Schultz, Peter A.
2016-03-01
For the purposes of making reliable first-principles predictions of defect energies in semiconductors, it is crucial to distinguish between effective-mass-like defects, which cannot be treated accurately with existing supercell methods, and deep defects, for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite defect GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a conceptual framework of level patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as B As. Thismore » systematic approach determines that the gallium antisite supercell results has signatures inconsistent with an effective mass state and cannot be the 78/203 shallow double acceptor. Lastly, the properties of the Ga antisite in GaAs are described, total energy calculations that explicitly map onto asymptotic discrete localized bulk states predict that the Ga antisite is a deep double acceptor and has at least one deep donor state.« less
Electronic structure properties of deep defects in hBN
NASA Astrophysics Data System (ADS)
Dev, Pratibha; Prdm Collaboration
In recent years, the search for room-temperature solid-state qubit (quantum bit) candidates has revived interest in the study of deep-defect centers in semiconductors. The charged NV-center in diamond is the best known amongst these defects. However, as a host material, diamond poses several challenges and so, increasingly, there is an interest in exploring deep defects in alternative semiconductors such as hBN. The layered structure of hBN makes it a scalable platform for quantum applications, as there is a greater potential for controlling the location of the deep defect in the 2D-matrix through careful experiments. Using density functional theory-based methods, we have studied the electronic and structural properties of several deep defects in hBN. Native defects within hBN layers are shown to have high spin ground states that should survive even at room temperature, making them interesting solid-state qubit candidates in a 2D matrix. Partnership for Reduced Dimensional Material (PRDM) is part of the NSF sponsored Partnerships for Research and Education in Materials (PREM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Peter A.
For the purposes of making reliable first-principles predictions of defect energies in semiconductors, it is crucial to distinguish between effective-mass-like defects, which cannot be treated accurately with existing supercell methods, and deep defects, for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite defect GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a conceptual framework of level patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as B As. Thismore » systematic approach determines that the gallium antisite supercell results has signatures inconsistent with an effective mass state and cannot be the 78/203 shallow double acceptor. Lastly, the properties of the Ga antisite in GaAs are described, total energy calculations that explicitly map onto asymptotic discrete localized bulk states predict that the Ga antisite is a deep double acceptor and has at least one deep donor state.« less
NASA Astrophysics Data System (ADS)
Schultz, Peter
To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Demchenko, D. O.; Diallo, I. C.; Reshchikov, M. A.
2018-05-01
The problem of magnesium acceptor in gallium nitride is that experimental photoluminescence measurements clearly reveal a shallow defect state, while most theoretical predictions favor a localized polaronic defect state. To resolve this contradiction, we calculate properties of magnesium acceptor using the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, tuned to fulfill the generalized Koopmans condition. We test Koopmans tuning of HSE for defect calculations in GaN using two contrasting test cases: a deep state of gallium vacancy and a shallow state of magnesium acceptor. The obtained parametrization of HSE allows calculations of optical properties of acceptors using neutral defect-state eigenvalues, without relying on corrections due to charged defects in periodic supercells. Optical transitions and vibrational properties of M gGa defect are analyzed to bring the dual (shallow and deep) nature of this defect into accord with experimental photoluminescence measurements of the ultraviolet band in Mg-doped GaN samples.
NASA Astrophysics Data System (ADS)
Jana, Dipankar; Porwal, S.; Sharma, T. K.
2017-12-01
Spatial and spectral origin of deep level defects in molecular beam epitaxy grown AlGaN/GaN heterostructures are investigated by using surface photovoltage spectroscopy (SPS) and pump-probe SPS techniques. A deep trap center ∼1 eV above the valence band is observed in SPS measurements which is correlated with the yellow luminescence feature in GaN. Capture of electrons and holes is resolved by performing temperature dependent SPS and pump-probe SPS measurements. It is found that the deep trap states are distributed throughout the sample while their dominance in SPS spectra depends on the density, occupation probability of deep trap states and the background electron density of GaN channel layer. Dynamics of deep trap states associated with GaN channel layer is investigated by performing frequency dependent photoluminescence (PL) and SPS measurements. A time constant of few millisecond is estimated for the deep defects which might limit the dynamic performance of AlGaN/GaN based devices.
2011-01-01
Combined surface, structural and opto-electrical investigations are drawn from the chemically fashioned ZnO nanotubes and its heterostructure with p-GaN film. A strong correlation has been found between the formation of radiative surface defect states in the nanotubes and the pure cool white light possessing averaged eight color rendering index value of 96 with appropriate color temperature. Highly important deep-red color index value has been realized > 95 which has the capability to render and reproduce natural and vivid colors accurately. Diverse types of deep defect states and their relative contribution to the corresponding wavelengths in the broad emission band is suggested. PMID:21878100
Surface acceptor states in MBE-grown CdTe layers
NASA Astrophysics Data System (ADS)
Wichrowska, Karolina; Wosinski, Tadeusz; Tkaczyk, Zbigniew; Kolkovsky, Valery; Karczewski, Grzegorz
2018-04-01
A deep-level hole trap associated with surface defect states has been revealed with deep-level transient spectroscopy investigations of metal-semiconductor junctions fabricated on nitrogen doped p-type CdTe layers grown by the molecular-beam epitaxy technique. The trap displayed the hole-emission activation energy of 0.33 eV and the logarithmic capture kinetics indicating its relation to extended defect states at the metal-semiconductor interface. Strong electric-field-induced enhancement of the thermal emission rate of holes from the trap has been attributed to the phonon-assisted tunneling effect from defect states involving very large lattice relaxation around the defect and metastability of its occupied state. Passivation with ammonium sulfide of the CdTe surface, prior to metallization, results in a significant decrease in the trap density. It also results in a distinct reduction in the width of the surface-acceptor-state-induced hysteresis loops in the capacitance vs. voltage characteristics of the metal-semiconductor junctions.
Interconversion of intrinsic defects in SrTi O3(001 )
NASA Astrophysics Data System (ADS)
Chambers, S. A.; Du, Y.; Zhu, Z.; Wang, J.; Wahila, M. J.; Piper, L. F. J.; Prakash, A.; Yue, J.; Jalan, B.; Spurgeon, S. R.; Kepaptsoglou, D. M.; Ramasse, Q. M.; Sushko, P. V.
2018-06-01
Photoemission features associated with states deep in the band gap of n -SrTi O3(001 ) are found to be ubiquitous in bulk crystals and epitaxial films. These features are present even when there is little signal near the Fermi level. Analysis reveals that these states are deep-level traps associated with defects. The commonly investigated defects—O vacancies, Sr vacancies, and aliovalent impurity cations on the Ti sites—cannot account for these features. Rather, ab initio modeling points to these states resulting from interstitial oxygen and its interaction with donor electrons.
Processing-Induced Electrically Active Defects in Black Silicon Nanowire Devices.
Carapezzi, Stefania; Castaldini, Antonio; Mancarella, Fulvio; Poggi, Antonella; Cavallini, Anna
2016-04-27
Silicon nanowires (Si NWs) are widely investigated nowadays for implementation in advanced energy conversion and storage devices, as well as many other possible applications. Black silicon (BSi)-NWs are dry etched NWs that merge the advantages related to low-dimensionality with the special industrial appeal connected to deep reactive ion etching (RIE). In fact, RIE is a well established technique in microelectronics manufacturing. However, RIE processing could affect the electrical properties of BSi-NWs by introducing deep states into their forbidden gap. This work applies deep level transient spectroscopy (DLTS) to identify electrically active deep levels and the associated defects in dry etched Si NW arrays. Besides, the successful fitting of DLTS spectra of BSi-NWs-based Schottky barrier diodes is an experimental confirmation that the same theoretical framework of dynamic electronic behavior of deep levels applies in bulk as well as in low dimensional structures like NWs, when quantum confinement conditions do not occur. This has been validated for deep levels associated with simple pointlike defects as well as for deep levels associated with defects with richer structures, whose dynamic electronic behavior implies a more complex picture.
Suppress carrier recombination by introducing defects. The case of Si solar cell
Liu, Yuanyue; Stradins, Paul; Deng, Huixiong; ...
2016-01-11
Deep level defects are usually harmful to solar cells. Here we show that incorporation of selected deep level defects in the carrier-collecting region, however, can be utilized to improve the efficiency of optoelectronic devices. The designed defects can help the transport of the majority carriers by creating defect levels that is resonant with the band edge state, and/or reduce the concentration of minority carriers through Coulomb repulsion, thus suppressing the recombination at the carrier-collecting region. The selection process is demonstrated by using Si solar cell as an example. In conclusion, our work enriches the understanding and utilization of the semiconductormore » defects.« less
Minority Carrier Electron Traps in CZTSSe Solar Cells Characterized by DLTS and DLOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kheraj, V.; Lund, E. A.; Caruso, A. E.
2016-11-21
We report observations of minority carrier interactions with deep levels in 6-8% efficient Cu2ZnSn(S, Se)4 (CZTSSe) devices using conventional and minority deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS). Directly observing defect interactions with minority carriers is critical to understanding the recombination impact of deep levels. In devices with Cu2ZnSn(S, Se)4 nanoparticle ink absorber layers we identify a mid-gap state capturing and emitting minority electrons. It is 590+/-50 meV from the conduction band mobility edge, has a concentration near 1015/cm3, and has an apparent electron capture cross section ~10-14 cm2. We conclude that, while energetically positioned nearly-ideallymore » to be a recombination center, these defects instead act as electron traps because of a smaller hole cross-section. In CZTSe devices produced using coevaporation, we used minority carrier DLTS on traditional samples as well as ones with transparent Ohmic back contacts. These experiments demonstrate methods for unambiguously probing minority carrier/defect interactions in solar cells in order to establish direct links between defect energy level observations and minority carrier lifetimes. Furthermore, we demonstrate the use of steady-state device simulation to aid in the interpretation of DLTS results e.g. to put bounds on the complimentary carrier cross section even in the absence its direct measurement. This combined experimental and theoretical approach establishes rigorous bounds on the impact on carrier lifetime and Voc of defects observed with DLTS as opposed to, for example, assuming that all deep states act as strong recombination centers.« less
Quantum computing with defects.
Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D
2010-05-11
Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.
Defect states and charge transport in quantum dot solids
Brawand, Nicholas P.; Goldey, Matthew B.; Vörös, Márton; ...
2017-01-16
Defects at the surface of semiconductor quantum dots (QDs) give rise to electronic states within the gap, which are detrimental to charge transport properties of QD devices. We investigated charge transport in silicon quantum dots with deep and shallow defect levels, using ab initio calculations and constrained density functional theory. We found that shallow defects may be more detrimental to charge transport than deep ones, with associated transfer rates differing by up to 5 orders of magnitude for the small dots (1-2 nm) considered here. Hence, our results indicate that the common assumption, that the ability of defects to trapmore » charges is determined by their position in the energy gap of the QD, is too simplistic, and our findings call for a reassessment of the role played by shallow defects in QD devices. Altogether, our results highlight the key importance of taking into account the atomistic structural properties of QD surfaces when investigating transport properties.« less
Origin of High Electronic Quality in Solar Cell Absorber CH3NH3PbI3
NASA Astrophysics Data System (ADS)
Yin, Wanjian; Shi, Tingting; Wei, Suhua; Yan, Yanfa
Thin-film solar cells based on CH3NH3PbI3 halide perovskites have recently shown remarkable performance. First-principle calculations and molecular dynamic simulations show that the structure of pristine CH3NH3PbI3 is much more disordered than the inorganic archetypal thin-film semiconductor CdTe. However, the structural disorders from thermal fluctuation, point defects and grain boundaries introduce rare deep defect states within the bandgaps; therefore, the material has high electronic quality. We have further shown that this unusually high electronic quality is attributed to the unique electronic structures of halide perovskite: the strong coupling between cation lone-pair Pb s orbitals and anion p orbitals and the large atomic size of constitute cation atoms. We further found that although CH3NH3PbI3 GBs do not introduce a deep gap state, the defect level close to the VBM can still act as a shallow hole trap state. Cl and O can spontaneously segregate into GBs and passivate those defect levels and deactivate the trap state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seyidov, MirHasan Yu., E-mail: smirhasan@gyte.edu.tr; Suleymanov, Rauf A.; Mikailzade, Faik A.
2015-06-14
Lanthanum-doped high quality TlInS{sub 2} (TlInS{sub 2}:La) ferroelectric-semiconductor was characterized by photo-induced current transient spectroscopy (PICTS). Different impurity centers are resolved and identified. Analyses of the experimental data were performed in order to determine the characteristic parameters of the extrinsic and intrinsic defects. The energies and capturing cross section of deep traps were obtained by using the heating rate method. The observed changes in the Thermally Stimulated Depolarization Currents (TSDC) near the phase transition points in TlInS{sub 2}:La ferroelectric-semiconductor are interpreted as a result of self-polarization of the crystal due to the internal electric field caused by charged defects. Themore » TSDC spectra show the depolarization peaks, which are attributed to defects of dipolar origin. These peaks provide important information on the defect structure and localized energy states in TlInS{sub 2}:La. Thermal treatments of TlInS{sub 2}:La under an external electric field, which was applied at different temperatures, allowed us to identify a peak in TSDC which was originated from La-dopant. It was established that deep energy level trap BTE43, which are active at low temperature (T ≤ 156 K) and have activation energy 0.29 eV and the capture cross section 2.2 × 10{sup −14} cm{sup 2}, corresponds to the La dopant. According to the PICTS results, the deep level trap center B5 is activated in the temperature region of incommensurate (IC) phases of TlInS{sub 2}:La, having the giant static dielectric constant due to the structural disorders. From the PICTS simulation results for B5, native deep level trap having an activation energy of 0.3 eV and the capture cross section of 1.8 × 10{sup −16} cm{sup 2} were established. A substantial amount of residual space charges is trapped by the deep level localized energy states of B5 in IC-phase. While the external electric field is applied, permanent dipoles, which are originated from the charged B5 deep level defects, are aligned in the direction of the applied electric field and the equilibrium polarization can be reached in a relatively short time. When the polarization field is maintained, while cooling the temperature of sample to a sufficiently low degrees, the relaxation times of the aligned dipoles drastically increases. Practically, frozen internal electric field or electrets states remain inside the TlInS{sub 2}:La when the applied bias field is switched off. The influence of deep level defects on TSDC spectra of TlInS{sub 2}:La has been revealed for the first time.« less
Influence of annealing atmosphere on formation of electrically-active defects in rutile TiO2
NASA Astrophysics Data System (ADS)
Zimmermann, C.; Bonkerud, J.; Herklotz, F.; Sky, T. N.; Hupfer, A.; Monakhov, E.; Svensson, B. G.; Vines, L.
2018-04-01
Electronic states in the upper part of the bandgap of reduced and/or hydrogenated n-type rutile TiO2 single crystals have been studied by means of thermal admittance and deep-level transient spectroscopy measurements. The studies were performed at sample temperatures between 28 and 300 K. The results reveal limited charge carrier freeze-out even at 28 K and evidence the existence of dominant shallow donors with ionization energies below 25 meV. Interstitial atomic hydrogen is considered to be a major contributor to these shallow donors, substantiated by infrared absorption measurements. Three defect energy levels with positions of about 70 meV, 95 meV, and 120 meV below the conduction band edge occur in all the studied samples, irrespective of the sample production batch and the post-growth heat treatment used. The origin of these levels is discussed in terms of electron polarons, intrinsic point defects, and/or common residual impurities, where especially interstitial titanium atoms, oxygen vacancies, and complexes involving Al atoms appear as likely candidates. In contrast, no common deep-level defect, exhibiting a charge state transition in the 200-700 meV range below the conduction band edge, is found in different samples. This may possibly indicate a strong influence on deep-level defects by the post-growth heat treatments employed.
Armstrong, Andrew M.; Bryant, Benjamin N.; Crawford, Mary H.; ...
2015-04-01
The influence of a dilute In xGa 1-xN (x~0.03) underlayer (UL) grown below a single In 0.16Ga 0.84N quantum well (SQW), within a light-emitting diode(LED), on the radiative efficiency and deep level defect properties was studied using differential carrier lifetime (DCL) measurements and deep level optical spectroscopy (DLOS). DCL measurements found that inclusion of the UL significantly improved LED radiative efficiency. At low current densities, the non-radiative recombination rate of the LED with an UL was found to be 3.9 times lower than theLED without an UL, while the radiative recombination rates were nearly identical. This, then, suggests that themore » improved radiative efficiency resulted from reduced non-radiative defect concentration within the SQW. DLOS measurement found the same type of defects in the InGaN SQWs with and without ULs. However, lighted capacitance-voltage measurements of the LEDs revealed a 3.4 times reduction in a SQW-related near-mid-gap defect state for the LED with an UL. Furthermore, quantitative agreement in the reduction of both the non-radiative recombination rate (3.9×) and deep level density (3.4×) upon insertion of an UL corroborates deep level defect reduction as the mechanism for improved LED efficiency.« less
Iron and intrinsic deep level states in Ga2O3
NASA Astrophysics Data System (ADS)
Ingebrigtsen, M. E.; Varley, J. B.; Kuznetsov, A. Yu.; Svensson, B. G.; Alfieri, G.; Mihaila, A.; Badstübner, U.; Vines, L.
2018-01-01
Using a combination of deep level transient spectroscopy, secondary ion mass spectrometry, proton irradiation, and hybrid functional calculations, we identify two similar deep levels that are associated with Fe impurities and intrinsic defects in bulk crystals and molecular beam epitaxy and hydride vapor phase epitaxi-grown epilayers of β-Ga2O3. First, our results indicate that FeGa, and not an intrinsic defect, acts as the deep acceptor responsible for the often dominating E2 level at ˜0.78 eV below the conduction band minimum. Second, by provoking additional intrinsic defect generation via proton irradiation, we identified the emergence of a new level, labeled as E2*, having the ionization energy very close to that of E2, but exhibiting an order of magnitude larger capture cross section. Importantly, the properties of E2* are found to be consistent with its intrinsic origin. As such, contradictory opinions of a long standing literature debate on either extrinsic or intrinsic origin of the deep acceptor in question converge accounting for possible contributions from E2 and E2* in different experimental conditions.
Capacitance Techniques | Photovoltaic Research | NREL
transient spectroscopy generated graph showing six defect levels; DLTS signal (Y-axis) versus Temperature (X -axis). DLTS characterizes defect levels to assist in identification of impurities and potential levels of interface states (or both) that often exist between the surfaces of dissimilar materials. Deep
Deep level defects in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Farzana, Esmat; Ahmadi, Elaheh; Speck, James S.; Arehart, Aaron R.; Ringel, Steven A.
2018-04-01
Deep level defects were characterized in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy (PAMBE) using deep level optical spectroscopy (DLOS) and deep level transient (thermal) spectroscopy (DLTS) applied to Ni/β-Ga2O3:Ge (010) Schottky diodes that displayed Schottky barrier heights of 1.50 eV. DLOS revealed states at EC - 2.00 eV, EC - 3.25 eV, and EC - 4.37 eV with concentrations on the order of 1016 cm-3, and a lower concentration level at EC - 1.27 eV. In contrast to these states within the middle and lower parts of the bandgap probed by DLOS, DLTS measurements revealed much lower concentrations of states within the upper bandgap region at EC - 0.1 - 0.2 eV and EC - 0.98 eV. There was no evidence of the commonly observed trap state at ˜EC - 0.82 eV that has been reported to dominate the DLTS spectrum in substrate materials synthesized by melt-based growth methods such as edge defined film fed growth (EFG) and Czochralski methods [Zhang et al., Appl. Phys. Lett. 108, 052105 (2016) and Irmscher et al., J. Appl. Phys. 110, 063720 (2011)]. This strong sensitivity of defect incorporation on crystal growth method and conditions is unsurprising, which for PAMBE-grown β-Ga2O3:Ge manifests as a relatively "clean" upper part of the bandgap. However, the states at ˜EC - 0.98 eV, EC - 2.00 eV, and EC - 4.37 eV are reminiscent of similar findings from these earlier results on EFG-grown materials, suggesting that possible common sources might also be present irrespective of growth method.
Singh, A K; O'Donnell, K P; Edwards, P R; Lorenz, K; Kappers, M J; Boćkowski, M
2017-02-03
Although p-type activation of GaN by Mg underpins a mature commercial technology, the nature of the Mg acceptor in GaN is still controversial. Here, we use implanted Eu as a 'spectator ion' to probe the lattice location of Mg in doubly doped GaN(Mg):Eu. Photoluminescence spectroscopy of this material exemplifies hysteretic photochromic switching (HPS) between two configurations, Eu0 and Eu1(Mg), of the same Eu-Mg defect, with a hyperbolic time dependence on 'switchdown' from Eu0 to Eu1(Mg). The sample temperature and the incident light intensity at 355 nm tune the characteristic switching time over several orders of magnitude, from less than a second at 12.5 K, ~100 mW/cm 2 to (an estimated) several hours at 50 K, 1 mW/cm 2 . Linking the distinct Eu-Mg defect configurations with the shallow transient and deep ground states of the Mg acceptor in the Lany-Zunger model, we determine the energy barrier between the states to be 27.7(4) meV, in good agreement with the predictions of theory. The experimental results further suggest that at low temperatures holes in deep ground states are localized on N atoms axially bonded to Mg acceptors.
Ultrafast carrier dynamics in band edge and broad deep defect emission ZnSe nanowires
NASA Astrophysics Data System (ADS)
Othonos, Andreas; Lioudakis, Emmanouil; Philipose, U.; Ruda, Harry E.
2007-12-01
Ultrafast carrier dynamics of ZnSe nanowires grown under different growth conditions have been studied. Transient absorption measurements reveal the dependence of the competing effects of state filling and photoinduced absorption on the probed energy states. The relaxation of the photogenerated carriers occupying defect states in the stoichiometric and Se-rich samples are single exponentials with time constants of 3-4ps. State filling is the main contribution for probe energies below 1.85eV in the Zn-rich grown sample. This ultrafast carrier dynamics study provides an important insight into the role that intrinsic point defects play in the observed photoluminescence from ZnSe nanowires.
Tutorial: Junction spectroscopy techniques and deep-level defects in semiconductors
NASA Astrophysics Data System (ADS)
Peaker, A. R.; Markevich, V. P.; Coutinho, J.
2018-04-01
The term junction spectroscopy embraces a wide range of techniques used to explore the properties of semiconductor materials and semiconductor devices. In this tutorial review, we describe the most widely used junction spectroscopy approaches for characterizing deep-level defects in semiconductors and present some of the early work on which the principles of today's methodology are based. We outline ab-initio calculations of defect properties and give examples of how density functional theory in conjunction with formation energy and marker methods can be used to guide the interpretation of experimental results. We review recombination, generation, and trapping of charge carriers associated with defects. We consider thermally driven emission and capture and describe the techniques of Deep Level Transient Spectroscopy (DLTS), high resolution Laplace DLTS, admittance spectroscopy, and scanning DLTS. For the study of minority carrier related processes and wide gap materials, we consider Minority Carrier Transient Spectroscopy (MCTS), Optical DLTS, and deep level optical transient spectroscopy together with some of their many variants. Capacitance, current, and conductance measurements enable carrier exchange processes associated with the defects to be detected. We explain how these methods are used in order to understand the behaviour of point defects and the determination of charge states and negative-U (Hubbard correlation energy) behaviour. We provide, or reference, examples from a wide range of materials including Si, SiGe, GaAs, GaP, GaN, InGaN, InAlN, and ZnO.
King, M. P.; Kaplar, R. J.; Dickerson, J. R.; ...
2016-10-31
Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (~10 4 –10 6 cm –2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at E c-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be N t = 3 × 10 12, 2 × 10 15, and 5 × 10 14 cm –3, respectively. Themore » E c-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large V BD in the next-generation wide-bandgap power semiconductor devices. Furthermore, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.« less
NASA Technical Reports Server (NTRS)
Patterson, James D.
1996-01-01
We have used a Green's function technique to calculate the energy levels and formation energy of deep defects in the narrow gap semiconductors mercury cadmium telluride (MCT), mercury zinc telluride (MZT) and mercury zinc selenide (MZS). The formation energy is calculated from the difference between the total energy with an impurity cluster and the total energy for the perfect crystal. Substitutional (including antisite), interstitial (self and foreign), and vacancy deep defects are considered. Relaxation effects are calculated (with molecular dynamics). By use of a pseudopotential, we generalize the ideal vacancy model so as to be able to consider relaxation for vacancies. Different charge states are considered and the charged state energy shift (as computed by a modified Haldane-Anderson model) can be twice that due to relaxation. Different charged states for vacancies were not calculated to have much effect on the formation energy. For all cases we find deep defects in the energy gap only for cation site s-like orbitals or anion site p-like orbitals, and for the substitutional case only the latter are appreciably effected by relaxation. For most cases for MCT, MZT, MZS, we consider x (the concentration of Cd or Zn) in the range appropriate for a band gap of 0.1 eV. For defect energy levels, the absolute accuracy of our results is limited, but the precision is good, and hence chemical trends are accurately predicted. For the same reason, defect formation energies are more accurately predicted than energy level position. We attempt, in Appendix B, to calculate vacancy formation energies using relatively simple chemical bonding ideas due to Harrison. However, these results are only marginally accurate for estimating vacancy binding energies. Appendix C lists all written reports and publications produced for the grant. We include abstracts and a complete paper that summarizes our work which is not yet available.
7 CFR 51.784 - Classification of defects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS) United States Standards for Grades of Florida Grapefruit Definitions § 51.784 Classification of... discoloration permitted in the grade Very deep or very rough aggregating more than a circle 1/2 inch (12.7 mm) in diameter; deep or rough aggregating more than a circle 1 inch (25.4 mm) in diameter; slightly...
7 CFR 51.1837 - Classification of defects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS) United States Standards for Grades of Florida Tangerines Definitions § 51.1837 Classification of....1828.] Deep or rough aggregating more than a circle 1/4 inch (6.4 mm) in diameter; slightly rough with... slight depth aggregating more than a circle 11/8 inches (28.6 mm) in diameter Deep or rough aggregating...
Electronic characterization of defects in narrow gap semiconductors
NASA Technical Reports Server (NTRS)
Patterson, James D.
1994-01-01
We use a Green's function technique to calculate the position of deep defects in narrow gap semiconductors. We consider substitutional (including antisite), vacancy, and interstitial (self and foreign) deep defects. We also use perturbation theory to look at the effect of nonparabolic bands on shallow defect energies and find nonparabolicity can increase the binding by 10 percent or so. We consider mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS). For substitutional and interstitial defects we look at the situation with and without relaxation. For substitutional impurities in MCT, MZT, and MZS, we consider x (the concentration of Cd or Zn) in the range 0.1 less than x less than 0.3 and also consider appropriate x so E(sub g) = 0.1 eV for each of the three compounds. We consider several cation site s-like deep levels and anion site p-like levels. For E(sub g) = 0.1 eV, we also consider the effects of relaxation. Similar comments apply to the interstitial deep levels whereas no relaxation is considered for the ideal vacancy model. Relaxation effects can be greater for the interstitial than the substitutional cases. Specific results are given in figures and tables and comparison to experiment is made in a limited number of cases. We find, for example, that I, Se, S, Rn, and N are possible cation site, s-like deep levels in MCT and Zn and Mg are for anion site, p-like levels (both levels for substitutional cases). The corresponding cation and anion site levels for interstitial deep defects are (Au, Ag, Hg, Cd, Cu, Zn) and (N, Ar, O, F). For the substitutional cases we have some examples of relaxation moving the levels into the band gap, whereas for the interstitial case we have examples where relaxation moves it out of the band gap. Future work involves calculating the effects of charge state interaction and seeing the effect of relaxation on vacancy levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, M. P.; Kaplar, R. J.; Dickerson, J. R.
Electrical performance and characterization of deep levels in vertical GaN P-i-N diodes grown on low threading dislocation density (~10 4 –10 6 cm –2) bulk GaN substrates are investigated. The lightly doped n drift region of these devices is observed to be highly compensated by several prominent deep levels detected using deep level optical spectroscopy at E c-2.13, 2.92, and 3.2 eV. A combination of steady-state photocapacitance and lighted capacitance-voltage profiling indicates the concentrations of these deep levels to be N t = 3 × 10 12, 2 × 10 15, and 5 × 10 14 cm –3, respectively. Themore » E c-2.92 eV level is observed to be the primary compensating defect in as-grown n-type metal-organic chemical vapor deposition GaN, indicating this level acts as a limiting factor for achieving controllably low doping. The device blocking voltage should increase if compensating defects reduce the free carrier concentration of the n drift region. Understanding the incorporation of as-grown and native defects in thick n-GaN is essential for enabling large V BD in the next-generation wide-bandgap power semiconductor devices. Furthermore, controlling the as-grown defects induced by epitaxial growth conditions is critical to achieve blocking voltage capability above 5 kV.« less
OPTOELECTRONIC PROPERTIES AND THE GAP STATE DISTRIBUTION IN a-Si, Ge ALLOYS
NASA Astrophysics Data System (ADS)
Aljishi, S.; Smith, Z. E.; Wagner, S.
In this article we review optical and electronic transport data measured in amorphous silicon-germanium alloys with the goal of identifying the density of states as a function of alloy composition. The results show that while alloying a-Si:H with germanium has little effect on the valence band tail, the conduction band tail density of states is increased dramatically. Defect distributions both above and below midgap are detected and identified with the dangling bond D+/° and D°/- states. The density of deep defects below midgap increases exponentially with germanium content. Above midgap, a large concentration of defects lying between 0.3 and 0.5 eV below the conduction band edge has a strong effect on transient electron transport.
Role of defects in ferromagnetism in Zn1-xCoxO : A hybrid density-functional study
NASA Astrophysics Data System (ADS)
Patterson, C. H.
2006-10-01
Experimental studies of Zn1-xCoxO as thin films or nanocrystals have found ferromagnetism and Curie temperatures above room temperature and that p - or n -type doping of Zn1-xCoxO can change its magnetic state. Bulk Zn1-xCoxO with a low defect density and x in the range used in experimental thin-film studies exhibits ferromagnetism only at very low temperatures. Therefore defects in thin-film samples or nanocrystals may play an important role in promoting magnetic interactions between Co ions in Zn1-xCoxO . The mechanism of exchange coupling induced by defect states is considered and compared to a model for ferromagnetism in dilute magnetic semiconductors [T. Dietl , Science 287, 1019 (2000)]. The electronic structures of Co substituted for Zn in ZnO, Zn, and O vacancies, substituted N, and interstitial Zn in ZnO were calculated using the B3LYP hybrid density functional in a supercell. The B3LYP functional predicts a band gap of 3.34eV for bulk ZnO, close to the experimental value of 3.47eV . Occupied minority-spin Co 3d levels are at the top of the valence band and unoccupied levels lie above the conduction-band minimum. Majority-spin Co 3d levels hybridize strongly with bulk ZnO states. The neutral O vacancy defect level is predicted to lie deep in the band gap, and interstitial Zn is predicted to be a deep donor. The Zn vacancy is a deep acceptor, and the acceptor level for substituted N is at midgap. The possibility that p - or n -type dopants promote exchange coupling of Co ions was investigated by computing the total energies of magnetic states of ZnO supercells containing two Co ions and an oxygen vacancy, substituted N, or interstitial Zn in various charge states. The neutral N defect and the singly positively charged O vacancy are the only defects which strongly promote ferromagnetic exchange coupling of Co ions at intermediate range. Total energy calculations on supercells containing two O vacancies and one Zn vacancy clearly show that pairs of singly positively charged O vacancies are unstable with respect to dissociation into neutral and doubly positively charged vacancies; the oxygen vacancy is a “negative U ” defect. This apparently precludes simple charged O vacancies as a mediator of ferromagnetism in Zn1-xCoxO .
2018-01-01
Nowadays, there is a strong demand for inspection systems integrating both high sensitivity under various testing conditions and advanced processing allowing automatic identification of the examined object state and detection of threats. This paper presents the possibility of utilization of a magnetic multi-sensor matrix transducer for characterization of defected areas in steel elements and a deep learning based algorithm for integration of data and final identification of the object state. The transducer allows sensing of a magnetic vector in a single location in different directions. Thus, it enables detecting and characterizing any material changes that affect magnetic properties regardless of their orientation in reference to the scanning direction. To assess the general application capability of the system, steel elements with rectangular-shaped artificial defects were used. First, a database was constructed considering numerical and measurements results. A finite element method was used to run a simulation process and provide transducer signal patterns for different defect arrangements. Next, the algorithm integrating responses of the transducer collected in a single position was applied, and a convolutional neural network was used for implementation of the material state evaluation model. Then, validation of the obtained model was carried out. In this paper, the procedure for updating the evaluated local state, referring to the neighboring area results, is presented. Finally, the results and future perspective are discussed. PMID:29351215
A hybrid density functional study of silicon and phosphorus doped hexagonal boron nitride monolayer
NASA Astrophysics Data System (ADS)
Mapasha, R. E.; Igumbor, E.; Chetty, N.
2016-10-01
We present a hybrid density functional study of silicon (Si) and phosphorus (P) doped hexagonal boron nitride (h-BN). The local geometry, electronic structure and thermodynamic stability of Si B , Si N , P B and P N are examined using hybrid Heyd-Scuseria- Ernzerhof (HSE) functional. The defect induced buckling and the local bond distances around the defect are sensitive to charge state modulation q = -2, -1, 0, +1 and +2. The +1 charge state is found to be the most energetically stable state and significantly reduces the buckling. Based on the charge state thermodynamic transition levels, we noted that the Si N , Si N and P B defects are too deep to be ionized, and can alter the optical properties of h-BN material.
Vu, Thi Kim Oanh; Lee, Kyoung Su; Lee, Sang Jun; Kim, Eun Kyu
2018-09-01
We studied defect states in In0.53Ga0.47As/InP heterojunctions with interface control by group V atoms during metalorganic chemical vapor (MOCVD) deposition. From deep level transient spectroscopy (DLTS) measurements, two defects with activation energies of 0.28 eV (E1) and 0.15 eV (E2) below the conduction band edge, were observed. The defect density of E1 for In0.53Ga0.47As/InP heterojunctions with an addition of As and P atoms was about 1.5 times higher than that of the heterojunction added P atom only. From the temperature dependence of current- voltage characteristics, the thermal activation energies of In0.53Ga0.47As/InP of heterojunctions were estimated to be 0.27 and 0.25 eV, respectively. It appeared that the reverse light current for In0.53Ga0.47As/InP heterojunction added P atom increased only by illumination of a 940 nm-LED light source. These results imply that only the P addition at the interface can enhance the quality of InGaAs/InP heterojunction.
A correlation between the defect states and yellow luminescence in AlGaN/GaN heterostructures
NASA Astrophysics Data System (ADS)
Jana, Dipankar; Sharma, T. K.
2017-07-01
AlGaN/GaN heterostructures are investigated by performing complementary spectroscopic measurements under novel experimental configurations. Distinct features related to the band edge of AlGaN and GaN layers are clearly observed in surface photovoltage spectroscopy (SPS) spectra. A few more SPS features, which are associated with defects in GaN, are also identified by performing the pump-probe SPS measurements. SPS results are strongly corroborated by the complementary photoluminescence and photoluminescence excitation (PLE) measurements. A correlation between the defect assisted SPS features and yellow luminescence (YL) peak is established by performing pump-probe SPS and PLE measurements. It is found that CN-ON donor complex is responsible for the generation of YL peak in our sample. Further, the deep trap states are found to be present throughout the entire GaN epilayer. It is also noticed that the deep trap states lying at the GaN/Fe-GaN interface make a strong contribution to the YL feature. A phenomenological model is proposed to explain the intensity dependence of the YL feature and the corresponding SPS features in a pump-probe configuration, where a reasonable agreement between the numerical simulations and experimental results is achieved.
Numerical-experimental investigation of load paths in DP800 dual phase steel during Nakajima test
NASA Astrophysics Data System (ADS)
Bergs, Thomas; Nick, Matthias; Feuerhack, Andreas; Trauth, Daniel; Klocke, Fritz
2018-05-01
Fuel efficiency requirements demand lightweight construction of vehicle body parts. The usage of advanced high strength steels permits a reduction of sheet thickness while still maintaining the overall strength required for crash safety. However, damage, internal defects (voids, inclusions, micro fractures), microstructural defects (varying grain size distribution, precipitates on grain boundaries, anisotropy) and surface defects (micro fractures, grooves) act as a concentration point for stress and consequently as an initiation point for failure both during deep drawing and in service. Considering damage evolution in the design of car body deep drawing processes allows for a further reduction in material usage and therefore body weight. Preliminary research has shown that a modification of load paths in forming processes can help mitigate the effects of damage on the material. This paper investigates the load paths in Nakajima tests of a DP800 dual phase steel to research damage in deep drawing processes. Investigation is done via a finite element model using experimentally validated material data for a DP800 dual phase steel. Numerical simulation allows for the investigation of load paths with respect to stress states, strain rates and temperature evolution, which cannot be easily observed in physical experiments. Stress triaxiality and the Lode parameter are used to describe the stress states. Their evolution during the Nakajima tests serves as an indicator for damage evolution. The large variety of sheet metal forming specific load paths in Nakajima tests allows a comprehensive evaluation of damage for deep drawing. The results of the numerical simulation conducted in this project and further physical experiments will later be used to calibrate a damage model for simulation of deep drawing processes.
NASA Astrophysics Data System (ADS)
Bacuyag, Dhonny; Escaño, Mary Clare Sison; David, Melanie; Tani, Masahiko
2018-06-01
We performed first-principles calculations based on density functional theory (DFT) to investigate the role of point defects in the structural, electronic, and optical properties of the GaAs(001)- β2(2x4). In terms of structural properties, AsGa is the most stable defect structure, consistent with experiments. With respect to the electronic structure, band structures revealed the existence of sub-band and midgap states for all defects. The induced sub-bands and midgap states originated from the redistributions of charges towards these defects and neighboring atoms. The presence of these point defects introduced deep energy levels characteristic of EB3 (0.97 eV), EL4 (0.52 eV), and EL2 (0.82 eV) for AsGa, GaAs, GaV, respectively. The optical properties are found to be strongly related to these induced gap states. The calculated onset values in the absorption spectra, corresponding to the energy gaps, confirmed the absorption below the known bulk band gap of 1.43 eV. These support the possible two-step photoabsorption mediated by midgap states as observed in experiments.
NASA Astrophysics Data System (ADS)
Inglese, Alessandro; Lindroos, Jeanette; Vahlman, Henri; Savin, Hele
2016-09-01
The presence of copper contamination is known to cause strong light-induced degradation (Cu-LID) in silicon. In this paper, we parametrize the recombination activity of light-activated copper defects in terms of Shockley—Read—Hall recombination statistics through injection- and temperature dependent lifetime spectroscopy (TDLS) performed on deliberately contaminated float zone silicon wafers. We obtain an accurate fit of the experimental data via two non-interacting energy levels, i.e., a deep recombination center featuring an energy level at Ec-Et=0.48 -0.62 eV with a moderate donor-like capture asymmetry ( k =1.7 -2.6 ) and an additional shallow energy state located at Ec-Et=0.1 -0.2 eV , which mostly affects the carrier lifetime only at high-injection conditions. Besides confirming these defect parameters, TDLS measurements also indicate a power-law temperature dependence of the capture cross sections associated with the deep energy state. Eventually, we compare these results with the available literature data, and we find that the formation of copper precipitates is the probable root cause behind Cu-LID.
NASA Astrophysics Data System (ADS)
Buckeridge, J.; Catlow, C. R. A.; Farrow, M. R.; Logsdail, A. J.; Scanlon, D. O.; Keal, T. W.; Sherwood, P.; Woodley, S. M.; Sokol, A. A.; Walsh, A.
2018-05-01
The source of n -type conductivity in undoped transparent conducting oxides has been a topic of debate for several decades. The point defect of most interest in this respect is the oxygen vacancy, but there are many conflicting reports on the shallow versus deep nature of its related electronic states. Here, using a hybrid quantum mechanical/molecular mechanical embedded cluster approach, we have computed formation and ionization energies of oxygen vacancies in three representative transparent conducting oxides: In2O3 ,SnO2, and ZnO. We find that, in all three systems, oxygen vacancies form well-localized, compact donors. We demonstrate, however, that such compactness does not preclude the possibility of these states being shallow in nature, by considering the energetic balance between the vacancy binding electrons that are in localized orbitals or in effective-mass-like diffuse orbitals. Our results show that, thermodynamically, oxygen vacancies in bulk In2O3 introduce states above the conduction band minimum that contribute significantly to the observed conductivity properties of undoped samples. For ZnO and SnO2, the states are deep, and our calculated ionization energies agree well with thermochemical and optical experiments. Our computed equilibrium defect and carrier concentrations, however, demonstrate that these deep states may nevertheless lead to significant intrinsic n -type conductivity under reducing conditions at elevated temperatures. Our study indicates the importance of oxygen vacancies in relation to intrinsic carrier concentrations not only in In2O3 , but also in SnO2 and ZnO.
NASA Astrophysics Data System (ADS)
Beling, C. D.; Fung, S.; Au, H. L.; Ling, C. C.; Reddy, C. V.; Deng, A. H.; Panda, B. K.
1997-05-01
Recent positron mobility and lifetime measurements made on ac-biased metal on semi-insulating GaAs junctions, which have identified the native EL2 defect through a determination of the characteristic ionization energy of the donor level, are reviewed. It is shown that these measurements point towards a new spectroscopy, tentatively named positron-DLTS (deep level transient spectroscopy), that is the direct complement to conventional DLTS in that it monitors transients in the electric field of the depletion region rather than the inversely related depletion width, as deep levels undergo ionization. In this new spectroscopy, which may be applied to doped material by use of a suitable positron beam, electric field transients are monitored through the Doppler shift of the annihilation radiation resulting from the drift velocity of the positron in the depletion region. Two useful extensions of the new spectroscopy beyond conventional capacitance-DLTS are suggested. The first is that in some instances information on the microstructure of the defect causing the deep level may be inferred from the sensitivity of the positron to vacancy defects of negative and neutral charge states. The second is that the positron annihilation technique is intrinsically much faster than conventional DLTS with the capability of observing transients some 10 6 times faster, thus allowing deep levels (and even shallow levels) to be investigated without problems associated with carrier freeze-out.
NASA Astrophysics Data System (ADS)
Deng, A. H.; Shan, Y. Y.; Fung, S.; Beling, C. D.
2002-03-01
Unlike its conventional applications in lattice defect characterization, positron annihilation lifetime technique was applied to study temperature-dependent deep level transients in semiconductors. Defect levels in the band gap can be determined as they are determined by conventional deep level transient spectroscopy (DLTS) studies. The promising advantage of this application of positron annihilation over the conventional DLTS is that it could further extract extra microstructure information of deep-level defects, such as whether a deep level defect is vacancy related or not. A demonstration of EL2 defect level transient study in GaAs was shown and the EL2 level of 0.82±0.02 eV was obtained by a standard Arrhenius analysis, similar to that in conventional DLTS studies.
Effect of inversion layer at iron pyrite surface on photovoltaic device
NASA Astrophysics Data System (ADS)
Uchiyama, Shunsuke; Ishikawa, Yasuaki; Uraoka, Yukiharu
2018-03-01
Iron pyrite has great potential as a thin-film solar cell material because it has high optical absorption, low cost, and is earth-abundant. However, previously reported iron pyrite solar cells showed poor photovoltaic characteristics. Here, we have numerically simulated its photovoltaic characteristics and band structures by utilizing a two-dimensional (2D) device simulator, ATLAS, to evaluate the effects of an inversion layer at the surface and a high density of deep donor defect states in the bulk. We found that previous device structures did not consider the inversion layer at the surface region of iron pyrite, which made it difficult to obtain the conversion efficiency. Therefore, we remodeled the device structure and suggested that removing the inversion layer and reducing the density of deep donor defect states would lead to a high conversion efficiency of iron pyrite solar cells.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Arehart, A. R.; Kyle, E. C. H.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Speck, J. S.; Ringel, S. A.
2015-01-01
The impact of proton irradiation on the deep level states throughout the Mg-doped p-type GaN bandgap is investigated using deep level transient and optical spectroscopies. Exposure to 1.8 MeV protons of 1 × 1013 cm-2 and 3 × 1013 cm-2 fluences not only introduces a trap with an EV + 1.02 eV activation energy but also brings monotonic increases in concentration for as-grown deep states at EV + 0.48 eV, EV + 2.42 eV, EV + 3.00 eV, and EV + 3.28 eV. The non-uniform sensitivities for individual states suggest different physical sources and/or defect generation mechanisms. Comparing with prior theoretical calculations reveals that several traps are consistent with associations to nitrogen vacancy, nitrogen interstitial, and gallium vacancy origins, and thus are likely generated through displacing nitrogen and gallium atoms from the crystal lattice in proton irradiation environment.
Point-Defect Nature of the Ultraviolet Absorption Band in AlN
NASA Astrophysics Data System (ADS)
Alden, D.; Harris, J. S.; Bryan, Z.; Baker, J. N.; Reddy, P.; Mita, S.; Callsen, G.; Hoffmann, A.; Irving, D. L.; Collazo, R.; Sitar, Z.
2018-05-01
We present an approach where point defects and defect complexes are identified using power-dependent photoluminescence excitation spectroscopy, impurity data from SIMS, and density-functional-theory (DFT)-based calculations accounting for the total charge balance in the crystal. Employing the capabilities of such an experimental computational approach, in this work, the ultraviolet-C absorption band at 4.7 eV, as well as the 2.7- and 3.9-eV luminescence bands in AlN single crystals grown via physical vapor transport (PVT) are studied in detail. Photoluminescence excitation spectroscopy measurements demonstrate the relationship between the defect luminescent bands centered at 3.9 and 2.7 eV to the commonly observed absorption band centered at 4.7 eV. Accordingly, the thermodynamic transition energy for the absorption band at 4.7 eV and the luminescence band at 3.9 eV is estimated at 4.2 eV, in agreement with the thermodynamic transition energy for the CN- point defect. Finally, the 2.7-eV PL band is the result of a donor-acceptor pair transition between the VN and CN point defects since nitrogen vacancies are predicted to be present in the crystal in concentrations similar to carbon-employing charge-balance-constrained DFT calculations. Power-dependent photoluminescence measurements reveal the presence of the deep donor state with a thermodynamic transition energy of 5.0 eV, which we hypothesize to be nitrogen vacancies in agreement with predictions based on theory. The charge state, concentration, and type of impurities in the crystal are calculated considering a fixed amount of impurities and using a DFT-based defect solver, which considers their respective formation energies and the total charge balance in the crystal. The presented results show that nitrogen vacancies are the most likely candidate for the deep donor state involved in the donor-acceptor pair transition with peak emission at 2.7 eV for the conditions relevant to PVT growth.
Single and double acceptor-levels of a carbon-hydrogen defect in n-type silicon
NASA Astrophysics Data System (ADS)
Stübner, R.; Scheffler, L.; Kolkovsky, Vl.; Weber, J.
2016-05-01
In the present study, we discuss the origin of two dominant deep levels (E42 and E262) observed in n-type Si, which is subjected to hydrogenation by wet chemical etching or a dc H-plasma treatment. Their activation enthalpies determined from Laplace deep level transient spectroscopy measurements are EC-0.06 eV (E42) and EC-0.51 eV (E262). The similar annealing behavior and identical depth profiles of E42 and E262 correlate them with two different charge states of the same defect. E262 is attributed to a single acceptor state due to the absence of the Poole-Frenkel effect and the lack of a capture barrier for electrons. The emission rate of E42 shows a characteristic enhancement with the electric field, which is consistent with the assignment to a double acceptor state. In samples with different carbon and hydrogen content, the depth profiles of E262 can be explained by a defect with one H-atom and one C-atom. From a comparison with earlier calculations [Andersen et al., Phys. Rev. B 66, 235205 (2002)], we attribute E42 to the double acceptor and E262 to the single acceptor state of the CH1AB configuration, where one H atom is directly bound to carbon in the anti-bonding position.
Single and double acceptor-levels of a carbon-hydrogen defect in n-type silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stübner, R.; Scheffler, L.; Kolkovsky, Vl., E-mail: kolkov@ifpan.edu.pl
In the present study, we discuss the origin of two dominant deep levels (E42 and E262) observed in n-type Si, which is subjected to hydrogenation by wet chemical etching or a dc H-plasma treatment. Their activation enthalpies determined from Laplace deep level transient spectroscopy measurements are E{sub C}-0.06 eV (E42) and E{sub C}-0.51 eV (E262). The similar annealing behavior and identical depth profiles of E42 and E262 correlate them with two different charge states of the same defect. E262 is attributed to a single acceptor state due to the absence of the Poole-Frenkel effect and the lack of a capture barrier formore » electrons. The emission rate of E42 shows a characteristic enhancement with the electric field, which is consistent with the assignment to a double acceptor state. In samples with different carbon and hydrogen content, the depth profiles of E262 can be explained by a defect with one H-atom and one C-atom. From a comparison with earlier calculations [Andersen et al., Phys. Rev. B 66, 235205 (2002)], we attribute E42 to the double acceptor and E262 to the single acceptor state of the CH{sub 1AB} configuration, where one H atom is directly bound to carbon in the anti-bonding position.« less
Electrical characterisation of defects in wide bandgap semiconductors
NASA Astrophysics Data System (ADS)
Elsherif, Osama S.
Defects usually have a very large influence on the semiconductor material properties and hence on fabricated electronic devices. The nature and properties of defects in semiconducting materials can be investigated by applying electrical characterization techniques such as thermal admittance spectroscopy (TAS), deep level transient spectroscopy (DLTS) and high resolution Laplace-DLTS measurements. This dissertation presents the electrical characterisation of two different wide bandgap semiconducting materials (polycrystalline diamond and GaN) which have both recently attracted a great deal of attention because of their potential applications in the fields of power electronics and optoelectronics. Raman spectroscopy, I-V and C-V measurements were carried out as supporting experiments for the above investigations. The first part of this work focuses on studying the effect of B concentration on the electronic states in polycrystalline diamond thin films grown on silicon by the hot filament chemical vapour deposition method. A combination of high-resolution LDLTS and direct-capture cross-section measurements was used to investigate whether the deep electronic states present in the layers originated from point or extended defects. There was good agreement between data on deep electronic levels obtained from DLTS and TAS experiments. A number of hole traps have been detected; the majority of these levels show an unusual dependence of the DLTS signal on the fill pulse duration which is interpreted as possibly the levels are part of extended defects within the grain boundaries. In contrast, a defect level found in a more highly doped film, with an activation energy of -0.37 eV, exhibited behaviour characteristic of an isolated point defect, which we attribute to B-related centres in the bulk diamond, away from the dislocations. The second part of this thesis presents electrical measurements carried out at temperatures up to 450 K in order to study the electronic states associated with Mg in Mg-doped GaN films grown on sapphire by metalorganic vapour phase epitaxy, and to determine how these are affected by the threading dislocation density (TDD). Two different buffer layer schemes between the film and the sapphire substrate were used, giving rise to different TDDs in the GaN. Admittance spectroscopy of the films finds a single impurity-related acceptor level. It is observed in theses experiments that admittance spectroscopy detects no traps that can be attributed to extended defects, despite the fact that the dislocations are well-known to be active recombination centres. This unexpected finding is discussed in detail.
Electrical characterisation of defects in wide bandgap semiconductors
NASA Astrophysics Data System (ADS)
Elsherif, Osama S.
Defects usually have a very large influence on the semiconductor material properties and hence on fabricated electronic devices. The nature and properties of defects in semiconducting materials can be investigated by applying electrical characterization techniques such as thermal admittance spectroscopy (TAS), deep level transient spectroscopy (DLTS) and high resolution Laplace-DLTS measurements. This dissertation presents the electrical characterisation of two different wide bandgap semiconducting materials (polycrystalline diamond and GaN) which have both recently attracted a great deal of attention because of their potential applications in the fields of power electronics and optoelectronics. Raman spectroscopy, I-V and C-V measurements were carried out as supporting experiments for the above investigations.The first part of this work focuses on studying the effect of B concentration on the electronic states in polycrystalline diamond thin films grown on silicon by the hot filament chemical vapour deposition method. A combination of high-resolution LDLTS and direct-capture cross-section measurements was used to investigate whether the deep electronic states present in the layers originated from point or extended defects. There was good agreement between data on deep electronic levels obtained from DLTS and TAS experiments. A number of hole traps have been detected; the majority of these levels show an unusual dependence of the DLTS signal on the fill pulse duration which is interpreted as possibly the levels are part of extended defects within the grain boundaries. In contrast, a defect level found in a more highly doped film, with an activation energy of -0.37 eV, exhibited behaviour characteristic of an isolated point defect, which we attribute to B-related centres in the bulk diamond, away from the dislocations.The second part of this thesis presents electrical measurements carried out at temperatures up to 450 K in order to study the electronic states associated with Mg in Mg-doped GaN films grown on sapphire by metalorganic vapour phase epitaxy, and to determine how these are affected by the threading dislocation density (TDD). Two different buffer layer schemes between the film and the sapphire substrate were used, giving rise to different TDDs in the GaN. Admittance spectroscopy of the films finds a single impurity-related acceptor level. It is observed in theses experiments that admittance spectroscopy detects no traps that can be attributed to extended defects, despite the fact that the dislocations are well-known to be active recombination centres. This unexpected finding is discussed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yanhong; Gao, Ping; Li, La
Pure Si{sub x}C{sub 1−x} (x > 0.5) and B-containing Si{sub x}C{sub 1−x} (x > 0.5) based resistive switching devices (RSD) with the structure of Ag/Si{sub x}C{sub 1−x}/p-Si were fabricated and their switching characteristics and mechanism were investigated systematically. Percolation mechanism through trapping/ de-trapping at defect states was suggested for the switching process. Through the introduction of B atoms into Si{sub x}C{sub 1−x}, the density of defect states was reduced, then, the SET and RESET voltages were also decreased. Based on the percolation theory, the dependence of SET/RESET voltage on the density of defect states was analyzed. These results supply a deep understanding for themore » SiC-based RSD, which have a potential application in extreme ambient conditions.« less
Mavrommatis, Maria A; Wu, Zhichao; Naegele, Saskia I; Nunez, Jason; De Moraes, Carlos; Ritch, Robert; Hood, Donald C
2018-02-01
To examine the structure-function relationship in glaucoma between deep defects on visual fields (VF) and deep losses in the circumpapillary retinal nerve fiber layer (cpRNFL) on optical coherence tomography (OCT) circle scans. Thirty two glaucomatous eyes with deep VF defects, as defined by at least one test location worse than ≤ -15 dB on the 10-2 and/or 24-2 VF pattern deviation (PD) plots, were included from 87 eyes with "early" glaucoma (i.e., 24-2 mean deviation better than -6 dB). Using the location of the deep VF points and a schematic model, the location of local damage on an OCT circle scan was predicted. The thinnest location of cpRNFL (i.e., deepest loss) was also determined. In 19 of 32 eyes, a region of complete or near complete cpRNFL loss was observed. All 19 of these had deep VF defects on the 24-2 and/or 10-2. All of the 32 eyes with deep VF defects had abnormal cpRNFL regions (red, 1%) and all but 2 had a region of cpRNFL thickness <21 μm. The midpoint of the VF defect and the location of deepest cpRNFL had a 95% limit of agreement within approximately two-thirds of a clock-hour (or 30°) sector (between -22.1° to 25.2°). Individual fovea-to-disc angle (FtoDa) adjustment improved agreement in one eye with an extreme FtoDa. Although studies relating local structural (OCT) and functional (VF) measures typically show poor to moderate correlations, there is good qualitative agreement between the location of deep cpRNFL loss and deep defects on VFs.
Carbon-hydrogen defects with a neighboring oxygen atom in n-type Si
NASA Astrophysics Data System (ADS)
Gwozdz, K.; Stübner, R.; Kolkovsky, Vl.; Weber, J.
2017-07-01
We report on the electrical activation of neutral carbon-oxygen complexes in Si by wet-chemical etching at room temperature. Two deep levels, E65 and E75, are observed by deep level transient spectroscopy in n-type Czochralski Si. The activation enthalpies of E65 and E75 are obtained as EC-0.11 eV (E65) and EC-0.13 eV (E75). The electric field dependence of their emission rates relates both levels to single acceptor states. From the analysis of the depth profiles, we conclude that the levels belong to two different defects, which contain only one hydrogen atom. A configuration is proposed, where the CH1BC defect, with hydrogen in the bond-centered position between neighboring C and Si atoms, is disturbed by interstitial oxygen in the second nearest neighbor position to substitutional carbon. The significant reduction of the CH1BC concentration in samples with high oxygen concentrations limits the use of this defect for the determination of low concentrations of substitutional carbon in Si samples.
Carrier providers or killers: The case of Cu defects in CdTe
Yang, Ji -Hui; Metzger, Wyatt K.; Wei, Su -Huai
2017-07-24
Defects play important roles in semiconductors for optoelectronic applications. Common intuition is that defects with shallow levels act as carrier providers and defects with deep levels are carrier killers. Here, taking the Cu defects in CdTe as an example, we show that relatively shallow defects can play both roles. Using first-principles calculation methods combined with thermodynamic simulations, we study the dialectic effects of Cu-related defects on hole density and lifetime in bulk CdTe. Because CuCd can form a relatively shallow acceptor, we find that increased Cu incorporation into CdTe indeed can help achieve high hole density; however, too much Cumore » can cause significant non-radiative recombination. We discuss strategies to balance the contradictory effects of Cu defects based on the calculated impact of Cd chemical potential, copper defect concentrations, and annealing temperature on lifetime and hole density. Lastly, these findings advance the understanding of the potential complex defect behaviors of relatively shallow defect states in semiconductors.« less
Carrier providers or killers: The case of Cu defects in CdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ji -Hui; Metzger, Wyatt K.; Wei, Su -Huai
Defects play important roles in semiconductors for optoelectronic applications. Common intuition is that defects with shallow levels act as carrier providers and defects with deep levels are carrier killers. Here, taking the Cu defects in CdTe as an example, we show that relatively shallow defects can play both roles. Using first-principles calculation methods combined with thermodynamic simulations, we study the dialectic effects of Cu-related defects on hole density and lifetime in bulk CdTe. Because CuCd can form a relatively shallow acceptor, we find that increased Cu incorporation into CdTe indeed can help achieve high hole density; however, too much Cumore » can cause significant non-radiative recombination. We discuss strategies to balance the contradictory effects of Cu defects based on the calculated impact of Cd chemical potential, copper defect concentrations, and annealing temperature on lifetime and hole density. Lastly, these findings advance the understanding of the potential complex defect behaviors of relatively shallow defect states in semiconductors.« less
Electronic characterization of defects in narrow gap semiconductors
NASA Technical Reports Server (NTRS)
Patterson, James D.
1993-01-01
The study of point defects in semiconductors has a long and honorable history. In particular, the detailed understanding of shallow defects in common semiconductors traces back to the classic work of Kohn and Luttinger. However, the study of defects in narrow gap semiconductors represents a much less clear story. Here, both shallow defects (caused by long range potentials) and deep defects (from short range potentials) are far from being completely understood. In this study, all results are calculational and our focus is on the chemical trend of deep levels in narrow gap semiconductors. We study substitutional (including antisite), interstitial and ideal vacancy defects. For substitutional and interstitial impurities, the efects of relaxation are included. For materials like Hg(1-x)Cd(x)Te, we study how the deep levels vary with x, of particular interest is what substitutional and interstitial atoms yield energy levels in the gap i.e. actually produce deep ionized levels. Also, since the main technique utilized is Green's functions, we include some summary of that method.
Photoionization of radiation-induced traps in quartz and alkali feldspars.
Hütt, G; Jaek, I; Vasilchenko, V
2001-01-01
For the optimization of luminescence dating and dosimetry techniques on the basis of the optically stimulated luminescence, the stimulation spectra of quartz and alkali feldspars were measured in the spectral region of 250-1100 nm using optically stimulated afterglow. Optically stimulated luminescence in all studied spectral regions is induced by the same kind of deep traps, that produce thermoluminescence in the regions of palaeodosimetric peaks for both minerals. The mechanism for photoionization of deep traps was proposed as being due to delocalization of the excited state of the corresponding lattice defects. The excited state overlaps the zone states; i.e. is situated in the conduction band. Because of the high quantum yield of deep electron trap ionization in the UV spectral region, the present aim was to study the possibility of using UV-stimulation for palaeodose reconstruction.
Origin of subgap states in amorphous In-Ga-Zn-O
NASA Astrophysics Data System (ADS)
Körner, Wolfgang; Urban, Daniel F.; Elsässer, Christian
2013-10-01
We present a density functional theory analysis of stoichiometric and nonstoichiometric, crystalline and amorphous In-Ga-Zn-O (c-IGZO, a-IGZO), which connects the recently experimentally discovered electronic subgap states to structural features of a-IGZO. In particular, we show that undercoordinated oxygen atoms create electronic defect levels in the lower half of the band gap up to about 1.5 eV above the valence band edge. As a second class of fundamental defects that appear in a-IGZO, we identify mainly pairs of metal atoms which are not separated by oxygen atoms in between. These defects cause electronic defect levels in the upper part of the band gap. Furthermore, we show that hydrogen doping can suppress the deep levels due to undercoordinated oxygen atoms while those of metal defects just undergo a shift within the band gap. Altogether our results provide an explanation for the experimentally observed effect that hydrogen doping increases the transparency and improves the conductivity of a-IGZO.
Phonon-assisted changes in charge states of deep level defects in germanium
NASA Astrophysics Data System (ADS)
Markevich, A. V.; Litvinov, V. V.; Emtsev, V. V.; Markevich, V. P.; Peaker, A. R.
2006-04-01
Electronic processes associated with changes in the charge states of the vacancy-oxygen center (VO or A center) and vacancy-group-V-impurity atom (P, As, Sb or Bi) pairs (E centers) in irradiated germanium crystals have been studied using deep level transient spectroscopy (DLTS), high-resolution Laplace DLTS and Hall effect measurements. It is found that the electron emission and capture processes related to transitions between the doubly and the singly negatively charged states of the A center and the E centers in Ge are phonon-assisted, i.e., they are accompanied by significant vibrations and re-arrangements of atoms in the vicinity of the defects. Manifestations of the phonon involvements are: (i) temperature-dependent electron capture cross-sections which are well described in the frame of the multi-phonon-assisted capture model; (ii) large changes in entropy related to the ionization of the defects and, associated with these, temperature-dependent positions of energy levels; and (iii) electron emission via phonon-assisted tunneling upon the application of electric field. These effects have been considered in detail for the vacancy-oxygen and the vacancy-donor complexes. On the basis of a combined analysis of the electronic processes a configuration-coordinate diagram of the acceptor states of the A and E centers is plotted. It is found that changes in the entropy of ionization and the energy for electron emission for these traps follow the empirical Meyer-Neldel rule. A model based on multi-phonon-assisted carrier emission from defects is adapted for the explanation of the origin of this rule for the case of electronic processes in Ge.
Admittance spectroscopy or deep level transient spectroscopy: A contrasting juxtaposition
NASA Astrophysics Data System (ADS)
Bollmann, Joachim; Venter, Andre
2018-04-01
A comprehensive understanding of defects in semiconductors remains of primary importance. In this paper the effectiveness of two of the most commonly used semiconductor defect spectroscopy techniques, viz. deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) are reviewed. The analysis of defects present in commercially available SiC diodes shows that admittance spectroscopy allows the identification of deep traps with reduced measurement effort compared to deep Level Transient Spectroscopy (DLTS). Besides the N-donor, well-studied intrinsic defects were detected in these diodes. Determination of their activation energy and defect density, using the two techniques, confirm that the sensitivity of AS is comparable to that of DLTS while, due to its well defined peak shape, the spectroscopic resolution is superior. Additionally, admittance spectroscopy can analyze faster emission processes which make the study of shallow defects more practical and even that of shallow dopant levels, possible. A comparative summary for the relevant spectroscopic features of the two capacitance methods are presented.
Control of spin defects in wide-bandgap semiconductors for quantum technologies
Heremans, F. Joseph; Yale, Christopher G.; Awschalom, David D.
2016-05-24
Deep-level defects are usually considered undesirable in semiconductors as they typically interfere with the performance of present-day electronic and optoelectronic devices. However, the electronic spin states of certain atomic-scale defects have recently been shown to be promising quantum bits for quantum information processing as well as exquisite nanoscale sensors due to their local environmental sensitivity. In this review, we will discuss recent advances in quantum control protocols of several of these spin defects, the negatively charged nitrogen-vacancy (NV -) center in diamond and a variety of forms of the neutral divacancy (VV 0) complex in silicon carbide (SiC). These defectsmore » exhibit a spin-triplet ground state that can be controlled through a variety of techniques, several of which allow for room temperature operation. Microwave control has enabled sophisticated decoupling schemes to extend coherence times as well as nanoscale sensing of temperature along with magnetic and electric fields. On the other hand, photonic control of these spin states has provided initial steps toward integration into quantum networks, including entanglement, quantum state teleportation, and all-optical control. Electrical and mechanical control also suggest pathways to develop quantum transducers and quantum hybrid systems. In conclusion, the versatility of the control mechanisms demonstrated should facilitate the development of quantum technologies based on these spin defects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mynbaev, K. D., E-mail: mynkad@mail.ioffe.ru; Zablotsky, S. V.; Shilyaev, A. V.
Defects in mercury-cadmium-telluride heteroepitaxial structures (with 0.3 to 0.4 molar fraction of cadmium telluride) grown by molecular-beam epitaxy on silicon substrates are studied. The low-temperature photoluminescence method reveals that there are comparatively deep levels with energies of 50 to 60 meV and shallower levels with energies of 20 to 30 meV in the band gap. Analysis of the temperature dependence of the minority carrier lifetime demonstrates that this lifetime is controlled by energy levels with an energy of ∼30 meV. The possible relationship between energy states and crystal-structure defects is discussed.
Suppression and enhancement of deep level emission of ZnO on Si4+ & V5+ substitution
NASA Astrophysics Data System (ADS)
Srivastava, T.; Bajpai, G.; Sen, S.
2018-03-01
ZnO possess a wide range of tunable properties depending on the type and concentration of dopant. Defects in ZnO due to doped aliovalent ions can generate certain functionalities. Such defects in the lattice do not deteriorate the material properties but actually modifies the material towards infinite number of possibilities. Defects like oxygen vacancies play a significant role in photocatalytic and sensing applications. Depending upon the functionality, defect state of ZnO can be modified by suitable doping. Amount and nature of different dopant has different effect on defect state of ZnO. It depends upon the ionic radii, valence state, chemical stability etc. of the ion doped. Two samples with two different dopants i.e., silicon and vanadium, Zn1-xSixO and Zn1-xVxO, for x=0 & 0.020, were synthesized using solgel method (a citric acid-glycerol route) followed by solid state sintering. A comparison of their optical properties, photoluminescence and UV-Vis spectroscopy, with pure ZnO was studied at room temperature. Silicon doping drastically reduces whereas vanadium doping enhances the green emission as compared with pure ZnO. Suppression and enhancement of defect levels (DLE) is rationalized by the effects of extra charge present on Si4+ & V5+ (in comparison to Zn2+) and formation of new hybrid state (V3d O2p) within bandgap. Reduction of defects in Zn1-xSixO makes it suitable material for opto-electronics application whereas enhancement in defects in Zn1-xVxO makes it suitable material for photocatalytic as well as gas sensing application.
Abdelhafiz, Ali A; Ganzoury, Mohamed A; Amer, Ahmad W; Faiad, Azza A; Khalifa, Ahmed M; AlQaradawi, Siham Y; El-Sayed, Mostafa A; Alamgir, Faisal M; Allam, Nageh K
2018-04-18
Understanding the nature of interfacial defects of materials is a critical undertaking for the design of high-performance hybrid electrodes for photocatalysis applications. Theoretical and computational endeavors to achieve this have touched boundaries far ahead of their experimental counterparts. However, to achieve any industrial benefit out of such studies, experimental validation needs to be systematically undertaken. In this sense, we present herein experimental insights into the synergistic relationship between the lattice position and oxidation state of tungsten ions inside a TiO2 lattice, and the respective nature of the created defect states. Consequently, a roadmap to tune the defect states in anodically-fabricated, ultrathin-walled W-doped TiO2 nanotubes is proposed. Annealing the nanotubes in different gas streams enabled the engineering of defects in such structures, as confirmed by XRD and XPS measurements. While annealing under hydrogen stream resulted in the formation of abundant Wn+ (n < 6) ions at the interstitial sites of the TiO2 lattice, oxygen- and air-annealing induced W6+ ions at substitutional sites. EIS and Mott-Schottky analyses indicated the formation of deep-natured trap states in the hydrogen-annealed samples, and predominantly shallow donating defect states in the oxygen- and air-annealed samples. Consequently, the photocatalytic performance of the latter was significantly higher than those of the hydrogen-annealed counterparts. Upon increasing the W content, photoelectrochemical performance deteriorated due to the formation of WO3 crystallites that hindered charge transfer through the photoanode, as evident from the structural and chemical characterization. To this end, this study validates the previous theoretical predictions on the detrimental effect of interstitial W ions. In addition, it sheds light on the importance of defect states and their nature for tuning the photoelectrochemical performance of the investigated materials.
Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors
NASA Astrophysics Data System (ADS)
Noh, Hyeon-Kyun; Chang, K. J.; Ryu, Byungki; Lee, Woo-Jin
2011-09-01
We perform first-principles density functional calculations to investigate the atomic and electronic properties of various O-vacancy (VO) defects in amorphous indium gallium zinc oxides (a-IGZO). The formation energies of VO have a tendency to increase with increasing number of neighboring Ga atoms, whereas they are generally low in the environment surrounded with In atoms. Thus, adding Ga atoms suppresses the formation of O-deficiency defects, which are considered as the origin of device instability in a-IGZO-based thin film transistors. The conduction band edge state is characterized by the In s orbital and insensitive to disorder, in good agreement with the experimental finding that increasing the In content enhances the carrier density and mobility. In a-IGZO, while most VO defects are deep donors, some of the defects act as shallow donors due to local environments different from those in crystalline oxides. As ionized O vacancies can capture electrons, it is suggested that these defects are responsible for positive shifts of the threshold voltage observed under positive gate bias stress. Under light illumination stress, VO defects can be ionized, becoming VO2+ defects due to the negative-U behavior. When electrons are captured by applying a negative bias voltage, ionized VO2+ defects return to the original neutral charge state. Through molecular dynamics simulations, we find that the initial neutral state is restored by annealing, in good agreement with experiments, although the annealing temperature depends on the local environment. Our calculations show that VO defects play an important role in the instability of a-IGZO-based devices.
Fabric defect detection based on visual saliency using deep feature and low-rank recovery
NASA Astrophysics Data System (ADS)
Liu, Zhoufeng; Wang, Baorui; Li, Chunlei; Li, Bicao; Dong, Yan
2018-04-01
Fabric defect detection plays an important role in improving the quality of fabric product. In this paper, a novel fabric defect detection method based on visual saliency using deep feature and low-rank recovery was proposed. First, unsupervised training is carried out by the initial network parameters based on MNIST large datasets. The supervised fine-tuning of fabric image library based on Convolutional Neural Networks (CNNs) is implemented, and then more accurate deep neural network model is generated. Second, the fabric images are uniformly divided into the image block with the same size, then we extract their multi-layer deep features using the trained deep network. Thereafter, all the extracted features are concentrated into a feature matrix. Third, low-rank matrix recovery is adopted to divide the feature matrix into the low-rank matrix which indicates the background and the sparse matrix which indicates the salient defect. In the end, the iterative optimal threshold segmentation algorithm is utilized to segment the saliency maps generated by the sparse matrix to locate the fabric defect area. Experimental results demonstrate that the feature extracted by CNN is more suitable for characterizing the fabric texture than the traditional LBP, HOG and other hand-crafted features extraction method, and the proposed method can accurately detect the defect regions of various fabric defects, even for the image with complex texture.
NASA Astrophysics Data System (ADS)
Barbagiovanni, E. G.; Strano, V.; Franzò, G.; Crupi, I.; Mirabella, S.
2015-03-01
Two deep level defects (2.25 and 2.03 eV) associated with oxygen vacancies (Vo) were identified in ZnO nanorods (NRs) grown by low cost chemical bath deposition. A transient behaviour in the photoluminescence (PL) intensity of the two Vo states was found to be sensitive to the ambient environment and to NR post-growth treatment. The largest transient was found in samples dried on a hot plate with a PL intensity decay time, in air only, of 23 and 80 s for the 2.25 and 2.03 eV peaks, respectively. Resistance measurements under UV exposure exhibited a transient behaviour in full agreement with the PL transient, indicating a clear role of atmospheric O2 on the surface defect states. A model for surface defect transient behaviour due to band bending with respect to the Fermi level is proposed. The results have implications for a variety of sensing and photovoltaic applications of ZnO NRs.
Two different carbon-hydrogen complexes in silicon with closely spaced energy levels
NASA Astrophysics Data System (ADS)
Stübner, R.; Kolkovsky, Vl.; Weber, J.
2015-08-01
An acceptor and a single donor state of carbon-hydrogen defects (CHA and CHB) are observed by Laplace deep level transient spectroscopy at 90 K. CHA appears directly after hydrogenation by wet chemical etching or hydrogen plasma treatment, whereas CHB can be observed only after a successive annealing under reverse bias at about 320 K. The activation enthalpies of these states are 0.16 eV for CHA and 0.14 eV for CHB. Our results reconcile previous controversial experimental results. We attribute CHA to the configuration where substitutional carbon binds a hydrogen atom on a bond centered position between carbon and the neighboring silicon and CHB to another carbon-hydrogen defect.
Two-Dimensional Halide Perovskites: Tuning Electronic Activities of Defects
Liu, Yuanyue; Xiao, Hai; Goddard, William A.
2016-04-21
Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX 2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gapmore » states. Here, we show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX 2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them.« less
Alberi, K.; Fluegel, B.; Moutinho, H.; Dhere, R. G.; Li, J. V.; Mascarenhas, A.
2013-01-01
Thin-film polycrystalline semiconductors are currently at the forefront of inexpensive large-area solar cell and integrated circuit technologies because of their reduced processing and substrate selection constraints. Understanding the extent to which structural and electronic defects influence carrier transport in these materials is critical to controlling the optoelectronic properties, yet many measurement techniques are only capable of indirectly probing their effects. Here we apply a novel photoluminescence imaging technique to directly observe the low temperature diffusion of photocarriers through and across defect states in polycrystalline CdTe thin films. Our measurements show that an inhomogeneous distribution of localized defect states mediates long-range hole transport across multiple grain boundaries to locations exceeding 10 μm from the point of photogeneration. These results provide new insight into the key role deep trap states have in low temperature carrier transport in polycrystalline CdTe by revealing their propensity to act as networks for hopping conduction. PMID:24158163
Influence of deep defects on device performance of thin-film polycrystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Fehr, M.; Simon, P.; Sontheimer, T.; Leendertz, C.; Gorka, B.; Schnegg, A.; Rech, B.; Lips, K.
2012-09-01
Employing quantitative electron-paramagnetic resonance analysis and numerical simulations, we investigate the performance of thin-film polycrystalline silicon solar cells as a function of defect density. We find that the open-circuit voltage is correlated to the density of defects, which we assign to coordination defects at grain boundaries and in dislocation cores. Numerical device simulations confirm the observed correlation and indicate that the device performance is limited by deep defects in the absorber bulk. Analyzing the defect density as a function of grain size indicates a high concentration of intra-grain defects. For large grains (>2 μm), we find that intra-grain defects dominate over grain boundary defects and limit the solar cell performance.
Donor defects and small polarons on the TiO2(110) surface
NASA Astrophysics Data System (ADS)
Moses, P. G.; Janotti, A.; Franchini, C.; Kresse, G.; Van de Walle, C. G.
2016-05-01
The role of defects in the chemical activity of the rutile TiO2(110) surface remains a rich topic of research, despite the rutile (110) being one of the most studied surfaces of transition-metal oxides. Here, we present results from hybrid functional calculations that reconcile apparently disparate views on the impact of donor defects, such as oxygen vacancies and hydrogen impurities, on the electronic structure of the (110) rutile surface. We find that the bridging oxygen vacancy and adsorbed or substitutional hydrogen are actually shallow donors, which do not induce gap states. The excess electrons from these donor centers tend to localize in the form of small polarons, which are the factual cause of the deep states ˜1 eV below the conduction band, often observed in photoelectron spectroscopy measurements. Our results offer a new framework for understanding the surface electronic structure of TiO2 and related oxides.
Defect physics in intermediate-band materials: Insights from an optimized hybrid functional
NASA Astrophysics Data System (ADS)
Han, Miaomiao; Zeng, Zhi; Frauenheim, Thomas; Deák, Peter
2017-10-01
Despite the efforts to implement the idea of a deep level impurity intermediate band (IB) into bulk solar cell materials, a breakthrough in efficiency increase has not yet been achieved. Taking Sn-doped CuGaS2 as an example, we investigate the problem here from the perspective of defect physics, considering all possible charge states of the dopant and its interaction with native defects. Using an optimized hybrid functional, we find that SnGa has not only a donor-type (+/0), but also an acceptor-type (0 /- ) charge transition level. We estimate the probability of the optical transition of an electron from/to the neutral defect to/from the conduction-band edge to be about equal, therefore, the lifetimes of the excited carriers are probably quite short, limiting the enhancement of the photocurrent. In addition, we find that doping with SnGa leads to the spontaneous formation of the intrinsic acceptor CuGa defects which passivate the donor SnGa and pin the Fermi level to a position (1.4 eV above the valence-band edge) where both defects are ionized. As a result, the possibility of absorption in the middle of the visible range gets lost. These two recombination and passivation mechanisms appear to be quite likely the case for other donors and other similar host materials as well, explaining some of the experimental bottlenecks with IB solar cells based on deep level impurities.
Vacancies and Vacancy-Mediated Self Diffusion in Cr 2 O 3 : A First-Principles Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medasani, Bharat; Sushko, Maria L.; Rosso, Kevin M.
Charged and neutral vacancies and vacancy mediated self diffusion in alpha-Cr2O3 were investigated using first principles density functional theory (DFT) and periodic supercell formalism. The vacancy formation energies of charged defects were calculated using the electrostatic finite-size corrections to account for electrostatic interactions between supercells and the corrections for the bandgap underestimation in DFT. Calculations predict that neutral oxygen (O) vacancies are predominant in chromium (Cr)-rich conditions and Cr vacancies with -2 charge state are the dominant defects in O-rich conditions. The charge transition levels of both O and Cr vacancies are deep within the bandgap indicating the stability ofmore » these defects. Transport calculations indicate that vacancy mediated diffusion along the basal plane has lower energy barriers for both O and Cr ions. The most favorable vacancy mediated self diffusion processes correspond to the diffusion of Cr ion in 3+ charge state and O ion in 2- state, respectively. Our calculations reveal that Cr triple defects comprised of Cr in octahedral interstitial sites with two adjacent Cr vacancies along the c-axis have a lower formation energy compared to that of charged Cr vacancies. The formation of such triple defects facilitate Cr self diffusion along the c-axis.« less
Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe 2
Li, Xufan; Puretzky, Alexander A.; Sang, Xiahan; ...
2017-05-18
Chemical vapor deposition (CVD) is one of the most promising, scalable synthetic techniques to enable large-area synthesis of two-dimensional (2D) transition metal dichalcogenides (TMDs) for the realization of next generation optoelectronic devices. However, defects formed during the CVD growth process currently limit the quality and electronic properties of 2D TMDs. Effective synthesis and processing strategies to suppress defects and enhance the quality of 2D TMDs are urgently needed. In this work, isoelectrnic doping to produce stable alloy is presented as a new strategy to suppress defects and enhance photoluminescence (PL) in CVD-grown TMD monolayers. The random, isoelectronic substitution of Wmore » atoms for Mo atoms in CVD-grown monolayers of Mo 1-xW xSe 2 (02 monolayers. The resultant decrease in defect-medicated non-radiative recombination in the Mo 0.82W 0.18Se 2 monolayers yielded ~10 times more intense PL and extended the carrier lifetime by a factor of 3 compared to pristine CVD-grown MoSe 2 monolayers grown under similar conditions. Low temperatures (4 125 K) PL from defect-related localized states confirms theoretical predictions that isoelectronic W alloying should suppress deep levels in MoSe 2, showing that the defect levels in Mo 1-xW xSe 2 monolayers are higher in energy and quenched more quickly than in MoSe 2. Isoelectronic substitution therefore appears to be a promising synthetic method to control the heterogeneity of 2D TMDs to realize the scalable production of high performance optoelectronic and electronic devices.« less
Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xufan; Puretzky, Alexander A.; Sang, Xiahan
Chemical vapor deposition (CVD) is one of the most promising, scalable synthetic techniques to enable large-area synthesis of two-dimensional (2D) transition metal dichalcogenides (TMDs) for the realization of next generation optoelectronic devices. However, defects formed during the CVD growth process currently limit the quality and electronic properties of 2D TMDs. Effective synthesis and processing strategies to suppress defects and enhance the quality of 2D TMDs are urgently needed. In this work, isoelectrnic doping to produce stable alloy is presented as a new strategy to suppress defects and enhance photoluminescence (PL) in CVD-grown TMD monolayers. The random, isoelectronic substitution of Wmore » atoms for Mo atoms in CVD-grown monolayers of Mo 1-xW xSe 2 (02 monolayers. The resultant decrease in defect-medicated non-radiative recombination in the Mo 0.82W 0.18Se 2 monolayers yielded ~10 times more intense PL and extended the carrier lifetime by a factor of 3 compared to pristine CVD-grown MoSe 2 monolayers grown under similar conditions. Low temperatures (4 125 K) PL from defect-related localized states confirms theoretical predictions that isoelectronic W alloying should suppress deep levels in MoSe 2, showing that the defect levels in Mo 1-xW xSe 2 monolayers are higher in energy and quenched more quickly than in MoSe 2. Isoelectronic substitution therefore appears to be a promising synthetic method to control the heterogeneity of 2D TMDs to realize the scalable production of high performance optoelectronic and electronic devices.« less
A review on single photon sources in silicon carbide.
Lohrmann, A; Johnson, B C; McCallum, J C; Castelletto, S
2017-03-01
This paper summarizes key findings in single-photon generation from deep level defects in silicon carbide (SiC) and highlights the significance of these individually addressable centers for emerging quantum applications. Single photon emission from various defect centers in both bulk and nanostructured SiC are discussed as well as their formation and possible integration into optical and electrical devices. The related measurement protocols, the building blocks of quantum communication and computation network architectures in solid state systems, are also summarized. This includes experimental methodologies developed for spin control of different paramagnetic defects, including the measurement of spin coherence times. Well established doping, and micro- and nanofabrication procedures for SiC may allow the quantum properties of paramagnetic defects to be electrically and mechanically controlled efficiently. The integration of single defects into SiC devices is crucial for applications in quantum technologies and we will review progress in this direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlovski, V. V.; Lebedev, A. A.; Bogdanova, E. V.
The model of conductivity compensation in SiC under irradiation with high-energy electrons is presented. The following processes are considered to cause a decrease in the free carrier concentration: (i) formation of deep traps by intrinsic point defects, Frenkel pairs produced by irradiation; (ii) 'deactivation' of the dopant via formation of neutral complexes including a dopant atom and a radiation-induced point defect; and (iii) formation of deep compensating traps via generation of charged complexes constituted by a dopant atom and a radiation-induced point defect. To determine the compensation mechanism, dose dependences of the deep compensation of moderately doped SiC (CVD) undermore » electron irradiation have been experimentally studied. It is demonstrated that, in contrast to n-FZ-Si, moderately doped SiC (CVD) exhibits linear dependences (with a strongly nonlinear dependence observed for Si). Therefore, the conductivity compensation in silicon carbide under electron irradiation occurs due to deep traps formed by primary radiation defects (vacancies and interstitial atoms) in the silicon and carbon sublattices. It is known that the compensation in silicon is due to the formation of secondary radiation defects that include a dopant atom. It is shown that, in contrast to n-SiC (CVD), primary defects in only the carbon sublattice of moderately doped p-SiC (CVD) cannot account for the compensation process. In p-SiC, either primary defects in the silicon sublattice or defects in both sublattices are responsible for the conductivity compensation.« less
Huang, Bolong
2016-05-11
We investigated the mechanism of the intrinsic persistent luminescence of Er2O3 in the A-type lattice based on first-principles calculations. We found that the native point defects were engaged in mutual subtle interactions in the form of chemical reactions between different charge states. The release of energy related to lattice distortion facilitates the conversion of energy for electrons to be transported between the valence band and the trap levels or even between the deep trap levels so as to generate persistent luminescence. The defect transitions that take place along the zero-phonon line release energy to enable optical transitions, with the exact amount of negative effective correlation energy determined by the lattice distortions. Our calculations on the thermodynamic transition levels confirm that both the visible and NIR experimentally observed intrinsic persistent luminescence (phosphor or afterglow) are related to the thermodynamic transition levels of oxygen-related defects, and the thermodynamic transition levels within different charge states for these defects are independent of the chemical potentials of the given species. Lattice distortion defects such as anion Frenkel (a-Fr) pair defects play an important role in transporting O-related defects between different lattice sites. To obtain red persistent luminescence that matches the biological therapeutic window, it is suggested to increase the electron transition levels between high-coordinated O vacancies and related metastable a-Fr defects; a close-packed core-shell structure is required to quench low-coordinated O-related defects so as to reduce the green band luminescence. We further established a conversed chain reaction (CCR) model to interpret the energy conversion process of persistent luminescence in terms of the inter-reactions of native point defects between different charge states. It is advantageous to use the study of defect levels combined with formation energies to suggest limits to doping energy and explain photostimulated luminescence in terms of native point defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yuanyue; Xiao, Hai; Goddard, William A.
Two-dimensional (2D) halide perovskites are emerging as promising candidates for nanoelectronics and optoelectronics. To realize their full potential, it is important to understand the role of those defects that can strongly impact material properties. In contrast to other popular 2D semiconductors (e.g., transition metal dichalcogenides MX 2) for which defects typically induce harmful traps, we show that the electronic activities of defects in 2D perovskites are significantly tunable. For example, even with a fixed lattice orientation one can change the synthesis conditions to convert a line defect (edge or grain boundary) from electron acceptor to inactive site without deep gapmore » states. Here, we show that this difference originates from the enhanced ionic bonding in these perovskites compared with MX 2. The donors tend to have high formation energies and the harmful defects are difficult to form at a low halide chemical potential. Thus, we unveil unique properties of defects in 2D perovskites and suggest practical routes to improve them.« less
NASA Technical Reports Server (NTRS)
Lagowski, J.; Lin, D. G.; Chen, T.-P.; Skowronski, M.; Gatos, H. C.
1985-01-01
A dominant hole trap has been identified in p-type bulk GaAs employing deep level transient and photocapacitance spectroscopies. The trap is present at a concentration up to about 4 x 10 to the 16th per cu cm, and it has two charge states with energies 0.54 + or - 0.02 and 0.77 + or - 0.02 eV above the top of the valence band (at 77 K). From the upper level the trap can be photoexcited to a persistent metastable state just as the dominant midgap level, EL2. Impurity analysis and the photoionization characteristics rule out association of the trap with impurities Fe, Cu, or Mn. Taking into consideration theoretical results, it appears most likely that the two charge states of the trap are the single and double donor levels of the arsenic antisite As(Ga) defect.
Progression of Local Glaucomatous Damage Near Fixation as Seen with Adaptive Optics Imaging.
Hood, Donald C; Lee, Dongwon; Jarukasetphon, Ravivarn; Nunez, Jason; Mavrommatis, Maria A; Rosen, Richard B; Ritch, Robert; Dubra, Alfredo; Chui, Toco Y P
2017-07-01
Deep glaucomatous defects near fixation were followed over time with an adaptive optics-scanning light ophthalmoscope (AO-SLO) to better understand the progression of these defects and to explore the use of AO-SLO in detecting them. Six eyes of 5 patients were imaged with an AO-SLO from 2 to 4 times for a range of 14.6 to 33.6 months. All eyes had open-angle glaucoma with deep defects in the superior visual field (VF) near fixation as defined by 10-2 VFs with 5 or more points less than -15 dB; two of the eyes had deep defects in the inferior VF as well. AO-SLO images were obtained around the temporal edge of the disc. In 4 of the 6 eyes, the edge of the inferior-temporal disc region of the retinal nerve fiber (RNF) defect seen on AO-SLO moved closer to fixation within 10.6 to 14.7 months. In 4 eyes, RNF bundles in the affected region appeared to lose contrast and/or disappear. Progressive changes in RNF bundles associated with deep defects on 10-2 VFs can be seen within about 1 year with AO-SLO imaging. These changes are well below the spatial resolution of the 10-2 VF. On the other hand, subtle thinning of regions with RNF bundles is not easy to see with current AO-SLO technology, and may be better followed with OCT. AO-SLO imaging may be useful in clinical trials designed to see very small changes in deep defects.
Defect interactions in GaAs single crystals
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.
1984-01-01
The two-sublattice structural configuration of GaAs and deviations from stoichiometry render the generation and interaction of electrically active point defects (and point defect complexes) critically important for device applications and very complex. Of the defect-induced energy levels, those lying deep into the energy band are very effective lifetime ""killers". The level 0.82 eV below the condition band, commonly referred to as EL2, is a major deep level, particularly in melt-grown GaAs. This level is associated with an antisite defect complex (AsGa - VAS). Possible mechanisms of its formation and its annihilation were further developed.
Characterization of irradiation induced deep and shallow impurities
NASA Astrophysics Data System (ADS)
Treberspurg, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Krammer, Manfred; Valentan, Manfred
2013-12-01
Silicon Detectors close to the interaction point of the High Luminosity Large Hardron Collider (HL-LHC) have to withstand a harsh irradiation environment. In order to evaluate the behaviour of shallow and deep defects, induced by neutron irradiation, spreading resistance resistivity measurements and capacitance voltage measurements have been performed. These measurements, deliver information about the profile of shallow impurities after irradiation as well as indications of deep defects in the Space Charge Region (SCR) and the Electrical Neutral Bulk (ENB). By considering the theoretical background of the measurement both kinds of defects can be investigated independently from each other.
Electronic properties of deep-level defects in proton irradiated AlGaAs-GaAs solar cells
NASA Technical Reports Server (NTRS)
Li, S. S.
1981-01-01
Deep level transient spectroscopy and capacitance voltage techniques as well as analysis of the forward current voltage (I-V) characteristics and SEM-EIC data were carried out for proton irradiated GaAs solar cells over a wide range of proton energies and proton fluences. Defect and recombination parameters such as defect energy levels and density, carrier capture cross sections and lifetimes as well as diffusion lengths in the undoped n-GaAs LPE layers were determined. Good correlation between these defect parameters and solar cell performance parameters was obtained for GaAs solar cells irradiated by 200 and 290 KeV protons. It was found that 200 to 290 KeV protons will produce the most defects and damages to the GaAs solar cell structure used. The influence of the low temperature (200 to 400 C) periodic thermal annealing on the deep level defects and the performance of the 200 KeV proton irradiated cells is discussed.
Li, Linqiu; Long, Run; Prezhdo, Oleg V
2018-06-13
Two-dimensional transition metal dichalcogenides (TMDs) have drawn strong attention due to their unique properties and diverse applications. However, TMD performance depends strongly on material quality and defect morphology. Experiments show that samples grown by chemical vapor deposition (CVD) outperform those obtained by physical vapor deposition (PVD). Experiments also show that CVD samples exhibit vacancy defects, while antisite defects are frequently observed in PVD samples. Our time-domain ab initio study demonstrates that both antisites and vacancies accelerate trapping and nonradiative recombination of charge carriers, but antisites are much more detrimental than vacancies. Antisites create deep traps for both electrons and holes, reducing energy gaps for recombination, while vacancies trap primarily holes. Antisites also perturb band-edge states, creating significant overlap with the trap states. In comparison, vacancy defects overlap much less with the band-edge states. Finally, antisites can create pairs of electron and hole traps close to the Fermi energy, allowing trapping by thermal activation from the ground state and strongly contributing to charge scattering. As a result, antisites accelerate charge recombination by more than a factor of 8, while vacancies enhance the recombination by less than a factor of 2. Our simulations demonstrate a general principle that missing atoms are significantly more benign than misplaced atoms, such as antisites and adatoms. The study rationalizes the existing experimental data, provides theoretical insights into the diverse behavior of different classes of defects, and generates guidelines for defect engineering to achieve high-performance electronic, optoelectronic, and solar-cell devices.
Noise and degradation of amorphous silicon devices
NASA Astrophysics Data System (ADS)
Bakker, J. P. R.
2003-10-01
Electrical noise measurements are reported on two devices of the disordered semiconductor hydrogenated amorphous silicon (a-Si:H). The material is applied in sandwich structures and in thin-film transistors (TFTs). In a sandwich configuration of an intrinsic layer and two thin doped layers, the observed 1/f resistance noise can be attributed to a distribution of energy levels in the system. Two candidates which eventually could explain the origin of the energy distribution are investigated: generation-recombination noise and long-range potential fluctuations. A simulation program was applied to fit the current-voltage characteristics and resolves the defect density, the energy position and width of the Gaussian distributions of deep defects. Generation-recombination (g-r) is calculated for a one-dimensional semiconductor device with traps, taking the transport of local fluctuations into account. Although the times characterizing capture and emission for deep defects are in the right (ms) range, the calculated noise intensity is five to six orders of magnitude below the measured noise level. Another noise source must cause the 1/f noise in a-Si:H. The alternative is provided by the theory of long-range potential fluctuations. The timescale of the fluctuations is again the capture or emission time for deep defects. When an electron is emitted or captured, the charge state of a deep defect fluctuates. As a result, the potential around that defect will fluctuate, being screened by the surrounding defects. Free electrons will instantaneously adjust to the local potential. The adjustment causes a resistance fluctuation, which is measured as a voltage fluctuation in presence of a constant current. The theory predicts the noise intensity accurately, without any adjustable parameters. Unlike the intensity, the spectral shape is fitted by adjustment of two parameters of the potential landscape. The complete temperature dependence of the noise spectra is consistently described by a Gaussian distribution of potential barriers, located 0.27 eV above the conduction band edge, with a halfwidth of 0.09 eV. A large number of experiments is explained by the theory of long-range potential fluctuations: the thickness dependence, the absence of an isotope effect and the analogous results for oppositely doped devices. From these experiments, it is concluded that a universal potential landscape exists in undoped a-Si:H. Further, the relation between degradation upon prolonged light-soaking and noise is studied. After degradation, the curvature of noise spectra is unaffected, while the intensity increases slightly. These observations are consistent with the theoretical predictions using the observed increase of the defect density. It seems that the potential landscape does not change significantly upon degradation. Noise measurements in the sub-threshold regime of a-Si:H TFTs turn out to yield diffusion noise. Diffusion of electrons through the one-dimensional channel is identified as the source of the noise. The drift mobility extracted from the combined noise and conduction data is below the value that characterizes the on-state. The number of free electrons as determined from combined noise and conduction measurements are in quantitative agreement with an alternative determination from conduction measurements only.
Thermal degradation of InP in open tube processing: deep-level photoluminescence
NASA Astrophysics Data System (ADS)
Banerjee, S.; Srivastava, A. K.; Arora, B. M.
1990-09-01
Thermal processing of InP at temperatures above 500 °C is indispensable in the growth and device fabrication of InGaAsP alloy semiconductors for optoelectronic and microwave applications. Incongruous loss of P at these temperatures creates native defects and their complexes. The presence of such defects modifies the electrical and optical properties of the material resulting in poor device performance. In addition, native defects play a significant role in dopant diffusion which is a topic of current interest. We have measured deep-level photoluminescence (PL) on undoped InP after heat treatments at 500 and 550 °C in an open-tube processing system in different protective environments of powder InP, and Sn-InP melt together with an InP cover. In this paper we shall present the PL results which have bearing on the question of defects. We find that (1) the Sn-InP melt provides better protection in preserving the overall luminescence in InP; (2) the deep-level PL related to defects has at least two components in the virgin samples, viz., MnIn, and band C, which is a native defect complex related to VP; (3) a new defect appears in samples heated in a P-deficient environment; and (4) the enhancement in the deep-level luminescence intensity after heat treatment can be attributed to the excess defect concentrations existing under nonequilibrium conditions of an open-tube processing environment.
NASA Astrophysics Data System (ADS)
Soykal, Oney O.; Reinecke, Thomas L.
We develop coherent control via Stark effect over the optical transition energies of silicon monovacancy deep center in hexagonal silicon carbide. We show that this defect's unique asymmetry properties of its piezoelectric tensor and Kramer's degenerate high-spin ground/excited state configurations can be used to create new possibilities in quantum information technology ranging from photonic networks to quantum key distribution. We also give examples of its qubit implementations via precise electric field control. This work was supported in part by ONR and by the Office of Secretary of Defense, Quantum Science and Engineering Program.
Relative stability of deep- versus shallow-side bone levels in angular proximal infrabony defects.
Heins, P; Hartigan, M; Low, S; Chace, R
1989-01-01
The relative changes with time, in the position of the coronal margin of the mesial and distal bone of proximal, angular infrabony defects, were investigated. Tracings of the radiographs of 51 mandibular posterior sites, treated by flap curettage, with a mean post-surgical duration of 11.8 years, were measured using a digitizer pad. The group consisting of shallow-side sites (N = 51), exhibited no significant change in the bone height with time; however, there was a significant decrease in bone height in the deep-side group (N = 51). The mean area of proximal bone decreased significantly with time. The defects were divided into early (N = 25) and advanced (N = 26) angular groups, and then into deep- and shallow-side subgroups. In the early defect group, there was a significant decrease in the mean bone height of the deep-side subgroup. There were no differences in the changes of mean bone level of the remaining 3 subgroups with time. There was no correlation between changes in bone levels of adjacent mesial and distal sides of angular defects with time (r = 0.27). There was no difference between the deep- and shallow-side groups in the number of sites which gained, lost or evidenced no change in bone height. In the study population, the bone height of 73% of the deep-side, and 84% of the shallow-side sites was either unchanged or in a more coronal position.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, S.; Yan, F.; Li, J.
2011-01-01
Photoluminescence (PL) imaging is used to detect areas in multi-crystalline silicon that appear dark in band-to-band imaging due to high recombination. Steady-state PL intensity can be correlated to effective minority-carrier lifetime, and its temperature dependence can provide additional lifetime-limiting defect information. An area of high defect density has been laser cut from a multi-crystalline silicon solar cell. Both band-to-band and defect-band PL imaging have been collected as a function of temperature from {approx}85 to 350 K. Band-to-band luminescence is collected by an InGaAs camera using a 1200-nm short-pass filter, while defect band luminescence is collected using a 1350-nm long passmore » filter. The defect band luminescence is characterized by cathodoluminescence. Small pieces from adjacent areas within the same wafer are measured by deep-level transient spectroscopy (DLTS). DLTS detects a minority-carrier electron trap level with an activation energy of 0.45 eV on the sample that contained defects as seen by imaging.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, S.; Yan, F.; Li, J.
2011-07-01
Photoluminescence (PL) imaging is used to detect areas in multi-crystalline silicon that appear dark in band-to-band imaging due to high recombination. Steady-state PL intensity can be correlated to effective minority-carrier lifetime, and its temperature dependence can provide additional lifetime-limiting defect information. An area of high defect density has been laser cut from a multi-crystalline silicon solar cell. Both band-to-band and defect-band PL imaging have been collected as a function of temperature from ~85 to 350 K. Band-to-band luminescence is collected by an InGaAs camera using a 1200-nm short-pass filter, while defect band luminescence is collected using a 1350-nm long passmore » filter. The defect band luminescence is characterized by cathodo-luminescence. Small pieces from adjacent areas within the same wafer are measured by deep-level transient spectroscopy (DLTS). DLTS detects a minority-carrier electron trap level with an activation energy of 0.45 eV on the sample that contained defects as seen by imaging.« less
Metastable defect response in CZTSSe from admittance spectroscopy
Koeper, Mark J.; Hages, Charles J.; Li, Jian V.; ...
2017-10-02
Admittance spectroscopy is a useful tool used to study defects in semiconductor materials. However, metastable defect responses in non-ideal semiconductors can greatly impact the measurement and therefore the interpretation of results. Here, admittance spectroscopy was performed on Cu2ZnSn(S,Se) 4 where metastable defect response is illustrated due to the trapping of injected carriers into a deep defect state. To investigate the metastable response, admittance measurements were performed under electrically and optically relaxed conditions in comparison to a device following a low level carrier-injection pretreatment. The relaxed measurement demonstrates a single capacitance signature while two capacitance signatures are observed for the devicemore » measured following carrier-injection. The deeper level signature, typically reported for kesterites, is activated by charge trapping following carrier injection. Both signatures are attributed to bulk level defects. The significant metastable response observed on kesterites due to charge trapping obscures accurate interpretation of defect levels from admittance spectroscopy and indicates that great care must be taken when performing and interpreting this measurement on non-ideal devices.« less
Quantum metrology with a single spin-3/2 defect in silicon carbide
NASA Astrophysics Data System (ADS)
Soykal, Oney O.; Reinecke, Thomas L.
We show that implementations for quantum sensing with exceptional sensitivity and spatial resolution can be made using the novel features of semiconductor high half-spin multiplet defects with easy-to-implement optical detection protocols. To achieve this, we use the spin- 3 / 2 silicon monovacancy deep center in hexagonal silicon carbide based on our rigorous derivation of this defect's ground state and of its electronic and optical properties. For a single VSi- defect, we obtain magnetic field sensitivities capable of detecting individual nuclear magnetic moments. We also show that its zero-field splitting has an exceptional strain and temperature sensitivity within the technologically desirable near-infrared window of biological systems. Other point defects, i.e. 3d transition metal or rare-earth impurities in semiconductors, may also provide similar opportunities in quantum sensing due to their similar high spin (S >= 3 / 2) configurations. This work was supported in part by ONR and by the Office of Secretary of Defense, Quantum Science and Engineering Program.
Lee, Woo-Jung; Yu, Hye-Jung; Wi, Jae-Hyung; Cho, Dae-Hyung; Han, Won Seok; Yoo, Jisu; Yi, Yeonjin; Song, Jung-Hoon; Chung, Yong-Duck
2016-08-31
We fabricated Cu(In,Ga)Se2 (CIGS) solar cells with a chemical bath deposition (CBD)-ZnS buffer layer grown with varying ammonia concentrations in aqueous solution. The solar cell performance was degraded with increasing ammonia concentration, due to actively dissolved Zn atoms during CBD-ZnS precipitation. These formed interfacial defect states, such as hydroxide species in the CBD-ZnS film, and interstitial and antisite Zn defects at the p-n heterojunction. After light/UV soaking, the CIGS solar cell performance drastically improved, with a rise in fill factor. With the Zn-based buffer layer, the light soaking treatment containing blue photons induced a metastable state and enhanced the CIGS solar cell performance. To interpret this effect, we suggest a band structure model of the p-n heterojunction to explain the flow of photocarriers under white light at the initial state, and then after light/UV soaking. The determining factor is a p+ defect layer, containing an amount of deep acceptor traps, located near the CIGS surface. The p+ defect layer easily captures photoexcited electrons, and then when it becomes quasi-neutral, attracts photoexcited holes. This alters the barrier height and controls the photocurrent at the p-n junction, and fill factor values, determining the solar cell performance.
HgCdTe Surface and Defect Study Program.
1984-07-01
double layer heterojunction (DLHJ) devices. There are however many complications on this once we consider implanted junctions, LWIR devices or even the...It is not possible from this measurement to discriminate between real interface states and charge nonuniformities . Admittance spectroscopy (discussed...earlier) and deep level transient spectroscopy (DLTS) are not usually affected by these nonuniformities due to their observation of a speci- fic
Donor defects and small polarons on the TiO{sub 2}(110) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moses, P. G.; Janotti, A., E-mail: janotti@udel.edu; Van de Walle, C. G.
2016-05-14
The role of defects in the chemical activity of the rutile TiO{sub 2}(110) surface remains a rich topic of research, despite the rutile (110) being one of the most studied surfaces of transition-metal oxides. Here, we present results from hybrid functional calculations that reconcile apparently disparate views on the impact of donor defects, such as oxygen vacancies and hydrogen impurities, on the electronic structure of the (110) rutile surface. We find that the bridging oxygen vacancy and adsorbed or substitutional hydrogen are actually shallow donors, which do not induce gap states. The excess electrons from these donor centers tend tomore » localize in the form of small polarons, which are the factual cause of the deep states ∼1 eV below the conduction band, often observed in photoelectron spectroscopy measurements. Our results offer a new framework for understanding the surface electronic structure of TiO{sub 2} and related oxides.« less
Thermally Stimulated Currents in Nanocrystalline Titania
Bruzzi, Mara; Mori, Riccardo; Baldi, Andrea; Cavallaro, Alessandro; Scaringella, Monica
2018-01-01
A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO2. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5–630 K), in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC) emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 1014–1018 cm−3, associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies. PMID:29303976
Thermally Stimulated Currents in Nanocrystalline Titania.
Bruzzi, Mara; Mori, Riccardo; Baldi, Andrea; Carnevale, Ennio Antonio; Cavallaro, Alessandro; Scaringella, Monica
2018-01-05
A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO₂. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5-630 K), in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC) emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 10 14 -10 18 cm -3 , associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies.
Charge Trapping Properties of Ge Nanocrystals Grown via Solid-State Dewetting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Steven; Jadli, I.; Aouassa, M.
2018-05-04
In the present work, we report on the charge trapping properties of Germanium Nanocrystals (Ge NCs) self assembled on SiO2 thin layer for promising applications in next-generation non volatile memory by the means of Deep Level Transient Spectroscopy (DLTS) and high frequency C-V method. The Ge NCs were grown via dewetting phenomenon at solid state by Ultra-High Vacuum (UHV) annealing and passivated with silicon before SiO2 capping. The role of the surface passivation is to reduce the electrical defect density at the Ge NCs-SiO2 interface. The presence of the Ge NCs in the oxide of the MOS capacitors strongly affectsmore » the C-V characteristics and increases the accumulation capacitance, causes a negative flat band voltage (VFB) shift. The DLTS has been used to study the individual Ge NCs as a single point deep level defect in the oxide. DLTS reveals two main features: the first electron traps around 255 K could correspond to dangling bonds at the Si/SiO2 interface and the second, at high-temperature (>300 K) response, could be originated from minority carrier generation in Ge NCs.« less
Defect levels of semi-insulating CdMnTe:In crystals
NASA Astrophysics Data System (ADS)
Kim, K. H.; Bolotinikov, A. E.; Camarda, G. S.; Hossain, A.; Gul, R.; Yang, G.; Cui, Y.; Prochazka, J.; Franc, J.; Hong, J.; James, R. B.
2011-06-01
Using photoluminescence (PL) and current deep-level transient spectroscopy (I-DLTS), we investigated the electronic defects of indium-doped detector-grade CdMnTe:In (CMT:In) crystals grown by the vertical Bridgman method. We similarly analyzed CdZnTe:In (CZT:In) and undoped CdMnTe (CMT) crystals grown under the amount of same level of excess Te and/or indium doping level to detail the fundamental properties of the electronic defect structure more readily. Extended defects, existing in all the samples, were revealed by synchrotron white beam x-ray diffraction topography and scanning electron microscopy. The electronic structure of CMT is very similar to that of CZT, with shallow traps, A-centers, Cd vacancies, deep levels, and Te antisites. The 1.1-eV deep level, revealed by PL in earlier studies of CZT and CdTe, were attributed to dislocation-induced defects. In our I-DLTS measurements, the 1.1-eV traps showed different activation energies with applied bias voltage and an exponential dependence on the trap-filling time, which are typical characteristics of dislocation-induced defects. We propose a new defect-trap model for indium-doped CMT crystals.
Stavropoulos, Andreas; Wikesjö, Ulf M E
2010-06-01
To evaluate the influence of defect dimensions on periodontal wound healing/regeneration in intrabony defects following implantation of a deproteinized bovine bone/collagen matrix under provisions for guided tissue regeneration. Contra-lateral one-wall intrabony [6 x 6 mm (wide/deep) versus 4 x 4 mm (narrow/shallow)] periodontal defects were surgically created at the edentulated mesial aspect of the mandibular first molars in three Labradors, i.e., three defects in each category. The defects were implanted with the bovine bone/collagen matrix and covered with a collagen membrane. Histologic/histometric analysis followed an 18-month healing interval. New cementum encompassed the entire intrabony component in both wide/deep (5.6 +/- 0.5 mm) and narrow/shallow (4.2 +/- 0.1 mm) defects; bone formation amounted to 5.6 +/- 0.6 and 4.0 +/- 0.8 mm, respectively. Mineralized bone encompassed 57.5%versus 65% and the bone biomaterial 11.6%versus 13.1% of the defect space. A periodontal ligament with a width and composition similar to that of the resident periodontal ligament encompassing the entire aspect of the defects was observed. Root resorption/ankylosis was rare. Both wide/deep and narrow/shallow intrabony defects showed a substantial potential for periodontal regeneration in this pre-clinical model. The contribution of the bovine bone/collagen matrix and guided tissue regeneration to this regenerative potential is not clear.
Ng, Annie; Ren, Zhiwei; Shen, Qian; Cheung, Sin Hang; Gokkaya, Huseyin Cem; So, Shu Kong; Djurišić, Aleksandra B; Wan, Yangyang; Wu, Xiaojun; Surya, Charles
2016-12-07
Synthesis of high quality perovskite absorber is a key factor in determining the performance of the solar cells. We demonstrate that hybrid chemical vapor deposition (HCVD) growth technique can provide high level of versatility and repeatability to ensure the optimal conditions for the growth of the perovskite films as well as potential for batch processing. It is found that the growth ambient and degree of crystallization of CH 3 NH 3 PbI 3 (MAPI) have strong impact on the defect density of MAPI. We demonstrate that HCVD process with slow postdeposition cooling rate can significantly reduce the density of shallow and deep traps in the MAPI due to enhanced material crystallization, while a mixed O 2 /N 2 carrier gas is effective in passivating both shallow and deep traps. By careful control of the perovskite growth process, a champion device with power conversion efficiency of 17.6% is achieved. Our work complements the existing theoretical studies on different types of trap states in MAPI and fills the gap on the theoretical analysis of the interaction between deep levels and oxygen. The experimental results are consistent with the theoretical predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Zhibo; Singh, Akshay; Chesin, Jordan
Prevalent droop mitigation strategies in InGaN-based LEDs require structural and/or compositional changes in the active region but are accompanied by a detrimental reduction in external quantum efficiency (EQE) due to increased Shockley-Read-Hall recombination. Understanding the optoelectronic impacts of structural modifications in InGaN/GaN quantum wells (QW) remains critical for emerging high-power LEDs. In this work, we use a combination of electron microscopy tools along with standard electrical characterization to investigate a wide range of low-droop InGaN/GaN QW designs. We find that chip-scale EQE is uncorrelated with extended well-width fluctuations observed in scanning transmission electron microscopy. Further, we observe delayed cathodoluminescence (CL)more » response from designs in which calculated band profiles suggest facile carrier escape from individual QWs. Samples with the slowest CL responses also exhibit the lowest EQEs and highest QW defect densities in deep level optical spectroscopy. We propose a model in which the electron beam (i) passivates deep level defect states and (ii) drives charge carrier accumulation and subsequent reduction of the built-in field across the multi-QW active region, resulting in delayed radiative recombination. Finally, we correlate CL rise dynamics with capacitance-voltage measurements and show that certain early-time components of the CL dynamics reflect the open circuit carrier population within one or more QWs.« less
Polarization switching in undoped and La-doped TlInS2 ferroelectric-semiconductors
NASA Astrophysics Data System (ADS)
Seyidov, MirHasan Yu.; Mikailzade, Faik A.; Suleymanov, Rauf A.; Aliyeva, Vafa B.; Mammadov, Tofig G.; Sharifov, Galib M.
2017-12-01
Dielectric hysteresis loops of pure and lanthanum doped TlInS2 ferroelectric-semiconductors were studied at the frequency 50 Hz for different temperatures below the Curie temperature (Tc). It has been revealed that, without any poling procedure, pure TlInS2 exhibits normal single hysteresis loops at T < Tc. After electric field-cooled treatment of TlInS2 the shape of hysteresis loops was strongly affected by corresponding charged deep level defects which were previously activated during the poling process. As a result, an additional defect polarization state from space charges accumulated on the intrinsic deep level defects has been revealed in pure TlInS2 at the temperatures below Tc. Besides, unusual multiple hysteresis loops were observed in La doped TlInS2 at T < Tc after application of different external perturbations (electric field, exposition and memory effect) to the sample. Measurements of the hysteresis loops in TlInS2:La revealed the slim single, double and even triple polarization-electric field (P-E) hysteresis loops. This intriguing phenomenon is attributed to the domain pinning by photo- and electrically active La-impurity centers. The temperature variation of double-hysteresis loop was also investigated. Due to the heat elimination of the random local defect polar moments, the double-hysteresis loops were transformed into a normal single hysteresis loops on increasing the temperature.
Mir, Wasim J; Warankar, Avinash; Acharya, Ashutosh; Das, Shyamashis; Mandal, Pankaj; Nag, Angshuman
2017-06-01
Colloidal lead halide based perovskite nanocrystals (NCs) have been recently established as an interesting class of defect-tolerant NCs with potential for superior optoelectronic applications. The electronic band structure of thallium halides (TlX, where X = Br and I) show a strong resemblance to lead halide perovskites, where both Pb 2+ and Tl + exhibit a 6s 2 inert pair of electrons and strong spin-orbit coupling. Although the crystal structure of TlX is not perovskite, the similarities of its electronic structure with lead halide perovskites motivated us to prepare colloidal TlX NCs. These TlX NCs exhibit a wide bandgap (>2.5 eV or <500 nm) and the potential to exhibit a reduced density of deep defect states. Optical pump terahertz (THz) probe spectroscopy with excitation fluence in the range of 0.85-5.86 × 10 13 photons per cm 2 on NC films shows that the TlBr NCs possess high effective carrier mobility (∼220 to 329 cm 2 V -1 s -1 ), long diffusion length (∼0.77 to 0.98 μm), and reasonably high photoluminescence efficiency (∼10%). This combination of properties is remarkable compared to other wide-bandgap (>2.5 eV) semiconductor NCs, which suggests a reduction in the deep-defect states in the TlX NCs. Furthermore, the ultrafast carrier dynamics and temperature-dependent reversible structural phase transition together with its influence on the optical properties of the TlX NCs are studied.
Inherited trombophilic states and pulmonary embolism
Konecny, Filip
2009-01-01
Pulmonary embolism (PE) and deep vein thrombosis (DVT) are associated with considerable morbidity and mortality, mostly, in case of PE for its lack of sensitivity of its early detection. For as much as twenty-five percent of PE patients the primary clinical appearance is unexpected death. While PE is one of the most avertable causes of hospital associated deaths, its diagnostics can be extremely difficult. Newly increased interest in an inherited thrombophilic states has been provoked by the discovery of several common inherited abnormalities, i.e. the prothrombin (PT) gene G20210A, Factor V Leiden (FVL) mutation (Arg506Gln), hyperhomocystenemia and homocysteiuria, Wein-Penzing defect, Sticky Platelet Syndrome (SPS), Quebec platelet disorder (QPD) and Sickle Cell Disease (SCD). PE incidence rates increase exponentially with age for both men and women, as they might harbor more than one thrombophilic state. Although the impact of genetic factors on PE is to some extent documented with lacking taxonomy, its genetic testing as its prevention strategy fall short. In this review thrombophilic states are divided into inherited or acquired, and only the inherited and newly documented are more closely followed. Factors are further grouped based on its thrombophilic taxonomy into; inherited defects of coagulation, inherited defects of fibrinolysis, inherited defects of enzymatic pathway in relation to development of VTE and PE and inherited defects of platelets in relation to PE. It was beyond the scope of this review to follow all inherited and newly recognized factors and its association to VTE and PE; however the overall taxonomy makes this review clinically valuable i.e. in relation to genetic testing as PE prevention. PMID:21772860
Inherited trombophilic states and pulmonary embolism.
Konecny, Filip
2009-01-01
Pulmonary embolism (PE) and deep vein thrombosis (DVT) are associated with considerable morbidity and mortality, mostly, in case of PE for its lack of sensitivity of its early detection. For as much as twenty-five percent of PE patients the primary clinical appearance is unexpected death. While PE is one of the most avertable causes of hospital associated deaths, its diagnostics can be extremely difficult. Newly increased interest in an inherited thrombophilic states has been provoked by the discovery of several common inherited abnormalities, i.e. the prothrombin (PT) gene G20210A, Factor V Leiden (FVL) mutation (Arg506Gln), hyperhomocystenemia and homocysteiuria, Wein-Penzing defect, Sticky Platelet Syndrome (SPS), Quebec platelet disorder (QPD) and Sickle Cell Disease (SCD). PE incidence rates increase exponentially with age for both men and women, as they might harbor more than one thrombophilic state. Although the impact of genetic factors on PE is to some extent documented with lacking taxonomy, its genetic testing as its prevention strategy fall short.In this review thrombophilic states are divided into inherited or acquired, and only the inherited and newly documented are more closely followed. Factors are further grouped based on its thrombophilic taxonomy into; inherited defects of coagulation, inherited defects of fibrinolysis, inherited defects of enzymatic pathway in relation to development of VTE and PE and inherited defects of platelets in relation to PE. It was beyond the scope of this review to follow all inherited and newly recognized factors and its association to VTE and PE; however the overall taxonomy makes this review clinically valuable i.e. in relation to genetic testing as PE prevention.
Metastable self-trapping of positrons in MgO
NASA Astrophysics Data System (ADS)
Monge, M. A.; Pareja, R.; González, R.; Chen, Y.
1997-01-01
Low-temperature positron annihilation measurements have been performed on MgO single crystals containing either cation or anion vacancies. The temperature dependence of the S parameter is explained in terms of metastable self-trapped positrons which thermally hop through the crystal lattice. The experimental results are analyzed using a three-state trapping model assuming transitions from both delocalized and self-trapped states to deep trapped states at vacancies. The energy level of the self-trapped state was determined to be (62+/-5) meV above the delocalized state. The activation enthalpy for the hopping process of self-trapped positrons appears to depend on the kind of defect present in the crystals.
NASA Astrophysics Data System (ADS)
Lutz, Jesse J.; Duan, Xiaofeng F.; Burggraf, Larry W.
2018-03-01
Valence excitation spectra are computed for deep-center silicon-vacancy defects in 3C, 4H, and 6H silicon carbide (SiC), and comparisons are made with literature photoluminescence measurements. Optimizations of nuclear geometries surrounding the defect centers are performed within a Gaussian basis-set framework using many-body perturbation theory or density functional theory (DFT) methods, with computational expenses minimized by a QM/MM technique called SIMOMM. Vertical excitation energies are subsequently obtained by applying excitation-energy, electron-attached, and ionized equation-of-motion coupled-cluster (EOMCC) methods, where appropriate, as well as time-dependent (TD) DFT, to small models including only a few atoms adjacent to the defect center. We consider the relative quality of various EOMCC and TD-DFT methods for (i) energy-ordering potential ground states differing incrementally in charge and multiplicity, (ii) accurately reproducing experimentally measured photoluminescence peaks, and (iii) energy-ordering defects of different types occurring within a given polytype. The extensibility of this approach to transition-metal defects is also tested by applying it to silicon-substituted chromium defects in SiC and comparing with measurements. It is demonstrated that, when used in conjunction with SIMOMM-optimized geometries, EOMCC-based methods can provide a reliable prediction of the ground-state charge and multiplicity, while also giving a quantitative description of the photoluminescence spectra, accurate to within 0.1 eV of measurement for all cases considered.
NASA Astrophysics Data System (ADS)
Akazawa, Masamichi; Yokota, Naoshige; Uetake, Kei
2018-02-01
We report experimental results for the detection of deep-level defects in GaN after Mg ion implantation before high-temperature annealing. The n-type GaN samples were grown on GaN free-standing substrates by metalorganic vapor phase epitaxy. Mg ions were implanted at 50 keV with a small dosage of 1.5×1011 cm-2, which did not change the conduction type of the n-GaN. By depositing Al2O3 and a Ni/Au electrode onto the implanted n-GaN, metal-oxide-semiconductor (MOS) diodes were fabricated and tested. The measured capacitance-voltage (C-V) characteristics showed a particular behavior with a plateau region and a region with an anomalously steep slope. Fitting to the experimental C-V curves by simulation showed the existence of deep-level defects and a reduction of the carrier concentration near the GaN surface. By annealing at 800oC, the density of the deep-level defects was reduced and the carrier concentration partially recovered.
Band edge states, intrinsic defects, and dopants in monolayer HfS2 and SnS2
NASA Astrophysics Data System (ADS)
Lu, Haichang; Guo, Yuzheng; Robertson, John
2018-02-01
Although monolayer HfS2 and SnS2 do not have a direct bandgap like MoS2, they have much higher carrier mobilities. Their band offsets are favorable for use with WSe2 in tunnel field effect transistors. Here, we study the effective masses, intrinsic defects, and substitutional dopants of these dichalcogenides. We find that HfS2 has surprisingly small effective masses for a compound that might appear partly ionic. The S vacancy in HfS2 is found to be a shallow donor while that in SnS2 is a deep donor. Substitutional dopants at the S site are found to be shallow. This contrasts with MoS2 where donors and acceptors are not always shallow or with black phosphorus where dopants can reconstruct into deep non-doping configurations. It is pointed out that HfS2 is more favorable than MoS2 for semiconductor processing because it has the more convenient CVD precursors developed for growing HfO2.
NASA Astrophysics Data System (ADS)
Tregulov, V. V.; Litvinov, V. G.; Ermachikhin, A. V.
2017-11-01
Defects in a semiconductor structure of a photoelectric converter of solar energy based on a p-n junction with an antireflection film of porous silicon on the front surface have been studied by current deeplevel transient spectroscopy. An explanation of the influence of thickness of a porous-silicon film formed by electrochemical etching on the character of transformation of defects with deep levels and efficiency of solarenergy conversion is proposed.
Deep level defects in dilute GaAsBi alloys grown under intense UV illumination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooney, P. M.; Tarun, Marianne; Beaton, D. A.
2016-07-21
Dilute GaAs1-xBix alloys exhibiting narrow band edge photoluminescence (PL) were recently grown by molecular beam epitaxy (MBE) with the growth surface illuminated by intense UV radiation. To investigate whether the improved optical quality of these films results from a reduction in the concentration of deep level defects, p+/n and n+/p junction diodes were fabricated on both the illuminated and dark areas of several samples. Deep Level Transient Spectroscopy (DLTS) measurements show that the illuminated and dark areas of both the n- and p-type GaAs1-xBix epi-layers have similar concentrations of near mid-gap electron and hole traps, in the 1015 cm-3 range.more » Thus the improved PL spectra cannot be explained by a reduction in non-radiative recombination at deep level defects. We note that carrier freeze-out above 35 K is significantly reduced in the illuminated areas of the p-type GaAs1-xBix layers compared to the dark areas, allowing the first DLTS measurements of defect energy levels close to the valence band edge. These defect levels may account for differences in the PL spectra from the illuminated and dark areas of un-doped layers with a similar Bi fraction.« less
Defects with Deep Levels in GaAs Induced by Plastic Deformation and Electron Irradiation
NASA Astrophysics Data System (ADS)
Haga, Toru; Suezawa, Masashi; Sumino, Koji
1988-10-01
Defects with deep electronic energy levels induced by plastic deformation at 450°C or electron irradiation at room temperature in boat-grown GaAs crystals are investigated by means of optical absorption. The optical absorption spectra associated with the induced defects are compared with that of grown-in defects EL2. Thermal stabilities of the defects are studied by tracing the changes in the absorption spectra due to isochronal annealing of the specimens. The defects induced by the above two procedures are identified not to be EL2, even though some part of the defects gives rise to absorption similar to that caused by EL2 in the spectral shape. The absorptions in both the deformed and the irradiated samples are mostly photo-unquenchable. Deformation-induced defects responsible for this absorption are found to be AsGa antisite-related defects which are less thermally stable than EL2. Irradiation-induced defects giving rise to this kind of absorption are far more unstable in comparison with the deformation-induced defects, and are mostly eliminated by annealing at temperatures lower than 300°C.
NASA Technical Reports Server (NTRS)
Weinberg, I.; Stupica, J. W.; Swartz, C. K.; Goradia, C.
1986-01-01
Lithium-counterdoped n(+)p silicon solar cells were irradiated by 10-MeV protons, and their performance was determined as a function of fluence. It was found that the cell with the highest lithium concentration exhibited the higher radiation resistance. Deep-level transient spectroscopy studies of deep-level defects were used to identify two lithium-related defects. Defect energy levels obtained after the present 10-MeV irradiations were found to be markedly different than those observed after previous 1-MeV electron irradiations. However, the present DLTS data are consistent with previous suggestion by Weinberg et al. (1984) of a lithium-oxygen interaction which tends to inhibit formation of an interstitial boron-oxygen defect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duc, Tran Thien; School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi; Pozina, Galia
2016-03-07
Development of high performance GaN-based devices is strongly dependent on the possibility to control and understand defects in material. Important information about deep level defects is obtained by deep level transient spectroscopy and minority carrier transient spectroscopy on as-grown and electron irradiated n-type bulk GaN with low threading dislocation density produced by halide vapor phase epitaxy. One hole trap labelled H1 (E{sub V} + 0.34 eV) has been detected on as-grown GaN sample. After 2 MeV electron irradiation, the concentration of H1 increases and at fluences higher than 5 × 10{sup 14 }cm{sup −2}, a second hole trap labelled H2 is observed. Simultaneously, the concentration of twomore » electron traps, labelled T1 (E{sub C} – 0.12 eV) and T2 (E{sub C} – 0.23 eV), increases. By studying the increase of the defect concentration versus electron irradiation fluence, the introduction rate of T1 and T2 using 2 MeV- electrons was determined to be 7 × 10{sup −3 }cm{sup −1} and 0.9 cm{sup −1}, respectively. Due to the low introduction rate of T1, it is suggested that the defect is associated with a complex. The high introduction rate of trap H1 and T2 suggests that the defects are associated with primary intrinsic defects or complexes. Some deep levels previously observed in irradiated GaN layers with higher threading dislocation densities are not detected in present investigation. It is therefore suggested that the absent traps may be related to primary defects segregated around dislocations.« less
Two different carbon-hydrogen complexes in silicon with closely spaced energy levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stübner, R., E-mail: ronald.stuebner@physik.tu-dresden.de, E-mail: kolkov@ifpan.edu.pl; Kolkovsky, Vl., E-mail: ronald.stuebner@physik.tu-dresden.de, E-mail: kolkov@ifpan.edu.pl; Weber, J.
An acceptor and a single donor state of carbon-hydrogen defects (CH{sub A} and CH{sub B}) are observed by Laplace deep level transient spectroscopy at 90 K. CH{sub A} appears directly after hydrogenation by wet chemical etching or hydrogen plasma treatment, whereas CH{sub B} can be observed only after a successive annealing under reverse bias at about 320 K. The activation enthalpies of these states are 0.16 eV for CH{sub A} and 0.14 eV for CH{sub B}. Our results reconcile previous controversial experimental results. We attribute CH{sub A} to the configuration where substitutional carbon binds a hydrogen atom on a bond centered position between carbonmore » and the neighboring silicon and CH{sub B} to another carbon-hydrogen defect.« less
Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy
Baiutti, Federico; Christiani, Georg
2014-01-01
Summary In this paper we present the atomic-layer-by-layer oxide molecular beam epitaxy (ALL-oxide MBE) which has been recently installed in the Max-Planck Institute for Solid State Research and we report on its present status, providing some examples that demonstrate its successful application in the synthesis of different layered oxides, with particular reference to superconducting La2CuO4 and insulator-to-metal La2− xSrxNiO4. We briefly review the ALL-oxide MBE technique and its unique capabilities in the deposition of atomically smooth single-crystal thin films of various complex oxides, artificial compounds and heterostructures, introducing our goal of pursuing a deep investigation of such systems with particular emphasis on structural defects, with the aim of tailoring their functional properties by precise defects control. PMID:24995148
Zellner, Johannes; Grechenig, Stephan; Pfeifer, Christian G; Krutsch, Werner; Koch, Matthias; Welsch, Goetz; Scherl, Madeleine; Seitz, Johannes; Zeman, Florian; Nerlich, Michael; Angele, Peter
2017-11-01
Large osteochondral defects of the knee are a challenge for regenerative treatment. While matrix-guided autologous chondrocyte transplantation (MACT) represents a successful treatment for chondral defects, the treatment potential in combination with bone grafting by cancellous bone or bone block augmentation for large and deep osteochondral defects has not been evaluated. To evaluate 1- to 3-year clinical outcomes and radiological results on magnetic resonance imaging (MRI) after the treatment of large osteochondral defects of the knee with bone augmentation and MACT. Special emphasis is placed on different methods of bone grafting (cancellous bone grafting or bone block augmentation). Case series; Level of evidence, 4. Fifty-one patients were included. Five patients were lost to follow-up. This left 46 patients (mean age, 28.2 years) with a median follow-up time of 2 years. The 46 patients had 47 deep, large osteochondral defects of the knee joint (1 patient with bilateral defects; mean defect size, 6.7 cm 2 ). The origin of the osteochondral defects was osteochondritis dissecans (n = 34), osteonecrosis (n = 8), or subchondral cysts (n = 5). Depending on the depth, all defects were treated by cancellous bone grafting (defect depth ≤10 mm; n = 16) or bone block augmentation (defect depth >10 mm; n = 31) combined with MACT. Clinical outcomes were followed at 3 months, 6 months, 1 year, 2 years, and 3 years and evaluated using the International Knee Documentation Committee (IKDC) score and Cincinnati score. A magnetic resonance imaging (MRI) evaluation was performed at 1 and 2 years, and the magnetic resonance observation of cartilage repair tissue (MOCART) score with additional specific subchondral bone parameters (bone regeneration, bone signal quality, osteophytes, sclerotic areas, and edema) was analyzed. The clinical outcome scores revealed a significant increase at follow-up (6 months to 3 years) compared with the preclinical results. The median IKDC score increased from 42.6 preoperatively to 75.3 at 1 year, 79.7 at 2 years, and 84.3 at 3 years. The median Cincinnati score significantly increased from 39.8 preoperatively to 72.0 at 1 year, 78.0 at 2 years, and 80.3 at 3 years. The MRI evaluation revealed a MOCART score of 82.6 at 1 year without a deterioration at the later follow-up time point. Especially, the subchondral bone analysis showed successful regeneration. All bone blocks and cancellous bone grafts were integrated in the bony defects, and no chondrocyte transplant failure could be detected throughout the follow-up. Large and deep osteochondral defects of the knee joint can be treated successfully with bone augmentation and MACT. The treatment of shallow bony defects with cancellous bone grafting and deep bony defects with bone block augmentation shows promising results.
The effects of lithium counterdoping on radiation damage and annealing in n(+)p silicon solar cells
NASA Technical Reports Server (NTRS)
Weinberg, I.; Brandhorst, H. W., Jr.; Mehta, S.; Swartz, C. K.
1984-01-01
Boron-doped silicon n(+)p solar cells were counterdoped with lithium by ion implantation and the resultant n(+)p cells irradiated by 1 MeV electrons. Performance parameters were determined as a function of fluence and a deep level transient spectroscopy (DLTS) study was conducted. The lithium counterdoped cells exhibited significantly increased radiation resistance when compared to boron doped control cells. Isochronal annealing studies of cell performance indicate that significant annealing occurs at 100 C. Isochronal annealing of the deep level defects showed a correlation between a single defect at E sub v + 0.43 eV and the annealing behavior of short circuit current in the counterdoped cells. The annealing behavior was controlled by dissociation and recombination of this defect. The DLTS studies showed that counterdoping with lithium eliminated three deep level defects and resulted in three new defects. The increased radiation resistance of the counterdoped cells is due to the interaction of lithium with oxygen, single vacancies and divacancies. The lithium-oxygen interaction is the most effective in contributing to the increased radiation resistance.
Optical modulation in silicon waveguides via charge state control of deep levels.
Logan, D F; Jessop, P E; Knights, A P; Wojcik, G; Goebel, A
2009-10-12
The control of defect mediated optical absorption at a wavelength of 1550 nm via charge state manipulation is demonstrated using optical absorption measurements of indium doped Silicon-On-Insulator (SOI) rib waveguides. These measurements introduce the potential for modulation of waveguide transmission by using the local depletion and injection of free-carriers to change deep-level occupancy. The extinction ratio and modulating speed are simulated for a proposed device structure. A 'normally-off' depletion modulator is described with an extinction coefficient limited to 5 dB/cm and switching speeds in excess of 1 GHz. For a carrier injection modulator a fourfold enhancement in extinction ratio is provided relative to free carrier absorption alone. This significant improvement in performance is achieved with negligible increase in driving power but slightly degraded switching speed.
Point defects in ZnO: an approach from first principles
Oba, Fumiyasu; Choi, Minseok; Togo, Atsushi; Tanaka, Isao
2011-01-01
Recent first-principles studies of point defects in ZnO are reviewed with a focus on native defects. Key properties of defects, such as formation energies, donor and acceptor levels, optical transition energies, migration energies and atomic and electronic structure, have been evaluated using various approaches including the local density approximation (LDA) and generalized gradient approximation (GGA) to DFT, LDA+U/GGA+U, hybrid Hartree–Fock density functionals, sX and GW approximation. Results significantly depend on the approximation to exchange correlation, the simulation models for defects and the post-processes to correct shortcomings of the approximation and models. The choice of a proper approach is, therefore, crucial for reliable theoretical predictions. First-principles studies have provided an insight into the energetics and atomic and electronic structures of native point defects and impurities and defect-induced properties of ZnO. Native defects that are relevant to the n-type conductivity and the non-stoichiometry toward the O-deficient side in reduced ZnO have been debated. It is suggested that the O vacancy is responsible for the non-stoichiometry because of its low formation energy under O-poor chemical potential conditions. However, the O vacancy is a very deep donor and cannot be a major source of carrier electrons. The Zn interstitial and anti-site are shallow donors, but these defects are unlikely to form at a high concentration in n-type ZnO under thermal equilibrium. Therefore, the n-type conductivity is attributed to other sources such as residual impurities including H impurities with several atomic configurations, a metastable shallow donor state of the O vacancy, and defect complexes involving the Zn interstitial. Among the native acceptor-type defects, the Zn vacancy is dominant. It is a deep acceptor and cannot produce a high concentration of holes. The O interstitial and anti-site are high in formation energy and/or are electrically inactive and, hence, are unlikely to play essential roles in electrical properties. Overall defect energetics suggests a preference for the native donor-type defects over acceptor-type defects in ZnO. The O vacancy, Zn interstitial and Zn anti-site have very low formation energies when the Fermi level is low. Therefore, these defects are expected to be sources of a strong hole compensation in p-type ZnO. For the n-type doping, the compensation of carrier electrons by the native acceptor-type defects can be mostly suppressed when O-poor chemical potential conditions, i.e. low O partial pressure conditions, are chosen during crystal growth and/or doping. PMID:27877390
Self-passivation Rule and the Effect of Post-treatment in GBs of Solar Cell Materials
NASA Astrophysics Data System (ADS)
Liu, Chengyan; Chen, Shiyou; Xiang, Hongjun; Gong, Xingao
Grain boundaries (GBs) existing in polycrystalline semiconductors alloys inducing a great deal of deep defect levels are usually harmful to cells' photovoltaic performance. Experimental and theoretical investigations verified that these defect levels come from the GBs' dangling bonds. We find that, the defect levels in anion core of GB can be passivated by its cations, called by self-passivation. For instance, the post-treated by CdCl2, Cd can eliminate the defect levels by saturating Te dangling bonds in the grain boundary of CdTe. We verify that the idea of self-passivation rule can perfectly explain the benign GBs of CISe and CZTS by sodium treatment. The present work reveals a general mechanism about how dopants in GBs eliminate the defect states through passivating the dangling bonds in covalent polycrystalline semiconductors, and sheds light on how to passivate dangling bonds in GBs with alterative processes. National Science Foundation of China, international collaboration project of MOST, Pujiang plan, Program for Professor of Special Appointment (Eastern Scholar), and Shanghai Rising-star program.
NASA Astrophysics Data System (ADS)
Morita, Kazuki; Yasuoka, Kenji
2018-03-01
Anatase TiO2 nanocrystals have received considerable attention owing to their promising applications in photocatalysis, photovoltaics, and fuel cells. Although experimental evidence has shown that the performance of nanocrystals can be significantly improved through reduction, the mechanistic basis of this enhancement remains unclear. To shed a light on the chemistry of reduced anatase TiO2 nanocrystals, density functional theory were used to investigate the properties of defects and excess electrons. We demonstrated that oxygen vacancies are stable both on the surface and at the sub-surface of the nanocrystal, while titanium interstitials prefer sub-surface sites. Different defect locations possessed different excess electron structures, which contributed to deep and shallow states in the band gap of the nanocrystals. Furthermore, valence band tailing was observed, resulting in band gap narrowing. The theoretical results presented here deepen our understanding, and show the potential of defects to considerably change the macroscopic properties of anatase TiO2 nanocrystals.
Zero-phonon line and fine structure of the yellow luminescence band in GaN
NASA Astrophysics Data System (ADS)
Reshchikov, M. A.; McNamara, J. D.; Zhang, F.; Monavarian, M.; Usikov, A.; Helava, H.; Makarov, Yu.; Morkoç, H.
2016-07-01
The yellow luminescence band was studied in undoped and Si-doped GaN samples by steady-state and time-resolved photoluminescence. At low temperature (18 K), the zero-phonon line (ZPL) for the yellow band is observed at 2.57 eV and attributed to electron transitions from a shallow donor to a deep-level defect. At higher temperatures, the ZPL at 2.59 eV emerges, which is attributed to electron transitions from the conduction band to the same defect. In addition to the ZPL, a set of phonon replicas is observed, which is caused by the emission of phonons with energies of 39.5 meV and 91.5 meV. The defect is called the YL1 center. The possible identity of the YL1 center is discussed. The results indicate that the same defect is responsible for the strong YL1 band in undoped and Si-doped GaN samples.
Intrinsic charge trapping in amorphous oxide films: status and challenges
NASA Astrophysics Data System (ADS)
Strand, Jack; Kaviani, Moloud; Gao, David; El-Sayed, Al-Moatasem; Afanas’ev, Valeri V.; Shluger, Alexander L.
2018-06-01
We review the current understanding of intrinsic electron and hole trapping in insulating amorphous oxide films on semiconductor and metal substrates. The experimental and theoretical evidences are provided for the existence of intrinsic deep electron and hole trap states stemming from the disorder of amorphous metal oxide networks. We start from presenting the results for amorphous (a) HfO2, chosen due to the availability of highest purity amorphous films, which is vital for studying their intrinsic electronic properties. Exhaustive photo-depopulation spectroscopy measurements and theoretical calculations using density functional theory shed light on the atomic nature of electronic gap states responsible for deep electron trapping observed in a-HfO2. We review theoretical methods used for creating models of amorphous structures and electronic structure calculations of amorphous oxides and outline some of the challenges in modeling defects in amorphous materials. We then discuss theoretical models of electron polarons and bi-polarons in a-HfO2 and demonstrate that these intrinsic states originate from low-coordinated ions and elongated metal-oxygen bonds in the amorphous oxide network. Similarly, holes can be captured at under-coordinated O sites. We then discuss electron and hole trapping in other amorphous oxides, such as a-SiO2, a-Al2O3, a-TiO2. We propose that the presence of low-coordinated ions in amorphous oxides with electron states of significant p and d character near the conduction band minimum can lead to electron trapping and that deep hole trapping should be common to all amorphous oxides. Finally, we demonstrate that bi-electron trapping in a-HfO2 and a-SiO2 weakens Hf(Si)–O bonds and significantly reduces barriers for forming Frenkel defects, neutral O vacancies and O2‑ ions in these materials. These results should be useful for better understanding of electronic properties and structural evolution of thin amorphous films under carrier injection conditions.
Point-defect energies in the nitrides of aluminum, gallium, and indium
NASA Astrophysics Data System (ADS)
Tansley, T. L.; Egan, R. J.
1992-05-01
Experimental data on the nature and energetic location of levels associated with native point defects in the group-III metal nitrides are critically reviewed and compared with theoretical estimates. All three show strong evidence of the existence of a triplet of donorlike states associated with the nitrogen vacancy. Ground states are at about 150, 400, and 900 meV from the conduction-band edge in InN, GaN, and AlN, respectively, with their charged derivatives lying closer to the band edge. These values agree with both modified-hydrogenic and deep-level calculations, surprisingly well in view of the inherent approximations in each in this depth range. The InN donor ground state is both optically active and usually occupied, showing a distinctive absorption band which is very well described by quantum-defect analysis. Variation of threshold with electron concentration shows a Moss-Burstein shift commensurate with that observed in band-to-band absorption. In both GaN and AlN, levels have been identified at about 1/4EG and about 3/4EG, which correlate well with predictions for the antisite defects NM and MN, respectively, while similar behavior in InN is at odds with theory. The metal-vacancy defect appears to generate a level somewhat below midgap in AlN and close to the valence-band edge in GaN, but has not been located experimentally in InN, where it is predicted to lie very close to the valence-band edge. A tentative scheme for the participation of two of the native defects in GaN, namely VN and NGa, in the four broad emission bands found in Zn-compensated and undoped GaN is offered.
NASA Astrophysics Data System (ADS)
Iota, V.; Weinstein, B. A.
1998-03-01
Deep defect states are often assumed to be insensitive to pressure because of their localized atomic-like character. In apparent conflict with this, experiments on widegap II-VI materials find that the pressure shifts of many 'midgap' photoluminescence (PL) bands associated with large-lattice-relaxation defects are more rapid than the shift of the bandgap(B. Weinstein, T. Ritter, et. al., Phys. Stat. Sol. (b) 198), 167 (1996). To study this, we measured the effects of pressure on the PL and PL-excitation (PLE) bands arising from the Zn-vacancy (V_Zn) and the P_Se deep acceptor centers in ZnSe. Using the observed pressure variation of the Stokes shifts and the established 1 atm. configuration coordinate (CC) models( D.Y. Jeon, H.P Gislason, G.D. Watkins, Phys. Rev. B 48), 7872 (1993), we were able to infer quantitative CC-diagrams at any pressure. Our results show that the pressure dependence of the lattice relaxation contributes a substantial fraction (several meV/kbar) to the overall shift of the PL-bands, and, hence, must be included. For the case of the V_Zn, simple calculations of the Jahn-Teller splitting using dangling-bond orbitals support this conclusion. figures
Exploratory Development of Weld Quality Definition and Correlation with Fatigue Properties
1975-04-01
006-Inch-Thick Lack-of-Penetration Defect in Specimen 6-4 ..... 135 51188 0. 030 to 0. 045-Inch- Deep Lack-of-Penetration Defect in Specimen P5-3 .. 135...PAW-UCX-3 (Figure 25) contained 0.011 inch undercut. Further increases in orifice gas flow resulted in the generation of C. 022-inch- deep undercut...oonsisted of a sh**M butt ont produced by a full-length par- tial-penetralloa (0. 060-Inch deep ) looking pass (Weld 4ED2-C-10) or a full-length
NASA Astrophysics Data System (ADS)
Ilyas, Usman; Rawat, R. S.; Tan, T. L.
2013-10-01
This paper reports the tailoring of acceptor defects in oxygen rich ZnO thin films at different post-deposition annealing temperatures (500-800°C) and Mn doping concentrations. The XRD spectra exhibited the nanocrystalline nature of ZnO thin films along with inconsistent variation in lattice parameters suggesting the temperature-dependent activation of structural defects. Photoluminescence emission spectra revealed the temperature dependent variation in deep level emissions (DLE) with the presence of acceptors as dominating defects. The concentration of native defects was estimated to be increased with temperature while a reverse trend was observed for those with increasing doping concentration. A consistent decrease in DLE spectra, with increasing Mn content, revealed the quenching of structural defects in the optical band gap of ZnO favorable for good quality thin films with enhanced optical transparency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putilov, L.P., E-mail: lev.putilov@gmail.com; Tsidilkovski, V.I.
The impact of deep acceptor centers on defect thermodynamics and oxidation of wide-band-gap acceptor-doped perovskites without mixed-valence cations is studied. These deep centers are formed by the acceptor-bound small hole polarons whose stabilization energy can be high enough (significantly higher than the hole-acceptor Coulomb interaction energy). It is shown that the oxidation enthalpy ΔH{sub ox} of oxide is determined by the energy ε{sub A} of acceptor-bound states along with the formation energy E{sub V} of oxygen vacancies. The oxidation reaction is demonstrated to be either endothermic or exothermic, and the regions of ε{sub A} and E{sub V} values corresponding tomore » the positive or negative ΔH{sub ox} are determined. The contribution of acceptor-bound holes to the defect thermodynamics strongly depends on the acceptor states depth ε{sub A}: it becomes negligible at ε{sub A} less than a certain value (at which the acceptor levels are still deep). With increasing ε{sub A}, the concentration of acceptor-bound small hole polarons can reach the values comparable to the dopant content. The results are illustrated with the acceptor-doped BaZrO{sub 3} as an example. It is shown that the experimental data on the bulk hole conductivity of barium zirconate can be described both in the band transport model and in the model of hopping small polarons localized on oxygen ions away from the acceptor centers. Depending on the ε{sub A} magnitude, the oxidation reaction can be either endothermic or exothermic for both mobility mechanisms.« less
NASA Astrophysics Data System (ADS)
Xiao, H. B.; Yang, C. P.; Huang, C.; Xu, L. F.; Shi, D. W.; Marchenkov, V. V.; Medvedeva, I. V.; Bärner, K.
2012-03-01
The electronic structure, formation energy, and transition energy levels of intrinsic defects have been studied using the density-functional method within the generalized gradient approximation for neutral and charged oxygen vacancy in CaCu3Ti4O12 (CCTO). It is found that oxygen vacancies with different charge states can be formed in CCTO under both oxygen-rich and poor conditions for nonequilibrium and higher-energy sintering processes; especially, a lower formation energy is obtained for poor oxygen environment. The charge transition level (0/1+) of the oxygen vacancy in CCTO is located at 0.53 eV below the conduction-band edge. The (1+/2+) transition occurs at 1.06 eV below the conduction-band edge. Oxygen vacancies of Vo1+ and Vo2+ are positive stable charge states in most gap regions and can act as a moderately deep donor for Vo1+ and a borderline deep for Vo2+, respectively. The polarization and dielectric constant are considerably enhanced by oxygen vacancy dipoles, due to the off-center Ti and Cu ions in CCTO.
Influence of the local environment on Mn acceptors in GaAs
NASA Astrophysics Data System (ADS)
Lee, Donghun; Gohlke, David; Benjamin, Anne; Gupta, Jay A.
2015-04-01
As transistors continue to shrink toward nanoscale dimensions, their characteristics are increasingly dependent on the statistical variations of impurities in the semiconductor material. The scanning tunneling microscope (STM) can be used to not only study prototype devices with atomically precise placement of impurity atoms, but can also probe how the properties of these impurities depend on the local environment. Tunneling spectroscopy of Mn acceptors in GaAs indicates that surface-layer Mn act as a deep acceptor, with a hole binding energy that can be tuned by positioning charged defects nearby. Band bending induced by the tip or by these defects can also tune the ionization state of the acceptor complex, evident as a ring-like contrast in STM images. The interplay of these effects is explored over a wide range of defect distances, and understood using iterative simulations of tip-induced band bending.
European Scientific Notes. Volume 37, Number 8.
1983-08-31
generally accepted. Both uniaxial in their quiescent state but change to a and biaxial films were said to be deep color with light; the change in...defects and actually sold’ (e.g., fish ). In other ion beam mixing effects still must be words, when environmental "Conaoditis" determined separately...less turbidity, feasible. there would be more phytoplankton. In 2. The economic justificatio: addition, migratory fish passage would will depend on a
Impact of strain on electronic defects in (Mg,Zn)O thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Florian, E-mail: fschmidt@physik.uni-leipzig.de; Müller, Stefan; Wenckstern, Holger von
2014-09-14
We have investigated the impact of strain on the incorporation and the properties of extended and point defects in (Mg,Zn)O thin films by means of photoluminescence, X-ray diffraction, deep-level transient spectroscopy (DLTS), and deep-level optical spectroscopy. The recombination line Y₂, previously detected in ZnO thin films grown on an Al-doped ZnO buffer layer and attributed to tensile strain, was exclusively found in (Mg,Zn)O samples being under tensile strain and is absent in relaxed or compressively strained thin films. Furthermore a structural defect E3´ can be detected via DLTS measurements and is only incorporated in tensile strained samples. Finally it ismore » shown that the omnipresent deep-level E3 in ZnO can only be optically recharged in relaxed ZnO samples.« less
Modification of electron states in CdTe absorber due to a buffer layer in CdTe/CdS solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorenko, Y. G., E-mail: y.fedorenko@liverpool.ac.uk; Major, J. D.; Pressman, A.
2015-10-28
By application of the ac admittance spectroscopy method, the defect state energy distributions were determined in CdTe incorporated in thin film solar cell structures concluded on ZnO, ZnSe, and ZnS buffer layers. Together with the Mott-Schottky analysis, the results revealed a strong modification of the defect density of states and the concentration of the uncompensated acceptors as influenced by the choice of the buffer layer. In the solar cells formed on ZnSe and ZnS, the Fermi level and the energy position of the dominant deep trap levels were observed to shift closer to the midgap of CdTe, suggesting the mid-gapmore » states may act as recombination centers and impact the open-circuit voltage and the fill factor of the solar cells. For the deeper states, the broadening parameter was observed to increase, indicating fluctuations of the charge on a microscopic scale. Such changes can be attributed to the grain-boundary strain and the modification of the charge trapped at the grain-boundary interface states in polycrystalline CdTe.« less
NASA Astrophysics Data System (ADS)
Tsia, J. M.; Ling, C. C.; Beling, C. D.; Fung, S.
2002-09-01
A plus-or-minus100 V square wave applied to a Au/semi-insulating SI-GaAs interface was used to bring about electron emission from and capture into deep level defects in the region adjacent to the interface. The electric field transient resulting from deep level emission was studied by monitoring the positron drift velocity in the region. A deep level transient spectrum was obtained by computing the trap emission rate as a function of temperature and two peaks corresponding to EL2 (Ea=0.81plus-or-minus0.15 eV) and EL6 (Ea=0.30plus-or-minus0.12 eV) have been identified.
NASA Astrophysics Data System (ADS)
Jia, Junjun; Suko, Ayaka; Shigesato, Yuzo; Okajima, Toshihiro; Inoue, Keiko; Hosomi, Hiroyuki
2018-01-01
We investigate the evolution behavior of defect structures and the subgap states in In-Ga-Zn oxide (IGZO) films with increasing postannealing temperature by means of extended x-ray absorption fine-structure (EXAFS) measurements, positron annihilation lifetime spectroscopy (PALS), and cathodoluminescence (CL) spectroscopy, aiming to understand the relationship between defect structures and subgap states. EXAFS measurements reveal the varied oxygen coordination numbers around cations during postannealing and confirm two types of point defects, namely, excess oxygen around Ga atoms and oxygen deficiency around In and/or Zn atoms. PALS suggests the existence of cation-vacancy (VM )-related clusters with neutral or negative charge in both amorphous and polycrystalline IGZO films. CL spectra show a main emission band at approximately 1.85 eV for IGZO films, and a distinct shoulder located at about 2.15 eV for IGZO films postannealed above 600 °C . These two emission bands are assigned to a recombination between the electrons in the conduction band and/or in the shallow donor levels near the conduction band and the acceptors trapped above the valence-band maximum. The shallow donors are attributed to the oxygen deficiency, and the acceptors are thought to possibly arise from the excess oxygen or the VM-related clusters. These results open up an alternative route for understanding the device instability of amorphous IGZO-based thin-film transistors, especially the presence of the neutral or negatively charged VM-related clusters in amorphous IGZO films.
Radiation damage and defect behavior in ion-implanted, lithium counterdoped silicon solar cells
NASA Technical Reports Server (NTRS)
Weinberg, I.; Mehta, S.; Swartz, C. K.
1984-01-01
Boron doped silicon n+p solar cells were counterdoped with lithium by ion implantation and the resuitant n+p cells irradiated by 1 MeV electrons. The function of fluence and a Deep Level Transient Spectroscopy (DLTS) was studied to correlate defect behavior with cell performance. It was found that the lithium counterdoped cells exhibited significantly increased radiation resistance when compared to boron doped control cells. It is concluded that the annealing behavior is controlled by dissociation and recombination of defects. The DLTS studies show that counterdoping with lithium eliminates at least three deep level defects and results in three new defects. It is speculated that the increased radiation resistance of the counterdoped cells is due primarily to the interaction of lithium with oxygen, single vacanies and divacancies and that the lithium-oxygen interaction is the most effective in contributing to the increased radiation resistance.
Radiation damage and defect behavior in ion-implanted, lithium counterdoped silicon solar cells
NASA Technical Reports Server (NTRS)
Weinberg, I.; Mehta, S.; Swartz, C. K.
1984-01-01
Boron doped silicon n+p solar cells were counterdoped with lithium by ion implanation and the resultant n+p cells irradiated by 1 MeV electrons. The function of fluence and a Deep Level Transient Spectroscopy (DLTS) was studied to correlate defect behavior with cell performance. It was found that the lithium counterdoped cells exhibited significantly increased radiation resistance when compared to boron doped control cells. It is concluded that the annealing behavior is controlled by dissociation and recombination of defects. The DLTS studies show that counterdoping with lithium eliminates at least three deep level defects and results in three new defects. It is speculated that the increased radiation resistance of the counterdoped cells is due primarily to the interaction of lithium with oxygen, single vacancies and divacancies and that the lithium-oxygen interaction is the most effective in contributing to the increased radiation resistance.
NASA Technical Reports Server (NTRS)
Stupica, John; Goradia, Chandra; Swartz, Clifford K.; Weinberg, Irving
1987-01-01
Two lithium-counterdoped n+p silicon solar cells with different lithium concentrations were irradiated by 10-MeV protons. Cell performance was measured as a function of fluence, and it was found that the cell with the highest concentration of lithium had the highest radiation resistance. Deep level transient spectroscopy which showed two deep level defects that were lithium related. Relating the defect energy levels obtained from this study with those from earlier work using 1-MeV electron irradiation shows no correlation of the defect energy levels. There is one marked similarity: the absence of the boron-interstitial-oxygen-interstitial defect. This consistency strengthens the belief that lithium interacts with oxygen to prevent the formation of the boron interstitial-oxygen interstitial defect. The results indicate that, in general, addition of lithium in small amounts to the p-base of a boron doped silicon solar cell such that the base remains p-type, tends to increase the radiation resistance of the cell.
Effect of antimony on the deep-level traps in GaInNAsSb thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, Muhammad Monirul, E-mail: islam.monir.ke@u.tsukuba.ac.jp; Miyashita, Naoya; Ahsan, Nazmul
2014-09-15
Admittance spectroscopy has been performed to investigate the effect of antimony (Sb) on GaInNAs material in relation to the deep-level defects in this material. Two electron traps, E1 and E2 at an energy level 0.12 and 0.41 eV below the conduction band (E{sub C}), respectively, were found in undoped GaInNAs. Bias-voltage dependent admittance confirmed that E1 is an interface-type defect being spatially localized at the GaInNAs/GaAs interface, while E2 is a bulk-type defect located around mid-gap of GaInNAs layer. Introduction of Sb improved the material quality which was evident from the reduction of both the interface and bulk-type defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caruso, A. E.; Lund, E. A.; Kosyak, V.
2016-11-21
Cu2ZnSn(S, Se)4 (CZTSe) is an earth-abundant semiconductor with potential for economical thin-film photovoltaic devices. Short minority carrier lifetimes contribute to low open circuit voltage and efficiency. Deep level defects that may contribute to lower minority carrier lifetimes in kesterites have been theoretically predicted, however very little experimental characterization of these deep defects exists. In this work we use admittance spectroscopy (AS) and deep level transient spectroscopy (DLTS) to characterize devices built using CZTSSe absorber layers deposited via both coevaporation and solution processing. AS reveals a band of widely-distributed activation energies for traps or energy barriers for transport, especially in themore » solution deposited case. DLTS reveals signatures of deep majority and minority traps within both types of samples.« less
NASA Technical Reports Server (NTRS)
Patterson, James D.; Li, Wei-Gang
1995-01-01
The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alnoor, Hatim, E-mail: hatim.alnoor@liu.se; Chey, Chan Oeurn; Pozina, Galia
Hexagonal c-axis oriented zinc oxide (ZnO) nanorods (NRs) with 120-300 nm diameters are synthesized via the low temperature aqueous chemical route at 80 °C on silver-coated glass substrates. The influence of varying the precursor solutions stirring durations on the concentration and spatial distributions of deep level defects in ZnO NRs is investigated. Room temperature micro-photoluminesnce (μ-PL) spectra were collected for all samples. Cathodoluminescence (CL) spectra of the as-synthesized NRs reveal a significant change in the intensity ratio of the near band edge emission (NBE) to the deep-level emission (DLE) peaks with increasing stirring durations. This is attributed to the variation inmore » the concentration of the oxygen-deficiency with increasing stirring durations as suggested from the X-ray photoelectron spectroscopy analysis. Spatially resolved CL spectra taken along individual NRs revealed that stirring the precursor solutions for relatively short duration (1-3 h), which likely induced high super saturation under thermodynamic equilibrium during the synthesis process, is observed to favor the formation of point defects moving towards the tip of the NRs. In contrary, stirring for longer duration (5-15 h) will induce low super saturation favoring the formation of point defects located at the bottom of the NRs. These findings demonstrate that it is possible to control the concentration and spatial distribution of deep level defects in ZnO NRs by varying the stirring durations of the precursor solutions.« less
NASA Astrophysics Data System (ADS)
Griesinger, Uwe A.; Dettmann, Wolfgang; Hennig, Mario; Heumann, Jan P.; Koehle, Roderick; Ludwig, Ralf; Verbeek, Martin; Zarrabian, Mardjan
2002-07-01
In optical lithography balancing the aerial image of an alternating phase shifting mask (alt. PSM) is a major challenge. For the exposure wavelengths (currently 248nm and 193nm) an optimum etching method is necessary to overcome imbalance effects. Defects play an important role in the imbalances of the aerial image. In this contribution defects will be discussed by using the methodology of global phase imbalance control also for local imbalances which are a result of quartz defects. The effective phase error can be determined with an AIMS-system by measuring the CD width between the images of deep- and shallow trenches at different focus settings. The AIMS results are analyzed in comparison to the simulated and lithographic print results of the alternating structures. For the analysis of local aerial image imbalances it is necessary to investigate the capability of detecting these phase defects with state of the art inspection systems. Alternating PSMs containing programmed defects were inspected with different algorithms to investigate the capture rate of special phase defects in dependence on the defect size. Besides inspection also repair of phase defects is an important task. In this contribution we show the effect of repair on the optical behavior of phase defects. Due to the limited accuracy of the repair tools the repaired area still shows a certain local phase error. This error can be caused either by residual quartz material or a substrate damage. The influence of such repair induced phase errors on the aerial image were investigated.
NASA Astrophysics Data System (ADS)
Lindström, A.; Klintenberg, M.; Sanyal, B.; Mirbt, S.
2015-08-01
The coexistence in Te-rich CdTe of substitutional Cl-dopants, ClTe, which act as donors, and Cd vacancies, VC d - 1 , which act as electron traps, was studied from first principles utilising the HSE06 hybrid functional. We find ClTe to preferably bind to VC d - 1 and to form an acceptor complex, (ClTe-VCd)-1. The complex has a (0,-1) charge transfer level close to the valence band and shows no trap state (deep level) in the band gap. During the complex formation, the defect state of VCd-1 is annihilated and leaves the Cl-doped CdTe bandgap without any trap states (self-purification). We calculate Cl-doped CdTe to be semi-insulating with a Fermi energy close to midgap. We calculate the formation energy of the complex to be sufficiently low to allow for spontanous defect formation upon Cl-doping (self-compensation). In addition, we quantitatively analyse the geometries, DOS, binding energies and formation energies of the (ClTe-VCd) complexes.
NASA Astrophysics Data System (ADS)
Ozden, Burcu; Yang, Chungman; Tong, Fei; Khanal, Min P.; Mirkhani, Vahid; Sk, Mobbassar Hassan; Ahyi, Ayayi Claude; Park, Minseo
2014-10-01
We have demonstrated that the depth-dependent defect distribution of the deep level traps in the AlGaN/GaN high electron mobility transistor (HEMT) epi-structures can be analyzed by using the depth-resolved ultra-violet (UV) spectroscopic photo current-voltage (IV) (DR-UV-SPIV). It is of great importance to analyze deep level defects in the AlGaN/GaN HEMT structure, since it is recognized that deep level defects are the main source for causing current collapse phenomena leading to reduced device reliability. The AlGaN/GaN HEMT epi-layers were grown on a 6 in. Si wafer by metal-organic chemical vapor deposition. The DR-UV-SPIV measurement was performed using a monochromatized UV light illumination from a Xe lamp. The key strength of the DR-UV-SPIV is its ability to provide information on the depth-dependent electrically active defect distribution along the epi-layer growth direction. The DR-UV-SPIV data showed variations in the depth-dependent defect distribution across the wafer. As a result, rapid feedback on the depth-dependent electrical homogeneity of the electrically active defect distribution in the AlGaN/GaN HEMT epi-structure grown on a Si wafer with minimal sample preparation can be elucidated from the DR-UV-SPIV in combination with our previously demonstrated spectroscopic photo-IV measurement with the sub-bandgap excitation.
Native interstitial defects in ZnGeN2
NASA Astrophysics Data System (ADS)
Skachkov, Dmitry; Lambrecht, Walter R. L.
2017-10-01
A density functional study is presented of the interstitial Zni, Gei, and Ni in ZnGeN2. Corrections to the band gap are included by means of the LDA+U method. The Zn and Ge interstitials are both found to strongly prefer the larger octahedral site compared to the two types of tetrahedral sites. The Zn interstitial is found to be a shallow double donor, but it has higher energy than previously studied antisite defects. It has a resonance in the conduction band that is Zn-s like. The Ge interstitial is an even higher energy of formation defect and also behaves as a shallow double donor, but it also has a deep level in the gap corresponding to a Ge-s orbital character while the Ge-p forms a resonance in the conduction band. The nitrogen interstitial forms a split-interstitial configuration, as also occurs in GaN. Its electronic levels can be related to that of a N2 molecule. The defect levels in the gap correspond to the πg-like lowest unoccupied molecular orbital of the molecule, which here becomes filled with three electrons in the defect's neutral charge state. They are found to prefer a high-spin configuration in the q =+1 state. The corresponding transition levels are obtained and show that this is an amphoteric trap level occurring in +2 , +1 , 0, and -1 charge states. The two possible sites for this split interstitial, on top of Zn or on top of Ge, differ slightly in N2 bond length. While the Ni defects have the lowest formation energy among the interstitials, it is still higher than that of the antisites. Hence they are not expected to occur in sufficient concentration to affect the intrinsic Fermi level position. In particular, they do not contribute to the unintentional n -type background doping.
Propeller flap reconstruction of abdominal defects: review of the literature and case report.
Scaglioni, Mario F; Giuseppe, Alberto Di; Chang, Edward I
2015-01-01
The abdominal wall is perfused anteriorly by the superior and deep epigastric vessels with a smaller contribution from the superficial system. The lateral abdominal wall is perfused predominantly from perforators arising from the intercostal vessels. Reconstruction of soft tissue defects involving the abdomen presents a difficult challenge for reconstructive surgeons. Pedicle perforator propeller flaps can be used to reconstruct defects of the abdomen, and here we present a thorough review of the literature as well as a case illustrating the perforasome propeller flap concept. A patient underwent resection for dermatofibrosarcoma protuberans resulting in a large defect of the epigastric soft tissue. A propeller flap was designed based on a perforator arising from the superior deep epigastric vessels and was rotated 90° into the defect allowing primary closure of the donor site. The patient healed uneventfully and was without recurrent disease 37 months following reconstruction. Perforator propeller flaps can be used successfully in reconstruction of abdominal defects and should be incorporated into the armamentarium of reconstructive microsurgeons already facile with perforator dissections. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maughan, Annalise E.; Ganose, Alex M.; Bordelon, Mitchell M.
Vacancy-ordered double perovskites of the general formula, A2BX6, are a family of perovskite derivatives composed of a face-centered lattice of nearly isolated [BX6] units with A-site cations occupying the cuboctahedral voids. Despite the presence of isolated octahedral units, the close-packed iodide lattice provides significant electronic dispersion, such that Cs2SnI6 has recently been explored for applications in photovoltaic devices. To elucidate the structure-property relationships of these materials, we have synthesized the solid solution Cs2Sn1-xTexI6. However, even though tellurium substitution increases electronic dispersion via closer I-I contact distances, the substitution experimentally yields insulating behavior from a significant decrease in carrier concentration andmore » mobility. Density functional calculations of native defects in Cs2SnI6 reveal that iodine vacancies exhibit a low enthalpy of formation and the defect energy level is a shallow donor to the conduction band, rendering the material tolerant to these defect states. The increased covalency of Te-I bonding renders the formation of iodine vacancy states unfavorable, and is responsible for the reduction in conductivity upon Te substitution. Additionally, Cs2TeI6 is intolerant to the formation of these defects, as the defect level occurs deep within the band gap and thus localizes potential mobile charge carriers. In these vacancy-ordered double perovskites, the close-packed lattice of iodine provides significant electronic dispersion, while the interaction of the B- and X-site ions dictates the properties as they pertain to electronic structure and defect tolerance. This simplified perspective -- based on extensive experimental and theoretical analysis -- provides a platform from which to understand structure-property relationships in functional perovskite halides.« less
Suh, Min Hee; Zangwill, Linda M.; Manalastas, Patricia Isabel C.; Belghith, Akram; Yarmohammadi, Adeleh; Medeiros, Felipe A.; Diniz-Filho, Alberto; Saunders, Luke J.; Weinreb, Robert N.
2016-01-01
Purpose To investigate factors associated with dropout of the deep retinal layer microvasculature within the β-zone parapapillary atrophy (βPPA) assessed by optical coherence tomography angiography (OCT-A) in glaucomatous eyes. Design Cross-sectional study. Participants Seventy-one eyes from 71 primary open angle glaucoma (POAG) patients with βPPA enrolled in the Diagnostic Innovations in Glaucoma Study. Methods βPPA deep layer microvasculature dropout was defined as a complete loss of the microvasculature located within deep retinal layer of the βPPA from OCT-A-derived optic nerve head vessel density maps by standardized qualitative assessment. Circumpapillary vessel density (cpVD) within the retinal nerve fiber layer (RNFL) was also calculated using OCT-A. Choroidal thickness and presence of the focal lamina cribrosa (LC) defect were determined using swept-source OCT. Main Outcome Measures Presence of the βPPA deep layer microvasculature dropout. Parameters including age, systolic and diastolic blood pressure, axial length, intraocular pressure, disc hemorrhage, cpVD, visual field (VF) mean deviation (MD), focal LC defect, βPPA area, and choroidal thickness were analyzed. Results βPPA deep layer microvasculature dropout was detected in 37 eyes (52.1%) of eyes with POAG. Eyes with dropouts had a higher prevalence of LC defect (70.3 vs. 32.4%), lower cpVD (52.7 vs. 58.8%), worse VF MD (-9.06 vs. -3.83dB), thinner total choroidal thickness (126.5 vs. 169.1/μm), longer axial length (24.7 vs. 24.0mm), larger βPPA (1.2 vs. 0.76mm2) and lower diastolic blood pressure (74.7 vs. 81.7mmHg) than those without dropouts (P< 0.05, respectively). In the multivariate logistic regression, higher prevalence of focal LC defect (odds ratio [OR], 6.27; P = 0.012), reduced cpVD (OR, 1.27; P = 0.002), worse VF MD (OR, 1.27; P = 0.001), thinner choroidal thickness (OR, 1.02; P = 0.014), and lower diastolic blood pressure (OR, 1.16; P = 0.003) were significantly associated with the dropout. Conclusions Certain systemic and ocular factors such as focal LC defect, more advanced disease status, reduced RNFL vessel density, thinner choroidal thickness, and lower diastolic blood pressure were factors associated with the βPPA deep layer microvasculature dropout in glaucomatous eyes. Longitudinal studies are required to elucidate the temporal relationship between βPPA deep layer dropout and these factors. PMID:27769587
Suh, Min Hee; Zangwill, Linda M; Manalastas, Patricia Isabel C; Belghith, Akram; Yarmohammadi, Adeleh; Medeiros, Felipe A; Diniz-Filho, Alberto; Saunders, Luke J; Weinreb, Robert N
2016-12-01
To investigate factors associated with dropout of the parapapillary deep retinal layer microvasculature assessed by optical coherence tomography angiography (OCTA) in glaucomatous eyes. Cross-sectional study. Seventy-one eyes from 71 primary open-angle glaucoma (POAG) patients with β-zone parapapillary atrophy (βPPA) enrolled in the Diagnostic Innovations in Glaucoma Study. Parapapillary deep-layer microvasculature dropout was defined as a complete loss of the microvasculature located within the deep retinal layer of the βPPA from OCTA-derived optic nerve head vessel density maps by standardized qualitative assessment. Circumpapillary vessel density (cpVD) within the retinal nerve fiber layer (RNFL) also was calculated using OCTA. Choroidal thickness and presence of focal lamina cribrosa (LC) defects were determined using swept-source optical coherence tomography. Presence of parapapillary deep-layer microvasculature dropout. Parameters including age, systolic and diastolic blood pressure, axial length, intraocular pressure, disc hemorrhage, cpVD, visual field (VF) mean deviation (MD), focal LC defects βPPA area, and choroidal thickness were analyzed. Parapapillary deep-layer microvasculature dropout was detected in 37 POAG eyes (52.1%). Eyes with microvasculature dropout had a higher prevalence of LC defects (70.3% vs. 32.4%), lower cpVD (52.7% vs. 58.8%), worse VF MD (-9.06 dB vs. -3.83 dB), thinner total choroidal thickness (126.5 μm vs. 169.1 μm), longer axial length (24.7 mm vs. 24.0 mm), larger βPPA (1.2 mm 2 vs. 0.76 mm 2 ), and lower diastolic blood pressure (74.7 mmHg vs. 81.7 mmHg) than those without dropout (P < 0.05, respectively). In the multivariate logistic regression analysis, higher prevalence of focal LC defects (odds ratio [OR], 6.27; P = 0.012), reduced cpVD (OR, 1.27; P = 0.002), worse VF MD (OR, 1.27; P = 0.001), thinner choroidal thickness (OR, 1.02; P = 0.014), and lower diastolic blood pressure (OR, 1.16; P = 0.003) were associated significantly with the dropout. Systemic and ocular factors including focal LC defects more advanced glaucoma, reduced RNFL vessel density, thinner choroidal thickness, and lower diastolic blood pressure were factors associated with the parapapillary deep-layer microvasculature dropout in glaucomatous eyes. Longitudinal studies are required to elucidate the temporal relationship between parapapillary deep-layer microvasculature dropout and systemic and ocular factors. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, Sandip; Tyagi, A. K.
2015-10-01
The electrical and photodiode characteristics of ensemble and single p-GaN nanowire and n-Si heterojunction devices were studied. Ideality factor of the single nanowire p-GaN/n-Si device was found to be about three times lower compared to that of the ensemble nanowire device. Apart from the deep-level traps in p-GaN nanowires, defect states due to inhomogeneity in Mg dopants in the ensemble nanowire device are attributed to the origin of the high ideality factor. Photovoltaic mode of the ensemble nanowire device showed an improvement in the fill-factors up to 60% over the single nanowire device with fill-factors up to 30%. Responsivity of the single nanowire device in the photoconducting mode was found to be enhanced by five orders, at 470 nm. The enhanced photoresponse of the single nanowire device also confirms the photoconduction due to defect states in p-GaN nanowires.
Photo-electrical and transport properties of hydrothermal ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onufrijevs, P., E-mail: onufrijevs@latnet.lv; Medvid, A.; Ščajev, P.
2016-04-07
We performed the studies of optical, photoelectric, and transport properties of a hydrothermal bulk n-type ZnO crystal by using the contactless optical techniques: photoluminescence, light-induced transient grating, and differential reflectivity. Optical studies revealed bound exciton and defect-related transitions between the donor states (at ∼60 meV and ∼240 meV below the conduction band) and the deep acceptor states (at 0.52 eV above the valence band). The acceptor state was ascribed to V{sub Zn}, and its thermal activation energy of 0.43 eV was determined. A low value of carrier diffusion coefficient (∼0.1 cm{sup 2}/s) at low excitations and temperatures up to 800 K was attributed to impact themore » recharged deep acceptors. Electron and hole mobilities of 140 and ∼80 cm{sup 2}/Vs, correspondently, were determined at room temperature. The decrease of carrier lifetime with excitation was ascribed to increasing rate of radiative recombination at low temperatures and nonradiative recombination above the room temperature.« less
Li, Shengwen; Zhang, Yanning; Niu, Xiaobin
2018-05-03
Cobalt pyrite (CoS2) and related materials are attracting much attention due to their potential use in renewable energy applications. In this work, first-principles studies were performed to investigate the effects of various neutral defects and ion dopants on the structural, energetic, magnetic and electronic properties of the bulk CoS2. Our theoretical results show that the concentrations of single cobalt (VCo) and sulfur (VS) vacancies in CoS2 samples can be high under S-rich and S-poor conditions, respectively. Although the single vacancies induce defect states near the gap edge, they are still half-metallic. We find that the substitution of one S with the O atom does not obviously change the structural, magnetic and electronic features near the Fermi level of the system. Most transition metal impurities (MnCo, FeCo, and MoCo) and Group IV and V anion impurities (CS, SiS, NS, PS, and AsS) create impurity states that are deep and/or near the gap edge. However, NiCo and Group VII elements (FS, ClS, and BrS) cause very localized gap states close to the Fermi level in the minority spin channel, which may modify their electrochemical performances. Our extensive calculations provide instructive information for the design and optimization of CoS2-related energy materials.
Gao, Xuejiao; Guan, Bin; Mesli, Abdelmadjid; Chen, Kaixiang; Dan, Yaping
2018-01-09
It is known that self-assembled molecular monolayer doping technique has the advantages of forming ultra-shallow junctions and introducing minimal defects in semiconductors. In this paper, we report however the formation of carbon-related defects in the molecular monolayer-doped silicon as detected by deep-level transient spectroscopy and low-temperature Hall measurements. The molecular monolayer doping process is performed by modifying silicon substrate with phosphorus-containing molecules and annealing at high temperature. The subsequent rapid thermal annealing drives phosphorus dopants along with carbon contaminants into the silicon substrate, resulting in a dramatic decrease of sheet resistance for the intrinsic silicon substrate. Low-temperature Hall measurements and secondary ion mass spectrometry indicate that phosphorus is the only electrically active dopant after the molecular monolayer doping. However, during this process, at least 20% of the phosphorus dopants are electrically deactivated. The deep-level transient spectroscopy shows that carbon-related defects are responsible for such deactivation.
Thermal stability of deep level defects induced by high energy proton irradiation in n-type GaN
NASA Astrophysics Data System (ADS)
Zhang, Z.; Farzana, E.; Sun, W. Y.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; McSkimming, B.; Kyle, E. C. H.; Speck, J. S.; Arehart, A. R.; Ringel, S. A.
2015-10-01
The impact of annealing of proton irradiation-induced defects in n-type GaN devices has been systematically investigated using deep level transient and optical spectroscopies. Moderate temperature annealing (>200-250 °C) causes significant reduction in the concentration of nearly all irradiation-induced traps. While the decreased concentration of previously identified N and Ga vacancy related levels at EC - 0.13 eV, 0.16 eV, and 2.50 eV generally followed a first-order reaction model with activation energies matching theoretical values for NI and VGa diffusion, irradiation-induced traps at EC - 0.72 eV, 1.25 eV, and 3.28 eV all decrease in concentration in a gradual manner, suggesting a more complex reduction mechanism. Slight increases in concentration are observed for the N-vacancy related levels at EC - 0.20 eV and 0.25 eV, which may be due to the reconfiguration of other N-vacancy related defects. Finally, the observed reduction in concentrations of the states at EC - 1.25 and EC - 3.28 eV as a function of annealing temperature closely tracks the detailed recovery behavior of the background carrier concentration as a function of annealing temperature. As a result, it is suggested that these two levels are likely to be responsible for the underlying carrier compensation effect that causes the observation of carrier removal in proton-irradiated n-GaN.
Ziatdinov, Maxim; Dyck, Ondrej; Maksov, Artem; ...
2017-12-07
Recent advances in scanning transmission electron and scanning probe microscopies have opened unprecedented opportunities in probing the materials structural parameters and various functional properties in real space with an angstrom-level precision. This progress has been accompanied by exponential increase in the size and quality of datasets produced by microscopic and spectroscopic experimental techniques. These developments necessitate adequate methods for extracting relevant physical and chemical information from the large datasets, for which a priori information on the structures of various atomic configurations and lattice defects is limited or absent. Here we demonstrate an application of deep neural networks to extracting informationmore » from atomically resolved images including location of the atomic species and type of defects. We develop a “weakly-supervised” approach that uses information on the coordinates of all atomic species in the image, extracted via a deep neural network, to identify a rich variety of defects that are not part of an initial training set. We further apply our approach to interpret complex atomic and defect transformation, including switching between different coordination of silicon dopants in graphene as a function of time, formation of peculiar silicon dimer with mixed 3-fold and 4-fold coordination, and the motion of molecular “rotor”. In conclusion, this deep learning based approach resembles logic of a human operator, but can be scaled leading to significant shift in the way of extracting and analyzing information from raw experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziatdinov, Maxim; Dyck, Ondrej; Maksov, Artem
Recent advances in scanning transmission electron and scanning probe microscopies have opened unprecedented opportunities in probing the materials structural parameters and various functional properties in real space with an angstrom-level precision. This progress has been accompanied by exponential increase in the size and quality of datasets produced by microscopic and spectroscopic experimental techniques. These developments necessitate adequate methods for extracting relevant physical and chemical information from the large datasets, for which a priori information on the structures of various atomic configurations and lattice defects is limited or absent. Here we demonstrate an application of deep neural networks to extracting informationmore » from atomically resolved images including location of the atomic species and type of defects. We develop a “weakly-supervised” approach that uses information on the coordinates of all atomic species in the image, extracted via a deep neural network, to identify a rich variety of defects that are not part of an initial training set. We further apply our approach to interpret complex atomic and defect transformation, including switching between different coordination of silicon dopants in graphene as a function of time, formation of peculiar silicon dimer with mixed 3-fold and 4-fold coordination, and the motion of molecular “rotor”. In conclusion, this deep learning based approach resembles logic of a human operator, but can be scaled leading to significant shift in the way of extracting and analyzing information from raw experimental data.« less
Ziatdinov, Maxim; Dyck, Ondrej; Maksov, Artem; Li, Xufan; Sang, Xiahan; Xiao, Kai; Unocic, Raymond R; Vasudevan, Rama; Jesse, Stephen; Kalinin, Sergei V
2017-12-26
Recent advances in scanning transmission electron and scanning probe microscopies have opened exciting opportunities in probing the materials structural parameters and various functional properties in real space with angstrom-level precision. This progress has been accompanied by an exponential increase in the size and quality of data sets produced by microscopic and spectroscopic experimental techniques. These developments necessitate adequate methods for extracting relevant physical and chemical information from the large data sets, for which a priori information on the structures of various atomic configurations and lattice defects is limited or absent. Here we demonstrate an application of deep neural networks to extract information from atomically resolved images including location of the atomic species and type of defects. We develop a "weakly supervised" approach that uses information on the coordinates of all atomic species in the image, extracted via a deep neural network, to identify a rich variety of defects that are not part of an initial training set. We further apply our approach to interpret complex atomic and defect transformation, including switching between different coordination of silicon dopants in graphene as a function of time, formation of peculiar silicon dimer with mixed 3-fold and 4-fold coordination, and the motion of molecular "rotor". This deep learning-based approach resembles logic of a human operator, but can be scaled leading to significant shift in the way of extracting and analyzing information from raw experimental data.
Polaronic and ionic conduction in NaMnO2: influence of native point defects
NASA Astrophysics Data System (ADS)
Zhu, Zhen; Peelaers, Hartwin; van de Walle, Chris G.
Layered NaMnO2 has promising applications as a cathode material for sodium ion batteries. We will discuss strategies to improve the electrical performance of NaMnO2, including how to optimize the conditions of synthesis and how impurity doping affects the performance. Using hybrid density functional theory, we explored the structural, electronic, and defect properties of bulk NaMnO2. It is antiferromagnetic in the ground state with a band gap of 3.75 eV. Small hole and electron polarons can form in the bulk either through self-trapping or adjacent to point defects. We find that both Na and Mn vacancies are shallow acceptors with the induced holes trapped as small polarons, while O vacancies are deep defect centers. Cation antisites, especially MnNa, are found to have low formation energies. As a result, we expect that MnNa exists in as-grown NaMnO2 in moderate concentrations, rather than forming only at a later stage of the charging process, at which point it causes undesirable structural phase transitions. Both electronic conduction, via polaron hopping, and ionic conduction, through VNa migration, are significantly affected by the presence of point defects. This work was supported by DOE.
Surface-induced magnetism of the solids with impurities and vacancies
NASA Astrophysics Data System (ADS)
Morozovska, A. N.; Eliseev, E. A.; Glinchuk, M. D.; Blinc, R.
2011-04-01
Using the quantum-mechanical approach combined with the image charge method we calculated the lowest energy levels of the impurities and neutral vacancies with two electrons or holes located in the vicinity of flat surface of different solids. Unexpectedly we obtained that the magnetic triplet state is the ground state of the impurities and neutral vacancies in the vicinity of surface, while the nonmagnetic singlet is the ground state in the bulk, for e.g. He atom, Li+, Be++ ions, etc. The energy difference between the lowest triplet and singlet states strongly depends on the electron (hole) effective mass μ, dielectric permittivity of the solid ε2 and the distance from the surface z0. For z0=0 and defect charge ∣Z∣=2 the energy difference is more than several hundreds of Kelvins at μ=(0.5-1)me and ε2=2-10, more than several tens of Kelvins at μ=(0.1-0.2)me and ε2=5-10, and not more than several Kelvins at μ<0.1me and ε2>15 (me is the mass of a free electron). Pair interaction of the identical surface defects (two doubly charged impurities or vacancies with two electrons or holes) reveals the ferromagnetic spin state with the maximal exchange energy at the definite distance between the defects (∼5-25 nm). We estimated the critical concentration of surface defects and transition temperature of ferromagnetic long-range order appearance in the framework of percolation and mean field theories, and RKKY approach for semiconductors like ZnO. We obtained that the nonmagnetic singlet state is the lowest one for a molecule with two electrons formed by a pair of identical surface impurities (like surface hydrogen), while its next state with deep enough negative energy minimum is the magnetic triplet. The metastable magnetic triplet state appeared for such molecule at the surface indicates the possibility of metastable ortho-states of the hydrogen-like molecules, while they are absent in the bulk of material. The two series of spectral lines are expected due to the coexistence of ortho- and para-states of the molecules at the surface. We hope that obtained results could provide an alternative mechanism of the room temperature ferromagnetism observed in TiO2, HfO2, and In2O3 thin films with contribution of the oxygen vacancies. We expect that both anion and cation vacancies near the flat surface act as magnetic defects because of their triplet ground state and Hund's rule. The theoretical forecasts are waiting for experimental justification allowing for the number of the defects in the vicinity of surface is much larger than in the bulk of as-grown samples.
NASA Astrophysics Data System (ADS)
Wang, Chong; Simoen, Eddy; Zhao, Ming; Li, Wei
2017-10-01
Deep levels formed under different growth conditions of a 200 nm AlN buffer layer on B-doped Czochralski Si(111) substrates with different resistivity were investigated by deep-level transient spectroscopy (DLTS) on metal-insulator-semiconductor capacitors. Growth-temperature-dependent Al diffusion in the Si substrate was derived from the free carrier density obtained by capacitance-voltage measurement on samples grown on p- substrates. The DLTS spectra revealed a high concentration of point and extended defects in the p- and p+ silicon substrates, respectively. This indicated a difference in the electrically active defects in the silicon substrate close to the AlN/Si interface, depending on the B doping concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sontheimer, Tobias, E-mail: tobias.sontheimer@helmholtz-berlin.de; Schnegg, Alexander; Lips, Klaus
2013-11-07
By employing electron paramagnetic resonance spectroscopy, transmission electron microscopy, and optical measurements, we systematically correlate the structural and optical properties with the deep-level defect characteristics of various tailored periodic Si microhole arrays, which are manufactured in an easily scalable and versatile process on nanoimprinted sol-gel coated glass. While tapered microhole arrays in a structured base layer are characterized by partly nanocrystalline features, poor electronic quality with a defect concentration of 10{sup 17} cm{sup −3} and a high optical sub-band gap absorption, planar polycrystalline Si layers perforated with periodic arrays of tapered microholes are composed of a compact crystalline structure and amore » defect concentration in the low 10{sup 16} cm{sup −3} regime. The low defect concentration is equivalent to the one in planar state-of-the-art solid phase crystallized Si films and correlates with a low optical sub-band gap absorption. By complementing the experimental characterization with 3-dimensional finite element simulations, we provide the basis for a computer-aided approach for the low-cost fabrication of novel high-quality structures on large areas featuring tailored opto-electronic properties.« less
Small polarons and point defects in LaFeO3
NASA Astrophysics Data System (ADS)
Zhu, Zhen; Peelaers, Hartwin; van de Walle, Chris G.
The proton-conductive perovskite-type LaFeO3 is a promising negative-electrode material for Ni/metal-hydride (Ni-MH) batteries. It has a discharge capacity up to 530 mAhg-1 at 333 K, which is significantly higher than commercialized AB5-type alloys. To elucidate the underlying mechanism of this performance, we have investigated the structural and electronic properties of bulk LaFeO3, as well as the effect of point defects, using hybrid density functional methods. LaFeO3 is antiferromagnetic in the ground state with a band gap of 3.54 eV. Small hole and electron polarons can form through self- or point-defect-assisted trapping. We find that La vacancies and Sr substitutional on La sites are shallow acceptors with the induced holes trapped as small polarons, while O and Fe vacancies are deep defect centers. Hydrogen interstitials behave like shallow donors, with the donor electrons localized on nearby iron sites as electron polarons. With a large trapping energy, these polarons can act as electron or hole traps and affect the electrical performance of LaFeO3 as the negative electrode for Ni-MH batteries. We acknowledge DOE for financial support.
Patel, Kamlesh B; Taghinia, Amir H; Proctor, Mark R; Warf, Benjamin C; Greene, Arin K
2012-11-01
Myelomeningocele is the most common neural tube defect. Repair typically involves deep closure with regional muscle flaps (e.g. latissimus dorsi, gluteus maximus) and skin closure with rotation, bipedicle, or rhomboid flaps. We describe the reconstruction of large myelomeningocele defects using (1) local fascial turnover flaps with or without paraspinous muscle flaps for deep coverage of the dural repair followed by (2) linear, midline skin closure. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Charge transport model in solid-state avalanche amorphous selenium and defect suppression design
NASA Astrophysics Data System (ADS)
Scheuermann, James R.; Miranda, Yesenia; Liu, Hongyu; Zhao, Wei
2016-01-01
Avalanche amorphous selenium (a-Se) in a layer of High Gain Avalanche Rushing Photoconductor (HARP) is being investigated for its use in large area medical imagers. Avalanche multiplication of photogenerated charge requires electric fields greater than 70 V μm-1. For a-Se to withstand this high electric field, blocking layers are used to prevent the injection of charge carriers from the electrodes. Blocking layers must have a high injection barrier and deep trapping states to reduce the electric field at the interface. In the presence of a defect in the blocking layer, a distributed resistive layer (DRL) must be included into the structure to build up space charge and reduce the electric field in a-Se and the defect. A numerical charge transport model has been developed to optimize the properties of blocking layers used in various HARP structures. The model shows the incorporation of a DRL functionality into the p-layer can reduce dark current at a point defect by two orders of magnitude by reducing the field in a-Se to the avalanche threshold. Hole mobility in a DRL of ˜10-8 cm2 V-1 s-1 at 100 V μm-1 as demonstrated by the model can be achieved experimentally by varying the hole mobility of p-type organic or inorganic semiconductors through doping, e.g., using Poly(9-vinylcarbozole) doped with 1%-3% (by weight) of poly(3-hexylthiopene).
Garris, Rebekah L.; Johnston, Steven; Li, Jian V.; ...
2017-08-31
In a previous study, we reported on Cu(In,Ga)Se2-based (CIGS) solar cell samples collected from different research laboratories and industrial companies with the purpose of understanding the range of CIGS materials that can lead to high-quality and high-efficiency solar panels. Here, we report on electrical measurements of those same samples. Electron-beam induced current and time-resolved photoluminescence (TRPL) gave insights about the collection probability and the lifetime of carriers generated in each absorber. Capacitance and drive-level capacitance profiling revealed nonuniformity in carrier-density profiles. Admittance spectroscopy revealed small activation energies (= 0.03 eV) indicative of the inversion strength, larger activation energies (> 0.1more » eV) reflective of thermal activation of absorber conductivity and a deeper defect level. Deep-level transient spectroscopy (DLTS) probed deep hole-trapping defects and showed that all samples in this study had a majority-carrier defect with activation energy between 0.3 eV and 0.9 eV. Optical-DLTS revealed deep electron-trapping defects in several of the CIGS samples. This work focused on revealing similarities and differences between high-quality CIGS solar cells made with various structures and fabrication techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garris, Rebekah L.; Johnston, Steven; Li, Jian V.
In a previous study, we reported on Cu(In,Ga)Se2-based (CIGS) solar cell samples collected from different research laboratories and industrial companies with the purpose of understanding the range of CIGS materials that can lead to high-quality and high-efficiency solar panels. Here, we report on electrical measurements of those same samples. Electron-beam induced current and time-resolved photoluminescence (TRPL) gave insights about the collection probability and the lifetime of carriers generated in each absorber. Capacitance and drive-level capacitance profiling revealed nonuniformity in carrier-density profiles. Admittance spectroscopy revealed small activation energies (= 0.03 eV) indicative of the inversion strength, larger activation energies (> 0.1more » eV) reflective of thermal activation of absorber conductivity and a deeper defect level. Deep-level transient spectroscopy (DLTS) probed deep hole-trapping defects and showed that all samples in this study had a majority-carrier defect with activation energy between 0.3 eV and 0.9 eV. Optical-DLTS revealed deep electron-trapping defects in several of the CIGS samples. This work focused on revealing similarities and differences between high-quality CIGS solar cells made with various structures and fabrication techniques.« less
NASA Technical Reports Server (NTRS)
Li, S. B.; Choi, C. G.; Loo, R. Y.
1985-01-01
The radiation-induced deep-level defects in one-MeV electron-irradiated germanium and AlxGal-xAs solar cell materials using the deep-level transient spectroscopy (DLTS) and C-V techniques were investigated. Defect and recombination parameters such as defect density and energy levels, capture cross sections and lifetimes for both electron and hole traps were determined. The germanium and AlGaAs p/n junction cells were irradiated by one-MeV electrons. The DLTS, I-V, and C-V measurements were performed on these cells. The results are summarized as follows: (1) for the irradiated germanium samples, the dominant electron trap was due to the E sub - 0.24 eV level with density around 4x10 to the 14th power 1/cu cm, independent of electron fluence, its origin is attributed to the vacancy-donor complex defect formed during the electron irradiation; (2) in the one-MeV electron irradiated Al0.17Ga0.83 as sample, two dominant electron traps with energies of Ec-0.19 and -0.29 eV were observed, the density for both electron traps remained nearly constant, independent of electron fluence. It is shown that one-MeV electron irradiation creates very few or no new deep-level traps in both the germanium and AlxGa1-xAs cells, and are suitable for fabricating the radiation-hard high efficiency multijunction solar cells for space applications.
Response of Chondrocytes to Local Mechanical Injury in an Ex Vivo Model
Lyman, Jeffrey R.; Chappell, Jonathan D.; Kelley, Scott S.; Lee, Greta M.
2012-01-01
Background: Our goal was to set up an ex vivo culture system to assess whether cartilage wounding (partial-thickness defects) can induce morphological changes in neighboring chondrocytes and whether these cells can translocate to the surface of the defect. Methods: Two-millimeter partial-depth defects were created in human osteochondral explants followed by culture for up to 4 weeks. Frozen sections of defects and defect-free regions were labeled using immunofluorescence for a plasma membrane protein, CD44, and actin with TRITC-phalloidin. Viable nuclei were detected with Hoechst 33342. Differential interference contrast (DIC), confocal, and transmission electron microscopy (TEM) were used to examine process extension. Results: Significant changes in cell morphology occurred in response to wounding in the superficial and deep cartilage zones. These included cell flattening, polarization of the actin cytoskeleton, extension of pseudopods projecting towards the edge of the defect, and interactions of these filopodia with collagen fibers. Cell density decreased progressively in the 300-µm zone adjacent to the defect to an average of approximately 25% to 35% after 3 weeks. Concomitant increases in cell density in the defect margin were observed. By contrast, minimal changes were seen in the middle cartilage zone. Conclusions: These novel observations strongly suggest active cartilage cell responses and movements in response to wounding. It is proposed that cartilage cells use contact guidance on fibrillated collagen to move into and populate defect areas in the superficial and deep zones. PMID:26069619
Electrochemical Characterization of InP and GaAs Based Structures for Space Solar Cell Applications.
NASA Technical Reports Server (NTRS)
Faur, Maria; Faur, Mircea; Jenkins, Philip P.; Goradia, Manju; Wilt, David M.
1994-01-01
In this paper the emphasis is on accurate majority carrier concentration EC-V profiling of structures based on Indium Phosphide and Gallium Arsenide, using a newly developed electrolyte based on Hydrogen Flouride, Acetic Acid, Phosphoric Acid, 1-phenyl-2-propanamine and Ammonia Diflouride. Some preliminary data on the use of this electrolyte for determining the energy distribution of surface and deep states of these structures, applicable to fabrication process optimization and radiation induced defects studies of solar cells, are also provided.
Mir, Wasim J.; Warankar, Avinash; Acharya, Ashutosh; Das, Shyamashis
2017-01-01
Colloidal lead halide based perovskite nanocrystals (NCs) have been recently established as an interesting class of defect-tolerant NCs with potential for superior optoelectronic applications. The electronic band structure of thallium halides (TlX, where X = Br and I) show a strong resemblance to lead halide perovskites, where both Pb2+ and Tl+ exhibit a 6s2 inert pair of electrons and strong spin–orbit coupling. Although the crystal structure of TlX is not perovskite, the similarities of its electronic structure with lead halide perovskites motivated us to prepare colloidal TlX NCs. These TlX NCs exhibit a wide bandgap (>2.5 eV or <500 nm) and the potential to exhibit a reduced density of deep defect states. Optical pump terahertz (THz) probe spectroscopy with excitation fluence in the range of 0.85–5.86 × 1013 photons per cm2 on NC films shows that the TlBr NCs possess high effective carrier mobility (∼220 to 329 cm2 V–1 s–1), long diffusion length (∼0.77 to 0.98 μm), and reasonably high photoluminescence efficiency (∼10%). This combination of properties is remarkable compared to other wide-bandgap (>2.5 eV) semiconductor NCs, which suggests a reduction in the deep-defect states in the TlX NCs. Furthermore, the ultrafast carrier dynamics and temperature-dependent reversible structural phase transition together with its influence on the optical properties of the TlX NCs are studied. PMID:28970882
Lifetime degradation of n-type Czochralski silicon after hydrogenation
NASA Astrophysics Data System (ADS)
Vaqueiro-Contreras, M.; Markevich, V. P.; Mullins, J.; Halsall, M. P.; Murin, L. I.; Falster, R.; Binns, J.; Coutinho, J.; Peaker, A. R.
2018-04-01
Hydrogen plays an important role in the passivation of interface states in silicon-based metal-oxide semiconductor technologies and passivation of surface and interface states in solar silicon. We have shown recently [Vaqueiro-Contreras et al., Phys. Status Solidi RRL 11, 1700133 (2017)] that hydrogenation of n-type silicon slices containing relatively large concentrations of carbon and oxygen impurity atoms {[Cs] ≥ 1 × 1016 cm-3 and [Oi] ≥ 1017 cm-3} can produce a family of C-O-H defects, which act as powerful recombination centres reducing the minority carrier lifetime. In this work, evidence of the silicon's lifetime deterioration after hydrogen injection from SiNx coating, which is widely used in solar cell manufacturing, has been obtained from microwave photoconductance decay measurements. We have characterised the hydrogenation induced deep level defects in n-type Czochralski-grown Si samples through a series of deep level transient spectroscopy (DLTS), minority carrier transient spectroscopy (MCTS), and high-resolution Laplace DLTS/MCTS measurements. It has been found that along with the hydrogen-related hole traps, H1 and H2, in the lower half of the gap reported by us previously, hydrogenation gives rise to two electron traps, E1 and E2, in the upper half of the gap. The activation energies for electron emission from the E1 and E2 trap levels have been determined as 0.12, and 0.14 eV, respectively. We argue that the E1/H1 and E2/H2 pairs of electron/hole traps are related to two energy levels of two complexes, each incorporating carbon, oxygen, and hydrogen atoms. Our results show that the detrimental effect of the C-O-H defects on the minority carrier lifetime in n-type Si:O + C materials can be very significant, and the carbon concentration in Czochralski-grown silicon is a key parameter in the formation of the recombination centers.
Continuous-wave room-temperature diamond maser
NASA Astrophysics Data System (ADS)
Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil Mcn.; Kay, Christopher W. M.
2018-03-01
The maser—the microwave progenitor of the optical laser—has been confined to relative obscurity owing to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this, it has found application in deep-space communications and radio astronomy owing to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid-state maser that utilizes polarized electron populations within the triplet states of photo-excited pentacene molecules in a p-terphenyl host paves the way for a new class of maser. However, p-terphenyl has poor thermal and mechanical properties, and the decay rates of the triplet sublevel of pentacene mean that only pulsed maser operation has been observed in this system. Alternative materials are therefore required to achieve continuous emission: inorganic materials that contain spin defects, such as diamond and silicon carbide, have been proposed. Here we report a continuous-wave room-temperature maser oscillator using optically pumped nitrogen–vacancy defect centres in diamond. This demonstration highlights the potential of room-temperature solid-state masers for use in a new generation of microwave devices that could find application in medicine, security, sensing and quantum technologies.
Continuous-wave room-temperature diamond maser.
Breeze, Jonathan D; Salvadori, Enrico; Sathian, Juna; Alford, Neil McN; Kay, Christopher W M
2018-03-21
The maser-the microwave progenitor of the optical laser-has been confined to relative obscurity owing to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this, it has found application in deep-space communications and radio astronomy owing to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid-state maser that utilizes polarized electron populations within the triplet states of photo-excited pentacene molecules in a p-terphenyl host paves the way for a new class of maser. However, p-terphenyl has poor thermal and mechanical properties, and the decay rates of the triplet sublevel of pentacene mean that only pulsed maser operation has been observed in this system. Alternative materials are therefore required to achieve continuous emission: inorganic materials that contain spin defects, such as diamond and silicon carbide, have been proposed. Here we report a continuous-wave room-temperature maser oscillator using optically pumped nitrogen-vacancy defect centres in diamond. This demonstration highlights the potential of room-temperature solid-state masers for use in a new generation of microwave devices that could find application in medicine, security, sensing and quantum technologies.
Traps in AlGaN /GaN/SiC heterostructures studied by deep level transient spectroscopy
NASA Astrophysics Data System (ADS)
Fang, Z.-Q.; Look, D. C.; Kim, D. H.; Adesida, I.
2005-10-01
AlGaN /GaN/SiC Schottky barrier diodes (SBDs), with and without Si3N4 passivation, have been characterized by temperature-dependent current-voltage and capacitance-voltage measurements, and deep level transient spectroscopy (DLTS). A dominant trap A1, with activation energy of 1.0 eV and apparent capture cross section of 2×10-12cm2, has been observed in both unpassivated and passivated SBDs. Based on the well-known logarithmic dependence of DLTS peak height with filling pulse width for a line-defect related trap, A1, which is commonly observed in thin GaN layers grown by various techniques, is believed to be associated with threading dislocations. At high temperatures, the DLTS signal sometimes becomes negative, likely due to an artificial surface-state effect.
Characterization of Deep and Shallow Levels in GaN
NASA Astrophysics Data System (ADS)
Wessels, Bruce
1997-03-01
The role of native defects and impurities in compensating n-type GaN was investigated. From the observed dependence of carrier concentration on dopant partial pressure the compensating acceptor in n-type material is attributed to the triply charged gallium vacancy. This is consistent with recent calculations on defect stability using density functional theory. The interaction of hydrogen and point defects in GaN was also investigated using FTIR. The role of these defects in compensation will be discussed.
Analysis of Deep and Shallow Traps in Semi-Insulating CdZnTe
Kim, Kihyun; Yoon, Yongsu; James, Ralph B.
2018-03-13
Trap levels which are deep or shallow play an important role in the electrical and the optical properties of a semiconductor; thus, a trap level analysis is very important in most semiconductor devices. Deep-level defects in CdZnTe are essential in Fermi level pinning at the middle of the bandgap and are responsible for incomplete charge collection and polarization effects. However, a deep level analysis in semi-insulating CdZnTe (CZT) is very difficult. Theoretical capacitance calculation for a metal/insulator/CZT (MIS) device with deep-level defects exhibits inflection points when the donor/acceptor level crosses the Fermi level in the surface-charge layer (SCL). Three CZTmore » samples with different resistivities, 2 × 10 4 (n-type), 2 × 10 6 (p-type), and 2 × 10 10 (p-type) Ω·cm, were used in fabricating the MIS devices. These devices showed several peaks in their capacitance measurements due to upward/downward band bending that depend on the surface potential. In conclusion, theoretical and experimental capacitance measurements were in agreement, except in the fully compensated case.« less
Analysis of Deep and Shallow Traps in Semi-Insulating CdZnTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kihyun; Yoon, Yongsu; James, Ralph B.
Trap levels which are deep or shallow play an important role in the electrical and the optical properties of a semiconductor; thus, a trap level analysis is very important in most semiconductor devices. Deep-level defects in CdZnTe are essential in Fermi level pinning at the middle of the bandgap and are responsible for incomplete charge collection and polarization effects. However, a deep level analysis in semi-insulating CdZnTe (CZT) is very difficult. Theoretical capacitance calculation for a metal/insulator/CZT (MIS) device with deep-level defects exhibits inflection points when the donor/acceptor level crosses the Fermi level in the surface-charge layer (SCL). Three CZTmore » samples with different resistivities, 2 × 10 4 (n-type), 2 × 10 6 (p-type), and 2 × 10 10 (p-type) Ω·cm, were used in fabricating the MIS devices. These devices showed several peaks in their capacitance measurements due to upward/downward band bending that depend on the surface potential. In conclusion, theoretical and experimental capacitance measurements were in agreement, except in the fully compensated case.« less
Defects and annealing studies in 1-Me electron irradiated (AlGa)As-GaAs solar cells
NASA Technical Reports Server (NTRS)
Li, S. S.; Wang, W. L.; Loo, R. Y.; Rahilly, W. P.
1982-01-01
The deep-level defects and recombination mechanisms in the one-MeV electron irradiated (AlGa)As-GaAs solar cells under various irradiation and annealing conditions are discussed. Deep-level transient spectroscopy (DLTS) and capacitance-voltage (CV) techniques were used to determine the defect and recombination parameters such as energy levels and defect density, carrier capture cross sections and lifetimes for both electron and hole traps as well as hole diffusion lengths in these electron irradiated GaAs solar cells. GaAs solar cells used in this study were prepared by the infinite solution melt liquid phase epitaxial (LPE) technique at Hughes Research Lab., with (Al0.9Ga0.1)-As window layer, Be-diffused p-GaAs layer on Sn-doped n-GaAs or undoped n-GaAs active layer grown on n(+)-GaAs substrate. Mesa structure with area of 5.86x1000 sq cm was fabricated. Three different irradiation and annealing experiments were performed on these solar cells.
Bota, Olimpiu; Spindler, Nick; Sauber, Jeannine; Aydogan, Emrah; Langer, Stefan
2017-08-01
Soft-tissue defects caused by radiation injury are a challenging task for the reconstructive surgeon, due to the extent of the soft-tissue damage and the associated injuries of the local blood vessels and bone tissue. We present the application of the versatile deep inferior epigastric perforator (DIEP) flap for the coverage of an extended lateral thigh soft-tissue defect after the surgical resection of an undifferentiated pleomorphic high-grade sarcoma, neoadjuvant chemotherapy, and adjuvant chemo- and radiotherapy. A double-pedicled free DIEP flap (756 cm 2 ) was harvested and anastomosed to the transverse branch of the lateral femoral circumflex artery and a lateral branch of the popliteal artery (P1). The flap survived completely without serious complications, and the patient was able to walk with crutches 3 months postoperatively. This is the first case report of a free bipedicled DIEP flap for the coverage of a thigh defect in a male patient.
Spindler, Nick; Sauber, Jeannine; Aydogan, Emrah; Langer, Stefan
2017-01-01
Summary: Soft-tissue defects caused by radiation injury are a challenging task for the reconstructive surgeon, due to the extent of the soft-tissue damage and the associated injuries of the local blood vessels and bone tissue. We present the application of the versatile deep inferior epigastric perforator (DIEP) flap for the coverage of an extended lateral thigh soft-tissue defect after the surgical resection of an undifferentiated pleomorphic high-grade sarcoma, neoadjuvant chemotherapy, and adjuvant chemo- and radiotherapy. A double-pedicled free DIEP flap (756 cm2) was harvested and anastomosed to the transverse branch of the lateral femoral circumflex artery and a lateral branch of the popliteal artery (P1). The flap survived completely without serious complications, and the patient was able to walk with crutches 3 months postoperatively. This is the first case report of a free bipedicled DIEP flap for the coverage of a thigh defect in a male patient. PMID:28894652
Carrier removal and defect behavior in p-type InP
NASA Technical Reports Server (NTRS)
Weinberg, I.; Swartz, C. K.; Drevinsky, P. J.
1992-01-01
A simple expression, obtained from the rate equation for defect production, was used to relate carrier removal to defect production and hole trapping rates in p-type InP after irradiation by 1-MeV electrons. Specific contributions to carrier removal from defect levels H3, H4, and H5 were determined from combined deep-level transient spectroscopy (DLTS) and measured carrier concentrations. An additional contribution was attributed to one or more defects not observed by the present DLTS measurements. The high trapping rate observed for H5 suggests that this defect, if present in relatively high concentration, could be dominant in p-type InP.
NASA Astrophysics Data System (ADS)
Irmscher, Klaus
AlN crystallizes thermodynamically stable in the wurtzite structure and possesses a direct band gap of about 6 eV. It is the ideal substrate for the epitaxial growth of Al-rich AlxGa1-xN films that enable deep ultraviolet (UV) emitters. Appropriate AlN bulk crystals can be grown by physical vapor transport (PVT). Besides high structural perfection, such substrate crystals should be highly UV transparent and ideally, electrically conductive. It is well known that point defects like impurities and intrinsic defects may introduce electronic energy levels within the bandgap, which lead to additional optical absorption or electrical compensation. Among the impurities, which may be incorporated into the AlN crystals during PVT growth at well above 2000 ° C, oxygen, carbon, and silicon play the major role. Based on our own experimental data as well as on experimental and theoretical results reported in literature, we discuss energy levels, charge states and possible negative-U behavior of these impurities and of vacancy-type defects. In particular, we develop a model that explains the absorption behavior of the crystals in dependence on the Fermi level that can be controlled by the growth conditions, including intentional doping. Further, we pay attention on spectroscopic investigations giving direct evidence for the chemical nature and atomic arrangement of the involved point defects. As examples local vibrational mode (LVM) spectroscopy of carbon related defects and recent reports of electron paramagnetic resonance (EPR) spectroscopy are discussed.
de Sanctis, Massimo; Goracci, Cecilia; Zucchelli, Giovanni
2013-01-01
Over the last few decades, many authors have investigated the effect of periodontal disease and treatment on pulpal status with controversial results. This study was conducted to verify whether periodontal disease in a deep intrabony defect and complex therapy, including aggressive root planing such as in periodontal regeneration, have an influence on tooth vitality. One hundred thirty-seven patients who fulfilled the requirements were included. The collected data did not support the need for "preventive" root canal treatment in severely compromised teeth that are planned to undergo periodontal regenerative surgery.
NASA Astrophysics Data System (ADS)
Asano, Tetsuya
Self-assembled quantum dots (SAQDs) formed by lattice-mismatch strain-driven epitaxy are currently the most advanced nanostructure-based platform for high performance optoelectronic applications such as lasers and photodetectors. While the QD lasers have realized the best performance in terms of threshold current and temperature stability, the performance of QD photodetectors (QDIPs) has not surpassed that of quantum well (QW) photodetectors. This is because the requirement of maximal photon absorption for photodetectors poses the challenge of forming an appropriately-doped large number of uniform multiple SAQD (MQD) layers with acceptable structural defect (dislocation etc.) density. This dissertation addresses this challenge and, through a combination of innovative approach to control of defects in MQD growth and judicious placement of SAQDs in a resonant cavity, shows that SAQD based quantum dot infrared photodetectors (QDIPs) can be made competitive with their quantum well counterparts. Specifically, the following major elements were accomplished: (i) the molecular beam epitaxy (MBE) growth of dislocation-free and uniform InAs/InAlGaAs/GaAs MQD strained structures up to 20-period, (ii) temperature-dependent photo- and dark-current based analysis of the electron density distribution inside the MQD structures for various doping schemes, (iii) deep level transient spectroscopy based identification of growth procedure dependent deleterious deep traps in SAQD structures and their reduction, and (iv) the use of an appropriately designed resonant cavity (RC) and judicious placement of the SAQD layers for maximal enhancement of photon absorption to realize over an order of magnitude enhancement in QDIP detectivity. The lattermost demonstration indicates that implementation of the growth approach and resonant cavity strategy developed here while utilizing the currently demonstrated MIR and LWIR QDIPs with detectivities > 10 10 cmHz1/2/W at ˜ 77 K will enable RC-QDIP with detectivites > 1011 cmHz1/2/W that become competitive with other photodetector technologies in the mid IR (3 -- 5 mum) and long wavelength IR (8 -- 12 mum) ranges with the added advantage of materials stability and normal incidence sensitivity. Extended defect-free and size-uniform MQD structures of shallow InAs on GaAs (001) SAQDs capped with In0.15Ga0.85As strain relief layers and separated by GaAs spacer layer were grown up to 20 periods employing a judicious combination of MBE and migration enhanced epitaxy (MEE) techniques and examined by detailed transmission electron microscopy studies to reveal the absence of detectable extended defects (dislocation density < ˜ 107 /cm2). Photoluminescence studies revealed high optical quality. As our focus was on mid-infrared detectors, the MQD structures were grown in n (GaAs) -- i (MQD) -- n (GaAs) structures providing electron occupancy in at least the quantum confined ground energy states of the SAQDs and thus photodetection based upon transitions to electron excited states. Bias and temperature-dependent dark and photocurrent measurements were carried out for a variety of doping profiles and the electron density spatial distribution was determined from the resulting band bending profiles. It is revealed that almost no free electrons are present in the middle SAQD layers in the 10-period and 20-period n--i--n QDIP structures, indicating the existence of a high density (˜1015/cm3) of negative charges which can be attributed to electrons trapped in deep levels. To examine the nature of these deep traps, samples suitable for deep level transient spectroscopy measurement were synthesized and examined. These studies, carried out for the first time for SAQDs, revealed that the deep traps are dominantly present in the GaAs overgrowth layers grown at 500°C by MBE. For structures involving GaAs overgrowths using MEE at temperatures as low as 350°C, the deep trap density in the GaAs overgrowth layer was found to be significantly reduced by factor of ˜ 20. Thus, employing MEE growth for GaAs spacer layers in n--i(20-period MQD)-- n QDIP structures, electrons could be provided to all the SAQDs owing to the significantly reduced deep trap density. Finally, for enhancement of the incident photon absorption, we designed and fabricated asymmetric Fabry-Perot resonant cavity-enhanced QDIPs. For effective enhancement, SAQDs with a narrow photoresponse in the 3 -- 5 mum infrared regime were realized utilizing [(AlAs)1(GaAs)4]4 short-period superlattices as the confining barrier layers. Incorporating such SAQDs in RC-QDIPs, we successfully demonstrated ˜ 10 times enhancement of the QDIP detectivity. As stated above, this makes RC-QDIPs containing QDIPs with the currently demonstrated detectivities of ˜ 1010 cmHz 1/2/W at ˜ 77 K competitive with other IR photodetector technologies.
Functional restoration of penis with partial defect by scrotal skin flap.
Zhao, Yue-Qiang; Zhang, Jie; Yu, Mo-Sheng; Long, Dao-Chou
2009-11-01
We investigated a reconstructive method with better sensory and erectile function for partial penile defects and report our long-term results of surgical correction using scrotal skin flaps. We retrospectively analyzed the records of 18 patients with penile defects referred to us between 1992 and 2007. All cases were treated with a scrotal skin flap initially to repair the secondary defect after penile elongation. Of the 18 cases treated during the 15-year period the mechanism of primary injury was circumcision in 3, animal bite in 9 and penile tumor dissection in 6. Penile elongation, division of the suspensory ligament and scrotal skin flaps achieved penile augmentation and enhancement. Six cases were treated with a bilateral scrotal skin flap supplied by the anterior scrotal artery and 12 were repaired with a total anterior scrotal skin flap supplied by the anterior and posterior scrotal arteries. Penile length in the flaccid and erectile states was obviously increased postoperatively (p <0.05). All patients were followed 1 to 9 years (mean 2.3) postoperatively. Deep and superficial sensation recovered and erectile function was retained. Of the 18 patients 15 reported satisfied sexual intercourse during the 0.5 to 5-year followup. The method of correcting partial penile defect using scrotal skin flaps is effective and simple according to our long-term experience. This method achieves reasonable cosmesis and penile length in most cases with better sensory and erectile function.
Investigation of defect properties in Cu(In,Ga)Se 2 solar cells by deep-level transient spectroscopy
NASA Astrophysics Data System (ADS)
Kerr, L. L.; Li, Sheng S.; Johnston, S. W.; Anderson, T. J.; Crisalle, O. D.; Kim, W. K.; Abushama, J.; Noufi, R. N.
2004-09-01
The performance of the chalcopyrite material Cu(In,Ga)Se 2 (CIGS) used as an absorber layer in thin-film photovoltaic devices is significantly affected by the presence of native defects. The deep-level transient spectroscopy (DLTS) technique is used in this work to characterize the defect properties, yielding relevant information about the defect types, their capture cross-sections, and energy levels and densities in the CIGS cells. Three solar cells developed using different absorber growth technologies were analyzed using DLTS, capacitance-voltage ( C- V), and capacitance-temperature ( C- T) techniques. It was found that CIS cells grown at the University of Florida exhibits a middle-gap defect level that may relate to the cell's low fill factor and open-circuit voltage values observed. A high efficiency ( ηc>18%) CIGS cell produced by the National Renewable Energy Laboratory (NREL) was found to contain three minority-carrier (electron) traps and a 13% CIGS cell produced by the Energy Photovoltaics Inc. (EPV) exhibited one majority (hole) trap. The approach followed using the DLTS technique serves as a paradigm for revealing the presence of significant defect levels in absorber materials, and may be used to support the identification of remedial processing operations.
Photoluminescence as a tool for characterizing point defects in semiconductors
NASA Astrophysics Data System (ADS)
Reshchikov, Michael
2012-02-01
Photoluminescence is one of the most powerful tools used to study optically-active point defects in semiconductors, especially in wide-bandgap materials. Gallium nitride (GaN) and zinc oxide (ZnO) have attracted considerable attention in the last two decades due to their prospects in optoelectronics applications, including blue and ultraviolet light-emitting devices. However, in spite of many years of extensive studies and a great number of publications on photoluminescence from GaN and ZnO, only a few defect-related luminescence bands are reliably identified. Among them are the Zn-related blue band in GaN, Cu-related green band and Li-related orange band in ZnO. Numerous suggestions for the identification of other luminescence bands, such as the yellow band in GaN, or green and yellow bands in ZnO, do not stand up under scrutiny. In these conditions, it is important to classify the defect-related luminescence bands and find their unique characteristics. In this presentation, we will review the origin of the major luminescence bands in GaN and ZnO. Through simulations of the temperature and excitation intensity dependences of photoluminescence and by employing phenomenological models we are able to obtain important characteristics of point defects such as carrier capture cross-sections for defects, concentrations of defects, and their charge states. These models are also used to find the absolute internal quantum efficiency of photoluminescence and obtain information about nonradiative defects. Results from photoluminescence measurements will be compared with results of the first-principle calculations, as well as with the experimental data obtained by other techniques such as positron annihilation spectroscopy, deep-level transient spectroscopy, and secondary ion mass spectrometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguirre, B. A.; Bielejec, E.; Fleming, R. M.
Here, we studied the effect of light ion and heavy ion irradiations on pnp Si BJTs. A mismatch in DLTS deep peak amplitude for devices with same final gain but irradiated with different ion species was observed. Also, different ions cause different gain degradation when the DLTS spectra are matched. Pre-dosed ion-irradiated samples show that ion induced ionization does not account for the differences in DLTS peak height but isochronal annealing studies suggest that light ions produce more VP defects than heavy ions to compensate for the lack of clusters that heavy ions produce. The creation of defect clusters bymore » heavy ions is evident by the higher content of E4 and V* 2 defects compared to light ions.« less
Aguirre, B. A.; Bielejec, E.; Fleming, R. M.; ...
2016-12-09
Here, we studied the effect of light ion and heavy ion irradiations on pnp Si BJTs. A mismatch in DLTS deep peak amplitude for devices with same final gain but irradiated with different ion species was observed. Also, different ions cause different gain degradation when the DLTS spectra are matched. Pre-dosed ion-irradiated samples show that ion induced ionization does not account for the differences in DLTS peak height but isochronal annealing studies suggest that light ions produce more VP defects than heavy ions to compensate for the lack of clusters that heavy ions produce. The creation of defect clusters bymore » heavy ions is evident by the higher content of E4 and V* 2 defects compared to light ions.« less
Ramifications of codoping SrI2:Eu with isovalent and aliovalent impurities
NASA Astrophysics Data System (ADS)
Feng, Qingguo; Biswas, Koushik
2016-12-01
Eu2+ doped SrI2 is an important scintillator having applications in the field of radiation detection. Codoping techniques are often useful to improve the electronic response of such insulators. Using first-principles based approach, we report on the properties of SrI2:Eu and the influence of codoping with aliovalent (Na, Cs) and isovalent (Mg, Ca, Ba, and Sn) impurities. These codopants do not preferably bind with Eu and are expected to remain as isolated impurities in the SrI2 host. As isolated defects they display amphoteric behavior having, in most cases, significant ionization energies of the donor and acceptor levels. Furthermore, the acceptor states of Na, Cs, and Mg can bind with I-vacancy forming charge compensated donor-acceptor pairs. Such pairs may also bind additional holes or electrons similar to the isolated defects. Lack of deep-to-shallow behavior upon codoping and its ramifications will be discussed.
Defect properties of Sn- and Ge-doped ZnTe: suitability for intermediate-band solar cells
NASA Astrophysics Data System (ADS)
Flores, Mauricio A.
2018-01-01
We investigate the electronic structure and defect properties of Sn- and Ge- doped ZnTe by first-principles calculations within the DFT+GW formalism. We find that ({{{Sn}}}{{Zn}}) and ({{{Ge}}}{{Zn}}) introduce isolated energy levels deep in the band gap of ZnTe, derived from Sn-5s and Ge-4s states, respectively. Moreover, the incorporation of Sn and Ge on the Zn site is favored in p-type ZnTe, in both Zn-rich and Te-rich environments. The optical absorption spectra obtained by solving the Bethe-Salpeter equation reveals that sub-bandgap absorptance is greatly enhanced due to the formation of the intermediate band. Our results suggest that Sn- and Ge-doped ZnTe would be a suitable material for the development of intermediate-band solar cells, which have the potential to achieve efficiencies beyond the single-junction limit.
The role of Sb in solar cell material Cu 2ZnSnS 4
Zhang, Xiaoli; Han, Miaomiao; Zeng, Zhi; ...
2017-03-03
In this paper, based on first-principles calculations we report a possible mechanism of the efficiency improvement of the Sb-doped Cu 2ZnSnS 4 (CZTS) solar cells from the Sb-related defect point of view. Different from Sb in CuInSe 2 which substituted the Cu atomic site and acted as group-13 elements on the Cu-poor growth condition, we find out that Sb prefers to substitute Sn atomic site and acts as group-14 elements on the Cu-poor growth condition in CZTS. At low Sb concentration, Sb Sn produces a deep defect level which is detrimental for the solar cell application. At high Sb concentration,more » Sb 5s states form an isolated half-filled intermediate band at 0.5 eV above the valence band maximum which will increase the photocurrent as well as the solar cell efficiency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrakchi, G.; Barbier, D.; Guillot, G.
Electrical and deep level transient spectroscopy measurements on Schottky barriers were performed in order to characterize electrically active defects in n-type GaAs (Bridgman substrates or liquid-phase epitaxial layers) after pulsed electron beam annealing. Both surface damage and bulk defects were observed in the Bridgman substrates depending on the pulse energy density. No electron traps were detected in the liquid-phase epitaxial layers before and after annealing for an energy density of 0.4 J/cm/sup 2/. The existence of an interfacial insulating layer at the metal-semiconductor interface, associated with As out-diffusion during the pulsed electron irradiation, was revealed by the abnormally high valuesmore » of the Schottky barrier diffusion potential. Moreover, two new electron traps with activation energy of 0.35 and 0.43 eV, called EP1 and EP2, were introduced in the Bridgman substrates after pulsed electron beam annealing. The presence of these traps, related to the As evaporation, was tentatively attributed to the decrease of the EL2 electron trap signal after 0.4-J/cm/sup 2/ annealing. It is proposed that these new defects states are due to the decomposition of the As/sub Ga/-As/sub i/ complex recently considered as the most probable defect configuration for the dominant EL2 electron trap usually detected in as-grown GaAs substrates.« less
NASA Astrophysics Data System (ADS)
Kabyshev, A. V.; Konusov, F. V.; Pavlov, S. K.; Remnev, G. E.
2016-02-01
The paper is focused on the study of the structural, electrical and optical characteristics of the ceramic silicon carbide before and after irradiation in the regimes of the high-power ion beams (HPIB) and high-intensity short-pulse implantation (HISPI) of carbon ions. The dominant mechanism of transport of charge carriers, their type and the energy spectrum of localized states (LS) of defects determining the properties of SiC were established. Electrical and optical characteristics of ceramic before and after irradiation are determined by the biographical and radiation defects whose band gap (BG) energy levels have a continuous energetic distribution. A dominant p-type activation component of conduction with participation of shallow acceptor levels 0.05-0.16 eV is complemented by hopping mechanism of conduction involving the defects LS with a density of 1.2T017-2.4T018 eV-Am-3 distributed near the Fermi level.The effect of radiation defects with deep levels in the BG on properties change dominates after HISPI. A new material with the changed electronic structure and properties is formed in the near surface layer of SiC after the impact of the HPIB.
Hidden Oceans? Unraveling the Structure of Hydrous Defects in the Earth's Deep Interior.
Grüninger, Helen; Armstrong, Katherine; Greim, Dominik; Boffa-Ballaran, Tiziana; Frost, Daniel J; Senker, Jürgen
2017-08-02
High-pressure silicates making up the main proportion of the earth's interior can incorporate a significant amount of water in the form of OH defects. Generally, they are charge balanced by removing low-valent cations such as Mg 2+ . By combining high-resolution multidimensional single- and double-quantum 1 H solid-state NMR spectroscopy with density functional theory calculations, we show that, for ringwoodite (γ-Mg 2 SiO 4 ), additionally, Si 4+ vacancies are formed, even at a water content as low as 0.1 wt %. They are charge balanced by either four protons or one Mg 2+ and two protons. Surprisingly, also a significant proportion of coupled Mg and Si vacancies are present. Furthermore, all defect types feature a pronounced orientational disorder of the OH groups, which results in a significant range of OH···O bond distributions. As such, we are able to present unique insight into the defect chemistry of ringwoodite's spinel structure, which not only accounts for a potentially large fraction of the earth's entire water budget, but will also control transport properties in the mantle. We expect that our results will even impact other hydrous spinel-type materials, helping to understand properties such as ion conduction and heterogeneous catalysis.
NASA Astrophysics Data System (ADS)
Secor, Jeff; Narinesingh, Veeshan; Seredych, Mykola; Giannakoudakis, Dimitrios A.; Bandosz, Teresa; Alfano, Robert R.
2015-01-01
Ultrafast energy decay kinetics of a zinc (hydr)oxide-graphite oxide (GO) composite is studied via time-resolved fluorescence spectroscopy. The time-resolved emission is spectrally decomposed into emission regions originating from the zinc (hydr)oxide optical gap, surface, and defect states of the composite material. The radiative lifetime of deep red emission becomes an order of magnitude longer than that of GO alone while the radiative lifetime of the zinc optical gap is shortened in the composite. An energy transfer scheme from the zinc (hydr)oxide to GO is considered.
NASA Astrophysics Data System (ADS)
Du, Mao-Hua; Biswas, Koushik; Singh, David J.
2012-10-01
In this paper, we report theoretical studies of native defects and dopants in a number of room-temperature semiconductor radiation detection materials, i.e., CdTe, TlBr, and Tl6SeI4. We address several important questions, such as what causes high resistivity in these materials, what explains good μτ product (carrier mobility-lifetime product) in soft-lattice ionic compounds that have high defect density, and how to obtain high resistivity and low carrier trapping simultaneously. Our main results are: (1) shallow donors rather than deep ones are responsible for high resistivity in high-quality detectorgrade CdTe; (2) large dielectric screening and the lack of deep levels from low-energy native defects may contribute to the good μτ products for both electrons and holes in TlBr; (3) the polarization phenomenon in Tl6SeI4 is expected to be much reduced compared to that in TlBr.
Anatomic Basis for Penis Transplantation: Cadaveric Microdissection of Penile Structures.
Tiftikcioglu, Yigit Ozer; Erenoglu, Cagil Meric; Lineaweaver, William C; Bilge, Okan; Celik, Servet; Ozek, Cuneyt
2016-06-01
We present a cadaveric dissection study to investigate the anatomic feasibility of penile transplantation. Seventeen male cadavers were dissected to reveal detailed anatomy of the dorsal neurovascular structures including dorsal arteries, superficial and deep dorsal veins, and dorsal nerves of the penis. Dorsal artery diameters showed a significant decrease from proximal to distal shaft. Dominance was observed in one side. Deep dorsal vein showed a straight course and less decrease in diameter compared to artery. Dorsal nerves showed proximal branching pattern. In a possible penile transplantation, level of harvest should be determined according to the patient and the defect, where a transgender patient will receive a total allograft and a male patient with a proximal penile defect will receive a partial shaft allograft. We designed an algorithm for different levels of penile defect and described the technique for harvest of partial and total penile transplants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutter-Fella, Carolin M.; Miller, D. Westley; Ngo, Quynh P.
Organometal halide perovskite semiconductors have emerged as promising candidates for optoelectronic applications because of the outstanding charge carrier transport properties, achieved with low-temperature synthesis. In this paper, we present highly sensitive sub-bandgap external quantum efficiency (EQE) measurements of Au/spiro-OMeTAD/CH 3NH 3Pb(I 1–xBr x) 3/TiO 2/FTO/glass photovoltaic devices. The room-temperature spectra show exponential band tails with a sharp onset characterized by low Urbach energies (E u) over the full halide composition space. The Urbach energies are 15–23 meV, lower than those for most semiconductors with similar bandgaps (especially with E g > 1.9 eV). Intentional aging of CH 3NH 3Pb(I 1–xBrmore » x) 3 for up to 2300 h, reveals no change in E u, despite the appearance of the PbI 2 phase due to decomposition, and confirms a high degree of crystal ordering. Moreover, sub-bandgap EQE measurements reveal an extended band of sub-bandgap electronic states that can be fit with one or two point defects for pure CH 3NH 3PbI 3 or mixed CH 3NH 3Pb(I 1–xBr x) 3 compositions, respectively. Finally, the study provides experimental evidence of defect states close to the midgap that could impact photocarrier recombination and energy conversion efficiency in higher bandgap CH 3NH 3Pb(I 1–xBr x) 3 alloys.« less
Sutter-Fella, Carolin M.; Miller, D. Westley; Ngo, Quynh P.; ...
2017-02-15
Organometal halide perovskite semiconductors have emerged as promising candidates for optoelectronic applications because of the outstanding charge carrier transport properties, achieved with low-temperature synthesis. In this paper, we present highly sensitive sub-bandgap external quantum efficiency (EQE) measurements of Au/spiro-OMeTAD/CH 3NH 3Pb(I 1–xBr x) 3/TiO 2/FTO/glass photovoltaic devices. The room-temperature spectra show exponential band tails with a sharp onset characterized by low Urbach energies (E u) over the full halide composition space. The Urbach energies are 15–23 meV, lower than those for most semiconductors with similar bandgaps (especially with E g > 1.9 eV). Intentional aging of CH 3NH 3Pb(I 1–xBrmore » x) 3 for up to 2300 h, reveals no change in E u, despite the appearance of the PbI 2 phase due to decomposition, and confirms a high degree of crystal ordering. Moreover, sub-bandgap EQE measurements reveal an extended band of sub-bandgap electronic states that can be fit with one or two point defects for pure CH 3NH 3PbI 3 or mixed CH 3NH 3Pb(I 1–xBr x) 3 compositions, respectively. Finally, the study provides experimental evidence of defect states close to the midgap that could impact photocarrier recombination and energy conversion efficiency in higher bandgap CH 3NH 3Pb(I 1–xBr x) 3 alloys.« less
Deep sub-wavelength metrology for advanced defect classification
NASA Astrophysics Data System (ADS)
van der Walle, P.; Kramer, E.; van der Donck, J. C. J.; Mulckhuyse, W.; Nijsten, L.; Bernal Arango, F. A.; de Jong, A.; van Zeijl, E.; Spruit, H. E. T.; van den Berg, J. H.; Nanda, G.; van Langen-Suurling, A. K.; Alkemade, P. F. A.; Pereira, S. F.; Maas, D. J.
2017-06-01
Particle defects are important contributors to yield loss in semi-conductor manufacturing. Particles need to be detected and characterized in order to determine and eliminate their root cause. We have conceived a process flow for advanced defect classification (ADC) that distinguishes three consecutive steps; detection, review and classification. For defect detection, TNO has developed the Rapid Nano (RN3) particle scanner, which illuminates the sample from nine azimuth angles. The RN3 is capable of detecting 42 nm Latex Sphere Equivalent (LSE) particles on XXX-flat Silicon wafers. For each sample, the lower detection limit (LDL) can be verified by an analysis of the speckle signal, which originates from the surface roughness of the substrate. In detection-mode (RN3.1), the signal from all illumination angles is added. In review-mode (RN3.9), the signals from all nine arms are recorded individually and analyzed in order to retrieve additional information on the shape and size of deep sub-wavelength defects. This paper presents experimental and modelling results on the extraction of shape information from the RN3.9 multi-azimuth signal such as aspect ratio, skewness, and orientation of test defects. Both modeling and experimental work confirm that the RN3.9 signal contains detailed defect shape information. After review by RN3.9, defects are coarsely classified, yielding a purified Defect-of-Interest (DoI) list for further analysis on slower metrology tools, such as SEM, AFM or HIM, that provide more detailed review data and further classification. Purifying the DoI list via optical metrology with RN3.9 will make inspection time on slower review tools more efficient.
Advances in the Use of Thermography to Inspect Composite Tanks for Liquid Fuel Propulsion Systems
NASA Technical Reports Server (NTRS)
Lansing, Matthew D.; Russell, Samuel S.; Walker, James L.; Jones, Clyde S. (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of advances in the use of thermography to inspect composite tanks for liquid fuel propulsion systems. Details are given on the thermographic inspection system, thermographic analysis method (includes scan and defect map, method of inspection, and inclusions, ply wrinkle, and delamination defects), graphite composite cryogenic feedline (including method, image map, and deep/shallow inclusions and resin rich area defects), and material degradation nondestructive evaluation.
Defect-Repairable Latent Feature Extraction of Driving Behavior via a Deep Sparse Autoencoder
Taniguchi, Tadahiro; Takenaka, Kazuhito; Bando, Takashi
2018-01-01
Data representing driving behavior, as measured by various sensors installed in a vehicle, are collected as multi-dimensional sensor time-series data. These data often include redundant information, e.g., both the speed of wheels and the engine speed represent the velocity of the vehicle. Redundant information can be expected to complicate the data analysis, e.g., more factors need to be analyzed; even varying the levels of redundancy can influence the results of the analysis. We assume that the measured multi-dimensional sensor time-series data of driving behavior are generated from low-dimensional data shared by the many types of one-dimensional data of which multi-dimensional time-series data are composed. Meanwhile, sensor time-series data may be defective because of sensor failure. Therefore, another important function is to reduce the negative effect of defective data when extracting low-dimensional time-series data. This study proposes a defect-repairable feature extraction method based on a deep sparse autoencoder (DSAE) to extract low-dimensional time-series data. In the experiments, we show that DSAE provides high-performance latent feature extraction for driving behavior, even for defective sensor time-series data. In addition, we show that the negative effect of defects on the driving behavior segmentation task could be reduced using the latent features extracted by DSAE. PMID:29462931
Native defects in Tl 6SI 4: Density functional calculations
Shi, Hongliang; Du, Mao -Hua
2015-05-05
In this study, Tl 6SI 4 is a promising room-temperature semiconductor radiation detection material. Here, we report density functional calculations of native defects and dielectric properties of Tl 6SI 4. Formation energies and defect levels of native point defects and defect complexes are calculated. Donor-acceptor defect complexes are shown to be abundant in Tl 6SI 4. High resistivity can be obtained by Fermi level pinning by native donor and acceptor defects. Deep donors that are detrimental to electron transport are identified and methods to mitigate such problem are discussed. Furthermore, we show that mixed ionic-covalent character of Tl 6SI 4more » gives rise to enhanced Born effective charges and large static dielectric constant, which provides effective screening of charged defects and impurities.« less
Shallow trapping vs. deep polarons in a hybrid lead halide perovskite, CH3NH3PbI3.
Kang, Byungkyun; Biswas, Koushik
2017-10-18
There has been considerable speculation over the nature of charge carriers in organic-inorganic hybrid perovskites, i.e., whether they are free and band-like, or they are prone to self-trapping via short range deformation potentials. Unusually long minority-carrier diffusion lengths and moderate-to-low mobilities, together with relatively few deep defects add to their intrigue. Here we implement density functional methods to investigate the room-temperature, tetragonal phase of CH 3 NH 3 PbI 3 . We compare charge localization behavior at shallow levels and associated lattice relaxation versus those at deep polaronic states. The shallow level originates from screened Coulomb interaction between the perturbed host and an excited electron or hole. The host lattice has a tendency towards forming these shallow traps where the electron or hole is localized not too far from the band edge. In contrast, there is a considerable potential barrier that must be overcome in order to initiate polaronic hole trapping. The formation of a hole polaron (I 2 - center) involves strong lattice relaxation, including large off-center displacement of the organic cation, CH 3 NH 3 + . This type of deep polaron is energetically unfavorable, and active shallow traps are expected to shape the carrier dynamics in this material.
The effects of deep-level defects on the electrical properties of Cd0.9Zn0.1Te crystals
NASA Astrophysics Data System (ADS)
Wang, Pengfei; Nan, Ruihua; Jian, Zengyun
2017-06-01
The deep-level defects of CdZnTe (CZT) crystals grown by the modified vertical Bridgman (MVB) method act as trapping centers or recombination centers in the band gap, which have significant effects on its electrical properties. The resistivity and electron mobility-lifetime product of high resistivity Cd0.9Zn0.1Te wafer marked CZT1 and low resistivity Cd0.9Zn0.1Te wafer marked CZT2 were tested respectively. Their deep-level defects were identified by thermally stimulated current (TSC) spectroscopy and thermoelectric effect spectroscopy (TEES) respectively. Then the trap-related parameters were characterized by the simultaneous multiple peak analysis (SIMPA) method. The deep donor level ({E}{{DD}}) dominating dark current was calculated by the relationship between dark current and temperature. The Fermi-level was characterized by current-voltage measurements of temperature dependence. The width of the band gap was characterized by ultraviolet-visible-infrared transmittance spectroscopy. The results show the traps concentration and capture cross section of CZT1 are lower than CZT2, so its electron mobility-lifetime product is greater than CZT2. The Fermi-level of CZT1 is closer to the middle gap than CZT2. The degree of Fermi-level pinned by {E}{{DD}} of CZT1 is larger than CZT2. It can be concluded that the resistivity of CZT crystals increases as the degree of Fermi-level pinned near the middle gap by the deep donor level enlarges. Project supported by the National Natural Science Foundation of China (No. 51502234) and the Scientific Research Plan Projects of Shaanxi Provincial Department of Education of China (No. 15JS040).
Code of Federal Regulations, 2013 CFR
2013-01-01
... defects shall be considered as damage: (a) Cracks within the stem cavity when deep or not well healed, or... healed crack one-sixteenth inch in width extending one-half the greatest circumference of the stem cavity; (b) Cracks outside of the stem cavity when deep or not well healed, or when the crack has weakened...
Code of Federal Regulations, 2014 CFR
2014-01-01
... defects shall be considered as damage: (a) Cracks within the stem cavity when deep or not well healed, or... healed crack one-sixteenth inch in width extending one-half the greatest circumference of the stem cavity; (b) Cracks outside of the stem cavity when deep or not well healed, or when the crack has weakened...
Origin of reduced efficiency in high Ga concentration Cu(In,Ga)Se2 solar cell
NASA Astrophysics Data System (ADS)
Wei, S.-H.; Huang, B.; Deng, H.; Contreras, M. A.; Noufi, R.; Chen, S.; Wang, L. W.
2014-03-01
CuInSe2 (CIS) is one of the most attractive thin-film materials for solar cells. It is well know that alloying Ga into CIS forming Cu(In,Ga)Se2 (CIGS) alloy is crucial to achieve the high efficiency, but adding too much Ga will lead to a decline of the solar cell efficiency. The exact origin of this puzzling phenomenon is currently still under debate. Using first-principles method, we have systemically studied the structural and electronic properties of CIGS alloys. Our phase diagram calculations suggest that increasing growth temperature may not be a critical factor in enhancing the cell performance of CIGS under equilibrium growth condition. On the other hand, our defect calculations identify that high concentration of antisite defects MCu(M =In, Ga) rather than anion defects are the key deep-trap centers in CIGS. The more the Ga concentration in CIGS, the more harmful the deep-trap is. Self-compensation in CIGS, which forms 2VCu + MCudefect complexes, is found to be beneficial to quench the deep-trap levels induced by MCu in CIGS, especially at low Ga concentration. Unfortunately, the density of isolated MCu is quite high and cannot be largely converted into 2VCu + MCu complexes under thermal equilibrium condition. Thus, nonequilibrium growth conditions or low growth temperature that can suppress the formation of the deep-trap centers MCu may be necessary for improving the efficiency of CIGS solar cells with high Ga concentrations.
NASA Astrophysics Data System (ADS)
Omotoso, Ezekiel; Meyer, Walter E.; Auret, F. Danie; Paradzah, Alexander T.; Legodi, Matshisa J.
2016-03-01
Deep-level transient spectroscopy (DLTS) and Laplace-DLTS were used to investigate the effect of alpha-particle irradiation on the electrical properties of nitrogen-doped 4H-SiC. The samples were bombarded with alpha-particles at room temperature (300 K) using an americium-241 (241Am) radionuclide source. DLTS revealed the presence of four deep levels in the as-grown samples, E0.09, E0.11, E0.16 and E0.65. After irradiation with a fluence of 4.1 × 1010 alpha-particles-cm-2, DLTS measurements indicated the presence of two new deep levels, E0.39 and E0.62 with energy levels, EC - 0.39 eV and EC - 0.62 eV, with an apparent capture cross sections of 2 × 10-16 and 2 × 10-14 cm2, respectively. Furthermore, irradiation with fluence of 8.9 × 1010 alpha-particles-cm-2 resulted in the disappearance of shallow defects due to a lowering of the Fermi level. These defects re-appeared after annealing at 300 °C for 20 min. Defects, E0.39 and E0.42 with close emission rates were attributed to silicon or carbon vacancy and could only be separated by using high resolution Laplace-DLTS. The DLTS peaks at EC - (0.55-0.70) eV (known as Z1/Z2) were attributed to an isolated carbon vacancy (VC).
Armstrong, Andrew M.; Allerman, Andrew A.
2017-07-24
AlGaN:Si epilayers with uniform Al compositions of 60%, 70%, 80%, and 90% were grown by metal-organic vapor phase epitaxy along with a compositionally graded, unintentionally doped (UID) AlGaN epilayer with the Al composition varying linearly between 80% and 100%. The resistivity of AlGaN:Si with a uniform composition increased significantly for the Al content of 80% and greater, whereas the graded UID-AlGaN film exhibited resistivity equivalent to 60% and 70% AlGaN:Si owing to polarization-induced doping. Deep level defect studies of both types of AlGaN epilayers were performed to determine why the electronic properties of uniform-composition AlGaN:Si degraded with increased Al content,more » while the electronic properties of graded UID-AlGaN did not. The deep level density of uniform-composition AlGaN:Si increased monotonically and significantly with the Al mole fraction. Conversely, graded-UID AlGaN had the lowest deep level density of all the epilayers despite containing the highest Al composition. These findings indicate that Si doping is an impetus for point defect incorporation in AlGaN that becomes stronger with the increasing Al content. However, the increase in deep level density with the Al content in uniform-composition AlGaN:Si was small compared to the increase in resistivity. This implies that the primary cause for increasing resistivity in AlGaN:Si with the increasing Al mole fraction is not compensation by deep levels but rather increasing activation energy for the Si dopant. As a result, the graded UID-AlGaN films maintained low resistivity because they do not rely on thermal ionization of Si dopants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Andrew M.; Allerman, Andrew A.
AlGaN:Si epilayers with uniform Al compositions of 60%, 70%, 80%, and 90% were grown by metal-organic vapor phase epitaxy along with a compositionally graded, unintentionally doped (UID) AlGaN epilayer with the Al composition varying linearly between 80% and 100%. The resistivity of AlGaN:Si with a uniform composition increased significantly for the Al content of 80% and greater, whereas the graded UID-AlGaN film exhibited resistivity equivalent to 60% and 70% AlGaN:Si owing to polarization-induced doping. Deep level defect studies of both types of AlGaN epilayers were performed to determine why the electronic properties of uniform-composition AlGaN:Si degraded with increased Al content,more » while the electronic properties of graded UID-AlGaN did not. The deep level density of uniform-composition AlGaN:Si increased monotonically and significantly with the Al mole fraction. Conversely, graded-UID AlGaN had the lowest deep level density of all the epilayers despite containing the highest Al composition. These findings indicate that Si doping is an impetus for point defect incorporation in AlGaN that becomes stronger with the increasing Al content. However, the increase in deep level density with the Al content in uniform-composition AlGaN:Si was small compared to the increase in resistivity. This implies that the primary cause for increasing resistivity in AlGaN:Si with the increasing Al mole fraction is not compensation by deep levels but rather increasing activation energy for the Si dopant. As a result, the graded UID-AlGaN films maintained low resistivity because they do not rely on thermal ionization of Si dopants.« less
Local coexistence of VO 2 phases revealed by deep data analysis
Strelcov, Evgheni; Ievlev, Anton; Tselev, Alexander; ...
2016-07-07
We report a synergistic approach of micro-Raman spectroscopic mapping and deep data analysis to study the distribution of crystallographic phases and ferroelastic domains in a defected Al-doped VO 2 microcrystal. Bayesian linear unmixing revealed an uneven distribution of the T phase, which is stabilized by the surface defects and uneven local doping that went undetectable by other classical analysis techniques such as PCA and SIMPLISMA. This work demonstrates the impact of information recovery via statistical analysis and full mapping in spectroscopic studies of vanadium dioxide systems, which is commonly substituted by averaging or single point-probing approaches, both of which suffermore » from information misinterpretation due to low resolving power.« less
NASA Technical Reports Server (NTRS)
Kaminska, M.; Parsey, J. M.; Lagowski, J.; Gatos, H. C.
1982-01-01
Current oscillations thermally activated by the release of electrons from deep levels in undoped semiinsulating GaAs were observed for the first time. They were attributed to electric field-enhanced capture of electrons by the dominant deep donor EL2 (antisite AsGa defect). This enhanced capture is due to the configurational energy barrier of EL2, which is readily penetrated by hot electrons.
NASA Astrophysics Data System (ADS)
Diez, S.; Rein, S.; Roth, T.; Glunz, S. W.
2007-02-01
Temperature- and injection-dependent lifetime spectroscopy (TIDLS) as a method to characterize point defects in silicon with several energy levels is demonstrated. An intentionally cobalt-contaminated p-type wafer was investigated by means of lifetime measurements performed at different temperatures up to 151°C. Two defect energy levels were required to model the lifetime curves on basis of the Shockley-Read-Hall statistics. The detailed analysis is based on the determination of the recently introduced defect parameter solution surface (DPSS) in order to extract the underlying defect parameters. A unique solution has been found for a deep defect level located in the upper band gap half with an energy depth of EC-Et=0.38±0.01eV, with a corresponding ratio of capture cross sections k =σn/σp=0.16 within the interval of uncertainty of 0.06-0.69. Additionally, a deep donor level in the lower band gap half known from the literature could be assigned to a second energy level within the DPSS analysis at Et-EV=0.41±0.02eV with a corresponding ratio of capture cross sections k =σn/σp=16±3. An investigation of the temperature dependence of the capture cross section for electrons suggests that the underlying recombination process of the defect in the lower band gap half is driven by a two stage cascade capture with an activation energy of ΔE =52±2meV. These results show that TIDLS in combination with DPSS analysis is a powerful method to characterize even multiple defect levels that are affecting carrier recombination lifetime in parallel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Elizabeth S.; Prosnitz, Robert G.; Yu Xiaoli
2006-11-15
Purpose: The aim of this study was to assess the impact of patient-specific factors, left ventricle (LV) volume, and treatment set-up errors on the rate of perfusion defects 6 to 60 months post-radiation therapy (RT) in patients receiving tangential RT for left-sided breast cancer. Methods and Materials: Between 1998 and 2005, a total of 153 patients were enrolled onto an institutional review board-approved prospective study and had pre- and serial post-RT (6-60 months) cardiac perfusion scans to assess for perfusion defects. Of the patients, 108 had normal pre-RT perfusion scans and available follow-up data. The impact of patient-specific factors onmore » the rate of perfusion defects was assessed at various time points using univariate and multivariate analysis. The impact of set-up errors on the rate of perfusion defects was also analyzed using a one-tailed Fisher's Exact test. Results: Consistent with our prior results, the volume of LV in the RT field was the most significant predictor of perfusion defects on both univariate (p = 0.0005 to 0.0058) and multivariate analysis (p = 0.0026 to 0.0029). Body mass index (BMI) was the only significant patient-specific factor on both univariate (p = 0.0005 to 0.022) and multivariate analysis (p = 0.0091 to 0.05). In patients with very small volumes of LV in the planned RT fields, the rate of perfusion defects was significantly higher when the fields set-up 'too deep' (83% vs. 30%, p = 0.059). The frequency of deep set-up errors was significantly higher among patients with BMI {>=}25 kg/m{sup 2} compared with patients of normal weight (47% vs. 28%, p = 0.068). Conclusions: BMI {>=}25 kg/m{sup 2} may be a significant risk factor for cardiac toxicity after RT for left-sided breast cancer, possibly because of more frequent deep set-up errors resulting in the inclusion of additional heart in the RT fields. Further study is necessary to better understand the impact of patient-specific factors and set-up errors on the development of RT-induced perfusion defects.« less
NASA Astrophysics Data System (ADS)
Migliorato, Piero; Delwar Hossain Chowdhury, Md; Gwang Um, Jae; Seok, Manju; Jang, Jin
2012-09-01
The analysis of current-voltage (I-V) and capacitance-voltage (C-V) characteristics for amorphous indium gallium zinc oxide Thin film transistors as a function of active layer thickness shows that negative bias under illumination stress (NBIS) is quantitatively explained by creation of a bulk double donor, with a shallow singly ionized state ɛ(0/+) > EC-0.073 eV and a deep doubly ionized state ɛ(++/+) < EC-0.3 eV. The gap density of states, extracted from the capacitance-voltage curves, shows a broad peak between EC-E = 0.3 eV and 1.0 eV, which increases in height with NBIS stress time and corresponds to the broadened transition energy between singly and doubly ionized states. We propose that the center responsible is an oxygen vacancy and that the presence of a stable singly ionized state, necessary to explain our experimental results, could be due to the defect environment provided by the amorphous network.
The effect of elevated die temperature on deformation of deep drawn round metal cup
NASA Astrophysics Data System (ADS)
Basril, M. A. M.; Hafsyam, Y. M.; Azuddin, M.; Choudhury, I. A.
2017-06-01
One of the major considerations in the current deep drawing practice is the product quality. In this research, the effect of heating temperature on the drawability of the round metal cup has been investigated. Firstly, round metal cups of aluminium and mild steel were drawn from the blank diameters of 60 mm, 65 mm and 70 mm. The experiment conducted at room temperature first, then at 50°C and 100°C. The elongation of the major and minor strains along the cup profile after the process is measured and analysed. On the other hand, the defects from the experiment output and ABAQUS/CAE simulation are compared. The result from experiment shows that the highest major elongation is 11.64 mm and it is happened to a deep drawn aluminium round cup with LDR of 1.69 at temperature of 100°C. On the other hand, for deep drawn mild steel round cup, shows highest major elongation of 12.44 mm for a cup with LDR of 1.56 at 100°C. Both of these statements indicates that the higher temperature could improve the formability of the deep drawn parts besides reducing the probability of the defect to be happened.
USDA-ARS?s Scientific Manuscript database
It is challenging to achieve rapid and accurate processing of large amounts of hyperspectral image data. This research was aimed to develop a novel classification method by employing deep feature representation with the stacked sparse auto-encoder (SSAE) and the SSAE combined with convolutional neur...
Electron paramagnetic resonance of deep boron in silicon carbide
NASA Astrophysics Data System (ADS)
Baranov, P. G.; Mokhov, E. N.
1996-04-01
In this article we report the first EPR observation of deep boron centres in silicon carbide. A direct identification of the boron atom involved in the defect centre, considered as deep boron, has been established by the presence of a hyperfine interaction with 0268-1242/11/4/005/img1 and 0268-1242/11/4/005/img2 nuclei in isotope-enriched 6H-SiC:B crystals. Deep boron centres were shown from EPR spectra to have axial symmetry along the hexagonal axis. A correspondence between the EPR spectra and the luminescence, ODMR and DLTS spectra of deep boron centres has been indicated. The structural model for a deep boron centre as a boron - vacancy pair is presented and the evidence for bistable behaviour of deep boron centres is discussed.
On the behaviour and origin of the major deep level (EL2) in GaAs
NASA Technical Reports Server (NTRS)
Lagowski, J.; Parsey, J. M.; Kaminska, M.; Wada, K.; Gatos, H. C.
1982-01-01
In an extensive crystal growth and characterization study of Bridgman-grown GaAs it was established that the following factors affect the concentration of the EL2 level: (1) the As pressure during growth; (2) the partial pressure of Ga2O; (3) the concentration of shallow donors and acceptors; and (4) the post-growth cooling cycle. The role of these factors is qualitatively and quantitatively explained by attributing the 0.82 eV donor state to the antisite defect As-sub-Ga formed as a result of Ga-vacancy migration during the post-growth cooling of the crystals.
Chen, Min-Jie; Yang, Chi; Zheng, Ji-Si; Bai, Guo; Han, Zi-Xiang; Wang, Yi-Wen
2018-06-01
We sought to introduce our classification and reconstruction protocol for skull base erosions in the temporomandibular joint and skull base region. Patients with neoplasms in the temporomandibular joint and skull base region treated from January 2006 to March 2017 were reviewed. Skull base erosion was classified into 3 types according to the size of the defect. We included 33 patients, of whom 5 (15.2%) had type I defects (including 3 in whom free fat grafts were placed and 2 in whom deep temporal fascial fat flaps were placed). There were 8 patients (24.2%) with type II defects, all of whom received deep temporal fascial fat flaps. A total of 20 patients (60.6%) had type III defects, including 17 in whom autogenous bone grafts were placed, 1 in whom titanium mesh was placed, and 2 who received total alloplastic joints. The mean follow-up period was 50 months. All of the patients exhibited stable occlusion and good facial symmetry. No recurrence was noted. Our classification and reconstruction principles allowed reliable morpho-functional skull base reconstruction. Copyright © 2018 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
A Unifying Perspective on Oxygen Vacancies in Wide Band Gap Oxides.
Linderälv, Christopher; Lindman, Anders; Erhart, Paul
2018-01-04
Wide band gap oxides are versatile materials with numerous applications in research and technology. Many properties of these materials are intimately related to defects, with the most important defect being the oxygen vacancy. Here, using electronic structure calculations, we show that the charge transition level (CTL) and eigenstates associated with oxygen vacancies, which to a large extent determine their electronic properties, are confined to a rather narrow energy range, even while band gap and the electronic structure of the conduction band vary substantially. Vacancies are classified according to their character (deep versus shallow), which shows that the alignment of electronic eigenenergies and CTL can be understood in terms of the transition between cavity-like localized levels in the large band gap limit and strong coupling between conduction band and vacancy states for small to medium band gaps. We consider both conventional and hybrid functionals and demonstrate that the former yields results in very good agreement with the latter provided that band edge alignment is taken into account.
Isolated oxygen defects in 3C- and 4H-SiC: A theoretical study
NASA Astrophysics Data System (ADS)
Gali, A.; Heringer, D.; Deák, P.; Hajnal, Z.; Frauenheim, Th.; Devaty, R. P.; Choyke, W. J.
2002-09-01
Ab initio calculations in the local-density approximation have been carried out in SiC to determine the possible configurations of the isolated oxygen impurity. Equilibrium geometry and occupation levels were calculated. Substitutional oxygen in 3C-SiC is a relatively shallow effective mass like double donor on the carbon site (OC) and a hyperdeep double donor on the Si site (OSi). In 4H-SiC OC is still a double donor but with a more localized electron state. In 3C-SiC OC is substantially more stable under any condition than OSi or interstitial oxygen (Oi). In 4H-SiC OC is also the most stable one except for heavy n-type doping. We propose that OC is at the core of the electrically active oxygen-related defect family found by deep level transient spectroscopy in 4H-SiC. The consequences of the site preference of oxygen on the SiC/SiO2 interface are discussed.
Hole defects in molecular beam epitaxially grown p-GaAs introduced by alpha irradiation
NASA Astrophysics Data System (ADS)
Goodman, S. A.; Auret, F. D.; Meyer, W. E.
1994-01-01
Epitaxial aluminum Schottky barrier diodes on molecular beam epitaxially grown p-GaAs with a free carrier density of 2×1016 cm-3 were irradiated with alpha particles at room temperature using an americium-241 (Am-241) radio nuclide. For the first time, the radiation induced hole defects are characterized using conventional deep level transient spectroscopy (DLTS). The introduction rates and DLTS ``signatures'' of three prominent radiation induced defects Hα1, Hα4, and Hα5, situated 0.08, 0.20, and 0.30 eV above the valence band, respectively, are calculated and compared to those of similar defects introduced during electron irradiation.
NASA Astrophysics Data System (ADS)
Baira, M.; Bekhti-Siad, A.; Hebali, K.; Bouhani-Benziane, H.; Sahnoun, M.
2018-05-01
Eu3+ doped phosphors with charge compensation are potential candidates of red emitting phosphors for lamp applications. Charge compensation improves the luminescence performance of the material. The charge compensation can most probably be achieved by three possible mechanisms: (a) two Zn2+ ions are replaced by one Eu3+ ions and one monovalent cation, 2Zn2+ →Eu3++ Li+, where Li+ is acting as a charge compensator; (b) the charge compensation is provided by a zinc vacancy (VZn) defects, 3Zn2+ → 2Eu3++ VZn, the subscript Zn denotes an ion in a normal zinc site in the lattice; (c) two Zn2+ ions are replaced by one Eu3+ ions with the presence of interstitial oxygen (Oi), 2Zn2+ → 2Eu3++ Oi. Electronic structures of the crystals corresponding to the three models are evaluated by the first-principles quantum mechanical calculations based on the density functional theory. It is found that the charge compensator defects make Eu3+ doping in ZnO energetically more favorable. They break the local symmetry around the Eu3+ ion and lead to deep states below the empty upper band, the conduction band that could facilitate intra-4f shell transitions, which can obviously improve the emission intensity of Eu3+-doped ZnO. Therefore, the effect of these defects on the host crystals electronic band states relative to the Eu3+ states is reported, since both electron transfer and electronically energy transfer processes enhance the performance of optoelectronic devices based on this material. These theoretical insights are helpful for designing rare-earth doped oxide materials with high photoluminescence (PL) performance.
Defect identification in semiconductors with positron annihilation: experiment and theory
NASA Astrophysics Data System (ADS)
Tuomisto, Filip
2015-03-01
Positron annihilation spectroscopy is a very powerful technique for the detection, identification and quantification of vacancy-type defects in semiconductors. In the past decades, it has been used to reveal the relationship between opto-electronic properties and specific defects in a wide variety of materials - examples include parasitic yellow luminescence in GaN, dominant acceptor defects in ZnO and broad-band absorption causing brown coloration in natural diamond. In typical binary compound semiconductors, the selective sensitivity of the technique is rather strongly limited to cation vacancies that possess significant open volume and suitable charge (negative of neutral). On the other hand, oxygen vacancies in oxide semiconductors are a widely debated topic. The properties attributed to oxygen vacancies include the inherent n-type conduction, poor p-type dopability, coloration (absorption), deep level luminescence and non-radiative recombination, while the only direct experimental evidence of their existence has been obtained on the crystal surface. We will present recent advances in combining state-of-the-art positron annihilation experiments and ab initio computational approaches. The latter can be used to model both the positron lifetime and the electron-positron momentum distribution - quantities that can be directly compared with experimental results. We have applied these methods to study vacancy-type defects in III-nitride semiconductors (GaN, AlN, InN) and oxides such as ZnO, SnO2, In2O3andGa2O3. We will show that cation-vacancy-related defects are important compensating centers in all these materials when they are n-type. In addition, we will show that anion (N, O) vacancies can be detected when they appear as complexes with cation vacancies.
Study of the effects of impurities on the properties of silicon solar cell
NASA Technical Reports Server (NTRS)
Sah, C. T.
1981-01-01
The effect of defects across the back-surface-field junction on the performance of high efficiency and thin solar cells, using a developed-perimeter device model for the three-dimensional defects is investigated. Significant degradation of open-circuit voltage can occur even if there are only a few defects distributed in the bulk of the solar cell. Two features in the thickness dependences of the fill factor and efficiency in impurity-doped back-surface-field solar cells are discovered in the exact numerical solution which are associated with the high injection level effect in the base and not predicted by the low-level analytical theory. What are believed to be the most accurate recombination parameters at the Ti center to date are also given and a theory is developed which is capable of distinguishing an acceptor-like deep level from a donor-like deep level using the measured values of the thermal emission and capture cross sections.
Point defect induced degradation of electrical properties of Ga2O3 by 10 MeV proton damage
NASA Astrophysics Data System (ADS)
Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Yakimov, E. B.; Yang, Jiancheng; Ren, F.; Yang, Gwangseok; Kim, Jihyun; Kuramata, A.; Pearton, S. J.
2018-01-01
Deep electron and hole traps in 10 MeV proton irradiated high-quality β-Ga2O3 films grown by Hydride Vapor Phase Epitaxy (HVPE) on bulk β-Ga2O3 substrates were measured by deep level transient spectroscopy with electrical and optical injection, capacitance-voltage profiling in the dark and under monochromatic irradiation, and also electron beam induced current. Proton irradiation caused the diffusion length of charge carriers to decrease from 350-380 μm in unirradiated samples to 190 μm for a fluence of 1014 cm-2, and this was correlated with an increase in density of hole traps with optical ionization threshold energy near 2.3 eV. These defects most likely determine the recombination lifetime in HVPE β-Ga2O3 epilayers. Electron traps at Ec-0.75 eV and Ec-1.2 eV present in as-grown samples increase in the concentration after irradiation and suggest that these centers involve native point defects.
NASA Astrophysics Data System (ADS)
Panella, F.; Boehm, J.; Loo, Y.; Kaushik, A.; Gonzalez, D.
2018-05-01
This work presents the combination of Deep-Learning (DL) and image processing to produce an automated cracks recognition and defect measurement tool for civil structures. The authors focus on tunnel civil structures and survey and have developed an end to end tool for asset management of underground structures. In order to maintain the serviceability of tunnels, regular inspection is needed to assess their structural status. The traditional method of carrying out the survey is the visual inspection: simple, but slow and relatively expensive and the quality of the output depends on the ability and experience of the engineer as well as on the total workload (stress and tiredness may influence the ability to observe and record information). As a result of these issues, in the last decade there is the desire to automate the monitoring using new methods of inspection. The present paper has the goal of combining DL with traditional image processing to create a tool able to detect, locate and measure the structural defect.
Thermodynamic Stability and Defect Chemistry of Bismuth-Based Lead-Free Double Perovskites.
Xiao, Zewen; Meng, Weiwei; Wang, Jianbo; Yan, Yanfa
2016-09-22
Bismuth- or antimony-based lead-free double perovskites represented by Cs 2 AgBiBr 6 have recently been considered promising alternatives to the emerging lead-based perovskites for solar cell applications. These new perovskites belong to the Fm3‾ m space group and consist of two types of octahedra alternating in a rock-salt face-centered cubic structure. We show, by density functional theory calculations, that the stable chemical potential region for pure Cs 2 AgBiBr 6 is narrow. Ag vacancies are a shallow accepters and can easily form, leading to intrinsic p-type conductivity. Bi vacancies and Ag Bi antisites are deep acceptors and should be the dominant defects under the Br-rich growth conditions. Our results suggest that the growth of Cs 2 AgBiBr 6 under Br-poor/Bi-rich conditions is preferred for suppressing the formation of the deep defects, which is beneficial for maximizing the photovoltaic performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cordova, Adriana; Toia, Francesca; D'Arpa, Salvatore; Giunta, Gabriele; Moschella, Francesco
2015-03-01
Lingual flaps provide ideal mucosal coverage for intraoral defects but traditionally require two surgical stages. The authors present an axial mucosal propeller flap for single-stage intraoral reconstruction. The flap includes the mucosa of the lateral side of the tongue, islanded on the deep lingual vessels. Between 2011 and 2013, 23 patients underwent intraoral mucosal reconstruction with a deep lingual artery axial propeller flap after cancer resection in the cheek (n = 16), floor of the mouth (n = 2), retromolar trigone (n = 2), hard palate (n = 2), and soft palate (n = 1). Mean defect size was 19.5 cm. Preoperative and postoperative intraoral function was evaluated with the Functional Intraoral Glasgow Scale. The authors always achieved one-stage reconstruction with primary donor-site closure. The only complications were an infection treated conservatively and a late oronasal fistula caused by radiotherapy. All patients resumed an oral diet after 1 week and none required surgical revision. Mean 12-month postoperative Functional Intraoral Glasgow Scale score was better than the preoperative score (13.5 versus 12.8). The deep lingual artery axial propeller flap combines the advantages of the traditional lingual flap (i.e., reliable axial vascularization and like-with-like reconstruction) with those of a propeller flap (i.e., one-stage transfer of like tissue and extreme mobility) and has wider indications than a conventional lingual flap. The technique is fast and has low morbidity and good functional results, and the authors recommend it as a first-choice technique to reconstruct moderate to large intraoral defects. Therapeutic, IV.
Pressure-Photoluminescence Study of the Zn Vacancy and Donor Zn-Vacancy Complexes in ZnSe
NASA Astrophysics Data System (ADS)
Iota, V.; Weinstein, B. A.
1997-03-01
We report photoluminescence (PL) results to 65kbar (at 8K) on n-type electron irradiated ZnSe containing high densities of isolated Zn vacancies (V_Zn) and donor-V_Zn complexes (A-centers).^1 Isotropic pressure is applied using a diamond-anvil cell with He medium, and laser excitations above and below the ZnSe bandgap (2.82eV) are employed. The 1 atm. spectra exhibit excitonic lines, shallow donor-acceptor pair (DAP) peaks, and two broad bands due to DAP transitions between shallow donors and deep acceptor states at A-centers (2.07eV) or V_Zn (1.72eV). At all pressures, these broad bands are prominent only for sub-gap excitation, which results in: i) A-center PL at energies above the laser line, and ii) strong enhancement of the first LO-replica in the shallow DAP series compared to 3.41eV UV excitation. This suggests that sub-gap excitation produces long-lived metastable acceptor states. The broad PL bands shift to higher energy with pressure faster than the ZnSe direct gap, indicating that compression causes the A-center and V_Zn deep acceptor levels to approach the hole continuum. This behavior is similar to that found by our group for P and As deep acceptor levels in ZnSe, supporting the view that deep substitutional defects often resemble the limiting case of a vacancy. ^1D. Y. Jeon, H. P. Gislason, G. D. Watkins Phys. Rev. B 48, 7872 (1993); we thank G. D. Watkins for providing the samples. (figures)
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.
1985-01-01
The incorporation process of nonequilibrium vacancies in melt-grown GaAs is strongly complicated by deviations from stoichiometry and the presence of two sublattices. Many of the microdefects originating in these vacancies and their interactions introduce energy levels (shallow and deep) within the energy gap. The direct identification of the chemical or structural signature of these defects and its direct correlation to their electronic behavior is not generally possible. It is necessary, therefore, to rely on indirect methods and phenomenological models and deal with the associated pitfalls. EL2, a microdefect introducing a deep donor level, has been in the limelight in recent years because it is believed to be responsible for the semi-insulating behavior of undoped GaAs. Although much progress has been made towards understanding its origin and nature, some relevant questions remain unanswered. An attempt is made to assess the present status of understanding of EL2 in the light of most recent results.
Automatic Detection of Welding Defects using Deep Neural Network
NASA Astrophysics Data System (ADS)
Hou, Wenhui; Wei, Ye; Guo, Jie; Jin, Yi; Zhu, Chang'an
2018-01-01
In this paper, we propose an automatic detection schema including three stages for weld defects in x-ray images. Firstly, the preprocessing procedure for the image is implemented to locate the weld region; Then a classification model which is trained and tested by the patches cropped from x-ray images is constructed based on deep neural network. And this model can learn the intrinsic feature of images without extra calculation; Finally, the sliding-window approach is utilized to detect the whole images based on the trained model. In order to evaluate the performance of the model, we carry out several experiments. The results demonstrate that the classification model we proposed is effective in the detection of welded joints quality.
NASA Astrophysics Data System (ADS)
Park, Youngjun; Kim, Hyunsoo
2011-08-01
The effective barrier height and carrier transport mechanism of low resistance Ag-based contact to highly Mg-doped p-GaN were investigated. The specific contact resistance obtained was as low as 7.0×10-4 Ω cm2. The electrical resistivity of p-GaN was found to increase depending on ˜T-1/4, indicating variable-range hopping (VRH) conduction through Mg-related deep-level defects. Based on the VRH conduction model, the effective barrier height for carrier transport could be measured as 0.12 eV, which is low enough to explain the formation of excellent ohmic contact. The deep-level defects were also found to induce surface Fermi pinning.
Radiation damage annealing mechanisms and possible low temperature annealing in silicon solar cells
NASA Technical Reports Server (NTRS)
Weinberg, I.; Swartz, C. K.
1980-01-01
Deep level transient spectroscopy and the Shockley-Read-Hall recombination theory are used to identify the defect responsible for reverse annealing in 2 ohm-cm n+/p silicon solar cells. This defect, with energy level at Ev + 0.30 eV, has been tentatively identified as a boron-oxygen-vacancy complex. It has been also determined by calculation that the removal of this defect could result in significant annealing at temperatures as low as 200 C for 2 ohm-cm and lower resistivity cells.
Carbon-hydrogen-related complexes in Si
NASA Astrophysics Data System (ADS)
Kolkovsky, Vl.; Stübner, R.; Gwozdz, K.; Weber, J.
2018-04-01
Several deep level transient spectroscopy (DLTS) peaks (E42, E65, E75, E90, E262, and H180) are observed in n- and p-type Czochralski-grown Si samples subjected to hydrogenation by a dc H plasma treatment. The concentration of the defects is found to be proportional to the carbon and hydrogen content in our samples. The analysis of the depth profiles performed in Si samples hydrogenated by wet chemically etching shows that all these defects contain a single H atom. E65 and E75 appear only in samples with a high oxygen content which shows that oxygen is a constituent of these defects. The analysis of the enhancement of the emission rate of the defects with electric field shows that E65, E75, E90, and E262 are single acceptors whereas E42 is a double acceptor. The presence of a barrier for hole capture (about 53 meV) can explain the absence of the enhancement of the emission rate of H180, which can be attributed to a single acceptor state. From a comparison with theory, we assign E90 to CH1BC, E42 (E262) to CH1AB, and H180 to CH1Td. The similarity of the electrical properties of E65 and E75 to those of E90 suggest that E65 and E75 may originate from the CH1BC defect with an oxygen atom in its nearest neighborhood. Our results on the CH-related complexes give a conclusive explanation of some previously reported controversial experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, K. C.; Armstrong, Andrew M.; Allerman, Andrew A.
Here, inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4–6 × 10 13 protons/cm 2. We also characterize themore » specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%–55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (V Ga-related), carbon impurities (C-related), and gallium interstitials (Ga i). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ~500 nm, which suggests mobile Ga i. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Ga i.« less
Collins, K. C.; Armstrong, Andrew M.; Allerman, Andrew A.; ...
2017-12-21
Here, inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4–6 × 10 13 protons/cm 2. We also characterize themore » specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%–55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (V Ga-related), carbon impurities (C-related), and gallium interstitials (Ga i). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ~500 nm, which suggests mobile Ga i. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Ga i.« less
Toward sophisticated basal ganglia neuromodulation: Review on basal ganglia deep brain stimulation.
Da Cunha, Claudio; Boschen, Suelen L; Gómez-A, Alexander; Ross, Erika K; Gibson, William S J; Min, Hoon-Ki; Lee, Kendall H; Blaha, Charles D
2015-11-01
This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson's disease, Huntington's disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Toward sophisiticated basal ganglia neuromodulation: review on basal gaglia deep brain stimulation
Da Cunha, Claudio; Boschen, Suelen L.; Gómez-A, Alexander; Ross, Erika K.; Gibson, William S. J.; Min, Hoon-Ki; Lee, Kendall H.; Blaha, Charles D.
2015-01-01
This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson’s disease, Huntington’s disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms. PMID:25684727
Fleming, R. M.; Seager, C. H.; Lang, D. V.; ...
2015-07-02
In this study, an improved method for measuring the cross sections for carrier trapping at defects in semiconductors is described. This method, a variation of deep level transient spectroscopy(DLTS) used with bipolar transistors, is applied to hot carrier trapping at vacancy-oxygen, carbon-oxygen, and three charge states of divacancy centers (V 2) in n- and p-type silicon. Unlike standard DLTS, we fill traps by injecting carriers into the depletion region of a bipolar transistor diode using a pulse of forward bias current applied to the adjacent diode. We show that this technique is capable of accurately measuring a wide range ofmore » capture cross sections at varying electric fields due to the control of the carrier density it provides. Because this technique can be applied to a variety of carrier energy distributions, it should be valuable in modeling the effect of radiation-induced generation-recombination currents in bipolar devices.« less
Zhong, Jian; Cai, Xiao-Ming; Bloss, William James
2015-05-01
This study investigates the dispersion and transport of reactive pollutants in a deep urban street canyon with an aspect ratio of 2 under neutral meteorological conditions using large-eddy simulation. The spatial variation of pollutants is significant due to the existence of two unsteady vortices. The deviation of species abundance from chemical equilibrium for the upper vortex is greater than that for the lower vortex. The interplay of dynamics and chemistry is investigated using two metrics: the photostationary state defect, and the inferred ozone production rate. The latter is found to be negative at all locations within the canyon, pointing to a systematic negative offset to ozone production rates inferred by analogous approaches in environments with incomplete mixing of emissions. This study demonstrates an approach to quantify parameters for a simplified two-box model, which could support traffic management and urban planning strategies and personal exposure assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danno, Katsunori; Kimoto, Tsunenobu
The authors have investigated deep levels in as-grown and electron-irradiated p-type 4H-SiC epilayers by deep level transient spectroscopy. In as-grown epilayers, the D center and four deep levels are observed. In p-type 4H-SiC, reactive ion etching followed by thermal treatment (at 1150 degree sign C) induces the HK0 (E{sub V}+0.79 eV) and HK2 (E{sub V}+0.84 eV) centers. By the electron irradiation, two deep levels at 0.98 eV (EP1) and 1.44 eV (EP2) are observed in all the samples irradiated at 116-400 keV, while two additional deep levels (EP3 and EP4) are observed only in the samples irradiated at 400 keV.more » After annealing at 950 degree sign C, these centers are annealed out, and the HK4 (E{sub V}+1.44 eV) concentration is increased. By the electron irradiation at more than 160 keV followed by annealing at 950 degree sign C, three deep levels are always observed at 0.30 eV (UK1), 0.58 eV (UK2), and 1.44 eV (HK4). These centers may be defect complexes including carbon displacement-related defects. All the centers except for the D center are reduced to below the detection limit (1-3x10{sup 11} cm{sup -3}) by annealing at 1550 degree sign C for 30 min.« less
Extensive comedonal and cystic acne in Patau syndrome.
Torrelo, Antonio; Fernandez-Crehuet, Pablo; Del Prado, Elena; Martes, Pilar; Hernández-Martín, Angela; De Diego, Verónica; Carapeto, Francisco
2010-01-01
Patau syndrome is a chromosomal disorder associated with multiple malformations caused by inheritance of an extra chromosome (trisomy 13). Some skin defects have been reported in patients with Patau syndrome, such as scalp defects, glabellar stains, deep palmar creases, rocker-bottom feet, convex soles, hyperconvextity of the nails, and multiple hemangiomas. To our knowledge, widespread comedonal and cystic acne have not been previously reported in Patau syndrome.
Deep levels in osmium doped p-type GaAs grown by metal organic chemical vapor deposition
NASA Astrophysics Data System (ADS)
Iqbal, M. Zafar; Majid, A.; Dadgar, A.; Bimberg, D.
2005-06-01
Results of a preliminary study on deep level transient spectroscopy (DLTS) investigations of osmium (Os) impurity in p-type GaAs, introduced in situ during MOCVD crystal growth, are reported for the first time. Os is clearly shown to introduce two prominent deep levels in the lower half-bandgap of GaAs at energy positions Ev + 0.42 eV (OsA) and Ev + 0.72 eV (OsB). A minority-carrier emitting defect feature observed in the upper half-bandgap is shown to consist of a band of Os-related deep levels with a concentration significantly higher than that of the majority carrier emitting deep levels. Detailed data on the emission rate signatures and related parameters of the Os-related deep levels are reported.
A role for the deep orange and carnation eye color genes in lysosomal delivery in Drosophila.
Sevrioukov, E A; He, J P; Moghrabi, N; Sunio, A; Krämer, H
1999-10-01
Deep orange and carnation are two of the classic eye color genes in Drosophila. Here, we demonstrate that Deep orange is part of a protein complex that localizes to endosomal compartments. A second component of this complex is Carnation, a homolog of Sec1p-like regulators of membrane fusion. Because complete loss of deep orange function is lethal, the role of this complex in intracellular trafficking was analyzed in deep orange mutant clones. Retinal cells devoid of deep orange function completely lacked pigmentation and exhibited exaggerated multivesicular structures. Furthermore, a defect in endocytic trafficking was visualized in developing photoreceptor cells. These results provide direct evidence that eye color mutations of the granule group also disrupt vesicular trafficking to lysosomes.
NASA Astrophysics Data System (ADS)
Lewis, D. K.; Matsubara, M.; Bellotti, E.; Sharifzadeh, S.
2017-12-01
Defects in semiconductors can play a vital role in the performance of electronic devices, with native defects often dominating the electronic properties of the semiconductor. Understanding the relationship between structural defects and electronic function will be central to the design of new high-performance materials. In particular, it is necessary to quantitatively understand the energy and lifetime of electronic states associated with the defect. Here, we apply first-principles density functional theory (DFT) and many-body perturbation theory within the GW approximation to understand the nature and energy of the defect states associated with a charged nitrogen vacancy on the electronic properties of gallium nitride (GaN), as a model of a well-studied and important wide gap semiconductor grown with defects. We systematically investigate the sources of error associated with the GW approximation and the role of the underlying atomic structure on the predicted defect state energies. Additionally, analysis of the computed electronic density of states (DOS) reveals that there is one occupied defect state 0.2 eV below the valence band maximum and three unoccupied defect states at energy of 0.2-0.4 eV above the conduction band minimum, suggesting that this defect in the +1 charge state will not behave as a carrier trap. Furthermore, we compare the character and energy of the defect state obtained from GW and DFT using the HSE approximate density functional and find excellent agreement. This systematic study provides a more complete understanding of how to obtain quantitative defect energy states in bulk semiconductors.
Optical signatures of deep level defects in Ga2O3
NASA Astrophysics Data System (ADS)
Gao, Hantian; Muralidharan, Shreyas; Pronin, Nicholas; Karim, Md Rezaul; White, Susan M.; Asel, Thaddeus; Foster, Geoffrey; Krishnamoorthy, Sriram; Rajan, Siddharth; Cao, Lei R.; Higashiwaki, Masataka; von Wenckstern, Holger; Grundmann, Marius; Zhao, Hongping; Look, David C.; Brillson, Leonard J.
2018-06-01
We used depth-resolved cathodoluminescence spectroscopy and surface photovoltage spectroscopy to measure the effects of near-surface plasma processing and neutron irradiation on native point defects in β-Ga2O3. The near-surface sensitivity and depth resolution of these optical techniques enabled us to identify spectral changes associated with removing or creating these defects, leading to identification of one oxygen vacancy-related and two gallium vacancy-related energy levels in the β-Ga2O3 bandgap. The combined near-surface detection and processing of Ga2O3 suggests an avenue for identifying the physical nature and reducing the density of native point defects in this and other semiconductors.
Charge carrier relaxation in InGaAs-GaAs quantum wire modulation-doped heterostructures
NASA Astrophysics Data System (ADS)
Kondratenko, S. V.; Iliash, S. A.; Mazur, Yu I.; Kunets, V. P.; Benamara, M.; Salamo, G. J.
2017-09-01
The time dependencies of the carrier relaxation in modulation-doped InGaAs-GaAs low-dimensional structures with quantum wires have been studied as functions of temperature and light excitation levels. The photoconductivity (PC) relaxation follows a stretched exponent with decay constant, which depends on the morphology of InGaAs epitaxial layers, presence of deep traps, and energy disorder due to inhomogeneous distribution of size and composition. A hopping model, where electron tunnels between bands of localized states, gives appropriate interpretation for temperature-independent PC decay across the temperature range 150-290 K. At low temperatures (T < 150 K), multiple trapping-retrapping via 1D states of InGaAs quantum wires (QWRs), sub-bands of two-dimensional electron gas of modulation-doped n-GaAs spacers, as well as defect states in the GaAs environment are the dominant relaxation mechanism. The PC and photoluminescence transients for samples with different morphologies of the InGaAs nanostructures are compared. The relaxation rates are found to be largely dependent on energy disorder due to inhomogeneous distribution of strain, nanostructure size and composition, and piezoelectric fields in and around nanostructures, which have a strong impact on efficiency of carrier exchange between bands of the InGaAs QWRs, GaAs spacers, or wetting layers; presence of local electric fields; and deep traps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Arvind; Mondal, Sandip; Rao, K. S. R. Koteswara, E-mail: ksrkrao@physics.iisc.ernet.in, E-mail: raoksrk@gmail.com
2015-11-15
High-κ TiO{sub 2} thin films have been fabricated from a facile, combined sol – gel spin – coating technique on p and n type silicon substrate. XRD and Raman studies headed the existence of anatase phase of TiO{sub 2} with a small grain size of 18 nm. The refractive index ‘n’ quantified from ellipsometry is 2.41. AFM studies suggest a high quality, pore free films with a fairly small surface roughness of 6 Å. The presence of Ti in its tetravalent state is confirmed by XPS analysis. The defect parameters observed at the interface of Si/TiO{sub 2} were studied bymore » capacitance – voltage (C – V) and deep level transient spectroscopy (DLTS). The flat – band voltage (V{sub FB}) and the density of slow interface states estimated are – 0.9, – 0.44 V and 5.24×10{sup 10}, 1.03×10{sup 11} cm{sup −2}; for the NMOS and PMOS capacitors, respectively. The activation energies, interface state densities and capture cross – sections measured by DLTS are E{sub V} + 0.30, E{sub C} – 0.21 eV; 8.73×10{sup 11}, 6.41×10{sup 11} eV{sup −1} cm{sup −2} and 5.8×10{sup −23}, 8.11×10{sup −23} cm{sup 2} for the NMOS and PMOS structures, respectively. A low value of interface state density in both P- and N-MOS structures makes it a suitable alternate dielectric layer for CMOS applications. And also very low value of capture cross section for both the carriers due to the amphoteric nature of defect indicates that the traps are not aggressive recombination centers and possibly can not contribute to the device operation to a large extent.« less
Magnetic states of linear defects in graphene monolayers: Effects of strain and interaction
NASA Astrophysics Data System (ADS)
Alexandre, Simone S.; Nunes, R. W.
2017-08-01
The combined effects of defect-defect interaction and strains of up to 10% on the onset of magnetic states in the quasi-one-dimensional electronic states generated by the so-called 558 linear defect in graphene monolayers are investigated by means of ab initio calculations. Results are analyzed on the basis of the heuristics of the Stoner criterion. We find that conditions for the emergence of magnetic states on the 558 defect can be tuned by uniaxial tensile parallel strains (along the defect direction) as well as by uniaxial compressive perpendicular strains, at both limits of isolated and interacting 558 defects. Parallel tensile strains and perpendicular compressive strains are shown to give rise to two cooperative effects that favor the emergence of itinerant magnetism on the 558 defect in graphene: enhancement of the density of states (DOS) of the resonant defect states in the region of the Fermi level and tuning of the Fermi level to the maximum of the related DOS peak. On the other hand, parallel compressive strains and perpendicular tensile strains are shown to be detrimental to the development of magnetic states in the 558 defect, because in these cases the Fermi level is found to shift away from the maximum of the DOS of the defect states. Effects of isotropic and unisotropic biaxial strains are also analyzed in terms of the conditions encoded in the Stoner criterion.
Electrically active defects in p-type silicon after alpha-particle irradiation
NASA Astrophysics Data System (ADS)
Danga, Helga T.; Auret, F. Danie; Tunhuma, Shandirai M.; Omotoso, Ezekiel; Igumbor, Emmanuel; Meyer, Walter E.
2018-04-01
In this work, we investigated the defects introduced when boron (B) doped silicon (Si) was irradiated by making use of a 5.4 MeV americium (Am) 241 foil radioactive source with a fluence rate of 7×106 cm-2 s-1 at room temperature. Deep level transient spectroscopy (DLTS) and Laplace-DLTS measurements were used to investigate the electronic properties of the introduced defects. After exposure at a fluence of 5.1×1010 cm-2, the energy levels of the hole traps measured were: H(0.10), H(0.16), H(0.33) and H(0.52) The defect level H(0.10) was tri-vacancy related. H(0.33) was identified as the interstitial carbon (Ci) related defect which was a result of radiation induced damage. H(0.52) was a B-related defect. Explicit deductions about the origin of H(0.16) have not yet been achieved.
NASA Astrophysics Data System (ADS)
Collins, K. C.; Armstrong, A. M.; Allerman, A. A.; Vizkelethy, G.; Van Deusen, S. B.; Léonard, F.; Talin, A. A.
2017-12-01
Inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4-6 × 1013 protons/cm2. We also characterize the specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%-55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (VGa-related), carbon impurities (C-related), and gallium interstitials (Gai). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ˜500 nm, which suggests mobile Gai. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Gai.
Dye penetrant indications caused by superficial surface defects in 2014 aluminum alloy welds.
NASA Technical Reports Server (NTRS)
Hocker, R. G.; Wilson, K. R.
1971-01-01
Demonstration that dye penetrant indications on the heat-affected zone of 2014-T6 aluminum GMA weldments are frequently caused by superficial surface conditions and are less than 0.007 in. deep. The following methods are suggested for minimization of these surface defects: stabilization of the arc, application of dc ?GTA' welding procedures, reduction of the caustic etch time, and use of fine grain materials.
Electrically active induced energy levels and metastability of B and N vacancy-complexes in 4H–SiC
NASA Astrophysics Data System (ADS)
Igumbor, E.; Olaniyan, O.; Mapasha, R. E.; Danga, H. T.; Omotoso, E.; Meyer, W. E.
2018-05-01
Electrically active induced energy levels in semiconductor devices could be beneficial to the discovery of an enhanced p or n-type semiconductor. Nitrogen (N) implanted into 4H–SiC is a high energy process that produced high defect concentrations which could be removed during dopant activation annealing. On the other hand, boron (B) substituted for silicon in SiC causes a reduction in the number of defects. This scenario leads to a decrease in the dielectric properties and induced deep donor and shallow acceptor levels. Complexes formed by the N, such as the nitrogen-vacancy centre, have been reported to play a significant role in the application of quantum bits. In this paper, results of charge states thermodynamic transition level of the N and B vacancy-complexes in 4H–SiC are presented. We explore complexes where substitutional N/N or B/B sits near a Si (V) or C (V) vacancy to form vacancy-complexes (NV, NV, NV, NV, BV, BV, BV and BV). The energies of formation of the N related vacancy-complexes showed the NV to be energetically stable close to the valence band maximum in its double positive charge state. The NV is more energetically stable in the double negative charge state close to the conduction band minimum. The NV on the other hand, induced double donor level and the NV induced a double acceptor level. For B related complexes, the BV and BV were energetically stable in their single positive charge state close to the valence band maximum. As the Fermi energy is varied across the band gap, the neutral and single negative charge states of the BV become more stable at different energy levels. B and N related complexes exhibited charge state controlled metastability behaviour.
NASA Astrophysics Data System (ADS)
Sitharaman, S.; Raman, R.; Durai, L.; Pal, Surendra; Gautam, Madhukar; Nagpal, Anjana; Kumar, Shiv; Chatterjee, S. N.; Gupta, S. C.
2005-12-01
In this paper, we report the experimental observations on the effect of plasma hydrogenation in passivating intrinsic point defects, shallow/deep levels and extended defects in low-resistivity undoped CdZnTe crystals. The optical absorption studies show transmittance improvement in the below gap absorption spectrum. Using variable temperature Hall measurement technique, the shallow defect level on which the penetrating hydrogen makes complex, has been identified. In 'compensated' n-type HgCdTe epitaxial layers, hydrogenation can improve the resistivity by two orders of magnitude.
A Generic Deep-Learning-Based Approach for Automated Surface Inspection.
Ren, Ruoxu; Hung, Terence; Tan, Kay Chen
2018-03-01
Automated surface inspection (ASI) is a challenging task in industry, as collecting training dataset is usually costly and related methods are highly dataset-dependent. In this paper, a generic approach that requires small training data for ASI is proposed. First, this approach builds classifier on the features of image patches, where the features are transferred from a pretrained deep learning network. Next, pixel-wise prediction is obtained by convolving the trained classifier over input image. An experiment on three public and one industrial data set is carried out. The experiment involves two tasks: 1) image classification and 2) defect segmentation. The results of proposed algorithm are compared against several best benchmarks in literature. In the classification tasks, the proposed method improves accuracy by 0.66%-25.50%. In the segmentation tasks, the proposed method reduces error escape rates by 6.00%-19.00% in three defect types and improves accuracies by 2.29%-9.86% in all seven defect types. In addition, the proposed method achieves 0.0% error escape rate in the segmentation task of industrial data.
Polar-Direct-Drive Defect Implosions at OMEGA inPreparation for Experiments at NIF
NASA Astrophysics Data System (ADS)
Cobble, J. A.; Schmitt, M. J.; Murphy, T. J.; Tregillis, I. L.; Wysocki, F. J.; Obrey, K. D.; Magelssen, G. R.; Glebov, V.; Bradley, P. A.; Hsu, S. C.; Krasheninnikova, N. V.; Batha, S. H.
2011-10-01
The Defect-Implosion (DIME) campaign involves compressing perturbed spherical capsules with polar direct drive (PDD). For direct-drive implosions at NIF, PDD will be used. We have done simulations and experiments at OMEGA to test our modeling capability for equatorial-plane defects in fusion capsules and for PDD at NIF. Since PDD is anisotropic, we show the results of 0th hydrodynamics of implosions and perturbation-driven features near stagnation. Later presentations discuss defect-induced mix and neutronics, and laser pointing for NIF experiments. Prototype OMEGA shots used 865- μm diameter CH shells filled with 5 atm of D2. Machined channels 30- μm wide and up to 9- μm deep formed the defects. This work has been performed under the auspices of the US DOE, contract number DE-AC52-06NA25396.
NASA Astrophysics Data System (ADS)
Dong, Peng; Yu, Xuegong; Ma, Yao; Xie, Meng; Li, Yun; Huang, Chunlai; Li, Mo; Dai, Gang; Zhang, Jian
2017-08-01
Plasma-enhanced chemical vapor deposited silicon nitride (SiNx) films are extensively used as passivation material in the solar cell industry. Such SiNx passivation layers are the most sensitive part to gamma-ray irradiation in solar cells. In this work, deep-level transient spectroscopy has been applied to analyse the influence of gamma-ray irradiation on the passivation properties of SiNx layer on silicon. It is shown that the effective carrier lifetime decreases with the irradiation dose. At the same time, the interface state density is significantly increased after irradiation, and its energy distribution is broadened and shifts deeper with respect to the conduction band edge, which makes the interface states becoming more efficient recombination centers for carriers. Besides, C-V characteristics show a progressive negative shift with increasing dose, indicating the generation of effective positive charges in SiNx films. Such positive charges are beneficial for shielding holes from the n-type silicon substrates, i. e. the field-effect passivation. However, based on the reduced carrier lifetime after irradiation, it can be inferred that the irradiation induced interface defects play a dominant role over the trapped positive charges, and therefore lead to the degradation of passivation properties of SiNx on silicon.
Gul, R.; Roy, U. N.; Bolotnikov, A. E.; ...
2015-04-15
We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from (1–30) V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material.
Effect of gamma-ray irradiation on the device process-induced defects in 4H-SiC epilayers
NASA Astrophysics Data System (ADS)
Miyazaki, T.; Makino, T.; Takeyama, A.; Onoda, S.; Ohshima, T.; Tanaka, Y.; Kandori, M.; Yoshie, T.; Hijikata, Y.
2016-11-01
We investigated the gamma-ray irradiation effect on 4H-SiC device process-induced defects by photoluminescence (PL) imaging and deep level transient spectroscopy (DLTS). We found that basal plane dislocations (BPDs) that were present before the irradiation were eliminated by gamma-ray irradiation of 1 MGy. The reduction mechanism of BPD was discussed in terms of BPD-threading edge dislocation (TED) transformation and shrinkage of stacking faults. In addition, the entire PL image was gradually darkened with increasing absorbed dose, which is presumably due to the point defects generated by gamma-ray irradiation. We obtained DLTS peaks that could be assigned to complex defects, termed RD series, and found that the peaks increased with absorbed dose.
Software for roof defects recognition on aerial photographs
NASA Astrophysics Data System (ADS)
Yudin, D.; Naumov, A.; Dolzhenko, A.; Patrakova, E.
2018-05-01
The article presents information on software for roof defects recognition on aerial photographs, made with air drones. An areal image segmentation mechanism is described. It allows detecting roof defects – unsmoothness that causes water stagnation after rain. It is shown that HSV-transformation approach allows quick detection of stagnation areas, their size and perimeters, but is sensitive to shadows and changes of the roofing-types. Deep Fully Convolutional Network software solution eliminates this drawback. The tested data set consists of the roofing photos with defects and binary masks for them. FCN approach gave acceptable results of image segmentation in Dice metric average value. This software can be used in inspection automation of roof conditions in the production sector and housing and utilities infrastructure.
Electron Correlation in Oxygen Vacancy in SrTiO3
NASA Astrophysics Data System (ADS)
Lin, Chungwei; Demkov, Alexander A.
2014-03-01
Oxygen vacancies are an important type of defect in transition metal oxides. In SrTiO3 they are believed to be the main donors in an otherwise intrinsic crystal. At the same time, a relatively deep gap state associated with the vacancy is widely reported. To explain this inconsistency we investigate the effect of electron correlation in an oxygen vacancy (OV) in SrTiO3. When taking correlation into account, we find that the OV-induced localized level can at most trap one electron, while the second electron occupies the conduction band. Our results offer a natural explanation of how the OV in SrTiO3 can produce a deep in-gap level (about 1 eV below the conduction band bottom) in photoemission, and at the same time be an electron donor. Our analysis implies an OV in SrTiO3 should be fundamentally regarded as a magnetic impurity, whose deep level is always partially occupied due to the strong Coulomb repulsion. An OV-based Anderson impurity model is derived, and its implications are discussed. This work was supported by Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences under award number DESC0008877.
Laser Engineered Net Shape (LENS) Technology for the Repair of Ni-Base Superalloy Turbine Components
NASA Astrophysics Data System (ADS)
Liu, Dejian; Lippold, John C.; Li, Jia; Rohklin, Stan R.; Vollbrecht, Justin; Grylls, Richard
2014-09-01
The capability of the laser engineered net shape (LENS) process was evaluated for the repair of casting defects and improperly machined holes in gas turbine engine components. Various repair geometries, including indentations, grooves, and through-holes, were used to simulate the actual repair of casting defects and holes in two materials: Alloy 718 and Waspaloy. The influence of LENS parameters, including laser energy density, laser scanning speed, and deposition pattern, on the repair of these defects and holes was studied. Laser surface remelting of the substrate prior to repair was used to remove machining defects and prevent heat-affected zone (HAZ) liquation cracking. Ultrasonic nondestructive evaluation techniques were used as a possible approach for detecting lack-of-fusion in repairs. Overall, Alloy 718 exhibited excellent repair weldability, with essentially no defects except for some minor porosity in repairs representative of deep through-holes and simulated large area casting defects. In contrast, cracking was initially observed during simulated repair of Waspaloy. Both solidification cracking and HAZ liquation cracking were observed in the repairs, especially under conditions of high heat input (high laser power and/or low scanning speed). For Waspaloy, the degree of cracking was significantly reduced and, in most cases, completely eliminated by the combination of low laser energy density and relatively high laser scanning speeds. It was found that through-hole repairs of Waspaloy made using a fine powder size exhibited excellent repair weldability and were crack-free relative to repairs using coarser powder. Simulated deep (7.4 mm) blind-hole repairs, representative of an actual Waspaloy combustor case, were successfully produced by the combination use of fine powder and relatively high laser scanning speeds.
Leakage current transport mechanism under reverse bias in Au/Ni/GaN Schottky barrier diode
NASA Astrophysics Data System (ADS)
Peta, Koteswara Rao; Kim, Moon Deock
2018-01-01
The leakage current transport mechanism under reverse bias of Au/Ni/GaN Schottky diode is studied using temperature dependent current-voltage (I-V-T) and capacitance-voltage (C-V) characteristics. I-V measurement in this study is in the range of 140 K-420 K in steps of 10 K. A reduction in voltage dependent barrier height and a strong internal electric field in depletion region under reverse bias suggested electric field enhanced thermionic emission in carrier transport via defect states in Au/Ni/GaN SBD. A detailed analysis of reverse leakage current revealed two different predominant transport mechanisms namely variable-range hopping (VRH) and Poole-Frenkel (PF) emission conduction at low (<260 K) and high (>260 K) temperatures respectively. The estimated thermal activation energies (0.20-0.39 eV) from Arrhenius plot indicates a trap assisted tunneling of thermally activated electrons from a deep trap state into a continuum of states associated with each conductive threading dislocation.
Investigation of UFO defect on DUV CAR and BARC process
NASA Astrophysics Data System (ADS)
Yet, Siew Ing; Ko, Bong Sang; Lee, Soo Man; May, Mike
2004-05-01
Photo process defect reduction is one of the most important factors to improve the process stability and yield in sub-0.18um DUV process. In this paper, a new approach to minimize the Deep-UV (DUV) Chemically Amplified Resist (CAR) and Bottom Anti-Reflective Coating (BARC) induced defect known as UFO (UnidentiFied Object) defect will be introduced. These defects have mild surface topography difference on BARC; it only exists on the wide exposed area where there is no photoresist pattern. In this test, Nikon KrF Stepper & Scanner and TEL Clean track were used. Investigation was carried out on the defect formulation on both Acetal and ESCAP type of photoresist while elemental analysis was done by Atomic Force Microscope (AFM) & Auger Electron Spectroscopy (AES). Result indicated that both BARC and photoresist induce this UFO defect; total defect quantity is related with Post Exposure Bake (PEB) condition. Based on the elemental analysis and process-split test, we can conclude that this defect is caused by lack of acid amount and low diffusivity which is related to PAG (Photo Acid Generator) and TAG (Thermal Acid Generator) in KrF photoresist and BARC material. By optimizing photoresist bake condition, this UFO defect as well as other related defect such as Satellite defect could be eliminated.
High quality factor GaAs microcavity with buried bullseye defects
NASA Astrophysics Data System (ADS)
Winkler, K.; Gregersen, N.; Häyrynen, T.; Bradel, B.; Schade, A.; Emmerling, M.; Kamp, M.; Höfling, S.; Schneider, C.
2018-05-01
The development of high quality factor solid-state microcavities with low mode volumes has paved the way towards on-chip cavity quantum electrodynamics experiments and the development of high-performance nanophotonic devices. Here, we report on the implementation of a new kind of solid-state vertical microcavity, which allows for confinement of the electromagnetic field in the lateral direction without deep etching. The confinement originates from a local elongation of the cavity layer imprinted in a shallow etch and epitaxial overgrowth technique. We show that it is possible to improve the quality factor of such microcavities by a specific in-plane bullseye geometry consisting of a set of concentric rings with subwavelength dimensions. This design results in a smooth effective lateral photonic potential and therefore in a reduction of lateral scattering losses, which makes it highly appealing for experiments in the framework of exciton-polariton physics demanding tight spatial confinement.
NASA Astrophysics Data System (ADS)
Gul, R.; Roy, U. N.; Camarda, G. S.; Hossain, A.; Yang, G.; Vanier, P.; Lordi, V.; Varley, J.; James, R. B.
2017-03-01
In this paper, the properties of point defects in Cd1-xZnxTe1-ySey (CZTS) radiation detectors are characterized using deep-level transient spectroscopy and compared between materials grown using two different methods, the Bridgman method and the traveling heater method. The nature of the traps was analyzed in terms of their capture cross-sections and trap concentrations, as well as their effects on the measured charge-carrier trapping and de-trapping times, and then compared for the two growth techniques. The results revealed that Se addition to CdZnTe can reduce the VCd- concentration. In Travelling Heater Method (THM) and Bridgman Method (BM) grown CZTS detectors, besides a few similarities in the shallow and medium energy traps, there were major differences in the deep traps. It was observed that the excess-Te and lower growth-temperature conditions in THM-grown CZTS led to a complete compensation of VCd- and two additional traps (attributed to Tei- and TeCd++ appearing at around Ev + 0.26 eV and Ec - 0.78 eV, respectively). The 1.1-eV deep trap related to large Te secondary phases was a dominant trap in the BM-grown CZTS crystals. In addition to i-DLTS data, the effects of point defects induced due to different processing techniques on the detector's resistivity, spectral response to gammas, and μτ product were determined.
Persistence time of charge carriers in defect states of molecular semiconductors.
McMahon, David P; Troisi, Alessandro
2011-06-07
Charge carriers in organic crystals are often trapped in point defects. The persistence time of the charge in these defect states is evaluated by computing the escape rate from this state using non-adiabatic rate theory. Two cases are considered (i) the hopping between separate identical defect states and (ii) the hopping between a defect state and the bulk (delocalized) states. We show that only the second process is likely to happen with realistic defect concentrations and highlight that the inclusion of an effective quantum mode of vibration is essential for accurate computation of the rate. The computed persistence time as a function of the trap energy indicates that trap states shallower than ∼0.3 eV cannot be effectively investigated with some slow spectroscopic techniques such as THz spectroscopy or EPR commonly used to study the nature of excess charge in semiconductors.
Optical characterization of wide-gap detector-grade semiconductors
NASA Astrophysics Data System (ADS)
Elshazly, Ezzat S.
Wide bandgap semiconductors are being widely investigated because they have the potential to satisfy the stringent material requirements of high resolution, room temperature gamma-ray spectrometers. In particular, Cadmium Zinc Telluride (Cd1-xZnxTe, x˜0.1) and Thallium Bromide (TlBr), due to their combination of high resistivity, high atomic number and good electron mobility, have became very promising candidates for use in X- and gamma-ray detectors operating at room temperature. In this study, carrier trapping times were measured in CZT and TlBr as a function of temperature and material quality. Carrier lifetimes and tellurium inclusion densities were measured in detector-grade Cadmium Zinc Telluride (CZT) crystals grown by the High Pressure Bridgman method and Modified Bridgman method. Excess carriers were produced in the material using a pulsed YAG laser with a 1064nm wavelength and 7ns pulse width. Infrared microscopy was used to measure the tellurium defect densities in CZT crystals. The electronic decay was optically measured at room temperature. Spatial mapping of lifetimes and defect densities in CZT was performed to determine the relationship between defect density and electronic decay. A significant and strong correlation was found between the volume fraction of tellurium inclusions and the carrier trapping time. Carrier trapping times and tellurium inclusions were measured in CZT in the temperature range from 300K to 110K and the results were analyzed using a theoretical trapping model. Spatial mapping of carrier trapping times and defect densities in CZT was performed to determine the relationship between defect density and electronic decay. While a strong correlation between trapping time and defect density of tellurium inclusions was observed, there was no significant change in the trap energy. Carrier trapping times were measured in detector grade thallium bromide (TlBr) and compared with the results for cadmium zinc telluride (CZT) in a temperature range from 300K to 110K. The experimental data was analyzed using a trapping model. In CZT, because the majority carrier concentration is close to the intrinsic carrier concentration, the trapping time increases exponentially as the temperature decreases below about 160K. While, in TlBr, the majority carrier concentration is many orders of magnitude greater than the intrinsic carrier concentration and the trapping time followed a 1T temperature dependence over the range of temperatures studied. The results of the model suggest that a moderately deep compensation center, located approximately 200 meV from the middle of the bandgap, could be used to significantly increase the room temperature trapping time in TlBr. The results of this model demonstrate that the room temperature trapping time in TlBr can, in principle, approach 0.1ms through the introduction of a moderately deep compensation level but without decreasing the overall trap concentration. This strategy is not possible in CZT, because the band gap is too small to use a moderately deep compensation level while still maintaining high material resistivity. Carrier trapping times were measured in three polycrystalline TlBr samples produced by melting commercial TlBr beads in a sealed quartz ampoule for two hours at three different temperatures near the melting point. The trapping time decreased with increasing melting temperature, presumably due to the thermal generation of a trap state.
Defects, optical absorption and electron mobility in indium and gallium nitrides
NASA Astrophysics Data System (ADS)
Tansley, T. L.; Egan, R. J.
1993-04-01
We review the experimental evidence for the origin and location of the four native point defects in the wide gap semiconducting indium and gallium nitrides and compare then with experimental predictions. The donor triplets associated with nitrogen vacancies and the deep compensating centres ascribed to the antisite substitutional defects appear to have the greatest effect on macroscopic properties, apparently including the four luminescent bands in GaN. Calculated mobilities in InN and GaN depend principally on ionised impurity and polar-mode phonon scattering. We reconcile these results with experimental data and point out the consequences for improvements in material growth.
NASA Astrophysics Data System (ADS)
Gul, Rubi; Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Cui, Yonggang; Didic, Václav; Egarievwe, Stephen U.; Hossain, Anwar; Roy, Utpal N.; Yang, Ge; James, Ralph B.
2016-09-01
In our prior research we investigated room-temperature radiation detectors (CZT, CMT, CdMgTe, CTS, among other compound semiconductors) for point defects related to different dopants and impurities. In this talk we will report on our most recent research on newly grown CZT crystals doped with In, In+Al, In+Ni, and In+Sn. The main focus will be on the study of dopant-induced point defects using deep-level current transient spectroscopy (i-DLTS). In addition the performance, ? product, gamma-ray spectral response and internal electric field of the detectors were measured and correlated with the dopant-induced point defects and their concentrations. Characterization of the detectors was carried out using i-DLTS for the point defects, Pockels effect for the internal electric-field distribution, and γ-ray spectroscopy for the spectral properties.
NASA Astrophysics Data System (ADS)
Hu, Xiaobo; Gupta, Amit; Sakurai, Takeaki; Yamada, Akimasa; Ishizuka, Shogo; Niki, Shigeru; Akimoto, Katsuhiro
2013-10-01
The properties of the defect level located 0.8 eV above the valence band in Cu(In1-x,Gax)Se2 thin films were investigated by a photo-capacitance method using a monochromatic probe light with an energy of 0.7 to 1.8 eV. In addition to the probe light, laser light with a wavelength of 1.55 μm, corresponding to 0.8 eV, was also used to study the saturation effect of the defect level at 0.8 eV. A suppression of electron-hole recombination due to saturation of the defect level was observed at room temperature while no saturation effect was observed at 140 K. The results suggest that the defect level at 0.8 eV acts as a recombination center at least at room temperature.
Liu, Na; Yam, ChiYung
2018-03-07
As an alternative to methylammonium lead triiodide (MAPbI 3 ), formamidinium lead triiodide (FAPbI 3 ) perovskites have recently attracted significant attention because of their higher stability and smaller band gaps. Here, based on first-principles calculations, we investigate systematically the intrinsic defects in FAPbI 3 . While methylammonium (MA)-related defects MA I and I MA in MAPbI 3 have high formation energies, we found that formamidinium (FA)-related defects V FA , FA I and I FA in FAPbI 3 have much lower formation energies. Antisites FA I and I FA create deep levels in the band gap, and they can act as recombination centers and result in reduced carrier lifetimes and low open circuit voltages in FAPbI 3 -based photovoltaic devices. We further demonstrate that through cation mixing of MA and FA in perovskites the formation of these defects can be substantially suppressed.
NASA Astrophysics Data System (ADS)
Hsiao, F.-M.; Schnedler, M.; Portz, V.; Huang, Y.-C.; Huang, B.-C.; Shih, M.-C.; Chang, C.-W.; Tu, L.-W.; Eisele, H.; Dunin-Borkowski, R. E.; Ebert, Ph.; Chiu, Y.-P.
2017-01-01
We demonstrate the potential of sub-bandgap laser-excited cross-sectional scanning tunneling microscopy and spectroscopy to investigate the presence of defect states in semiconductors. The characterization method is illustrated on GaN layers grown on Si(111) substrates without intentional buffer layers. According to high-resolution transmission electron microscopy and cathodoluminescence spectroscopy, the GaN layers consist of nanoscale wurtzite and zincblende crystallites with varying crystal orientations and hence contain high defect state densities. In order to discriminate between band-to-band excitation and defect state excitations, we use sub-bandgap laser excitation. We probe a clear increase in the tunnel current at positive sample voltages during sub-bandgap laser illumination for the GaN layer with high defect density, but no effect is found for high quality GaN epitaxial layers. This demonstrates the excitation of free charge carriers at defect states. Thus, sub-bandgap laser-excited scanning tunneling spectroscopy is a powerful complimentary characterization tool for defect states.
Investigation of hydrogen interaction with defects in zirconia
NASA Astrophysics Data System (ADS)
Melikhova, O.; Kuriplach, J.; Čížek, J.; Procházka, I.; Brauer, G.; Anwand, W.
2010-04-01
Defect studies of a ZrO2 + 9 mol. % Y2O3 single crystal were performed in this work using a high resolution positron lifetime spectroscopy combined with slow positron implantation spectroscopy. In order to elucidate the nature of positron trapping sites observed experimentally, the structural relaxations of several types of vacancy-like defects in zirconia were performed and positron characteristics for them were calculated. Relaxed atomic configurations of studied defects were obtained by means of ab initio pseudopotential method within the supercell approach. Theoretical calculations indicated that neither oxygen vacancies nor their neutral complexes with substitute yttrium atoms are capable of positron trapping. On the other hand, zirconium vacancies are deep positron traps and are most probably responsible for the saturated positron trapping observed in yttria stabilized zirconia single crystals. However, the calculated positron lifetime for zirconium vacancy is apparently longer than the experimental value corresponding to a single-component spectrum measured for the cubic ZrO2 + 9 mol. % Y2O3 single crystal. It was demonstrated that this effect can be explained by hydrogen trapped in zirconium vacancies. On the basis of structure relaxations, we found that zirconium vacancy - hydrogen complexes represent deep positron traps with the calculated lifetime close to the experimental one. In zirconium vacancy - hydrogen complexes the hydrogen atom forms an O-H bond with one of the nearest neighbour oxygen atoms. The calculated bond length is close to 1 Å.
Huang, Chih-Hao; Brunsvold, Michael A
2006-01-01
Maxillary sinusitis may develop from the extension of periodontal disease. In this case, reconstructed three-dimensional images from multidetector spiral computed tomographs were helpful in evaluating periodontal bony defects and their relationship with the maxillary sinus. A 42-year-old woman in good general health presented with a chronic deep periodontal pocket on the palatal and interproximal aspects of tooth #14. Probing depths of the tooth ranged from 2 to 9 mm, and it exhibited a Class 1 mobility. Radiographs revealed a close relationship between the root apex and the maxillary sinus. The patient's periodontal diagnosis was localized severe chronic periodontitis. Treatment of the tooth consisted of cause-related therapy, surgical exploration, and bone grafting. A very deep circumferential bony defect at the palatal root of tooth #14 was noted during surgery. After the operation, the wound healed without incidence, but 10 days later, a maxillary sinusitis and periapical abscess developed. To control the infection, an evaluation of sinus and alveolus using computed tomographs was performed, systemic antibiotics were prescribed, and endodontic treatment was initiated. Two weeks after surgical treatment, the infection was relieved with the help of antibiotics and endodontic treatment. Bilateral bony communications between the maxillary sinus and periodontal bony defect of maxillary first molars were shown on three-dimensional computed tomographs. The digitally reconstructed images added valuable information for evaluating the periodontal defects. Three-dimensional images from spiral computed tomographs (CT) aided in evaluating and treating the close relationship between maxillary sinus disease and adjacent periodontal defects.
Study of defects in TlBr, InI as potential semiconductor radiation detectors
NASA Astrophysics Data System (ADS)
Biswas, Koushik; Du, Mao-Hua
2011-03-01
Group III-halides such as TlBr and InI are receiving considerable attention for application in room temperature radiation detector devices. It is however, essential that these detector materials have favorable defect properties which enable good carrier transport when operating under an external bias voltage. We have studied the properties of native defects of InI and Tlbr and several important results emerge: (1) Schottky defects are the dominant low-energy defects in both materials that can potentially pin the Fermi level close to midgap, leading to high resistivity; (2) native defects in TlBr are benign in terms of electron trapping. However, anion-vacancy in InI induces a deep electron trap similar to the F -centers in alkali halides. This can reduce electron mobility-lifetime product in InI; (3) low diffusion barriers of vacancies and ionic conductivity could be responsible for the observed polarization phenomenon in both materials at room temperature. U.S. DOE Office of Nonproliferation Research and Development NA22.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modine, Normand Arthur; Wright, Alan F.; Lee, Stephen R.
Carrier recombination due to defects can have a major impact on device performance. The rate of defect-induced carrier recombination is determined by both defect levels and carrier capture cross-sections. Kohn-Sham density functional theory (DFT) has been widely and successfully used to predict defect levels in semiconductors and insulators, but only recently has work begun to focus on using DFT to determine carrier capture cross-sections. Lang and Henry worked out the fundamental theory of carrier-capture cross-sections in the 1970s and showed that, in most cases, room temperature carrier-capture cross-sections differ between defects primarily due to differences in the carrier capture activationmore » energies. Here, we present an approach to using DFT to calculate carrier capture activation energies that does not depend on perturbation theory or an assumed configuration coordinate, and we demonstrate this approach for the -3/-2 level of the Ga vacancy in wurtzite GaN.« less
Public Health Practice of Population-Based Birth Defects Surveillance Programs in the United States.
Mai, Cara T; Kirby, Russell S; Correa, Adolfo; Rosenberg, Deborah; Petros, Michael; Fagen, Michael C
2016-01-01
Birth defects remain a leading cause of infant mortality in the United States and contribute substantially to health care costs and lifelong disabilities. State population-based surveillance systems have been established to monitor birth defects, yet no recent systematic examination of their efforts in the United States has been conducted. To understand the current population-based birth defects surveillance practices in the United States. The National Birth Defects Prevention Network conducted a survey of US population-based birth defects activities that included questions about operational status, case ascertainment methodology, program infrastructure, data collection and utilization, as well as priorities and challenges for surveillance programs. Birth defects contacts in the United States, including District of Columbia and Puerto Rico, received the survey via e-mail; follow-up reminders via e-mails and telephone were used to ensure a 100% response rate. Forty-three states perform population-based surveillance for birth defects, covering approximately 80% of the live births in the United States. Seventeen primarily use an active case-finding approach and 26 use a passive case-finding approach. These programs all monitor major structural malformations; however, passive case-finding programs more often monitor a broader list of conditions, including developmental conditions and newborn screening conditions. Active case-finding programs more often use clinical reviewers, cover broader pregnancy outcomes, and collect more extensive information, such as family history. More than half of the programs (24 of 43) reported an ability to conduct follow-up studies of children with birth defects. The breadth and depth of information collected at a population level by birth defects surveillance programs in the United States serve as an important data source to guide public health action. Collaborative efforts at the state and national levels can help harmonize data collection and increase utility of birth defects programs.
NASA Astrophysics Data System (ADS)
Cox, S. F. J.
2003-11-01
The structure and electrical activity of monatomic hydrogen defect centres are inferred from the spectroscopy and charge-state transitions of muonium, the light pseudo-isotope of hydrogen. Introductions are given to all these topics. Special attention is paid to the shallow-donor behaviour recently established in a number of II VI compounds and one III nitride. This contrasts with trapped-atom states suggestive of an acceptor function in other members of the II VI family as well as with the deep-level amphoteric behaviour which has long been known in the elemental group-IV semiconductors and certain III V compounds. The systematics of this remarkable shallow-to-deep instability are examined in terms of simple chemical considerations, as well as current theoretical and computational models. The muonium data appear to confirm predictions that the switch from shallow to deep behaviour is governed primarily by the depth of the conduction-band minimum below the vacuum continuum. The threshold electron affinity is around 3.5 eV, which compares favourably with computational estimates of a so-called pinning level for hydrogen (+/-) charge-state transitions of between -3 and -4.5 eV. A purely ionic model gives some intuitive understanding of this behaviour as well as the invariance of the threshold. Another current description applies equally to covalent materials and relates the threshold to the origin of the electrochemical scale. At the present level of approximation, zero-point energy corrections to the transition levels are small, so that muonium data should provide a reliable guide to the behaviour of hydrogen. Muonium spectroscopy proves to be more sensitive to the (0/+) donor level than to the (+/-) pinning level but, as a tool which does not rely on favourable hydrogen solubility, it looks set to test further predictions of these models in a large number of other materials, notably oxides. Certain candidate thin-film insulators and high-permittivity gate dielectrics appear to be uncomfortably close to conditions in which hydrogen impurity may cause electronic conduction.
Localized states and their stability in an anharmonic medium with a nonlinear defect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerasimchuk, I. V., E-mail: igor.gera@gmail.com
2015-10-15
A comprehensive analysis of soliton states localized near a plane defect (a defect layer) possessing nonlinear properties is carried out within a quasiclassical approach for different signs of nonlinearity of the medium and different characters of interaction of elementary excitations of the medium with the defect. A quantum interpretation is given to these nonlinear localized modes as a bound state of a large number of elementary excitations. The domains of existence of such states are determined, and their properties are analyzed as a function of the character of interaction of elementary excitations between each other and with the defect. Amore » full analysis of the stability of all the localized states with respect to small perturbations of amplitude and phase is carried out analytically, and the frequency of small oscillations of the state localized on the defect is determined.« less
Leatherbarrow, Brian; Watson, Adam; Wilcsek, Geoffrey
2006-01-01
To describe the use and outcomes of a versatile surgical technique in the reconstruction of deep soft tissue and bony defects of the medial canthus. A retrospective review of consecutive cases requiring reconstruction of medial canthal defects involving loss of periosteum or bone by a median forehead pericranial flap and full-thickness skin grafting in a tertiary referral hospital setting. Two techniques were used: an open technique, using a midline forehead incision; and an endoscopic technique, using 2 incisions behind the hairline. Twenty-one cases were identified: 19 open and 2 endoscopic. The average length of follow-up was 13 months (range, 6-50 months). Ten cases required additional oculoplastic procedures including local periosteal flaps and mucous membrane grafts. Two cases (10%) had complete flap failure; one of these was caused by infection. Five (24%) had partial (< 50%) skin graft necrosis. Two cases (10%) have required further surgery. Our experience shows the pericranial flap to be versatile, robust, and easy to manipulate, offering advantages over alternative techniques when used for the repair of deep medial canthal defects. It is a valuable reconstructive technique that can yield good cosmetic and functional results.
NASA Technical Reports Server (NTRS)
Vonroos, O. H.
1982-01-01
A theory of deep point defects imbedded in otherwise perfect semiconductor crystals is developed with the aid of pseudopotentials. The dominant short-range forces engendered by the impurity are sufficiently weakened in all cases where the cancellation theorem of the pseudopotential formalism is operative. Thus, effective-mass-like equations exhibiting local effective potentials derived from nonlocal pseudopotentials are shown to be valid for a large class of defects. A two-band secular determinant for the energy eigenvalues of deep defects is also derived from the set of integral equations which corresponds to the set of differential equations of the effective-mass type. Subsequently, the theory in its simplest form, is applied to the system Al(x)Ga(1-x)As:Se. It is shown that the one-electron donor level of Se within the forbidden gap of Al(x)Ga(1-x)As as a function of the AlAs mole fraction x reaches its maximum of about 300 meV (as measured from the conduction band edge) at the cross-over from the direct to the indirect band-gap at x = 0.44 in agreement with experiments.
NASA Technical Reports Server (NTRS)
Li, S. S.; Chiu, T. T.; Loo, R. Y.
1981-01-01
The GaAs solar cell has shown good potential for space applications. However, degradation in performance occurred when the cells were irradiated by high energy electrons and protons in the space environment. The considered investigation is concerned with the effect of periodic thermal annealing on the deep-level defects induced by the 200 keV protons in the AlGaAs-GaAs solar cells. Protons at a fluence of 10 to the 11th P/sq cm were used in the irradiation cycle, while annealing temperatures of 200 C (for 24 hours), 300 C (six hours), and 400 C (six hours) were employed. The most likely candidate for the E(c) -0.71 eV electron trap observed in the 200 keV proton irradiated samples may be due to GaAs antisite, while the observed E(v) +0.18 eV hole trap has been attributed to the gallium vacancy related defect. The obtained results show that periodic annealing in the considered case does not offer any advantages over the one time annealing process.
Danielski, Alan; Farrell, Michael
2018-06-20
An 8-month-old American Bulldog was presented for assessment of bilateral thoracic limb lameness. Computed tomographic imaging revealed large, deep osteochondritis dissecans lesions in both humeral heads. The osteochondritis dissecans lesions were debrided and the exposed subchondral defects were prepared to receive synthetic grafts. Circular implants consisting of a surface layer of polycarbonate urethane and a deep layer of lattice-type titanium were implanted into the osteochondral defects to reconstruct the articular surface topography. Follow-up clinical examination 1.5, 3 and 9months postoperatively revealed a lack of signs of shoulder pain and resolution of thoracic limb lameness. Nine-month follow-up radiographs showed radiographic evidence of osteointegration of both implants. Synthetic osteochondral implantation in the caudocentral aspect of the humeral head appeared technically feasible and effective in resolving lameness caused by humeral head osteochondritis dissecans. Schattauer GmbH Stuttgart.
Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency.
Wen, Xixing; Chen, Chao; Lu, Shuaicheng; Li, Kanghua; Kondrotas, Rokas; Zhao, Yang; Chen, Wenhao; Gao, Liang; Wang, Chong; Zhang, Jun; Niu, Guangda; Tang, Jiang
2018-06-05
Antimony selenide is an emerging promising thin film photovoltaic material thanks to its binary composition, suitable bandgap, high absorption coefficient, inert grain boundaries and earth-abundant constituents. However, current devices produced from rapid thermal evaporation strategy suffer from low-quality film and unsatisfactory performance. Herein, we develop a vapor transport deposition technique to fabricate antimony selenide films, a technique that enables continuous and low-cost manufacturing of cadmium telluride solar cells. We improve the crystallinity of antimony selenide films and then successfully produce superstrate cadmium sulfide/antimony selenide solar cells with a certified power conversion efficiency of 7.6%, a net 2% improvement over previous 5.6% record of the same device configuration. We analyze the deep defects in antimony selenide solar cells, and find that the density of the dominant deep defects is reduced by one order of magnitude using vapor transport deposition process.
Optical transitions in two-dimensional topological insulators with point defects
NASA Astrophysics Data System (ADS)
Sablikov, Vladimir A.; Sukhanov, Aleksei A.
2016-12-01
Nontrivial properties of electronic states in topological insulators are inherent not only to the surface and boundary states, but to bound states localized at structure defects as well. We clarify how the unusual properties of the defect-induced bound states are manifested in optical absorption spectra in two-dimensional topological insulators. The calculations are carried out for defects with short-range potential. We find that the defects give rise to the appearance of specific features in the absorption spectrum, which are an inherent property of topological insulators. They have the form of two or three absorption peaks that are due to intracenter transitions between electron-like and hole-like bound states.
Quenched-in defects in flashlamp-annealed silicon
NASA Technical Reports Server (NTRS)
Borenstein, J. T.; Jones, J. T.; Corbett, J. W.; Oehrlein, G. S.; Kleinhenz, R. L.
1986-01-01
Deep levels introduced in boron-doped silicon by heat-pulse annealing with a tungsten-halogen flashlamp are investigated using deep-level transient spectroscopy. Two majority-carrier trapping levels in the band gap, at Ev + 0.32 eV and at Ev + 0.45 eV, are observed. These results are compared to those obtained by furnace-quenching and laser-annealing studies. Both the position in the gap and the annealing kinetics of the hole trap at Ev + 0.45 eV suggest that this center is due to an interstitial iron impurity in the lattice. The deep levels are not consistently observed in all flashlamp-annealed Si crystals utilized.
Kirby, S.H.; Raleigh, C.B.
1973-01-01
The problem of applying laboratory silicate-flow data to the mantle, where conditions can be vastly different, is approached through a critical review of high-temperature flow mechanisms in ceramics and their relation to empirical flow laws. The intimate association of solid-state diffusion and high-temperature creep in pure metals is found to apply to ceramics as well. It is shown that in ceramics of moderate grain size, compared on the basis of self-diffusivity and elastic modulus, normalized creep rates compare remarkably well. This comparison is paralleled by the near universal occurrence of similar creep-induced structures, and it is thought that the derived empirical flow laws can be associated with dislocation creep. Creep data in fine-grained ceramics, on the other hand, are found to compare poorly with theories involving the stress-directed diffusion of point defects and have not been successfully correlated by self-diffusion rates. We conclude that these fine-grained materials creep primarily by a quasi-viscous grain-boundary sliding mechanism which is unlikely to predominate in the earth's deep interior. Creep predictions for the mantle reveal that under most conditions the empirical dislocation creep behavior predominates over the mechanisms involving the stress-directed diffusion of point defects. The probable role of polymorphic transformations in the transition zone is also discussed. ?? 1973.
Donors, Acceptors, and Traps in AlGaN and AlGaN/GaN Epitaxial Layers
2006-07-31
the background. 3.3 Positron annihilation spectroscopy (PAS): acceptor-type defects Positrons injected into defect-free GaN are annihilated by electrons...electron concentration n, and the average Ga-vacancy VGa concentration deduced from positron annihilation spectroscopy . 0.09 3.47 3.46 - 3.45 •ŗ.47225...of this paper, are often investigated by deep level transient spectroscopy (DLTS), and the usual analysis of DLTS data is based on the assumption that
Self-regulation of charged defect compensation and formation energy pinning in semiconductors
Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Wei, Su-Huai
2015-01-01
Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglement of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators. PMID:26584670
The fine structure of electron irradiation induced EL2-like defects in n-GaAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tunhuma, S. M.; Auret, F. D.; Legodi, M. J.
2016-04-14
Defects induced by electron irradiation in n-GaAs have been studied using deep level transient spectroscopy (DLTS) and Laplace DLTS (L-DLTS). The E{sub 0.83} (EL2) is the only defect observed prior to irradiation. Ru/n-GaAs Schottky diodes were irradiated with high energy electrons from a Sr-90 radionuclide up to a fluence of 2.45 × 10{sup 13} cm{sup −2}. The prominent electron irradiation induced defects, E{sub 0.04}, E{sub 0.14}, E{sub 0.38}, and E{sub 0.63}, were observed together with the metastable E{sub 0.17}. Using L-DLTS, we observed the fine structure of a broad base EL2-like defect peak. This was found to be made up of the E{submore » 0.75}, E{sub 0.83}, and E{sub 0.85} defects. Our study reveals that high energy electron irradiation increases the concentration of the E{sub 0.83} defect and introduces a family of defects with electronic properties similar to those of the EL2.« less
Sadaf, S M; Zhao, S; Wu, Y; Ra, Y-H; Liu, X; Vanka, S; Mi, Z
2017-02-08
To date, semiconductor light emitting diodes (LEDs) operating in the deep ultraviolet (UV) spectral range exhibit very low efficiency due to the presence of large densities of defects and extremely inefficient p-type conduction of conventional AlGaN quantum well heterostructures. We have demonstrated that such critical issues can be potentially addressed by using nearly defect-free AlGaN tunnel junction core-shell nanowire heterostructures. The core-shell nanowire arrays exhibit high photoluminescence efficiency (∼80%) in the UV-C band at room temperature. With the incorporation of an epitaxial Al tunnel junction, the p-(Al)GaN contact-free nanowire deep UV LEDs showed nearly one order of magnitude reduction in the device resistance, compared to the conventional nanowire p-i-n device. The unpackaged Al tunnel junction deep UV LEDs exhibit an output power >8 mW and a peak external quantum efficiency ∼0.4%, which are nearly one to two orders of magnitude higher than previously reported AlGaN nanowire devices. Detailed studies further suggest that the maximum achievable efficiency is limited by electron overflow and poor light extraction efficiency due to the TM polarized emission.
Gul, R.; Roy, U. N.; Camarda, G. S.; ...
2017-03-28
In this study, the properties of point defects in Cd 1–xZn xTe 1–ySe y (CZTS) radiation detectors are characterized using deep-level transient spectroscopy and compared between materials grown using two different methods, the Bridgman method and the traveling heater method. The nature of the traps was analyzed in terms of their capture cross-sections and trap concentrations, as well as their effects on the measured charge-carrier trapping and de-trapping times, and then compared for the two growth techniques. The results revealed that Se addition to CdZnTe can reduce the V Cd – concentration. In Travelling Heater Method (THM) and Bridgman Methodmore » (BM) grown CZTS detectors, besides a few similarities in the shallow and medium energy traps, there were major differences in the deep traps. It was observed that the excess-Te and lower growth-temperature conditions in THM-grown CZTS led to a complete compensation of V Cd – and two additional traps (attributed to Te i – and Te Cd ++ appearing at around E v + 0.26 eV and E c – 0.78 eV, respectively). The 1.1-eV deep trap related to large Te secondary phases was a dominant trap in the BM-grown CZTS crystals. In addition to i-DLTS data, the effects of point defects induced due to different processing techniques on the detector's resistivity, spectral response to gammas, and μτ product were determined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gul, R.; Roy, U. N.; Camarda, G. S.
In this study, the properties of point defects in Cd 1–xZn xTe 1–ySe y (CZTS) radiation detectors are characterized using deep-level transient spectroscopy and compared between materials grown using two different methods, the Bridgman method and the traveling heater method. The nature of the traps was analyzed in terms of their capture cross-sections and trap concentrations, as well as their effects on the measured charge-carrier trapping and de-trapping times, and then compared for the two growth techniques. The results revealed that Se addition to CdZnTe can reduce the V Cd – concentration. In Travelling Heater Method (THM) and Bridgman Methodmore » (BM) grown CZTS detectors, besides a few similarities in the shallow and medium energy traps, there were major differences in the deep traps. It was observed that the excess-Te and lower growth-temperature conditions in THM-grown CZTS led to a complete compensation of V Cd – and two additional traps (attributed to Te i – and Te Cd ++ appearing at around E v + 0.26 eV and E c – 0.78 eV, respectively). The 1.1-eV deep trap related to large Te secondary phases was a dominant trap in the BM-grown CZTS crystals. In addition to i-DLTS data, the effects of point defects induced due to different processing techniques on the detector's resistivity, spectral response to gammas, and μτ product were determined.« less
Effect of alpha-particle irradiation on the electrical properties of n-type Ge
NASA Astrophysics Data System (ADS)
Roro, K. T.; Janse van Rensburg, P. J.; Auret, F. D.; Coelho, S.
2009-12-01
Deep-level transient spectroscopy was used to investigate the effect of alpha particle irradiation on the electrical properties of n-type Ge. The samples were irradiated with alpha particles at room temperature using an americium-241 (Am-241) radionuclide source. The main defects introduced were found to be electron traps with energy levels at EC-0.38, EC-0.21, EC-0.20, EC-0.15, and EC-0.10 eV, respectively. The main defects in alpha particle irradiation are similar to those introduced by MeV electron irradiation, where the main defect is the E-center. A quadratic increase in concentration as a function of dose is observed.
Suga, Kazuyoshi; Yasuhiko, Kawakami; Iwanaga, Hideyuki; Tokuda, Osamu; Matsunaga, Naofumi
2008-09-01
The relation between lung perfusion defects and intravascular clots in acute pulmonary thromboembolism (PTE) was comprehensively assessed on deep-inspiratory breath-hold (DIBrH) perfusion SPECT-computed tomographic pulmonary angiography (CTPA) fusion images. Subjects were 34 acute PTE patients, who had successfully performed DIBrH perfusion SPECT using a dual-headed SPECT and a respiratory tracking system. Automated DIBrH SPECT-CTPA fusion images were used to assess the relation between lung perfusion defects and intravascular clots detected by CTPA. DIBrH SPECT visualized 175 lobar/segmental or subsegmental defects in 34 patients, and CTPA visualized 61 intravascular clots at variable locations in 30 (88%) patients, but no clots in four (12%) patients. In 30 patients with clots, the fusion images confirmed that 69 (41%) perfusion defects (20 segmental, 45 subsegmental and 4 lobar defects) of total 166 defects were located in lung territories without clots, although the remaining 97 (58%) defects were located in lung territories with clots. Perfusion defect was absent in lung territories with clots (one lobar branch and three segmental branches) in four (12%) of these patients. In four patients without clots, nine perfusion defects including four segmental ones were present. Because of unexpected dissociation between intravascular clots and lung perfusion defects, the present fusion images will be a useful adjunct to CTPA in the diagnosis of acute PTE.
NASA Astrophysics Data System (ADS)
Willoughby, W. R.; Zvanut, M. E.; Paudel, Subash; Iwinska, M.; Sochacki, T.; Bockowski, M.
2018-04-01
Electron paramagnetic resonance (EPR) spectroscopy was used to investigate a type of point defect present in 1019 cm-3 carbon-doped GaN substrates grown by hydride vapor phase epitaxy. A broad, isotropic resonance at g ˜ 1.987 was observed at 3.5 K, and the EPR intensity increased with illumination at energies greater than 2.75 eV and decreased with photon energies greater than 0.95 eV. The latter is consistent with a deep level of 0.95 eV above the valence band maximum and implies that the associated defect likely participates in donor compensation. The ionization energy for this defect is close to the predicted value for the (-/0) transition level of CN and transition levels associated with Ga vacancies such as VGa and VGa-ON-2H.
Electrical characterisation of SiGe heterojunction bipolar transistors and Si pseudo-HBTS
NASA Astrophysics Data System (ADS)
De Barros, O.; Le Tron, B.; Woods, R. C.; Giroult-Matlakowski, G.; Vincent, G.; Brémond, G.
1996-08-01
This paper reports an electrical characterisation of the emitter-base junction of Si pseudo-HBTs and SiGe HBTs fabricated in a CMOS compatible single polysilicon self-aligned process. From the reverse characteristics it appears that the definition of the emitter-base junction by plasma etching induces peripheral defects that increase the base current of the transistors. Deep level transient spectroscopy measurements show a deep level in the case of SiGe base, whose spatial origin is not fully determinate up to now.
NASA Astrophysics Data System (ADS)
Fitriana, R.; Saragih, J.; Luthfiana, N.
2017-12-01
R Bakery company is a company that produces bread every day. Products that produced in that company have many different types of bread. Products are made in the form of sweet bread and wheat bread which have different tastes for every types of bread. During the making process, there were defects in the products which the defective product turns into reject product. Types of defects that are produced include burnt, sodden bread and shapeless bread. To find out the information about the defects that have been produced then by applying a designed model business intelligence system to create database and data warehouse. By using model business Intelligence system, it will generate useful information such as how many defect that produced by each of the bakery products. To make it easier to obtain such information, it can be done by using data mining method which data that we get is deep explored. The method of data mining is using k-means clustering method. The results of this intelligence business model system are cluster 1 with little amount of defect, cluster 2 with medium amount of defect and cluster 3 with high amount of defect. From OLAP Cube method can be seen that the defect generated during the 7 months period of 96,744 pieces.
NASA Astrophysics Data System (ADS)
Duc, Tran Thien; Pozina, Galia; Amano, Hiroshi; Monemar, Bo; Janzén, Erik; Hemmingsson, Carl
2016-07-01
Deep levels in Mg-doped GaN grown by metal organic chemical vapor deposition (MOCVD), undoped GaN grown by MOCVD, and halide vapor phase epitaxy (HVPE)-grown GaN have been studied using deep level transient spectroscopy and minority charge carrier transient spectroscopy on Schottky diodes. One hole trap, labeled HT1, was detected in the Mg-doped sample. It is observed that the hole emission rate of the trap is enhanced by increasing electric field. By fitting four different theoretical models for field-assisted carrier emission processes, the three-dimensional Coulombic Poole-Frenkel (PF) effect, three-dimensional square well PF effect, phonon-assisted tunneling, and one-dimensional Coulombic PF effect including phonon-assisted tunneling, it is found that the one-dimensional Coulombic PF model, including phonon-assisted tunneling, is consistent with the experimental data. Since the trap exhibits the PF effect, we suggest it is acceptorlike. From the theoretical model, the zero field ionization energy of the trap and an estimate of the hole capture cross section have been determined. Depending on whether the charge state is -1 or -2 after hole emission, the zero field activation energy Ei 0 is 0.57 eV or 0.60 eV, respectively, and the hole capture cross section σp is 1.3 ×10-15c m2 or 1.6 ×10-16c m2 , respectively. Since the level was not observed in undoped GaN, it is suggested that the trap is associated with an Mg related defect.
Nakanishi, Asako; Hakamada, Arata; Isoda, Ken-ichi; Mizutani, Hitoshi
2005-05-01
Recent advances in bioengineering have introduced materials that enhance wound healing. Even with such new tools, some deep ulcers surrounded by avascular tissues, including bone, tendon, and fascia, are resistant to various therapies and easily form deep cavities with loss of subcutaneous tissue. Atelocollagen sponges have been used as an artificial dermis to cover full-thickness skin defects. Topical recombinant human basic fibroblast growth factor has been introduced as a growth factor to induce fibroblast proliferation in skin ulcers. We applied these materials in combination in two patients with deep resistant wounds: one with a cavity reaching the mediastinum through a divided sternum and one with deep necrotic wounds caused by electric burns. These wounds did not respond to the topical basic fibroblast growth factor alone. In contrast, the combination therapy closed the wounds rapidly without further surgical treatment. This combination therapy is a potent treatment for resistant wounds with deep cavities.
Self-regulation of charged defect compensation and formation energy pinning in semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang
2015-11-20
Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglementmore » of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH 3NH 3PbI 3 as examples, we illustrate these unexpected behaviors. Furthermore, our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.« less
Photoluminescence Dynamics of Aryl sp 3 Defect States in Single-Walled Carbon Nanotubes
Hartmann, Nicolai F.; Velizhanin, Kirill A.; Haroz, Erik H.; ...
2016-08-16
Photoluminescent defect states introduced by sp 3 functionalization of semiconducting carbon nanotubes are rapidly emerging as important routes for boosting emission quantum yields and introducing new functionality. Knowledge of the relaxation dynamics of these states is required for understanding how functionalizing agents (molecular dopants) may be designed to access specific behaviors. We measure photoluminescence (PL) decay dynamics of sp 3 defect states introduced by aryl functionalization of the carbon nanotube surface. Results are given for five different nanotube chiralities, each doped with a range of aryl functionality. We find the PL decays of these sp 3 defect states are biexponential,more » with both components relaxing on timescales of ~ 100 ps. Exciton trapping at defects is found to increases PL lifetimes by a factor of 5-10, in comparison to those for the free exciton. A significant chirality dependence is observed in the decay times, ranging from 77 ps for (7,5) nanotubes to > 600 ps for (5,4) structures. The strong correlation of time constants with emission energy indicates relaxation occurs via multiphonon decay processes, with close agreement to theoretical expectations. Variation of the aryl dopant further modulates decay times by 10-15%. The aryl defects also affect PL lifetimes of the free E 11 exciton. Shortening of the E 11 bright state lifetime as defect density increases provides further confirmation that defects act as exciton traps. A similar shortening of the E11 dark exciton lifetime is found as defect density increases, providing strong experimental evidence that dark excitons are also trapped at such defect sites.« less
Photoluminescence Dynamics of Aryl sp 3 Defect States in Single-Walled Carbon Nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, Nicolai F.; Velizhanin, Kirill A.; Haroz, Erik H.
Photoluminescent defect states introduced by sp 3 functionalization of semiconducting carbon nanotubes are rapidly emerging as important routes for boosting emission quantum yields and introducing new functionality. Knowledge of the relaxation dynamics of these states is required for understanding how functionalizing agents (molecular dopants) may be designed to access specific behaviors. We measure photoluminescence (PL) decay dynamics of sp 3 defect states introduced by aryl functionalization of the carbon nanotube surface. Results are given for five different nanotube chiralities, each doped with a range of aryl functionality. We find the PL decays of these sp 3 defect states are biexponential,more » with both components relaxing on timescales of ~ 100 ps. Exciton trapping at defects is found to increases PL lifetimes by a factor of 5-10, in comparison to those for the free exciton. A significant chirality dependence is observed in the decay times, ranging from 77 ps for (7,5) nanotubes to > 600 ps for (5,4) structures. The strong correlation of time constants with emission energy indicates relaxation occurs via multiphonon decay processes, with close agreement to theoretical expectations. Variation of the aryl dopant further modulates decay times by 10-15%. The aryl defects also affect PL lifetimes of the free E 11 exciton. Shortening of the E 11 bright state lifetime as defect density increases provides further confirmation that defects act as exciton traps. A similar shortening of the E11 dark exciton lifetime is found as defect density increases, providing strong experimental evidence that dark excitons are also trapped at such defect sites.« less
NASA Technical Reports Server (NTRS)
Reinsch, Sigrid; Conway, Gregory; Dalton, Bonnie P. (Technical Monitor)
2002-01-01
In a differential RNA display screen we have isolated a zebrafish gene, G12, for which homologs can only be found in DNA databases for vertebrates, but not invertebrates. This suggests that this is a gene required specifically in vertebrates. G12 expression is upregulated at mid-blastula transition (MBT). Morpholino inactivation of this gene by injection into 1-cell embryos results in mitotic defects and apoptosis shortly after MBT. Nuclei in morpholino treated embryos also display segregation defects. We have characterized the localization of this gene as a GFP fusion in live and fixed embryos. Overexpression of G12-GFP is non-toxic. Animals retain GFP expression for at least 7 days with no developmental defects, Interestingly in these animals G12-GFP is never detectable in blood cells though blood is present. In the deep cells of early embryos, G 12GFP is localized to nuclei and cytoskeletal elements in interphase and to the centrosome and spindle apparatus during mitosis. In the EVL, G12-GFP shows additional localization to the cell periphery, especially in mitosis. In the yolk syncytium, G12-GFP again localizes to nuclei and strongly to cytoplasmic microtubules of migrating nuclei at the YSL margin. Morpholinc, injection specifically into the YSL after cellularization blocks epiboly and nuclei of the YSL show mitotic defects while deep cells show no mitotic defects and continue to divide. Rescue experiments in which morpholino and G12-GFP RNA are co-injected indicate partial rescue by the G12-GFP. The rescue is cell autonomous; that is, regions of the embryo with higher G12-GFP expression show fewer mitotic defects. Spot 14, the human bomolog of G12, has been shown to be amplified in aggressive breast tumors. This finding, along with our functional and morphological data suggest that G12 and spot 14 are vertebrate-specific and may function either as mitotic checkpoints or as structural components of the spindle apparatus.
Suga, K; Yasuhiko, K; Iwanaga, H; Tokuda, O; Matsunaga, N
2009-01-01
The functional mechanism of lung mosaic computed tomography attenuation (MCA) in pulmonary vascular disease (PVD) and obstructive airway disease (OAD) has not yet been fully clarified. To clarify the mechanism of MCA in these diseases by assessing the relationship between regional lung function and CT attenuation change at MCA sites with the use of automated deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images and non-breath-hold Technegas SPECT. Subjects were 42 PVD patients (31 pulmonary thromboembolism, four primary/two secondary pulmonary hypertension, and five Takayasu arteritis), 12 OAD patients (five acute asthma, four obliterative bronchiolitis, and three bronchiectasis), and 12 normal controls, all of whom had MCA on DIBrH CT. The relationship between regional lung function and CT attenuation change at the lung slices with MCA was assessed using DIBrH perfusion SPECT-CT fusion images and non-breath-hold Technegas SPECT. The severity of perfusion defects with or without MCA was quantified by regions-of-interest analysis. On DIBrH CT and perfusion SPECT, in contrast to no noticeable CT attenuation abnormality and fairly uniform perfusion in controls, 60 MCA and 274 perfusion defects in PVD patients, and 18 MCA and 61 defects in OAD patients were identified, with a total of 77 ventilation defects on Technegas SPECT in all patients. SPECT-CT correlation showed that, throughout the 78 MCA sites of all patients, lung perfusion was persistently decreased at low CT attenuation and preserved at intervening high CT attenuation, while lung ventilation was poorly correlated with CT attenuation change. The radioactivity ratios of reduced perfusion and the intervening preserved perfusion at the 78 perfusion defects with MCA were significantly lower than those at the remaining 257 defects without MCA (P<0.0001). Although further validation is required, our results indicate that heterogeneous pulmonary arterial perfusion may be a dominant mechanism of MCA in PVD and OAD.
Reimers, Jeffrey R; Sajid, A; Kobayashi, Rika; Ford, Michael J
2018-03-13
Defect states in 2-D materials present many possible uses but both experimental and computational characterization of their spectroscopic properties is difficult. We provide and compare results from 13 DFT and ab initio computational methods for up to 25 excited states of a paradigm system, the V N C B defect in hexagonal boron nitride (h-BN). Studied include: (i) potentially catastrophic effects for computational methods arising from the multireference nature of the closed-shell and open-shell states of the defect, which intrinsically involves broken chemical bonds, (ii) differing results from DFT and time-dependent DFT (TDDFT) calculations, (iii) comparison of cluster models to periodic-slab models of the defect, (iv) the starkly differing effects of nuclear relaxation on the various electronic states that control the widths of photoabsorption and photoemission spectra as broken bonds try to heal, (v) the effect of zero-point energy and entropy on free-energy differences, (vi) defect-localized and conduction/valence-band transition natures, and (vii) strategies needed to ensure that the lowest-energy state of a defect can be computationally identified. Averaged state-energy differences of 0.3 eV are found between CCSD(T) and MRCI energies, with thermal effects on free energies sometimes also being of this order. However, DFT-based methods can perform very poorly. Simple generalized-gradient functionals like PBE fail at the most basic level and should never be applied to defect states. Hybrid functionals like HSE06 work very well for excitations within the triplet manifold of the defect, with an accuracy equivalent to or perhaps exceeding the accuracy of the ab initio methods used. However, HSE06 underestimates triplet-state energies by on average of 0.7 eV compared to closed-shell singlet states, while open-shell singlet states are predicted to be too low in energy by 1.0 eV. This leads to misassignment of the ground state of the V N C B defect. Long-range corrected functionals like CAM-B3LYP are shown to work much better and to represent the current entry level for DFT calculations on defects. As significant differences between cluster and periodic-slab models are also found, the widespread implementation of such functionals in periodic codes is in urgent need.
Exceptional gettering response of epitaxially grown kerfless silicon
Powell, D. M.; Markevich, V. P.; Hofstetter, J.; ...
2016-02-08
The bulk minority-carrier lifetime in p- and n-type kerfless epitaxial (epi) crystalline silicon wafers is shown to increase >500 during phosphorus gettering. We employ kinetic defect simulations and microstructural characterization techniques to elucidate the root cause of this exceptional gettering response. Simulations and deep-level transient spectroscopy (DLTS) indicate that a high concentra- tion of point defects (likely Pt) is “locked in” during fast (60 C/min) cooling during epi wafer growth. The fine dispersion of moderately fast-diffusing recombination-active point defects limits as-grown lifetime but can also be removed during gettering, confirmed by DLTS measurements. Synchrotron-based X-ray fluorescence microscopy indicates metal agglomeratesmore » at structural defects, yet the structural defect density is sufficiently low to enable high lifetimes. Consequently, after phosphorus diffusion gettering, epi silicon exhibits a higher lifetime than materials with similar bulk impurity contents but higher densities of structural defects, including multicrystalline ingot and ribbon silicon materials. As a result, device simulations suggest a solar-cell efficiency potential of this material >23%.« less
First-principles calculations of optical transitions at native defects and impurities in ZnO
NASA Astrophysics Data System (ADS)
Lyons, John L.; Varley, Joel B.; Janotti, Anderson; Van de Walle, Chris G.
2018-02-01
Optical spectroscopy is a powerful approach for detecting defects and impurities in ZnO, an important electronic material. However, knowledge of how common optical signals are linked with defects and impurities is still limited. The Cu-related green luminescence is among the best understood luminescence signals, but theoretical descriptions of Cu-related optical processes have not agreed with experiment. Regarding native defects, assigning observed lines to specific defects has proven very difficult. Using first-principles calculations, we calculate the properties of native defects and impurities in ZnO and their associated optical signals. Oxygen vacancies are predicted to give luminescence peaks lower than 1 eV; while related zinc dangling bonds can lead to luminescence near 2.4 eV. Zinc vacancies lead to luminescence peaks below 2 eV, as do the related oxygen dangling bonds. However, when complexed with hydrogen impurities, zinc vacancies can cause higher-energy transitions, up to 2.3 eV. We also find that the Cu-related green luminescence is related to a (+/0) deep donor transition level.
Reconstruction of infected abdominal wall defects using latissimus dorsi free flap.
Kim, Sang Wha; Han, Sang Chul; Hwang, Kyu Tae; Ahn, Byung Kyu; Kim, Jeong Tae; Kim, Youn Hwan
2013-12-01
Infected abdominal defects are a challenge to surgeons. In this study, we describe 10 cases in which the latissimus dorsi myocutaneous flap was used for successful reconstruction of abdominal wall defects severely infected with methicillin-resistant Staphylococcus aureus (MRSA). Retrospective review of 10 patients with abdominal wall defects that were reconstructed using the latissimus dorsi myocutaneous flap between 2002 and 2010. All patients had abdominal defects with hernias, combined with MRSA infections. The sizes of the flaps ranged from 120 to 364 cm(2) . The deep inferior epigastric artery was the recipient vessel in nine patients and the internal mammary vessels were used for one patient. There were no complications relating to the flaps, although there were other minor complications including wound dehiscence, haematoma and fluid correction. After reconstruction, there were no signs of infection during follow-up periods, and the patients were satisfied with the final results. Reconstruction using the latissimus dorsi myocutaneous flap, including muscle fascia structures, is a potential treatment option for severely infected large abdominal wall defects. © 2012 The Authors. ANZ Journal of Surgery © 2012 Royal Australasian College of Surgeons.
The impact of defect scattering on the quasi-ballistic transport of nanoscale conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esqueda, I. S., E-mail: isanchez@isi.edu; Fritze, M.; Cress, C. D.
2015-02-28
Using the Landauer approach for carrier transport, we analyze the impact of defects induced by ion irradiation on the transport properties of nanoscale conductors that operate in the quasi-ballistic regime. Degradation of conductance results from a reduction of carrier mean free path due to the introduction of defects in the conducting channel. We incorporate scattering mechanisms from radiation-induced defects into calculations of the transmission coefficient and present a technique for extracting modeling parameters from near-equilibrium transport measurements. These parameters are used to describe degradation in the transport properties of nanoscale devices using a formalism that is valid under quasi-ballistic operation.more » The analysis includes the effects of bandstructure and dimensionality on the impact of defect scattering and discusses transport properties of nanoscale devices from the diffusive to the ballistic limit. We compare calculations with recently published measurements of irradiated nanoscale devices such as single-walled carbon nanotubes, graphene, and deep-submicron Si metal-oxide-semiconductor field-effect transistors.« less
Alternative acceptance criteria of girth weld defects in cross country pipelines. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denys, R.M.; Lefevre, T.
1997-06-01
The failure behaviour of defective girth welds in large diameter pipe lines was assessed using radiographic and mechanised ultrasonic inspection, small scale (tensile, hardness, Charpy and CTOD) and wide plate tests. The specimens were taken from girth welds in API 5LX70 pipe of 1219 mm (48 inches) in diameter by 8,0 mm (0,323 inch) and 13,3 mm (0,524 inch) wall. The test welds were made with the SMAW (8 welds) and GMAW (9 welds) welding processes. Upon completion of the non-destructive tests, 96 curved wide plate specimens were tested to destruction under tensile load. Testing was performed at low temperaturemore » (-50{degrees}C/-58{degrees}F). Defect type, defect position and size were determined from photographs of the fracture face and macro sections (defect characterisation and sizing). In total, 290 typical surface breaking and embedded defects in SMAW or GMAW girth welds have been evaluated. The vast majority of these defects were grossly out of tolerance with respect to current weld quality (workmanship) acceptance levels. To allow the defect tolerance to be determined, the failure strains and stresses were correlated with a defect length determined for an equivalent 3 mm (0, 118 inch) deep defect. This target depth was chosen to represent the average height of one weld pass. The results of this approach have been compared to wall thickness, current workmanship and the EPRG Tier 2 defect limit for planar defects. The defect lengths were derived for rectangular, parabolic and elliptical defect representations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mary A.; Tangyunyong, Paiboon; Cole, Edward I.
2016-01-14
Laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes (LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increased leakage ismore » not present in devices without AVM signals. Transmission electron microscopy analysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less
Miller, Mary A.; Tangyunyong, Paiboon; Edward I. Cole, Jr.
2016-01-12
In this study, laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes(LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increasedmore » leakage is not present in devices without AVM signals. Transmission electron microscopyanalysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less
Defect phase diagram for doping of Ga2O3
NASA Astrophysics Data System (ADS)
Lany, Stephan
2018-04-01
For the case of n-type doping of β-Ga2O3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association of dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO2) conditions. Considering further the stability constraints due to sublimation of molecular Ga2O, specific predictions of optimized pO2 and Si dopant concentrations are given. The incomplete passivation of dopant-defect complexes in β-Ga2O3 suggests a design rule for metastable doping above the solubility limit.
Agrichemicals in surface water and birth defects in the United States
Winchester, Paul D; Huskins, Jordan; Ying, Jun
2009-01-01
Objectives: To investigate if live births conceived in months when surface water agrichemicals are highest are at greater risk for birth defects. Methods: Monthly concentrations during 1996–2002 of nitrates, atrazine and other pesticides were calculated using United States Geological Survey's National Water Quality Assessment data. Monthly United States birth defect rates were calculated for live births from 1996 to 2002 using United States Centers for Disease Control and Prevention natality data sets. Birth defect rates by month of last menstrual period (LMP) were then compared to pesticide/nitrate means using logistical regression models. Results: Mean concentrations of agrichemicals were highest in April–July. Total birth defects, and eleven of 22 birth defect subcategories, were more likely to occur in live births with LMPs between April and July. A significant association was found between the season of elevated agrichemicals and birth defects. Conclusion: Elevated concentrations of agrichemicals in surface water in April–July coincided with higher risk of birth defects in live births with LMPs April–July. While a causal link between agrichemicals and birth defects cannot be proven from this study an association might provide clues to common factors shared by both variables. PMID:19183116
Annihilating nanoscale defects | Argonne National Laboratory
molecules must follow to find defect-free states and designed a process that delivers industry-standard predict the path molecules must follow to find defect-free states and designed a process that delivers deeper than others. The system prefers defect-free stability, which can be characterized by the deepest
Defect studies of nanocrystalline zirconia powders and sintered ceramics
NASA Astrophysics Data System (ADS)
Čížek, Jakub; Melikhova, Oksana; Procházka, Ivan; Kuriplach, Jan; Kužel, Radomír; Brauer, Gerhard; Anwand, Wolfgang; Konstantinova, Tatyana E.; Danilenko, Igor A.
2010-01-01
The main objective of the present paper is to communicate a study of defects behavior in zirconia-based nanomaterials—pressure-compacted yttria-stabilized zirconia (YSZ) nanopowders with different contents of Y2O3 and ceramics obtained by sintering the YZS nanopowders. In addition, YZS single crystals were also investigated. Positron annihilation techniques including positron lifetime and coincidence Doppler broadening with a conventional positron source and Doppler broadening experiments on a monoenergetic positron beam were involved in this study as the principal tools. These techniques were supplemented with transmission electron microscopy and x-ray diffraction observations. In order to get better support of the experimental data interpretation, the state-of-art theoretical calculations of positron parameters were performed for the perfect ZrO2 lattice and selected defect configurations in the YSZ. Theoretical calculations have indicated that neither the oxygen vacancies nor their neutral complexes with substitutional yttrium atoms are capable of positron trapping. On the other hand, the zirconium vacancies are deep positron traps and obviously are responsible for the saturated positron trapping observed in the YSZ single crystals. In the compacted YSZ nanopowders, a majority of positrons is trapped either in the vacancylike defects situated in the negative space-charge layers along grain boundaries (τ1≈185ps) or in vacancy clusters at intersections of grain boundaries (τ2≈370ps) . The intensity ratio I2/I1 was found to be correlated with the mean grain size d as I2/I1˜d-2 . A small fraction of positrons (≈10%) form positronium in large pores (τ3≈2ns,τ4≈30ns) . A significant grain growth during sintering of the YSZ nanopowders above 1000°C was observed.
Geometric Defects in Quantum Hall States
NASA Astrophysics Data System (ADS)
Gromov, Andrey
I will describe a geometric analogue of Laughlin quasiholes in fractional quantum Hall (FQH) states. These ``quasiholes'' are generated by an insertion of quantized fluxes of curvature - which can be modeled by branch points of a certain Riemann surface - and, consequently, are related to genons. Unlike quasiholes, the genons are not excitations, but extrinsic defects. Fusion of genons describes the response of an FQH state to a process that changes (effective) topology of the physical space. These defects are abelian for IQH states and non-abelian for FQH states. I will explain how to calculate an electric charge, geometric spin and adiabatic mutual statistics of the these defects. Leo Kadanoff Fellowship.
Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies
Seo, Hosung; Govoni, Marco; Galli, Giulia
2016-02-15
Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states maymore » be harnessed for the realization of qubits. As a result, the strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.« less
78 FR 14553 - Proposed Data Collections Submitted for Public Comment and Recommendations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-06
...; deep vein thrombosis/pulmonary embolism (DVT/PE); sickle cell disease (SCD); attention-deficit/hyperactivity disorder (ADHD); and Tourette syndrome. The Children's Health Act of 2000 required the... Defects and Developmental Disabilities, Human Development and Disabilities, and Blood Disorders--NEW...
Radiation damage annealing mechanisms and possible low temperature annealing in silicon solar cells
NASA Technical Reports Server (NTRS)
Weinberg, I.; Swartz, C. K.
1980-01-01
The defect responsible for reverse annealing in 2 ohm/cm n(+)/p silicon solar cells was identified. This defect, with energy level at e sub v + 0.30 eV was tentatively identified as a boron oxygen-vacancy complex. Results indicate that its removal could result in significant annealing for 2 ohm/cm and lower resistivity cells at temperatures as low as 200 C. These results were obtained by use of an expression derived from the Shockley-Read-Hall recombination theory which relates measured diffusion length ratios to relative defect concentrations and electron capture cross sections. The relative defect concentrations and one of the required capture cross sections are obtained from Deep Level Transient Spectroscopy. Four additional capture cross sections are obtained using diffusion length data and data from temperature dependent lifetime studied. These calculated results are in reasonable agreement with experimental data.
The use of COD and plastic instability in crack propagation and arrest in shells
NASA Technical Reports Server (NTRS)
Erdogan, F.; Ratwani, M.
1974-01-01
The initiation, growth, and possible arrest of fracture in cylindrical shells containing initial defects are dealt with. For those defects which may be approximated by a part-through semi-elliptic surface crack which is sufficiently shallow so that part of the net ligament in the plane of the crack is still elastic, the existing flat plate solution is modified to take into account the shell curvature effect as well as the effect of the thickness and the small scale plastic deformations. The problem of large defects is then considered under the assumptions that the defect may be approximated by a relatively deep meridional part-through surface crack and the net ligament through the shell wall is fully yielded. The results given are based on an 8th order bending theory of shallow shells using a conventional plastic strip model to account for the plastic deformations around the crack border.
Cell and defect behavior in lithium-counterdoped solar cells
NASA Technical Reports Server (NTRS)
Weinberg, I.; Mehta, S.; Swartz, C. K.
1984-01-01
Some n(+)/p cells in which lithium is introduced as a counterdopant, by ion-implantation, into the cell's boron-doped p-region were studied. To determine if the cells radiation resistance could be significantly improved by lithium counterdoping. Defect behavior was related to cell performance using deep level transient spectroscopy. Results indicate a significantly increased radiation resistance for the lithium counterdoped cells when compared to the boron doped 1 ohm-cm control cell. The increased radiation resistance of the lithium counterdoped cells is due to the complexing of lithium with divacancies and boron. It is speculated that complexing with oxygen and single vacancies also contributes to the increased radiation resistance. Counterdoping silicon with lithium results in a different set of defects.
Pavlyk, Bohdan; Kushlyk, Markiyan; Slobodzyan, Dmytro
2017-12-01
Changes of the defect structure of silicon p-type crystal surface layer under the influence of plastic deformation and high temperature annealing in oxygen atmosphere were investigated by deep-level capacitance-modulation spectroscopy (DLCMS) and IR spectroscopy of molecules and atom vibrational levels. Special role of dislocations in the surface layer of silicon during the formation of its energy spectrum and rebuilding the defective structure was established. It is shown that the concentration of linear defects (N ≥ 10 4 cm -2 ) enriches surface layer with electrically active complexes (dislocation-oxygen, dislocation-vacancy, and dislocation-interstitial atoms of silicon) which are an effective radiative recombination centers.
NASA Astrophysics Data System (ADS)
Mamor, M.; Auret, F. D.; Goodman, S. A.; Meyer, W. E.; Myburg, G.
1998-06-01
Titanium (Ti) Schottky barrier diodes on epitaxially grown boron-doped p-type Si films with a free carrier density of 6-8×1016cm-3 were irradiated with alpha particles at room temperature using an americium-241 (Am-241) radio nuclide. We report the electronic and transformation characteristics of an α-particle irradiation-induced defect Hα2 in epitaxially grown p-Si with metastable properties. The energy level and apparent capture cross section, as determined by deep-level transient spectroscopy, are Ev+0.43 eV and 1.4×10-15 cm2, respectively. This defect can be removed and re-introduced using a conventional bias-on/off cooling technique.
Copper interstitial recombination centers in Cu3N
NASA Astrophysics Data System (ADS)
Yee, Ye Sheng; Inoue, Hisashi; Hultqvist, Adam; Hanifi, David; Salleo, Alberto; Magyari-Köpe, Blanka; Nishi, Yoshio; Bent, Stacey F.; Clemens, Bruce M.
2018-06-01
We present a comprehensive study of the earth-abundant semiconductor Cu3N as a potential solar energy conversion material, using density functional theory and experimental methods. Density functional theory indicates that among the dominant intrinsic point defects, copper vacancies VCu have shallow defect levels while copper interstitials Cui behave as deep potential wells in the conduction band, which mediate Shockley-Read-Hall recombination. The existence of Cui defects has been experimentally verified using photothermal deflection spectroscopy. A Cu3N /ZnS heterojunction diode with good current-voltage rectification behavior has been demonstrated experimentally, but no photocurrent is generated under illumination. The absence of photocurrent can be explained by a large concentration of Cui recombination centers capturing electrons in p -type Cu3N .
Investigation of low leakage current radiation detectors on n-type 4H-SiC epitaxial layers
NASA Astrophysics Data System (ADS)
Nguyen, Khai V.; Chaudhuri, Sandeep K.; Mandal, Krishna C.
2014-09-01
The surface leakage current of high-resolution 4H-SiC epitaxial layer Schottky barrier detectors has been improved significantly after surface passivations of 4H-SiC epitaxial layers. Thin (nanometer range) layers of silicon dioxide (SiO2) and silicon nitride (Si3N4) were deposited on 4H-SiC epitaxial layers using plasma enhanced chemical vapor deposition (PECVD) on 20 μm thick n-type 4H-SiC epitaxial layers followed by the fabrication of large area (~12 mm2) Schottky barrier radiation detectors. The fabricated detectors have been characterized through current-voltage (I-V), capacitance-voltage (C-V), and alpha pulse height spectroscopy measurements; the results were compared with that of detectors fabricated without surface passivations. Improved energy resolution of ~ 0.4% for 5486 keV alpha particles was observed after passivation, and it was found that the performance of these detectors were limited by the presence of macroscopic and microscopic crystal defects affecting the charge transport properties adversely. Capacitance mode deep level transient studies (DLTS) revealed the presence of a titanium impurity related shallow level defects (Ec-0.19 eV), and two deep level defects identified as Z1/2 and Ci1 located at Ec-0.62 and ~ Ec-1.40 eV respectively.
NASA Astrophysics Data System (ADS)
Redinger, Alex; Levcenko, Sergiu; Hages, Charles J.; Greiner, Dieter; Kaufmann, Christian A.; Unold, Thomas
2017-03-01
Recent reports have suggested that the long decay times in time resolved photoluminescence (TRPL), often measured in Cu(In, Ga)Se2 absorbers, may be a result of detrapping from sub-bandgap defects. In this work, we show via temperature dependent measurements, that long lifetimes >50 ns can be observed that reflect the true minority carrier lifetime not related to deep trapping. Temperature dependent time resolved photoluminescence and steady state photoluminescence imaging measurements are used to analyze the effect of annealing in air and in a nitrogen atmosphere between 300 K and 350 K. We show that heating the Cu(In, Ga)Se2 absorber in air can irreversibly decrease the TRPL decay time, likely due to a deterioration of the absorber surface. Annealing in an oxygen-free environment yields a temperature dependence of the TRPL decay times in accordance with Schockley Read Hall recombination kinetics and weakly varying capture cross sections according to T0.6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haller, E.E.; Hubbard, G.S.; Hansen, W.L.
1976-09-01
A defect center with a single acceptor level at E/sub v/ + 0.08 eV appears in H/sub 2/-grown dislocation-free high-purity germanium. Its concentration changes reversibly upon annealing up to 650 K. By means of Hall-effect and conductivity measurements over a large temperature range the temperature dependence of the steady-state concentration between 450 and 720 K as well as the transients following changes in temperature were determined. The observed acceptor level is attributed to the divacancy-hydrogen complex V/sub 2/H. The complex reacts with hydrogen, dissolved in the Ge lattice or stored in traps, according to V/sub 2/H + H reversible V/submore » 2/H/sub 2/. An energy level associated with the divacancy-dihydrogen complex was not observed. These results are in good agreement with the idea that hydrogen in germanium forms a ''very deep donor'' (i.e., the energy level lies inside the valence band).« less
Momose, Masaki; Itoh, Yoshio; Umemoto, Naoyuki; Nakayama, Masayoshi; Ozeki, Yoshihiro
2013-01-01
A glutathione S-transferase-like gene, DcGSTF2, is responsible for carnation (Dianthus caryophyllus L.) flower color intensity. Two defective genes, DcGSTF2mu with a nonsense mutation and DcGSTF2-dTac1 containing a transposable element dTac1, have been characterized in detail in this report. dTac1 is an active element that produces reverted functional genes by excision of the element. A pale-pink cultivar ‘Daisy’ carries both defective genes, whereas a spontaneous deep-colored mutant ‘Daisy-VPR’ lost the element from DcGSTF2-dTac1. This finding confirmed that dTac1 is active and that the resulting reverted gene, DcGSTF2rev1, missing the element is responsible for this color change. Crosses between the pale-colored cultivar ‘06-LA’ and a deep-colored cultivar ‘Spectrum’ produced segregating progeny. Only the deep-colored progeny had DcGSTF2rev2 derived from the ‘Spectrum’ parent, whereas progeny with pale-colored flowers had defective forms from both parents, DcGSTF2mu and DcGSTF2-dTac1. Thus, DcGSTF2rev2 had functional activity and likely originated from excision of dTac1 since there was a footprint sequence at the vacated site of the dTac1 insertion. Characterizing the DcGSTF2 genes in several cultivars revealed that the two functional genes, DcGSTF2rev1 and DcGSTF2rev2, have been used for some time in carnation breeding with the latter in use for more than half a century. PMID:24399917
Momose, Masaki; Itoh, Yoshio; Umemoto, Naoyuki; Nakayama, Masayoshi; Ozeki, Yoshihiro
2013-12-01
A glutathione S-transferase-like gene, DcGSTF2, is responsible for carnation (Dianthus caryophyllus L.) flower color intensity. Two defective genes, DcGSTF2mu with a nonsense mutation and DcGSTF2-dTac1 containing a transposable element dTac1, have been characterized in detail in this report. dTac1 is an active element that produces reverted functional genes by excision of the element. A pale-pink cultivar 'Daisy' carries both defective genes, whereas a spontaneous deep-colored mutant 'Daisy-VPR' lost the element from DcGSTF2-dTac1. This finding confirmed that dTac1 is active and that the resulting reverted gene, DcGSTF2rev1, missing the element is responsible for this color change. Crosses between the pale-colored cultivar '06-LA' and a deep-colored cultivar 'Spectrum' produced segregating progeny. Only the deep-colored progeny had DcGSTF2rev2 derived from the 'Spectrum' parent, whereas progeny with pale-colored flowers had defective forms from both parents, DcGSTF2mu and DcGSTF2-dTac1. Thus, DcGSTF2rev2 had functional activity and likely originated from excision of dTac1 since there was a footprint sequence at the vacated site of the dTac1 insertion. Characterizing the DcGSTF2 genes in several cultivars revealed that the two functional genes, DcGSTF2rev1 and DcGSTF2rev2, have been used for some time in carnation breeding with the latter in use for more than half a century.
Electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene
NASA Astrophysics Data System (ADS)
Menezes, Marcos G.; Capaz, Rodrigo B.
2015-08-01
Using ab initio calculations, we study the electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene. Those defects are found to share similar low-energy electronic features, since they both remove a pz electron from the honeycomb lattice and induce a defect level near the Fermi energy. However, a vacancy also leaves unpaired σ electrons on the lattice, which lead to important structural differences and also contribute to magnetism. We explore both ABA and ABC stackings and compare properties such as formation energies, magnetic moments, spin density and the local density of states (LDOS) of the defect levels. These properties show a strong sensitivity to the layer in which the defect is placed and smaller sensitivities to sublattice placing and stacking type. Finally, for the ABC trilayer, we also study how these states behave in the presence of an external field, which opens a tunable gap in the band structure of the non-defective system. The pz defect states show a strong hybridization with band states as the field increases, with reduction and eventually loss of magnetization, and a non-magnetic, midgap-like state is found when the defect is at the middle layer.
Electronic and Structural Properties of Vacancies and Hydrogen Adsorbates on Trilayer Graphene
NASA Astrophysics Data System (ADS)
Menezes, Marcos; Capaz, Rodrigo
2015-03-01
Using ab initio calculations, we study the electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene. Those defects are found to share similar low-energy electronic features, since they both remove a pz electron from the honeycomb lattice and induce a defect level near the Fermi energy. However, a vacancy also leaves unpaired σ electrons on the lattice, which lead to important structural differences and also contribute to magnetism. We explore both ABA and ABC stackings and compare properties such as formation energies, magnetic moments, spin density and the local density of states (LDOS) of the defect levels. These properties show a strong sensitivity to the layer in which the defect is placed and smaller sensitivities to sublattice placing and stacking type. Finally, for the ABC trilayer, we also study how these states behave in the presence of an external electrical field, which opens a tunable gap in the band structure of the non-defective system. The pz defect states show a strong hybridization with band states as the field increases, with reduction and eventually loss of magnetization, and a non-magnetic, midgap-like state is found when the defect is at the middle layer.
Review—hexagonal boron nitride epilayers: Growth, optical properties and device applications
Jiang, H. X.; Lin, Jing Yu
2016-09-07
This paper provides a brief overview on recent advances made in authors’ laboratory in epitaxial growth and optical studies of hexagonal boron nitride (h-BN) epilayers and heterostructures. Photoluminescence spectroscopy has been employed to probe the optical properties of h-BN. It was observed that the near band edge emission of h-BN is unusually high and is more than two orders of magnitude higher than that of high quality AlN epilayers. It was shown that the unique quasi-2D nature induced by the layered structure of h-BN results in high optical absorption and emission. The impurity related and near band-edge transitions in h-BNmore » epilayers were probed for materials synthesized under varying ammonia flow rates. Our results have identified that the most dominant impurities and deep level defects in h-BN epilayers are related to nitrogen vacancies. By growing h-BN under high ammonia flow rates, nitrogen vacancy related defects can be eliminated and epilayers exhibiting pure free exciton emission have been obtained. Deep UV and thermal neutron detectors based on h-BN epilayers were shown to possess unique features. Lastly, it is our belief that h-BN will lead to many potential applications from deep UV emitters and detectors, radiation detectors, to novel 2D photonic and electronic devices.« less
Review—hexagonal boron nitride epilayers: Growth, optical properties and device applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, H. X.; Lin, Jing Yu
This paper provides a brief overview on recent advances made in authors’ laboratory in epitaxial growth and optical studies of hexagonal boron nitride (h-BN) epilayers and heterostructures. Photoluminescence spectroscopy has been employed to probe the optical properties of h-BN. It was observed that the near band edge emission of h-BN is unusually high and is more than two orders of magnitude higher than that of high quality AlN epilayers. It was shown that the unique quasi-2D nature induced by the layered structure of h-BN results in high optical absorption and emission. The impurity related and near band-edge transitions in h-BNmore » epilayers were probed for materials synthesized under varying ammonia flow rates. Our results have identified that the most dominant impurities and deep level defects in h-BN epilayers are related to nitrogen vacancies. By growing h-BN under high ammonia flow rates, nitrogen vacancy related defects can be eliminated and epilayers exhibiting pure free exciton emission have been obtained. Deep UV and thermal neutron detectors based on h-BN epilayers were shown to possess unique features. Lastly, it is our belief that h-BN will lead to many potential applications from deep UV emitters and detectors, radiation detectors, to novel 2D photonic and electronic devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinde, S.S.; Rajpure, K.Y., E-mail: rajpure@yahoo.co
Nanocomposites of aluminium integrated hematite {alpha}-Fe{sub 2}O{sub 3} are synthesized by combustion route using aqueous solutions of AR grade ferric trichloride and aluminium nitrate as precursors. The influence of aluminium incorporation on to the morphology, XPS, photoluminescence and thermal properties has been investigated. The FESEM and AFM micrographs depict that the samples are compact and have homogeneously distributed grains of varying sizes ({approx}20-60 nm). Chemical composition and valence states of constituent elements in hematite are analyzed by XPS. In room temperature photoluminescence (PL) study, we observed strong violet emission around 436 nm without any deep-level emission and a small PLmore » FWHM indicating that the concentrations of defects are responsible for deep-level emissions. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant. We studied interparticle interactions using complex impedance spectroscopy. We report a new potential candidate for its possible applications in optoelectronics and magnetic devices. -- Graphical abstract: Frequency and temperature dependent interparticle interactions like grains, grain boundary effects using complex impedance spectroscopy of pure and 10 at% Al:Fe{sub 2}O{sub 3} have been studied. Display Omitted« less
EL2 and related defects in GaAs - Challenges and pitfalls
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.
1985-01-01
The incorporation process of nonequilibrium vacancies in melt-grown GaAs is strongly complicated by deviations from stoichiometry, and the presence of two sublattices. Many of the microdefects originating in these vacancies and their interactions introduce energy levels (shallow and deep) within the energy gap. The direct identification of the chemical or structural signature of these defects and its direct correlation to their electronic behavior is not generally possible. It is therefore necessary to rely on indirect methods and phenomenological models and be confronted with the associated pitfalls. EL2, a microdefect introducing a deep donor level, has been in the limelight in recent years because it is believed to be responsible for the semi-insulating behavior of undoped GaAs. Although much progress has been made towards understanding its origin and nature, some relevant questions remain unanswered. An attempt is made to assess the present status of understanding of EL2 in the light of the most recent results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elleuch, Omar, E-mail: mr.omar.elleuch@gmail.com; Wang, Li; Lee, Kan-Hua
2015-01-28
The hole traps associated with high background doping in p-type GaAsN grown by chemical beam epitaxy are studied based on the changes of carrier concentration, junction capacitance, and hole traps properties due to the annealing. The carrier concentration was increased dramatically with annealing time, based on capacitance–voltage (C–V) measurement. In addition, the temperature dependence of the junction capacitance (C–T) was increased rapidly two times. Such behavior is explained by the thermal ionization of two acceptor states. These acceptors are the main cause of high background doping in the film, since the estimated carrier concentration from C–T results explains the measuredmore » carrier concentration at room temperature using C–V method. The acceptor states became shallower after annealing, and hence their structures are thermally unstable. Deep level transient spectroscopy (DLTS) showed that the HC2 hole trap was composed of two signals, labeled HC21 and HC22. These defects correspond to the acceptor levels, as their energy levels obtained from DLTS are similar to those deduced from C–T. The capture cross sections of HC21 and HC22 are larger than those of single acceptors. In addition, their energy levels and capture cross sections change in the same way due to the annealing. This tendency suggests that HC21 and HC22 signals originate from the same defect which acts as a double acceptor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X., E-mail: xliu@ece.ucsb.edu; Yeluri, R.; Kim, J.
2016-01-07
Al{sub 2}O{sub 3} films were grown in situ by metalorganic chemical vapor deposition at 900 °C on GaN of both Ga- and N-face polarities. High-resolution transmission electron microscopy revealed that the Al{sub 2}O{sub 3} films were crystalline and primarily γ-phase. The Al{sub 2}O{sub 3}/Ga-GaN and Al{sub 2}O{sub 3}/N-GaN interfaces were both atomically sharp, and the latter further exhibited a biatomic step feature. The corresponding current-voltage (J-V) characteristics were measured on a metal-Al{sub 2}O{sub 3}-semiconductor capacitor (MOSCAP) structure. The leakage current was very high when the Al{sub 2}O{sub 3} thickness was comparable with the size of the crystalline defects, but was suppressedmore » to the order of 1 × 10{sup −8} A/cm{sup 2} with larger Al{sub 2}O{sub 3} thicknesses. The interface states densities (D{sub it}) were measured on the same MOSCAPs by using combined ultraviolet (UV)-assisted capacitance-voltage (C-V), constant capacitance deep level transient spectroscopy (CC-DLTS), and constant capacitance deep level optical spectroscopy (CC-DLOS) techniques. The average D{sub it} measured by CC-DLTS and CC-DLOS were 6.6 × 10{sup 12} and 8.8 × 10{sup 12} cm{sup −2} eV{sup −1} for Al{sub 2}O{sub 3}/Ga-GaN and 8.6 × 10{sup 12} and 8.6 × 10{sup 12 }cm{sup −2} eV{sup −1} for Al{sub 2}O{sub 3}/N-GaN, respectively. The possible origins of the positive (negative) polarization compensation charges in Al{sub 2}O{sub 3}/Ga-GaN (Al{sub 2}O{sub 3}/N-GaN), including the filling of interface states and the existence of structure defects and impurities in the Al{sub 2}O{sub 3} layer, were discussed in accordance with the experimental results and relevant studies in the literature.« less
High Tolerance to Iron Contamination in Lead Halide Perovskite Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poindexter, Jeremy R.; Hoye, Robert L. Z.; Nienhaus, Lea
The relationship between charge-carrier lifetime and the tolerance of lead halide perovskite (LHP) solar cells to intrinsic point defects has drawn much attention by helping to explain rapid improvements in device efficiencies. However, little is known about how charge-carrier lifetime and solar cell performance in LHPs are affected by extrinsic defects (i.e., impurities), including those that are common in manufacturing environments and known to introduce deep levels in other semiconductors. Here, we evaluate the tolerance of LHP solar cells to iron introduced via intentional contamination of the feedstock and examine the root causes of the resulting efficiency losses. We findmore » that comparable efficiency losses occur in LHPs at feedstock iron concentrations approximately 100 times higher than those in p-type silicon devices. Photoluminescence measurements correlate iron concentration with nonradiative recombination, which we attribute to the presence of deep-level iron interstitials, as calculated from first-principles, as well as iron-rich particles detected by synchrotron-based X-ray fluorescence microscopy. At moderate contamination levels, we witness prominent recovery of device efficiencies to near-baseline values after biasing at 1.4 V for 60 s in the dark. We theorize that this temporary effect arises from improved charge-carrier collection enhanced by electric fields strengthened from ion migration toward interfaces. Lastly, our results demonstrate that extrinsic defect tolerance contributes to high efficiencies in LHP solar cells, which inspires further investigation into potential large-scale manufacturing cost savings as well as the degree of overlap between intrinsic and extrinsic defect tolerance in LHPs and 'perovskite-inspired' lead-free stable alternatives.« less
High Tolerance to Iron Contamination in Lead Halide Perovskite Solar Cells
Poindexter, Jeremy R.; Hoye, Robert L. Z.; Nienhaus, Lea; ...
2017-06-28
The relationship between charge-carrier lifetime and the tolerance of lead halide perovskite (LHP) solar cells to intrinsic point defects has drawn much attention by helping to explain rapid improvements in device efficiencies. However, little is known about how charge-carrier lifetime and solar cell performance in LHPs are affected by extrinsic defects (i.e., impurities), including those that are common in manufacturing environments and known to introduce deep levels in other semiconductors. Here, we evaluate the tolerance of LHP solar cells to iron introduced via intentional contamination of the feedstock and examine the root causes of the resulting efficiency losses. We findmore » that comparable efficiency losses occur in LHPs at feedstock iron concentrations approximately 100 times higher than those in p-type silicon devices. Photoluminescence measurements correlate iron concentration with nonradiative recombination, which we attribute to the presence of deep-level iron interstitials, as calculated from first-principles, as well as iron-rich particles detected by synchrotron-based X-ray fluorescence microscopy. At moderate contamination levels, we witness prominent recovery of device efficiencies to near-baseline values after biasing at 1.4 V for 60 s in the dark. We theorize that this temporary effect arises from improved charge-carrier collection enhanced by electric fields strengthened from ion migration toward interfaces. Lastly, our results demonstrate that extrinsic defect tolerance contributes to high efficiencies in LHP solar cells, which inspires further investigation into potential large-scale manufacturing cost savings as well as the degree of overlap between intrinsic and extrinsic defect tolerance in LHPs and 'perovskite-inspired' lead-free stable alternatives.« less
Schleicher, F; Halisdemir, U; Lacour, D; Gallart, M; Boukari, S; Schmerber, G; Davesne, V; Panissod, P; Halley, D; Majjad, H; Henry, Y; Leconte, B; Boulard, A; Spor, D; Beyer, N; Kieber, C; Sternitzky, E; Cregut, O; Ziegler, M; Montaigne, F; Beaurepaire, E; Gilliot, P; Hehn, M; Bowen, M
2014-08-04
Research on advanced materials such as multiferroic perovskites underscores promising applications, yet studies on these materials rarely address the impact of defects on the nominally expected materials property. Here, we revisit the comparatively simple oxide MgO as the model material system for spin-polarized solid-state tunnelling studies. We present a defect-mediated tunnelling potential landscape of localized states owing to explicitly identified defect species, against which we examine the bias and temperature dependence of magnetotransport. By mixing symmetry-resolved transport channels, a localized state may alter the effective barrier height for symmetry-resolved charge carriers, such that tunnelling magnetoresistance decreases most with increasing temperature when that state is addressed electrically. Thermal excitation promotes an occupancy switchover from the ground to the excited state of a defect, which impacts these magnetotransport characteristics. We thus resolve contradictions between experiment and theory in this otherwise canonical spintronics system, and propose a new perspective on defects in dielectrics.
Optical charge state control of spin defects in 4H-SiC
Wolfowicz, Gary; Anderson, Christopher P.; Yeats, Andrew L.; ...
2017-11-30
Defects in silicon carbide (SiC) have emerged as a favorable platform for optically active spin-based quantum technologies. Spin qubits exist in specific charge states of these defects, where the ability to control these states can provide enhanced spin-dependent readout and long-term charge stability. We investigate this charge state control for two major spin qubits in 4H-SiC, the divacancy and silicon vacancy, obtaining bidirectional optical charge conversion between the bright and dark states of these defects. We measure increased photoluminescence from divacancy ensembles by up to three orders of magnitude using near-ultraviolet excitation, depending on the substrate, and without degrading themore » electron spin coherence time. This charge conversion remains stable for hours at cryogenic temperatures, allowing spatial and persistent patterning of the charge state populations. As a result, we develop a comprehensive model of the defects and optical processes involved, offering a strong basis to improve material design and to develop quantum applications in SiC.« less
Optical charge state control of spin defects in 4H-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfowicz, Gary; Anderson, Christopher P.; Yeats, Andrew L.
Defects in silicon carbide (SiC) have emerged as a favorable platform for optically active spin-based quantum technologies. Spin qubits exist in specific charge states of these defects, where the ability to control these states can provide enhanced spin-dependent readout and long-term charge stability. We investigate this charge state control for two major spin qubits in 4H-SiC, the divacancy and silicon vacancy, obtaining bidirectional optical charge conversion between the bright and dark states of these defects. We measure increased photoluminescence from divacancy ensembles by up to three orders of magnitude using near-ultraviolet excitation, depending on the substrate, and without degrading themore » electron spin coherence time. This charge conversion remains stable for hours at cryogenic temperatures, allowing spatial and persistent patterning of the charge state populations. As a result, we develop a comprehensive model of the defects and optical processes involved, offering a strong basis to improve material design and to develop quantum applications in SiC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Soren A.; Dippo, Patricia; Mansfield, Lorelle M.
2016-11-21
We use two-wavelength excitation photoluminescence spectroscopy to probe defect states in CIGS thin films. Above-Eg excitation is combined with a tunable IR bias light that modulates the population of the defect states. We find that IR illumination in the range of 1400-2000 nm (0.62-0.89 eV) causes a reduction of the PL intensity, the magnitude of which scales linearly with IR power. Further, KF post deposition treatment has only a modest influence on the effect of the IR excitation. Initial data suggest that we have developed an optical characterization tool for band-gap defect states.
Talbot effect of the defective grating in deep Fresnel region
NASA Astrophysics Data System (ADS)
Teng, Shuyun; Wang, Junhong; Zhang, Wei; Cui, Yuwei
2015-02-01
Talbot effect of the grating with different defect is studied theoretically and experimentally in this paper. The defects of grating include the loss of the diffraction unit, the dislocation of the diffraction unit and the modulation of the unit separation. The exact diffraction distributions of three kinds of defective gratings are obtained according to the finite-difference time-domain (FDTD) method. The calculation results show the image of the missing or dislocating unit appears at the Talbot distance (as mentioned in K. Patorski Prog. Opt., 27, 1989, pp.1-108). This is the so-called self-repair ability of grating imaging. In addition, some more phenomena are discovered. The loss or the dislocation of diffraction unit causes the diffraction distortion within a certain radial angle. The regular modulation of unit separation changes the original diffraction, but the new periodicity of the diffraction distribution rebuilds. The self-imaging of grating with smaller random modulation still keeps the partial self-repair ability, and yet this characteristic depends on the modulation degree of defective grating. These diffraction phenomena of the defective gratings are explained by use of the diffraction theory of grating. The practical experiment is also performed and the experimental results confirm the theoretic predictions.
Hydrogen-enhanced clusterization of intrinsic defects and impurities in silicon
NASA Astrophysics Data System (ADS)
Mukashev, B. N.; Abdullin, Kh. A.; Gorelkinskii, Yu. V.; Tamendarov, M. F.; Tokmoldin, S. Zh
2001-01-01
Formation of intrinsic and impurity defect complexes in hydrogenated monocrystalline silicon is studied. Hydrogen was incorporated into samples by different ways: either by proton implantation at 80 and 300 K, or by annealing at 1250°C for 30-60 min in a sealed quartz ampoule containing ∼10 -3 ml of distilled water, or by treatment in hydrogen plasma. Radiation defects were incorporated either during the hydrogen implantation or by additional irradiation with protons or α-particles. The measurements were performed by electron paramagnetic resonance (EPR), deep level transient spectroscopy (DLTS) and infrared absorption (IR) methods. Essential differences of defect formation processes in hydrogenated samples as compared with reference samples were detected. The main reasons responsible for the differences are (i) hydrogen precipitation in a supersaturated solution during thermal treatment; (ii) interaction of hydrogen with defects and impurities and hydrogen-induced formation of defects; (iii) ability of hydrogen to play the role of accelerator of impurities precipitation. These factors result in the formation of vacancy-related, interstitial-related and impurity clusters which are observed only in the presence of hydrogen. The nature of the clusters and possible models of their structure are discussed.
Defect states of complexes involving a vacancy on the boron site in boronitrene
NASA Astrophysics Data System (ADS)
Ngwenya, T. B.; Ukpong, A. M.; Chetty, N.
2011-12-01
First principles calculations have been performed to investigate the ground state properties of freestanding monolayer hexagonal boronitrene (h-BN). We have considered monolayers that contain native point defects and their complexes, which form when the point defects bind with the boron vacancy on the nearest-neighbor position. The changes in the electronic structure are analyzed to show the extent of localization of the defect-induced midgap states. The variations in formation energies suggest that defective h-BN monolayers that contain carbon substitutional impurities are the most stable structures, irrespective of the changes in growth conditions. The high energies of formation of the boron vacancy complexes suggest that they are less stable, and their creation by ion bombardment would require high-energy ions compared to point defects. Using the relative positions of the derived midgap levels for the double vacancy complex, it is shown that the quasi-donor-acceptor pair interpretation of optical transitions is consistent with stimulated transitions between electron and hole states in boronitrene.
Defect phase diagram for doping of Ga 2O 3
Lany, Stephan
2018-04-01
For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less
Defect phase diagram for doping of Ga 2O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lany, Stephan
For the case of n-type doping of β-Ga 2O 3 by group 14 dopants (C, Si, Ge, Sn), a defect phase diagram is constructed from defect equilibria calculated over a range of temperatures (T), O partial pressures (pO 2), and dopant concentrations. The underlying defect levels and formation energies are determined from first-principles supercell calculations with GW bandgap corrections. Only Si is found to be a truly shallow donor, C is a deep DX-like (lattice relaxed donor) center, and Ge and Sn have defect levels close to the conduction band minimum. The thermodynamic modeling includes the effect of association ofmore » dopant-defect pairs and complexes, which causes the net doping to decline when exceeding a certain optimal dopant concentration. The optimal doping levels are surprisingly low, between about 0.01% and 1% of cation substitution, depending on the (T, pO 2) conditions. Considering further the stability constraints due to sublimation of molecular Ga 2O, specific predictions of optimized pO 2 and Si dopant concentrations are given. To conclude, the incomplete passivation of dopant-defect complexes in β-Ga 2O 3 suggests a design rule for metastable doping above the solubility limit.« less
Ming, Wenmei; Shi, Hongliang; Du, Mao-Hua
2016-01-01
Here we report that many metal halides that contain cations with the ns 2 electronic configuration have recently been discovered as high-performance optoelectronic materials. In particular, solar cells based on lead halide perovskites have shown great promise as evidenced by the rapid increase of the power conversion efficiency. In this paper, we show density functional theory calculations of electronic structure and dielectric and defect properties of CsGeI 3 (a lead-free halide perovskite material). The potential of CsGeI 3 as a solar cell material is assessed based on its intrinsic properties. We find anomalously large Born effective charges and a largemore » static dielectric constant dominated by lattice polarization, which should reduce carrier scattering, trapping, and recombination by screening charged defects and impurities. Defect calculations show that CsGeI 3 is a p-type semiconductor and its hole density can be modified by varying the chemical potentials of the constituent elements. Despite the reduction of long-range Coulomb attraction by strong screening, the iodine vacancy in CsGeI3 is found to be a deep electron trap due to the short-range potential, i.e., strong Ge–Ge covalent bonding, which should limit electron transport efficiency in p-type CsGeI 3. This is in contrast to the shallow iodine vacancies found in several Pb and Sn halide perovskites (e.g., CH 3NH 3PbI 3, CH 3NH 3SnI 3, and CsSnI 3). The low-hole-density CsGeI 3 may be a useful solar absorber material but the presence of the low-energy deep iodine vacancy may significantly reduce the open circuit voltage of the solar cell. Still, on the other hand, CsGeI 3 may be used as an efficient hole transport material in solar cells due to its small hole effective mass, the absence of low-energy deep hole traps, and the favorable band offset with solar absorber materials such as dye molecules and CH 3NH 3PbI 3.« less
Copper interstitial recombination centers in Cu 3 N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Ye Sheng; Inoue, Hisashi; Hultqvist, Adam
We present a comprehensive study of the earth-abundant semiconductor Cu 3N as a potential solar energy conversion material, using density functional theory and experimental methods. Density functional theory indicates that among the dominant intrinsic point defects, copper vacancies V Cu have shallow defect levels while copper interstitials Cu i behave as deep potential wells in the conduction band which mediate Shockley-Read-Hall recombination. The existence of Cu i defects has been experimentally verified using photothermal deflection spectroscopy. A Cu 3N/ZnS heterojunction diode with good current-voltage rectification behavior has been demonstrated experimentally, but no photocurrent is generated under illumination. Finally, the absencemore » of photocurrent can be explained by a large concentration of Cu i recombination centers capturing electrons in p-type Cu 3N.« less
Defect and field-enhancement characterization through electron-beam-induced current analysis
NASA Astrophysics Data System (ADS)
Umezawa, Hitoshi; Gima, Hiroki; Driche, Khaled; Kato, Yukako; Yoshitake, Tsuyoshi; Mokuno, Yoshiaki; Gheeraert, Etienne
2017-05-01
To investigate the effects of defects and field enhancement in diamond power devices, a biased Schottky barrier diode was characterized by electron-beam-induced current (EBIC) analysis. The nonuniform distribution of the electrical field was revealed by bright spots on the laterally expanded depletion layer of the EBIC intensity map when the applied electrical field exceeded 0.95 MV/cm. The nonuniformity is partly due to a structural effect: the roughness at the edge of the Schottky electrode, induced by lithography and lift-off processes. A second family of spots was shown to increase the leakage current of the device. The time constant associated with this second spot family was 0.98 ms, which is three orders of magnitude shorter than that for defects previously characterized by deep-level transient spectroscopy.
NASA Astrophysics Data System (ADS)
Makarenko, L. F.; Lastovskii, S. B.; Yakushevich, H. S.; Moll, M.; Pintilie, I.
2018-04-01
Comparative studies employing Deep Level Transient Spectroscopy and C-V measurements have been performed on recombination-enhanced reactions between defects of interstitial type in boron doped silicon diodes irradiated with alpha-particles. It has been shown that self-interstitial related defects which are immobile even at room temperatures can be activated by very low forward currents at liquid nitrogen temperatures. Their activation is accompanied by the appearance of interstitial carbon atoms. It has been found that at rather high forward current densities which enhance BiOi complex disappearance, a retardation of Ci annealing takes place. Contrary to conventional thermal annealing of the interstitial boron-interstitial oxygen complex, the use of forward current injection helps to recover an essential part of charge carriers removed due to irradiation.
NASA Astrophysics Data System (ADS)
Harmatha, Ladislav; Mikolášek, Miroslav; Stuchlíková, L'ubica; Kósa, Arpád; Žiška, Milan; Hrubčín, Ladislav; Skuratov, Vladimir A.
2015-11-01
The contribution is focused on the diagnostics of structures with a heterojunction between amorphous and crystalline silicon prepared by HIT (Heterojunction with an Intrinsic Thin layer) technology. The samples were irradiated by Xe ions with energy 167 MeV and doses from 5 × 108 cm-2 to 5 × 1010 cm-2. Radiation defects induced in the bulk of Si and at the hydrogenated amorphous silicon and crystalline silicon (a-Si:H/c-Si) interface were identified by Deep Level Transient Spectroscopy (DLTS). Radiation induced A-centre traps, boron vacancy traps and different types of divacancies with a high value of activation energy were observed. With an increased fluence of heavy ions the nature and density of the radiation induced defects was changed.
Copper interstitial recombination centers in Cu 3 N
Yee, Ye Sheng; Inoue, Hisashi; Hultqvist, Adam; ...
2018-06-04
We present a comprehensive study of the earth-abundant semiconductor Cu 3N as a potential solar energy conversion material, using density functional theory and experimental methods. Density functional theory indicates that among the dominant intrinsic point defects, copper vacancies V Cu have shallow defect levels while copper interstitials Cu i behave as deep potential wells in the conduction band which mediate Shockley-Read-Hall recombination. The existence of Cu i defects has been experimentally verified using photothermal deflection spectroscopy. A Cu 3N/ZnS heterojunction diode with good current-voltage rectification behavior has been demonstrated experimentally, but no photocurrent is generated under illumination. Finally, the absencemore » of photocurrent can be explained by a large concentration of Cu i recombination centers capturing electrons in p-type Cu 3N.« less
NASA Astrophysics Data System (ADS)
Goodman, S. A.; Auret, F. D.; Meyer, W. E.
1994-05-01
Radiation damage effects were studied in n-GaAs grown by organo-metallic vapour phase epitaxy (OMVPE) for a wide range of alpha-particle (2.0 MeV and 5.4 MeV) and proton (2.0 MeV) particle fluences, using an americium-241 (Am-241) radio-nuclide and a linear Van de Graaff accelerator as the particle sources. The samples were irradiated at 300 K, after fabricating palladium Schottky barrier diodes (SBDs) on the 1.2 × 10 16 cm 3 Si-doped epitaxial layers. The irradiation-induced defects are characterized using conventional deep level transient spectroscopy (DLTS). A correlation is made between the change in SBD characteristics and the quantity and type of defects introduced during irradiation. It is shown that the two parameters most susceptible to this irradiation are the reverse leakage current of the SBDs and the free carrier density of the epilayer. The introduction rate and the "signatures" of the alpha-particle and proton irradiation-induced defects are calculated and compared to those of similar defects introduced during electron irradiation.
Vines, L; Bhoodoo, C; von Wenckstern, H; Grundmann, M
2017-12-13
The evolution of sheet resistance of n-type In 2 O 3 and Ga 2 O 3 exposed to bombardment with MeV 12 C and 28 Si ions at 35 K is studied in situ. While the sheet resistance of Ga 2 O 3 increased by more than eight orders of magnitude as a result of ion irradiation, In 2 O 3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga 2 O 3 remained highly resistive, while In 2 O 3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to [Formula: see text] cm -2 . A model where larger defect complexes preferentially produce donor like defects in In 2 O 3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed.
NASA Astrophysics Data System (ADS)
Vines, L.; Bhoodoo, C.; von Wenckstern, H.; Grundmann, M.
2018-01-01
The evolution of sheet resistance of n-type In2O3 and Ga2O3 exposed to bombardment with MeV 12C and 28Si ions at 35 K is studied in situ. While the sheet resistance of Ga2O3 increased by more than eight orders of magnitude as a result of ion irradiation, In2O3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga2O3 remained highly resistive, while In2O3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to 2 × 1012 cm-2. A model where larger defect complexes preferentially produce donor like defects in In2O3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed.
Investigation of Defects Origin in p-Type Si for Solar Applications
NASA Astrophysics Data System (ADS)
Gwóźdź, Katarzyna; Placzek-Popko, Ewa; Mikosza, Maciej; Zielony, Eunika; Pietruszka, Rafal; Kopalko, Krzysztof; Godlewski, Marek
2017-07-01
In order to improve the efficiency of a solar cell based on silicon, one must find a compromise between its price and crystalline quality. That is precisely why the knowledge of defects present in the material is of primary importance. This paper studies the defects in commercially available cheap Schottky titanium/gold silicon wafers. The electrical properties of the diodes were defined by using current-voltage and capacitance-voltage measurements. Low series resistance and ideality factor are proofs of the good quality of the sample. The concentration of the acceptors is in accordance with the manufacturer's specifications. Deep level transient spectroscopy measurements were used to identify the defects. Three hole traps were found with activation energies equal to 0.093 eV, 0.379 eV, and 0.535 eV. Comparing the values with the available literature, the defects were determined as connected to the presence of iron interstitials in the silicon. The quality of the silicon wafer seems good enough to use it as a substrate for the solar cell heterojunctions.
Du, Mao-Hua
2015-04-02
We know that native point defects play an important role in carrier transport properties of CH3NH3PbI3. However, the nature of many important defects remains controversial due partly to the conflicting results reported by recent density functional theory (DFT) calculations. In this Letter, we show that self-interaction error and the neglect of spin–orbit coupling (SOC) in many previous DFT calculations resulted in incorrect positions of valence and conduction band edges, although their difference, which is the band gap, is in good agreement with the experimental value. Moreover, this problem has led to incorrect predictions of defect-level positions. Hybrid density functional calculations,more » which partially correct the self-interaction error and include the SOC, show that, among native point defects (including vacancies, interstitials, and antisites), only the iodine vacancy and its complexes induce deep electron and hole trapping levels inside of the band gap, acting as nonradiative recombination centers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinisch, H.L.
1997-04-01
The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparentmore » only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Najafi, Mehrdad, E-mail: najafi@shahroodut.ac.ir; Haratizadeh, Hamid
2015-05-15
Highlights: • Effective role of defects on producing red emission at indirect excitation. • V{sub Zn} and V{sub O} defects have important role on energy transfer. • Mg related defects and Zn{sub i} defects were responsible for blue emission. • Extrinsic and intrinsic defects mediated energy transfer to sensitize Eu{sup 3+} ions. • Decrease of red emission because of diminishing in oxygen vacancy. - Abstract: Europium doped ZnO nanorads and nanosheets were synthesized by hydrothermal method. Effects of Mg doping, morphology and annealing in oxygen ambient on structural and optical properties of ZnO nanostructures were investigated using X-ray diffraction (XRD),more » particle size analysis (PSA), thermo gravimetric analysis (TGA), differential thermal analysis (DTA), differential thermo gravimetry (DTG), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). This study recommends that both of intrinsic and extrinsic defects facilitate energy transfer (ET) from the ZnO host to Eu{sup 3+} ions and consequently have efficient role on producing intense red emission at indirect excitation. The results also showed that annealing process improved the crystal structure of ZnO nanosheets due to decrease of surface defects; however decreased ET and red emission because of diminishing in oxygen vacancy. In addition in ZnO nanorods sample with more surface area in comparison with ZnO nanosheets sample deep level emissions are enhanced.« less
Multiple-digit resurfacing using a thin latissimus dorsi perforator flap.
Kim, Sang Wha; Lee, Ho Jun; Kim, Jeong Tae; Kim, Youn Hwan
2014-01-01
Traumatic digit defects of high complexity and with inadequate local tissue represent challenging surgical problems. Recently, perforator flaps have been proposed for reconstructing large defects of the hand because of their thinness and pliability and minimal donor site morbidity. Here, we illustrate the use of thin latissimus dorsi perforator flaps for resurfacing multiple defects of distal digits. We describe the cases of seven patients with large defects, including digits, circumferential defects and multiple-digit defects, who underwent reconstruction with thin latissimus dorsi perforator flaps between January 2008 and March 2012. Single-digit resurfacing procedures were excluded. The mean age was 56.3 years and the mean flap size was 160.4 cm(2). All the flaps survived completely. Two patients had minor complications including partial flap loss and scar contracture. The mean follow-up period was 11.7 months. The ideal flap for digit resurfacing should be thin and amenable to moulding, have a long pedicle for microanastomosis and have minimal donor site morbidity. Thin flaps can be harvested by excluding the deep adipose layer, and their high pliability enables resurfacing without multiple debulking procedures. The latissimus dorsi perforator flap may be the best flap for reconstructing complex defects of the digits, such as large, multiple-digit or circumferential defects, which require complete wrapping of volar and dorsal surfaces. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Characterisation of Cs ion implanted GaN by DLTS
NASA Astrophysics Data System (ADS)
Ngoepe, P. N. M.; Meyer, W. E.; Auret, F. D.; Omotoso, E.; Hlatshwayo, T. T.; Diale, M.
2018-04-01
Deep level transient spectroscopy (DLTS) was used to characterise Cs implanted GaN grown by hydride vapour phase epitaxy (HVPE). This implantation was done at room temperature using energy of 360 keV to a fluence of 10-11 cm-2. A defect with activation energy of 0.19 eV below the conduction band and an apparent capture cross section of 1.1 × 10-15 cm2 was induced. This defect has previously been observed after rare earth element (Eu, Er and Pr) implantation. It has also been reported after electron, proton and He ion implantation.
Phosphorus ionization in silicon doped by self-assembled macromolecular monolayers
NASA Astrophysics Data System (ADS)
Wu, Haigang; Li, Ke; Gao, Xuejiao; Dan, Yaping
2017-10-01
Individual dopant atoms can be potentially controlled at large scale by the self-assembly of macromolecular dopant carriers. However, low concentration phosphorus dopants often suffer from a low ionization rate due to defects and impurities introduced by the carrier molecules. In this work, we demonstrated a nitrogen-free macromolecule doping technique and investigated the phosphorus ionization process by low temperature Hall effect measurements. It was found that the phosphorus dopants diffused into the silicon bulk are in nearly full ionization. However, the electrons ionized from the phosphorus dopants are mostly trapped by deep level defects that are likely carbon interstitials.
Deep level defects in semiconductors. Final technical report 1 Jul 78-30 Jun 80
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaram, S.; Sharma, R.R.
1980-07-01
Using Racah's irreducible tensor operator formalism, a generalized and more refined treatment of the d-electron matrices for transition metal defects in crystals has been given. The resulting Coulomb and exchange interaction matrices have been used to calculate the electronic structures of GaAs:(2+)Cr(2+) and GaAs:Cr(3+) and interpret the optical data on MgF2:Co(2+) and MgF2:Mn(2+). The significance of the new theory is explained. From the photoluminescence and optical absorption data, the crystal field parameters have been derived.
Effect of pressure-assisted thermal annealing on the optical properties of ZnO thin films.
Berger, Danielle; Kubaski, Evaldo Toniolo; Sequinel, Thiago; da Silva, Renata Martins; Tebcherani, Sergio Mazurek; Varela, José Arana
2013-01-01
ZnO thin films were prepared by the polymeric precursor method. The films were deposited on silicon substrates using the spin-coating technique, and were annealed at 330 °C for 32 h under pressure-assisted thermal annealing and under ambient pressure. Their structural and optical properties were characterized, and the phases formed were identified by X-ray diffraction. No secondary phase was detected. The ZnO thin films were also characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet emission intensity measurements. The effect of pressure on these thin films modifies the active defects that cause the recombination of deep level states located inside the band gap that emit yellow-green (575 nm) and orange (645 nm) photoluminescence. Copyright © 2012 John Wiley & Sons, Ltd.
Surface Participation Effects in Titanium Nitride and Niobium Resonators
NASA Astrophysics Data System (ADS)
Dove, Allison; Kreikebaum, John Mark; Livingston, William; Delva, Remy; Qiu, Yanjie; Lolowang, Reinhard; Ramasesh, Vinay; O'Brien, Kevin; Siddiqi, Irfan
Improving the coherence time of superconducting qubits requires a precise understanding of the location and density of surface defects. Superconducting microwave resonators are commonly used for quantum state readout and are a versatile testbed to systematically characterize materials properties as a function of device geometry and fabrication method. We report on sputter deposited titanium nitride and niobium on silicon coplanar waveguide resonators patterned using reactive ion etches to define the device geometry. We discuss the impact of different growth conditions (temperature and electrical bias) and processing techniques on the internal quality factor (Q) of these devices. In particular, to investigate the effect of surface participation, we use a Bosch process to etch many-micron-deep trenches in the silicon substrate and quantify the impact of etch depth and profile on the internal Q. This research was supported by the ARO.
Tracheal invasion by Thyroid nodule in Thyroidectomy
2017-10-20
through the first tracheal ring. The tracheal defect was fixed with a strap muscle flap and surgery concluded uneventfully. Following deep extubation, an...air leak at the surgical site was noted. The patient was reintubated, the incision was re-opened and the tracheal flap was revised to prevent tracheal leaking.
Bai, Chuanyong; Conwell, Richard; Kindem, Joel; Babla, Hetal; Gurley, Mike; De Los Santos, Romer; Old, Rex; Weatherhead, Randy; Arram, Samia; Maddahi, Jamshid
2010-06-01
We developed a cardiac SPECT system (X-ACT) with low dose volume CT transmission-based attenuation correction (AC). Three solid-state detectors are configured to form a triple-head system for emission scans and reconfigured to form a 69-cm field-of-view detector arc for transmission scans. A near mono-energetic transmission line source is produced from the collimated fluorescence x-ray emitted from a lead target when the target is illuminated by a narrow polychromatic x-ray beam from an x-ray tube. Transmission scans can be completed in 1 min with insignificant patient dose (deep dose equivalent <5 muSv). We used phantom studies to evaluate (1) the accuracy of the reconstructed attenuation maps, (2) the effect of AC on image uniformity, and (3) the effect of AC on defect contrast (DC). The phantoms we used included an ACR phantom, an anthropomorphic phantom with a uniform cardiac insert, and an anthropomorphic phantom with two defects in the cardiac insert. The reconstructed attenuation coefficient of water at 140 keV was .150 +/- .003/cm in the uniform region of the ACR phantom, .151 +/- .003/cm and .151 +/- .002/cm in the liver and cardiac regions of the anthropomorphic phantom. The ACR phantom images with AC showed correction of the bowing effect due to attenuation in the images without AC (NC). The 17-segment scores of the images of the uniform cardiac insert were 78.3 +/- 6.5 before and 87.9 +/- 3.3 after AC (average +/- standard deviation). The inferior-to-anterior wall ratio and the septal-to-lateral wall ratio were .99 and 1.16 before and 1.02 and 1.00 after AC. The DC of the two defects was .528 and .156 before and .628 and .173 after AC. The X-ACT system generated accurate attenuation maps with 1-minute transmission scans. AC improved image quality and uniformity over NC.
Effect of anisotropy on defect mode peculiarities in chiral liquid crystals
NASA Astrophysics Data System (ADS)
Gevorgyan, A. H.; Oganesyan, K. B.
2018-01-01
The effect of anisotropy on defect mode peculiarities in cholesteric liquid crystals is investigated. The light transmission through the cholesteric liquid crystal layer with an anisotropic layer defect inside is solved by Ambartsumian’s layer addition modified method. Two cases are considered. In the first case, it is assumed that the defect layer is non-absorbing, and the effect of refraction anisotropy on the reflection, relative photonic density of states and the total field intensity produced in the defect layer are studied. In the second case, the defect layer is assumed to be isotropic for refraction and anisotropic for absorption, and the influence of defect layer absorption anisotropy on reflection, absorption, relative photonic density of states and the total field intensity produced in the defect layer are investigated.
Stress and Strain State Analysis of Defective Pipeline Portion
NASA Astrophysics Data System (ADS)
Burkov, P. V.; Burkova, S. P.; Knaub, S. A.
2015-09-01
The paper presents computer simulation results of the pipeline having defects in a welded joint. Autodesk Inventor software is used for simulation of the stress and strain state of the pipeline. Places of the possible failure and stress concentrators are predicted on the defective portion of the pipeline.
Study of point- and cluster-defects in radiation-damaged silicon
NASA Astrophysics Data System (ADS)
Donegani, Elena M.; Fretwurst, Eckhart; Garutti, Erika; Klanner, Robert; Lindstroem, Gunnar; Pintilie, Ioana; Radu, Roxana; Schwandt, Joern
2018-08-01
Non-ionising energy loss of radiation produces point defects and defect clusters in silicon, which result in a significant degradation of sensor performance. In this contribution results from TSC (Thermally Stimulated Current) defect spectroscopy for silicon pad diodes irradiated by electrons to fluences of a few 1014 cm-2 and energies between 3.5 and 27 MeV for isochronal annealing between 80 and 280∘C, are presented. A method based on SRH (Shockley-Read-Hall) statistics is introduced, which assumes that the ionisation energy of the defects in a cluster depends on the fraction of occupied traps. The difference of ionisation energy of an isolated point defect and a fully occupied cluster, ΔEa, is extracted from the TSC data. For the VOi (vacancy-oxygen interstitial) defect ΔEa = 0 is found, which confirms that it is a point defect, and validates the method for point defects. For clusters made of deep acceptors the ΔEa values for different defects are determined after annealing at 80∘C as a function of electron energy, and for the irradiation with 15 MeV electrons as a function of annealing temperature. For the irradiation with 3.5 MeV electrons the value ΔEa = 0 is found, whereas for the electron energies of 6-27 MeV ΔEa > 0. This agrees with the expected threshold of about 5 MeV for cluster formation by electrons. The ΔEa values determined as a function of annealing temperature show that the annealing rate is different for different defects. A naive diffusion model is used to estimate the temperature dependencies of the diffusion of the defects in the clusters.
NASA Astrophysics Data System (ADS)
Kurihara, Ryuji; Furue, Hirokazu; Takahashi, Taiju; Yamashita, Tomo-o; Xu, Jun; Kobayashi, Shunsuke
2001-07-01
A photoalignment technique has been utilized for fabricating zigzag-defect-free ferroelectric liquid crystal displays (FLCDs) using polyimide RN-1199, -1286, -1266 (Nissan Chem. Ind.) and adopting oblique irradiation of unpolarized UV light. A rubbing technique was also utilized for comparison. It is shown that among these polyimide materials, RN-1199 is the best for fabricating defect-free cells with C-1 uniform states, but RN-1286 requires low energy to produce a photoaligned FLC phase. We have conducted an analytical investigation to clarify the conditions for obtaining zigzag-defect-free C-1 states, and it is theoretically shown that zigzag-defect-free C-1 state is obtained using a low azimuthal anchoring energy at a low pretilt angle, while a zigzag-defect-free C-2 state is obtained by increasing azimuthal anchoring energy above a critical value, also at a low pretilt angle. The estimated critical value of the azimuthal anchoring energy at which a transition from the C-1 state to the C-2 state occurs is 3×10-6 J/m2 for the FLC material FELIX M4654/100 (Clariant) used in this research; this value is shown to fall in a favorable range which is measured in an independent experiment.
Su-Schrieffer-Heeger chain with one pair of [Formula: see text]-symmetric defects.
Jin, L; Wang, P; Song, Z
2017-07-19
The topologically nontrivial edge states induce [Formula: see text] transition in Su-Schrieffer-Heeger (SSH) chain with one pair of gain and loss at boundaries. In this study, we investigated a pair of [Formula: see text]-symmetric defects located inside the SSH chain, in particular, the defects locations are at the chain centre. The [Formula: see text] symmetry breaking of the bound states leads to the [Formula: see text] transition, the [Formula: see text]-symmetric phases and the localized states were studied. In the broken [Formula: see text]-symmetric phase, all energy levels break simultaneously in topologically trivial phase; however, two edge states in topologically nontrivial phase are free from the influence of the [Formula: see text]-symmetric defects. We discovered [Formula: see text]-symmetric bound states induced by the [Formula: see text]-symmetric local defects at the SSH chain centre. The [Formula: see text]-symmetric bound states significantly increase the [Formula: see text] transition threshold and coalesce to the topologically protected zero mode with vanishing probabilities on every other site of the left-half chain and the right-half chain, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rougieux, F. E.; Macdonald, D.
2014-03-24
The state of bistable defects in crystalline silicon such as iron-boron pairs or the boron-oxygen defect can be changed at room temperature. In this letter, we experimentally demonstrate that the chemical state of a group of defects can be changed to represent a bit of information. The state can then be read without direct contact via the intensity of the emitted band-band photoluminescence signal of the group of defects, via their impact on the carrier lifetime. The theoretical limit of the information density is then computed. The information density is shown to be low for two-dimensional storage but significant formore » three-dimensional data storage. Finally, we compute the maximum storage capacity as a function of the lower limit of the photoluminescence detector sensitivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simimol, A.; Department of Physics, National Institute of Technology, Calicut 673601; Manikandanath, N. T.
Highly dense and c-axis oriented zinc oxide (ZnO) nanorods with hexagonal wurtzite facets were deposited on fluorine doped tin oxide coated glass substrates by a simple and cost-effective electrodeposition method at low bath temperature (80 °C). The as-grown samples were then annealed at various temperatures (T{sub A} = 100–500 °C) in different environments (e.g., zinc, oxygen, air, and vacuum) to understand their photoluminescence (PL) behavior in the ultra-violet (UV) and the visible regions. The PL results revealed that the as-deposited ZnO nanorods consisted of oxygen vacancy (V{sub O}), zinc interstitial (Zn{sub i}), and oxygen interstitial (O{sub i}) defects and these can be reduced significantlymore » by annealing in different environments at optimal annealing temperatures. However, the intensity of deep level emission increased for T{sub A} greater than the optimized values for the respective environments due to the introduction of various defect centers. For example, for T{sub A} ≥ 450 °C in the oxygen and air environments, the density of O{sub i} defects increased, whereas, the green emission associated with V{sub O} is dominant in the vacuum annealed (T{sub A} = 500 °C) ZnO nanorods. The UV peak red shifted after the post-growth annealing treatments in all the environments and the vacuum annealed sample exhibited highest UV peak intensity. The observations from the PL data are supported by the micro-Raman spectroscopy. The present study gives new insight into the origin of different defects that exist in the electrodeposited ZnO nanorods and how these defects can be precisely controlled in order to get the desired emissions for the opto-electronic applications.« less
Suga, Kazuyoshi; Yasuhiko, Kawakami; Iwanaga, Hideyuki; Hayashi, Norio; Yamashita, Tomio; Matsunaga, Naofumi
2005-09-01
Deep-inspiratory breath-hold (DIBrH) Tc-99m-macroaggregated albumin (MAA) SPECT images were developed to accurately evaluate perfusion impairment in smokers' lungs. DIBrH SPECT was performed in 28 smokers with or without low attenuation areas (LAA) on CT images, using a triple-headed SPECT system and a laser light respiratory tracking device. DIBrH SPECT images were reconstructed from every 4 degrees projection of five adequate 360 degrees projection data sets with almost the same respiratory dimension at 20 sec DIBrH. Perfusion defect clarity was assessed by the lesion (defect)-to-contralateral normal lung count ratios (L/N ratios). Perfusion inhomogeneity was assessed by the coefficient of variation (CV) values of pixel counts and correlated with the diffusing capacity of the lungs for carbon monoxide/alveolar volume (DLCO/VA) ratios. The results were compared with those on conventional images. Five DIBrH projection data sets with minimal dimension differences of 2.9+/-0.6 mm were obtained in all subjects. DIBrH images enhanced perfusion defects compared with conventional images, with significantly higher L/N ratios (P<0.0001), and detected a total of 109 (26.9%) additional detects (513 vs. 404), with excellent inter-observer agreement (kappa value of 0.816). CV values in the smokers' lungs on DIBrH images were also significantly higher compared with those on conventional images (0.31+/-0.10 vs. 0.19+/-0.06, P<0.0001). CV values in smokers on DIBrH images showed a significantly closer correlation with DLCO/VA ratios compared with conventional images (R = 0.872, P<0.0001 vs. R=0.499, P<0.01). By reducing adverse effect of respiratory motion, DIBrH SPECT images enhance perfusion defect clarity and inhomogeneity, and provide more accurate assessment of impaired perfusion in smokers' lungs compared with conventional images.
Quantum correlation of path-entangled two-photon states in waveguide arrays with defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Yiling; Xu, Lei; Han, Bin
We study the quantum correlation of path-entangled states of two photons in coupled one-dimensional waveguide arrays with lattice defects. Both off-diagonal and diagonal defects are considered, which show different effects on the quantum correlation of path-entangled two-photon states. Two-photon bunching or anti-bunching effects can be observed and controlled. The two photons are found to have a tendency to bunch at the side lobes with a repulsive off-diagonal defect, and the path-entanglement of the input two-photon state can be preserved during the propagation. We also found that defect modes may play an important role on the two-photon correlation of path-entangled statesmore » in the waveguide arrays. Due to the quantum interference effect, intriguing evolution dynamics of the two-photon correlation matrix elements with oscillation frequencies being either twice of or the same as that of a classical light wave, depending on the position of the correlation matrix element, is observed. Our results show that it is possible to manipulate the two-photon correlation properties of path-entangled states in waveguide arrays with lattice defects.« less
The self-healing of defects induced by the hydriding phase transformation in palladium nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulvestad, A.; Yau, A.
Nanosizing can dramatically alter material properties by enhancing surface thermodynamic contributions, shortening diffusion lengths, and increasing the number of catalytically active sites per unit volume. These mechanisms have been used to explain the improved properties of catalysts, battery materials, plasmonic materials, etc. Here we show that Pd nanoparticles also have the ability to self-heal defects in their crystal structures. Using Bragg coherent diffractive imaging, we image dislocations nucleated deep in a Pd nanoparticle during the forward hydriding phase transformation that heal during the reverse transformation, despite the region surrounding the dislocations remaining in the hydrogen-poor phase. We show that defectivemore » Pd nanoparticles exhibit sloped isotherms, indicating that defects act as additional barriers to the phase transformation. Our results resolve the formation and healing of structural defects during phase transformations at the single nanoparticle level and offer an additional perspective as to how and why nanoparticles differ from their bulk counterparts.« less
Quantification technology study on flaws in steam-filled pipelines based on image processing
NASA Astrophysics Data System (ADS)
Sun, Lina; Yuan, Peixin
2009-07-01
Starting from exploiting the applied detection system of gas transmission pipeline, a set of X-ray image processing methods and pipeline flaw quantificational evaluation methods are proposed. Defective and non-defective strings and rows in gray image were extracted and oscillogram was obtained. We can distinguish defects in contrast with two gray images division. According to the gray value of defects with different thicknesses, the gray level depth curve is founded. Through exponential and polynomial fitting way to obtain the attenuation mathematical model which the beam penetrates pipeline, thus attain flaw deep dimension. This paper tests on the PPR pipe in the production of simulated holes flaw and cracks flaw, 135KV used the X-ray source on the testing. Test results show that X-ray image processing method, which meet the needs of high efficient flaw detection and provide quality safeguard for thick oil recovery, can be used successfully in detecting corrosion of insulated pipe.
Quantification technology study on flaws in steam-filled pipelines based on image processing
NASA Astrophysics Data System (ADS)
Yuan, Pei-xin; Cong, Jia-hui; Chen, Bo
2008-03-01
Starting from exploiting the applied detection system of gas transmission pipeline, a set of X-ray image processing methods and pipeline flaw quantificational evaluation methods are proposed. Defective and non-defective strings and rows in gray image were extracted and oscillogram was obtained. We can distinguish defects in contrast with two gray images division. According to the gray value of defects with different thicknesses, the gray level depth curve is founded. Through exponential and polynomial fitting way to obtain the attenuation mathematical model which the beam penetrates pipeline, thus attain flaw deep dimension. This paper tests on the PPR pipe in the production of simulated holes flaw and cracks flaw. The X-ray source tube voltage was selected as 130kv and valve current was 1.5mA.Test results show that X-ray image processing methods, which meet the needs of high efficient flaw detection and provide quality safeguard for thick oil recovery, can be used successfully in detecting corrosion of insulated pipe.
Pattern Inspection of EUV Masks Using DUV Light
NASA Astrophysics Data System (ADS)
Liang, Ted; Tejnil, Edita; Stivers, Alan R.
2002-12-01
Inspection of extreme ultraviolet (EUV) lithography masks requires reflected light and this poses special challenges for inspection tool suppliers as well as for mask makers. Inspection must detect all the printable defects in the absorber pattern as well as printable process-related defects. Progress has been made under the NIST ATP project on "Intelligent Mask Inspection Systems for Next Generation Lithography" in assessing the factors that impact the inspection tool sensitivity. We report in this paper the inspection of EUV masks with programmed absorber defects using 257nm light. All the materials of interests for masks are highly absorptive to EUV light as compared to deep ultraviolet (DUV) light. Residues and contamination from mask fabrication process and handling are prone to be printable. Therefore, it is critical to understand their EUV printability and optical inspectability. Process related defects may include residual buffer layer such as oxide, organic contaminants and possible over-etch to the multilayer surface. Both simulation and experimental results will be presented in this paper.
NASA Astrophysics Data System (ADS)
Barnes, Bryan M.; Zhou, Hui; Henn, Mark-Alexander; Sohn, Martin Y.; Silver, Richard M.
2017-06-01
The sizes of non-negligible defects in the patterning of a semiconductor device continue to decrease as the dimensions for these devices are reduced. These "killer defects" disrupt the performance of the device and must be adequately controlled during manufacturing, and new solutions are required to improve optics-based defect inspection. To this end, our group has reported [Barnes et al., Proc. SPIE 1014516 (2017)] our initial five-wavelength simulation study, evaluating the extensibility of defect inspection by reducing the inspection wavelength from a deep-ultraviolet wavelength to wavelengths in the vacuum ultraviolet and the extreme ultraviolet. In that study, a 47 nm wavelength yielded enhancements in the signal to noise (SNR) by a factor of five compared to longer wavelengths and in the differential intensities by as much as three orders-of-magnitude compared to 13 nm. This paper briefly reviews these recent findings and investigates the possible sources for these disparities between results at 13 nm and 47 nm wavelengths. Our in-house finite-difference time-domain code (FDTD) is tested in both two and three dimensions to determine how computational conditions contributed to the results. A modified geometry and materials stack is presented that offers a second viewpoint of defect detectability as functions of wavelength, polarization, and defect type. Reapplication of the initial SNR-based defect metric again yields no detection of a defect at λ = 13 nm, but additional image preprocessing now enables the computation of the SNR for λ = 13 nm simulated images and has led to a revised defect metric that allows comparisons at all five wavelengths.
2011-01-01
The growth of high mobility two-dimensional hole gases (2DHGs) using GaAs-GaAlAs heterostructures has been the subject of many investigations. However, despite many efforts hole mobilities in Be-doped structures grown on (100) GaAs substrate remained considerably lower than those obtained by growing on (311)A oriented surface using silicon as p-type dopant. In this study we will report on the properties of hole traps in a set of p-type Be-doped Al0.29Ga0.71As samples grown by molecular beam epitaxy on (100) and (311)A GaAs substrates using deep level transient spectroscopy (DLTS) technique. In addition, the effect of the level of Be-doping concentration on the hole deep traps is investigated. It was observed that with increasing the Be-doping concentration from 1 × 1016 to 1 × 1017 cm-3 the number of detected electrically active defects decreases for samples grown on (311)A substrate, whereas, it increases for (100) orientated samples. The DLTS measurements also reveal that the activation energies of traps detected in (311)A are lower than those in (100). From these findings it is expected that mobilities of 2DHGs in Be-doped GaAs-GaAlAs devices grown on (311)A should be higher than those on (100). PMID:21711687
Post-traumatic orbital reconstruction: anatomical landmarks and the concept of the deep orbit.
Evans, B T; Webb, A A C
2007-04-01
Dissection deep within the orbit is a cause for concern to surgeons because of the perceived risks of injuring critical structures such as the contents of the superior orbital fissure and the optic nerve. Although "safe distances" (those distances within which it is considered safe to dissect within the orbit) have been described, these are of limited value if the orbit is severely disrupted or is congenitally shallow. In addition, traumatic defects in the orbital floor, in particular, often extend beyond these distances. Reliable landmarks based on the relations between anatomical structures within the orbit, rather than absolute distances, are described that permit safe dissection within the orbit. We present the concept of the deep orbit and describe its relevance to repair of injuries.
Anomalously deep polarization in SrTiO3 (001) interfaced with an epitaxial ultrathin manganite film
Wang, Zhen; Tao, Jing; Yu, Liping; ...
2016-10-17
Using atomically-resolved imaging and spectroscopy, we reveal a remarkably deep polarization in non-ferroelectric SrTiO 3 near its interface with an ultrathin nonmetallic film of La 2/3Sr 1/3MnO 3. Electron holography shows an electric field near the interface in SrTiO 3, yielding a surprising spontaneous polarization density of ~ 21 μC/cm 2. Combining the experimental results with first principles calculations, we propose that the observed deep polarization is induced by the electric field originating from oxygen vacancies that extend beyond a dozen unit-cells from the interface, thus providing important evidence of the role of defects in the emergent interface properties ofmore » transition metal oxides.« less
Defect States Emerging from a Non-Hermitian Flatband of Photonic Zero Modes
NASA Astrophysics Data System (ADS)
Qi, Bingkun; Zhang, Lingxuan; Ge, Li
2018-03-01
We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength.
NASA Astrophysics Data System (ADS)
Seo, Hosung; Ma, He; Govoni, Marco; Galli, Giulia
2017-12-01
The development of novel quantum bits is key to extending the scope of solid-state quantum-information science and technology. Using first-principles calculations, we propose that large metal ion-vacancy pairs are promising qubit candidates in two binary crystals: 4 H -SiC and w -AlN. In particular, we found that the formation of neutral Hf- and Zr-vacancy pairs is energetically favorable in both solids; these defects have spin-triplet ground states, with electronic structures similar to those of the diamond nitrogen-vacancy center and the SiC divacancy. Interestingly, they exhibit different spin-strain coupling characteristics, and the nature of heavy metal ions may allow for easy defect implantation in desired lattice locations and ensure stability against defect diffusion. To support future experimental identification of the proposed defects, we report predictions of their optical zero-phonon line, zero-field splitting, and hyperfine parameters. The defect design concept identified here may be generalized to other binary semiconductors to facilitate the exploration of new solid-state qubits.
Defect study in ZnO related structures—A multi-spectroscopic approach
NASA Astrophysics Data System (ADS)
Ling, C. C.; Cheung, C. K.; Gu, Q. L.; Dai, X. M.; Xu, S. J.; Zhu, C. Y.; Luo, J. M.; Zhu, C. Y.; Tam, K. H.; Djurišić, A. B.; Beling, C. D.; Fung, S.; Lu, L. W.; Brauer, G.; Anwand, W.; Skorupa, W.; Ong, H. C.
2008-10-01
ZnO has attracted a great deal of attention in recent years because of its potential applications for fabricating optoelectronic devices. Using a multi-spectroscopic approach including positron annihilation spectroscopy (PAS), deep level transient spectroscopy (DLTS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS), we have studied the two observed phenomena from ZnO related structures. They namely included the H 2O 2 pre-treatment induced ohmic to rectifying contact conversion on Au/ n-ZnO contact and the p-type doping by nitrogen ion implantation. The aim of the studies was to offering comprehensive views as to how the defects influenced the structures electrical and optical properties of the structures. It was also shown that PAS measurement using the monoenergetic positron beam could offer valuable information of vacancy type defects in the vertical ZnO nanorod array structure.
Hybrid Defect Phase Transition: Renormalization Group and Monte Carlo Analysis
NASA Astrophysics Data System (ADS)
Kaufman, Miron; Diep, H. T.
2010-03-01
For the q-state Potts model with 2 < q <= 4 on the square lattice with a defect line, the order parameter on the defect line jumps discontinuously from zero to a nonzero value while the defect energy varies continuously with the temperature at the critical temperature. Monte-Carlo simulations (H. T. Diep, M. Kaufman, Phys Rev E 2009) of the q-state Potts model on a square lattice with a line of defects verify the renormalization group prediction (M. Kaufman, R. B. Griffiths, Phys Rev B 1982) on the occurrence of the hybrid transition on the defect line. This is interesting since for those q values the bulk transition is continuous. This hybrid (continuous - discontinuous) defect transition is induced by the infinite range correlations at the bulk critical point.
Tight-binding molecular-dynamics study of point defects in GaAs
NASA Astrophysics Data System (ADS)
Seong, Hyangsuk; Lewis, Laurent J.
1995-08-01
Tight-binding molecular-dynamics simulations at 0 K have been performed in order to study the effect of defects (vacancies and antisites) in different states of charge on the electronic and structural properties of GaAs. Relaxations are fully included in the model, and for each defect we calculate the local atomic structure, the volume change upon relaxing, the formation energy (including chemical potential contributions), and the ionization levels. We find Ga vacancies to relax by an amount which is independent of the state of charge, consistent with positron lifetime measurements. Our calculations also predict Ga vacancies to exhibit a negative-U effect, and to assume a triply negative charge state for most values of the electron chemical potential. The relaxation of As vacancies, on the contrary, depends sensitively on the state of charge. The model confirms the two experimentally observed ionization levels for this defect, just below the conduction-band minimum. Likewise, Ga antisites exhibit large relaxations. In fact, in the neutral state, relaxation is so large that it leads to a ``broken-bond'' configuration, in excellent accord with the first-principles calculations of Zhang and Chadi [Phys. Rev. Lett. 64, 1789 (1990)]. This system also exhibits a negative-U effect, for values of the electron chemical potential near midgap. For As antisites, we find only a weak relaxation, independent of the charge. The model predicts the neutral state of the defect to be the ground state for values of the electron chemical potential near and above midgap, which supports the view that the EL2 defect is a neutral As antisite. Upon comparing the formation energies of the various defects we finally find that, for all values of the atomic chemical potentials, antisites are most likely to occur than vacancies.
Non-Mutually Exclusive Deep Neural Network Classifier for Combined Modes of Bearing Fault Diagnosis.
Duong, Bach Phi; Kim, Jong-Myon
2018-04-07
The simultaneous occurrence of various types of defects in bearings makes their diagnosis more challenging owing to the resultant complexity of the constituent parts of the acoustic emission (AE) signals. To address this issue, a new approach is proposed in this paper for the detection of multiple combined faults in bearings. The proposed methodology uses a deep neural network (DNN) architecture to effectively diagnose the combined defects. The DNN structure is based on the stacked denoising autoencoder non-mutually exclusive classifier (NMEC) method for combined modes. The NMEC-DNN is trained using data for a single fault and it classifies both single faults and multiple combined faults. The results of experiments conducted on AE data collected through an experimental test-bed demonstrate that the DNN achieves good classification performance with a maximum accuracy of 95%. The proposed method is compared with a multi-class classifier based on support vector machines (SVMs). The NMEC-DNN yields better diagnostic performance in comparison to the multi-class classifier based on SVM. The NMEC-DNN reduces the number of necessary data collections and improves the bearing fault diagnosis performance.
NASA Astrophysics Data System (ADS)
Wang, Ke; Guo, Ping; Luo, A.-Li
2017-03-01
Spectral feature extraction is a crucial procedure in automated spectral analysis. This procedure starts from the spectral data and produces informative and non-redundant features, facilitating the subsequent automated processing and analysis with machine-learning and data-mining techniques. In this paper, we present a new automated feature extraction method for astronomical spectra, with application in spectral classification and defective spectra recovery. The basic idea of our approach is to train a deep neural network to extract features of spectra with different levels of abstraction in different layers. The deep neural network is trained with a fast layer-wise learning algorithm in an analytical way without any iterative optimization procedure. We evaluate the performance of the proposed scheme on real-world spectral data. The results demonstrate that our method is superior regarding its comprehensive performance, and the computational cost is significantly lower than that for other methods. The proposed method can be regarded as a new valid alternative general-purpose feature extraction method for various tasks in spectral data analysis.
NASA Astrophysics Data System (ADS)
Park, Jinhee; Rim, You Seung; Li, Chao; Wu, Jiechen; Goorsky, Mark; Streit, Dwight
2018-04-01
We report the device performance and stability of sputtered amorphous indium-tin-zinc-oxide (ITZO) thin-film transistors as a function of oxygen ratio [O2/(Ar + O2)] during growth. Increasing the oxygen ratio enhanced the incorporation of oxygen during ITZO film growth and reduced the concentration of deep-level defects associated with oxygen vacancies. Under illumination with no bias stress, device stability and persistent photocurrent were improved with increased oxygen ratio. Bias stress tests of the devices were also performed with and without illumination. While high oxygen ratio growth conditions resulted in decreased deep-level oxygen vacancies in the ITZO material, the same conditions resulted in degradation of the interfacial layer between the ITZO channel and dielectric due to the migration of energetic oxygen ions to the interface. Therefore, when bias stress was applied, increased carrier trap density at the interface led to a decrease in device stability that offsets any improvement in the material itself. In order to take advantage of the improved ITZO material growth at a high oxygen ratio, the interface-related problems must be solved.
NASA Astrophysics Data System (ADS)
PŁaczek-Popko, E.; Trzmiel, J.; Zielony, E.; Grzanka, S.; Czernecki, R.; Suski, T.
2009-12-01
In this study, we present the results of investigation on p-n GaN diodes by means of deep level transient spectroscopy (DLTS) within the temperature range of 77-350 K. Si-doped GaN layers were grown by metal-organic vapor-phase epitaxy technique (MOVPE) on the free-standing GaN substrates. Subsequently Mg-doped GaN layers were grown. To perform DLTS measurements Ni/Au contacts to p-type material and Ti/Au contacts to n-type material were processed. DLTS signal spectra revealed the presence of two majority traps of activation energies obtained from Arrhenius plots equal to E1=0.22 eV and E2=0.65 eV. In present work we show that the trap E1 is linked with the extended defects whereas the trap E2 is the point defect related. Its capture cross section is thermally activated with energy barrier for capture equal to 0.2 eV.
Abundant defects and defect clusters in kesterite Cu2ZnSnS4 and Cu2ZnSnSe4
NASA Astrophysics Data System (ADS)
Chen, Shiyou; Wang, Lin-Wang; Walsh, Aron; Gong, Xin-Gao; Wei, Su-Huai
2013-03-01
Cu2ZnSnS4 and Cu2ZnSnSe4 are drawing intensive attention as the light-absorber materials in thin-film solar cells. A large variety of intrinsic defects can be formed in these quaternary semiconductors, which have important influence on their optical and electrical properties, and hence their photovoltaic performance. We will present our first-principles calculation study on a series of intrinsic defects and defect clusters in Cu2ZnSnS4 and Cu2ZnSnSe4, and discuss: (i) strong phase-competition between the kesterites and the coexisting secondary compounds; (ii) the dominant CuZn antisites and Cu vacancies which determine the intrinsic p-type conductivity, and their dependence on the elemental ratios; (iii) the high population of charge-compensated defect clusters (like VCu + ZnCu and 2CuZn + SnZn) and their contribution to non-stoichiometry ; (iv) the deep-level defects which act as recombination centers. Based on the calculation, we will explain the experimental observation that Cu poor and Zn rich conditions give the highest solar cell efficiency, as well as suggesting an efficiency limitation in Cu2ZnSn(S,Se)4 cells with high S composition. Supported by NSF of China, JCAP: a U.S. DOE Energy Innovation Hub, Royal Society of U.K. and EPSRC, and U.S. DOE.
NASA Astrophysics Data System (ADS)
Muret, P.; Pernot, J.; Azize, M.; Bougrioua, Z.
2007-09-01
Electrical transport and deep levels are investigated in GaN:Fe layers epitaxially grown on sapphire by low pressure metalorganic vapor phase epitaxy. Photoinduced current transient spectroscopy and current detected deep level spectroscopy are performed between 200 and 650 K on three Fe-doped samples and an undoped sample. A detailed study of the detected deep levels assigns dominant centers to a deep donor 1.39 eV below the conduction band edge EC and to a deep acceptor 0.75 eV above the valence band edge EV at low electric field. A strong Poole-Frenkel effect is evidenced for the donor. Schottky diodes characteristics and transport properties in the bulk GaN:Fe layer containing a homogenous concentration of 1019 Fe/cm3 are typical of a compensated semiconductor. They both indicate that the bulk Fermi level is located typically 1.4 eV below EC, in agreement with the neutrality equation and dominance of the deep donor concentration. This set of results demonstrates unambiguously that electrical transport in GaN:Fe is governed by both types, either donor or acceptor, of the iron impurity, either substitutional in gallium sites or associated with other defects.
Characterization of oxygen defects in diamond by means of density functional theory calculations
NASA Astrophysics Data System (ADS)
Thiering, Gergő; Gali, Adam
2016-09-01
Point defects in diamond are of high interest as candidates for realizing solid state quantum bits, bioimaging agents, or ultrasensitive electric or magnetic field sensors. Various artificial diamond synthesis methods should introduce oxygen contamination in diamond, however, the incorporation of oxygen into diamond crystal and the nature of oxygen-related point defects are largely unknown. Oxygen may be potentially interesting as a source of quantum bits or it may interact with other point defects which are well established solid state qubits. Here we employ plane-wave supercell calculations within density functional theory, in order to characterize the electronic and magneto-optical properties of various oxygen-related defects. Besides the trivial single interstitial and substitutional oxygen defects we also consider their complexes with vacancies and hydrogen atoms. We find that oxygen defects are mostly electrically active and introduce highly correlated orbitals that pose a challenge for density functional theory modeling. Nevertheless, we are able to identify the fingerprints of substitutional oxygen defect, the oxygen-vacancy and oxygen-vacancy-hydrogen complexes in the electron paramagnetic resonance spectrum. We demonstrate that first principles calculations can predict the motional averaging of the electron paramagnetic resonance spectrum of defects that are subject to Jahn-Teller distortion. We show that the high-spin neutral oxygen-vacancy defect exhibits very fast nonradiative decay from its optical excited state that might hinder applying it as a qubit.
NASA Astrophysics Data System (ADS)
Ćınar, K.; Yıldırım, N.; Coşkun, C.; Turut, A.
2009-10-01
To obtain detailed information about the conduction process of the Ag/p-GaN Schottky diodes (SDs) fabricated by us, we measured the I-V characteristics over the temperature range of 80-360 K by the steps of 20 K. The slope of the linear portion of the forward bias I-V plot and nkT =E0 of the device remained almost unchanged as independent of temperature with an average of 25.71±0.90 V-1 and 41.44±1.38 meV, respectively. Therefore, it can be said that the experimental I-V data quite well obey the field emission model rather than the thermionic emission or thermionic field emission model. The study is a very good experimental example for the FE model. Furthermore, the reverse bias saturation current ranges from 8.34×10-8 A at 80 K to 2.10×10-7 A at 360 K, indicating that the charge transport mechanism in the Ag/p-GaN SD is tunneling due to the weak temperature dependence of the saturation current. The possible origin of high experimental characteristic tunneling energy of E00=39 meV, which is ten times larger than possible theoretical value of 3.89 meV, is attributed to the accumulation of a large amount of defect states near the GaN surface or to the deep level defect band induced by high doping or to any mechanism which enhances the electric field and the state density at the semiconductor surface.
Nonequilibrium Steady State Generated by a Moving Defect: The Supersonic Threshold
NASA Astrophysics Data System (ADS)
Bastianello, Alvise; De Luca, Andrea
2018-02-01
We consider the dynamics of a system of free fermions on a 1D lattice in the presence of a defect moving at constant velocity. The defect has the form of a localized time-dependent variation of the chemical potential and induces at long times a nonequilibrium steady state (NESS), which spreads around the defect. We present a general formulation that allows recasting the time-dependent protocol in a scattering problem on a static potential. We obtain a complete characterization of the NESS. In particular, we show a strong dependence on the defect velocity and the existence of a sharp threshold when such velocity exceeds the speed of sound. Beyond this value, the NESS is not produced and, remarkably, the defect travels without significantly perturbing the system. We present an exact solution for a δ -like defect traveling with an arbitrary velocity and we develop a semiclassical approximation that provides accurate results for smooth defects.
First-principles engineering of charged defects for two-dimensional quantum technologies
NASA Astrophysics Data System (ADS)
Wu, Feng; Galatas, Andrew; Sundararaman, Ravishankar; Rocca, Dario; Ping, Yuan
2017-12-01
Charged defects in two-dimensional (2D) materials have emerging applications in quantum technologies such as quantum emitters and quantum computation. The advancement of these technologies requires a rational design of ideal defect centers, demanding reliable computation methods for the quantitatively accurate prediction of defect properties. We present an accurate, parameter-free, and efficient procedure to evaluate the quasiparticle defect states and thermodynamic charge transition levels of defects in 2D materials. Importantly, we solve critical issues that stem from the strongly anisotropic screening in 2D materials, that have so far precluded the accurate prediction of charge transition levels in these materials. Using this procedure, we investigate various defects in monolayer hexagonal boron nitride (h -BN ) for their charge transition levels, stable spin states, and optical excitations. We identify CBVN (nitrogen vacancy adjacent to carbon substitution of boron) to be the most promising defect candidate for scalable quantum bit and emitter applications.
Structural Defects in Donor-Acceptor Blends: Influence on the Performance of Organic Solar Cells
NASA Astrophysics Data System (ADS)
Sergeeva, Natalia; Ullbrich, Sascha; Hofacker, Andreas; Koerner, Christian; Leo, Karl
2018-02-01
Defects play an important role in the performance of organic solar cells. The investigation of trap states and their origin can provide ways to further improve their performance. Here, we investigate defects in a system composed of the small-molecule oligothiophene derivative DCV5T-Me blended with C60 , which shows power conversion efficiencies above 8% when used in a solar cell. From a reconstruction of the density of trap states by impedance spectroscopy, we obtain a Gaussian distribution of trap states with Et=470 meV below the electron transport level, Nt=8 ×1014 cm-3 , and σt=41 meV . From Voc vs illumination intensity and open-circuit corrected charge carrier extraction measurements, we find that these defects lead to trap-assisted recombination. Moreover, drift-diffusion simulations show that the trap states decrease the fill factor by 10%. By conducting degradation measurements and varying the blend ratio, we find that the observed trap states are structural defects in the C60 phase due to the distortion of the natural morphology induced by the mixing.
NASA Astrophysics Data System (ADS)
Fehr, M.; Schnegg, A.; Rech, B.; Astakhov, O.; Finger, F.; Bittl, R.; Teutloff, C.; Lips, K.
2014-02-01
Light-induced degradation of hydrogenated amorphous silicon (a-Si :H), known as the Staebler-Wronski effect, has been studied by time-domain pulsed electron-paramagnetic resonance. Electron-spin echo relaxation measurements in the annealed and light-soaked state revealed two types of defects (termed type I and II), which can be discerned by their electron-spin echo relaxation. Type I exhibits a monoexponential decay related to indirect flip-flop processes between dipolar coupled electron spins in defect clusters, while the phase relaxation of type II is dominated by H1 nuclear spin dynamics and is indicative for isolated spins. We propose that defects are either located at internal surfaces of microvoids (type I) or are isolated and uniformly distributed in the bulk (type II). The concentration of both defect type I and II is significantly higher in the light-soaked state compared to the annealed state. Our results indicate that in addition to isolated defects, defects on internal surfaces of microvoids play a role in light-induced degradation of device-quality a-Si :H.
Light Emission Mechanisms in CuInS 2 Quantum Dots Evaluated by Spectral Electrochemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuhr, Addis S.; Yun, Hyeong Jin; Makarov, Nikolay S.
Luminescent CuInS 2 (CIS) quantum dots (QDs) exhibit highly efficient intragap emission and long, hundreds-of-nanoseconds radiative lifetimes. These spectral properties, distinct from structurally similar II–VI QDs, can be explained by the involvement of intragap defect states containing a localized hole capable of coupling with a conduction band electron for a radiative transition. However, the absolute energies of the intragap and band-edge states, the structure of the emissive defect(s), and the role and origin of nonemissive decay channels still remain poorly understood. Here, we address these questions by applying methods of spectral electrochemistry. Cyclic voltammetry measurements reveal a well-defined intragap statemore » whose redox potential is close to that of the Cu x defect state (where x = 1+ or 2+). The energy offset of this state from the valence band accounts well for the apparent photoluminescence Stokes shift observed in optical spectra. These results provide direct evidence that Cu-related defects serve as emission centers responsible for strong intragap emission from CIS QDs. We then use in situ spectroelectrochemistry to reveal two distinct emission pathways based on the differing oxidation states of Cu defects, which can be controlled by altering QD stoichiometry (1+ for stoichiometric QDs and 2+ for Cu-deficient QDs).« less
Light Emission Mechanisms in CuInS 2 Quantum Dots Evaluated by Spectral Electrochemistry
Fuhr, Addis S.; Yun, Hyeong Jin; Makarov, Nikolay S.; ...
2017-09-07
Luminescent CuInS 2 (CIS) quantum dots (QDs) exhibit highly efficient intragap emission and long, hundreds-of-nanoseconds radiative lifetimes. These spectral properties, distinct from structurally similar II–VI QDs, can be explained by the involvement of intragap defect states containing a localized hole capable of coupling with a conduction band electron for a radiative transition. However, the absolute energies of the intragap and band-edge states, the structure of the emissive defect(s), and the role and origin of nonemissive decay channels still remain poorly understood. Here, we address these questions by applying methods of spectral electrochemistry. Cyclic voltammetry measurements reveal a well-defined intragap statemore » whose redox potential is close to that of the Cu x defect state (where x = 1+ or 2+). The energy offset of this state from the valence band accounts well for the apparent photoluminescence Stokes shift observed in optical spectra. These results provide direct evidence that Cu-related defects serve as emission centers responsible for strong intragap emission from CIS QDs. We then use in situ spectroelectrochemistry to reveal two distinct emission pathways based on the differing oxidation states of Cu defects, which can be controlled by altering QD stoichiometry (1+ for stoichiometric QDs and 2+ for Cu-deficient QDs).« less
Metastability of the midgap level EL 2 in GaAs - Relationship with the As antisite defect
NASA Technical Reports Server (NTRS)
Skowronski, M.; Lagowski, J.; Gatos, H. C.
1985-01-01
It is found that the rate of the photoinduced transition of the GaAs midgap level EL 2 to its metastable state increases as its occupation increases. High-resolution optical spectra of this transition exhibit a sharp peak very similar to the no-phonon line of the intracenter absorption of the As antisite defect. These findings show that the transition to the metastable state is initiated from the ground state 1A1, and it is finalized via the excited state 1T2 of the neutral As antisite defect. They thus provide a new basis for the critical assessment of the EL 2 metastability models and further confirmation of the association of EL 2 with the isolated As antisite defect.
A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis
Sohaib, Muhammad; Kim, Cheol-Hong; Kim, Jong-Myon
2017-01-01
Bearing fault diagnosis is imperative for the maintenance, reliability, and durability of rotary machines. It can reduce economical losses by eliminating unexpected downtime in industry due to failure of rotary machines. Though widely investigated in the past couple of decades, continued advancement is still desirable to improve upon existing fault diagnosis techniques. Vibration acceleration signals collected from machine bearings exhibit nonstationary behavior due to variable working conditions and multiple fault severities. In the current work, a two-layered bearing fault diagnosis scheme is proposed for the identification of fault pattern and crack size for a given fault type. A hybrid feature pool is used in combination with sparse stacked autoencoder (SAE)-based deep neural networks (DNNs) to perform effective diagnosis of bearing faults of multiple severities. The hybrid feature pool can extract more discriminating information from the raw vibration signals, to overcome the nonstationary behavior of the signals caused by multiple crack sizes. More discriminating information helps the subsequent classifier to effectively classify data into the respective classes. The results indicate that the proposed scheme provides satisfactory performance in diagnosing bearing defects of multiple severities. Moreover, the results also demonstrate that the proposed model outperforms other state-of-the-art algorithms, i.e., support vector machines (SVMs) and backpropagation neural networks (BPNNs). PMID:29232908
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ermakov, O.P.
1986-08-01
This paper studies the radiative characteristics of structures not doped with nitrogen based on AgP and GaAs /SUB 1-y/ P /SUB y/ in a wide range of compositions, containing stoichiometry and radiation defects. The structures studied were obtained by the methods of liquid-phase and gas-phase epitaxy. Zn was used as the acceptor impurity in obtaining the p-n structures. The radiation defects were introduced by irradiation with a beam of fast 2.5-MeV electrons and the radiative characteristics were studied with the help of the method of electroluminescence (EL).
Influence of deep level intrinsic defects on the carrier transport in p-type Hg1- xCdxTe
NASA Astrophysics Data System (ADS)
Hoerstel, W.; Klimakow, A.; Kramer, R.
1990-04-01
The magnetic field dependence of the Hall effect in p-type Hg1- xCdxTe is analysed for determining the carrier densities and their mobilities in the mixed conduction range T = 70-250 K. A consistent description of the temperature dependence of the concentrations and mobilities of electrons and holes succeeds by taking into account energy-dependent momentum scattering times in the transport coefficients. Using this formalism, an energy level near 0.7 Eg above the valence band edge caused by intrinsic defects which were influenced by thermal treament is determined and discussed.
NASA Astrophysics Data System (ADS)
Kunj, Saurabh; Sreenivas, K.
2016-05-01
Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O2/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunj, Saurabh, E-mail: saurabhkunj22@gmail.com; Sreenivas, K.
2016-05-23
Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O{sub 2}/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.
Hydrogen density of states and defects densities in a-Si:H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deane, S.C.; Powell, M.J.; Robertson, J.
1996-12-31
The properties of hydrogenated amorphous silicon (a-Si:H) and its devices depend fundamentally on the density of states (DOS) in the gap due to dangling bonds. It is generally believed that the density of dangling bonds is controlled by a chemical equilibrium with the weak Si-Si bonds which form the localized valence band tail states. Further details are given of a unified model of the hydrogen density of states and defect pool of a-Si:H. The model is compared to other defect models and extended to describe a-Si alloys and the creation of valence band tail states during growth.
Semiconducting molecular crystals: Bulk in-gap states modified by structural and chemical defects
NASA Astrophysics Data System (ADS)
Haas, S.; Krellner, C.; Goldmann, C.; Pernstich, K. P.; Gundlach, D. J.; Batlogg, B.
2007-03-01
Charge transport in organic molecular crystals is strongly influenced by the density of localized in-gap states (traps). Thus, a profound knowledge of the defect states' origin is essential. Temperature-dependent space-charge limited current (TD-SCLC) spectroscopy was used as a powerful tool to quantitatively study the density of states (DOS) in high-quality rubrene and pentacene single crystals. In particular, changes of the DOS due to intentionally induced chemical and structural defects were monitored. For instance, the controlled exposure of pentacene and rubrene to x-ray radiation results in a broad over-all increase of the DOS. Namely, the ionizing radiation induces a variety of both chemical and structural defects. On the other hand, exposure of rubrene to UV-excited oxygen is reflected in a sharp peak in the DOS, whereas in a similar experiment with pentacene oxygen acts as a dopant, and possible defects are metastable on the time-scale of the measurement, thus leaving the extracted DOS virtually unchanged.
Strongly bound excitons in anatase TiO 2 single crystals and nanoparticles
Baldini, E.; Chiodo, L.; Dominguez, A.; ...
2017-04-13
Anatase TiO 2 is among the most studied materials for light-energy conversion applications, but the nature of its fundamental charge excitations is still unknown. Yet it is crucial to establish whether light absorption creates uncorrelated electron-hole pairs or bound excitons and, in the latter case, to determine their character. Here, by combining steady-state angle-resolved photoemission spectroscopy and spectroscopic ellipsometry with state-of-the-art ab initio calculations, we demonstrate that the direct optical gap of single crystals is dominated by a strongly bound exciton rising over the continuum of indirect interband transitions. This exciton possesses an intermediate character between the Wannier-Mott and Frenkelmore » regimes and displays a peculiar two-dimensional wavefunction in the three-dimensional lattice. The nature of the higher-energy excitations is also identified. Furthermore, the universal validity of our results is confirmed up to room temperature by observing the same elementary excitations in defect-rich samples (doped single crystals and nanoparticles) via ultrafast two-dimensional deep-ultraviolet spectroscopy.« less
NASA Astrophysics Data System (ADS)
Wang, Ji; Zhang, Ao; Yan, Jun; Li, Dan; Chen, Yunlin
2017-03-01
The properties of defects in organic-inorganic hybrid perovskite are widely studied from the first-principles calculation. However, the defects of methylamine (methylamine = CH3NH2), which would be easily formed during the preparation of the organic-inorganic hybrid perovskite, are rarely investigated. Thermodynamic properties as well as defect states of methylamine embedded MAPbX3 (MA = methyl-ammonium = CH3NH3, X = Br, I) are studied based on first-principles calculations of density functional theory. It was found that there is a shallow defect level near the highest occupied molecular orbital, which induced by the interstitial methylamine defect in MAPbBr3, will lead to an increase of photoluminescence. The calculation results showed that interstitial defect states of methylamine may move deeper due to the interaction between methylamine molecules and methyl-ammonium cations. It was also showed that the interstitial methylamine defect is stable at room temperature, and the defect can be removed easily by annealing.
Liu, Xinsheng; Xiao, Xun; Yang, Ye; ...
2017-05-30
Defects present in the absorber layer largely dictate photovoltaic device performance. Recently, a binary photovoltaic material, Sb 2Se 3, has drawn much attention due to its low-cost and nontoxic constituents and rapid performance promotion. So far, however, the intrinsic defects of Sb 2Se 3 remain elusive. Here in this work, through a combined theoretical and experimental investigation, we revealed that shallow acceptors, SeSb antisites, are the dominant defects in Sb 2Se 3 produced in an Se-rich environment, where deep donors, SbSe and VSe, dominate in Sb 2Se 3 produced in an Se-poor environment. We further constructed a superstrate CdS/Sb 2Semore » 3 thin-film solar cell achieving 5.76% efficiency through in situ Se compensation during Sb 2Se 3 evaporation and through careful optimization of absorber layer thickness. In conclusion, the understanding of intrinsic defects in Sb 2Se 3 film and the demonstrated success of in situ Se compensation strategy pave the way for further efficiency improvement of this very promising photovoltaic technology.« less
Spahn, G; Wittig, R; Kahl, E; Klinger, H M; Mückley, T; Hofmann, G O
2007-05-01
The study was aimed to evaluate the validity of clinical, radiological and MRI examination for cartilage defects of the knee compared with arthroscopic finding. Seven-hundred seventy-two patients who were suffering from knee pain over more than 3 months were evaluated clinical (grinding-sign) and with radiography and magnetic resonance imaging (MRI) and subsequent arthroscopy. The grinding sign had a sensitivity of 0.39. The association of a positive grinding test with high grade cartilage defects was significant (p<0.000). In 97.4% an intact chondral surface correlated with a normal radiological finding. Subchondral sclerosis, exophytes and a joint space narrowing was significantly associated with high grade cartilage defects (p<0.000). The accuracy of MRI was 59.5%. The MRI resulted in an overestimation in 36.6% and an underestimation in 3.9%. False-positive results were significant more often assessed in low-grade cartilage defects (p<0.000). Clinical signs, x-ray imaging and MRI correlate with arthroscopic findings in cases of deep cartilage lesions. In intact or low-grade degenerated cartilage often results an overestimating of these findings.
Thermo-electric analysis of the interconnection of the LHC main superconducting bus bars
NASA Astrophysics Data System (ADS)
Granieri, P. P.; Breschi, M.; Casali, M.; Bottura, L.; Siemko, A.
2013-01-01
Spurred by the question of the maximum allowable energy for the operation of the Large Hadron Collider (LHC), we have progressed in the understanding of the thermo-electric behavior of the 13 kA superconducting bus bars interconnecting its main magnets. A deep insight of the underlying mechanisms is required to ensure the protection of the accelerator against undesired effects of resistive transitions. This is especially important in case of defective interconnections which can jeopardize the operation of the whole LHC. In this paper we present a numerical model of the interconnections between the main dipole and quadrupole magnets, validated against experimental tests of an interconnection sample with a purposely built-in defect. We consider defective interconnections featuring a lack of bonding among the superconducting cables and the copper stabilizer components, such as those that could be present in the machine. We evaluate the critical defect length limiting the maximum allowable current for powering the magnets. We determine the dependence of the critical defect length on different parameters as the heat transfer towards the cooling helium bath, the quality of manufacturing, the operating conditions and the protection system parameters, and discuss the relevant mechanisms.
Ab initio simulation study of defect assisted Zener tunneling in GaAs diode
NASA Astrophysics Data System (ADS)
Lu, Juan; Fan, Zhi-Qiang; Gong, Jian; Jiang, Xiang-Wei
2017-06-01
The band to band tunneling of defective GaAs nano-junction is studied by using the non-equilibrium Green's function formalism with density functional theory. Aiming at performance improvement, two types of defect-induced transport behaviors are reported in this work. By examining the partial density of states of the system, we find the substitutional defect OAs that locates in the middle of tunneling region will introduce band-gap states, which can be used as stepping stones to increase the tunneling current nearly 3 times higher at large bias voltage (Vb≥0.3V). Another type of defects SeAs and VGa (Ga vacancy) create donor and acceptor states at the edge of conduction band (CB) and valence band (VB)respectively, which can change the band bending of the junction as well as increase the tunneling field obtaining a 1.5 times higher ON current. This provides an effective defect engineering approach for next generation TFET device design.
Characterization of Thallium Bromide (TlBr) for Room Temperature Radiation Detectors
NASA Astrophysics Data System (ADS)
Smith, Holland McTyeire
Thallium bromide (TlBr) has emerged as a remarkably well-suited material for room temperature radiation detection. The unique combination of high-Z elements, high density, suitable band gap, and excellent electrical transport properties present in TlBr have brought device performance up to par with CdZnTe (CZT), the current market-leading room temperature radiation detector material. TlBr research is at an earlier stage than that of CZT, giving hope that the material will see even further improvement in electronic properties. Improving a resistive semiconductor material requires knowledge of deep levels present in the material and the effects of these deep levels on transport properties. Very few deep level studies have been conducted on TlBr, and none with the depth required to generate useful growth suggestions. In this dissertation, deep levels in nominally undoped and doped TlBr samples are studied with electrical and optical methods. Photo-Induced Conductivity Transient Spectroscopy (PICTS) is used to discover many deep levels in TlBr electrically. These levels are compared to sub-band gap optical transitions originating from defects observed in emission spectra. The results of this research indicate that the origin of resistivity in TlBr is likely due to deep level defects pinning the Fermi level at least ˜0.7 eV from either the conduction or valence band edge. The effect of dopants and deep levels on transport in TlBr is assessed with microwave photoconductivity decay analysis. It is found that Pb-, Se-, and O-doping decreases carrier lifetime in TlBr, whereas C-doping does not. TlBr exhibits weak ionic conductivity at room temperature, which both negatively affects the leakage current of detectors and leads to device degradation over time. Researchers are actively looking for ways to reduce or eliminate the ionic conductivity, but are faced with an intriguing challenge of materials engineering: is it possible to mitigate the ionic conduction of TlBr without harming the excellent electronic transport properties? Doping TlBr in order to control the ionic conductivity has been proposed and shown to be effective in reducing dark ionic current, but the electronic effects of the dopants has not been previously studied in detail. In this dissertation, the electronic effects of dopants introduced for ionic reasons are evaluated.
Grawe, Brian; Burge, Alissa; Nguyen, Joseph; Strickland, Sabrina; Warren, Russell; Rodeo, Scott; Shubin Stein, Beth
2017-10-01
Background Full-thickness cartilage lesions of the patella represent a common source of pain and dysfunction. Previously reported surgical treatment options include marrow stimulation, cell-based treatments, and osteochondral transfer. Minced juvenile allograft cartilage is a novel treatment option that allows for a single stage approach for these lesions. Hypothesis Particulated juvenile allograft cartilage (PJAC) for the treatment of chondral defects of the patella would offer acceptable lesion fill rates, mature over time, and not be associated with any negative biologic effects on the surrounding tissue. Methods A retrospective chart review of prospectively collected data was conducted to identify consecutive patients who were treated with PJAC for a full thickness symptomatic cartilage lesion. Qualitative (fast spin echo) and quantitative (T2 mapping) magnetic resonance imaging (MRI) was undertaken at the 6-, 12-, and 24-month postoperative mark. Numerous patient, lesion, and graft specific factors were assessed against MRI scores and percent defect fill of the graft. Graft maturation over time was also assessed. Results Forty-five patients total were included in the study. Average age at the time of surgery was 26.5 years (range 13-45 years), average lesion size was 208 mm 2 (range 4-500 mm 2 ), and average donor age was 49.5 months (range 3-120 months). Sixty percent of the patients were female, while 93% of all patients underwent a concomitant procedure at the time of the index operation. Six-month MRI findings revealed that no patient-, graft-, or donor-specific factors correlated with MR scores, and 82% of the knees demonstrated good to excellent fill. Twelve-month MRI findings revealed that T2 relaxation times of deep graft demonstrated negative correlation with patient age ( P = 0.049) and donor age ( P = 0.006), the integration zone showed a negative correlation with donor age ( P = 0.026). In all, 85% of patients at 12 months displayed good to moderate fill of the graft. At 24 months, patient age demonstrated negative correlation with average T2 relaxation times of the deep and superficial graft ( P = 0.005; P = 0.0029) and positive correlation with the superficial zone of the adjacent cartilage ( P = 0.001). Donor age showed negative correlation with grayscale score ( P = 0.004) and T2 relaxation times at deep integration zone ( P = 0.018). T2 relaxation times of deep and superficial graft and integration zone improved over time ( P < 0.001) and between each time point. Conclusions Particulated juvenile allograft tissue appears to be an acceptable reconstructive option for full-thickness cartilage lesions of the patella, offering satisfactory tissue defect fill at 6, 12, and 24 months after surgery. Imaging of the repaired cartilage demonstrates progressive graft maturation over time.
Shalabi, A S
2002-08-01
The twofold potentials of F(A)(I):Au(+) and F(A)(II)Cu(+) color centers at the low coordinated surfaces of AgBr thin films in providing tunable laser activity and photographic sensitization were investigated using ab initio methods of molecular electronic structure calculations. Clusters of variable size were embedded in simulated Coulomb fields that closely approximated the Madelung fields of the host surfaces, and the nearest neighbor ions to the F(A) defect site were allowed to relax to equilibrium in each case. Based on the calculated Stokes shifted optical transition bands and horizontal shifts along the configuration coordinate diagrams, both F(A)(I):Au(+) and F(A)(II):Cu(+) color centers were found to be laser active. The laser activity faded quickly as the bromide ion coordination decreased from 5 (flat) to 4 (edge) to 3 (corner) and as the size of the impurity cation increased from Cu(+) to Au(+). The latter relation was explainable in terms of the axial perturbation of the impurity cation. The smallest calculated Stokes-shift at the corner surface suggested that emission had the same oscillator strength as absorption. All relaxed excited states RESs of the defect containing surfaces were deep below the lower edges of the conduction bands of the defect free ground state surfaces, indicating that F(A)(I):Au(+) and F(A)(II):Cu(+) are suitable laser defects. The probability of orientational destruction of the two centers attributed to the assumed RES saddle point ion configurations along the <110> axis was found to be directly proportional to the size of the impurity cation, with activation energy barriers of about 0.655-3.294 eV for Cu(+), and about 1.887-3.404 eV for Au(+). The possibility of exciton (energy) transfer from the sites of higher coordination to those of lower coordination is demonstrated. The more laser active F(A)(II):Cu(+) center was more easily formed than the less laser active F(A)(I):Au(+) center. The Glasner-Tompkins empirical relation was generalized to include F(A) centers at the low coordinated surfaces of silver bromide thin film. As far as color photographic sensitization is concerned, the lowest unoccupied molecular orbitals of the selected dye molecules in the excited states were high enough for electron injection. F(A) defect formation and rotational diffusion of silver clusters reduced the energy gaps between the excited dye molecules and the lower edges of the conduction bands and allowed for hole injection. About 54-60% of the reduction of silver ions at the flat surface of AgBr was attributed to the host anions and F(A) defect formation, leaving about 40-46% for the reduction of photoelectrons as well as the electrons of the developer or dye molecules. The unrelaxed rotational diffusions of the central Ag(4) by 90 degrees decreased the latter percentage, but were severely hindered by activation energy barriers. Copyright 2002 Wiley Periodicals, Inc. J Comput Chem 23: 1104-1120, 2002
Exciton transitions and oxygen as a donor in m-plane AlN homoepitaxial films
NASA Astrophysics Data System (ADS)
Bryan, Zachary; Bryan, Isaac; Bobea, Milena; Hussey, Lindsay; Kirste, Ronny; Sitar, Zlatko; Collazo, Ramón
2014-04-01
High-resolution photoluminescence studies on m-plane (1-100) homoepitaxial films grown by metalorganic chemical vapor deposition on AlN revealed several sharp donor-bound exciton (DBX) peaks with a full width at half maximum as narrow as 550 μeV. Power dependent photoluminescence distinguished DBXs tied to the Γ5 free exciton (FX) from those tied to the Γ1 FX. Both the n = 2 and n = 1 excited states of the Γ5 and Γ1 were resolved, giving binding energies of 52 meV and 55 meV, respectively. The DBX transition at 6.006 eV was identified as originating from the neutral-donor-oxygen (O0X). This assignment was based on secondary ion mass spectroscopy measurements, peak position with respect to the Si0X, and deep defect luminescence peaks located at 3.25 eV and 3.58 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Julkarnain, M., E-mail: s13ds053@mail.saitama-u.ac.jp, E-mail: jnain.apee@ru.ac.bd; Department of Applied Physics and Electronic Engineering, University of Rajshahi, Rajshahi 6205; Fukuda, T.
2015-11-23
The behavior of below-gap luminescence of undoped GaN grown by MOCVD has been studied by the scheme of two-wavelength-excited photoluminescence. The emission intensity of shallow donor to valence band transition (I{sub OX}) increased while intensities of donor-acceptor pair transition and the Yellow Luminescence band (YLB) decreased after the irradiation of a below-gap excitation source of 1.17 eV. The conventional energy schemes and recombination models have been considered to explain our experimental result but only one model in which YLB is the transition of a shallow donor to a deep state placed at ∼1 eV above the valence band maximum satisfies our result.more » The defect related parameters that give a qualitative insight in the samples have been evaluated by systematically solving the rate equations and fitting the result with the experiment.« less
Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films
NASA Astrophysics Data System (ADS)
Peng, Weina; Anand, Benoy; Liu, Lihong; Sampat, Siddharth; Bearden, Brandon E.; Malko, Anton V.; Chabal, Yves J.
2016-01-01
The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (~1017 cm-3) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites.The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (~1017 cm-3) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06222e
Numerical study of metal oxide hetero-junction solar cells with defects and interface states
NASA Astrophysics Data System (ADS)
Zhu, Le; Shao, Guosheng; Luo, J. K.
2013-05-01
Further to our previous work on ideal metal oxide (MO) hetero-junction solar cells, a systematic simulation has been carried out to investigate the effects of defects and interface states on the cells. Two structures of the window/absorber (WA) and window/absorber/voltage-enhancer (WAV) were modelled with defect concentration, defect energy level, interface state (ISt) density and ISt energy level as parameters. The simulation showed that the defects in the window layer and the voltage-enhancer layer have very limited effects on the performance of the cells, but those in the absorption layer have profound effects on the cell performance. The interface states at the W/A interface have a limited effect on the performance even for a density up to 1013 cm-2, while those at the A/V interface cause the solar cell to deteriorate severely even at a low density of lower than 1 × 1011 cm-2. It also showed that the back surface field (BSF) induced by band gap off-set in the WAV structure loses its function when defects with a modest concentration exist in the absorption layer and does not improve the open voltage at all.
Deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase-epitaxy n-GaAs
NASA Technical Reports Server (NTRS)
Partin, D. L.; Chen, J. W.; Milnes, A. G.; Vassamillet, L. F.
1979-01-01
The paper presents deep-level transient spectroscopy studies of Ni- and Zn-diffused vapor-phase epitaxy n-GaAs. Nickel diffused into VPE n-GaAs reduces the hole diffusion length L sub p from 4.3 to 1.1 microns. Deep-level transient spectroscopy was used to identify energy levels in Ni-diffused GaAs; the as-grown VPE GaAs contains traces of these levels and an electron trap. Ni diffusion reduces the concentration of this level by an amount that matches the increase in concentration of each of the two Ni-related levels. A technique for measuring minority-carrier capture cross sections was developed, which indicates that L sub p in Ni-diffused VPE n-GaAs is controlled by the E sub c - 0.39 eV defect level.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-13
.... 100513223-0289-02] RIN 0648-AY88 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications In- season Adjustment AGENCY: National Marine...-sea (DAS) allocation for the Atlantic deep- sea red crab fishery that were implemented in May 2010...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-19
.... 100105009-0053-01] RIN 0648-AY51 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications AGENCY: National Marine Fisheries Service (NMFS... comments. SUMMARY: NMFS proposes 2010 specifications for the Atlantic deep-sea red crab fishery, including...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-14
.... 100105009-0167-02] RIN 0648-AY51 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications AGENCY: National Marine Fisheries Service (NMFS... final specifications for the 2010 Atlantic deep- sea red crab fishery, including a target total...
76 FR 36511 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab; Amendment 3
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
...-BA22 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab; Amendment 3 AGENCY... the Atlantic Deep-Sea Red Crab Fishery Management Plan (FMP) (Amendment 3), incorporating a draft... current trap limit regulations state that red crab may not be harvested from gear other than a marked red...
Selvadurai, A. P. S.; Kim, Jueun
2016-01-01
A competent low permeability and chemically inert geological barrier is an essential component of any strategy for the deep geological disposal of fluidized hazardous material and greenhouse gases. While the processes of injection are important to the assessment of the sequestration potential of the storage formation, the performance of the caprock is important to the containment potential, which can be compromised by the development of cracks and other defects that might be activated during and after injection. This paper presents a mathematical modelling approach that can be used to assess the state of stress in a surficial caprock during injection of a fluid to the interior of a poroelastic storage formation. Important information related to time-dependent evolution of the stress state and displacements of the surficial caprock with injection rates, and the stress state in the storage formation can be obtained from the theoretical developments. Most importantly, numerical results illustrate the influence of poromechanics on the development of adverse stress states in the geological barrier. The results obtained from the mathematical analysis illustrate that the surface heave increases as the hydraulic conductivity of the caprock decreases, whereas the surface heave decreases as the shear modulus of the caprock increases. The results also illustrate the influence of poromechanics on the development of adverse stress states in the caprock. PMID:27118906
Selvadurai, A P S; Kim, Jueun
2016-03-01
A competent low permeability and chemically inert geological barrier is an essential component of any strategy for the deep geological disposal of fluidized hazardous material and greenhouse gases. While the processes of injection are important to the assessment of the sequestration potential of the storage formation, the performance of the caprock is important to the containment potential, which can be compromised by the development of cracks and other defects that might be activated during and after injection. This paper presents a mathematical modelling approach that can be used to assess the state of stress in a surficial caprock during injection of a fluid to the interior of a poroelastic storage formation. Important information related to time-dependent evolution of the stress state and displacements of the surficial caprock with injection rates, and the stress state in the storage formation can be obtained from the theoretical developments. Most importantly, numerical results illustrate the influence of poromechanics on the development of adverse stress states in the geological barrier. The results obtained from the mathematical analysis illustrate that the surface heave increases as the hydraulic conductivity of the caprock decreases, whereas the surface heave decreases as the shear modulus of the caprock increases. The results also illustrate the influence of poromechanics on the development of adverse stress states in the caprock.
NASA Astrophysics Data System (ADS)
Tajima, Nobuo; Kaneko, Tomoaki; Yamasaki, Takahiro; Nara, Jun; Schimizu, Tatsuo; Kato, Koichi; Ohno, Takahisa
2018-04-01
Thermally produced SiC/SiO2 stacking in SiC MOSFETs creates defect-related interfacial states in and around the band gap of SiC. These interfacial states can cause serious reliability problems such as threshold voltage shift, as well as efficiency problems such as channel mobility degradation. Carbon species having C=C double bonds have been suggested as one of the origins of these interfacial states. We have theoretically shown that this type of defect produces interfacial states in and around the band gap of SiC, and that they can be removed by saturating the C=C double bond by reactions with H2 and F2. The single-bond products of these reactions are found to be stable at regular device operation temperatures.
Creation and annealing of metastable defect states in CH3NH3PbI3 at low temperatures
NASA Astrophysics Data System (ADS)
Lang, F.; Shargaieva, O.; Brus, V. V.; Rappich, J.; Nickel, N. H.
2018-02-01
Methylammonium lead iodide (CH3NH3PbI3), an organic-inorganic perovskite widely used for optoelectronic applications, is known to dissociate under illumination with light at photon energies around 2.7 eV and higher. Here, we show that photo-induced dissociation is not limited to ambient temperatures but can be observed even at 5 K. The photo-induced dissociation of N-H bonds results in the formation of metastable states. Photoluminescence (PL) measurements reveal the formation of defect states that are located 100 meV within the bandgap. This is accompanied by a quenching of the band-to-band PL by one order of magnitude. Defect generation is reversible and annealing at 30 K recovers the band-to-band PL, while the light-induced defect states disappear concurrently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, J. D.; Gedvilas, L.; Kiriluk, K.
Deep oxygen related defects form in hydrogenated nanocrystalline silicon (nc-Si:H) as a consequence of thermal annealing, but their microscopic origins and formation mechanisms are not well understood. To gain insight to this behavior we intentionally drive-out hydrogen from nc-Si:H films by thermal annealing and monitor accompanying changes in the electronic and vibrational structure of the films with photoluminescence (PL) and Fourier transform infrared (FTIR) absorption spectroscopy. Hydrogen effusion (HE) data provide additional insight, because the annealing temperature range shown to induce a defect band, centered at {approx}0.7 eV in PL studies, and that corresponding to the onset of thermally activatedmore » hydrogen desorption from grain boundaries, coincide. This coincidence suggests a probable link between the two processes. The activation energy obtained from correlated annealing-PL experiments, of {approx}0.6 eV, for defect formation with thermal exposure, provides substantial insight regarding the mechanism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Jae Gwang; Mativenga, Mallory; Jang, Jin, E-mail: jjang@khu.ac.kr
2014-04-07
We report on the generation and characterization of a hump in the transfer characteristics of amorphous indium gallium zinc-oxide thin-film transistors by positive bias temperature stress. The hump depends strongly on the gate bias stress at 100 °C. Due to the hump, the positive shift of the transfer characteristic in deep depletion is always smaller that in accumulation. Since, the latter shift is twice the former, with very good correlation, we conclude that the effect is due to creation of a double acceptor, likely to be a cation vacancy. Our results indicate that these defects are located near the gate insulator/activemore » layer interface, rather than in the bulk. Migration of donor defects from the interface towards the bulk may also occur under PBST at 100 °C.« less
NASA Astrophysics Data System (ADS)
Ren, Dahua; Xiang, Baoyan; Hu, Cheng; Qian, Kai; Cheng, Xinlu
2018-04-01
Hydrogen can be trapped in the bulk materials in four forms: interstitial molecular H2, interstitial atom H, O‑H+(2Si=O–H)+, Si‑H‑( {{4O}}\\bar \\equiv {{Si&x2212H}})‑ to affect the electronic and optical properties of amorphous silica. Therefore, the electronic and optical properties of defect-free and hydrogen defects in amorphous silica were performed within the scheme of density functional theory. Initially, the negative charged states hydrogen defects introduced new defect level between the valence band top and conduction band bottom. However, the neutral and positive charged state hydrogen defects made both the valence band and conduction band transfer to the lower energy. Subsequently, the optical properties such as absorption spectra, conductivity and loss functions were analyzed. It is indicated that the negative hydrogen defects caused the absorption peak ranging from 0 to 2.0 eV while the positive states produced absorption peaks at lower energy and two strong absorption peaks arose at 6.9 and 9.0 eV. However, the neutral hydrogen defects just improved the intensity of absorption spectrum. This may give insights into understanding the mechanism of laser-induced damage for optical materials. Project supported by the Science and Technology of Hubei Provincial Department of Education (No. B2017098).
Marsch, W C; Muckelmann, R
1985-06-01
The histopathology of Sneddon's syndrome (livedo racemosa generalisata and cerebrovascular defects) is characterized by a thickened intima with subsequent narrowing of the lumen of ascending arterioles in the upper subcutaneous tissue and deep dermis. Ultrastructurally, migrating medial smooth muscle cells with plenty of intermediate filaments colonize the subendothelial intimal space ("intima proliferation").
NASA Astrophysics Data System (ADS)
Gali, Adam; Thiering, Gergő
Dopants in solids are promising candidates for implementations of quantum bits for quantum computing. In particular, the high-spin negatively charged nitrogen-vacancy defect (NV) in diamond has become a leading contender in solid-state quantum information processing. The initialization and readout of the spin is based on the spin-selective decay of the photo-excited electron to the ground state which is mediated by spin-orbit coupling between excited states states and phonons. Generally, the spin-orbit coupling plays a crucial role in the optical spinpolarization and readout of NV quantum bit (qubit) and alike. Strong electron-phonon coupling in dynamic Jahn-Teller (DJT) systems can substantially influence the effective strength of spin-orbit coupling. Here we show by ab initio supercell density functional theory (DFT) calculations that the intrinsic spin-orbit coupling is strongly damped by DJT effect in the triplet excited state that has a consequence on the rate of non-radiative decay. This theory is applied to the ground state of silicon-vacancy (SiV) and germanium-vacancy (GeV) centers in their negatively charged state that can also act like qubits. We show that the intrinsic spin-orbit coupling in SiV and GeV centers is in the 100 GHz region, in contrast to the NV center of 10 GHz region. Our results provide deep insight in the nature of SiV and GeV qubits in diamond. EU FP7 DIADEMS project (Contract No. 611143).
Understanding the Irradiation Behavior of Zirconium Carbide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motta, Arthur; Sridharan, Kumar; Morgan, Dane
2013-10-11
Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known aboutmore » basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation-induced microstructures mapped spatially and temporally, microstructural evolution during post-irradiation annealing, and atomistic modeling of defect formation and transport energetics will provide new, critical understanding about property changes in ZrC. The behavior of materials under irradiation is determined by the balance between damage production, defect clustering, and lattice response. In order to predict those effects at high temperatures so targeted testing can be expanded and extrapolated beyond the known database, it is necessary to determine the defect energetics and mobilities as these control damage accumulation and annealing. In particular, low-temperature irradiations are invaluable for determining the regions of defect mobility. Computer simulation techniques are particularly useful for identifying basic defect properties, especially if closely coupled with a well-constructed and complete experimental database. The close coupling of calculation and experiment in this project will provide mutual benchmarking and allow us to glean a deeper understanding of the irradiation response of ZrC, which can then be applied to the prediction of its behavior in reactor conditions.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-22
.... 100513223-0254-01] RIN 0648-AY88 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications In- season Adjustment AGENCY: National Marine... deep-sea red crab fishery, including a target total allowable catch (TAC) and a fleet-wide days-at-sea...
Electronic properties of B and Al doped graphane: A hybrid density functional study
NASA Astrophysics Data System (ADS)
Mapasha, R. E.; Igumbor, E.; Andriambelaza, N. F.; Chetty, N.
2018-04-01
Using a hybrid density functional theory approach parametrized by Heyd, Scuseria and Ernzerhof (HSE06 hybrid functional), we study the energetics, structural and electronic properties of a graphane monolayer substitutionally doped with the B (BCH) and Al (AlCH) atoms. The BCH defect can be integrated within a graphane monolayer at a relative low formation energy, without major structural distortions and symmetry breaking. The AlCH defect relaxes outward of the monolayer and breaks the symmetry. The density of states plots indicate that BCH doped graphane monolayer is a wide band gap semiconductor, whereas the AlCH defect introduces the spin dependent mid gap states at the vicinity of the Fermi level, revealing a metallic character with the pronounced magnetic features. We further examine the response of the Al dependent spin states on the multiple charge states doping. We find that the defect formation energy, structural and electronic properties can be altered via charge state modulation. The +1 charge doping opens an energy band gap of 1.75 eV. This value corresponds to the wavelength in the visible spectrum, suggesting an ideal material for solar cell absorbers. Our study fine tunes the graphane band gap through the foreign atom doping as well as via defect charge state modulation.
Simple intrinsic defects in GaP and InP
NASA Astrophysics Data System (ADS)
Schultz, Peter A.
2012-02-01
To faithfully simulate evolution of defect chemistry and electrical response in irradiated semiconductor devices requires accurate defect reaction energies and energy levels. In III-Vs, good data is scarce, theory hampered by band gap and supercell problems. I apply density functional theory (DFT) to intrinsic defects in GaP and InP, predicting stable charge states, ground state configurations, defect energy levels, and identifying mobile species. The SeqQuest calculations incorporate rigorous charge boundary conditions removing supercell artifacts, demonstrated converged to the infinite limit. Computed defect levels are not limited by a band gap problem, despite Kohn-Sham gaps much smaller than the experimental gap. As in GaAs, [P.A. Schultz and O.A. von Lilienfeld, Modeling Simul. Mater. Sci. Eng. 17, 084007 (2009)], defects in GaP and InP exhibit great complexity---multitudes of charge states, bistabilities, and negative U systems---but show similarities to each other (and to GaAs). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Omotoso, E.; Auret, F. D.; Igumbor, E.; Tunhuma, S. M.; Danga, H. T.; Ngoepe, P. N. M.; Taleatu, B. A.; Meyer, W. E.
2018-05-01
The effects of isochronal annealing on the electrical, morphological and structural characteristics of Au/Ni/4 H-SiC Schottky barrier diodes (SBDs) have been studied. Current-voltage ( I- V), capacitance-voltage ( C- V), deep-level transient spectroscopy, scanning electron microscope (SEM) and X-ray diffraction measurements were employed to study the thermal effect on the characteristics of the SBDs. Prior to thermal annealing of Schottky contacts, the I- V measurements results confirmed the good rectification behaviour with ideality factor of 1.06, Schottky barrier height of 1.20 eV and series resistance of 7 Ω. The rectification properties after annealing was maintained up to an annealing temperature of 500 °C, but deviated slightly above 500 °C. The uncompensated ionized donor concentration decreased with annealing temperature, which could be attributed to out-diffusion of the 4 H-SiC into the Au/Ni contacts and decrease in bonding due to formation of nickel silicides. We observed the presence of four deep-level defects with energies 0.09, 0.11, 0.16 and 0.65 eV below the conduction band before and after the isochronal annealing up to 600 °C. The conclusion drawn was that annealing did not affect the number of deep-level defects present in Au/Ni/4 H-SiC contacts. The variations in electrical properties of the devices were attributed to the phase transformations and interfacial reactions that occurred after isochronal annealing.
Effects of Plasma Hydrogenation on Trapping Properties of Dislocations in Heteroepitaxial InP/GaAs
NASA Technical Reports Server (NTRS)
Ringel, S. A.; Chatterjee, B.
1994-01-01
In previous work, we have demonstrated the effectiveness of a post-growth hydrogen plasma treatment for passivating the electrical activity of dislocations in metalorganic chemical vapor deposition (MOCVD) grown InP on GaAs substrates by a more than two order of magnitude reduction in deep level concentration and an improvement in reverse bias leakage current by a factor of approx. 20. These results make plasma hydrogenation an extremely promising technique for achieving high efficiency large area and light weight heteroepitaxial InP solar cells for space applications. In this work we investigate the carrier trapping process by dislocations in heteroepitaxial InP/GaAs and the role of hydrogen passivation on this process. It is shown that the charge trapping kinetics of dislocations after hydrogen passivation are significantly altered, approaching point defect-like behavior consistent with a transformation from a high concentration of dislocation-related defect bands within the InP bandgap to a low concentration of individual deep levels after hydrogen passivation. It is further shown that the "apparent" activation energies of dislocation related deep levels, before and after passivation, reduce by approx. 70 meV as DLTS fill pulse times are increased from 1 usec. to 1 msec. A model is proposed which explains these effects based on a reduction of Coulombic interaction between individual core sites along the dislocation cores by hydrogen incorporation. Knowledge of the trapping properties in these specific structures is important to develop optimum, low loss heteroepitaxial InP cells.
Matsunaga, Jun; Aiba, Setsuya
2005-05-01
Dog-ears often lead to lengthening of an excision, and it is desirable to avoid them. Facial skin, including the subepidermal connective tissue, is flexible and can be used advantageously to minimize dog-ears using a novel buried suture technique. After removing a round lesion, the first horizontal square buried suture (HSBS) was deeply placed parallel to the longitudinal direction of the defect beneath superficial fascia. After the first HSBS was tied, the defect became fusiform but was still largely open. The second HSBS was also placed parallel to the longitudinal direction of the defect but in more superficial fascia and using smaller horizontal buried loops than those of the first deep suture. After the second HSBS in the middle of the dermis was tied, the wound was almost closed without dog-ears. Consequently, few skin sutures were required to finish the operation. Using this technique, a small circular or oval defect on the face up to 1 cm in diameter can be closed without any additional excision of the skin and without creating dog-ears.
Versatility of the Angularis Oris Axial Pattern Flap for Facial Reconstruction.
Losinski, Sara L; Stanley, Bryden J; Schallberger, Sandra P; Nelson, Laura L; Towle Millard, Heather A M
2015-11-01
To describe the versatility of the axial pattern flap based on the cutaneous perforating branch of the angularis oris artery for reconstruction of large facial defects in dogs, including complications and clinical outcomes. Retrospective clinical case series. Client-owned dogs (n = 8). Facial flaps (n = 9) based at the commissure of the lip with a caudodorsal orientation were utilized, with established anatomical borders. Flaps were elevated deep to the panniculus carnosus in a caudal to rostral direction, preserving the angularis oris artery, its cutaneous perforator, and surrounding cutaneous vasculature. Flaps were rotated dorsally or ventrally to cover the defect. Primary closure of the donor site was by direct apposition in all cases. Angularis oris axial pattern flaps were most commonly used to close large defects of the nasomaxillary area rostral to the eyes (6 dogs), followed by orbital (2) and intermandibular (1) defects. Defects occurred because of tumor resection (6 dogs), trauma (2), and a chronic, non-healing wounding (1). All flaps healed with acceptable functional and cosmetic outcomes without major complications. Followup ranged from 10 days to 16 months. Minor postoperative complications included flap edema (8 dogs), partial incisional dehiscence (3), distal tip necrosis (2), and oroantral fistula recurrence (1). Angularis oris axial pattern flaps provided hirsute, full-thickness skin coverage of a variety of large facial defects with minor complications, and should be considered when restructuring large defects of the rostral face or chin. © Copyright 2015 by The American College of Veterinary Surgeons.
NASA Technical Reports Server (NTRS)
Beratan, David N.
1989-01-01
The presence of conjugation and substitution defects introduces gap states in finite polyenes that are shown to influence the size and sign of the second molecular hyperpolarizability (SMH). Using a one-electron tight-binding model, the dependence of SMH on the defect-state occupancy and energy in finite polyenes is calculated. Defects can cause a significant decrease or enhancement of SMH by impeding charge delocalization or by creating partly filled bands (mimicking the one-band limit), respectively. Concomitant sign changes in SMH are predicted. Calculation results suggest strategies for designing molecules that can be either photochemically or electrochemically switched between states with considerably different SMHs.
Low-Temperature Single Carbon Nanotube Spectroscopy of sp 3 Quantum Defects
He, Xiaowei; Gifford, Brendan J.; Hartmann, Nicolai F.; ...
2017-09-28
Aiming to unravel the relationship between chemical configuration and electronic structure of sp3 defects of aryl-functionalized (6,5) single-walled carbon nanotubes (SWCNTs), we perform low-temperature single nanotube photoluminescence (PL) spectroscopy studies and correlate our observations with quantum chemistry simulations. Here, we observe sharp emission peaks from individual defect sites that are spread over an extremely broad, 1000-1350 nm, spectral range. Our simulations allow us to attribute this spectral diversity to the occurrence of six chemically and energetically distinct defect states resulting from topological variation in the chemical binding configuration of the monovalent aryl groups. Both PL emission efficiency and spectral linemore » width of the defect states are strongly influenced by the local dielectric environment. Wrapping the SWCNT with a polyfluorene polymer provides the best isolation from the environment and yields the brightest emission with near-resolution limited spectral line width of 270 ueV, as well as spectrally resolved emission wings associated with localized acoustic phonons. Pump-dependent studies further revealed that the defect states are capable of emitting single, sharp, isolated PL peaks over 3 orders of magnitude increase in pump power, a key characteristic of two-level systems and an important prerequisite for single-photon emission with high purity. Our findings point to the tremendous potential of sp3 defects in development of room temperature quantum light sources capable of operating at telecommunication wavelengths as the emission of the defect states can readily be extended to this range via use of larger diameter SWCNTs.« less
Low-Temperature Single Carbon Nanotube Spectroscopy of sp 3 Quantum Defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Xiaowei; Gifford, Brendan J.; Hartmann, Nicolai F.
Aiming to unravel the relationship between chemical configuration and electronic structure of sp3 defects of aryl-functionalized (6,5) single-walled carbon nanotubes (SWCNTs), we perform low-temperature single nanotube photoluminescence (PL) spectroscopy studies and correlate our observations with quantum chemistry simulations. Here, we observe sharp emission peaks from individual defect sites that are spread over an extremely broad, 1000-1350 nm, spectral range. Our simulations allow us to attribute this spectral diversity to the occurrence of six chemically and energetically distinct defect states resulting from topological variation in the chemical binding configuration of the monovalent aryl groups. Both PL emission efficiency and spectral linemore » width of the defect states are strongly influenced by the local dielectric environment. Wrapping the SWCNT with a polyfluorene polymer provides the best isolation from the environment and yields the brightest emission with near-resolution limited spectral line width of 270 ueV, as well as spectrally resolved emission wings associated with localized acoustic phonons. Pump-dependent studies further revealed that the defect states are capable of emitting single, sharp, isolated PL peaks over 3 orders of magnitude increase in pump power, a key characteristic of two-level systems and an important prerequisite for single-photon emission with high purity. Our findings point to the tremendous potential of sp3 defects in development of room temperature quantum light sources capable of operating at telecommunication wavelengths as the emission of the defect states can readily be extended to this range via use of larger diameter SWCNTs.« less
Strong spin-orbit splitting and magnetism of point defect states in monolayer WS2
NASA Astrophysics Data System (ADS)
Li, Wun-Fan; Fang, Changming; van Huis, Marijn A.
2016-11-01
The spin-orbit coupling (SOC) effect has been known to be profound in monolayer pristine transition metal dichalcogenides (TMDs). Here we show that point defects, which are omnipresent in the TMD membranes, exhibit even stronger SOC effects and change the physics of the host materials drastically. In this article we chose the representative monolayer WS2 slabs from the TMD family together with seven typical types of point defects including monovacancies, interstitials, and antisites. We calculated the formation energies of these defects, and studied the effect of spin-orbit coupling (SOC) on the corresponding defect states. We found that the S monovacancy (VS) and S interstitial (adatom) have the lowest formation energies. In the case of VS and both of the WS and WS 2 antisites, the defect states exhibit strong splitting up to 296 meV when SOC is considered. Depending on the relative position of the defect state with respect to the conduction band minimum (CBM), the hybrid functional HSE will either increase the splitting by up to 60 meV (far from CBM), or decrease the splitting by up to 57 meV (close to CBM). Furthermore, we found that both the WS and WS 2 antisites possess a magnetic moment of 2 μB localized at the antisite W atom and the neighboring W atoms. The dependence of SOC on the orientation of the magnetic moment for the WS and WS 2 antisites is discussed. All these findings provide insights in the defect behavior under SOC and point to possibilities for spintronics applications for TMDs.
Bilobed perforator free flaps for combined hemitongue and floor-of-the-mouth defects.
Longo, B; Ferri, G; Fiorillo, A; Rubino, C; Santanelli, F
2013-11-01
Combined hemiglossectomy and floor-of-the-mouth defects need accurate reconstructive planning to restore swallowing and speech function. The aim of this prospective study was to evaluate outcomes of the bilobed design applied to perforator free flaps for combined hemitongue and floor-of-the-mouth defects. Twelve patients with a mean age of 71 years (range, 60-84) addressed to combined hemiglossectomy and floor-of-the-mouth resection and bilobed-shaped perforator free-flap reconstruction were prospectively enrolled. Defects were classified as follows: type 1, including only the anterior mobile portion of the tongue (n = 3); type 2, involving both mobile tongue and tongue base (n = 6); and type 3, including segmental mandibulectomy combined with a type 1 or type 2 defect (n = 3). The Kruskal-Wallis and Bonferroni post hoc tests were used to compare outcomes. Type 1 defects were reconstructed by three anterolateral thigh (ALT) perforator flaps; type 2 defects were reconstructed by four ALT flaps and two vertical deep inferior epigastric perforator flaps; and type 3 defects were restored by three osteocutaneous fibula flaps. Eleven flaps (91.6%) healed uneventfully, while one (8.4%) suffered a small area of skin necrosis whose revision did not compromise functional results. Six patients achieved normal intelligible speech, five had acceptable intelligible speech and one had unintelligible speech (p = 0.356). Swallowing function was considered normal in eight patients and with mild impairment in four (p = 0.178). Cosmesis resulted excellent in seven patients and good in five (p = 0.855). The bilobed-shaped perforator free flaps were shown to be a safe and predictable solution for combined hemitongue and floor-of-the-mouth defects providing optimal aesthetic and functional outcomes. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tomassini, M.; Veirman, J.; Varache, R.; Letty, E.; Dubois, S.; Hu, Y.; Nielsen, Ø.
2016-02-01
The recombination properties of the carrier lifetime-limiting center formed during the generation of oxygen-related thermal donors (so called "old" thermal donors) in n-type Czochralski silicon were determined over a wide range of thermal donors' concentrations. The procedure involved (1) determining the various energy levels associated with dopants with the help of temperature Hall effect measurements, (2) clarifying which energy level limits the carrier lifetime by temperature lifetime spectroscopy, and (3) determining the recombination parameters of the involved defect from room-temperature carrier lifetime curves. Our results support the fact that a deep energy level in the range of 0.2-0.3 eV below the conduction band limits the carrier lifetime. The second family of thermal donors, featuring bistable properties, was tentatively identified as the corresponding defect. From the obtained experimental data, the influence of the defect on the amorphous/crystalline silicon heterojunction solar cell conversion efficiency was simulated. It is observed that for extended donor generation, the carrier lifetime is reduced by orders-of-magnitude, leading to unacceptable losses in photovoltaic conversion efficiency. A key result is that even for samples with thermal donor concentrations of 1015 cm-3—often met in seed portions of commercial ingots—simulations reveal efficiency losses greater than 1% absolute for state-of-the-art cells, in agreement with recent experimental studies from our group. This result indicates to crystal growers the importance to mitigate the formation of thermal donors or to develop cost-effective processes to suppress them at the ingot/wafer scale. This is even more critical as ingot cool-down is likely to be slower for future larger ingots, thus promoting the formation of thermal donors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindberg, P. F.; Riise, H. N.; Vines, L.
2016-05-14
The effect of millisecond flash lamp annealing (FLA) on aluminum doped ZnO (AZO) films and their interface with Si have been studied. The AZO films were deposited by magnetron sputtering on Si (100) substrates. The electrical and structural properties of the film and AZO/Si structures were characterized by current–voltage, capacitance–voltage, and deep level transient spectroscopy measurements, X-ray diffraction, and secondary ion mass spectrometry. The resistivity of the AZO film is reduced to a close to state-of-the-art value of 2 × 10{sup −4} Ω cm after FLA for 3 ms with an average energy density of 29 J/cm{sup 2}. In addition, most of the interfacial defects energymore » levels are simultaneously annealed out, except for one persisting shallow level, tentatively assigned to the vacancy-oxygen complex in Si, which was not affected by FLA. Subsequent to the FLA, the samples were treated in N{sub 2} or forming gas (FG) (N{sub 2}/H{sub 2}, 90/10%{sub mole}) ambient at 200–500 °C. The latter samples maintained the low resistivity achieved after the FLA, but not the former ones. The interfacial defect level persisting after the FLA is removed by the FG treatment, concurrently as another level emerges at ∼0.18 eV below the conduction band. The electrical data of the AZO films are discussed in term of point defects controlling the resistivity, and it is argued that the FLA promotes formation of electrically neutral clusters of Zink vacancies (V{sub Zn}'s) rather than passivating/compensating complexes between the Al donors and V{sub Zn}'s.« less
Chijavadze, E; Chkhartishvili, E; Babilodze, M; Maglakelidze, N; Nachkebia, N
2013-11-01
The work was aimed for the ascertainment of following question - whether Orexin-containing neurons of dorsal and lateral hypothalamic, and brain Orexinergic system in general, are those cellular targets which can speed up recovery of disturbed sleep homeostasis and accelerate restoration of sleep-wakefulness cycle phases during some pathological conditions - experimental comatose state and/or deep anesthesia-induced sleep. Study was carried out on white rats. Modeling of experimental comatose state was made by midbrain cytotoxic lesions at intra-collicular level.Animals were under artificial respiration and special care. Different doses of Sodium Ethaminal were used for deep anesthesia. 30 min after comatose state and/or deep anesthesia induced sleep serial electrical stimulations of posterior and/or perifornical hypothalamus were started. Stimulation period lasted for 1 hour with the 5 min intervals between subsequent stimulations applied by turn to the left and right side hypothalamic parts.EEG registration of cortical and hippocampal electrical activity was started immediately after experimental comatose state and deep anesthesia induced sleep and continued continuously during 72 hour. According to obtained new evidences, serial electrical stimulations of posterior and perifornical hypothalamic Orexin-containing neurons significantly accelerate recovery of sleep homeostasis, disturbed because of comatose state and/or deep anesthesia induced sleep. Speed up recovery of sleep homeostasis was manifested in acceleration of coming out from comatose state and deep anesthesia induced sleep and significant early restoration of sleep-wakefulness cycle behavioral states.
NASA Astrophysics Data System (ADS)
Singh, Anil Kumar; Gupta, Anjan K.
2018-05-01
Evolution of electronic inhomogeneities with back-gate voltage in graphene on SiO2 was studied using room temperature scanning tunneling microscopy and spectroscopy. Reversal of contrast in some places in the conductance maps and sharp changes in cross correlations between topographic and conductance maps, when graphene Fermi energy approaches its Dirac point, are attributed to the change in charge state of interface defects. The spatial correlations in the conductance maps, described by two length scales, and their growth during approach to Dirac point, show a qualitative agreement with the predictions of the screening theory of graphene. Thus a sharp change in the two length scales close to the Dirac point, seen in our experiments, is interpreted in terms of the change in charge state of some of the interface defects. A systematic understanding and control of the charge state of defects can help in memory applications of graphene.
Magnetic properties of Mn-doped GaN with defects: ab-initio calculations
NASA Astrophysics Data System (ADS)
Salmani, E.; Benyoussef, A.; Ez-Zahraouy, H.; H. Saidi, E.
2011-08-01
According to first-principles density functional calculations, we have investigated the magnetic properties of Mn-doped GaN with defects, Ga1-x-yVGxMny N1-z-tVNzOt with Mn substituted at Ga sites, nitrogen vacancies VN, gallium vacancies VG and oxygen substituted at nitrogen sites. The magnetic interaction in Mn-doped GaN favours the ferromagnetic coupling via the double exchange mechanism. The ground state is found to be well described by a model based on a Mn3+-d5 in a high spin state coupled via a double exchange to a partially delocalized hole accommodated in the 2p states of neighbouring nitrogen ions. The effect of defects on ferromagnetic coupling is investigated. It is found that in the presence of donor defects, such as oxygen substituted at nitrogen sites, nitrogen vacancy antiferromagnetic interactions appear, while in the case of Ga vacancies, the interactions remain ferromagnetic; in the case of acceptor defects like Mg and Zn codoping, ferromagnetism is stabilized. The formation energies of these defects are computed. Furthermore, the half-metallic behaviours appear in some studied compounds.
Optimizing surface defects for atomic-scale electronics: Si dangling bonds
NASA Astrophysics Data System (ADS)
Scherpelz, Peter; Galli, Giulia
2017-07-01
Surface defects created and probed with scanning tunneling microscopes are a promising platform for atomic-scale electronics and quantum information technology applications. Using first-principles calculations we demonstrate how to engineer dangling bond (DB) defects on hydrogenated Si(100) surfaces, which give rise to isolated impurity states that can be used in atomic-scale devices. In particular, we show that sample thickness and biaxial strain can serve as control parameters to design the electronic properties of DB defects. While in thick Si samples the neutral DB state is resonant with bulk valence bands, ultrathin samples (1-2 nm) lead to an isolated impurity state in the gap; similar behavior is seen for DB pairs and DB wires. Strain further isolates the DB from the valence band, with the response to strain heavily dependent on sample thickness. These findings suggest new methods for tuning the properties of defects on surfaces for electronic and quantum information applications. Finally, we present a consistent and unifying interpretation of many results presented in the literature for DB defects on hydrogenated silicon surfaces, rationalizing apparent discrepancies between different experiments and simulations.
NASA Astrophysics Data System (ADS)
Lan, Sheng; Sugimoto, Yoshimasa; Nishikawa, Satoshi; Ikeda, Naoki; Yang, Tao; Kanamoto, Kozyo; Ishikawa, Hiroshi; Asakawa, Kiyoshi
2002-07-01
We present a systematic study of coupled defects in photonic crystals (PCs) and explore their applications in constructing optical components and devices for ultrafast all-optical signal processing. First, we find that very deep band gaps can be generated in the impurity bands of coupled cavity waveguides (CCWs) by a small periodic modulation of defect modes. This phenomenon implies a high-efficiency all-optical switching mechanism. The switching mechanism can be easily extended from one-dimensional (1D) to two-dimensional and three-dimensional PC structures by utilizing the coupling of defect pairs which are generally present in PCs. Second, we suggest that CCWs with quasiflat and narrow impurity bands can be employed as efficient delay lines for ultrashort pulses. Criteria for designing such kind of CCWs have been derived from the analysis of defect coupling and the investigation of pulse transmission through various CCWs. It is found that the availability of quasiflat impurity bands depends not only on the intrinsic properties of the constituting defects but also on the detailed configuration of CCWs. In experiments, optical delay lines based on 1D monorail CCWs have been successfully fabricated and characterized. Finally, we have proposed a new mechanism for constructing waveguide intersections with broad bandwidth and low cross-talk.
Kent, Tyler; Chagarov, Evgeniy; Edmonds, Mary; Droopad, Ravi; Kummel, Andrew C
2015-05-26
Studies have shown that metal oxide semiconductor field-effect transistors fabricated utilizing compound semiconductors as the channel are limited in their electrical performance. This is attributed to imperfections at the semiconductor/oxide interface which cause electronic trap states, resulting in inefficient modulation of the Fermi level. The physical origin of these states is still debated mainly because of the difficulty in assigning a particular electronic state to a specific physical defect. To gain insight into the exact source of the electronic trap states, density functional theory was employed to model the intrinsic physical defects on the InGaAs (2 × 4) surface and to model the effective passivation of these defects by utilizing both an oxidant and a reductant to eliminate metallic bonds and dangling-bond-induced strain at the interface. Scanning tunneling microscopy and spectroscopy were employed to experimentally determine the physical and electronic defects and to verify the effectiveness of dual passivation with an oxidant and a reductant. While subsurface chemisorption of oxidants on compound semiconductor substrates can be detrimental, it has been shown theoretically and experimentally that oxidants are critical to removing metallic defects at oxide/compound semiconductor interfaces present in nanoscale channels, oxides, and other nanostructures.
Radiation tolerance of boron doped dendritic web silicon solar cells
NASA Technical Reports Server (NTRS)
Rohatgi, A.
1980-01-01
The potential of dendritic web silicon for giving radiation hard solar cells is compared with the float zone silicon material. Solar cells with n(+)-p-P(+) structure and approximately 15% (AMl) efficiency were subjected to 1 MeV electron irradiation. Radiation tolerance of web cell efficiency was found to be at least as good as that of the float zone silicon cell. A study of the annealing behavior of radiation-induced defects via deep level transient spectroscopy revealed that E sub v + 0.31 eV defect, attributed to boron-oxygen-vacancy complex, is responsible for the reverse annealing of the irradiated cells in the temperature range of 150 to 350 C.
Structure and vibrational properties of the dominant O-H center in β-Ga2O3
NASA Astrophysics Data System (ADS)
Weiser, Philip; Stavola, Michael; Fowler, W. Beall; Qin, Ying; Pearton, Stephen
2018-06-01
Hydrogen has a strong influence on the electrical properties of transparent conducting oxides where it can give rise to shallow donors and can passivate deep compensating defects. We have carried out infrared absorption experiments on H- and D-doped β-Ga2O3 that involve temperature- and polarization-dependent effects as well as relative H- and D-concentrations to probe the defect structures that hydrogen can form. The results of analysis of these data, coupled with detailed theoretical calculations, show that the dominant O-H vibrational line observed at 3437 cm-1 for hydrogenated Ga2O3 is due to a relaxed VGa-2H center.
76 FR 53875 - United States Standards for Grades of Cultivated Ginseng
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-30
... external and internal defects, ginseng (Panax ginseng). Ginseng provide an introduction to what mold, rust.... Rust would be removed from the ``Defects'' means any mechanical, ``Defects'' means any mechanical...
Integrated piezoelectric actuators in deep drawing tools
NASA Astrophysics Data System (ADS)
Neugebauer, R.; Mainda, P.; Drossel, W.-G.; Kerschner, M.; Wolf, K.
2011-04-01
The production of car body panels are defective in succession of process fluctuations. Thus the produced car body panel can be precise or damaged. To reduce the error rate, an intelligent deep drawing tool was developed at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in cooperation with Audi and Volkswagen. Mechatronic components in a closed-loop control is the main differentiating factor between an intelligent and a conventional deep drawing tool. In correlation with sensors for process monitoring, the intelligent tool consists of piezoelectric actuators to actuate the deep drawing process. By enabling the usage of sensors and actuators at the die, the forming tool transform to a smart structure. The interface between sensors and actuators will be realized with a closed-loop control. The content of this research will present the experimental results with the piezoelectric actuator. For the analysis a production-oriented forming tool with all automotive requirements were used. The disposed actuators are monolithic multilayer actuators of the piezo injector system. In order to achieve required force, the actuators are combined in a cluster. The cluster is redundant and economical. In addition to the detailed assembly structures, this research will highlight intensive analysis with the intelligent deep drawing tool.
Deep Sternal Wound Infection after Open-Heart Surgery: A 13-Year Single Institution Analysis.
Juhl, Alexander Andersen; Hody, Sofie; Videbaek, Tina Senholt; Damsgaard, Tine Engberg; Nielsen, Per Hostrup
2017-04-20
The present study aimed to compare the clinical outcome for patients with or without muscle flap reconstruction after deep sternal wound infection due to open-heart surgery. The study was a retrospective cohort study, including patients who developed deep sternal wound infection after open-heart surgery in the Western Denmark Region from 1999 to 2011. Journals of included patients were reviewed for clinical data regarding the treatment of their sternal defect. Patients were divided into two groups depending on whether they received a muscle-flap-based sternal reconstruction or traditional rewiring of the sternum. A total of 130 patients developed deep sternal wound infection in the study period. In all, 12 patients died before being discharged, leaving a total of 118 patients for analysis. Of these, 50 (42%) patients received muscle flap reconstruction. Muscle flap recipients had significantly longer total hospital stays (p <0.001). However, after receiving muscle flap reconstruction, patients were discharged after a median of 14 days, with 74% not needing additional surgery. It is difficult to predict which patients eventually require muscle flap reconstruction after deep sternal wound infection. Although patients receiving muscle flap reconstructions have longer hospital stays, they are quickly discharged after the reconstruction.
Zhang, Mingjun; Chen, Genyu; Zhou, Yu; Li, Shichun
2013-08-26
Keyhole formation is a prerequisite for deep penetration laser welding. Understanding of the keyhole dynamics is essential to improve the stability of the keyhole. Direct observation of the keyhole during deep penetration laser welding of a modified "sandwich" specimen with a 10 kW fiber laser is presented. A distinct keyhole wall and liquid motion along the wall are observed directly for the first time. The moving liquid "shelf" on the front keyhole wall and the accompanying hydrodynamic and vapor phenomena are observed simultaneously. Micro-droplets torn off the keyhole wall and the resultant bursts of vapor are also visualized. The hydrodynamics on the keyhole wall has a dominant effect on the weld defects. The emission spectrum inside the keyhole is captured accurately using a spectrometer to calculate the characteristics of the keyhole plasma plume.
Deep-Ultraviolet Luminescence of Rocksalt-Structured Mg x Zn1-x O (x > 0.5) Films on MgO Substrates
NASA Astrophysics Data System (ADS)
Kaneko, Kentaro; Tsumura, Keiichi; Ishii, Kyohei; Onuma, Takayoshi; Honda, Tohru; Fujita, Shizuo
2018-04-01
Rocksalt-structured Mg x Zn1-x O films with Mg composition x of 0.47, 0.57, and 0.64 were grown on (100)-oriented MgO substrates using mist chemical vapor deposition. Cathodoluminescence measurements showed deep ultraviolet (DUV) emission peaking at 4.88 eV (254 nm), 5.15 eV (241 nm), and 5.21 eV (238 nm), respectively, at 12 K. The peak energies were lower than the band gap energies by ca. 1 eV, suggesting that the deep ultraviolet (DUV) emission may be recognized as near band edge luminescence but is associated with impurities, defects, or band fluctuations. The use of carbon-free precursors in the growth is suggested to eliminate carbon impurities and to improve the optical properties of Mg x Zn1-x O.
Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions.
Akkus, Zeynettin; Galimzianova, Alfiia; Hoogi, Assaf; Rubin, Daniel L; Erickson, Bradley J
2017-08-01
Quantitative analysis of brain MRI is routine for many neurological diseases and conditions and relies on accurate segmentation of structures of interest. Deep learning-based segmentation approaches for brain MRI are gaining interest due to their self-learning and generalization ability over large amounts of data. As the deep learning architectures are becoming more mature, they gradually outperform previous state-of-the-art classical machine learning algorithms. This review aims to provide an overview of current deep learning-based segmentation approaches for quantitative brain MRI. First we review the current deep learning architectures used for segmentation of anatomical brain structures and brain lesions. Next, the performance, speed, and properties of deep learning approaches are summarized and discussed. Finally, we provide a critical assessment of the current state and identify likely future developments and trends.
Hoch, Laura B.; Szymanski, Paul; Ghuman, Kulbir Kaur; ...
2016-11-28
In 2O 3-x(OH) y nanoparticles have been shown to function as an effective gas-phase photocatalyst for the reduction of CO 2 to CO via the reverse water–gas shift reaction. Their photocatalytic activity is strongly correlated to the number of oxygen vacancy and hydroxide defects present in the system. To better understand how such defects interact with photogenerated electrons and holes in these materials, we have studied the relaxation dynamics of In 2O 3-x(OH) y nanoparticles with varying concentration of defects using two different excitation energies corresponding to above-band-gap (318-nm) and near-band-gap (405-nm) excitations. Our results demonstrate that defects play amore » significant role in the excited-state, charge relaxation pathways. Higher defect concentrations result in longer excited-state lifetimes, which are attributed to improved charge separation. This correlates well with the observed trends in the photocatalytic activity. These results are further supported by density-functional theory calculations, which confirm the positions of oxygen vacancy and hydroxide defect states within the optical band gap of indium oxide. This enhanced understanding of the role these defects play in determining the optoelectronic properties and charge carrier dynamics can provide valuable insight toward the rational development of more efficient photocatalytic materials for CO 2 reduction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoch, Laura B.; Szymanski, Paul; Ghuman, Kulbir Kaur
In 2O 3-x(OH) y nanoparticles have been shown to function as an effective gas-phase photocatalyst for the reduction of CO 2 to CO via the reverse water–gas shift reaction. Their photocatalytic activity is strongly correlated to the number of oxygen vacancy and hydroxide defects present in the system. To better understand how such defects interact with photogenerated electrons and holes in these materials, we have studied the relaxation dynamics of In 2O 3-x(OH) y nanoparticles with varying concentration of defects using two different excitation energies corresponding to above-band-gap (318-nm) and near-band-gap (405-nm) excitations. Our results demonstrate that defects play amore » significant role in the excited-state, charge relaxation pathways. Higher defect concentrations result in longer excited-state lifetimes, which are attributed to improved charge separation. This correlates well with the observed trends in the photocatalytic activity. These results are further supported by density-functional theory calculations, which confirm the positions of oxygen vacancy and hydroxide defect states within the optical band gap of indium oxide. This enhanced understanding of the role these defects play in determining the optoelectronic properties and charge carrier dynamics can provide valuable insight toward the rational development of more efficient photocatalytic materials for CO 2 reduction.« less
Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films.
Peng, Weina; Anand, Benoy; Liu, Lihong; Sampat, Siddharth; Bearden, Brandon E; Malko, Anton V; Chabal, Yves J
2016-01-21
The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (∼10(17) cm(-3)) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites.
Dual nature of acceptors in GaN and ZnO: The curious case of the shallow MgGa deep state
NASA Astrophysics Data System (ADS)
Lany, Stephan; Zunger, Alex
2010-04-01
Employing a Koopmans corrected density functional method, we find that the metal-site acceptors Mg, Be, and Zn in GaN and Li in ZnO bind holes in deep levels that are largely localized at single anion ligand atoms. In addition to this deep ground state (DGS), we observe an effective-masslike delocalized state that can exist as a short lived shallow transient state (STS). The Mg dopant in GaN represents the unique case where the ionization energy of the localized deep level exceeds only slightly that of the shallow effective-mass acceptor, which explains why Mg works so exceptionally well as an acceptor dopant.
Solid State Lighting Program (Falcon)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meeks, Steven
2012-06-30
Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioningmore » which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated defect and DSA map overlay to failed die identified using end product probe test results. Results from our two year effort have led to “automated end-to-end defect detection” with full defect traceability and the ability to unambiguously correlate device killer defects to optically detected features and their point of origin within the process. Success of the program can be measured by yield improvements at our partner’s facilities and new product orders.« less
Non-Mutually Exclusive Deep Neural Network Classifier for Combined Modes of Bearing Fault Diagnosis
Kim, Jong-Myon
2018-01-01
The simultaneous occurrence of various types of defects in bearings makes their diagnosis more challenging owing to the resultant complexity of the constituent parts of the acoustic emission (AE) signals. To address this issue, a new approach is proposed in this paper for the detection of multiple combined faults in bearings. The proposed methodology uses a deep neural network (DNN) architecture to effectively diagnose the combined defects. The DNN structure is based on the stacked denoising autoencoder non-mutually exclusive classifier (NMEC) method for combined modes. The NMEC-DNN is trained using data for a single fault and it classifies both single faults and multiple combined faults. The results of experiments conducted on AE data collected through an experimental test-bed demonstrate that the DNN achieves good classification performance with a maximum accuracy of 95%. The proposed method is compared with a multi-class classifier based on support vector machines (SVMs). The NMEC-DNN yields better diagnostic performance in comparison to the multi-class classifier based on SVM. The NMEC-DNN reduces the number of necessary data collections and improves the bearing fault diagnosis performance. PMID:29642466
Usefulness of Deep Hypothermic Circulatory Arrest and Regional Cerebral Perfusion in Children
Guo, Zheng; Hu, Ren-Jie; Zhu, De-Ming; Zhu, Zhong-Qun; Zhang, Hai-Bo
2013-01-01
To compare the safety and usefulness of deep hypothermic circulatory arrest (DHCA) and regional cerebral perfusion (RCP) during pediatric open heart surgery. Between January 1, 2004 and September 30, 2012, 1250 children with congenital cardiac defect underwent corrective operation with the DHCA or RCP technique in the Shanghai Children's Medical Center. Of them, 947 cases underwent the operation with the aid of DHCA (DHCA group), and 303 cases with RCP (RCP group). The mean DHCA time was 30.64±15.81 (7–63) minutes and mean RCP time was 36.18±12.86 (10–82) minutes. The mortality rate was 7.18% (68/947) and 6.60% (20/30) in two groups, respectively. The postoperative incidences of temporary and permanent neurological dysfunction were 6.23% (59/947) in the DHCA group and 2.64% (8/303) in the RCP group (p<0.01). The incidence of other complications such as low cardiac output, renal dysfunction, and lung issues are similar in both groups. RCP is a reliable technique for cerebral protection and it facilitates time-consuming corrected procedures for complex congenital cardiac defect repair procedures. PMID:24066266
Construction of a Corneal Stromal Equivalent with SMILE-Derived Lenticules and Fibrin Glue
Yin, Houfa; Qiu, Peijin; Wu, Fang; Zhang, Wei; Teng, Wenqi; Qin, Zhenwei; Li, Chao; Zhou, Jiaojie; Fang, Zhi; Tang, Qiaomei; Fu, Qiuli; Ma, Jian; Yang, Yabo
2016-01-01
The scarcity of corneal tissue to treat deep corneal defects and corneal perforations remains a challenge. Currently, small incision lenticule extraction (SMILE)-derived lenticules appear to be a promising alternative for the treatment of these conditions. However, the thickness and toughness of a single piece of lenticule are limited. To overcome these limitations, we constructed a corneal stromal equivalent with SMILE-derived lenticules and fibrin glue. In vitro cell culture revealed that the corneal stromal equivalent could provide a suitable scaffold for the survival and proliferation of corneal epithelial cells, which formed a continuous pluristratified epithelium with the expression of characteristic markers. Finally, anterior lamellar keratoplasty in rabbits demonstrated that the corneal stromal equivalent with decellularized lenticules and fibrin glue could repair the anterior region of the stroma, leading to re-epithelialization and recovery of both transparency and ultrastructural organization. Corneal neovascularization, graft degradation, and corneal rejection were not observed within 3 months. Taken together, the corneal stromal equivalent with SMILE-derived lenticules and fibrin glue appears to be a safe and effective alternative for the repair of damage to the anterior cornea, which may provide new avenues in the treatment of deep corneal defects or corneal perforations. PMID:27651001
Construction of a Corneal Stromal Equivalent with SMILE-Derived Lenticules and Fibrin Glue.
Yin, Houfa; Qiu, Peijin; Wu, Fang; Zhang, Wei; Teng, Wenqi; Qin, Zhenwei; Li, Chao; Zhou, Jiaojie; Fang, Zhi; Tang, Qiaomei; Fu, Qiuli; Ma, Jian; Yang, Yabo
2016-09-21
The scarcity of corneal tissue to treat deep corneal defects and corneal perforations remains a challenge. Currently, small incision lenticule extraction (SMILE)-derived lenticules appear to be a promising alternative for the treatment of these conditions. However, the thickness and toughness of a single piece of lenticule are limited. To overcome these limitations, we constructed a corneal stromal equivalent with SMILE-derived lenticules and fibrin glue. In vitro cell culture revealed that the corneal stromal equivalent could provide a suitable scaffold for the survival and proliferation of corneal epithelial cells, which formed a continuous pluristratified epithelium with the expression of characteristic markers. Finally, anterior lamellar keratoplasty in rabbits demonstrated that the corneal stromal equivalent with decellularized lenticules and fibrin glue could repair the anterior region of the stroma, leading to re-epithelialization and recovery of both transparency and ultrastructural organization. Corneal neovascularization, graft degradation, and corneal rejection were not observed within 3 months. Taken together, the corneal stromal equivalent with SMILE-derived lenticules and fibrin glue appears to be a safe and effective alternative for the repair of damage to the anterior cornea, which may provide new avenues in the treatment of deep corneal defects or corneal perforations.
A reliable approach to the closure of large acquired midline defects of the back
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casas, L.A.; Lewis, V.L. Jr.
1989-10-01
A systematic regionalized approach for the reconstruction of acquired thoracic and lumbar midline defects of the back is described. Twenty-three patients with wounds resulting from pressure necrosis, radiation injury, and postoperative wound infection and dehiscence were successfully reconstructed. The latissimus dorsi, trapezius, gluteus maximus, and paraspinous muscles are utilized individually or in combination as advancement, rotation, island, unipedicle, turnover, or bipedicle flaps. All flaps are designed so that their vascular pedicles are out of the field of injury. After thorough debridement, large, deep wounds are closed with two layers of muscle, while smaller, more superficial wounds are reconstructed with onemore » layer. The trapezius muscle is utilized in the high thoracic area for the deep wound layer, while the paraspinous muscle is used for this layer in the thoracic and lumbar regions. Superficial layer and small wounds in the high thoracic area are reconstructed with either latissimus dorsi or trapezius muscle. Corresponding wounds in the thoracic and lumbar areas are closed with latissimus dorsi muscle alone or in combination with gluteus maximus muscle. The rationale for systematic regionalized reconstruction of acquired midline back wounds is described.« less
Localized topological states in Bragg multihelicoidal fibers with twist defects
NASA Astrophysics Data System (ADS)
Alexeyev, C. N.; Lapin, B. P.; Milione, G.; Yavorsky, M. A.
2016-06-01
We have studied the influence of a twist defect in multihelicoidal Bragg fibers on the emerging of localized defect modes. We have shown that if such a fiber is excited with a Gaussian beam this leads to the appearance of a defect-localized topological state, whose topological charge coincides with the order of rotational symmetry of the fiber's refractive index. We have shown that this effect has a pronounced crossover behavior. We have also formulated a principle of creating the systems that can nestle defect-localized topologically charged modes. According to this principle, such systems have to possess topological activity, that is, the ability to change the topological charge of the incoming field, and operate in the Bragg regime.
Hennebicq, Emmanuelle; Deleener, Caroline; Brédas, Jean-Luc; Scholes, Gregory D; Beljonne, David
2006-08-07
The influence of chemical defects and conformational kinks on the nature of the lowest electronic excitations in phenylenevinylene-based polymers is assessed at the semiempirical quantum-chemical level. The amount of excited-state localization and the amplitude of through-space (Coulomb-like) versus through-bond (charge-transfer-like) interactions have been quantified by comparing the results provided by excitonic and supermolecular models. While excitation delocalization among conjugated segments delineated by the defects occurs in the acceptor configuration, self-confinement on individual chromophores follows from geometric relaxation in the excited-state donor configuration. The extent of excited-state localization is found to be sensitive to both the nature of the defect and the length of the conjugated chains. Implications for resonant energy transfer along conjugated polymer chains are discussed.
NASA Astrophysics Data System (ADS)
Gauthier, Robert C.; Mnaymneh, Khaled
2005-09-01
The key feature that gives photonic crystals (PhCs) their ability to form photonic band gaps (PBGs) analogous to electronic band gaps of semiconductors is their translation symmetries. In recent years, however, it has been found that structures that possess only rotational symmetries can also have PBGs. In addition, these structures, known as Photonic Quasicrystals (PhQs), have other interesting qualities that set them apart of their translational cousins. One interesting feature is how defect states can be created in PhQs. If the rotational symmetry is disturbed, defect states analogous to defects states that are created in PhCs can be obtained. Simulation results of these defect states and other propagation properties of planar 12-fold photonic quasicrystal patterns, and its physical implementations in Silicon-On-Insulator (SOI) are presented. The main mechanisms required to make any optical multiplexing system is propagation; stop bands and add/drop ports. With the rotationally symmetry of the PhQ causing the stop bands, line defects facilitating propagation and now these specially design defect states acting as add/drop ports, a physical implementation of an OADM can be presented. Theoretical, practical and manufacturing benefits of PhQs are discussed. Simulated transmission plots are shown for various fill factors, dielectric contrast and propagation direction. It is shown that low index waveguides can be produced using the quasi-crystal photonic crystal pattern. Fabrication steps and results are shown.
Clues from defect photochemistry
NASA Astrophysics Data System (ADS)
De Angelis, Filippo; Petrozza, Annamaria
2018-05-01
Charge carriers in metal halide perovskites seem to be only marginally affected by defect-related trap states. Filippo De Angelis and Annamaria Petrozza suggest that the key to this behaviour lies in the redox chemistry of halide defects.
The role of nitrogen doping in ALD Ta2O5 and its influence on multilevel cell switching in RRAM
NASA Astrophysics Data System (ADS)
Sedghi, N.; Li, H.; Brunell, I. F.; Dawson, K.; Potter, R. J.; Guo, Y.; Gibbon, J. T.; Dhanak, V. R.; Zhang, W. D.; Zhang, J. F.; Robertson, J.; Hall, S.; Chalker, P. R.
2017-03-01
The role of nitrogen doping on the stability and memory window of resistive state switching in N-doped Ta2O5 deposited by atomic layer deposition is elucidated. Nitrogen incorporation increases the stability of resistive memory states which is attributed to neutralization of electronic defect levels associated with oxygen vacancies. The density functional simulations with the screened exchange hybrid functional approximation show that the incorporation of nitrogen dopant atoms in the oxide network removes the O vacancy midgap defect states, thus nullifying excess defects and eliminating alternative conductive paths. By effectively reducing the density of vacancy-induced defect states through N doping, 3-bit multilevel cell switching is demonstrated, consisting of eight distinctive resistive memory states achieved by either controlling the set current compliance or the maximum voltage during reset. Nitrogen doping has a threefold effect: widening the switching memory window to accommodate the more intermediate states, improving the stability of states, and providing a gradual reset for multi-level cell switching during reset. The N-doped Ta2O5 devices have relatively small set and reset voltages (< 1 V) with reduced variability due to doping.
NASA Astrophysics Data System (ADS)
Okuno, Y.; Okuda, S.; Akiyoshi, M.; Oka, T.; Harumoto, M.; Omura, K.; Kawakita, S.; Imaizumi, M.; Messenger, S. R.; Lee, K. H.; Yamaguchi, M.
2017-09-01
InGaP solar cells are not predicted to be susceptible to displacement damage by irradiation with electrons at energies lower than 100 keV from non-ionizing energy loss (NIEL) calculations. However, it is recently observed that InGaP solar cells are shown to degrade by irradiation with 60 keV electrons. This degradation is considered to be caused by radiation defects but is not clear. In this study, the kind of the defects generated by electrons at energies lower than 100 keV is found by deep-level transient spectroscopy (DLTS). The result of DLTS indicates that the prediction of primary knock-on atoms by using the radiation damage model is different from the experiment. In order to suggest the generation mechanism of radiation defects, we propose a new displacement threshold energy (Ed) by using a new technique in which NIEL and the introduction rate of radiation defects are combined. The degradation prediction by using estimated Ed is found to agree well with the degradation of electric power of InGaP solar cells irradiated by low-energy electrons. From the theory of radiation defects, we propose a new obtaining process of suitable degradation prediction by the displacement damage dose method.
Vines, Lasse; Bhoodoo, Chidanand; von Wenckstern, Holger; Grundmann, Marius
2017-11-29
The evolution of sheet resistance of n-type In2O3 and Ga2O3 exposed to bombardment with MeV 12C and 28Si ions at 35 K is studied in situ. While the sheet resistance of Ga2O3 increased by more than 8 orders of magnitude as a result of ion irradiation, In2O3 showed a more complex defect evolution and became more conductive when irradiated at the highest doses. Heating up to room temperature reduced the sheet resistivity somewhat, but Ga2O3 remained highly resistive, while In2O3 showed a lower resistance than as deposited samples. Thermal admittance spectroscopy and deep level transient spectroscopy did not reveal new defect levels for irradiation up to 2 1012 cm2. A model where larger defect complexes preferentially produce donor like defects in In2O3 is proposed, and may reveal a microscopic view of a charge neutrality level within the conduction band, as previously proposed. © 2017 IOP Publishing Ltd.
Anomalous satellite inductive peaks in alternating current response of defective carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirai, Daisuke; Watanabe, Satoshi; Yamamoto, Takahiro
2014-05-07
AC response of defective metallic carbon nanotubes is investigated from first principles. We found that capacitive peaks appear at electron scattering states. Moreover, we show that satellite inductive peaks are seen adjacent to a main capacitive peak, which is in contrast to the conductance spectra having no satellite features. The appearance of satellite inductive peaks seems to depend on the scattering states. Our analysis with a simple resonant scattering model reveals that the origin of the satellite inductive peaks can be understood by just one parameter, i.e., the lifetime of electrons at a defect state.
Predicting healthcare trajectories from medical records: A deep learning approach.
Pham, Trang; Tran, Truyen; Phung, Dinh; Venkatesh, Svetha
2017-05-01
Personalized predictive medicine necessitates the modeling of patient illness and care processes, which inherently have long-term temporal dependencies. Healthcare observations, stored in electronic medical records are episodic and irregular in time. We introduce DeepCare, an end-to-end deep dynamic neural network that reads medical records, stores previous illness history, infers current illness states and predicts future medical outcomes. At the data level, DeepCare represents care episodes as vectors and models patient health state trajectories by the memory of historical records. Built on Long Short-Term Memory (LSTM), DeepCare introduces methods to handle irregularly timed events by moderating the forgetting and consolidation of memory. DeepCare also explicitly models medical interventions that change the course of illness and shape future medical risk. Moving up to the health state level, historical and present health states are then aggregated through multiscale temporal pooling, before passing through a neural network that estimates future outcomes. We demonstrate the efficacy of DeepCare for disease progression modeling, intervention recommendation, and future risk prediction. On two important cohorts with heavy social and economic burden - diabetes and mental health - the results show improved prediction accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.
Conwell, Richard; Kindem, Joel; Babla, Hetal; Gurley, Mike; De Los Santos, Romer; Old, Rex; Weatherhead, Randy; Arram, Samia; Maddahi, Jamshid
2010-01-01
Background We developed a cardiac SPECT system (X-ACT) with low dose volume CT transmission-based attenuation correction (AC). Three solid-state detectors are configured to form a triple-head system for emission scans and reconfigured to form a 69-cm field-of-view detector arc for transmission scans. A near mono-energetic transmission line source is produced from the collimated fluorescence x-ray emitted from a lead target when the target is illuminated by a narrow polychromatic x-ray beam from an x-ray tube. Transmission scans can be completed in 1 min with insignificant patient dose (deep dose equivalent <5 μSv). Methods We used phantom studies to evaluate (1) the accuracy of the reconstructed attenuation maps, (2) the effect of AC on image uniformity, and (3) the effect of AC on defect contrast (DC). The phantoms we used included an ACR phantom, an anthropomorphic phantom with a uniform cardiac insert, and an anthropomorphic phantom with two defects in the cardiac insert. Results The reconstructed attenuation coefficient of water at 140 keV was .150 ± .003/cm in the uniform region of the ACR phantom, .151 ± .003/cm and .151 ± .002/cm in the liver and cardiac regions of the anthropomorphic phantom. The ACR phantom images with AC showed correction of the bowing effect due to attenuation in the images without AC (NC). The 17-segment scores of the images of the uniform cardiac insert were 78.3 ± 6.5 before and 87.9 ± 3.3 after AC (average ± standard deviation). The inferior-to-anterior wall ratio and the septal-to-lateral wall ratio were .99 and 1.16 before and 1.02 and 1.00 after AC. The DC of the two defects was .528 and .156 before and .628 and .173 after AC. Conclusion The X-ACT system generated accurate attenuation maps with 1-minute transmission scans. AC improved image quality and uniformity over NC. PMID:20169476