014, Deep Sea Res. II). It is thus of great importance to enhance our understanding of Southern Ocean deep convection and clarify the associated time scales. In two multi-millennial simulations with the Kiel Climate Model (KCM, ECHAM5 T31 atmosphere & NEMO-LIM2 ~2˚ ocean) we showed that the deep convection is driven by strong oceanic warming at mid-depth periodically overriding the stabilizing effects of precipitation and ice melt (Martin et al., 2013, Clim. Dyn.). Sea ice thickness also affects location and duration of the deep convection. A new control simulation, in which, amongst others, the atmosphere grid resolution is changed to T42 (~2.8˚), yields a faster deep convection flip-flop with a period of 80-100 years and a weaker but still significant global climate response similar to CMIP5 simulations. While model physics seem to affect the time scale and intensity of the phenomenon, the driving mechanism is a rather robust feature. Finally, we compare the atmospheric and oceanic responses among CMIP5 models. Since open ocean convection is the dominant mode of AABW formation in these models, the northward extent and strength of the AABW cell in the Atlantic correlates with the deep convection intensity but varies between models. Likewise, atmospheric response patterns outside the Southern Ocean region are not consistent among models.

  5. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean.

    PubMed

    Courtene-Jones, Winnie; Quinn, Brian; Gary, Stefan F; Mogg, Andrew O M; Narayanaswamy, Bhavani E

    2017-12-01

    Microplastics are widespread in the natural environment and present numerous ecological threats. While the ultimate fate of marine microplastics are not well known, it is hypothesized that the deep sea is the final sink for this anthropogenic contaminant. This study provides a quantification and characterisation of microplastic pollution ingested by benthic macroinvertebrates with different feeding modes (Ophiomusium lymani, Hymenaster pellucidus and Colus jeffreysianus) and in adjacent deep water > 2200 m, in the Rockall Trough, Northeast Atlantic Ocean. Despite the remote location, microplastic fibres were identified in deep-sea water at a concentration of 70.8 particles m -3 , comparable to that in surface waters. Of the invertebrates examined (n = 66), 48% ingested microplastics with quantities enumerated comparable to coastal species. The number of ingested microplastics differed significantly between species and generalized linear modelling identified that the number of microplastics ingested for a given tissue mass was related to species and not organism feeding mode or the length or overall weight of the individual. Deep-sea microplastics were visually highly degraded with surface areas more than double that of pristine particles. The identification of synthetic polymers with densities greater and less than seawater along with comparable quantities to the upper ocean indicates processes of vertical re-distribution. This study presents the first snapshot of deep ocean microplastics and the quantification of microplastic pollution in the Rockall Trough. Additional sampling throughout the deep-sea is required to assess levels of microplastic pollution, vertical transportation and sequestration, which have the potential to impact the largest global ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition.

    PubMed

    Fuentes, Alvaro; Yoon, Sook; Kim, Sang Cheol; Park, Dong Sun

    2017-09-04

    Plant Diseases and Pests are a major challenge in the agriculture sector. An accurate and a faster detection of diseases and pests in plants could help to develop an early treatment technique while substantially reducing economic losses. Recent developments in Deep Neural Networks have allowed researchers to drastically improve the accuracy of object detection and recognition systems. In this paper, we present a deep-learning-based approach to detect diseases and pests in tomato plants using images captured in-place by camera devices with various resolutions. Our goal is to find the more suitable deep-learning architecture for our task. Therefore, we consider three main families of detectors: Faster Region-based Convolutional Neural Network (Faster R-CNN), Region-based Fully Convolutional Network (R-FCN), and Single Shot Multibox Detector (SSD), which for the purpose of this work are called "deep learning meta-architectures". We combine each of these meta-architectures with "deep feature extractors" such as VGG net and Residual Network (ResNet). We demonstrate the performance of deep meta-architectures and feature extractors, and additionally propose a method for local and global class annotation and data augmentation to increase the accuracy and reduce the number of false positives during training. We train and test our systems end-to-end on our large Tomato Diseases and Pests Dataset, which contains challenging images with diseases and pests, including several inter- and extra-class variations, such as infection status and location in the plant. Experimental results show that our proposed system can effectively recognize nine different types of diseases and pests, with the ability to deal with complex scenarios from a plant's surrounding area.

  7. Use of an Artificial Neural Network to Construct a Model of Predicting Deep Fungal Infection in Lung Cancer Patients.

    PubMed

    Chen, Jian; Chen, Jie; Ding, Hong-Yan; Pan, Qin-Shi; Hong, Wan-Dong; Xu, Gang; Yu, Fang-You; Wang, Yu-Min

    2015-01-01

    The statistical methods to analyze and predict the related dangerous factors of deep fungal infection in lung cancer patients were several, such as logic regression analysis, meta-analysis, multivariate Cox proportional hazards model analysis, retrospective analysis, and so on, but the results are inconsistent. A total of 696 patients with lung cancer were enrolled. The factors were compared employing Student's t-test or the Mann-Whitney test or the Chi-square test and variables that were significantly related to the presence of deep fungal infection selected as candidates for input into the final artificial neural network analysis (ANN) model. The receiver operating characteristic (ROC) and area under curve (AUC) were used to evaluate the performance of the artificial neural network (ANN) model and logistic regression (LR) model. The prevalence of deep fungal infection from lung cancer in this entire study population was 32.04%(223/696), deep fungal infections occur in sputum specimens 44.05% (200/454). The ratio of candida albicans was 86.99% (194/223) in the total fungi. It was demonstrated that older (≥65 years), use of antibiotics, low serum albumin concentrations (≤37.18 g /L), radiotherapy, surgery, low hemoglobin hyperlipidemia (≤93.67 g /L), long time of hospitalization (≥14 days) were apt to deep fungal infection and the ANN model consisted of the seven factors. The AUC of ANN model (0.829±0.019) was higher than that of LR model (0.756±0.021). The artificial neural network model with variables consisting of age, use of antibiotics, serum albumin concentrations, received radiotherapy, received surgery, hemoglobin, time of hospitalization should be useful for predicting the deep fungal infection in lung cancer.

  8. A Robust Deep-Learning-Based Detector for Real-Time Tomato Plant Diseases and Pests Recognition

    PubMed Central

    Yoon, Sook; Kim, Sang Cheol; Park, Dong Sun

    2017-01-01

    Plant Diseases and Pests are a major challenge in the agriculture sector. An accurate and a faster detection of diseases and pests in plants could help to develop an early treatment technique while substantially reducing economic losses. Recent developments in Deep Neural Networks have allowed researchers to drastically improve the accuracy of object detection and recognition systems. In this paper, we present a deep-learning-based approach to detect diseases and pests in tomato plants using images captured in-place by camera devices with various resolutions. Our goal is to find the more suitable deep-learning architecture for our task. Therefore, we consider three main families of detectors: Faster Region-based Convolutional Neural Network (Faster R-CNN), Region-based Fully Convolutional Network (R-FCN), and Single Shot Multibox Detector (SSD), which for the purpose of this work are called “deep learning meta-architectures”. We combine each of these meta-architectures with “deep feature extractors” such as VGG net and Residual Network (ResNet). We demonstrate the performance of deep meta-architectures and feature extractors, and additionally propose a method for local and global class annotation and data augmentation to increase the accuracy and reduce the number of false positives during training. We train and test our systems end-to-end on our large Tomato Diseases and Pests Dataset, which contains challenging images with diseases and pests, including several inter- and extra-class variations, such as infection status and location in the plant. Experimental results show that our proposed system can effectively recognize nine different types of diseases and pests, with the ability to deal with complex scenarios from a plant’s surrounding area. PMID:28869539

  9. Petrology and geochemistry of primitive lower oceanic crust from Pito Deep: Implications for the accretion of the lower crust at the Southern East Pacific Rise

    USGS Publications Warehouse

    Perk, N.W.; Coogan, L.A.; Karson, J.A.; Klein, E.M.; Hanna, H.D.

    2007-01-01

    A suite of samples collected from the uppermost part of the plutonic section of the oceanic crust formed at the southern East Pacific Rise and exposed at the Pito Deep has been examined. These rocks were sampled in situ by ROV and lie beneath a complete upper crustal section providing geological context. This is only the second area (after the Hess Deep) in which a substantial depth into the plutonic complex formed at the East Pacific Rise has been sampled in situ and reveals significant spatial heterogeneity in the plutonic complex. In contrast to the uppermost plutonic rocks at Hess Deep, the rocks studied here are generally primitive with olivine forsterite contents mainly between 85 and 88 and including many troctolites. The melt that the majority of the samples crystallized from was aggregated normal mid-ocean ridge basalt (MORB). Despite this high Mg# clinopyroxene is common despite model predictions that clinopyroxene should not reach the liquidus early during low-pressure crystallization of MORB. Stochastic modeling of melt crystallisation at various levels in the crust suggests that it is unlikely that a significant melt mass crystallized in the deeper crust (for example in sills) because this would lead to more evolved shallow level plutonic rocks. Similar to the upper plutonic section at Hess Deep, and in the Oman ophiolite, many samples show a steeply dipping, axis-parallel, magmatic fabric. This suggests that vertical magmatic flow is an important process in the upper part of the seismic low velocity zone beneath fast-spreading ridges. We suggest that both temporal and spatial (along-axis) variability in the magmatic and hydrothermal systems can explain the differences observed between the Hess Deep and Pito Deep plutonics. ?? Springer-Verlag 2007.

  10. Execution of deep dipole geoelectrical soundings in areas of geothermal interest. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patella, D.

    It is suggested that deep geoelectrical problems may be resolved by carrying out dipole soundings in the field and applying a quantitative interpretation in the Schlumberger domain. The 'transformation' of original field dipole sounding curves into equivalent Schlumberger curves is outlined for the cases of layered structures and arbitrary underground structures. Theoretical apparent resistivity curves are derived for soundings over bidimensional structures. Following a summary of the geological features of the Travale-Radicondoli geothermal area of Italy, the dipole sounding method employed for this field study and the means of collecting and analyzing the data, are outlined.

  11. First hyperspectral survey of the deep seafloor: DISCOL area, Peru Basin

    NASA Astrophysics Data System (ADS)

    Dumke, Ines; Nornes, Stein M.; Ludvigsen, Martin

    2017-04-01

    Conventional hyperspectral seafloor surveys using airborne or satellite platforms are typically limited to shallow coastal areas. This limitation is due to the requirement for illumination by sunlight, which does not penetrate into deeper waters. For hyperspectral studies in deeper marine environments, such as the deep sea, a close-range, sunlight-independent survey approach is therefore required. Here, we present the first hyperspectral data from the deep seafloor. The data were acquired in 4200 m water depth in the DISCOL (disturbance-recolonization) area in the Peru Basin (SW Pacific). This area is characterized by seafloor manganese nodules and recolonization by benthic fauna after a seafloor disturbance experiment conducted in 1989, and was revisited in 2015 by the JPI Oceans cruise SO-242. The acquisition setup consisted of a new Underwater Hyperspectral Imager (UHI) mounted on a remotely operated vehicle (ROV), which provided illumination of the seafloor. High spatial and spectral resolution were achieved by an ROV altitude of 1 m and recording of 112 spectral bands between 380 nm and 800 nm (4 nm resolution). Spectral classification was performed to classify manganese nodules and benthic fauna and map their distribution in the study area. The results demonstrate the high potential of underwater hyperspectral imaging in mapping and classifying seafloor deposits and habitats.

  12. Learning representations for the early detection of sepsis with deep neural networks.

    PubMed

    Kam, Hye Jin; Kim, Ha Young

    2017-10-01

    Sepsis is one of the leading causes of death in intensive care unit patients. Early detection of sepsis is vital because mortality increases as the sepsis stage worsens. This study aimed to develop detection models for the early stage of sepsis using deep learning methodologies, and to compare the feasibility and performance of the new deep learning methodology with those of the regression method with conventional temporal feature extraction. Study group selection adhered to the InSight model. The results of the deep learning-based models and the InSight model were compared. With deep feedforward networks, the area under the ROC curve (AUC) of the models were 0.887 and 0.915 for the InSight and the new feature sets, respectively. For the model with the combined feature set, the AUC was the same as that of the basic feature set (0.915). For the long short-term memory model, only the basic feature set was applied and the AUC improved to 0.929 compared with the existing 0.887 of the InSight model. The contributions of this paper can be summarized in three ways: (i) improved performance without feature extraction using domain knowledge, (ii) verification of feature extraction capability of deep neural networks through comparison with reference features, and (iii) improved performance with feedforward neural networks using long short-term memory, a neural network architecture that can learn sequential patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm.

    PubMed

    Lee, Jae-Hong; Kim, Do-Hyung; Jeong, Seong-Nyum; Choi, Seong-Ho

    2018-04-01

    The aim of the current study was to develop a computer-assisted detection system based on a deep convolutional neural network (CNN) algorithm and to evaluate the potential usefulness and accuracy of this system for the diagnosis and prediction of periodontally compromised teeth (PCT). Combining pretrained deep CNN architecture and a self-trained network, periapical radiographic images were used to determine the optimal CNN algorithm and weights. The diagnostic and predictive accuracy, sensitivity, specificity, positive predictive value, negative predictive value, receiver operating characteristic (ROC) curve, area under the ROC curve, confusion matrix, and 95% confidence intervals (CIs) were calculated using our deep CNN algorithm, based on a Keras framework in Python. The periapical radiographic dataset was split into training (n=1,044), validation (n=348), and test (n=348) datasets. With the deep learning algorithm, the diagnostic accuracy for PCT was 81.0% for premolars and 76.7% for molars. Using 64 premolars and 64 molars that were clinically diagnosed as severe PCT, the accuracy of predicting extraction was 82.8% (95% CI, 70.1%-91.2%) for premolars and 73.4% (95% CI, 59.9%-84.0%) for molars. We demonstrated that the deep CNN algorithm was useful for assessing the diagnosis and predictability of PCT. Therefore, with further optimization of the PCT dataset and improvements in the algorithm, a computer-aided detection system can be expected to become an effective and efficient method of diagnosing and predicting PCT.

  14. Increases in tropical rainfall driven by changes in frequency of organized deep convection.

    PubMed

    Tan, Jackson; Jakob, Christian; Rossow, William B; Tselioudis, George

    2015-03-26

    Increasing global precipitation has been associated with a warming climate resulting from a strengthening of the hydrological cycle. This increase, however, is not spatially uniform. Observations and models have found that changes in rainfall show patterns characterized as 'wet-gets-wetter' and 'warmer-gets-wetter'. These changes in precipitation are largely located in the tropics and hence are probably associated with convection. However, the underlying physical processes for the observed changes are not entirely clear. Here we show from observations that most of the regional increase in tropical precipitation is associated with changes in the frequency of organized deep convection. By assessing the contributions of various convective regimes to precipitation, we find that the spatial patterns of change in the frequency of organized deep convection are strongly correlated with observed change in rainfall, both positive and negative (correlation of 0.69), and can explain most of the patterns of increase in rainfall. In contrast, changes in less organized forms of deep convection or changes in precipitation within organized deep convection contribute less to changes in precipitation. Our results identify organized deep convection as the link between changes in rainfall and in the dynamics of the tropical atmosphere, thus providing a framework for obtaining a better understanding of changes in rainfall. Given the lack of a distinction between the different degrees of organization of convection in climate models, our results highlight an area of priority for future climate model development in order to achieve accurate rainfall projections in a warming climate.

  15. Relative stability of deep- versus shallow-side bone levels in angular proximal infrabony defects.

    PubMed

    Heins, P; Hartigan, M; Low, S; Chace, R

    1989-01-01

    The relative changes with time, in the position of the coronal margin of the mesial and distal bone of proximal, angular infrabony defects, were investigated. Tracings of the radiographs of 51 mandibular posterior sites, treated by flap curettage, with a mean post-surgical duration of 11.8 years, were measured using a digitizer pad. The group consisting of shallow-side sites (N = 51), exhibited no significant change in the bone height with time; however, there was a significant decrease in bone height in the deep-side group (N = 51). The mean area of proximal bone decreased significantly with time. The defects were divided into early (N = 25) and advanced (N = 26) angular groups, and then into deep- and shallow-side subgroups. In the early defect group, there was a significant decrease in the mean bone height of the deep-side subgroup. There were no differences in the changes of mean bone level of the remaining 3 subgroups with time. There was no correlation between changes in bone levels of adjacent mesial and distal sides of angular defects with time (r = 0.27). There was no difference between the deep- and shallow-side groups in the number of sites which gained, lost or evidenced no change in bone height. In the study population, the bone height of 73% of the deep-side, and 84% of the shallow-side sites was either unchanged or in a more coronal position.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Development of Carbon Dioxide Removal Systems for NASA's Deep Space Human Exploration Missions 2016-2017

    NASA Technical Reports Server (NTRS)

    Knox, James C.

    2017-01-01

    NASA has embarked on an endeavor that will enable humans to explore deep space, with the ultimate goal of sending humans to Mars. This journey will require significant developments in a wide range of technical areas, as resupply is unavailable in the Mars transit phase and early return is not possible. Additionally, mass, power, volume, and other resources must be minimized for all subsystems to reduce propulsion needs. Among the critical areas identified for development are life support systems, which will require increases in reliability and reductions in resources. This paper discusses current and planned developments in the area of carbon dioxide removal to support crewed Mars-class missions.

  17. The VIRMOS deep imaging survey. I. Overview, survey strategy, and CFH12K observations

    NASA Astrophysics Data System (ADS)

    Le Fèvre, O.; Mellier, Y.; McCracken, H. J.; Foucaud, S.; Gwyn, S.; Radovich, M.; Dantel-Fort, M.; Bertin, E.; Moreau, C.; Cuillandre, J.-C.; Pierre, M.; Le Brun, V.; Mazure, A.; Tresse, L.

    2004-04-01

    This paper describes the CFH12K-VIRMOS survey: a deep BVRI imaging survey in four fields totalling more than 17 deg2, conducted with the 40×30 arcmin2 field CFH-12K camera. The survey is intended to be a multi-purpose survey used for a variety of science goals, including surveys of very high redshift galaxies and weak lensing studies. Four high galactic latitude fields, each 2×2 deg2, have been selected along the celestial equator: 0226-04, 1003+01, 1400+05, and 2217+00. The 16 deg2 of the ``wide'' survey are covered with exposure times of 2 hr, 1.5 hr, 1 hr, 1 hr, respectively while the 1.3×1 deg2 area of the ``deep'' survey at the center of the 0226-04 field is covered with exposure times of 7 h, 4.5 h, 3 h, 3 h, in BVRI respectively. An additional area ˜2 deg2 has been imaged in the 0226-04 field corresponding to the area surveyed by the XMM-LSS program \\citep{pierre03}. The data is pipeline processed at the Terapix facility at the Institut d'Astrophysique de Paris to produce large mosaic images. The catalogs produced contain the positions, shapes, total and aperture magnitudes for 2.175 million objects measured in the four areas. The limiting magnitudes, measured as a 5σ measurement in a 3 arcsec diameter aperture is IAB=24.8 in the ``Wide'' areas, and IAB=25.3 in the deep area. Careful quality control has been applied on the data to ensure internal consistency and assess the photometric and astrometric accuracy as described in a joint paper \\citep{mccracken03}. These catalogs are used to select targets for the VIRMOS-VLT Deep Survey, a large spectroscopic survey of the distant universe (Le Fèvre et al. 2003). First results from the CFH12K-VIRMOS survey have been published on weak lensing (e.g. van Waerbeke & Mellier 2003). Catalogs and images are available through the VIRMOS database environment under Oracle (http://www.oamp.fr/cencos). They are open for general use since July 1st, 2003. Appendix A is only available in electronic form at http://www.edpsciences.org

  18. Low temperature hydrothermal maturation of organic matter in sediments from the Atlantis II Deep, Red Sea

    NASA Technical Reports Server (NTRS)

    Simoneit, Bernd R. T.; Grimalt, Joan O.; Hayes, J. M.; Hartman, Hyman

    1987-01-01

    Hydrocarbons and bulk organic matter of two sediment cores within the Atlantis II Deep are analyzed, and microbial inputs and minor terrestrial sources are found to represent the major sedimentary organic material. Results show that extensive acid-catalyzed reactions are occurring in the sediments, and the Atlantis II Deep is found to exhibit a lower degree of thermal maturation than other hydrothermal or intrusive systems. The lack of carbon number preference noted among the n-alkanes suggests that the organic matter of these sediments has undergone some degree of catagenesis, though yields of hydrocarbons are much lower than those found in other hydrothermal areas, probably due to the effect of lower temperature and poor source-rock characteristics.

  19. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics

    NASA Astrophysics Data System (ADS)

    Chen, Shuo; Weitemier, Adam Z.; Zeng, Xiao; He, Linmeng; Wang, Xiyu; Tao, Yanqiu; Huang, Arthur J. Y.; Hashimotodani, Yuki; Kano, Masanobu; Iwasaki, Hirohide; Parajuli, Laxmi Kumar; Okabe, Shigeo; Teh, Daniel B. Loong; All, Angelo H.; Tsutsui-Kimura, Iku; Tanaka, Kenji F.; Liu, Xiaogang; McHugh, Thomas J.

    2018-02-01

    Optogenetics has revolutionized the experimental interrogation of neural circuits and holds promise for the treatment of neurological disorders. It is limited, however, because visible light cannot penetrate deep inside brain tissue. Upconversion nanoparticles (UCNPs) absorb tissue-penetrating near-infrared (NIR) light and emit wavelength-specific visible light. Here, we demonstrate that molecularly tailored UCNPs can serve as optogenetic actuators of transcranial NIR light to stimulate deep brain neurons. Transcranial NIR UCNP-mediated optogenetics evoked dopamine release from genetically tagged neurons in the ventral tegmental area, induced brain oscillations through activation of inhibitory neurons in the medial septum, silenced seizure by inhibition of hippocampal excitatory cells, and triggered memory recall. UCNP technology will enable less-invasive optical neuronal activity manipulation with the potential for remote therapy.

  20. Crop response to deep tillage - a meta-analysis

    NASA Astrophysics Data System (ADS)

    Schneider, Florian; Don, Axel; Hennings, Inga; Schmittmann, Oliver; Seidel, Sabine J.

    2017-04-01

    Subsoil, i.e. the soil layer below the topsoil, stores tremendous stocks of nutrients and can keep water even under drought conditions. Deep tillage may be a method to enhance the plant-availability of subsoil resources. However, in field trials, deep tillage effects on crop yields were inconsistent. Therefore, we conducted a meta-analysis of crop yield response to subsoiling, deep ploughing and deep mixing of soil profiles. Our search resulted in 1530 yield comparisons following deep and conventional control tillage on 67 experimental cropping sites. The vast majority of the data derived from temperate latitudes, from trials conducted in the USA (679 observations) and Germany (630 observations). On average, crop yield response to deep tillage was slightly positive (6% increase). However, individual deep tillage effects were highly scattered including about 40% yield depressions after deep tillage. Deep tillage on soils with root restrictive layers increased crop yields about 20%, while soils containing >70% silt increased the risk of yield depressions following deep tillage. Generally, deep tillage effects increased with drought intensity indicating deep tillage as climate adaptation measure at certain sites. Our results suggest that deep tillage can facilitate the plant-availability of subsoil nutrients, which increases crop yields if (i) nutrients in the topsoil are growth limiting, and (ii) deep tillage does not come at the cost of impairing topsoil fertility. On sites with root restrictive soil layers, deep tillage can be an effective measure to mitigate drought stress and improve the resilience of crops. However, deep tillage should only be performed on soils with a stable structure, i.e. <70% silt content. We will discuss the contribution of deep tillage options to enhance the sustainability of agricultural production by facilitating the uptake of nutrients and water from the subsoil.

  1. Marine biogeographic realms and species endemicity.

    PubMed

    Costello, Mark J; Tsai, Peter; Wong, Pui Shan; Cheung, Alan Kwok Lun; Basher, Zeenatul; Chaudhary, Chhaya

    2017-10-20

    Marine biogeographic realms have been inferred from small groups of species in particular environments (e.g., coastal, pelagic), without a global map of realms based on statistical analysis of species across all higher taxa. Here we analyze the distribution of 65,000 species of marine animals and plants, and distinguish 30 distinct marine realms, a similar proportion per area as found for land. On average, 42% of species are unique to the realms. We reveal 18 continental-shelf and 12 offshore deep-sea realms, reflecting the wider ranges of species in the pelagic and deep-sea compared to coastal areas. The most widespread species are pelagic microscopic plankton and megafauna. Analysis of pelagic species recognizes five realms within which other realms are nested. These maps integrate the biogeography of coastal and deep-sea, pelagic and benthic environments, and show how land-barriers, salinity, depth, and environmental heterogeneity relate to the evolution of biota. The realms have applications for marine reserves, biodiversity assessments, and as an evolution relevant context for climate change studies.

  2. Introduction to Phase-Resolving Wave Modeling with FUNWAVE

    DTIC Science & Technology

    2015-07-01

    Boussinesq wave models have become a useful tool for modeling surface wave transformation from deep water to the swash zone, as well as wave-induced...overlapping area of ghost cells, three rows deep , as required by the fourth-order MUSCL-TVD scheme. The MPI with nonblocking communication was used to...implemented ERDC/CHL CHETN-I-87 July 2015 12 SPONGE LAYER SPONGE_ON Sponge_west_width Sponge_east_width Sponge_south_width

  3. Giddings Austin chalk enters deep lean-gas phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moritis, G.

    1995-12-25

    Deep lean gas is the latest phase in the growth of the Giddings field Austin chalk play. The first phase involved drilling vertical oil and gas wells. Next came the horizontal well boom in the shallower Austin chalk area, which is still continuing. And now this third phase places horizontal laterals in the Austen chalk at about 14,000--15,000 ft to produce lean gas. The article describes the producing wells and gas gathering.

  4. Deep space communication - A one billion mile noisy channel

    NASA Technical Reports Server (NTRS)

    Smith, J. G.

    1982-01-01

    Deep space exploration is concerned with the study of natural phenomena in the solar system with the aid of measurements made at spacecraft on deep space missions. Deep space communication refers to communication between earth and spacecraft in deep space. The Deep Space Network is an earth-based facility employed for deep space communication. It includes a network of large tracking antennas located at various positions around the earth. The goals and achievements of deep space exploration over the past 20 years are discussed along with the broad functional requirements of deep space missions. Attention is given to the differences in space loss between communication satellites and deep space vehicles, effects of the long round-trip light time on spacecraft autonomy, requirements for the use of massive nuclear power plants on spacecraft at large distances from the sun, and the kinds of scientific return provided by a deep space mission. Problems concerning a deep space link of one billion miles are also explored.

  5. Development of deep eutectic solvents applied in extraction and separation.

    PubMed

    Li, Xiaoxia; Row, Kyung Ho

    2016-09-01

    Deep eutectic solvents, as an alternative to ionic liquids, have greener credentials than ionic liquids, and have attracted considerable attention in related chemical research. Deep eutectic solvents have attracted increasing attention in chemistry for the extraction and separation of various target compounds from natural products. This review highlights the preparation of deep eutectic solvents, unique properties of deep eutectic solvents, and synthesis of deep-eutectic-solvent-based materials. On the other hand, application in the extraction and separation of deep eutectic solvents is also included in this report. In this paper, the available data and references in this field are reviewed to summarize the applications and developments of deep eutectic solvents. Based on the development of deep eutectic solvents, an exploitation of new deep eutectic solvents and deep eutectic solvents-based materials is expected to diversify into extraction and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Initial geochemistry data of the Lake Ohrid (Macedonia, Albania) "DEEP" site sediment record: The ICDP SCOPSCO drilling project

    NASA Astrophysics Data System (ADS)

    Francke, Alexander; Wagner, Bernd; Krastel, Sebastian; Lindhorst, Katja; Mantke, Nicole; Klinghardt, Dorothea

    2014-05-01

    Lake Ohrid, located at the border of Macedonia and Albania is about 30 km long, 15 km wide and up to 290 m deep. Formed within a tectonic graben, Lake Ohrid is considered to be the oldest lake in Europe. The ICDP SCOPSCO (Scientific Collaboration of Past Speciation Conditions in Lake Ohrid) deep drilling campaign at Lake Ohrid in spring 2013 aimed (a) to obtain more precise information about the age and origin of the lake, (b) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (c) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (d) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. Drilling was carried out by DOSECC (Salt Lake City, USA) using the DLDS (Deep Lake Drilling System) with a hydraulic piston corer for surface sediments and rotation drilling for harder, deeper sediments. Overall, about 2,100 m of sediment were recovered from 4 drill sites. At the "DEEP" site in the center of the lake, seismic data indicated a maximum sediment fill of ca. 700 m, of which the uppermost 568 m sediment were recovered. Initial data from core catcher samples and on-site susceptibility measurements indicate that the sediment sequence covers more than 1.2 million years and provides a continuous archive of environmental and climatological variability in the area. Currently, core opening, core description, XRF and MSCL -scanning, core correlation, and sub-sampling of the sediment cores from the "DEEP" site is conducted at the University of Cologne. High-resolution geochemical data obtained from XRF-scanning imply that the sediments from the "DEEP" site are highly sensitive to climate and environmental variations in the Balkan area over the last few glacial-interglacial cycles. Interglacial periods are characterized by high Ca counts, likely associated with a high content of calcite in the sediments. Previous studies have shown that the calcite contents in sediments from Lake Ohrid are predominantly triggered by precipitation of endogenic calcite resulting from enhanced photosynthesis and higher temperatures. Moreover, high Ca counts mostly correspond to low K counts indicating reduced clastic input and a denser vegetation cover in the catchment. In contrast, high K and low Ca counts characterize glacial periods, indicating reduced precipitation of endognic calcite and enhanced deposition of clastic material. The variations in Ca and K counts mainly represent climatic variations on a glacial-interglacial timescale. Inorganic geochemistry data shall also be used to improve the age control of the "DEEP" site sequence. First findings of macroscopic tephra horizons allow a preliminary age control on the sediment succession, and peaks in K, Sr, Zr, and magnetic susceptibility might indicate the occurrence of cryptotephralayers in the sediment sequence.

  7. Deep learning with non-medical training used for chest pathology identification

    NASA Astrophysics Data System (ADS)

    Bar, Yaniv; Diamant, Idit; Wolf, Lior; Greenspan, Hayit

    2015-03-01

    In this work, we examine the strength of deep learning approaches for pathology detection in chest radiograph data. Convolutional neural networks (CNN) deep architecture classification approaches have gained popularity due to their ability to learn mid and high level image representations. We explore the ability of a CNN to identify different types of pathologies in chest x-ray images. Moreover, since very large training sets are generally not available in the medical domain, we explore the feasibility of using a deep learning approach based on non-medical learning. We tested our algorithm on a dataset of 93 images. We use a CNN that was trained with ImageNet, a well-known large scale nonmedical image database. The best performance was achieved using a combination of features extracted from the CNN and a set of low-level features. We obtained an area under curve (AUC) of 0.93 for Right Pleural Effusion detection, 0.89 for Enlarged heart detection and 0.79 for classification between healthy and abnormal chest x-ray, where all pathologies are combined into one large class. This is a first-of-its-kind experiment that shows that deep learning with large scale non-medical image databases may be sufficient for general medical image recognition tasks.

  8. Observing the Birth and evolution of Galaxies - the ATCA-AKARI-ASTE/AzTEC deep South Ecliptic Pole Field

    NASA Astrophysics Data System (ADS)

    White, Glenn; Kohno, Kotaro; Matsuhara, Hideo; Matsuura, Shuji; Hanami, Hitoshi; Lee, Hyung Mok; Pearson, Chris; Takagi, Toshi; Serjeant, Stephen; Jeong, Woongseob; Oyabu, Shinki; Shirahata, Mai; Nakanishi, Kouichiro; Figueredo, Elysandra; Etxaluze, Mireya

    2007-04-01

    We propose deep 20 cm observations supporting the AKARI (3-160 micron)/ASTE/AzTEC (1.1 mm) SEP ultra deep ('Oyabu Field') survey of an extremely low cirrus region at the South Ecliptic Pole. Our combined IR/mm/Radio survey addresses the questions: How do protogalaxies and protospheroids form and evolve? How do AGN link with ULIRGs in their birth and evolution? What is the nature of the mm/submm extragalactic source population? We will address these by sampling the star formation history in the early universe to at least z~2. Compared to other Deep Surveys, a) AKARI multi-band IR measurements allow precision photo-z estimates of optically obscured objects, b) our multi-waveband contiguous area will mitigate effects of cosmic variance, c) the low cirrus noise at the SEP (< 0.08 MJy/sr) rivals that of the Lockman Hole "Astronomy's other ultra-deep 'cosmological window'", and d) our coverage of four FIR bands will characterise the far-IR dust emission hump of our starburst galaxies better than SPITZER's two MIPS bands allow. The ATCA data are crucial to galaxy identification, and determining the star formation rates and intrinsic luminosities through this unique Southern cosmological window.

  9. Observation of oxygen ventilation into deep waters through targeted deployment of multiple Argo-O2 floats in the north-western Mediterranean Sea in 2013

    NASA Astrophysics Data System (ADS)

    Coppola, L.; Prieur, L.; Taupier-Letage, I.; Estournel, C.; Testor, P.; Lefevre, D.; Belamari, S.; LeReste, S.; Taillandier, V.

    2017-08-01

    During the winter 2013, an intense observation and monitoring was performed in the north-western Mediterranean Sea to study deep water formation process that drives thermohaline circulation and biogeochemical processes (HYMEX SOP2 and DEWEX projects). To observe intensively and continuously the impact of deep convection on oxygen (O2) ventilation, an observation strategy was based on the enhancement of the Argo-O2 floats to monitor the offshore dense water formation area (DWF) in the Gulf of Lion prior to and at the end of the convective period (December 2012 to April 2013). The intense O2 measurements performed through shipborne CTD casts and Argo-O2 floats deployment revealed an O2 inventory rapidly impacted by mixed layer (ML) deepening on the month scale. The open-sea convection in winter 2013 ventilated the deep waters from mid-February to the end of May 2013. The newly ventilated dense water volume, based on an Apparent Oxygen Utilization (AOU) threshold, was estimated to be about 1.5 × 1013 m3 during the DWF episode, increasing the deep O2 concentrations from 196 to 205 µmol kg-1 in the north-western basin.

  10. KSC-05PD-0005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians roll the Deep Impact spacecraft into another area where the upper canister can be lowered around it. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.

  11. Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database.

    PubMed

    Chen-Ying Hung; Wei-Chen Chen; Po-Tsun Lai; Ching-Heng Lin; Chi-Chun Lee

    2017-07-01

    Electronic medical claims (EMCs) can be used to accurately predict the occurrence of a variety of diseases, which can contribute to precise medical interventions. While there is a growing interest in the application of machine learning (ML) techniques to address clinical problems, the use of deep-learning in healthcare have just gained attention recently. Deep learning, such as deep neural network (DNN), has achieved impressive results in the areas of speech recognition, computer vision, and natural language processing in recent years. However, deep learning is often difficult to comprehend due to the complexities in its framework. Furthermore, this method has not yet been demonstrated to achieve a better performance comparing to other conventional ML algorithms in disease prediction tasks using EMCs. In this study, we utilize a large population-based EMC database of around 800,000 patients to compare DNN with three other ML approaches for predicting 5-year stroke occurrence. The result shows that DNN and gradient boosting decision tree (GBDT) can result in similarly high prediction accuracies that are better compared to logistic regression (LR) and support vector machine (SVM) approaches. Meanwhile, DNN achieves optimal results by using lesser amounts of patient data when comparing to GBDT method.

  12. Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.

    2010-12-01

    Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.

  13. Deep Water Cooling | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    the Cornell website. Additional examples of research campus geothermal cooling projects include Deep Water Cooling Deep Water Cooling Research campuses that are located near a deep lake or deep plan for your research campus. Considerations Sample Project Related Links Deep water cooling involves

  14. Seismic tomography as a tool for measuring stress in mines

    USGS Publications Warehouse

    Scott, Douglas F.; Williams, T.J.; Denton, D.K.; Friedel, M.J.

    1999-01-01

    Spokane Research Center personnel have been investigating the use of seismic tomography to monitor the behavior of a rock mass, detect hazardous ground conditions and assess the mechanical integrity of a rock mass affected by mining. Seismic tomography can be a valuable tool for determining relative stress in deep, >1,220-m (>4,000-ft), underground pillars. If high-stress areas are detected, they can be destressed prior to development or they can be avoided. High-stress areas can be monitored with successive seismic surveys to determine if stress decreases to a level where development can be initiated safely. There are several benefits to using seismic tomography to identify high stress in deep underground pillars. The technique is reliable, cost-effective, efficient and noninvasive. Also, investigators can monitor large rock masses, as well as monitor pillars during the mining cycle. By identifying areas of high stress, engineers will be able to assure that miners are working in a safer environment.Spokane Research Center personnel have been investigating the use of seismic tomography to monitor the behavior of a rock mass, detect hazardous ground conditions and assess the mechanical integrity of a rock mass affected by mining. Seismic tomography can be a valuable tool for determining relative stress in deep, >1,200-m (>4,000-ft), underground pillars. If high-stress areas are detected, they can be destressed prior to development or they can be avoided. High-stress areas can be monitored with successive seismic surveys to determine if stress decreases to a level where development can be initiated safely. There are several benefits to using seismic tomography to identify high stress in deep underground pillars. The technique is reliable, cost-effective, efficient and noninvasive. Also, investigators can monitor large rock masses, as well as monitor pillars during the mining cycle. By identifying areas of high stress. engineers will be able to assure that miners are working in a safer environment.

  15. A method for simulating transient ground-water recharge in deep water-table settings in central Florida by using a simple water-balance/transfer-function model

    USGS Publications Warehouse

    O'Reilly, Andrew M.

    2004-01-01

    A relatively simple method is needed that provides estimates of transient ground-water recharge in deep water-table settings that can be incorporated into other hydrologic models. Deep water-table settings are areas where the water table is below the reach of plant roots and virtually all water that is not lost to surface runoff, evaporation at land surface, or evapotranspiration in the root zone eventually becomes ground-water recharge. Areas in central Florida with a deep water table generally are high recharge areas; consequently, simulation of recharge in these areas is of particular interest to water-resource managers. Yet the complexities of meteorological variations and unsaturated flow processes make it difficult to estimate short-term recharge rates, thereby confounding calibration and predictive use of transient hydrologic models. A simple water-balance/transfer-function (WBTF) model was developed for simulating transient ground-water recharge in deep water-table settings. The WBTF model represents a one-dimensional column from the top of the vegetative canopy to the water table and consists of two components: (1) a water-balance module that simulates the water storage capacity of the vegetative canopy and root zone; and (2) a transfer-function module that simulates the traveltime of water as it percolates from the bottom of the root zone to the water table. Data requirements include two time series for the period of interest?precipitation (or precipitation minus surface runoff, if surface runoff is not negligible) and evapotranspiration?and values for five parameters that represent water storage capacity or soil-drainage characteristics. A limiting assumption of the WBTF model is that the percolation of water below the root zone is a linear process. That is, percolating water is assumed to have the same traveltime characteristics, experiencing the same delay and attenuation, as it moves through the unsaturated zone. This assumption is more accurate if the moisture content, and consequently the unsaturated hydraulic conductivity, below the root zone does not vary substantially with time. Results of the WBTF model were compared to those of the U.S. Geological Survey variably saturated flow model, VS2DT, and to field-based estimates of recharge to demonstrate the applicability of the WBTF model for a range of conditions relevant to deep water-table settings in central Florida. The WBTF model reproduced independently obtained estimates of recharge reasonably well for different soil types and water-table depths.

  16. Can the hemoglobin characteristics of vesicomyid clam species influence their distribution in deep-sea sulfide-rich sediments? A case study in the Angola Basin

    NASA Astrophysics Data System (ADS)

    Decker, C.; Zorn, N.; Le Bruchec, J.; Caprais, J. C.; Potier, N.; Leize-Wagner, E.; Lallier, F. H.; Olu, K.; Andersen, A. C.

    2017-08-01

    Vesicomyids live in endosymbiosis with sulfur-oxidizing bacteria and therefore need hydrogen sulfide to survive. They can nevertheless live in a wide range of sulfide and oxygen levels and depths, which may explain the exceptional diversity of this clam family in deep-sea habitats. In the Gulf of Guinea, nine species of vesicomyid clams are known to live in cold-seep areas with pockmarks from 600 to 3200 m deep, as well as in the organic-rich sediments of the Congo deep-sea fan at 5000 m deep. Our previous study showed that two species living in a giant pockmark have different oxygen carriers, suggesting different adaptations to hypoxia. Here, we studied the hemoglobin structure and oxygen affinity in three other species, Calyptogena valdiviae, Elenaconcha guiness and Abyssogena southwardae to determine whether the characteristics of their oxygen carriers contribute to their distribution in sulfide-rich sediments at a regional scale. Documenting pairwise species associations in various proportions, we give a semi-quantitative account of their local distribution and oxygen and sulfide measurements at seven sites. Mass spectrometry showed that each vesicomyid species has four intracellular monomeric hemoglobin molecules of 15-16 kDa, all differing in their molecular mass. As expected, the monomers showed no cooperativity in oxygen binding. Their oxygen affinities were very high (below 1 Torr), but differed significantly. C. valdiviae had the highest affinity and was dominant in the Harp pockmark, the site with the lowest oxygen content (half the value of fully oxygenated water). A. southwardae dominated in the Congo Lobe area, the site with the deepest sulfides. We discuss how hemoglobin may favor an active, vertical distribution of vesicomyids in sulfide-rich sediments.

  17. Relationships Between Tropical Deep Convection, Tropospheric Mean Temperature and Cloud-Induced Radiative Fluxes on Intraseasonal Time Scales

    NASA Technical Reports Server (NTRS)

    Ramey, Holly S.; Robertson, Franklin R.

    2009-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20oN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.

  18. Relationships Between Tropical Deep Convection, Tropospheric Mean Temperature and Cloud-Induced Radiative Fluxes on Intraseasonal Time Scales

    NASA Technical Reports Server (NTRS)

    Ramey, Holly S.; Robertson, Franklin R.

    2010-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20degN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.

  19. Stress interaction at the Lazufre volcanic region, as constrained by InSAR, seismic tomography and boundary element modelling

    NASA Astrophysics Data System (ADS)

    Nikkhoo, Mehdi; Walter, Thomas R.; Lundgren, Paul; Spica, Zack; Legrand, Denis

    2016-04-01

    The Azufre-Lastarria volcanic complex in the central Andes has been recognized as a major region of magma intrusion. Both deep and shallow inflating reservoirs inferred through InSAR time series inversions, are the main sources of a multi-scale deformation accompanied by pronounced fumarolic activity. The possible interactions between these reservoirs, as well as the path of propagating fluids and the development of their pathways, however, have not been investigated. Results from recent seismic noise tomography in the area show localized zones of shear wave velocity anomalies, with a low shear wave velocity region at 1 km depth and another one at 4 km depth beneath Lastarria. Although the inferred shallow zone is in a good agreement with the location of the shallow deformation source, the deep zone does not correspond to any deformation source in the area. Here, using the boundary element method (BEM), we have performed an in-depth continuum mechanical investigation of the available ascending and descending InSAR data. We modelled the deep source, taking into account the effect of topography and complex source geometry on the inversion. After calculating the stress field induced by this source, we apply Paul's criterion (a variation on Mohr-Coulomb failure) to recognize locations that are liable for failure. We show that the locations of tensile and shear failure almost perfectly coincide with the shallow and deep anomalies as identified by shear wave velocity, respectively. Based on the stress-change models we conjecture that the deep reservoir controls the development of shallower hydrothermal fluids; a hypothesis that can be tested and applied to other volcanoes.

  20. Intraseasonal Variations in Tropical Deep Convection, Tropospheric Mean Temperature and Cloud-Induced Radiative Fluxes

    NASA Technical Reports Server (NTRS)

    Ramey, Holly S.; Robertson, Franklin R.

    2009-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20oN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.

  1. Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: Basal melting and exchange with open ocean

    NASA Astrophysics Data System (ADS)

    Hattermann, T.; Smedsrud, L. H.; Nøst, O. A.; Lilly, J. M.; Galton-Fenzi, B. K.

    2014-10-01

    Melting at the base of floating ice shelves is a dominant term in the overall Antarctic mass budget. This study applies a high-resolution regional ice shelf/ocean model, constrained by observations, to (i) quantify present basal mass loss at the Fimbul Ice Shelf (FIS); and (ii) investigate the oceanic mechanisms that govern the heat supply to ice shelves in the Eastern Weddell Sea. The simulations confirm the low melt rates suggested by observations and show that melting is primarily determined by the depth of the coastal thermocline, regulating deep ocean heat fluxes towards the ice. Furthermore, the uneven distribution of ice shelf area at different depths modulates the melting response to oceanic forcing, causing the existence of two distinct states of melting at the FIS. In the simulated present-day state, only small amounts of Modified Warm Deep Water enter the continental shelf, and ocean temperatures beneath the ice are close to the surface freezing point. The basal mass loss in this so-called state of "shallow melting" is mainly controlled by the seasonal inflow of solar-heated surface water affecting large areas of shallow ice in the upper part of the cavity. This is in contrast to a state of "deep melting", in which the thermocline rises above the shelf break depth, establishing a continuous inflow of Warm Deep Water towards the deep ice. The transition between the two states is found to be determined by a complex response of the Antarctic Slope Front overturning circulation to varying climate forcings. A proper representation of these frontal dynamics in climate models will therefore be crucial when assessing the evolution of ice shelf basal melting along this sector of Antarctica.

  2. Is Multitask Deep Learning Practical for Pharma?

    PubMed

    Ramsundar, Bharath; Liu, Bowen; Wu, Zhenqin; Verras, Andreas; Tudor, Matthew; Sheridan, Robert P; Pande, Vijay

    2017-08-28

    Multitask deep learning has emerged as a powerful tool for computational drug discovery. However, despite a number of preliminary studies, multitask deep networks have yet to be widely deployed in the pharmaceutical and biotech industries. This lack of acceptance stems from both software difficulties and lack of understanding of the robustness of multitask deep networks. Our work aims to resolve both of these barriers to adoption. We introduce a high-quality open-source implementation of multitask deep networks as part of the DeepChem open-source platform. Our implementation enables simple python scripts to construct, fit, and evaluate sophisticated deep models. We use our implementation to analyze the performance of multitask deep networks and related deep models on four collections of pharmaceutical data (three of which have not previously been analyzed in the literature). We split these data sets into train/valid/test using time and neighbor splits to test multitask deep learning performance under challenging conditions. Our results demonstrate that multitask deep networks are surprisingly robust and can offer strong improvement over random forests. Our analysis and open-source implementation in DeepChem provide an argument that multitask deep networks are ready for widespread use in commercial drug discovery.

  3. Decadal trends in deep ocean salinity and regional effects on steric sea level

    NASA Astrophysics Data System (ADS)

    Purkey, S. G.; Llovel, W.

    2017-12-01

    We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.

  4. Detection of Thermal Erosion Gullies from High-Resolution Images Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Huang, L.; Liu, L.; Jiang, L.; Zhang, T.; Sun, Y.

    2017-12-01

    Thermal erosion gullies, one type of thermokarst landforms, develop due to thawing of ice-rich permafrost. Mapping the location and extent of thermal erosion gullies can help understand the spatial distribution of thermokarst landforms and their temporal evolution. Remote sensing images provide an effective way for mapping thermokarst landforms, especially thermokarst lakes. However, thermal erosion gullies are challenging to map from remote sensing images due to their small sizes and significant variations in geometric/radiometric properties. It is feasible to manually identify these features, as a few previous studies have carried out. However manual methods are labor-intensive, therefore, cannot be used for a large study area. In this work, we conduct automatic mapping of thermal erosion gullies from high-resolution images by using Deep Learning. Our study area is located in Eboling Mountain (Qinghai, China). Within a 6 km2 peatland area underlain by ice-rich permafrost, at least 20 thermal erosional gullies are well developed. The image used is a 15-cm-resolution Digital Orthophoto Map (DOM) generated in July 2016. First, we extracted 14 gully patches and ten non-gully patches as training data. And we performed image augmentation. Next, we fine-tuned the pre-trained model of DeepLab, a deep-learning algorithm for semantic image segmentation based on Deep Convolutional Neural Networks. Then, we performed inference on the whole DOM and obtained intermediate results in forms of polygons for all identified gullies. At last, we removed misidentified polygons based on a few pre-set criteria on the size and shape of each polygon. Our final results include 42 polygons. Validated against field measurements using GPS, most of the gullies are detected correctly. There are 20 false detections due to the small number and low quality of training images. We also found three new gullies that missed in the field observations. This study shows that (1) despite a challenging mapping task, DeepLab can detect small, irregular-shaped thermal erosion gullies with high accuracy. (2) Automatic detection is critical for mapping thermal erosion gully since manual mapping or field work may miss some targets even in a relatively small region. (3) The quantity and quality of training data are crucial for detection accuracy.

  5. Microbial Ecology of a Regional Flow System: Deep, Aerobic, Fractured Rock Aquifers of the US Basin and Range (Invited)

    NASA Astrophysics Data System (ADS)

    Moser, D. P.; Hamilton-Brehm, S.; Zhang, G.; Fisher, J.; Hughes, K.; Wheatley, A.; Thomas, J.; Zavarin, M.; Roberts, S. K.; Kryder, L.; McRae, R.; Howard, W.; Walker, J.; Federwisch, R.; King, M.; Friese, R.; Grim, S.; Amend, J.; Momper, L.; Sherwood Lollar, B.; Onstott, T. C.

    2013-12-01

    Recent decades have revealed anaerobic microbial ecosystems across a range of deep, continental settings; however, aerobic, regional aquifers represent a little-studied habitat for deep life. The US' Basin and Range Province is an extensional zone defined by deep, interconnected fracture systems that span multiple hydrologic basins and host regional aquifers. Here we describe a multi-basin microbiological assessment, applied to the Death Valley Regional Flow System (DVRFS). Our group has surveyed more than thirty deep boreholes (~ 1,000 m depth average) and deeply-sourced springs across a ~170 km inferred flow path from recharge areas in volcanic and carbonate rock highlands of the Nevada National Security Site (NNSS) and the Spring Mountains to discharge zones in Oasis, Amargosa, and Death Valleys. DVRFS waters were characterized by temperatures of 30 - 50 oC and the presence of dissolved O2 (4 - 8 mg/L in the recharge areas and ~0.2 - 2 mg/L in the discharge zones). Planktonic microbial populations, as tracked by molecular DNA approaches (e.g. 454 pyrotag), were of low abundance (e.g. ~ 10e3 ~10e6 per mL) and dominated by Proteobacteria and Nitrospirae. Archaea were also present and dominated by novel Thaumarchaeotes. Patterns of microbial diversity and the hypothesis that these patterns may have utility for recognition of hydrologic connectivity were assessed by statistical tools. At the species level, cosmopolitan, system-wide, and flow-path-specific groupings of both bacteria and archaea were detected. Even when in close proximity to aerobic springs and wells, sites sampling deep, hot, anaerobic groundwaters possessed completely distinct microbial populations (e.g. dominance by Firmicutes, ANME, and predicted methanogens). Among methodological refinements developed from this work, the repeated sampling of one deep borehole over a month-long pump test revealed that well-bore-associated contaminants required several days of pumping for complete removal and enabled the identification of the specific depth that produced most of the water. Our results reveal details of microbial community structure for a common, but little-studied microbial ecosystem and support the concept that regional flow systems possess distinct microbial populations, consistent with their geochemical and hydrologic characteristics. These results generally support the concept that microbial populations may have utility as amplifiable tracers for tracking the connectivity of fluids in the subsurface.

  6. Influences of spatial and temporal variability of sound scattering layers on deep diving odontocete behavior

    NASA Astrophysics Data System (ADS)

    Copeland, Adrienne Marie

    Patchiness of prey can influence the behavior of a predator, as predicted by the optimal foraging theory which states that an animal will maximize the energy gain while minimizing energy loss. While this relationship has been studied and is relatively well understood in some terrestrial systems, the same is far from true in marine systems. It is as important to investigate this in the marine realm in order to better understand predator distribution and behavior. Micronekton, organisms from 2-20 cm, might be a key component in understanding this as it is potentially an essential link in the food web between primary producers and higher trophic levels, including cephalopods which are primary prey items of deep diving odontocetes (toothed whales). My dissertation assesses the spatial and temporal variability of micronekton in the Northwestern Hawaiian Islands (NWHI), the Main Hawaiian Islands' (MHI) Island of Hawaii, and the Gulf of Mexico (GOM). Additionally it focuses on understanding the relationship between the spatial distribution of micronekton and environmental and geographic factors, and how the spatial and temporal variability of this micronekton relates to deep diving odontocete foraging. I used both an active Simrad EK60 echosounder system to collect water column micronekton backscatter and a passive acoustic system to detect the presence of echolocation clicks from deep diving beaked, sperm, and short-finned pilot whales. My results provide insight into what might be contributing to hotspots of micronekton which formed discrete layers in all locations, a shallow scattering layer (SSL) from the surface to about 200 m and a deep scattering layer (DSL) starting at about 350 m. In both the GOM and the NWHI, the bathymetry and proximity to shore influenced the amount of micronekton backscatter with locations closer to shore and at shallower depths having higher backscatter. We found in all three locations that some species of deep diving odontocetes were searching for prey in these areas with higher micronekton backscatter. Beaked whales in the NWHI, short-finned pilot whales in the NWHI and MHI, and sperm whales in the GOM where present in areas of higher micronekton backscatter. These hotspots of backscatter may be good predictors of the distribution of some deep-diving toothed whale foragers since the hotspots potentially indicate a food web supporting the prey of the cetaceans.

  7. Geology of the Deep Creek area, Washington, and its regional significance

    USGS Publications Warehouse

    Yates, Robert Giertz

    1976-01-01

    This report, although primarily concerned with the stratigraphy and structure of a lead-zinc mining district in northern Stevens County, Washington, discusses and integrates the geology of the region about the Deep Creek area. Although the study centers in an area of about 200 square miles immediately south of the International Boundary, the regional background comes from: (1)the previously undescribed Northport quadrangle to the west, (2) published reports and reconnaissance of the Metaline quadrangle to the east, and (3) from published reports and maps of a 16 mile wide area that lies to the north adjacent to these three quadrangles in British Columbia. The report is divided into three parts: (1) descriptions of rocks and structures of the Deep Creek area, (2) descriptions of the regional setting of the Deep Creek area, and (3) an analysis and interpretation of the depositional and tectonic events that produced the geologic features exposed today. In the Deep Creek area surficial deposits of sand and gravel of glacial origin cover much of the consolidated rocks, which range in age from greenschist of the late Precambrlan to albite granite of the Eocene. Three broad divisions of depositional history are represented: (1) Precambrian, (2) lower Paleozoic and (3) upper Paleozoic; the record of the Mesozoic and Eocene is fragmentary. The lower Paleozoic division is the only fossil-controlled sequence; the age of the other two divisions were established by less direct methods. Both Precambrian and upper Paleozoic sequences are dominated by fine-grained detrital sediments, the Precambrian tending towards the alumina-rich and the upper Paleozoic tending towards the black shale facies with high silica. Neither sequence has more than trivial amounts of coarse clastics. Both include limestones, but in minor abundance. The lower Paleozoic sequence, on the other hand, represents a progressive change in deposition. The sequence began during the very late Precambrian with the deposition of clean quartz sand. This was followed by the accumulation of a comparatively thin limestone unit succeeded by a thick shale. The shale grades into a thick carbonate unit which in turn is overlain by black graptolitic slates (Ordovician). This general order of deposition holds for the Cambro-Ordovician throughout the area. Precambrian rocks indigenous to the Deep Creek area, have undergone at least six tectonic events of greatly different intensities. The first three of these events are epeirogentic, the fourth involves intense folding, the fifth, crossfolding, and the sixth, block faulting without folding. These events are dated with varying degrees of precision. The two epeirogentic events of the Precambrian, one gentle folding at the beginning of Windermere time and the other high angle faulting and volcanism in mid-Windermere time, did little to deform or metamorphose the rocks. The third event consists of uplift of northern Idaho and adjacent Montana and westward decollement thrusting of essentially unfolded lower Paleozoic rocks. The decollement faulting is inferred to explain anomalous rock distribution and cannot be accurately dated. It occurred sometime after the Devonian and before the Jurassic. A late Paleozoic age is favored.

  8. Modeling 3-D Slope Stability of Coastal Bluffs Using 3-D Ground-Water Flow, Southwestern Seattle, Washington

    USGS Publications Warehouse

    Brien, Dianne L.; Reid, Mark E.

    2007-01-01

    Landslides are a common problem on coastal bluffs throughout the world. Along the coastal bluffs of the Puget Sound in Seattle, Washington, landslides range from small, shallow failures to large, deep-seated landslides. Landslides of all types can pose hazards to human lives and property, but deep-seated landslides are of significant concern because their large areal extent can cause extensive property damage. Although many geomorphic processes shape the coastal bluffs of Seattle, we focus on large (greater than 3,000 m3), deepseated, rotational landslides that occur on the steep bluffs along Puget Sound. Many of these larger failures occur in advance outwash deposits of the Vashon Drift (Qva); some failures extend into the underlying Lawton Clay Member of the Vashon Drift (Qvlc). The slope stability of coastal bluffs is controlled by the interplay of three-dimensional (3-D) variations in gravitational stress, strength, and pore-water pressure. We assess 3-D slope-stability using SCOOPS (Reid and others, 2000), a computer program that allows us to search a high-resolution digital-elevation model (DEM) to quantify the relative stability of all parts of the landscape by computing the stability and volume of thousands of potential spherical failures. SCOOPS incorporates topography, 3-D strength variations, and 3-D pore pressures. Initially, we use our 3-D analysis methods to examine the effects of topography and geology by using heterogeneous material properties, as defined by stratigraphy, without pore pressures. In this scenario, the least-stable areas are located on the steepest slopes, commonly in Qva or Qvlc. However, these locations do not agree well with observations of deep-seated landslides. Historically, both shallow colluvial landslides and deep-seated landslides have been observed near the contact between Qva and Qvlc, and commonly occur in Qva. The low hydraulic conductivity of Qvlc impedes ground-water flow, resulting in elevated pore pressures at the base of Qva, thereby increasing the potential for landslides. Our analysis simulates the ground-water flow using the results of a 3-D ground-water flow model, MODFLOW-2000 (Harbaugh and others, 2000), to generate a 3-D pore-pressure field. Areas of elevated pore pressure reflect the influence of a perched ground-water table in Qva, as well as ground-water convergence in the coastal re-entrants. We obtain a realistic model of deep-seated landsliding by combining 3-D pore pressures with heterogeneous strength properties. The results show the least-stable areas where pore pressures are locally elevated in Qva. We compare our results with records of past landslides. The predicted leaststable areas include two historically active deep-seated landslides and areas adjacent to these landslides.

  9. Deep thermal structure of Southeast Asia constrained by S-velocity data

    NASA Astrophysics Data System (ADS)

    Yu, Chuanhai; Shi, Xiaobin; Yang, Xiaoqiu; Zhao, Junfeng; Chen, Mei; Tang, Qunshu

    2017-12-01

    Southeast Asia, located in the southeastern part of the Eurasian Plate, is surrounded by tectonically active margins, exhibiting intense seismicity and volcanism, contains complex geological units with a perplexing evolution history. Because tectonic evolution is closely related to the deep thermal structure, an accurate estimation of the lithosphere thermal structure and thickness is important in extracting information on tectonics and geodynamics. However, there are significant uncertainties in the calculated deep thermal state constrained only by the observed surface heat flow. In this study, in order to obtain a better-constrained deep thermal state, we first calculate the deep thermal structure of Southeast Asia by employing an empirical relation between S-velocity and temperature, and then we estimate the base of the thermal lithosphere from the calculated temperature-depth profiles. The results show that, in general, the temperature is higher than the dry mantle solidus below the top of the seismic low-velocity zone, possibly indicating the presence of partial melt in the asthenosphere, particularly beneath oceanic basins such as the South China Sea. The temperature at a depth of 80 km in rifted and oceanic basins such as the Thailand Rift Basin, Thailand Bay, Andaman Sea, and South China Sea is about 200 °C higher than in plateaus and subduction zones such as the Khorat Plateau, Sumatra Island, and Philippine Trench regions. We suggest that the relatively cold and thick lithosphere block of the Khorat Plateau has not experienced significant internal deformation and might be extruded and rotated as a rigid block in response to the Indo-Eurasia collision. Our results show that the surface heat flow in the South China Sea is mainly dominated by the deep thermal state. There is a thermal anomaly in the Leiqiong area and in the areas adjacent to the northern margin of the South China Sea, indicating the presence of a high-temperature and thin lithosphere in the area of the well-known and controversial Hainan plume. The thermal lithosphere-asthenosphere boundary uplift area along the Xisha and southeastern Vietnam margin, in the western margin of South China Sea, which corresponds to the volcanic belt around this area, might indicate upwelling of hot mantle materials. The temperature values at 100 and 120 km depths through most regions of Southeast Asia are about 1400-1500 and 1550-1600 °C, respectively, which are nearly uniform with a small temperature difference. Our results also show that the lithosphere becomes thinner from the continent blocks toward the oceanic basins, with the smaller thickness values of 65-70 km in the South China Sea. The estimated base of the lithosphere corresponds approximately to the 1400 °C isotherm and shows good correlation with the tectonic setting.

  10. 3D ultra-high resolution seismic imaging of shallow Solfatara crater in Campi Flegrei (Italy): New insights on deep hydrothermal fluid circulation processes.

    PubMed

    De Landro, Grazia; Serlenga, Vincenzo; Russo, Guido; Amoroso, Ortensia; Festa, Gaetano; Bruno, Pier Paolo; Gresse, Marceau; Vandemeulebrouck, Jean; Zollo, Aldo

    2017-06-13

    Seismic tomography can be used to image the spatial variation of rock properties within complex geological media such as volcanoes. Solfatara is a volcano located within the Campi Flegrei, a still active caldera, so it is of major importance to characterize its level of activity and potential danger. In this light, a 3D tomographic high-resolution P-wave velocity image of the shallow central part of Solfatara crater is obtained using first arrival times and a multiscale approach. The retrieved images, integrated with the resistivity section and temperature and the CO 2 flux measurements, define the following characteristics: 1. A depth-dependent P-wave velocity layer down to 14 m, with V p  < 700 m/s typical of poorly-consolidated tephra and affected by CO 2 degassing; 2. An intermediate layer, deepening towards the mineralized liquid-saturated area (Fangaia), interpreted as permeable deposits saturated with condensed water; 3. A deep, confined high velocity anomaly associated with a CO 2 reservoir. These features are expression of an area located between the Fangaia, water saturated and replenished from deep aquifers, and the main fumaroles, superficial relief of the deep rising CO 2 flux. Therefore, the changes in the outgassing rate greatly affect the shallow hydrothermal system, which can be used as a "mirror" of fluid migration processes occurring at depth.

  11. Influence of the Phytoplankton Community Structure on the Spring and Annual Primary Production in the Northwestern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Mayot, Nicolas; D'Ortenzio, Fabrizio; Uitz, Julia; Gentili, Bernard; Ras, Joséphine; Vellucci, Vincenzo; Golbol, Melek; Antoine, David; Claustre, Hervé

    2017-12-01

    Satellite ocean color observations revealed that unusually deep convection events in 2005, 2006, 2010, and 2013 led to an increased phytoplankton biomass during the spring bloom over a large area of the northwestern Mediterranean Sea (NWM). Here we investigate the effects of these events on the seasonal phytoplankton community structure, we quantify their influence on primary production, and we discuss the potential biogeochemical impact. For this purpose, we compiled in situ phytoplankton pigment data from five ship surveys performed in the NWM and from monthly cruises at a fixed station in the Ligurian Sea. We derived primary production rates from a light photosynthesis model applied to these in situ data. Our results confirm that the maximum phytoplankton biomass during the spring bloom is larger in years associated with intense deep convection events (+51%). During these enhanced spring blooms, the contribution of diatoms to total phytoplankton biomass increased (+33%), as well as the primary production rate (+115%). The occurrence of a highly productive bloom is also related to an increase in the phytoplankton bloom area (+155%) and in the relative contribution of diatoms to primary production (+63%). Therefore, assuming that deep convection in the NWM could be significantly weakened by future climate changes, substantial decreases in the spring production of organic carbon and of its export to deep waters can be expected.

  12. The interaction between short-term heat-treatment and the formability of an Al-Mg-Si alloy regarding deep drawing processes

    NASA Astrophysics Data System (ADS)

    Machhammer, M.; Sommitsch, C.

    2016-11-01

    Research conducted in recent years has shown that heat-treatable Al-Mg-Si alloys (6xxx) have great potential concerning the design of lightweight car bodies. Compared to conventional deep drawing steels the field of application is limited by a lower formability. In order to minimize the disadvantage of a lower drawability a short-term heat-treatment (SHT) can be applied before the forming process. The SHT, conducted in selected areas on the initial blank, leads to a local reduction of strength aiming at the decrease of critical stress during the deep drawing process. For the successful procedure of the SHT a solid knowledge about the crucial process parameters such as the design of the SHT layout, the SHT process time and the maximum SHT temperature are urgently required. It also should be noted that the storage time between the SHT and the forming processes affects the mechanical properties of the SHT area. In this paper, the effect of diverse SHT process parameters and various storage time-frames on the major and minor strain situation of a deep drawn part is discussed by the evaluation of the forming limit diagram. For the purpose of achieving short heating times and a homogenous temperature distribution a one side contact heating tool has been used for the heat treatment in this study.

  13. Influence of the hydrodynamic conditions on the accessibility of the demersal species to the deep water trawl fishery off the Balearic Islands (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Amores, A.; Rueda, L.; Monserrat, S.; Guijarro, B.; Pasqual, C.; Massutí, E.

    2013-12-01

    Ocean mean surface vorticity from gridded multi-mission satellite altimetry data was explored in the Western Mediterranean basin for the period 2000-2010, with the aim of comparing its variability with several species of the deep water fishery in the area. Monthly catches per unit of effort (CPUE) of adult red shrimp (Aristeus antennatus), reported in the deep water bottom trawl fishery developed off northern Mallorca Island displayed a good correlation with surface vorticity. This correlation could be explained by assuming that most of the surface vorticity episodes could reach the bottom, increasing the seabed velocities and producing sediment resuspensions, which could affect the near bottom water turbidity. A. antennatus would respond to this increased turbidity by moving downwards to the deeper waters. This massive displacement of red shrimp specimens away from the fishing grounds would consequently decrease their accesibility to fishing exploitation. This relationship between vorticity and catches also holds for other species , considered as by-catch of the deep water fishery in the area. Results appear to support the suggestion that the water turbidity generated by the vorticy episodes is significant enough to affect the dynamics of the demersal species. The way the surface vorticity observed can affect the bottom sediments is also investigated using a year-long moored near-bottom currentmeter and a sediment trap sited in the fishing grounds.

  14. The distribution of deep-sea sponge aggregations in the North Atlantic and implications for their effective spatial management

    NASA Astrophysics Data System (ADS)

    Howell, Kerry-Louise; Piechaud, Nils; Downie, Anna-Leena; Kenny, Andrew

    2016-09-01

    Sponge aggregations have been recognised as key component of shallow benthic ecosystems providing several important functional roles including habitat building and nutrient recycling. Within the deep-sea ecosystem, sponge aggregations may be extensive and available evidence suggests they may also play important functional roles, however data on their ecology, extent and distribution in the North Atlantic is lacking, hampering conservation efforts. In this study, we used Maximum Entropy Modelling and presence data for two deep-sea sponge aggregation types, Pheronema carpenteri aggregations and ostur aggregations dominated by geodid sponges, to address the following questions: 1) What environmental factors drive the broad-scale distribution of these selected sponge grounds? 2) What is the predicted distribution of these grounds in the northern North Atlantic, Norwegian and Barents Sea? 3) How are these sponge grounds distributed between Exclusive Economic Zones (EEZs) and High Seas areas? 4) What percentage of these grounds in High Seas areas are protected by the current High Seas MPA network? Our results suggest that silicate concentration, temperature, depth and amount of particulate organic carbon are the most important drivers of sponge distribution. Most of the sponge grounds are located within national EEZs rather than in the High Seas. Coordinated conservation planning between nations with significant areas of sponge grounds such as Iceland, Greenland and Faroes (Denmark), Norway (coastal Norway and Svalbard), Portugal and the UK, should be implemented in order to effectively manage these communities in view of the increasing level of human activity within the deep-sea environment.

  15. Deep-Sea Benthic Footprint of the Deepwater Horizon Blowout

    PubMed Central

    Montagna, Paul A.; Baguley, Jeffrey G.; Cooksey, Cynthia; Hartwell, Ian; Hyde, Larry J.; Hyland, Jeffrey L.; Kalke, Richard D.; Kracker, Laura M.; Reuscher, Michael; Rhodes, Adelaide C. E.

    2013-01-01

    The Deepwater Horizon (DWH) accident in the northern Gulf of Mexico occurred on April 20, 2010 at a water depth of 1525 meters, and a deep-sea plume was detected within one month. Oil contacted and persisted in parts of the bottom of the deep-sea in the Gulf of Mexico. As part of the response to the accident, monitoring cruises were deployed in fall 2010 to measure potential impacts on the two main soft-bottom benthic invertebrate groups: macrofauna and meiofauna. Sediment was collected using a multicorer so that samples for chemical, physical and biological analyses could be taken simultaneously and analyzed using multivariate methods. The footprint of the oil spill was identified by creating a new variable with principal components analysis where the first factor was indicative of the oil spill impacts and this new variable mapped in a geographic information system to identify the area of the oil spill footprint. The most severe relative reduction of faunal abundance and diversity extended to 3 km from the wellhead in all directions covering an area about 24 km2. Moderate impacts were observed up to 17 km towards the southwest and 8.5 km towards the northeast of the wellhead, covering an area 148 km2. Benthic effects were correlated to total petroleum hydrocarbon, polycyclic aromatic hydrocarbons and barium concentrations, and distance to the wellhead; but not distance to hydrocarbon seeps. Thus, benthic effects are more likely due to the oil spill, and not natural hydrocarbon seepage. Recovery rates in the deep sea are likely to be slow, on the order of decades or longer. PMID:23950956

  16. Deep brain stimulation during early adolescence prevents microglial alterations in a model of maternal immune activation.

    PubMed

    Hadar, Ravit; Dong, Le; Del-Valle-Anton, Lucia; Guneykaya, Dilansu; Voget, Mareike; Edemann-Callesen, Henriette; Schweibold, Regina; Djodari-Irani, Anais; Goetz, Thomas; Ewing, Samuel; Kettenmann, Helmut; Wolf, Susanne A; Winter, Christine

    2017-07-01

    In recent years schizophrenia has been recognized as a neurodevelopmental disorder likely involving a perinatal insult progressively affecting brain development. The poly I:C maternal immune activation (MIA) rodent model is considered as a neurodevelopmental model of schizophrenia. Using this model we and others demonstrated the association between neuroinflammation in the form of altered microglia and a schizophrenia-like endophenotype. Therapeutic intervention using the anti-inflammatory drug minocycline affected altered microglia activation and was successful in the adult offspring. However, less is known about the effect of preventive therapeutic strategies on microglia properties. Previously we found that deep brain stimulation of the medial prefrontal cortex applied pre-symptomatically to adolescence MIA rats prevented the manifestation of behavioral and structural deficits in adult rats. We here studied the effects of deep brain stimulation during adolescence on microglia properties in adulthood. We found that in the hippocampus and nucleus accumbens, but not in the medial prefrontal cortex, microglial density and soma size were increased in MIA rats. Pro-inflammatory cytokine mRNA was unchanged in all brain areas before and after implantation and stimulation. Stimulation of either the medial prefrontal cortex or the nucleus accumbens normalized microglia density and soma size in main projection areas including the hippocampus and in the area around the electrode implantation. We conclude that in parallel to an alleviation of the symptoms in the rat MIA model, deep brain stimulation has the potential to prevent the neuroinflammatory component in this disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. A tracer study of the deep water renewal in the European polar seas

    NASA Astrophysics Data System (ADS)

    Heinze, Ch.; Schlosser, P.; Koltermann, K. P.; Meincke, J.

    1990-09-01

    A study of the deep water renewal in the European polar seas (Norwegian Sea, Greenland Sea and Eurasian Basin) based on the distribution of tritium ( 3H), 3He, chlorofluoromethane (F-11 = CCL 3F), salinity and potential temperature is presented. Four different versions of a kinematic box model calibrated with the tracer data yield production rates and turnover times due to deep convection for Greenland Sea Deep Water (0.47-0.59 Sv, 27-34 y) and Eurasian Basin Deep Water (0.97-1.07 Sv, 83-92 y). Model calculations with different deep advective flow patterns (exchange at equal rates between each of the deep water masses or an internal circuit Eurasian Basin-Greenland Sea-Norwegian Sea-Eurasian Basin) give estimates of the deep horizontal transports, resulting in a turnover time of 13-16 years for Norwegian Sea Deep Water. The total turnover times (convection and deep advection) of the Greenland Sea and the Eurasian Basin are estimated to about 10 and 50 years, respectively. Mean hydrographic characteristics of the source water for Greenland Sea Deep Water and Eurasian Basin Deep Water are estimated from minimization of the deviations between modelled and observed hydrographic deep water values. The fractions of surface waters and intermediate waters making up the deep water of the Greenland Sea are estimated to about 80 and 20%, respectively.

  18. [Clinical application of artificial dermis combined with basic fibroblast growth factor in the treatment of cicatrix and deep skin wounds].

    PubMed

    Liu, Yang; Zhang, Yilan; Huang, Yalan; Luo, Gaoxing; Peng, Yizhi; Yan, Hong; Luo, Qizhi; Zhang, Jiaping; Wu, Jun; Peng, Daizhi

    2016-04-01

    To observe the effects of artificial dermis combined with basic fibroblast growth factor (bFGF) on the treatment of cicatrix and deep skin wounds. The clinical data of 72 patients with wounds repaired with artificial dermis, hospitalized in our unit from October 2010 to April 2015, conforming to the study criteria, were retrospectively analyzed. The types of wounds were wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone, in a total number of 102. Wounds were divided into artificial dermis group (A, n=60) and artificial dermis+ bFGF group (B, n=42) according to whether or not artificial dermis combined with bFGF. In group A, after release and resection of cicatrices or thorough debridement of deep skin wounds, artificial dermis was directly grafted to wounds in the first stage operation. After complete vascularization of artificial dermis, wounds were repaired with autologous split-thickness skin grafts in the second stage operation. In group B, all the procedures were exactly the same as those in group A except that artificial dermis had been soaked in bFGF for 30 min before grafting. Operation area, complete vascularization time of artificial dermis, survival of skin grafts, and the follow-up condition of wounds in the two groups were recorded. Data were processed with t test and Fisher's exact test. (1) Operation areas of wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone in the two groups were about the same (with t values from -1.853 to -0.200, P values above 0.05). Complete vascularization time of artificial dermis in wounds after resection of cicatrices, deep burn wounds without exposure of tendon or bone, and wounds with exposure of small area of tendon or bone in group B were respectively (15.6 ± 2.9), (14.7 ± 2.7), and (20.3 ± 4.4) d, and they were shorter by an average time of 2.7, 4.0, 7.4 d, respectively, as compared with those in corresponding types of wounds in group A [respectively (18.3 ± 4.7), (18.7 ± 4.2), and (27.7 ± 8.8) d, with t values from -2.779 to -2.383, P values below 0.05]. (2) The ratio of skin grafts with excellent survival in the three types of wounds in group B were higher than those in corresponding types of wounds in group A, but there were no statistically significant differences (with P values above 0.05). (3) Patients were followed up for 1 to 48 months, and there were no obvious cicatrices in skin graft sites and the donor sites during the following time. Artificial dermis combined with bFGF can effectively shorten the vascularization time of artificial dermis in wounds after resection of cicatrices and deep skin wounds.

  19. Continental Shelf Sediments of Sarawak, Malaysian Borneo.

    PubMed

    Morni, Wan Zabidii Wan; Ab Rahim, Siti Akmar Khadijah; Masron, Tarmiji; Rumpet, Richard; Musel, Jamil; Hassan, Ruhana

    2017-01-01

    Sediment distributions in deep sea influence the benthic community structure and thus play an important role in shaping the marine ecosystem. Several studies on sediment characteristics had been conducted in South China Sea (SCS), but only limited to coastal areas of regions within SCS territories. Therefore, this study was carried out to analyze the benthic sediment profile in an area beyond 12 nautical miles off the coast of Sarawak, southern SCS. Sediment samples were collected from 31 stations, comprising three depth ranges: (I) 20-50 m, (II) 50-100 m, and (III) 100-200 m. The total organic matter (TOM) contents were determined and subjected to dry and wet sieving methods for particle size analysis. TOM contents in the deep area (>50 m) were significantly higher ( p = 0.05) and positively correlated ( r = 0.73) with silt-clay fraction. About 55% and 82% of stations in strata II and III, respectively, were dominated by silt-clay fractions (<63  μ m mean diameter), coherent with TOM data. In addition, sediments in the deep area (>50 m) tend to be poorly sorted, very fine skewed, and platykurtic. Unlike data obtained 20 years ago which reported high content of silt-clay (58%), this study recorded a lower content (35%); therefore, changes in sediment load had been observed in southern SCS.

  20. 76 FR 66078 - Notice of Industry Workshop on Technical and Regulatory Challenges in Deep and Ultra-Deep Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ...-0087] Notice of Industry Workshop on Technical and Regulatory Challenges in Deep and Ultra-Deep Outer... and gas exploration and production in deep and ultra-deep OCS waters. Through this workshop, BSEE will... structured venue for consultation among offshore deepwater oil and gas industry and regulatory experts in...

  1. Infrared Faint Radio Sources in the Extended Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.

    2009-01-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).

  2. Fully automated, deep learning segmentation of oxygen-induced retinopathy images

    PubMed Central

    Xiao, Sa; Bucher, Felicitas; Wu, Yue; Rokem, Ariel; Lee, Cecilia S.; Marra, Kyle V.; Fallon, Regis; Diaz-Aguilar, Sophia; Aguilar, Edith; Friedlander, Martin; Lee, Aaron Y.

    2017-01-01

    Oxygen-induced retinopathy (OIR) is a widely used model to study ischemia-driven neovascularization (NV) in the retina and to serve in proof-of-concept studies in evaluating antiangiogenic drugs for ocular, as well as nonocular, diseases. The primary parameters that are analyzed in this mouse model include the percentage of retina with vaso-obliteration (VO) and NV areas. However, quantification of these two key variables comes with a great challenge due to the requirement of human experts to read the images. Human readers are costly, time-consuming, and subject to bias. Using recent advances in machine learning and computer vision, we trained deep learning neural networks using over a thousand segmentations to fully automate segmentation in OIR images. While determining the percentage area of VO, our algorithm achieved a similar range of correlation coefficients to that of expert inter-human correlation coefficients. In addition, our algorithm achieved a higher range of correlation coefficients compared with inter-expert correlation coefficients for quantification of the percentage area of neovascular tufts. In summary, we have created an open-source, fully automated pipeline for the quantification of key values of OIR images using deep learning neural networks. PMID:29263301

  3. Tsunami Generation from Asteroid Airburst and Ocean Impact and Van Dorn Effect

    NASA Technical Reports Server (NTRS)

    Robertson, Darrel

    2016-01-01

    Airburst - In the simulations explored energy from the airburst couples very weakly with the water making tsunami dangerous over a shorter distance than the blast for asteroid sizes up to the maximum expected size that will still airburst (approx.250MT). Future areas of investigation: - Low entry angle airbursts create more cylindrical blasts and might couple more efficiently - Bursts very close to the ground will increase coupling - Inclusion of thermosphere (>80km altitude) may show some plume collapse effects over a large area although with much less pressure center dot Ocean Impact - Asteroid creates large cavity in ocean. Cavity backfills creating central jet. Oscillation between the cavity and jet sends out tsunami wave packet. - For deep ocean impact waves are deep water waves (Phase speed = 2x Group speed) - If the tsunami propagation and inundation calculations are correct for the small (<250MT) asteroids in these simulations where they impact deep ocean basins, the resulting tsunami is not a significant hazard unless particularly close to vulnerable communities. Future work: - Shallow ocean impact. - Effect of continental shelf and beach profiles - Tsunami vs. blast damage radii for impacts close to populated areas - Larger asteroids below presumed threshold of global effects (Ø200 - 800m).

  4. Investigations of a novel fauna from hydrothermal vents along the Arctic Mid-Ocean Ridge (AMOR) (Invited)

    NASA Astrophysics Data System (ADS)

    Rapp, H.; Schander, C.; Halanych, K. M.; Levin, L. A.; Sweetman, A.; Tverberg, J.; Hoem, S.; Steen, I.; Thorseth, I. H.; Pedersen, R.

    2010-12-01

    The Arctic deep ocean hosts a variety of habitats ranging from fairly uniform sedimentary abyssal plains to highly variable hard bottoms on mid ocean ridges, including biodiversity hotspots like seamounts and hydrothermal vents. Deep-sea hydrothermal vents are usually associated with a highly specialized fauna, and since their discovery in 1977 more than 400 species of animals have been described. This fauna includes various animal groups of which the most conspicuous and well known are annelids, mollusks and crustaceans. The newly discovered deep sea hydrothermal vents on the Mohns-Knipovich ridge north of Iceland harbour unique biodiversity. The Jan Mayen field consists of two main areas with high-temperature white smoker venting and wide areas with low-temperature seepage, located at 5-700 m, while the deeper Loki Castle vent field at 2400 m depth consists of a large area with high temperature black smokers surrounded by a sedimentary area with more diffuse low-temperature venting and barite chimneys. The Jan Mayen sites show low abundance of specialized hydrothermal vent fauna. Single groups have a few specialized representatives but groups otherwise common in hydrothermal vent areas are absent. Slightly more than 200 macrofaunal species have been identified from this vent area, comprising mainly an assortment of bathyal species known from the surrounding area. Analysis of stable isotope data also indicates that the majority of the species present are feeding on phytodetritus and/or phytoplankton. However, the deeper Loki Castle vent field contains a much more diverse vent endemic fauna with high abundances of specialized polychaetes, gastropods and amphipods. These specializations also include symbioses with a range of chemosynthetic microorganisms. Our data show that the fauna composition is a result of high degree of local specialization with some similarities to the fauna of cold seeps along the Norwegian margin and wood-falls in the abyssal Norwegian Sea. Few species are common to both the deep and the shallow vents, but some gastropod species show a structured population difference between the sites. Our data indicate that there has been a migration of vent fauna into the Arctic Ocean from the Pacific Ocean rather than from the known vent sites further south in the Atlantic Ocean. The discovery and sampling of these new arctic vent fields provide unique data to further understand the migration of vent organisms and interactions between different deep sea chemosynthetic environments. Based on the high degree of local adaptation and specialization of fauna from the studied sites we propose the AMOR to be a new zoogeographical province for vent fauna.

  5. The Chandra Deep Wide-Field Survey: Completing the new generation of Chandra extragalactic surveys

    NASA Astrophysics Data System (ADS)

    Hickox, Ryan

    2016-09-01

    Chandra X-ray surveys have revolutionized our view of the growth of black holes across cosmic time. Recently, fundamental questions have emerged about the connection of AGN to their host large scale structures that clearly demand a wide, deep survey over a large area, comparable to the recent extensive Chandra surveys in smaller fields. We propose the Chandra Deep Wide-Field Survey (CDWFS) covering the central 6 sq. deg in the Bootes field, totaling 1.025 Ms (building on 550 ks from the HRC GTO program). CDWFS will efficiently probe a large cosmic volume, allowing us to carry out accurate new investigations of the connections between black holes and their large-scale structures, and will complete the next generation surveys that comprise a key part of Chandra's legacy.

  6. Sunspot drawings handwritten character recognition method based on deep learning

    NASA Astrophysics Data System (ADS)

    Zheng, Sheng; Zeng, Xiangyun; Lin, Ganghua; Zhao, Cui; Feng, Yongli; Tao, Jinping; Zhu, Daoyuan; Xiong, Li

    2016-05-01

    High accuracy scanned sunspot drawings handwritten characters recognition is an issue of critical importance to analyze sunspots movement and store them in the database. This paper presents a robust deep learning method for scanned sunspot drawings handwritten characters recognition. The convolution neural network (CNN) is one algorithm of deep learning which is truly successful in training of multi-layer network structure. CNN is used to train recognition model of handwritten character images which are extracted from the original sunspot drawings. We demonstrate the advantages of the proposed method on sunspot drawings provided by Chinese Academy Yunnan Observatory and obtain the daily full-disc sunspot numbers and sunspot areas from the sunspot drawings. The experimental results show that the proposed method achieves a high recognition accurate rate.

  7. Do deep convolutional neural networks really need to be deep when applied for remote scene classification?

    NASA Astrophysics Data System (ADS)

    Luo, Chang; Wang, Jie; Feng, Gang; Xu, Suhui; Wang, Shiqiang

    2017-10-01

    Deep convolutional neural networks (CNNs) have been widely used to obtain high-level representation in various computer vision tasks. However, for remote scene classification, there are not sufficient images to train a very deep CNN from scratch. From two viewpoints of generalization power, we propose two promising kinds of deep CNNs for remote scenes and try to find whether deep CNNs need to be deep for remote scene classification. First, we transfer successful pretrained deep CNNs to remote scenes based on the theory that depth of CNNs brings the generalization power by learning available hypothesis for finite data samples. Second, according to the opposite viewpoint that generalization power of deep CNNs comes from massive memorization and shallow CNNs with enough neural nodes have perfect finite sample expressivity, we design a lightweight deep CNN (LDCNN) for remote scene classification. With five well-known pretrained deep CNNs, experimental results on two independent remote-sensing datasets demonstrate that transferred deep CNNs can achieve state-of-the-art results in an unsupervised setting. However, because of its shallow architecture, LDCNN cannot obtain satisfactory performance, regardless of whether in an unsupervised, semisupervised, or supervised setting. CNNs really need depth to obtain general features for remote scenes. This paper also provides baseline for applying deep CNNs to other remote sensing tasks.

  8. POPO AGIE PRIMITIVE AREA, WYOMING.

    USGS Publications Warehouse

    Pearson, Robert C.; Patten, L.L.

    1984-01-01

    A mineral-resource appraisal was made of the Popo Agie Primitive Area and some adjoining lands. This scenic mountainous region of the Wind River Range in west-central Wyoming is composed largely of ancient granitic rocks in which virtually no evidence of mineral deposits was found. Deep crustal seismic-reflection profiles obtained across the southern Wind River Range suggest the possibility that young sedimentary rocks, similar to those at the surface along the northeast flank of the range, are present at depth beneath the granite in the Popo Agie primitive Area. If present, such buried sedimentary rocks could be petroleum bearing. Additional seismic and gravity studies would probably add valuable information, but ultimately very expensive, very deep drilling will be necessary to test this possibility.

  9. Star-shaped feeding traces produced by echiuran worms on the deep-sea floor of the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Ohta, Suguru

    1984-12-01

    Many star-shaped foraging traces were observed in bottom photographs of the deep-sea floor taken in the Bay of Bengal between the depths of 5025 and 2635 m. They were classified into 10 types according to their dimensions, aspect ratios (length/width) of their spokes, features of the central structure, and possible production mechanisms. The proboscis of a deep-sea bonellid echiuran worm was photographed at a depth of 2635 m in the act of producing one of the star-shaped foraging traces. On the basis of photographic observations and observations of shallow-water forms, several types of the feeding traces can be ascribed to the foraging of deep-sea echiuran worms on surface detritus. At least four types of the star-shaped trace are probably produced by deep-sea bonellid worms, and a linear correlation could be found between the aspect ratios of the spokes and maximum number of spokes around the central hole. A geometrical model experiment stimulating the feeding behavior of a bonellid worm suggested simple behavioral principles which afford maximum utilization of the surface area around a central hole with least expenditure of energy. The prediction of the maximum number of spokes for a given aspect of spokes by the model experiment agreed well with those observed, both utilizing about 76% of the fresh sediment surface within the span of the probiscis around a central hole. This efficient feeding pattern may have adaptive value in deep-sea environments such as the central part of the Bay of Bengal, where energy input is limited.

  10. DRREP: deep ridge regressed epitope predictor.

    PubMed

    Sher, Gene; Zhi, Degui; Zhang, Shaojie

    2017-10-03

    The ability to predict epitopes plays an enormous role in vaccine development in terms of our ability to zero in on where to do a more thorough in-vivo analysis of the protein in question. Though for the past decade there have been numerous advancements and improvements in epitope prediction, on average the best benchmark prediction accuracies are still only around 60%. New machine learning algorithms have arisen within the domain of deep learning, text mining, and convolutional networks. This paper presents a novel analytically trained and string kernel using deep neural network, which is tailored for continuous epitope prediction, called: Deep Ridge Regressed Epitope Predictor (DRREP). DRREP was tested on long protein sequences from the following datasets: SARS, Pellequer, HIV, AntiJen, and SEQ194. DRREP was compared to numerous state of the art epitope predictors, including the most recently published predictors called LBtope and DMNLBE. Using area under ROC curve (AUC), DRREP achieved a performance improvement over the best performing predictors on SARS (13.7%), HIV (8.9%), Pellequer (1.5%), and SEQ194 (3.1%), with its performance being matched only on the AntiJen dataset, by the LBtope predictor, where both DRREP and LBtope achieved an AUC of 0.702. DRREP is an analytically trained deep neural network, thus capable of learning in a single step through regression. By combining the features of deep learning, string kernels, and convolutional networks, the system is able to perform residue-by-residue prediction of continues epitopes with higher accuracy than the current state of the art predictors.

  11. Manipulating the Electronic Excited State Energies of Pyrimidine-Based Thermally Activated Delayed Fluorescence Emitters To Realize Efficient Deep-Blue Emission.

    PubMed

    Komatsu, Ryutaro; Ohsawa, Tatsuya; Sasabe, Hisahiro; Nakao, Kohei; Hayasaka, Yuya; Kido, Junji

    2017-02-08

    The development of efficient and robust deep-blue emitters is one of the key issues in organic light-emitting devices (OLEDs) for environmentally friendly, large-area displays or general lighting. As a promising technology that realizes 100% conversion from electrons to photons, thermally activated delayed fluorescence (TADF) emitters have attracted considerable attention. However, only a handful of examples of deep-blue TADF emitters have been reported to date, and the emitters generally show large efficiency roll-off at practical luminance over several hundreds to thousands of cd m -2 , most likely because of the long delayed fluorescent lifetime (τ d ). To overcome this problem, we molecularly manipulated the electronic excited state energies of pyrimidine-based TADF emitters to realize deep-blue emission and reduced τ d . We then systematically investigated the relationships among the chemical structure, properties, and device performances. The resultant novel pyrimidine emitters, called Ac-XMHPMs (X = 1, 2, and 3), contain different numbers of bulky methyl substituents at acceptor moieties, increasing the excited singlet (E S ) and triplet state (E T ) energies. Among them, Ac-3MHPM, with a high E T of 2.95 eV, exhibited a high external quantum efficiency (η ext,max ) of 18% and an η ext of 10% at 100 cd m -2 with Commission Internationale de l'Eclairage chromaticity coordinates of (0.16, 0.15). These efficiencies are among the highest values to date for deep-blue TADF OLEDs. Our molecular design strategy provides fundamental guidance to design novel deep-blue TADF emitters.

  12. Integrated study of Mediterranean deep canyons: Novel results and future challenges

    NASA Astrophysics Data System (ADS)

    Canals, M.; Company, J. B.; Martín, D.; Sànchez-Vidal, A.; Ramírez-Llodrà, E.

    2013-11-01

    This volume compiles a number of scientific papers resulting from a sustained multidisciplinary research effort of the deep-sea ecosystem in the Mediterranean Sea. This started 20 years ago and peaked over the last few years thanks to a number of Spanish and European projects such as PROMETEO, DOS MARES, REDECO, GRACCIE, HERMES, HERMIONE and PERSEUS, amongst others. The geographic focus of most papers is on the NW Mediterranean Sea including the Western Gulf of Lion and the North Catalan margin, with a special attention to submarine canyons, in particular the Blanes and Cap de Creus canyons. This introductory article to the Progress in Oceanography special issue on “Mediterranean deep canyons” provides background information needed to better understand the individual papers forming the volume, comments previous reference papers related to the main topics here addressed, and finally highlights the existing relationships between atmospheric forcing, oceanographic processes, seafloor physiography, ecosystem response, and litter and chemical pollution. This article also aims at constituting a sort of glue, in terms of existing knowledge and concepts and novel findings, linking together the other twenty papers in the volume, also including some illustrative figures. The main driving ideas behind this special issue, particularly fitting to the study area of the NW Mediterranean Sea, could be summarized as follows: (i) the atmosphere and the deep-sea ecosystem are connected through oceanographic processes originating in the coastal area and the ocean surface, which get activated at the occasion of high-energy events leading to fast transfers of matter and energy to the deep; (ii) shelf indented submarine canyons play a pivotal role in such transfers, which involve dense water, sedimentary particles, organic matter, litter and chemical pollutants; (iii) lateral inputs (advection) from the upper continental margin contributes significantly to the formation of intermediate and deep-water masses, and the associated fluxes of matter and energy are a main driver of deep-sea ecosystems; (iv) deep-sea organisms are highly sensitive to the arrival of external inputs, starting from the lowest food web levels and propagating upwards as time passes, which also relies upon the biology, nutritional needs and life expectancy of each individual species; and (v) innovative knowledge gained through such multidisciplinary research is of the utmost significance for an improved management of deep-sea living resources, such as the highly priced red shrimp Aristeus antennatus, for which a pilot management plan largely based in the findings described here and in related articles has been recently published (BOE, 2013). The researchers involved in such challenging endeavour have learnt tremendously from the results obtained so far and from each other, but are fully aware that there are still many unsolved questions. That is why this introductory article also includes “Future challenges” both in the title and as an individual section at the end, to express that there is still a long way to go.

  13. Neck and Occipital Pain Caused by Deep Cervical Intramuscular Lipoma: A Surgical Case.

    PubMed

    Kogure, Kazunari; Yamazaki, Michio; Tamaki, Tomonori; Node, Yoji; Morita, Akio

    2017-01-01

    A lipoma is a slow-growing, benign tumor and is usually asymptomatic; hence, surgical intervention can often be avoided in patients with these tumors in the cervical and cranial area. Lipomas arise most commonly in the subcutaneous fat, but occasionally in muscle tissue. Intramuscular lipomas in the cervico-cranial area have rarely been reported. We describe here a patient with a large intramuscular lipoma in the deep cervical tissue. The patient experienced troublesome pain in the neck and occipital area, and surgical treatment was therefore suggested. Particularly in the cervical area, intramuscular lipomas sometimes invade the surrounding muscles and tissue layers and develop into an irregular mass, despite being benign. In addition, the cervical area has one of the most complex muscle structures. Nevertheless, surgical management of intramuscular lipoma in the cervical and cranial area is sometimes indicated, for example, in patients with clinical symptoms or masses with a tendency to grow large.

  14. Morphotectonics of Sea of Marmara: A Basin on North Anatolian Continental Transform Plate Boundary

    NASA Astrophysics Data System (ADS)

    Çaǧatay, M. Namık; Uçarkuş, Gülsen; Eriş, K. Kadir; Henry, Pierre; Geli, Louis; Gasperini, Luca

    2017-04-01

    The Sea of Marmara is located the North Anatolian Fault (NAF), a continental transform plate boundary between the Eurasian and Anatolian-Aegean plates. The area is also under the influence of the N-S extensional Aegean regime. The 100 km-wide NAF zone in the Marmara region accommodates about 25 mm/yr dextral motion, with 70-80% of this displacement taking place along the northern branch of the NAF, the Main Marmara Fault in the Sea of Marmara. The main morphological elements of the Sea of Marmara consists of less than 100 m deep shelf areas, 1250 m three deep sub-basins (Tekirdaǧ, Central and Çınarcık) and two NE-trending pressure highs (Western and Central) separating the deep subbasins. The other elements are 800 m deep Kumburgaz Basin on the Central High, 400 m deep İmralı Basin in the south, and 100-200 m deep, E-W oriented gulfs or bays. The slopes connecting the shelf to the deep basins have slope angles ranging between 6° and 29°, and are incised by submarine canyons and marked by landslides scars. The basins have accumulated up to 6 km thick sediments. They are subsiding at a rate 5-6 mm/year and accumulating sediments at rates of 1-3 mm/yr over the last 15 ka, with the rates for the glacial periods being the 2-3 times that for interglacials. The sedimentation rates over the highs range between 0.2 and 0.4 mm/yr over the last 70 ka. The morphology of the Sea of Marmara is controlled by the NAF activity that was in turn guided a complex basement structure in the region. The basement of the Sea of Marmara region consists of various micro-continents (Istanbul Zone and Rhodope-Pontide and Sakarya continents), ophiolitic suture zones and the hydrocarbon bearing Eocene-Middle Miocene Thrace Basin on the southern margin of Rhodope-Pontide continent. After closure of the Intra-Pontide Ocean and the collision of the Sakarya and Rhodope-Pontide continents during the Oligocene-Early Miocene, the region was uplifted, and subjected to peneplanation during the mid-Late Miocene. The incipient NAF activity started about the same time, when the Marmara region was covered by shallow lakes. Initiation of crustal extension and strain localization in the Sea of Marmara area started in the Earliest Pliocene while shallow siliciclastic and carbonate sediment were deposited. Considering the rates of subsidence and sedimentation, the present day morphology of the Sea of Marmara, with its transtensional basins and the intervening highs between the splays of the NAF, developed mainly during the last 1-2 Ma. This geomorphic evolution is reviewed on the basis of published and unpublished data.

  15. Deep, diverse and definitely different: unique attributes of the world's largest ecosystem

    NASA Astrophysics Data System (ADS)

    Ramirez-Llodra, E.; Brandt, A.; Danovaro, R.; Escobar, E.; German, C. R.; Levin, L. A.; Martinez Arbizu, P.; Menot, L.; Buhl-Mortensen, P.; Narayanaswamy, B. E.; Smith, C. R.; Tittensor, D. P.; Tyler, P. A.; Vanreusel, A.; Vecchione, M.

    2010-04-01

    The deep sea, the largest biome on Earth, has a series of characteristics that make this environment both distinct from other marine and land ecosystems and unique for the entire planet. This review describes these patterns and processes, from geological settings to biological processes, biodiversity and biogeographical patterns. It concludes with a brief discussion of current threats from anthropogenic activities to deep-sea habitats and their fauna. Investigations of deep-sea habitats and their fauna began in the late 19th Century. In the intervening years, technological developments and stimulating discoveries have promoted deep-sea research and changed our way of understanding life on the planet. Nevertheless, the deep sea is still mostly unknown and current discovery rates of both habitats and species remain high. The geological, physical and geochemical settings of the deep-sea floor and the water column form a series of different habitats with unique characteristics that support specific faunal communities. Since 1840, 27 new habitats/ecosystems have been discovered from the shelf break to the deep trenches and discoveries of new habitats are still happening in the early 21st Century. However, for most of these habitats, the global area covered is unknown or has been only very roughly estimated; an even smaller - indeed, minimal - proportion has actually been sampled and investigated. We currently perceive most of the deep-sea ecosystems as heterotrophic, depending ultimately on the flux on organic matter produced in the overlying surface ocean through photosynthesis. The resulting strong food limitation, thus, shapes deep-sea biota and communities, with exceptions only in reducing ecosystems such as inter alia hydrothermal vents or cold seeps, where chemoautolithotrophic bacteria play the role of primary producers fuelled by chemical energy sources rather than sunlight. Other ecosystems, such as seamounts, canyons or cold-water corals have an increased productivity through specific physical processes, such as topographic modification of currents and enhanced transport of particles and detrital matter. Because of its unique abiotic attributes, the deep sea hosts a specialized fauna. Although there are no phyla unique to deep waters, at lower taxonomic levels the composition of the fauna is distinct from that found in the upper ocean. Amongst other characteristic patterns, deep-sea species may exhibit either gigantism or dwarfism, related to the decrease in food availability with depth. Food limitation on the seafloor and water column is also reflected in the trophic structure of deep-sea communities, which are adapted to low energy availability. In most of the heterotrophic deep-sea settings, the dominant megafauna is composed of detritivores, while filter feeders are abundant in habitats with hard substrata (e.g. mid-ocean ridges, seamounts, canyon walls and coral reefs) and chemoautotrophy through symbiotic relationships is dominant in reducing habitats. Deep-sea biodiversity is among of the highest on the planet, mainly composed of macro and meiofauna, with high evenness. This is true for most of the continental margins and abyssal plains with hot spots of diversity such as seamounts or cold-water corals. However, in some ecosystems with particularly "extreme" physicochemical processes (e.g. hydrothermal vents), biodiversity is low but abundance and biomass are high and the communities are dominated by a few species. Two large-scale diversity patterns have been discussed for deep-sea benthic communities. First, a unimodal relationship between diversity and depth is observed, with a peak at intermediate depths (2000-3000 m), although this is not universal and particular abiotic processes can modify the trend. Secondly, a poleward trend of decreasing diversity has been discussed, but this remains controversial and studies with larger and more robust datasets are needed. Because of the paucity in our knowledge of habitat coverage and species composition, biogeographic studies are mostly based on regional data or on specific taxonomic groups. Recently, global biogeographic provinces for the pelagic and benthic deep ocean have been described, using environmental and, where data were available, taxonomic information. This classification described 30 pelagic provinces and 38 benthic provinces divided into 4 depth ranges, as well as 10 hydrothermal vent provinces. One of the major issues faced by deep-sea biodiversity and biogeographical studies is related to the high number of species new to science that are collected regularly, together with the slow description rates for these new species. Taxonomic coordination at the global scale is particularly difficult but is essential if we are to analyse large diversity and biogeographic trends. Because of their remoteness, anthropogenic impacts on deep-sea ecosystems have not been addressed very thoroughly until recently. The depletion of biological and mineral resources on land and in shallow waters, coupled with technological developments, is promoting the increased interest in services provided by deep-water resources. Although often largely unknown, evidence for the effects of human activities in deep-water ecosystems - such as deep-sea mining, hydrocarbon exploration and exploitation, fishing, dumping and littering - is already accumulating. Because of our limited knowledge of deep-sea biodiversity and ecosystem functioning and because of the specific life-history adaptations of many deep-sea species (e.g. slow growth and delayed maturity), it is essential that the scientific community works closely with industry, conservation organisations and policy makers to develop conservation and management options.

  16. Learning approach among health sciences students in a medical college in Nepal: a cross-sectional study.

    PubMed

    Shah, Dev Kumar; Yadav, Ram Lochan; Sharma, Deepak; Yadav, Prakash Kumar; Sapkota, Niraj Khatri; Jha, Rajesh Kumar; Islam, Md Nazrul

    2016-01-01

    Many factors shape the quality of learning. The intrinsically motivated students adopt a deep approach to learning, while students who fear failure in assessments adopt a surface approach to learning. In the area of health science education in Nepal, there is still a lack of studies on learning approach that can be used to transform the students to become better learners and improve the effectiveness of teaching. Therefore, we aimed to explore the learning approaches among medical, dental, and nursing students of Chitwan Medical College, Nepal using Biggs's Revised Two-Factor Study Process Questionnaire (R-SPQ-2F) after testing its reliability. R-SPQ-2F containing 20 items represented two main scales of learning approaches, deep and surface, with four subscales: deep motive, deep strategy, surface motive, and surface strategy. Each subscale had five items and each item was rated on a 5-point Likert scale. The data were analyzed using Student's t-test and analysis of variance. Reliability of the administered questionnaire was checked using Cronbach's alpha. The Cronbach's alpha value (0.6) for 20 items of R-SPQ-2F was found to be acceptable for its use. The participants predominantly had a deep approach to learning regardless of their age and sex (deep: 32.62±6.33 versus surface: 25.14±6.81, P<0.001). The level of deep approach among medical students (33.26±6.40) was significantly higher than among dental (31.71±6.51) and nursing (31.36±4.72) students. In comparison to first-year students, deep approach among second-year medical (34.63±6.51 to 31.73±5.93; P<0.001) and dental (33.47±6.73 to 29.09±5.62; P=0.002) students was found to be significantly decreased. On the other hand, surface approach significantly increased (25.55±8.19 to 29.34±6.25; P=0.023) among second-year dental students compared to first-year dental students. Medical students were found to adopt a deeper approach to learning than dental and nursing students. However, irrespective of disciplines and personal characteristics of participants, the primarily deep learning approach was found to be shifting progressively toward a surface approach after completion of an academic year, which should be avoided.

  17. Countermeasure Study on Deep-sea Oil Exploitation in the South China Sea——A Comparison between Deep-sea Oil Exploitation in the South China Sea and the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Qiu, Weiting; Qu, Weilu

    2018-02-01

    The unpromising situation of terrestrial oil resources makes the deep-sea oil industry become an important development strategy. The South China Sea has a vast sea area with a wide distribution of oil and gas resources, but there is a phenomenon that exploration and census rates and oil exploitation are low. In order to solve the above problems, this article analyzes the geology, oil and gas exploration and exploration equipment in the South China Sea and the Gulf of Mexico. Comparing the political environment of China and the United States energy industry and the economic environment of oil companies, this article points out China’s deep-sea oil exploration and mining problems that may exist. Finally, the feasibility of oil exploration and exploitation in the South China Sea is put forward, which will provide reference to improve the conditions of oil exploration in the South China Sea and promoting the stable development of China’s oil industry.

  18. Morphology, taxonomic status and distribution of the opisthobranch mollusc Coryphella (s.l.) japonica from the central deep water basin of the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Martynov, Alexander V.

    2013-02-01

    The opisthobranch fauna (Gastropoda: Opisthobranchia) of the deep sea basins of the Sea of Japan is reviewed. A detailed description of the most common deep sea nudibranch species Coryphella japonicaVolodchenko, 1941 is given based on materials from various expeditions (including R/V "Vityaz" cruises and SoJaBio project). Distinct morphological features of C. japonica are discussed and its valid taxonomic status is confirmed. The considerable radular variability of C. japonica for the first time is documented using a scanning electron microscope. Unique features of the bathymetric distribution of C. japonica ranging from shelf to the abyssal depths are discussed in connection with the "pseudabyssal area" concept. C. japonica was compared to its assumed synonym C. salmonacea, and to similar C. athadona. Material from all these species, including types of C. japonica, was examined externally, anatomically via dissection, and SEM. C. salmonacea is restricted to North Atlantic and Arctic only, whereas C. japonica inhabits NE Pacific including deep water basins of the Sea of Japan.

  19. Possible Sea Ice Impacts on Oceanic Deep Convection

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.

    1984-01-01

    Many regions of the world ocean known or suspected to have deep convection are sea-ice covered for at least a portion of the annual cycle. As this suggests that sea ice might have some impact on generating or maintaining this phenomenon, several mechanisms by which sea ice could exert an influence are presented in the following paragraphs. Sea ice formation could be a direct causal factor in deep convection by providing the surface density increase necessary to initiate the convective overturning. As sea ice forms, either by ice accretion or by in situ ice formation in open water or in lead areas between ice floes, salt is rejected to the underlying water. This increases the water salinity, thereby increasing water density in the mixed layer under the ice. A sufficient increase in density will lead to mixing with deeper waters, and perhaps to deep convection or even bottom water formation. Observations are needed to establish whether this process is actually occurring; it is most likely in regions with extensive ice formation and a relatively unstable oceanic density structure.

  20. Two-step tunneling technique of deep brain stimulation extension wires-a description.

    PubMed

    Fontaine, Denys; Vandersteen, Clair; Saleh, Christian; von Langsdorff, Daniel; Poissonnet, Gilles

    2013-12-01

    While a significant body of literature exists on the intracranial part of deep brain stimulation surgery, the equally important second part of the intervention related to the subcutaneous tunneling of deep brain stimulation extension wires is rarely described. The tunneling strategy can consist of a single passage of the extension wires from the frontal incision site to the subclavicular area, or of a two-step approach that adds a retro-auricular counter-incision. Each technique harbors the risk of intraoperative and postoperative complications. At our center, we perform a two-step tunneling procedure that we developed based on a cadaveric study. In 125 consecutive patients operated since 2002, we did not encounter any complication related to our tunneling method. Insufficient data exist to fully evaluate the advantages and disadvantages of each tunneling technique. It is of critical importance that authors detail their tunneling modus operandi and report the presence or absence of complications. This gathered data pool may help to formulate a definitive conclusions on the safest method for subcutaneous tunneling of extension wires in deep brain stimulation.

  1. A snap shot of the short-term response of crustaceans to macrophyte detritus in the deep Oslofjord.

    PubMed

    Ramirez-Llodra, Eva; Rinde, Eli; Gundersen, Hege; Christie, Hartvig; Fagerli, Camilla With; Fredriksen, Stein; Gitmark, Janne Kim; Norling, Karl; Walday, Mats Gunnar; Norderhaug, Kjell Magnus

    2016-03-30

    A test deployment of a time-lapse camera lander in the deep Oslofjord (431 m) was used to obtain initial information on the response of benthic fauna to macroalgal debris. Three macroalgal species were used on the lander baited plate: Fucus serratus, Saccharina latissima and Laminaria hyperborea and observed during 41.5 hours. The deep-water shrimp Pandalus borealis were attracted to the macroalgae rapidly (3 min after the lander reached the seafloor), followed by amphipods. Shrimp abundances were significantly higher in areas covered by macroalgae compared to the adjacent seafloor and the number of shrimp visiting the macroalgae increased with time. Amphipods arrived 13 hours later and were observed mainly on decaying L. hyperborea. The abundance of amphipods on L. hyperborea increased rapidly, reaching a peak at 31 h after deployment. These initial observations suggest that debris from kelp forests and other macroalgal beds may play an important role in fuelling deep benthic communities in the outer Oslofjord and, potentially, enhance secondary production of commercial species such as P. borealis.

  2. Deep earthquakes beneath the Fiji Basin, SW Pacific: Earth's most intense deep seismicity in stagnant slabs

    USGS Publications Warehouse

    Okal, E.A.; Kirby, S.H.

    1998-01-01

    Previous work has suggested that many of the deep earthquakes beneath the Fiji Basin occur in slab material that has been detached and foundered to the bottom of the transition zone or has been laid down by trench migration in a similar recumbent position. Since nowhere else in the Earth do so many earthquakes occur in slabs stagnated in the transition zone, these earthquakes merit closer study. Accordingly, we have assembled from historical and modern data a comprehensive catalogue of the relocated hypocenters and focal mechanisms of well-located deep events in the geographic area between the bottoms of the main Vanuatu and Tonga Wadati-Benioff zones. Two regions of deep seismogenesis are recognized there: (i) 163 deep shocks have occurred north of 15??S in the Vityaz Group from 1949 to 1996. These seismological observations and the absence of other features characteristic of active subduction suggest that the Vityaz group represents deep failure in a detached slab that has foundered to a horizontal orientation near the bottom of the transition zone. (ii) Another group of nearly 50 'outboard' deep shocks occur between about 450 and 660 km depth, west of the complexly buckled and offset western edge of the Tonga Wadati-Benioff zone. Their geometry is in the form of two or possibly three small-circle arcs that roughly parallel the inferred motion of Tonga trench migration. Earthquakes in the southernmost of these arcs occur in a recumbent high-seismic-wavespeed slab anomaly that connects both to the main inclined Tonga anomaly to the east and a lower mantle anomaly to the west [Van der Hilst, R., 1995. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature, Vol. 374, pp. 154-157.]. Both groups show complexity in their focal mechanisms. The major question raised by these observations is the cause of this apparent temporary arrest in the descent of the Tonga slab into the lower mantle. We approach these questions by considering the effects of buoyant metastable peridotite in cold slab material that was detached and rapidly foundered, or was buckled, segmented and laid out in the transition zone.

  3. Analysis of the load on the knee joint and vertebral column with changes in squatting depth and weight load.

    PubMed

    Hartmann, Hagen; Wirth, Klaus; Klusemann, Markus

    2013-10-01

    It has been suggested that deep squats could cause an increased injury risk of the lumbar spine and the knee joints. Avoiding deep flexion has been recommended to minimize the magnitude of knee-joint forces. Unfortunately this suggestion has not taken the influence of the wrapping effect, functional adaptations and soft tissue contact between the back of thigh and calf into account. The aim of this literature review is to assess whether squats with less knee flexion (half/quarter squats) are safer on the musculoskeletal system than deep squats. A search of relevant scientific publications was conducted between March 2011 and January 2013 using PubMed. Over 164 articles were included in the review. There are no realistic estimations of knee-joint forces for knee-flexion angles beyond 50° in the deep squat. Based on biomechanical calculations and measurements of cadaver knee joints, the highest retropatellar compressive forces and stresses can be seen at 90°. With increasing flexion, the wrapping effect contributes to an enhanced load distribution and enhanced force transfer with lower retropatellar compressive forces. Additionally, with further flexion of the knee joint a cranial displacement of facet contact areas with continuous enlargement of the retropatellar articulating surface occurs. Both lead to lower retropatellar compressive stresses. Menisci and cartilage, ligaments and bones are susceptible to anabolic metabolic processes and functional structural adaptations in response to increased activity and mechanical influences. Concerns about degenerative changes of the tendofemoral complex and the apparent higher risk for chondromalacia, osteoarthritis, and osteochondritis in deep squats are unfounded. With the same load configuration as in the deep squat, half and quarter squat training with comparatively supra-maximal loads will favour degenerative changes in the knee joints and spinal joints in the long term. Provided that technique is learned accurately under expert supervision and with progressive training loads, the deep squat presents an effective training exercise for protection against injuries and strengthening of the lower extremity. Contrary to commonly voiced concern, deep squats do not contribute increased risk of injury to passive tissues.

  4. 30 CFR 203.1 - What is MMS's authority to grant royalty relief?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (water less than 400 meters deep) and you produce from an ultra-deep well (top of the perforated interval... less than 400 meters deep and you produce from a deep well (top of the perforated interval is at least... from any lease if: (1) Your lease is in deep water (water at least 200 meters deep); (2) Your lease is...

  5. [Soil organic carbon mineralization of Black Locust forest in the deep soil layer of the hilly region of the Loess Plateau, China].

    PubMed

    Ma, Xin-Xin; Xu, Ming-Xiang; Yang, Kai

    2012-11-01

    The deep soil layer (below 100 cm) stores considerable soil organic carbon (SOC). We can reveal its stability and provide the basis for certification of the deep soil carbon sinks by studying the SOC mineralization in the deep soil layer. With the shallow soil layer (0-100 cm) as control, the SOC mineralization under the condition (temperature 15 degrees C, the soil water content 8%) of Black Locust forest in the deep soil layer (100-400 cm) of the hilly region of the Loess Plateau was studied. The results showed that: (1) There was a downward trend in the total SOC mineralization with the increase of soil depth. The total SOC mineralization in the sub-deep soil (100-200 cm) and deep soil (200-400 cm) were equivalent to approximately 88.1% and 67.8% of that in the shallow layer (0-100 cm). (2) Throughout the carbon mineralization process, the same as the shallow soil, the sub-deep and deep soil can be divided into 3 stages. In the rapid decomposition phase, the ratio of the mineralization or organic carbon to the total mineralization in the sub-deep and deep layer (0-10 d) was approximately 50% of that in the shallow layer (0-17 d). In the slow decomposition phase, the ratio of organic carbon mineralization to total mineralization in the sub-deep, deep layer (11-45 d) was 150% of that in the shallow layer (18-45 d). There was no significant difference in this ratio among these three layers (46-62 d) in the relatively stable stage. (3) There was no significant difference (P > 0.05) in the mineralization rate of SOC among the shallow, sub-deep, deep layers. The stability of SOC in the deep soil layer (100-400 cm) was similar to that in the shallow soil layer and the SOC in the deep soil layer was also involved in the global carbon cycle. The change of SOC in the deep soil layer should be taken into account when estimating the effects of soil carbon sequestration in the Hilly Region of the Loess Plateau, China.

  6. Experimental research on the structural instability mechanism and the effect of multi-echelon support of deep roadways in a kilometre-deep well

    PubMed Central

    Peng, Rui; Zhao, Guangming; Li, Yingming; Zhu, Jianming

    2018-01-01

    We study the structural instability mechanism and effect of a multi-echelon support in very-deep roadways. We conduct a scale model test for analysing the structural failure mechanism and the effect of multi-echelon support of roadways under high horizontal stress. Mechanical bearing structures are classified according to their secondary stress distribution and the strength degradation of the surrounding rock after roadway excavation. A new method is proposed by partitioning the mechanical bearing structure of the surrounding rock into weak, key and main coupling bearing stratums. In the surrounding rock, the main bearing stratum is the plastic reshaping and flowing area. The weak bearing stratum is the peeling layer or the caving part. And the key bearing stratum is the shearing and yielding area. The structural fracture mechanism of roadways is considered in analysing the bearing structure instability of the surrounding rock, and multi-echelon support that considers the structural characteristics of roadway bearings is proposed. Results of the experimental study indicate that horizontal pressure seriously influences the stability of the surrounding rock, as indicated by extension of the weak bearing area and the transfer of the main and key bearing zones. The falling roof, rib spalling, and floor heave indicate the decline of the bearing capacity of surrounding rock, thereby causing roadway structural instability. Multi-echelon support is proposed according to the mechanical bearing structure of the surrounding rock without support. The redesigned support can reduce the scope of the weak bearing area and limit the transfer of the main and key bearing areas. Consequently, kilometre-deep roadway disasters, such as wedge roof caving, floor heave, and rib spalling, can be avoided to a certain degree, and plastic flow in the surrounding rock is relieved. The adverse effect of horizontal stress on the vault, spandrel and arch foot decreases. The stability of the soft rock surrounding the roadways is maintained. PMID:29447180

  7. Recharge sources and residence times of groundwater as determined by geochemical tracers in the Mayfield Area, southwestern Idaho, 2011–12

    USGS Publications Warehouse

    Hopkins, Candice B.

    2013-01-01

    Parties proposing residential development in the area of Mayfield, Idaho are seeking a sustainable groundwater supply. During 2011–12, the U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, used geochemical tracers in the Mayfield area to evaluate sources of aquifer recharge and differences in groundwater residence time. Fourteen groundwater wells and one surface-water site were sampled for major ion chemistry, metals, stable isotopes, and age tracers; data collected from this study were used to evaluate the sources of groundwater recharge and groundwater residence times in the area. Major ion chemistry varied along a flow path between deeper wells, suggesting an upgradient source of dilute water, and a downgradient source of more concentrated water with the geochemical signature of the Idaho Batholith. Samples from shallow wells had elevated nutrient concentrations, a more positive oxygen-18 signature, and younger carbon-14 dates than deep wells, suggesting that recharge comes from young precipitation and surface-water infiltration. Samples from deep wells generally had higher concentrations of metals typical of geothermal waters, a more negative oxygen-18 signature, and older carbon-14 values than samples from shallow wells, suggesting that recharge comes from both infiltration of meteoric water and another source. The chemistry of groundwater sampled from deep wells is somewhat similar to the chemistry in geothermal waters, suggesting that geothermal water may be a source of recharge to this aquifer. Results of NETPATH mixing models suggest that geothermal water composes 1–23 percent of water in deep wells. Chlorofluorocarbons were detected in every sample, which indicates that all groundwater samples contain at least a component of young recharge, and that groundwater is derived from multiple recharge sources. Conclusions from this study can be used to further refine conceptual hydrological models of the area.

  8. A tribute to Peter A. Rona: A Russian Perspective

    NASA Astrophysics Data System (ADS)

    Sagalevich, Anatoly; Lutz, Richard A.

    2015-11-01

    In July 1985 Peter Rona led a cruise of the National Oceanic and Atmospheric Administration (NOAA) ship Researcher as part of the NOAA Vents Program and discovered, for the first time, black smokers, massive sulfide deposits and vent biota in the Atlantic Ocean. The site of the venting phenomena was the Trans-Atlantic Geotraverse (TAG) Hydrothermal Field on the east wall of the rift valley of the Mid-Atlantic Ridge at 26°08‧N; 44°50‧W (Rona, 1985; Rona et al., 1986). In 1986, Peter and an international research team carried out multidisciplnary investigations of both active and inactive hydrothermal zones of the TAG field using the R/V Atlantis and DSV Alvin, discovering two new species of shrimp (Rimicaris exoculata and Chorocaris chacei) (Williams and Rona, 1986) and a hexagonal-shaped form (Paleodictyon nodosum) thought to be extinct (Rona et al., 2009). In 1991 a Russian crew aboard the R/V Akademik Mstislav Keldysh, with two deep-diving, human-occupied submersibles (Mir-1 and Mir-2) (Fig. 1), had the honor of having Peter Rona and a Canadian IMAX film crew from the Stephen Low Company on board to visit the TAG hydrothermal vent field. This was the first of many deep-sea interactions between Russian deep-sea scientists and their colleagues from both the U.S. and Canada. This expedition to the TAG site was part of a major Russian undersea program aimed at exploring extreme deep-sea environments; between 1988 and 2005, the Mir submersibles visited hydrothermal vents and cold seep areas in 20 deep-sea regions throughout the world's oceans (Sagalevich, 2002). Images of several of these areas (the TAG, Snake Pit, Lost City and 9°50‧N vent fields) were obtained using an IMAX camera system emplaced for the first time within the spheres of the Mir submersibles and DSV Alvin in conjunction with the filming of science documentaries (e.g., ;Volcanoes of the Deep Sea;) produced by the Stephen Low Company in conjunction with Emory Kristof of National Geographic and Peter Rona. The initial test of this submersible-emplaced camera system was conducted during the 1991 expedition to the TAG hydrothermal vent field.

  9. Accumulation of artificial radionuclides in deep sediments of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Garcia-Orellana, J.; Sanchez-Cabeza, J. A.; Masque, P.; Costa, E.; Bruach, J. M.; Morist, A.; Luna, J. A.

    2003-04-01

    Concentrations and inventories of artificial radionuclides (90Sr, 137Cs and 239,40Pu) were determined in deep sediment cores (3.000 m) collected in the western and eastern basins of the Mediterranean Sea in the frame of the ADIOS project. Artificial radionuclides enter the Mediterranean Sea mainly though atmospheric deposition after nuclear weapons tests and the Chernobyl accident, but also through the river discharge of effluents of nuclear facilities (e.g. Rhone and Ebro rivers). The aim of this work is to investigate the degree by which pollutants are transferred to the deep environment of the Mediterranean Sea as a basis to elucidate their effects on benthic organisms. The mean inventories of 239+240Pu, 137Cs and 90Sr in the Western basin are 2.77 ± 0.26, 68 ± 12 and < 7 Bq\\cdotm-2 respectively and 3.29 ± 0.60, 115 ± 33 and 249±154 Bq\\cdotm-2 in the Eastern basin. The activity - depth profiles of 210Pb, together with 14C dating, indicate that sediment mixing redistributes the artificial radionuclides within the first 2 cm of the sedimentary column. Artificial radionuclides inventories in the deep-sea sediments were used to calculate the fraction of the total inventory of artificial radionuclides that is accumulated in the deep sea sediments after scavenging from the water column. Indeed, a balance of the radionuclide distributions in the water column allows evaluating the importance of lateral transport of particulate matter from the continental margins on the accumulation of artificial radionuclides in the deep, open Mediterranean Sea. This is achieved in i) comparison with reported data from coastal areas at different locations in the Mediterranean Sea, and ii) balance of the distribution of the natural radionuclide 210Pb in studied areas (vertical profiles of dissolved and particulate activities, fluxes determined by using sediment trap deployed at different depths and inventories in the bottom sediments). The results, taking into account radioactive decay and exchange fluxes through the Gibraltar Strait, permit to estimate the residence times of pollutants in the water column and predict future evolution of their distributions.

  10. Significance of ground-water chemistry in performance of North Sahara Tube wells in Algeria and Tunisia

    USGS Publications Warehouse

    Clarke, Frank Eldridge; Jones, Blair F.

    1972-01-01

    Nine ground-water samples from the principal shallow and deep North Sahara aquifers of Algeria and Tunisia were examined to determine the relation of their chemical composition to corrosion and mineral encrustation thought to be contributing to observed decline in well capacities within a UNESCO/UNDP Special Fund Project area. Although the shallow and deep waters differ significantly in certain quality factors, all are sulfochloride types with corrosion potentials ranging from moderate to extreme. None appear to be sufficiently supersaturated with troublesome mineral species to cause rapid or severe encrustation of filter pipes or other well parts. However, calcium carbonate encrustation of deep-well cooling towers and related irrigation pipes can be expected because of loss of carbon dioxide and water during evaporative cooling. Corrosion products, particularly iron sulfide, can be expected to deposit in wells producing waters from the deep aquifers. This could reduce filterpipe openings and increase casing roughness sufficiently to cause significant reduction in well capacity. It seems likely, however, that normal pressure reduction due to exploitation of the artesian systems is a more important control of well performance. If troublesome corrosion and related encrustation are confirmed by downhole inspection, use of corrosion-resisting materials, such as fiber-glass casing and saw-slotted filter pipe (shallow wells only), or stainless-steel screen, will minimize the effects of the waters represented by these samples. A combination of corrosion-resisting stainless steel filter pipe electrically insulated from the casing with a nonconductive spacer and cathodic protection will minimize external corrosion of steel casing, if this is found to be a problem. However, such installations are difficult to make in very deep wells and difficult to control in remote areas. Both the shallow waters and the deep waters examined in this study will tend to cause soil salinization because their salt contents are relatively high, and both have sodium absorption ratios which are unfavorable to sodium-sensitive soils and vegetation. Proper drainage and soil treatment are the only means of overcoming these problems during irrigation.

  11. Results from the calibration of the Extreme Ultraviolet Explorer instruments

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.; Jelinsky, Pat; Vedder, Peter W.; Vallerga, John V.; Finley, David S.; Malina, Roger F.

    1991-01-01

    The paper describes the main features and selected results of the calibration of the scientific instruments to be flown on the Extreme Ultraviolet Explorer in 1991. The instrument payload includes three grazing incidence scanning telescopes and an EUV spectrometer/deep survey instrument covering the spectral region 70-800 A. The measured imaging characteristics, the effective areas, and the details of spectral responses of the instruments are presented. Diagrams of the cross-sectional views of the scanning telescope and the deep-survey/spectrometer telescope are included.

  12. Ship Fracture Mechanisms Investigation. Part 1

    DTIC Science & Technology

    1987-01-01

    fractography of the fracture origin areas was atteinpted by Pense at Lehigh Univers-ty but in no case were the surfaces sufficiently clean to permit good...Typically, they arc a deprc.sion or notch no more than 0.25 inches deep , and in some cases appear to be even smaller. It was not possible to determine if any...perpendiculars: 880.5 ft Breadth (molded): 105.5 ft Depth amidship: 65.25 ft Displacement ( deep load line): 50,315 LT Year built: 1972 (foreign built

  13. Telecommunications Systems Design Techniques Handbook

    NASA Technical Reports Server (NTRS)

    Edelson, R. E. (Editor)

    1972-01-01

    The Deep Space Network (DSN) increasingly supports deep space missions sponsored and managed by organizations without long experience in DSN design and operation. The document is intended as a textbook for those DSN users inexperienced in the design and specification of a DSN-compatible spacecraft telecommunications system. For experienced DSN users, the document provides a reference source of telecommunication information which summarizes knowledge previously available only in a multitude of sources. Extensive references are quoted for those who wish to explore specific areas more deeply.

  14. Management Plan Report. Unconfined Open-Water Disposal of Dredged Material. Phase 2. (North and South Puget Sound)

    DTIC Science & Technology

    1989-09-01

    depth of 442’ at the center of the disposal zone. The area is subject to weak currents. In general, commercially important marine invertebrate ...Fish and Wildlife Service " Charles Dunn U.S. Fish and Wildlife Service * Rob Jones National Marine Fisheries Service * Dr. Herb Curl National Oceanic...environmental impacts. In the future, for many projects, disposal in deep and relatively deep marine waters is expected to be a preferred option for envirc

  15. Observations of Seafloor Ambient Noise with an Ocean Bottom Seismometer Array

    DTIC Science & Technology

    1989-12-01

    April and May of 1987. The array was situated near Deep Sea Drilling Project (DSDP) Hole 469 at a depth of 3.8 km (Figure 2.1). The area is a 400 m...any array processing method can be gauged by its resolution, bias 34 and stability. These quantities are sensitive to errors such as uncertain...Spectral Ocean Wave Model, Bull. Amer. Meteor. Soc, 67,498-512,1986. Cox, C. S., T. Deaton, and S. C. Webb, A deep-sea differential pressure gauge

  16. Shoreline Evolution and Coastal Resiliency at Two Military Installations: Investigating the Potential for and Impacts of Loss of Protecting Barriers

    DTIC Science & Technology

    2014-05-01

    control barrier morphology and migration (and potentially drowning). We have developed a numerical model of barrier evolution over the centennial ...required to maintain barrier geometries over centennial timescales. Long-term storm histories for each region show a consistent picture of...landward of the flood tidal delta is an area of over 40km2 that is over 9m deep, with some depressions as deep as 12m. During periods of rising sea-level

  17. Deep sea tides determination from GEOS-3

    NASA Technical Reports Server (NTRS)

    Maul, G. A.; Yanaway, A.

    1978-01-01

    GEOS 3 altimeter data in a 5 degree X 5 degree square centered at 30 deg N, 70 deg W were analyzed to evaluate deep sea tide determination from a spacecraft. The signal to noise ratio of known tidal variability to altimeter measurement of sea level above the ellipsoid was 0.1. A sample was obtained in a 5 deg x 5 deg area approximately once every four days. The randomly spaced time series was analyzed using two independent least squares techniques.

  18. Temporal Differences in Flow Depth and Velocity Distributions and Hydraulic Microhabitats Near Bridges of the Lower Platte River, Nebraska, 1934-2006

    USGS Publications Warehouse

    Ginting, Daniel; Zelt, Ronald B.

    2008-01-01

    As part of a collaborative study of the cumulative impacts on stream and riparian ecology of water and channel management practices in the lower Platte River, Nebraska, this report describes a study by the U.S. Geological Survey in cooperation with the Lower Platte South Natural Resources District that summarizes: (1) temporal differences in distribution of streamflow depth, velocity, and microhabitats among five discrete 11-water-year periods 1934-44, 1951-61, 1966-76, 1985-95, and 1996-2006, and (2) the effects of bridge proximity on distribution of streamflow depth, velocity, and microhabitat of the Platte River when cross sections were measured at a similar discharge. The scope of the study included the four presently (2008) active streamflow-gaging stations located near bridges over the lower Platte River at North Bend, near Leshara, near Ashland, and at Louisville, Nebraska, and the most downstream streamflow-gaging station within the central Platte River segment near Duncan, Nebraska. Generally, in cases where temporal differences in streamflow depth and velocity were evident, at least one of the water-year periods from 1934 through 1995 had deeper streamflow than the recent water-year period (1996-2006). Temporal differences in distributions of streamflow depth were not strongly associated with differences in either climatic conditions or the maximum peak flow that occurred prior to the latest discharge measurement during each period. The relative cross-sectional area of most hydraulic niches did not differ among the water-year periods. Part of this apparent uniformity likely was an artifact of the broad microhabitat classification used for this study. In cases where temporal differences in relative cross-sectional area of hydraulic niches were evidenced, the differences occurred during high- and low-flow conditions, not during median flow conditions. The temporal differences in relative cross-sectional area were found more frequently for hydraulic niches defined by moderate and fast velocities than for hydraulic niches defined by slow velocities. Generally, any significant increase or decrease in the relative cross-sectional areas of hydraulic niches during the water-year periods from 1934 through 1995 had disappeared during the most recent water-year period, 1996-2006. Deep-Swift niche was the predominant hydraulic niche for all near-bridge sites on the lower Platte River for high- and median-flow conditions. The Deep-Swift niche also was the predominant niche for the near-bridge sites near Ashland and at Louisville for low-flow conditions; for the near-bridge sites at North Bend and near Leshara, streamflow cross-sectional areas during low-flow conditions were shared among the Shallow-Moderate, Intermediate-Moderate, Intermediate-Swift, and Deep-Swift hydraulic niches. For the near-bridge site near Duncan, the site farthest downstream in the central Platte River system, the Deep-Swift hydraulic niche was predominant only during high-flow conditions; during median- and low-flow conditions the relative cross-sectional area was shared among the Shallow-Slow, Shallow-Moderate, Intermediate-Moderate, and Intermediate-Swift hydraulic niches. Significant temporal differences in the relative cross-sectional area of the Deep-Swift hydraulic niche were found for sites near the two farthest downstream bridges near Ashland and at Louisville, but only for low-flow conditions. The Deep-Swift microhabitat was of special interest because it is the preferred hydraulic habitat during the adult life of the endangered pallid sturgeon (Scaphirhynchus albus). Temporal differences in relative cross-sectional areas of the Glide low-flow geomorphic microhabitat that contained the Deep-Swift hydraulic niche also indicated that relative cross-sectional areas of the Glide during the 1951-61 and 1996-2006 water-year periods were lower than during the 1966-76 period. The temporal differences indicated that any significant temporal chang

  19. How to study deep roots—and why it matters

    PubMed Central

    Maeght, Jean-Luc; Rewald, Boris; Pierret, Alain

    2013-01-01

    The drivers underlying the development of deep root systems, whether genetic or environmental, are poorly understood but evidence has accumulated that deep rooting could be a more widespread and important trait among plants than commonly anticipated from their share of root biomass. Even though a distinct classification of “deep roots” is missing to date, deep roots provide important functions for individual plants such as nutrient and water uptake but can also shape plant communities by hydraulic lift (HL). Subterranean fauna and microbial communities are highly influenced by resources provided in the deep rhizosphere and deep roots can influence soil pedogenesis and carbon storage.Despite recent technological advances, the study of deep roots and their rhizosphere remains inherently time-consuming, technically demanding and costly, which explains why deep roots have yet to be given the attention they deserve. While state-of-the-art technologies are promising for laboratory studies involving relatively small soil volumes, they remain of limited use for the in situ observation of deep roots. Thus, basic techniques such as destructive sampling or observations at transparent interfaces with the soil (e.g., root windows) which have been known and used for decades to observe roots near the soil surface, must be adapted to the specific requirements of deep root observation. In this review, we successively address major physical, biogeochemical and ecological functions of deep roots to emphasize the significance of deep roots and to illustrate the yet limited knowledge. In the second part we describe the main methodological options to observe and measure deep roots, providing researchers interested in the field of deep root/rhizosphere studies with a comprehensive overview. Addressed methodologies are: excavations, trenches and soil coring approaches, minirhizotrons (MR), access shafts, caves and mines, and indirect approaches such as tracer-based techniques. PMID:23964281

  20. 15 CFR 971.605 - Stable Reference Areas. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Stable Reference Areas. [Reserved] 971... THE ENVIRONMENTAL DATA SERVICE DEEP SEABED MINING REGULATIONS FOR COMMERCIAL RECOVERY PERMITS Environmental Effects § 971.605 Stable Reference Areas. [Reserved] ...

  1. Deep-sea benthic community and environmental impact assessment at the Atlantic Frontier

    NASA Astrophysics Data System (ADS)

    Gage, John D.

    2001-05-01

    The seabed community provides a sensitive litmus for environmental change. North Sea analysis of benthic populations provides an effective means for monitoring impacts from man's interventions, such as offshore oil exploitation and fishing, against baseline knowledge of the environment. Comparable knowledge of the benthic biology in the deep waters of the Atlantic Frontier beyond the N.E. Atlantic shelf edge is poorly developed. But uncertainties should not encourage assumptions and extrapolations from the better-known conditions on the continental shelf. While sampling at present still provides the best means to assess the health of the deepwater benthic habitat, protocols developed for deep-sea fauna should be applied. These are necessary because of (a) lower faunal densities, (b) higher species richness, (c) smaller body size, and (d) to ensure comparability with other deep-sea data. As in the North Sea, species richness and relative abundance can be analysed from quantitative samples in order to detect impacts. But analysis based on taxonomic sufficiency above species level is premature, even if arguably possible for coastal communities. Measures also need to ensure identifications are not forced to more familiar coastal species without proper study. Species-level analysis may be applied to seabed photographs of megafauna in relation to data on bottom environment, such as currents and the sediment, to monitor the health of the deep-water community. Although the composition of higher taxa in the benthic community is broadly similar to soft sediments on the shelf, concordance in sensitivities is speculative. Moreover, new organisms occur, such as giant protozoan xenophyophores, unknown on the continental shelf, whose sensitivities remain conjectural. Past knowledge of the benthic biology of the deep-water areas off Scotland is based on scattered stations and some more focussed, multidisciplinary studies, and should be significantly augmented by the results from the oil industry-funded Atlantic Margin Environmental Study cruises in 1996 and 1998. A predominantly depth-related pattern in variability applies here as found elsewhere in the deep ocean, and just sufficient knowledge-based predictive power exists to make comprehensive, high-resolution grid surveys unnecessary for the purpose of broad-scale environmental assessment. But new, small-scale site surveys remain necessary because of local-scale variability. Site survey should be undertaken in the context of existing knowledge of the deep sea in the UK area of the Atlantic Frontier and beyond, and can itself usefully be structured as tests of a projection from the regional scale to reduce sampling effort. It is to the benefit of all stakeholders that environmental assessment aspires to the highest scientific standards and contributes meaningfully to context knowledge. By doing so it will reduce uncertainties in future impact assessments and hence contribute usefully to environmental risk management.

  2. DeepBase: annotation and discovery of microRNAs and other noncoding RNAs from deep-sequencing data.

    PubMed

    Yang, Jian-Hua; Qu, Liang-Hu

    2012-01-01

    Recent advances in high-throughput deep-sequencing technology have produced large numbers of short and long RNA sequences and enabled the detection and profiling of known and novel microRNAs (miRNAs) and other noncoding RNAs (ncRNAs) at unprecedented sensitivity and depth. In this chapter, we describe the use of deepBase, a database that we have developed to integrate all public deep-sequencing data and to facilitate the comprehensive annotation and discovery of miRNAs and other ncRNAs from these data. deepBase provides an integrative, interactive, and versatile web graphical interface to evaluate miRBase-annotated miRNA genes and other known ncRNAs, explores the expression patterns of miRNAs and other ncRNAs, and discovers novel miRNAs and other ncRNAs from deep-sequencing data. deepBase also provides a deepView genome browser to comparatively analyze these data at multiple levels. deepBase is available at http://deepbase.sysu.edu.cn/.

  3. Deep learning-based features of breast MRI for prediction of occult invasive disease following a diagnosis of ductal carcinoma in situ: preliminary data

    NASA Astrophysics Data System (ADS)

    Zhu, Zhe; Harowicz, Michael; Zhang, Jun; Saha, Ashirbani; Grimm, Lars J.; Hwang, Shelley; Mazurowski, Maciej A.

    2018-02-01

    Approximately 25% of patients with ductal carcinoma in situ (DCIS) diagnosed from core needle biopsy are subsequently upstaged to invasive cancer at surgical excision. Identifying patients with occult invasive disease is important as it changes treatment and precludes enrollment in active surveillance for DCIS. In this study, we investigated upstaging of DCIS to invasive disease using deep features. While deep neural networks require large amounts of training data, the available data to predict DCIS upstaging is sparse and thus directly training a neural network is unlikely to be successful. In this work, a pre-trained neural network is used as a feature extractor and a support vector machine (SVM) is trained on the extracted features. We used the dynamic contrast-enhanced (DCE) MRIs of patients at our institution from January 1, 2000, through March 23, 2014 who underwent MRI following a diagnosis of DCIS. Among the 131 DCIS patients, there were 35 patients who were upstaged to invasive cancer. Area under the ROC curve within the 10-fold cross-validation scheme was used for validation of our predictive model. The use of deep features was able to achieve an AUC of 0.68 (95% CI: 0.56-0.78) to predict occult invasive disease. This preliminary work demonstrates the promise of deep features to predict surgical upstaging following a diagnosis of DCIS.

  4. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    USGS Publications Warehouse

    Pitt, William A.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  5. Fabric defect detection based on visual saliency using deep feature and low-rank recovery

    NASA Astrophysics Data System (ADS)

    Liu, Zhoufeng; Wang, Baorui; Li, Chunlei; Li, Bicao; Dong, Yan

    2018-04-01

    Fabric defect detection plays an important role in improving the quality of fabric product. In this paper, a novel fabric defect detection method based on visual saliency using deep feature and low-rank recovery was proposed. First, unsupervised training is carried out by the initial network parameters based on MNIST large datasets. The supervised fine-tuning of fabric image library based on Convolutional Neural Networks (CNNs) is implemented, and then more accurate deep neural network model is generated. Second, the fabric images are uniformly divided into the image block with the same size, then we extract their multi-layer deep features using the trained deep network. Thereafter, all the extracted features are concentrated into a feature matrix. Third, low-rank matrix recovery is adopted to divide the feature matrix into the low-rank matrix which indicates the background and the sparse matrix which indicates the salient defect. In the end, the iterative optimal threshold segmentation algorithm is utilized to segment the saliency maps generated by the sparse matrix to locate the fabric defect area. Experimental results demonstrate that the feature extracted by CNN is more suitable for characterizing the fabric texture than the traditional LBP, HOG and other hand-crafted features extraction method, and the proposed method can accurately detect the defect regions of various fabric defects, even for the image with complex texture.

  6. Red and NIR light dosimetry in the human deep brain

    NASA Astrophysics Data System (ADS)

    Pitzschke, A.; Lovisa, B.; Seydoux, O.; Zellweger, M.; Pfleiderer, M.; Tardy, Y.; Wagnières, G.

    2015-04-01

    Photobiomodulation (PBM) appears promising to treat the hallmarks of Parkinson’s Disease (PD) in cellular or animal models. We measured light propagation in different areas of PD-relevant deep brain tissue during transcranial, transsphenoidal illumination (at 671 and 808 nm) of a cadaver head and modeled optical parameters of human brain tissue using Monte-Carlo simulations. Gray matter, white matter, cerebrospinal fluid, ventricles, thalamus, pons, cerebellum and skull bone were processed into a mesh of the skull (158 × 201 × 211 voxels; voxel side length: 1 mm). Optical parameters were optimized from simulated and measured fluence rate distributions. The estimated μeff for the different tissues was in all cases larger at 671 than at 808 nm, making latter a better choice for light delivery in the deep brain. Absolute values were comparable to those found in the literature or slightly smaller. The effective attenuation in the ventricles was considerably larger than literature values. Optimization yields a new set of optical parameters better reproducing the experimental data. A combination of PBM via the sphenoid sinus and oral cavity could be beneficial. A 20-fold higher efficiency of light delivery to the deep brain was achieved with ventricular instead of transcranial illumination. Our study demonstrates that it is possible to illuminate deep brain tissues transcranially, transsphenoidally and via different application routes. This opens therapeutic options for sufferers of PD or other cerebral diseases necessitating light therapy.

  7. Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs.

    PubMed

    Li, Zhixi; He, Yifan; Keel, Stuart; Meng, Wei; Chang, Robert T; He, Mingguang

    2018-03-02

    To assess the performance of a deep learning algorithm for detecting referable glaucomatous optic neuropathy (GON) based on color fundus photographs. A deep learning system for the classification of GON was developed for automated classification of GON on color fundus photographs. We retrospectively included 48 116 fundus photographs for the development and validation of a deep learning algorithm. This study recruited 21 trained ophthalmologists to classify the photographs. Referable GON was defined as vertical cup-to-disc ratio of 0.7 or more and other typical changes of GON. The reference standard was made until 3 graders achieved agreement. A separate validation dataset of 8000 fully gradable fundus photographs was used to assess the performance of this algorithm. The area under receiver operator characteristic curve (AUC) with sensitivity and specificity was applied to evaluate the efficacy of the deep learning algorithm detecting referable GON. In the validation dataset, this deep learning system achieved an AUC of 0.986 with sensitivity of 95.6% and specificity of 92.0%. The most common reasons for false-negative grading (n = 87) were GON with coexisting eye conditions (n = 44 [50.6%]), including pathologic or high myopia (n = 37 [42.6%]), diabetic retinopathy (n = 4 [4.6%]), and age-related macular degeneration (n = 3 [3.4%]). The leading reason for false-positive results (n = 480) was having other eye conditions (n = 458 [95.4%]), mainly including physiologic cupping (n = 267 [55.6%]). Misclassification as false-positive results amidst a normal-appearing fundus occurred in only 22 eyes (4.6%). A deep learning system can detect referable GON with high sensitivity and specificity. Coexistence of high or pathologic myopia is the most common cause resulting in false-negative results. Physiologic cupping and pathologic myopia were the most common reasons for false-positive results. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  8. Pore water phosphate and ammonia below the permanent halocline in the south-eastern Baltic Sea and their benthic fluxes under anoxic conditions

    NASA Astrophysics Data System (ADS)

    Graca, Bożena; Witek, Zbigniew; Burska, Dorota; Białkowska, Izabela; Łukawska-Matuszewska, Katarzyna; Bolałek, Jerzy

    2006-12-01

    In this paper the results of a study on the distribution of pore water phosphates and ammonia, and their fluxes under anoxic condition in a deep (> 70 m) accumulation-type bottom of the south-eastern Baltic Sea, namely in the Gdańsk Deep and the adjacent areas, are presented. All measurements were taken during the growth period, i.e. in September 2000, April 2001 and June 2002. Benthic phosphate and ammonia fluxes were estimated using Fick's First Law. Phosphate and ammonia concentrations ranged from 7.5 to 266.3 μmol dm - 3 and from 53.6 to 1248.3 μmol dm - 3 , respectively. The values recorded in the central part of the Gdańsk Deep were lower than those found both on its slopes and on the SW slope of the Gotland Deep. The lowest phosphate contents were typical of the Oblique Sill which separates the Gdańsk and Gotland Deeps. In 1993-2002, as a result of anoxia the sediments in the Gdańsk Deep released about 5.1 × 10 3 t P and 22.8 × 10 3 t N. These loads supplied on average 1.5% and 0.9% of phytoplankton's demand for P and N, respectively. In comparison to the total external load of nutrients discharged to the Gulf of Gdańsk (i.e. 8.79 × 10 3 t year - 1 P tot and 130.79 × 10 3 t year - 1 N tot; [Witek, Z., Humborg, Ch., Savchuk, O., Grelowski, A. and Łysiak-Pastuszak, E., 2003. Nitrogen and phosphorus budgets of the Gulf of Gdańsk (Baltic Sea). Est. Coast. Shelf Sci., 57:239-248.]), the return flux of P and N from the anoxic sediments to the water column in the Gdańsk Deep was a minor source of these elements.

  9. Occurrence and biogeography of hydroids (Cnidaria: Hydrozoa) from deep-water coral habitats off the southeastern United States

    NASA Astrophysics Data System (ADS)

    Henry, Lea-Anne; Nizinski, Martha S.; Ross, Steve W.

    2008-06-01

    Deep-water coral habitats off the southeastern USA (SEUS) support diverse fish and invertebrate assemblages, but are poorly explored. This study is the first to report on the hydroids collected from these habitats in this area. Thirty-five species, including two species that are likely new to science, were identified from samples collected primarily by manned submersible during 2001-2005 from deep-water coral habitats off North Carolina to east-central Florida. Eleven of the species had not been reported since the 19th to mid-20th century. Ten species, and one family, the Rosalindidae, are documented for the first time in the SEUS. Latitudinal ranges of 15 species are extended, and the deepest records in the western North Atlantic for 10 species are reported. A species accumulation curve illustrated that we continue to add to our knowledge of hydroid diversity in these habitats. Sexually mature individuals were collected for 19 species during the summer to early autumn months. Most of the observed species (89%) liberate planula larvae as part of their life cycles, suggesting that these species exhibit a reproductive strategy that reduces the risk of dispersal to sub-optimal habitats. Hydroids occurred across various substrata including coral rubble, live corals, rock and other animal hosts including hydroids themselves. All observed species were regionally widespread with typically deep-neritic to bathyal sub-tropical/tropical distributions. Hydroid assemblages from deep-water SEUS coral habitats were most similar to those from adjacent deep-water habitats off the SEUS (17 shared species), and those in the Straits of Florida/Bahamas and Caribbean/West Indian regions (14 and 8 shared species, respectively). The similarity to sub-tropical and tropical assemblages and the richness of plumularioids in the SEUS deep-water coral habitats support the idea of a Pleistocene intrusion of tropical species northwards following an intensification of the Gulf Stream from the Caribbean.

  10. Geochemical Characterisation as a means of Distinguishing between Deep and Shallow Groundwater in the Karoo Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Swana, K.

    2015-12-01

    Although heralded as the solution to the world's energy shortage, shale-gas is proving to be extremely problematic from an environmental perspective. Fracking has in many instances led to the contamination of shallow groundwater resources in the vicinity of extraction sites. South Africa has significant energy issues and fracking has many attractions for the country as whole from an alternative energy supply perspective and also from a development perspective. However, the target region, the Karoo Basin, is a very water stressed region with significant ecological and agricultural value. The aim of this project was to establish whether it is possible to distinguish between deep and shallow groundwater throughout the Karoo using a wide variety of geochemical tracers. However, it is not possible to access groundwater located at depths of > 2500m. Therefore, waters derived from thermal springs and boreholes were used as proxies for deep groundwater. Eight locations within the Karoo Basin were chosen for sampling. Two sites were sampled at each location, one from a thermal spring or borehole and one from a shallow borehole in close proximity to the deep site. All of the samples were measured for temperature, pH, EC and alkalinity in the field and collected for major cations and anions, trace elements, O and H isotopes, Sr, B, Ra, Rn and CDIC isotopes, carbon 14, tritium, chlorine 36, He 4, and noble gases. From these analyses it was possible to differentiate thermal groundwater from shallow groundwater. The thermal groundwaters are interpreted to be deep because of their low carbon 14 content and further work, such as comparison of residence times using applicable tracers, is being completed to confirm this. A provisional list of tracers most reliable in identifying deep and shallow groundwater in the area has been developed and this can be used for monitoring programmes to assess the interaction of deep and shallow groundwater should fracking commence in the Karoo.

  11. 30 CFR 203.43 - To which production do I apply the RSV earned from qualified deep wells or qualified phase 1...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in water between 200 and 400 meters deep, you begin drilling an original deep well with a perforated... 200 meters deep; (ii) May 18, 2007, for an RSV earned by a qualified deep well on a lease that is located entirely in water more than 200 meters deep; or (iii) The date that the first qualified well that...

  12. After Superficial Ablation for Superficial Reflux Associated with Primary Deep Axial Reflux, Can Variable Outcomes be Caused by Deep Venous Valve Anomalies?

    PubMed

    Maleti, O; Lugli, M; Perrin, M

    2017-02-01

    To identify which deep anatomical anomalies can explain variable hemodynamic outcomes in patients with superficial reflux associated with primary deep axial reflux who underwent isolated superficial vein ablation without improvement. This is a retrospective study of deep venous valve anomalies in patients who underwent superficial vein ablation for superficial and associated deep reflux. A group of 21 patients who were diagnosed with saphenous reflux associated with primary deep axial reflux, were submitted to great saphenous vein ablation. In 17 patients the deep reflux was not abolished. In this subgroup, surgical exploration of the deep valve was carried out using venotomy for possible valve repair. Among the 17 subgroup patients, four post-thrombotic lesions were discovered intra-operatively in four patients; they underwent different surgical procedures. In 13 of the subgroup patients, primary valve incompetence was confirmed intra-operatively. In 11 cases the leaflets were asymmetrical and in only two were they symmetrical. After valvuloplasty, deep reflux was abolished in all 13 patients. Clinical improvement was obtained in 12/13 patients (92%). It is noteworthy that abolition of deep reflux was associated with significant improvement in air plethysmography data as well as with improvement in clinical status measured on CEAP class, VCSS and the SF-36 questionnaire. Failure to correct deep axial reflux by superficial ablation in patients with superficial and associated primary deep axial reflux may be related to asymmetry in the leaflets of the incompetent deep venous valve. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Deep, diverse and definitely different: unique attributes of the world's largest ecosystem

    NASA Astrophysics Data System (ADS)

    Ramirez-Llodra, E.; Brandt, A.; Danovaro, R.; de Mol, B.; Escobar, E.; German, C. R.; Levin, L. A.; Martinez Arbizu, P.; Menot, L.; Buhl-Mortensen, P.; Narayanaswamy, B. E.; Smith, C. R.; Tittensor, D. P.; Tyler, P. A.; Vanreusel, A.; Vecchione, M.

    2010-09-01

    The deep sea, the largest biome on Earth, has a series of characteristics that make this environment both distinct from other marine and land ecosystems and unique for the entire planet. This review describes these patterns and processes, from geological settings to biological processes, biodiversity and biogeographical patterns. It concludes with a brief discussion of current threats from anthropogenic activities to deep-sea habitats and their fauna. Investigations of deep-sea habitats and their fauna began in the late 19th century. In the intervening years, technological developments and stimulating discoveries have promoted deep-sea research and changed our way of understanding life on the planet. Nevertheless, the deep sea is still mostly unknown and current discovery rates of both habitats and species remain high. The geological, physical and geochemical settings of the deep-sea floor and the water column form a series of different habitats with unique characteristics that support specific faunal communities. Since 1840, 28 new habitats/ecosystems have been discovered from the shelf break to the deep trenches and discoveries of new habitats are still happening in the early 21st century. However, for most of these habitats the global area covered is unknown or has been only very roughly estimated; an even smaller - indeed, minimal - proportion has actually been sampled and investigated. We currently perceive most of the deep-sea ecosystems as heterotrophic, depending ultimately on the flux on organic matter produced in the overlying surface ocean through photosynthesis. The resulting strong food limitation thus shapes deep-sea biota and communities, with exceptions only in reducing ecosystems such as inter alia hydrothermal vents or cold seeps. Here, chemoautolithotrophic bacteria play the role of primary producers fuelled by chemical energy sources rather than sunlight. Other ecosystems, such as seamounts, canyons or cold-water corals have an increased productivity through specific physical processes, such as topographic modification of currents and enhanced transport of particles and detrital matter. Because of its unique abiotic attributes, the deep sea hosts a specialized fauna. Although there are no phyla unique to deep waters, at lower taxonomic levels the composition of the fauna is distinct from that found in the upper ocean. Amongst other characteristic patterns, deep-sea species may exhibit either gigantism or dwarfism, related to the decrease in food availability with depth. Food limitation on the seafloor and water column is also reflected in the trophic structure of heterotrophic deep-sea communities, which are adapted to low energy availability. In most of these heterotrophic habitats, the dominant megafauna is composed of detritivores, while filter feeders are abundant in habitats with hard substrata (e.g. mid-ocean ridges, seamounts, canyon walls and coral reefs). Chemoautotrophy through symbiotic relationships is dominant in reducing habitats. Deep-sea biodiversity is among of the highest on the planet, mainly composed of macro and meiofauna, with high evenness. This is true for most of the continental margins and abyssal plains with hot spots of diversity such as seamounts or cold-water corals. However, in some ecosystems with particularly "extreme" physicochemical processes (e.g. hydrothermal vents), biodiversity is low but abundance and biomass are high and the communities are dominated by a few species. Two large-scale diversity patterns have been discussed for deep-sea benthic communities. First, a unimodal relationship between diversity and depth is observed, with a peak at intermediate depths (2000-3000 m), although this is not universal and particular abiotic processes can modify the trend. Secondly, a poleward trend of decreasing diversity has been discussed, but this remains controversial and studies with larger and more robust data sets are needed. Because of the paucity in our knowledge of habitat coverage and species composition, biogeographic studies are mostly based on regional data or on specific taxonomic groups. Recently, global biogeographic provinces for the pelagic and benthic deep ocean have been described, using environmental and, where data were available, taxonomic information. This classification described 30 pelagic provinces and 38 benthic provinces divided into 4 depth ranges, as well as 10 hydrothermal vent provinces. One of the major issues faced by deep-sea biodiversity and biogeographical studies is related to the high number of species new to science that are collected regularly, together with the slow description rates for these new species. Taxonomic coordination at the global scale is particularly difficult, but is essential if we are to analyse large diversity and biogeographic trends.

  14. Numerical investigation of deep-crust behavior under lithospheric extension

    NASA Astrophysics Data System (ADS)

    Korchinski, Megan; Rey, Patrice F.; Mondy, Luke; Teyssier, Christian; Whitney, Donna L.

    2018-02-01

    What are the conditions under which lithospheric extension drives exhumation of the deep orogenic crust during the formation of gneiss domes? The mechanical link between extension of shallow crust and flow of deep crust is investigated using two-dimensional numerical experiments of lithospheric extension in which the crust is 60 km thick and the deep-crust viscosity and density parameter space is explored. Results indicate that the style of extension of the shallow crust and the path, magnitude, and rate of flow of deep crust are dynamically linked through the deep-crust viscosity, with density playing an important role in experiments with a high-viscosity deep crust. Three main groups of domes are defined based on their mechanisms of exhumation across the viscosity-density parameter space. In the first group (low-viscosity, low-density deep crust), domes develop by lateral and upward flow of the deep crust at km m.y-1 velocity rates (i.e. rate of experiment boundary extension). In this case, extension in the shallow crust is localized on a single interface, and the deep crust traverses the entire thickness of the crust to the Earth's near-surface in 5 m.y. This high exhuming power relies on the dynamic feedback between the flow of deep crust and the localization of extension in the shallow crust. The second group (intermediate-viscosity, low-density deep crust) has less exhuming power because the stronger deep crust flows less readily and instead accommodates more uniform extension, which imparts distributed extension to the shallow crust. The third group represents the upper limits of viscosity and density for the deep crust; in this case the low buoyancy of the deep crust results in localized thinning of the crust with large upward motion of the Moho and lithosphere-asthenosphere boundary. These numerical experiments test the exhuming power of the deep crust in the formation of extensional gneiss domes.

  15. Preoperative DTI and probabilistic tractography in an amputee with deep brain stimulation for lower limb stump pain.

    PubMed

    Owen, S L F; Heath, J; Kringelbach, M L; Stein, J F; Aziz, T Z

    2007-10-01

    This study aimed to find out whether preoperative diffusion tensor imaging (DTI) and probabilistic tractography could help with surgical planning for deep brain stimulation in the periaqueductal/periventricular grey area (PAG/PVG) in a patient with lower leg stump pain. A preoperative DTI was obtained from the patient, who then received DBS surgery in the PAG/PVG area with good pain relief. The postoperative MRI scan showing electrode placement was used to calculate four seed areas to represent the contacts on the Medtronic 3387 electrode. Probabilistic tractography was then performed from the pre-operative DTI image. Tracts were seen to connect to many areas within the pain network from the four different contacts. These initial findings suggest that preoperative DTI scanning and probabilistic tractography may be able to assist surgical planning in the future.

  16. Electrically induced energy transmission used for implantable medical devices deep inside the body: Measurement of received voltage in consideration of biological effect.

    PubMed

    Shiba, Kenji

    2015-08-01

    We proposed an electrically induced energy transmission method for implantable medical devices deep inside the body. This method makes it possible to transmit energy deep inside the body using only a couple of titanium electrodes attached to the surface of the implantable medical device. In this study, electromagnetic simulations in which the area and distance of the receiving electrodes were changed were conducted. Then, experimental measurements of the received voltage were conducted in which electric energy was transmitted from the surface of the human phantom to an implantable device inside it (transmitting distance: 12 cm). As a result of the electromagnetic simulation, the area and distance of the receiving electrodes were roughly proportional to the received voltage, respectively. As a result of the experimental measurement, a received voltage of 2460 mV could be obtained with a load resistance of 100 Ω. We confirmed that our energy transmission method could be a powerful method for transmitting energy to a deeply implanted medical device.

  17. Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment.

    PubMed

    Ohsugi, Hideharu; Tabuchi, Hitoshi; Enno, Hiroki; Ishitobi, Naofumi

    2017-08-25

    Rhegmatogenous retinal detachment (RRD) is a serious condition that can lead to blindness; however, it is highly treatable with timely and appropriate treatment. Thus, early diagnosis and treatment of RRD is crucial. In this study, we applied deep learning, a machine-learning technology, to detect RRD using ultra-wide-field fundus images and investigated its performance. In total, 411 images (329 for training and 82 for grading) from 407 RRD patients and 420 images (336 for training and 84 for grading) from 238 non-RRD patients were used in this study. The deep learning model demonstrated a high sensitivity of 97.6% [95% confidence interval (CI), 94.2-100%] and a high specificity of 96.5% (95% CI, 90.2-100%), and the area under the curve was 0.988 (95% CI, 0.981-0.995). This model can improve medical care in remote areas where eye clinics are not available by using ultra-wide-field fundus ophthalmoscopy for the accurate diagnosis of RRD. Early diagnosis of RRD can prevent blindness.

  18. Well-construction, water-level, geophysical, and water-quality data for ground-water monitoring wells for Arnold Air Force Base, Tennessee

    USGS Publications Warehouse

    Hough, C.J.; Mahoney, E.N.; Robinson, J.A.

    1992-01-01

    Sixty-five wells were installed at 39 sites in the Arnold Air Force Base area in Coffee and Franklin Counties, Tennessee. The wells were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. Well depths ranged from 11 to 384 feet. Water-quality samples were collected from 60 wells and analyzed for common inorganic ions, trace metals, and volatile organic compounds. The median dissolved-solids concentrations were 60 milligrams per liter in the shallow aquifer, 48 million gallons per liter in the Manchester aquifer, 1,235 milligrams per liter in the Fort Payne aquifer, and 1,712 milligrams per liter in the upper Central Basin aquifer. Caliper, temperature, natural gamma, electric, neutron porosity, gamma-gamma density, and acoustic velocity borehole-geophysical logs were obtained for the six deep wells completed below the Chattanooga Shale. Petrographic and modal analysis were performed on rock samples from each deep well. These six deep wells provide the first information in the study area on hydraulic head and water quality from below the Chattanooga Shale.

  19. Deep Space Network information system architecture study

    NASA Technical Reports Server (NTRS)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  20. Identification of deep magnetized structures in the tectonically active Chlef area (Algeria) from aeromagnetic data using wavelet and ridgelet transforms

    NASA Astrophysics Data System (ADS)

    Boukerbout, H.; Abtout, A.; Gibert, D.; Henry, B.; Bouyahiaoui, B.; Derder, M. E. M.

    2018-07-01

    The Chlef region constitutes a key area to study neotectonics structures and their geodynamical context. Aeromagnetic data analyzed using different processing methods (shaded relief technique, computation of vertical gradient, upward continuation, use of the continuous wavelet transform and ridgelet transform), allow establishing a structural image of emerging and deep structures both onshore and offshore. Magnetic anomalies, over the Mediterranean Sea, the Chlef basin and the Ouarsenis Mounts, are well-correlated with the known geological structures. Long and short wavelength anomalies have been distinguished. The short wavelength anomalies are associated with the volcanic rocks on the coast from Chenoua to El Marsa and with the basement in the Boukadir zone in the sedimentary Chlef basin. The long wavelength anomalies to the South are associated mainly with deep E-W structures, limiting the Chlef basin. To the North, similar structures have been identified in the Mediterranean Sea. The compilation of the identified magnetic features leads to geometrical shape corroborating the structure in blocks of the Chlef basin.

  1. Convective scale interaction: Arc cloud lines and the development and evolution of deep convection

    NASA Technical Reports Server (NTRS)

    Purdom, James Francis Whitehurst

    1986-01-01

    Information is used from satellite data and research aircraft data to provide new insights concerning the mesoscale development and evolution of deep convection in an atmosphere typified by weak synoptic-scale forcing. The importance of convective scale interaction in the development and evolution of deep convection is examined. This interaction is shown to manifest itself as the merger and intersection of thunderstorm outflow boundaries (arc cloud lines) with other convective lines, areas or boundaries. Using geostationary satellite visible and infrared data convective scale interaction is shown to be responsible for over 85 percent of the intense convection over the southeast U.S. by late afternoon, and a majority of that area's afternoon rainfall. The aircraft observations provided valuable information concerning critically important regions of the arc cloud line: (1) the cool outflow region, (2) the density surge line interface region; and (3) the sub-cloud region above the surge line. The observations when analyzed with rapid scan satellite data, helped in defining the arc cloud line's life cycle as 3 evolving stages.

  2. Extreme Longevity in Proteinaceous Deep-Sea Corals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roark, E B; Guilderson, T P; Dunbar, R B

    2009-02-09

    Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelrymore » trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.« less

  3. Does the Deep Layer of the Deep Temporalis Fascia Really Exist?

    PubMed

    Li, Hui; Li, Kaide; Jia, Wenhao; Han, Chaoying; Chen, Jinlong; Liu, Lei

    2018-04-14

    It has been widely accepted that a split of the deep temporal fascia occurs approximately 2 to 3 cm above the zygomatic arch and extends into the superficial and deep layers. The deep layer of the deep temporal fascia is between the superficial temporal fat pad and the temporal muscle. However, during procedures, the authors noted the absence of the deep layer of the deep temporal fascia between the superficial temporal fat pad and the temporal muscle. This prospective study was conducted to clarify the presence or absence of a deep layer of the deep temporal fascia. Anatomic layers of the soft tissues of the temporal region, with reference to the deep temporal fascia, were investigated in 130 cases operated on for zygomaticofacial fractures using the supratemporal approach from June 2013 to June 2017. Of 130 surgeries, the authors found the absence of a thick, obviously identifiable, fascial layer between the superficial temporal fat pad and the temporal muscle. In fact, the authors found nothing above the temporal muscle in most cases. In a few cases, the authors observed only a small amount of scattered loose connective tissue between the superficial temporal fat pad and the temporal muscle. This clinical study showed the absence of a thick, obviously identifiable, fascial layer between the superficial temporal fat pad and the temporal muscle, which suggests that a "deep layer of the deep temporal fascia" might not exist. Copyright © 2018. Published by Elsevier Inc.

  4. Development of a Hybrid Deep Drawing Process to Reduce Springback of AHSS

    NASA Astrophysics Data System (ADS)

    Boskovic, Vladimir; Sommitsch, Christoph; Kicin, Mustafa

    2017-09-01

    In future, the steel manufacturers will strive for the implementation of Advanced High Strength Steels (AHSS) in the automotive industry to reduce mass and improve structural performance. A key challenge is the definition of optimal and cost effective processes as well as solutions to introduce complex steel products in cold forming. However, the application of these AHSS often leads to formability problems such as springback. One promising approach in order to minimize springback is the relaxation of stress through the targeted heating of materials in the radius area after the deep drawing process. In this study, experiments are conducted on a Dual Phase (DP) and TWining Induced Plasticity (TWIP) steel for the process feasibility study. This work analyses the influence of various heat treatment temperatures on the springback reduction of deep drawn AHSS.

  5. Flooding in the middle Koyukuk River basin, Alaska, August 1994

    USGS Publications Warehouse

    Meyer, David F.

    1995-01-01

    During August 1994, a flood on the Koyukuk River, Alaska, inundated the villages of Allakaket and Alatna and parts of Hughes. Topographic maps of the inundated areas, showing peak water-surface elevations and depths of water, indicate that flooding ranged from 2 to more than 10 feet deep in Allakaket, from 8 to more than 10 feet deep in Alatna, and from 0 to more than 10 feet deep in Hughes. Severe damage to buildings occurred in Allakaket and Alatna; minor damage occurred in Hughes, although some homes were irreparably damaged by inundation. Between the mouth of the Kanuti River, about 10 miles downstream from Allakaket, to Hughes, the peak discharge was about 330,000 cubic feet per second. A flow of that magnitude at Hughes has an annual probability of occurrence of 1 percent.

  6. Deep learning in breast cancer risk assessment: evaluation of convolutional neural networks on a clinical dataset of full-field digital mammograms.

    PubMed

    Li, Hui; Giger, Maryellen L; Huynh, Benjamin Q; Antropova, Natalia O

    2017-10-01

    To evaluate deep learning in the assessment of breast cancer risk in which convolutional neural networks (CNNs) with transfer learning are used to extract parenchymal characteristics directly from full-field digital mammographic (FFDM) images instead of using computerized radiographic texture analysis (RTA), 456 clinical FFDM cases were included: a "high-risk" BRCA1/2 gene-mutation carriers dataset (53 cases), a "high-risk" unilateral cancer patients dataset (75 cases), and a "low-risk dataset" (328 cases). Deep learning was compared to the use of features from RTA, as well as to a combination of both in the task of distinguishing between high- and low-risk subjects. Similar classification performances were obtained using CNN [area under the curve [Formula: see text]; standard error [Formula: see text

  7. A Sediment Testing Reference Area Database for the San Francisco Deep Ocean Disposal Site (SF-DODS)

    EPA Pesticide Factsheets

    EPA established and maintains a SF-DODS reference area database of previously-collected sediment test data. Several sets of sediment test data have been successfully collected from the SF-DODS reference area.

  8. MRI-based analysis of patellofemoral cartilage contact, thickness, and alignment in extension, and during moderate and deep flexion.

    PubMed

    Freedman, Benjamin R; Sheehan, Frances T; Lerner, Amy L

    2015-10-01

    Several factors are believed to contribute to patellofemoral joint function throughout knee flexion including patellofemoral (PF) kinematics, contact, and bone morphology. However, data evaluating the PF joint in this highly flexed state have been limited. Therefore, the purpose of this study was to evaluate patellofemoral contact and alignment in low (0°), moderate (60°), and deep (140°) knee flexion, and then correlate these parameters to each other, as well as to femoral morphology. Sagittal magnetic resonance images were acquired on 14 healthy female adult knees (RSRB approved) using a 1.5 T scanner with the knee in full extension, mid-flexion, and deep flexion. The patellofemoral cartilage contact area, lateral contact displacement (LCD), cartilage thickness, and lateral patellar displacement (LPD) throughout flexion were defined. Intra- and inter-rater repeatability measures were determined. Correlations between patellofemoral contact parameters, alignment, and sulcus morphology were calculated. Measurement repeatability ICCs ranged from 0.94 to 0.99. Patellofemoral cartilage contact area and thickness, LCD, and LPD were statistically different throughout all levels of flexion (p<0.001). The cartilage contact area was correlated to LPD, cartilage thickness, sulcus angle, and epicondylar width (r=0.47-0.72, p<0.05). This study provides a comprehensive analysis of the patellofemoral joint throughout its range of motion. This study agrees with past studies that investigated patellofemoral measures at a single flexion angle, and provides new insights into the relationship between patellofemoral contact and alignment at multiple flexion angles. The study provides a detailed analysis of the patellofemoral joint in vivo, and demonstrates the feasibility of using standard clinical magnetic resonance imaging scanners to image the knee joint in deep flexion. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Deep-sea benthic megafaunal habitat suitability modelling: A global-scale maximum entropy model for xenophyophores

    NASA Astrophysics Data System (ADS)

    Ashford, Oliver S.; Davies, Andrew J.; Jones, Daniel O. B.

    2014-12-01

    Xenophyophores are a group of exclusively deep-sea agglutinating rhizarian protozoans, at least some of which are foraminifera. They are an important constituent of the deep-sea megafauna that are sometimes found in sufficient abundance to act as a significant source of habitat structure for meiofaunal and macrofaunal organisms. This study utilised maximum entropy modelling (Maxent) and a high-resolution environmental database to explore the environmental factors controlling the presence of Xenophyophorea and two frequently sampled xenophyophore species that are taxonomically stable: Syringammina fragilissima and Stannophyllum zonarium. These factors were also used to predict the global distribution of each taxon. Areas of high habitat suitability for xenophyophores were highlighted throughout the world's oceans, including in a large number of areas yet to be suitably sampled, but the Northeast and Southeast Atlantic Ocean, Gulf of Mexico and Caribbean Sea, the Red Sea and deep-water regions of the Malay Archipelago represented particular hotspots. The two species investigated showed more specific habitat requirements when compared to the model encompassing all xenophyophore records, perhaps in part due to the smaller number and relatively more clustered nature of the presence records available for modelling at present. The environmental variables depth, oxygen parameters, nitrate concentration, carbon-chemistry parameters and temperature were of greatest importance in determining xenophyophore distributions, but, somewhat surprisingly, hydrodynamic parameters were consistently shown to have low importance, possibly due to the paucity of well-resolved global hydrodynamic datasets. The results of this study (and others of a similar type) have the potential to guide further sample collection, environmental policy, and spatial planning of marine protected areas and industrial activities that impact the seafloor, particularly those that overlap with aggregations of these conspicuously large single-celled eukaryotes.

  10. Bioaccumulation of chemical warfare agents, energetic materials, and metals in deep-sea shrimp from discarded military munitions sites off Pearl Harbor

    NASA Astrophysics Data System (ADS)

    Koide, Shelby; Silva, Jeff A. K.; Dupra, Vilma; Edwards, Margo

    2016-06-01

    The bioaccumulation of munitions-related chemicals at former military deep-water disposal sites is poorly understood. This paper presents the results of human-food-item biota sampling to assess the potential for bioaccumulation of chemical warfare agents, energetic materials, arsenic, and additional munitions-related metals in deep-sea shrimp tissue samples collected during the Hawai'i Undersea Military Munitions Assessment (HUMMA) project to date. The HUMMA investigation area is located within a former munitions sea-disposal site located south of Pearl Harbor on the island of O'ahu, Hawai'i, designated site Hawaii-05 (HI-05) by the United States Department of Defense. Indigenous deep-sea shrimp (Heterocarpus ensifer) were caught adjacent to discarded military munitions (DMM) and at control sites where munitions were absent. Tissue analysis results showed that chemical warfare agents and their degradation products were not present within the edible portions of these samples at detectable concentrations, and energetic materials and their degradation products were detected in only a few samples at concentrations below the laboratory reporting limits. Likewise, arsenic, copper, and lead concentrations were below the United States Food and Drug Administration's permitted concentrations of metals in marine biota tissue (if defined), and their presence within these samples could not be attributed to the presence of DMM within the study area based on a comparative analysis of munitions-adjacent and control samples collected. Based on this current dataset, it can be concluded that DMM existing within the HUMMA study area is not contributing to the bioaccumulation of munitions-related chemicals for the biota species investigated to date.

  11. Nematocarcinus Milne Edwards, 1881 (Crustacea, Decapoda) from Southwestern Atlantic, including the Southern Mid-Atlantic Ridge area.

    PubMed

    Cardoso, Irene A; Burukovsky, Rudolf N

    2014-11-26

    The deep sea shrimp genus Nematocarcinus Milne Edwards, 1881 includes 47 species, ten of them have been recorded from the Atlantic Ocean. Herein, material sampled during three scientific projects (REVIZEE Central Fishery project; Campos Basin Deep Sea Environmental Project; Evaluation of Environmental Heterogeneity in the Campos Basin) made in the Southwestern Atlantic, off Brazil, is examined. In addition, material sampled from the South Mid Atlantic Ridge (MAR-ECO Project) was also examined. Four species are recorded for the first time to the southwestern Atlantic Ocean including Mid Atlantic Ridge area: Nematocarcinus faxoni Burukovsky, 2001; N. gracilipes Filhol, 1884; N. rotundus Crosnier & Forest, 1973 and N. tenuipes Spence-Bate, 1888.

  12. Contrasting impacts of light reduction on sediment biogeochemistry in deep- and shallow-water tropical seagrass assemblages (Green Island, Great Barrier Reef).

    PubMed

    Schrameyer, Verena; York, Paul H; Chartrand, Kathryn; Ralph, Peter J; Kühl, Michael; Brodersen, Kasper Elgetti; Rasheed, Michael A

    2018-05-01

    Seagrass meadows increasingly face reduced light availability as a consequence of coastal development, eutrophication, and climate-driven increases in rainfall leading to turbidity plumes. We examined the impact of reduced light on above-ground seagrass biomass and sediment biogeochemistry in tropical shallow- (∼2 m) and deep-water (∼17 m) seagrass meadows (Green Island, Australia). Artificial shading (transmitting ∼10-25% of incident solar irradiance) was applied to the shallow- and deep-water sites for up to two weeks. While above-ground biomass was unchanged, higher diffusive O 2 uptake (DOU) rates, lower O 2 penetration depths, and higher volume-specific O 2 consumption (R) rates were found in seagrass-vegetated sediments as compared to adjacent bare sand (control) areas at the shallow-water sites. In contrast, deep-water sediment characteristics did not differ between bare sand and vegetated sites. At the vegetated shallow-water site, shading resulted in significantly lower hydrogen sulphide (H 2 S) levels in the sediment. No shading effects were found on sediment biogeochemistry at the deep-water site. Overall, our results show that the sediment biogeochemistry of shallow-water (Halodule uninervis, Syringodium isoetifolium, Cymodocea rotundata and C. serrulata) and deep-water (Halophila decipiens) seagrass meadows with different species differ in response to reduced light. The light-driven dynamics of the sediment biogeochemistry at the shallow-water site could suggest the presence of a microbial consortium, which might be stimulated by photosynthetically produced exudates from the seagrass, which becomes limited due to lower seagrass photosynthesis under shaded conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Mechanism of saline groundwater migration under the influence of deep groundwater exploitation in the North China Plain

    NASA Astrophysics Data System (ADS)

    Han, D.; Cao, G.; Currell, M. J.

    2016-12-01

    Understanding the mechanism of salt water transport in response to the exploitation of deep freshwater has long been one of the major regional environmental hydrogeological problems and scientific challenges in the North China Plain. It is also the key to a correct understanding of the sources of deep groundwater pumpage. This study will look at the Hengshui - Cangzhou region as a region with typical vertical salt water distribution, and high levels of groundwater exploitation, integrating a variety of techniques in geology, hydrogeology, geophysics, hydrodynamics, and hydrochemistry - stable isotopes. Information about the problem will be determined using multiple lines of evidence, including field surveys of drilling and water sampling, as well as laboratory experiments and physical and numerical simulations. The project will characterize and depict the migration characteristics of salt water bodies and their relationship with the geological structure and deep ground water resources. The work will reveal the freshwater-saltwater interface shape; determine the mode and mechanism of hydrodynamic transport and salt transport; estimate the vertical migration time of salt water in a thick aquitard; and develop accurate hydrogeological conceptual models. This work will utilize groundwater variable density flow- solute transport numerical models to simulate the water and salt transport processes in vertical one-dimensional (typical bore) and two-dimensional (typical cross-section) space. Both inversion of the downward movement of saltwater caused by groundwater exploitation through history, and examining future saltwater migration trends under groundwater exploitation scenarios will be conducted, to quantitatively evaluate the impact of salt water migration to the deep groundwater body in the North China Plain. The research results will provide a scientific basis for the sustainable utilization of deep groundwater resources in this area.

  14. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning.

    PubMed

    Abràmoff, Michael David; Lou, Yiyue; Erginay, Ali; Clarida, Warren; Amelon, Ryan; Folk, James C; Niemeijer, Meindert

    2016-10-01

    To compare performance of a deep-learning enhanced algorithm for automated detection of diabetic retinopathy (DR), to the previously published performance of that algorithm, the Iowa Detection Program (IDP)-without deep learning components-on the same publicly available set of fundus images and previously reported consensus reference standard set, by three US Board certified retinal specialists. We used the previously reported consensus reference standard of referable DR (rDR), defined as International Clinical Classification of Diabetic Retinopathy moderate, severe nonproliferative (NPDR), proliferative DR, and/or macular edema (ME). Neither Messidor-2 images, nor the three retinal specialists setting the Messidor-2 reference standard were used for training IDx-DR version X2.1. Sensitivity, specificity, negative predictive value, area under the curve (AUC), and their confidence intervals (CIs) were calculated. Sensitivity was 96.8% (95% CI: 93.3%-98.8%), specificity was 87.0% (95% CI: 84.2%-89.4%), with 6/874 false negatives, resulting in a negative predictive value of 99.0% (95% CI: 97.8%-99.6%). No cases of severe NPDR, PDR, or ME were missed. The AUC was 0.980 (95% CI: 0.968-0.992). Sensitivity was not statistically different from published IDP sensitivity, which had a CI of 94.4% to 99.3%, but specificity was significantly better than the published IDP specificity CI of 55.7% to 63.0%. A deep-learning enhanced algorithm for the automated detection of DR, achieves significantly better performance than a previously reported, otherwise essentially identical, algorithm that does not employ deep learning. Deep learning enhanced algorithms have the potential to improve the efficiency of DR screening, and thereby to prevent visual loss and blindness from this devastating disease.

  15. Trimodal distribution of ozone and water vapor in the UT/LS during boreal summer

    NASA Astrophysics Data System (ADS)

    Dunkerton, T. J.

    2004-12-01

    The relation of ozone and water vapor in the upper troposphere and lower stratosphere (UT/LS) is strongly influenced by the off-equatorial Asian and North American monsoons in boreal summer. Both regions experience hydration, presumably as a result of deep convection. This behavior contrasts sharply with the apparent dehydrating influence of near-equatorial deep convection in boreal winter. There is also a striking difference in ozone between Asia and North America in boreal summer. Over Asia, ozone concentrations are low, evidently a result of ubiquitous deep convection and the vertical transport of ozone-poor air, while over North America, ozone concentrations are much higher. Since deep convection also occurs in the North American monsoon, it appears that the difference in ozone concentration between Asia and North America in boreal summer reflects a differing influence of the large-scale circulation in the two regions: specifically, (i) isolation of the Tibetan anticyclone versus (ii) the intrusion of filaments of ozone-rich air from the stratosphere over North America. During boreal summer, as in winter, near-equatorial concentrations of ozone and water vapor are low near the equator. The result of these geographical variations is a trimodal distribution of ozone and water-vapor correlation. Our talk reviews the observational evidence of this trimodal distribution and possible dynamical and microphysical causes, focusing primarily on the quality and possible sampling bias of satellite and aircraft measurements. A key issue is the ability of HALOE to sample areas of ubiquitous deep convection. Other issues include the vertical structure of tracer anomalies, isentropic stirring in the UT/LS, horizontal transport of biomass burning products lofted by deep convection, and connections to the moist phase of the tropical `tape recorder' signal in water vapor.

  16. Trimodal distribution of ozone and water vapor in the UT/LS during boreal summer

    NASA Astrophysics Data System (ADS)

    Dunkerton, T. J.

    2004-05-01

    The relation of ozone and water vapor in the upper troposphere and lower stratosphere (UT/LS) is strongly influenced by the off-equatorial Asian and North American monsoons in boreal summer. Both regions experience hydration, presumably as a result of deep convection. This behavior contrasts sharply with the apparent dehydrating influence of near-equatorial deep convection in boreal winter. There is also a striking difference in ozone between Asia and North America in boreal summer. Over Asia, ozone concentrations are low, evidently a result of ubiquitous deep convection and the vertical transport of ozone-poor air, while over North America, ozone concentrations are much higher. Since deep convection also occurs in the North American monsoon, it appears that the difference in ozone concentration between Asia and North America in boreal summer reflects a differing influence of the large-scale circulation in the two regions: specifically, (i) isolation of the Tibetan anticyclone versus (ii) the intrusion of filaments of ozone-rich air from the stratosphere over North America. During boreal summer, as in winter, near-equatorial concentrations of ozone and water vapor are low near the equator. The result of these geographical variations is a trimodal distribution of ozone and water-vapor correlation. Our talk reviews the observational evidence of this trimodal distribution and possible dynamical and microphysical causes, focusing primarily on the quality and possible sampling bias of satellite and aircraft measurements. A key issue is the ability of HALOE to sample areas of ubiquitous deep convection. Other issues include the vertical structure of tracer anomalies, isentropic stirring in the UT/LS, horizontal transport of biomass burning products lofted by deep convection, and connections to the moist phase of the tropical `tape recorder' signal in water vapor.

  17. The relationship between the deep-level structure in crust and brewing of strong earthquakes in Xingtai area

    NASA Astrophysics Data System (ADS)

    Xiao, Lan-Xi; Zhu, Yuan-Qing; Zhang, Shao-Quan; Liu, Xu; Guo, Yu

    1999-11-01

    In this paper, crust medium is treated as Maxwell medium, and crust model includes hard inclusion, soft inclusion, deep-level fault. The stress concentration and its evolution with time are obtained by using three-dimensional finite element method and differential method. The conclusions are draw as follows: (1) The average stress concentration and maximum shear stress concentration caused by non-heterogeneous of crust are very high in hard inclusion and around the deep fault. With the time passing by, the concentration of average stress in the model gradually trends to uniform. At the same time, the concentration of maximum shear stress in hard inclusion increases gradually. This character is favorable to transfer shear strain energy from soft inclusion to hard inclusion. (2) When the upper mantle beneath the inclusion upheave at a certain velocity of 1 cm/a, the changes of average stress concentration with time become complex, and the boundary of the hard and soft inclusion become unconspicuous, but the maximum shear stress concentration increases much more in the hard inclusion with time at a higher velocity. This feature make for transformation of energy from the soft inclusion to the hard inclusion. (3) The changes of average stress concentration and maximum shear stress concentration with time around the deep-level fault result in further accumulation of maximum shear stress concentration and finally cause the deep-level fault instable and accelerated creep along fault direction. (4) The changes of vertical displacement on the surface of the model, which is caused by the accelerated creep of the deep-level fault, is similar to that of the observation data before Xingtai strong earthquake.

  18. A high-resolution multi-proxy record of geo-environmental change during the last deglaciation in the East Sea

    NASA Astrophysics Data System (ADS)

    Jin, J. H.; Kim, M. J.; Kim, J. H.; Um, I. K.; Bahk, J. J.; Kwon, Y. K.; Lee, K. E.; Khim, B. K.

    2009-04-01

    The East Sea (the Sea of Japan) is a marginal deep basin, almost enclosed by the landmass of Korea and Japan. It is connected with the North Pacific Ocean only by four small shallow straits, Korea and Tsushima Strait (140 m deep), Tsugaru Strait (130 m deep), Soya Strait (55 m deep) and Tartar Strait (12 m deep). For the glacial periods such as the last glaciation, the sea has experienced a large magnitude of sea level fall reinforcing isolation of the sea from the open ocean. The sea level falls can be recognized by presence of dark sediment layers whereas values of oxygen isotope on foraminfera tests are not well accordant with those recorded in open oceans. A 20 m-long sediment core was raised from a deep borehole located on the southern slope of the East Sea where sedimentation rates exceed 0.3 mm/yr for the last deglaciation period. The core was analyzed at a dense interval (ca. 5 cm) to reveal vertical variation of opal content, del values of oxygen and carbon, TOC and CaCO3 content and C/N ratio. Among them, the opal content somewhat mimics the trend of del value of oxygen isotopes in open oceans: low during the last glacial period, increase during the deglaciation and high in Holocene. A sharp negative depression also occurs during the Younger Dryas event. Hence the opal content could be a good proxy record for the environmental change during late Pleistocene to Holocene. A large-scale negative depression of the opal content is also shown during Holocene. The depression is not well matched with the trend of oxygen isotope records in open oceans, suggestive of a particular event in this local area.

  19. VizieR Online Data Catalog: Improved multi-band photometry from SERVS (Nyland+, 2017)

    NASA Astrophysics Data System (ADS)

    Nyland, K.; Lacy, M.; Sajina, A.; Pforr, J.; Farrah, D.; Wilson, G.; Surace, J.; Haussler, B.; Vaccari, M.; Jarvis, M.

    2017-07-01

    The Spitzer Extragalactic Representative Volume Survey (SERVS) sky footprint includes five well-studied astronomical deep fields with abundant multi-wavelength data spanning an area of ~18deg2 and a co-moving volume of ~0.8Gpc3. The five deep fields included in SERVS are the XMM-LSS field, Lockman Hole (LH), ELAIS-N1 (EN1), ELAIS-S1 (ES1), and Chandra Deep Field South (CDFS). SERVS provides NIR, post-cryogenic imaging in the 3.6 and 4.5um Spitzer/IRAC bands to a depth of ~2uJy. IRAC dual-band source catalogs generated using traditional catalog extraction methods are described in Mauduit+ (2012PASP..124..714M). The Spitzer IRAC data are complemented by ground-based NIR observations from the VISTA Deep Extragalactic Observations (VIDEO; Jarvis+ 2013MNRAS.428.1281J) survey in the south in the Z, Y, J, H, and Ks bands and UKIRT Infrared Deep Sky Survey (UKIDSS; Lawrence+ 2007, see II/319) in the north in the J and K bands. SERVS also provides substantial overlap with infrared data from SWIRE (Lonsdale+ 2003PASP..115..897L) and the Herschel Multitiered Extragalactic Survey (HerMES; Oliver+ 2012, VIII/95). As shown in Figure 1, one square degree of the XMM-LSS field overlaps with ground-based optical data from the Canada-France-Hawaii Telescope Legacy Survey Deep field 1 (CFHTLS-D1). The CFHTLS-D1 region is centered at RAJ2000=02:25:59, DEJ2000=-04:29:40 and includes imaging through the filter set u', g', r', i', and z'. Thus, in combination with the NIR data from SERVS and VIDEO that overlap with the CFHTLS-D1 region, multi-band imaging over a total of 12 bands is available. (2 data files).

  20. Short communication: Bacterial counts in recycled manure solids bedding replaced daily or deep packed in freestalls.

    PubMed

    Sorter, D E; Kester, H J; Hogan, J S

    2014-05-01

    An experiment was conducted to compare bacterial counts of mastitis pathogens in deep-packed manure solids bedding with those in manure solids bedding replaced daily from mattresses. Eighteen Holstein cows were housed in 1 pen with 18 stalls. One row of 9 stalls was equipped with mattresses topped with bedding. The back one-third of these stalls toward the alleyway was covered in 25 mm of recycled manure solids, which was removed daily for the next 6 d and replaced with bedding from the brisket board and lunge space areas of stalls. The second row of 9 stalls was bedded for 3 wk with 100 to 150 mm of deep-pack recycled manure bedding from which only fecal matter was removed daily. After 3 wk, bedding treatments were changed between rows in a switchback design. Mean total gram-negative bacterial counts did not differ between treatments throughout the experiment. Coliform and Klebsiella spp. bacterial counts were lower in daily replaced bedding compared with deep pack across the experiment and on each of d 0, 1, 2, and 6. Streptococcal counts were reduced in daily replacement stalls compared with deep-pack stalls on d 0 and greater in daily replacement stalls compared with deep-pack stalls on d 1, 2, and 6. Daily replacement of recycled manure bedding from the back one-third of the stalls appeared to be an effective approach to reducing exposure to coliforms, specifically Klebsiella, but not streptococci. However, bacterial counts in bedding from both treatments were elevated throughout the trial and resulted in considerable risk for exposure to teats and development of intramammary infections. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Initial observations of cell-mediated drug delivery to the deep lung.

    PubMed

    Kumar, Arun; Glaum, Mark; El-Badri, Nagwa; Mohapatra, Shyam; Haller, Edward; Park, Seungjoo; Patrick, Leslie; Nattkemper, Leigh; Vo, Dawn; Cameron, Don F

    2011-01-01

    Using current methodologies, drug delivery to small airways, terminal bronchioles, and alveoli (deep lung) is inefficient, especially to the lower lungs. Urgent lung pathologies such as acute respiratory distress syndrome (ARDS) and post-lung transplantation complications are difficult to treat, in part due to the methodological limitations in targeting the deep lung with high efficiency drug distribution to the site of pathology. To overcome drug delivery limitations inhibiting the optimization of deep lung therapy, isolated rat Sertoli cells preloaded with chitosan nanoparticles were use to obtain a high-density distribution and concentration (92%) of the nanoparticles in the lungs of mice by way of the peripheral venous vasculature rather than the more commonly used pulmonary route. Additionally, Sertoli cells were preloaded with chitosan nanoparticles coupled with the anti-inflammatory compound curcumin and then injected intravenously into control or experimental mice with deep lung inflammation. By 24 h postinjection, most of the curcumin load (∼90%) delivered in the injected Sertoli cells was present and distributed throughout the lungs, including the perialveloar sac area in the lower lungs. This was based on the high-density, positive quantification of both nanoparticles and curcumin in the lungs. There was a marked positive therapeutic effect achieved 24 h following curcumin treatment delivered by this Sertoli cell nanoparticle protocol (SNAP). Results identify a novel and efficient protocol for targeted delivery of drugs to the deep lung mediated by extratesticular Sertoli cells. Utilization of SNAP delivery may optimize drug therapy for conditions such as ARDS, status asthmaticus, pulmonary hypertension, lung cancer, and complications following lung transplantation where the use of high concentrations of anti-inflammatory drugs is desirable, but often limited by risks of systemic drug toxicity.

  2. The legal regime for moon resource utilization, with particular emphasis on environmental protection, and comparable solutions adopted for deep seabed activities

    NASA Astrophysics Data System (ADS)

    Viikari, L.

    This paper will examine the resource utilization regime as established by the body of international space law and by the 1979 Moon Treaty in particular, as well as the current problems pertaining to it. A particular area of interest is environmental protection vis-à-vis resource utilization. A potential source of fruitful analogy is provided by the deep seabed mineral utilization regime, as established by the 1982 United Nations Convention on the Law of the Sea, the 1994 New York Agreement amending it, and the recent 2000 Mining Code as the first part of more detailed regulations that will eventually govern exploration for and exploitation of all deep seabed minerals. Such comparison seems advantageous, because several developments in the field of using the space environment are showing obvious similarities with previous developments in the law of the sea regarding deep seabed resource management. The Moon and the deep seabed (and their natural resources) are also the only environs explicitly proclaimed as the common heritage of mankind. On the other hand, both domains are increasingly affected by commercializat ion and privatization, too. A recent new (legally non-binding) instrument for space activities is the 1996 Declaration on International Cooperation in the Exploration and Use of Outer Space for the Benefit and in the Interests of All States, Taking into Particular Account the Needs of Developing Countries. It attempts at an important compromise regarding the Common Heritage provision, offering a means to share benefits while recognizing market principles. These principles very much resemble the previous solutions adopted by the 1994 New York Agreement for the deep seabed. The paper attempts to reflect in particular upon the experience available from such developments.

  3. Deep processing activates the medial temporal lobe in young but not in old adults.

    PubMed

    Daselaar, Sander M; Veltman, Dick J; Rombouts, Serge A R B; Raaijmakers, Jeroen G W; Jonker, Cees

    2003-11-01

    Age-related impairments in episodic memory have been related to a deficiency in semantic processing, based on the finding that elderly adults typically benefit less than young adults from deep, semantic as opposed to shallow, nonsemantic processing of study items. In the present study, we tested the hypothesis that elderly adults are not able to perform certain cognitive operations under deep processing conditions. We further hypothesised that this inability does not involve regions commonly associated with lexical/semantic retrieval processes, but rather involves a dysfunction of the medial temporal lobe (MTL) memory system. To this end, we used functional MRI on rather extensive groups of young and elderly adults to compare brain activity patterns obtained during a deep (living/nonliving) and a shallow (uppercase/lowercase) classification task. Common activity in relation to semantic classification was observed in regions that have been previously related to semantic retrieval, including mainly left-lateralised activity in the inferior prefrontal, middle temporal, and middle frontal/anterior cingulate gyrus. Although the young adults showed more activity in some of these areas, the finding of mainly overlapping activation patterns during semantic classification supports the idea that lexical/semantic retrieval processes are still intact in elderly adults. This received further support by the finding that both groups showed similar behavioural performances as well on the deep and shallow classification tasks. Importantly, though, the young revealed significantly more activity than the elderly adults in the left anterior hippocampus during deep relative to shallow classification. This finding is in line with the idea that age-related impairments in episodic encoding are, at least partly, due to an under-recruitment of the medial temporal lobe memory system.

  4. Mothership - Affordable Exploration of Planetary Bodies through Individual Nano-Sats and Swarms

    NASA Astrophysics Data System (ADS)

    DiCorcia, James D.; Ernst, Sebastian M.; Grace, J. Mike; Gump, David P.; Lewis, John S.; Foulds, Craig F.; Faber, Daniel R.

    2015-04-01

    One concept to enable broad participation in the scientific exploration of small bodies is the Mothership mission architecture which delivers third-party nano-sats, experiments, and sensors to a near Earth asteroid or comet. Deep Space Industries' Mothership service includes delivery of nano-sats, communication to Earth, and visuals of the asteroid surface and surrounding area. It allows researchers to house their instruments in a low-cost nano-sat platform that does not require the high-performance propulsion or deep space communication capabilities that otherwise would be required for a solo asteroid mission. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. In addition, the Mothership and its deployed nano-sats can offer a platform for instruments which need to be distributed over multiple spacecraft. The Mothership is designed to carry 10 to 12 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accomodates the same volume as a traditional 3U Cubesat. This design was found to be more favorable for deep space due to its thermal characteristics. The CubeSat standard was originally designed with operations in low Earth orbit in mind. By deliberately breaking the standard, Deep Space Nano-Sats offer better performance with less chance of a critical malfunction in the more hostile deep space environment. The first mission can launch as early as Q4 2017, with subsequent, regular launches through the 2020's.

  5. Reservoir compartmentalization of deep-water Intra Qua Iboe sand (Pliocene), Edop field, offshore Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermance, W.E.; Olaifa, J.O.; Shanmugam, G.

    An integration of 3-D seismic and sedimentological information provides a basis for recognizing and mapping individual flow units within the Intra Qua Iboe (IQI) reservoir (Pliocene), Edop Field, offshore Nigeria. Core examination show the following depositional facies: A-Sandy slump/mass flow, B-Muddy slump/mass flow, C. Bottom current reworking. D-Non-channelized turbidity currents, E. Channelized (coalesced) turbidity currents. F-Channelized (isolated) turbidity currents, G-Pelagic/hemipelagic, H-Levee, I-Reworked slope, J-Wave dominated, and K-Tide dominated facies. With the exception of facies J and K, all these facies are of deep-water affinity. The IQI was deposited on an upper slope environment in close proximity to the shelf edge.more » Through time, as the shelf edge migrated scaward, deposition began with a channel dominated deep-water system (IQI 1 and 2) and progressed through a slump/debris flow dominated deep-water system (IQI 3, the principle reservoir) to a tide and wave dominated shallow-water system (IQI 4). Compositional and textural similarities between the deep-water facies result in similar log motifs. Furthermore, these depositional facies are not readily apparent as distinct seismic facies. Deep-water facies A, D, E, and F are reservoir facies, whereas facies B, C, G, H, and I are non-reservoir facies. However, Facies G is useful as a seismically mappable event throughout the study area. Mapping of these non-reservoir events provides the framework for understanding gross reservoir architecture. This study has resulted in seven defined reservoir units within the IQI, which serves as the architectural framework for ongoing reservoir characterization.« less

  6. Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape

    USGS Publications Warehouse

    Rapalee, G.; Trumbore, S.E.; Davidson, E.A.; Harden, J.W.; Veldhuis, H.

    1998-01-01

    Boreal forests and wetlands are thought to be significant carbon sinks, and they could become net C sources as the Earth warms. Most of the C of boreal forest ecosystems is stored in the moss layer and in the soil. The objective of this study was to estimate soil C stocks (including moss layers) and rates of accumulation and loss for a 733 km2 area of the BOReal Ecosystem-Atmosphere Study site in northern Manitoba, using data from smaller-scale intensive field studies. A simple process-based model developed from measurements of soil C inventories and radiocarbon was used to relate soil C storage and dynamics to soil drainage and forest stand age. Soil C stocks covary with soil drainage class, with the largest C stocks occurring in poorly drained sites. Estimated rates of soil C accumulation or loss are sensitive to the estimated decomposition constants for the large pool of deep soil C, and improved understanding of deep soil C decomposition is needed. While the upper moss layers regrow and accumulate C after fires, the deep C dynamics vary across the landscape, from a small net sink to a significant source. Estimated net soil C accumulation, averaged for the entire 733 km2 area, was 20 g C m-2 yr-1 (28 g C m-2 yr-1 accumulation in surface mosses offset by 8 g C m-2 yr-1 lost from deep C pools) in a year with no fire. Most of the C accumulated in poorly and very poorly drained soils (peatlands and wetlands). Burning of the moss layer in only 1% of uplands would offset the C stored in the remaining 99% of the area. Significant interannual variability in C storage is expected because of the irregular occurrence of fire in space and time. The effects of climate change and management on fire frequency and on decomposition of immense deep soil C stocks are key to understanding future C budgets in boreal forests.

  7. Localization, characterization and dating of water circulations in the soil-saprolite system of the Strengbach watershed: petrological, hydro-geophysical and geochemical evidences.

    NASA Astrophysics Data System (ADS)

    Chabaux, François; Viville, Daniel; Pierret, Marie-Claire; Stille, Peter; Lerouge, Catherine; Wyns, Robert; Dezayes, Chrystel; Labasque, Thierry; Aquilina, Luc; Ranchoux, Coralie; Négrel, Philippe

    2017-04-01

    The characterization of the critical zone along depth profiles remains a major scientific issue for understanding and modelling the response of continental surfaces to climatic, tectonic and anthropogenic forcings. Besides characterization it requires the modelling of the water circulations within the substratum of the critical zone. A series of boreholes drilled along the north and the south slopes of the Strengbach watershed makes it possible to characterize the critical zone to depths of ≈100 to 150 m within this critical zone observatory. In this study we attempt to combine mineralogical and petrological observations of the cores recovered through the drilling with chemical data of waters collected in each of these wells and hydro-geophysical data in order to characterize processes of water-rock interactions, visualize the water arrivals within the boreholes and bring new information on the deep water circulations within the watershed. Mineralogical, petrological and hydrogeophysical data suggest that deepwater circulation in the watershed likely occurs along fractures, concentrated in relatively narrow areas, several centimeters wide, interspersed with areas where the granite is much less fractured. This points to the occurrence of deep waters circulating in a network of more or less independent conduits, which could extend over several tens to hundreds of meters deep. The hydrochemical data from the boreholes, show contrasting characteristics for surface waters collected at 10 to 15 m depth and the deeper waters collected between 50 to 80m depth; the surface waters are very similar to those of the spring waters collected in the watershed (Pierret et al., 2014), and the deeper waters collected between 50 to 80m depth. The residence times of the circulating waters are also very variable, with ages of up to a few months for surface and subsurface waters and ages exceeding several decades for the deep waters. These differences suggest that the subsurface circulation systems are quite different from the deeper circulation ones. They also point to the importance to focus future studies on deep-water circulations in order to properly characterize the functioning of the critical zone in watersheds, especially in mountainous areas, such as the Strengbach watershed.

  8. 30 CFR 203.31 - If I have a qualified phase 2 or qualified phase 3 ultra-deep well, what royalty relief would...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... water less than 400 meters deep (see § 203.30(a)), has no existing deep or ultra-deep wells and that the... depths partly or entirely less than 200 meters and has not previously produced from a deep well (§ 203.30... which is 16,000 feet TVD SS and your lease is located in water 100 meters deep. Then in 2008, you drill...

  9. Simulation of Variable-Density Ground-Water Flow and Saltwater Intrusion beneath Manhasset Neck, Nassau County, New York, 1905-2005

    USGS Publications Warehouse

    Monti, Jack; Misut, Paul E.; Busciolano, Ronald J.

    2009-01-01

    The coastal-aquifer system of Manhasset Neck, Nassau County, New York, has been stressed by pumping, which has led to saltwater intrusion and the abandonment of one public-supply well in 1944. Measurements of chloride concentrations and water levels in 2004 from the deep, confined aquifers indicate active saltwater intrusion in response to public-supply pumping. A numerical model capable of simulating three-dimensional variable-density ground-water flow and solute transport in heterogeneous, anisotropic aquifers was developed using the U.S. Geological Survey finite-element, variable-density, solute-transport simulator SUTRA, to investigate the extent of saltwater intrusion beneath Manhasset Neck. The model is composed of eight layers representing the hydrogeologic system beneath Manhasset Neck. Four modifications to the area?s previously described hydrogeologic framework were made in the model (1) the bedrock-surface altitude at well N12191 was corrected from a previously reported value, (2) part of the extent of the Raritan confining unit was shifted, (3) part of the extent of the North Shore confining unit was shifted, and (4) a clay layer in the upper glacial aquifer was added in the central and southern parts of the Manhasset Neck peninsula. Ground-water flow and the location of the freshwater-saltwater interface were simulated for three conditions (time periods) (1) a steady-state (predevelopment) simulation of no pumping prior to about 1905, (2) a 40-year transient simulation based on 1939 pumpage representing the 1905-1944 period of gradual saltwater intrusion, and (3) a 60-year transient simulation based on 1995 pumpage representing the 1945-2005 period of stabilized withdrawals. The 1939 pumpage rate (12.1 million gallons per day (Mgal/d)) applied to the 1905-1944 transient simulation caused modeled average water-level declines of 2 and 4 feet (ft) in the shallow and deep aquifer systems from predevelopment conditions, respectively, a net decrease of 5.2 Mgal/d in freshwater discharge to offshore areas and a net increase of 6.9 Mgal/d of freshwater entering the model from the eastern, western, and southern lateral boundaries. The 1995 pumpage rate (43.3 Mgal/d) applied to the 1945-2005 transient simulation caused modeled average water-level declines of 5 and 8 ft in the shallow and deep aquifer systems from predevelopment conditions, respectively, a net decrease of 13.2 Mgal/d in freshwater discharge to offshore areas and a net increase of 30.1 Mgal/d of freshwater entering the model from the eastern, western, and southern lateral boundaries. The simulated decrease in freshwater discharge to the offshore areas caused saltwater intrusion in two parts of the deep aquifer system under Manhasset Neck. Saline ground water simulated in a third part of the deep aquifer system under Manhasset Neck was due to the absence of the North Shore confining unit near Sands Point. Simulated chloride concentrations greater than 250 milligrams per liter (mg/L) were used to represent the freshwater-saltwater interface, and the movement of this concentration was evaluated for transient simulations. The decrease in the 1905-1944 simulated freshwater discharge to the offshore areas caused the freshwater-saltwater interface in the deep aquifer system to advance landward more than 1,700 ft from its steady-state position in the vicinity of Baxter Estates Village, Long Island, New York. The decrease in the 1945-2005 simulated freshwater discharge to the offshore areas caused a different area of the freshwater-saltwater interface in the deep aquifer system to advance more than 600 ft from its steady-state position approximately 1 mile south of the Baxter Estates Village. However, the 1945-2005 transient simulation underestimates the concentration and extent of saltwater intrusion determined from water-quality samples collected from wells N12508 and N12793, where measured chloride concentrations increased from 625 and 18 mg/L in 1997 t

  10. The deep plantar arch in humans: constitution and topography.

    PubMed

    Gabrielli, C; Olave, E; Mandiola, E; Rodrigues, C F; Prates, J C

    2001-01-01

    The integrity of the various structures within the feet depends on their blood supply. Lesions of the feet often require revascularization, which if successful avoids the need for amputation. To provide greater anatomical detail to aid vascular surgery and imaging, the anatomy and constitution of the deep plantar arch was studied in 50 adult cadaveric feet. The arteries of the foot were injected with red neoprene latex and dissected under magnification. The deep plantar arch, present in all feet, was the result of anastomosis between the deep plantar artery and the deep branch of the lateral plantar artery. The deep plantar artery was predominant in 72% of specimens (Type I arches) and the lateral plantar artery in 22% (Type II), with the contribution being equal in 6% (Type III). The medial plantar artery contributed to the medial segment of the deep plantar arch by its deep branch in 12% of specimens. The distance between the deep plantar arch and each interdigital commissure was generally constant, averaging 29% of total foot length. The deep plantar arch was located in the middle third of the foot in all specimens, being in the distal part of this third in 90%. The deep plantar arch is, therefore formed mainly by the deep plantar artery, a branch of the dorsal artery of foot; its location can be estimated if foot length is known.

  11. Tidal Energy Available for Deep Ocean Mixing: Bounds from Altimetry Data

    NASA Technical Reports Server (NTRS)

    Egbert, Gary D.; Ray, Richard D.

    1999-01-01

    Maintenance of the large-scale thermohaline circulation has long presented a problem to oceanographers. Observed mixing rates in the pelagic ocean are an order of magnitude too small to balance the rate at which dense bottom water is created at high latitudes. Recent observational and theoretical work suggests that much of this mixing may occur in hot spots near areas of rough topography (e.g., mid-ocean ridges and island arcs). Barotropic tidal currents provide a very plausible source of energy to maintain these mixing processes. Topex/Poseidon (T/P) satellite altimetry data have made precise mapping of open ocean tidal elevations possible for the first time. We can thus obtain empirical, spatially localized, estimates of barotropic tidal dissipation. These provide an upper bound on the amount of tidal energy that is dissipated in the deep ocean, and hence is available for deep mixing. We will present and compare maps of open ocean tidal energy flux divergence, and estimates of tidal energy flux into shallow seas, derived from T/P altimetry data using both formal data assimilation methods and empirical approaches. With the data assimilation methods we can place formal error bars on the fluxes. Our results show that 20-25% of tidal energy dissipation occurs outside of the shallow seas, the traditional sink for tidal energy. This suggests that up to 1 TW of energy may be available from the tides (lunar and solar) for mixing the deep ocean. The dissipation indeed appears to be concentrated over areas of rough topography.

  12. Tidal Energy Available for Deep Ocean Mixing: Bounds From Altimetry Data

    NASA Technical Reports Server (NTRS)

    Egbert, Gary D.; Ray, Richard D.

    1999-01-01

    Maintenance of the large-scale thermohaline circulation has long presented a problem to oceanographers. Observed mixing rates in the pelagic ocean are an order of magnitude too small to balance the rate at which dense bottom water is created at high latitudes. Recent observational and theoretical work suggests that much of this mixing may occur in hot spots near areas of rough topography (e.g., mid-ocean ridges and island arcs). Barotropic tidal currents provide a very plausible source of energy to maintain these mixing processes. Topex/Poseidon satellite altimetry data have made precise mapping of open ocean tidal elevations possible for the first time. We can thus obtain empirical, spatially localized, estimates of barotropic tidal dissipation. These provide an upper bound on the amount of tidal energy that is dissipated in the deep ocean, and hence is available for deep mixing. We will present and compare maps of open ocean tidal energy flux divergence, and estimates of tidal energy flux into shallow seas, derived from T/P altimetry data using both formal data assimilation methods and empirical approaches. With the data assimilation methods we can place formal error bars on the fluxes. Our results show that 20-25% of tidal energy dissipation occurs outside of the shallow seas, the traditional sink for tidal energy. This suggests that up to 1 TW of energy may be available from the tides (lunar and solar) for mixing the deep ocean. The dissipation indeed appears to be concentrated over areas of rough topography.

  13. Tidal Energy Available for Deep Ocean Mixing: Bounds from Altimetry Data

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, Gary D.

    1999-01-01

    Maintenance of the large-scale thermohaline circulation has long presented an interesting problem. Observed mixing rates in the pelagic ocean are an order of magnitude too small to balance the rate at which dense bottom water is created at high latitudes. Recent observational and theoretical work suggests that much of this mixing may occur in hot spots near areas of rough topography (e.g., mid-ocean ridges and island arcs). Barotropic tidal currents provide a very plausible source of energy to maintain these mixing processes. Topex/Poseidon satellite altimetry data have made precise mapping of open ocean tidal elevations possible for the first time. We can thus obtain empirical, spatially localized, estimates of barotropic tidal dissipation. These provide an upper bound on the amount of tidal energy that is dissipated in the deep ocean, and hence is available for deep mixing. We will present and compare maps of open ocean tidal energy flux divergence, and estimates of tidal energy flux into shallow seas, derived from T/P altimetry data using both formal data assimilation methods and empirical approaches. With the data assimilation methods we can place formal error bars on the fluxes. Our results show that 20-25% of tidal energy dissipation occurs outside of the shallow seas, the traditional sink for tidal energy. This suggests that up to 1 TW of energy may be available from the tides (lunar and solar) for mixing the deep ocean. The dissipation indeed appears to be concentrated over areas of rough topography.

  14. Design and fabrication of a large area freestanding compressive stress SiO2 optical window

    NASA Astrophysics Data System (ADS)

    Van Toan, Nguyen; Sangu, Suguru; Ono, Takahito

    2016-07-01

    This paper reports the design and fabrication of a 7.2 mm  ×  9.6 mm freestanding compressive stress SiO2 optical window without buckling. An application of the SiO2 optical window with and without liquid penetration has been demonstrated for an optical modulator and its optical characteristic is evaluated by using an image sensor. Two methods for SiO2 optical window fabrication have been presented. The first method is a combination of silicon etching and a thermal oxidation process. Silicon capillaries fabricated by deep reactive ion etching (deep RIE) are completely oxidized to form the SiO2 capillaries. The large compressive stress of the oxide causes buckling of the optical window, which is reduced by optimizing the design of the device structure. A magnetron-type RIE, which is investigated for deep SiO2 etching, is the second method. This method achieves deep SiO2 etching together with smooth surfaces, vertical shapes and a high aspect ratio. Additionally, in order to avoid a wrinkling optical window, the idea of a Peano curve structure has been proposed to achieve a freestanding compressive stress SiO2 optical window. A 7.2 mm  ×  9.6 mm optical window area without buckling integrated with an image sensor for an optical modulator has been successfully fabricated. The qualitative and quantitative evaluations have been performed in cases with and without liquid penetration.

  15. Deep learning for EEG-Based preference classification

    NASA Astrophysics Data System (ADS)

    Teo, Jason; Hou, Chew Lin; Mountstephens, James

    2017-10-01

    Electroencephalogram (EEG)-based emotion classification is rapidly becoming one of the most intensely studied areas of brain-computer interfacing (BCI). The ability to passively identify yet accurately correlate brainwaves with our immediate emotions opens up truly meaningful and previously unattainable human-computer interactions such as in forensic neuroscience, rehabilitative medicine, affective entertainment and neuro-marketing. One particularly useful yet rarely explored areas of EEG-based emotion classification is preference recognition [1], which is simply the detection of like versus dislike. Within the limited investigations into preference classification, all reported studies were based on musically-induced stimuli except for a single study which used 2D images. The main objective of this study is to apply deep learning, which has been shown to produce state-of-the-art results in diverse hard problems such as in computer vision, natural language processing and audio recognition, to 3D object preference classification over a larger group of test subjects. A cohort of 16 users was shown 60 bracelet-like objects as rotating visual stimuli on a computer display while their preferences and EEGs were recorded. After training a variety of machine learning approaches which included deep neural networks, we then attempted to classify the users' preferences for the 3D visual stimuli based on their EEGs. Here, we show that that deep learning outperforms a variety of other machine learning classifiers for this EEG-based preference classification task particularly in a highly challenging dataset with large inter- and intra-subject variability.

  16. An attachment-based description of the medial collateral and spring ligament complexes.

    PubMed

    Cromeens, Barrett P; Kirchhoff, Claire A; Patterson, Rita M; Motley, Travis; Stewart, Donald; Fisher, Cara; Reeves, Rustin E

    2015-06-01

    Anatomy of the medial collateral and spring ligament complexes has been the cause of confusion. The anatomic description is highly dependent on the source studied and little agreement exists between texts. In addition, inconsistent nomenclature has been used to describe the components. This study attempted to clarify confusion through the creation of a 3D ligament map using attachment-based dissection. Nine fresh foot and ankle specimens were observed. The medial collateral ligament and spring ligament complexes were dissected using their attachment sites as a guide to define individual components. Each component's perimeter and thickness was measured and each bony attachment was mapped using a microscribe 3D digitizer. Five components were identified contributing to the ligament complexes of interest: the tibiocalcaneonavicular, superficial posterior tibiotalar, deep posterior tibiotalar, deep anterior tibiotalar, and inferoplantar longitudinal ligaments. The largest component by total attachment area was the tibiocalcaneonavicular ligament followed by the deep posterior tibiotalar ligament. The largest ligament surface area of attachment to the tibia and talus was the deep posterior tibiotalar ligament. The largest attachment to the navicular and calcaneus was the tibiocalcaneonavicular ligament, which appeared to function in holding these bones in proximity while supporting the head of the talus. By defining complex components by their attachment sites, a novel, more functional and reproducible description of the medial collateral and spring ligament complexes was created. The linear measurements and 3D maps may prove useful when attempting more anatomically accurate reconstructions. © The Author(s) 2015.

  17. 46 CFR 167.40-20 - Deep-sea sounding apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Deep-sea sounding apparatus. 167.40-20 Section 167.40-20... SHIPS Certain Equipment Requirements § 167.40-20 Deep-sea sounding apparatus. Nautical school ships shall be equipped with an efficient or electronic deep-sea sounding apparatus. The electronic deep-sea...

  18. 46 CFR 167.40-20 - Deep-sea sounding apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Deep-sea sounding apparatus. 167.40-20 Section 167.40-20... SHIPS Certain Equipment Requirements § 167.40-20 Deep-sea sounding apparatus. Nautical school ships shall be equipped with an efficient or electronic deep-sea sounding apparatus. The electronic deep-sea...

  19. 47 CFR 32.2424 - Submarine & deep sea cable.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea... defined below, are to be maintained for nonmetallic submarine and deep sea cable and metallic submarine...

  20. 47 CFR 32.2424 - Submarine & deep sea cable.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea... defined below, are to be maintained for nonmetallic submarine and deep sea cable and metallic submarine...

Top