Science.gov

Sample records for deep field north

  1. A molecular line scan in the Hubble deep field north

    SciTech Connect

    Decarli, R.; Walter, F.; Colombo, D.; Da Cunha, E.; Rix, H.-W.; Carilli, C.; Riechers, D.; Cox, P.; Neri, R.; Downes, D.; Aravena, M.; Bell, E.; Bertoldi, F.; Daddi, E.; Sargent, M.; Ellis, R.; Lentati, L.; Maiolino, R.; Menten, K. M.; and others

    2014-02-20

    We present a molecular line scan in the Hubble Deep Field North (HDF-N) that covers the entire 3 mm window (79-115 GHz) using the IRAM Plateau de Bure Interferometer. Our CO redshift coverage spans z ≲ 0.45, 1 ≲ z ≲ 1.9 and all z ≳ 2. We reach a CO detection limit that is deep enough to detect essentially all z > 1 CO lines reported in the literature so far. We have developed and applied different line-searching algorithms, resulting in the discovery of 17 line candidates. We estimate that the rate of false positive line detections is ∼2/17. We identify optical/NIR counterparts from the deep ancillary database of the HDF-N for seven of these candidates and investigate their available spectral energy distributions. Two secure CO detections in our scan are identified with star-forming galaxies at z = 1.784 and at z = 2.047. These galaxies have colors consistent with the 'BzK' color selection and they show relatively bright CO emission compared with galaxies of similar dust continuum luminosity. We also detect two spectral lines in the submillimeter galaxy HDF 850.1 at z = 5.183. We consider an additional nine line candidates as high quality. Our observations also provide a deep 3 mm continuum map (1σ noise level = 8.6 μJy beam{sup –1}). Via a stacking approach, we find that optical/MIR bright galaxies contribute only to <50% of the star formation rate density at 1 < z < 3, unless high dust temperatures are invoked. The present study represents a first, fundamental step toward an unbiased census of molecular gas in 'normal' galaxies at high-z, a crucial goal of extragalactic astronomy in the ALMA era.

  2. A molecular scan in the Hubble Deep Field North

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Carilli, Chris; Riechers, Dominik

    2015-02-01

    Our understanding of galaxy evolution has traditionally been driven by pre-selection of galaxies based on their broad-band continuum emission. This approach is potentially biased, in particular against gas-rich systems at high-redshift which may be dust-obscured. To overcome this limitation, we have recently concluded a blind CO survey at 3mm in a region of the Hubble Deep Field North using the IRAM Plateau de Bure Interferometer. Our study resulted in 1) the discovery of the redshift of the bright SMG HDF850.1 (z = 5.183); 2) the discovery of a bright line identified as CO(2-1) arising from a BzK galaxy at z = 1.785, and of other 6 CO lines associated with various galaxies in the field; 3) the detection of a few lines (presumably CO(3-2) at z ~ 2) with no optical/NIR/MIR counterparts. These observational results allowed us to expand the parameter space of galaxy properties probed so far in high-z molecular gas studies. Most importantly, we could set first direct constraints on the cosmic evolution of the molecular gas content of the universe. The present study represents a first, fundamental step towards an unbiased census of molecular gas in `normal' galaxies at high-z, a crucial goal of extragalactic astronomy in the ALMA era.

  3. Photometric Redshifts in the Hawaii-Hubble Deep Field-North

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Xue, Yongquan

    2015-08-01

    We derive photometric redshifts (\\zp) for sources in the entire (˜0.4 deg^2) Hawaii-Hubble Deep Field-North (H-HDF-N) field with the EAzY code, based on point spread function-matched photometry of 15 broad bands from the ultraviolet to mid-infrared (IRAC 4.5um). Our catalog consists of a total of 131,678 sources. We evaluate the \\zp~quality by comparing \\zp~with spectroscopic redshifts (\\zs) when available, and find a value of normalized median absolute deviation \\sigm=0.029 and an outlier fraction of 5.5\\% (outliers are defined as sources having |\\zp - \\zs|/(1+\\zs)>0.15) for non-X-ray sources. More specifically, we obtain \\sigm=0.024 with 2.7\\% outliers for sources brighter than R=23mag, \\sigm=0.035 with 7.4\\% outliers for sources fainter than R=23mag, \\sigm=0.026 with 3.9\\% outliers for sources having z<1, and \\sigm=0.034 with 9.0\\% outliers for sources having z>1. Our \\zp\\ quality shows an overall improvement over an earlier \\zp\\ work that focused only on the central H-HDF-N area. We also classify each object as star or galaxy through template spectral energy distribution fitting and complementary morphological parametrization, resulting in 4959 stars and 126,719 galaxies. Furthermore, we match our catalog with the 2Ms Chandra Deep Field-North main X-ray catalog. For the 462 matched non-stellar X-ray sources (281 having \\zs), we improve their \\zp~quality by adding three additional AGN templates, achieving \\sigm=0.035 and an outlier fraction of 12.5\\%. We make our catalog publicly available presenting both photometry and \\zp, and provide guidance on how to make use of our catalog. (This work has been published as Yang, Xue, et al. 2014, ApJS, 215, 27; December 2014.)

  4. PHOTOMETRIC REDSHIFTS IN THE HAWAII-HUBBLE DEEP FIELD-NORTH (H-HDF-N)

    SciTech Connect

    Yang, G.; Xue, Y. Q.; Kong, X.; Wang, J.-X.; Yuan, Y.-F.; Zhou, H. Y.; Luo, B.; Brandt, W. N.; Alexander, D. M.; Bauer, F. E.; Cui, W.; Lehmer, B. D.; Wu, X.-B.; Yuan, F. E-mail: xuey@ustc.edu.cn

    2015-01-01

    We derive photometric redshifts (z {sub phot}) for sources in the entire (∼0.4 deg{sup 2}) Hawaii-Hubble Deep Field-North (H-HDF-N) field with the EAzY code, based on point-spread-function-matched photometry of 15 broad bands from the ultraviolet (U band) to mid-infrared (IRAC 4.5 μm). Our catalog consists of a total of 131,678 sources. We evaluate the z {sub phot} quality by comparing z {sub phot} with spectroscopic redshifts (z {sub spec}) when available, and find a value of normalized median absolute deviation σ{sub NMAD} = 0.029 and an outlier fraction of 5.5% (outliers are defined as sources having |z{sub phot} – z{sub spec} |/(1 + z{sub spec} ) > 0.15) for non-X-ray sources. More specifically, we obtain σ{sub NMAD} = 0.024 with 2.7% outliers for sources brighter than R = 23 mag, σ{sub NMAD} = 0.035 with 7.4% outliers for sources fainter than R = 23 mag, σ{sub NMAD} = 0.026 with 3.9% outliers for sources having z < 1, and σ{sub NMAD} = 0.034 with 9.0% outliers for sources having z > 1. Our z {sub phot} quality shows an overall improvement over an earlier z {sub phot} work that focused only on the central H-HDF-N area. We also classify each object as a star or galaxy through template spectral energy distribution fitting and complementary morphological parameterization, resulting in 4959 stars and 126,719 galaxies. Furthermore, we match our catalog with the 2 Ms Chandra Deep Field-North main X-ray catalog. For the 462 matched non-stellar X-ray sources (281 having z {sub spec}), we improve their z {sub phot} quality by adding three additional active galactic nucleus templates, achieving σ{sub NMAD} = 0.035 and an outlier fraction of 12.5%. We make our catalog publicly available presenting both photometry and z {sub phot}, and provide guidance on how to make use of our catalog.

  5. Photometric Redshifts in the Hawaii-Hubble Deep Field-North (H-HDF-N)

    NASA Astrophysics Data System (ADS)

    Yang, G.; Xue, Y. Q.; Luo, B.; Brandt, W. N.; Alexander, D. M.; Bauer, F. E.; Cui, W.; Kong, X.; Lehmer, B. D.; Wang, J.-X.; Wu, X.-B.; Yuan, F.; Yuan, Y.-F.; Zhou, H. Y.

    2014-12-01

    We derive photometric redshifts (z phot) for sources in the entire (~0.4 deg2) Hawaii-Hubble Deep Field-North (H-HDF-N) field with the EAzY code, based on point-spread-function-matched photometry of 15 broad bands from the ultraviolet (U band) to mid-infrared (IRAC 4.5 μm). Our catalog consists of a total of 131,678 sources. We evaluate the z phot quality by comparing z phot with spectroscopic redshifts (z spec) when available, and find a value of normalized median absolute deviation σNMAD = 0.029 and an outlier fraction of 5.5% (outliers are defined as sources having |zphot - zspec |/(1 + zspec ) > 0.15) for non-X-ray sources. More specifically, we obtain σNMAD = 0.024 with 2.7% outliers for sources brighter than R = 23 mag, σNMAD = 0.035 with 7.4% outliers for sources fainter than R = 23 mag, σNMAD = 0.026 with 3.9% outliers for sources having z < 1, and σNMAD = 0.034 with 9.0% outliers for sources having z > 1. Our z phot quality shows an overall improvement over an earlier z phot work that focused only on the central H-HDF-N area. We also classify each object as a star or galaxy through template spectral energy distribution fitting and complementary morphological parameterization, resulting in 4959 stars and 126,719 galaxies. Furthermore, we match our catalog with the 2 Ms Chandra Deep Field-North main X-ray catalog. For the 462 matched non-stellar X-ray sources (281 having z spec), we improve their z phot quality by adding three additional active galactic nucleus templates, achieving σNMAD = 0.035 and an outlier fraction of 12.5%. We make our catalog publicly available presenting both photometry and z phot, and provide guidance on how to make use of our catalog.

  6. A sub-millimetre survey of dust enshrouded galaxies in the Hubble Deep Field North region

    NASA Astrophysics Data System (ADS)

    Borys, C. J.

    2002-12-01

    This thesis investigates the emission of sub-millimetre-wave radiation from galaxies in the Hubble Deep Field North region. The data were obtained from dedicated observing runs from our group and others using the SCUBA camera on the James Clerk Maxwell Telescope. The data were combined using techniques specifically developed here for low signal-to-noise source recovery. The sources found represent over 10% of all cosmological sources SCUBA has detected since it was commissioned. The number of sub-mm galaxies we detect account for a significant fraction of the sub-mm background, and we show that mild extrapolations can reproduce it entirely. We comment on their clustering properties, both with themselves and other high-redshift galaxy types. A multi-wavelength analysis of these galaxies shows that SCUBA sources do not all have similar properties, and are made of a collection including: star-forming radio galaxies; optically invisible objects; active galactic nuclei; and extremely red objects. Reasonable attempts to determine the redshift distribution of the sample show that SCUBA galaxies have a median redshift of around 2, and suggest that the global star formation rate may be dominated by such objects at redshifts beyond about 1. The thesis summarises the current state of extra-galactic sub-mm astronomy, and comments on how new surveys and detectors will allow us to place stronger constraints on the evolution properties of the high-redshift Universe. The research described here was made possible from grants by the Natural Science and Engineering Research Council of Canada, and a generous scholarship from the University of British Columbia.

  7. X-Ray Properties of Lyman Break Galaxies in the Hubble Deep Field North Region

    NASA Technical Reports Server (NTRS)

    Nandra, K.; Mushotzky, R. F.; Arnaud, K.; Steidel, C. C.; Adelberger, K. L.; Gardner, J. P.; Teplitz, H. I.; Windhorst, R. A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We describe the X-ray properties of a large sample of z approximately 3 Lyman Break Galaxies (LBGs) in the region of the Hubble Deep Field North, derived from the 1 Ms public Chandra observation. Of our sample of 148 LBGs, four are detected individually. This immediately gives a measure of the bright AGN (active galactic nuclei) fraction in these galaxies of approximately 3 per cent, which is in agreement with that derived from the UV (ultraviolet) spectra. The X-ray color of the detected sources indicates that they are probably moderately obscured. Stacking of the remainder shows a significant detection (6 sigma) with an average luminosity of 3.5 x 10(exp 41) erg/s per galaxy in the rest frame 2-10 keV band. We have also studied a comparison sample of 95 z approximately 1 "Balmer Break" galaxies. Eight of these are detected directly, with at least two clear AGN based on their high X-ray luminosity and very hard X-ray spectra respectively. The remainder are of relatively low luminosity (< 10(exp 42) erg/s, and the X-rays could arise from either AGN or rapid star-formation. The X-ray colors and evidence from other wavebands favor the latter interpretation. Excluding the clear AGN, we deduce a mean X-ray luminosity of 6.6 x 10(exp 40) erg/s, a factor approximately 5 lower than the LBGs. The average ratio of the UV and X-ray luminosities of these star forming galaxies L(sub UV)/L (sub X), however, is approximately the same at z = 1 as it is at z = 3. This scaling implies that the X-ray emission follows the current star formation rate, as measured by the UV luminosity. We use our results to constrain the star formation rate at z approximately 3 from an X-ray perspective. Assuming the locally established correlation between X-ray and far-IR (infrared) luminosity, the average inferred star formation rate in each Lyman break galaxy is found to be approximately 60 solar mass/yr, in excellent agreement with the extinction-corrected UV estimates. This provides an external

  8. Dust attenuation up to z ≃ 2 in the AKARI North Ecliptic Pole Deep Field

    NASA Astrophysics Data System (ADS)

    Buat, V.; Oi, N.; Heinis, S.; Ciesla, L.; Burgarella, D.; Matsuhara, H.; Malek, K.; Goto, T.; Malkan, M.; Marchetti, L.; Ohyama, Y.; Pearson, C.; Serjeant, S.; Miyaji, T.; Krumpe, M.; Brunner, H.

    2015-05-01

    Aims: We aim to study the evolution of dust attenuation in galaxies selected in the infrared (IR) in the redshift range in which they are known to dominate the star formation activity in the universe. The comparison with other measurements of dust attenuation in samples selected using different criteria will give us a global picture of the attenuation at work in star-forming galaxies and its evolution with redshift. Methods: We selected galaxies in the mid-IR from the deep survey of the North Ecliptic Field performed by the AKARI satellite. Using multiple filters of IRC instrument, we selected more than 4000 galaxies from their rest-frame emission at 8 μm, from z ≃ 0.2 to ~2. We built spectral energy distributions from the rest-frame ultraviolet (UV) to the far-IR by adding ancillary data in the optical-near IR and from GALEX and Herschel surveys. We fit spectral energy distributions with the physically-motivated code CIGALE. We test different templates for active galactic nuclei (AGNs) and recipes for dust attenuation and estimate stellar masses, star formation rates, amount of dust attenuation, and AGN contribution to the total IR luminosity. We discuss the uncertainties affecting these estimates on a subsample of galaxies with spectroscopic redshifts. We also define a subsample of galaxies with an IR luminosity close to the characteristic IR luminosity at each redshift and study the evolution of dust attenuation of this selection representative of the bulk of the IR emission. Results: The AGN contribution to the total IR luminosity is found to be on average approximately 10%, with a slight increase with redshift. The determination of AGN contribution does not depend significantly on the assumed AGN templates except for galaxies detected in X-ray. The choice of attenuation law has a marginal impact on the determination of stellar masses and star formation rates. Dust attenuation in galaxies dominating the IR luminosity function is found to increase from z = 0

  9. The Evolution of Early-type Field Galaxies Selected from a NICMOS Map of the Hubble Deep Field North

    SciTech Connect

    Somerville, R; Stanford, S A; Budavari, T; Conselice, C J

    2004-03-03

    The redshift distribution of well-defined samples of distant early-type galaxies offers a means to test the predictions of monolithic and hierarchical galaxy formation scenarios. NICMOS maps of the entire Hubble Deep Field North in the F110W and F160W filters, when combined with the available WFPC2 data, allow us to calculate photometric redshifts and determine the morphological appearance of galaxies at rest-frame optical wavelengths out to z {approx} 2.5. Here we report results for two subsamples of early-type galaxies, defined primarily by their morphologies in the F160W band, which were selected from the NICMOS data down to H{sub 160AB} < 24.0. A primary subsample is defined as the 34 galaxies with early-type galaxy morphologies and early-type galaxy spectral energy distributions. The secondary subsample is defined as those 42 objects which have early-type galaxy morphologies with non-early type galaxy spectral energy distributions. The observed redshift distributions of our two early-type samples do not match that predicted by a monolithic collapse model, which shows an overabundance at z > 1.5. A (V/V{sub max}) test confirms this result. When the effects of passive luminosity evolution are included in the calculation, the mean value of Vmax for the primary sample is 0.22 {+-} 0.05, and 0.31 {+-} 0.04 for all the early-types. A hierarchical formation model better matches the redshift distribution of the HDF-N early-types at z > 1.5, but still does not adequately describe the observed early-types. The hierarchical model predicts significantly bluer colors on average than the observed early-type colors, and underpredicts the observed number of early-types at z {approx} 2. Though the observed redshift distribution of the early-type galaxies in our HDF-NICMOS sample is better matched by a hierarchical galaxy formation model, the reliability of this conclusion is tempered by the restricted sampling area and relatively small number of early-type galaxies selected by

  10. Hubble Deep Fields

    NASA Astrophysics Data System (ADS)

    Ferguson, H.; Murdin, P.

    2000-11-01

    The Hubble Deep Fields are two small areas of the sky that were carefully selected for deep observations by the HUBBLE SPACE TELESCOPE (HST). They represent the deepest optical observations to date and reveal galaxies as faint as V=30, 4 billion times fainter than can be seen with the unaided eye....

  11. The Capodimonte Deep Field

    NASA Astrophysics Data System (ADS)

    2001-04-01

    x 1060 pix - 870k] [Hi-Res - JPEG: 2768 x 3668 pix - 6.2M] Caption : A further enlargement of a galaxy cluster of which most members are located in the north-east quadrant (upper left) and have a reddish colour. The nebulous object to the upper left is a dwarf galaxy of spheroidal shape. The red object, located near the centre of the field and resembling a double star, is very likely a gravitational lens [2]. Some of the very red, point-like objects in the field may be distant quasars, very-low mass stars or, possibly, relatively nearby brown dwarf stars. The field shown covers 1380 x 1630 pixels, or 5.5 x 6.5 arcmin 2. ESO PR Photo 15e/01 ESO PR Photo 15e/01 [Preview - JPEG: 400 x 418 pix - 56k] [Normal - JPEG: 800 x 835 pix - 700k] [Hi-Res - JPEG: 3000 x 3131 pix - 5.0M] Caption : Enlargement of a moderately distant galaxy cluster in the south-east quadrant (lower left) of the OACDF2 field. The field measures 1380 x 1260 pixels, or about 5.5 x 5.0 arcmin 2 in the sky. ESO PR Photo 15f/01 ESO PR Photo 15f/01 [Preview - JPEG: 449 x 400 pix - 68k] [Normal - JPEG: 897 x 800 pix - 799k] [Hi-Res - JPEG: 3000 x 2675 pix - 5.6M] Caption : Enlargement of the elliptical galaxy that is located to the west (right) in the OACDF2 field. The numerous tiny objects surrounding the galaxy may be globular clusters. The fuzzy object on the right edge of the field may be a dwarf spheroidal galaxy. The size of the field is about 6 x 5 arcmin 2. Technical Information about the OACDF Survey The observations for the OACDF project were performed in three different ESO periods (18-22 April 1999, 7-12 March 2000 and 26-30 April 2000). Some 100 Gbyte of raw data were collected during each of the three observing runs. The first OACDF run was done just after the commissioning of the ESO-WFI. The observational strategy was to perform a 1 x 1 deg 2 short-exposure ("shallow") survey and then a 0.5 x 1 deg 2 "deep" survey. The shallow survey was performed in the B, V, R and I broad-band filters

  12. Geomagnetic field intensity, North Atlantic Deep Water circulation and atmospheric Δ 14C during the last 50 kyr

    NASA Astrophysics Data System (ADS)

    Laj, Carlo; Kissel, Catherine; Mazaud, Alain; Michel, Elisabeth; Muscheler, Raimund; Beer, Juerg

    2002-06-01

    We present simulated records of past changes in the atmospheric Δ 14C for the last 50 kyr due to changes in geomagnetic field intensity and in the strength of the North Atlantic Deep Water (NADW). A new geomagnetic record was used, largely based on the NAPIS-75 record [Laj et al., Phil. Trans. R. Soc. London A 358 (2000) 1009-1025] which has been extended for the 0-20 kyr interval using archeomagnetic and volcanic data. Past changes of the NADW were derived from a mineral magnetic study of the cores used in the construction of NAPIS-75. Two box models of different complexity (4 and 17 boxes) were used to simulate the carbon cycle. Calculated records of Δ 14C are consistent with experimental determinations for the last 24 kyr. For older ages, the records calculated with variable oceanic circulation conditions reach values as high as 600‰ (with an average of 500‰) between 20 and 40 kyr with maxima around 21, 30 and 38 kyr (GISP2 age model), while low values are observed prior to 42 kyr. Although large inconsistencies in experimental data preclude precise comparison, the average record simulated with the 17-box model is overall consistent with the Icelandic Sea record [Voelker et al., Radiocarbon 40 (1998) 517-534; 42 (2000) 437-452], except for the extremely high peak observed in this record at 40.5 kyr. On the other hand, the results recently reported from a stalagmite recovered from a submerged cave in the Bahamas [Beck et al., Science 292 (2001) 2453-2458] are inconsistent with all our model simulations. In the 20-45 kyr interval, the improved geomagnetic record combined with the new NADW profile allows us to give a modeled evaluation of the relative contribution of these factors to changes in atmospheric Δ 14C. The average simulation provides a first order modeled correction for conventional radiocarbon ages older than 25 kyr for which no calibration curve is available as yet.

  13. Sand remobilization enhanced complexity to mounded geometry, Early Tertiary deep water sand reservoirs, Balder Oil Field North Sea

    SciTech Connect

    Bergslien, D.; Rye-Larsen, M.; Jenssen, A.I.

    1996-12-31

    Sand remobilization played a major role in generating the high relief mounded geometries that trap oil in the early Tertiary reservoirs at Balder Field in Norwegian North Sea blocks 25/10 and 25/11. The thick massive submarine-fan sandstones were shed from the East Shetland Platform and deposited from high density turbidity currents. These thick massive sandstones lie in the distal portions of the fan system on the northwestern margin of the Utsira High. An intricate interaction between deposition and soft sediment deformation processes generated the complex cluster of thick mounded sand geometries comprising the Balder oil field. Slumping, sliding and sand remobilization with associated sand injections into overlying shales were the dominant deformation processes that mainly occurred during the early Eocene. The field is comprised of three reservoirs, the Paleocene Heimdal and Hermod Formations and the Early Eocene Balder Formation. The sandstones, which have excellent reservoir properties, share a common pressure system and oil-water contact. This is probably related to the soft-sediment deformation and associated sand injections establishing cross-stratal communication.

  14. Sand remobilization enhanced complexity to mounded geometry, Early Tertiary deep water sand reservoirs, Balder Oil Field North Sea

    SciTech Connect

    Bergslien, D.; Rye-Larsen, M.; Jenssen, A.I. )

    1996-01-01

    Sand remobilization played a major role in generating the high relief mounded geometries that trap oil in the early Tertiary reservoirs at Balder Field in Norwegian North Sea blocks 25/10 and 25/11. The thick massive submarine-fan sandstones were shed from the East Shetland Platform and deposited from high density turbidity currents. These thick massive sandstones lie in the distal portions of the fan system on the northwestern margin of the Utsira High. An intricate interaction between deposition and soft sediment deformation processes generated the complex cluster of thick mounded sand geometries comprising the Balder oil field. Slumping, sliding and sand remobilization with associated sand injections into overlying shales were the dominant deformation processes that mainly occurred during the early Eocene. The field is comprised of three reservoirs, the Paleocene Heimdal and Hermod Formations and the Early Eocene Balder Formation. The sandstones, which have excellent reservoir properties, share a common pressure system and oil-water contact. This is probably related to the soft-sediment deformation and associated sand injections establishing cross-stratal communication.

  15. North Atlantic Deep Water Formation

    NASA Technical Reports Server (NTRS)

    Bennett, T. (Editor); Broecker, W. S. (Editor); Hansen, J. (Editor)

    1984-01-01

    Various studies concerning differing aspects of the North Atlantic are presented. The three major topics under which the works are classified include: (1) oceanography; (2) paleoclimate; and (3) ocean, ice and climate modeling.

  16. LOFAR/H-ATLAS: a deep low-frequency survey of the Herschel-ATLAS North Galactic Pole field

    NASA Astrophysics Data System (ADS)

    Hardcastle, M. J.; Gürkan, G.; van Weeren, R. J.; Williams, W. L.; Best, P. N.; de Gasperin, F.; Rafferty, D. A.; Read, S. C.; Sabater, J.; Shimwell, T. W.; Smith, D. J. B.; Tasse, C.; Bourne, N.; Brienza, M.; Brüggen, M.; Brunetti, G.; Chyży, K. T.; Conway, J.; Dunne, L.; Eales, S. A.; Maddox, S. J.; Jarvis, M. J.; Mahony, E. K.; Morganti, R.; Prandoni, I.; Röttgering, H. J. A.; Valiante, E.; White, G. J.

    2016-10-01

    We present Low-Frequency Array (LOFAR) High-Band Array observations of the Herschel-ATLAS North Galactic Pole survey area. The survey we have carried out, consisting of four pointings covering around 142 deg2 of sky in the frequency range 126-173 MHz, does not provide uniform noise coverage but otherwise is representative of the quality of data to be expected in the planned LOFAR wide-area surveys, and has been reduced using recently developed `facet calibration' methods at a resolution approaching the full resolution of the data sets (˜10 × 6 arcsec) and an rms off-source noise that ranges from 100 μJy beam-1 in the centre of the best fields to around 2 mJy beam-1 at the furthest extent of our imaging. We describe the imaging, cataloguing and source identification processes, and present some initial science results based on a 5σ source catalogue. These include (i) an initial look at the radio/far-infrared correlation at 150 MHz, showing that many Herschel sources are not yet detected by LOFAR; (ii) number counts at 150 MHz, including, for the first time, observational constraints on the numbers of star-forming galaxies; (iii) the 150-MHz luminosity functions for active and star-forming galaxies, which agree well with determinations at higher frequencies at low redshift, and show strong redshift evolution of the star-forming population; and (iv) some discussion of the implications of our observations for studies of radio galaxy life cycles.

  17. Ultra-deep Large Binocular Camera U-band Imaging of the GOODS-North Field: Depth vs. Resolution

    NASA Astrophysics Data System (ADS)

    Ashcraft, Teresa; Windhorst, Rogier A.; Jansen, Rolf A.; Cohen, Seth H.; Grazian, Andrea; Boutsia, Konstantina; Fontana, Adriano; Giallongo, Emanuele; O'Connell, Robert W.; Paris, Diego; Rutkowski, Michael J.; Scarlata, Claudia; Testa, Vincenzo

    2017-01-01

    We present a study of the trade-off between depth and resolution using a large number of U-band images in the GOODS-North field obtained with the Large Binocular Camera (LBC) on the Large Binocular Telescope (LBT). Having acquired over 30 hours of total exposure time (315 images, each 5-6 min), we generated multiple image mosaics, starting with the subset of images with the best (FWHM < 0."8) atmospheric seeing (~10% of the total data set). For subsequent mosaics, we added in data with larger seeing values until the final, deepest mosaic included all images with FWHM < 1."8 (~94% of the total data set). For each mosaic, we created object catalogs to compare the optimal-resolution, yet shallower image to the low-resolution but deeper image and found the number counts for both images are ~90% complete to AB = 26 mag. In the optimal-resolution image, object counts start to drop-off dramatically, fainter than AB ~ 27 mag, while in the deepest image the drop is more gradual because of the better surface-brightness sensitivity ( SB ~ 32 mag arcsec-2). We conclude that for studies of brighter galaxies and features within them, the optimal-resolution image should be used. However, to fully explore and understand the faintest objects, the deeper imaging with lower resolution are also required. We also discuss how high-resolution F336W HST data complements our LBT mosaics.For 220 brighter galaxies with U < 24 mag, we find only marginal differences (< 0.07 mag in total integrated flux) between the optimal-resolution and low-resolution light-profiles to SB ~ 32 mag arcsec-2. This helps constrain how much flux can be missed in galaxy outskirts, which is important for studies of Extragalactic Background Light.In the future, we will expand our analysis of the GOODS-N field to ~26 hours of LBT/LBC R-band surface photometry to similar depths.

  18. Post-Drilling Changes in Seabed Landscape and Megabenthos in a Deep-Sea Hydrothermal System, the Iheya North Field, Okinawa Trough

    PubMed Central

    Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken

    2015-01-01

    There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, ‘artificially’ creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area

  19. Post-drilling changes in seabed landscape and megabenthos in a deep-sea hydrothermal system, the Iheya North field, Okinawa Trough.

    PubMed

    Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken

    2015-01-01

    There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, 'artificially' creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area has

  20. A molecular line scan in the Hubble deep field north: Constraints on the co luminosity function and the cosmic H{sub 2} density

    SciTech Connect

    Walter, F.; Decarli, R.; Da Cunha, E.; Sargent, M.; Dickinson, M.; Daddi, E.; Riechers, D.; Ellis, R.; Stark, D.; Weiner, B.; Aravena, M.; Bell, E.; Bertoldi, F.; Cox, P.; Downes, D.; Neri, R.; Lentati, L.; Maiolino, R.; Menten, K. M.; and others

    2014-02-20

    We present direct constraints on the CO luminosity function at high redshift and the resulting cosmic evolution of the molecular gas density, ρ{sub H{sub 2}}(z), based on a blind molecular line scan in the Hubble Deep Field North (HDF-N) using the IRAM Plateau de Bure Interferometer. Our line scan of the entire 3 mm window (79-115 GHz) covers a cosmic volume of ∼7000 Mpc{sup 3}, and redshift ranges z < 0.45, 1.01 < z < 1.89 and z > 2. We use the rich multiwavelength and spectroscopic database of the HDF-N to derive some of the best constraints on CO luminosities in high redshift galaxies to date. We combine the blind CO detections in our molecular line scan (presented in a companion paper) with stacked CO limits from galaxies with available spectroscopic redshifts (slit or mask spectroscopy from Keck and grism spectroscopy from the Hubble Space Telescope) to give first blind constraints on high-z CO luminosity functions and the cosmic evolution of the H{sub 2} mass density ρ{sub H{sub 2}}(z) out to redshifts z ∼ 3. A comparison to empirical predictions of ρ{sub H{sub 2}}(z) shows that the securely detected sources in our molecular line scan already provide significant contributions to the predicted ρ{sub H{sub 2}}(z) in the redshift bins (z) ∼ 1.5 and (z) ∼ 2.7. Accounting for galaxies with CO luminosities that are not probed by our observations results in cosmic molecular gas densities ρ{sub H{sub 2}}(z) that are higher than current predictions. We note, however, that the current uncertainties (in particular the luminosity limits, number of detections, as well as cosmic volume probed) are significant, a situation that is about to change with the emerging ALMA observatory.

  1. A very deep IRAS survey at the north ecliptic pole

    NASA Technical Reports Server (NTRS)

    Houck, J. R.; Hacking, P. B.; Condon, J. J.

    1987-01-01

    The data from approximately 20 hours observation of the 4- to 6-square degree field surrounding the north ecliptic pole have been combined to produce a very deep IR survey at the four IRAS bands. Scans from both pointed and survey observations were included in the data analysis. At 12 and 25 microns the deep survey is limited by detector noise and is approximately 50 times deeper than the IRAS Point Source Catalog (PSC). At 60 microns the problems of source confusion and Galactic cirrus combine to limit the deep survey to approximately 12 times deeper than the PSC. These problems are so severe at 100 microns that flux values are only given for locations corresponding to sources selected at 60 microns. In all, 47 sources were detected at 12 microns, 37 at 25 microns, and 99 at 60 microns. The data-analysis procedures and the significance of the 12- and 60-micron source-count results are discussed.

  2. The North Carolina Field Test

    SciTech Connect

    Sharp, T.R.; Ternes, M.P.

    1990-08-01

    The North Carolina Field Test will test the effectiveness of two weatherization approaches: the current North Carolina Low-Income Weatherization Assistance Program and the North Carolina Field Test Audit. The Field Test Audit will differ from North Carolina's current weatherization program in that it will incorporate new weatherization measures and techniques, a procedure for basing measure selection of the characteristics of the individual house and the cost-effectiveness of the measure, and also emphasize cooling energy savings. The field test will determine the differences of the two weatherization approaches from the viewpoints of energy savings, cost effectiveness, and implementation ease. This Experimental Plan details the steps in performing the field test. The field test will be a group effort by several participating organizations. Pre- and post-weatherization data will be collected over a two-year period (November 1989 through August 1991). The 120 houses included in the test will be divided into a control group and two treatment groups (one for each weatherization procedure) of 40 houses each. Weekly energy use data will be collected for each house representing whole-house electric, space heating and cooling, and water heating energy uses. Corresponding outdoor weather and house indoor temperature data will also be collected. The energy savings of each house will be determined using linear-regression based models. To account for variations between the pre- and post-weatherization periods, house energy savings will be normalized for differences in outdoor weather conditions and indoor temperatures. Differences between the average energy savings of treatment groups will be identified using an analysis of variance approach. Differences between energy savings will be quantified using multiple comparison techniques. 9 refs., 8 figs., 5 tabs.

  3. Tests for orbital influences on the geomagnetic field, and Quarternary magnetic records from North Atlantic and Arctic deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Xuan, Chuang

    This dissertation investigated the possible connection between orbital variations and the Earth's magnetic field, and the origin of orbital periods in sedimentary relative paleointensity (RPI) records, using previously published data. Circular statistic methods were utilized to test whether there is any consistent relationship between the phase of orbital parameters and the timing of geomagnetic reversals or excursions. The results indicate no discernable tendency, disagreeing with orbital forcing on the geodynamo. Numerical simulations further indicate that precision of the current polarity timescales need to be improved for any firm relationship to be established. Wavelet analyses methods were employed to investigate the origin of orbital periods in the RPI records. In some records, significant coherence at orbital periods occurs between RPI and a particular magnetic grain-size proxy. Therefore, orbital periods in some RPI records are attributed to lithologic 'contamination' resulted from incomplete normalization of the natural remanent magnetization (NRM) record. Comparison of RPI records from different regions of the world in both the time and time-frequency domains imply that the 'contamination' does not debilitate most RPI records as a global signal that is primarily of geomagnetic origin. Calibrated RPI and oxygen isotope stack records (PISO-1500) were developed by simultaneously matching and stacking both RPI and oxygen isotope data for 13 pairs of high-resolution global records. Wavelet analyses on the PISO-1500 RPI stack record failed to show significant orbital periods, and no tendencies were found for RPI minima in the stack to occur at particular phases of orbital variations. The generation of high-resolution paleomagnetic data is often associated with processing large volumes of measurement data. MATLAB(TM) software with graphical user interfaces was developed in this dissertation work to improve the efficiency of processing large volumes of

  4. The deep Madden Field, a super-deep Madison gas reservoir, Wind River Basin, Wyoming

    SciTech Connect

    Moore, C.H.; Hawkins, C.

    1996-12-31

    Madison dolomites form the reservoir of a super deep, potential giant sour gas field developed on the Madden Anticline immediately in front of the Owl Creek Thrust along the northern rim of the Wind River Basin, central Wyoming. The Madison reservoir dolomites are presently buried to some 25,000 feet at Madden Field and exhibit porosity in excess of 15%. An equivalent dolomitized Madison sequence is exposed in outcrop only 5 miles to the north on the hanging wall of the Owl Creek thrust at Lysite Mountain. Preliminary comparative stratigraphic, geochemical and petrologic data, between outcrop and available cores and logs at Deep Madden suggests: (1) early, sea level-controlled, evaporite-related dolomitization of the reservoir and outcrop prior to significant burial; (2) both outcrop and deep reservoir dolomites underwent significant recrystallization during a common burial history until their connection was severed during Laramide faulting in the Eocene; (3) While the dolomite reservoir at Madden suffered additional diagenesis during an additional 7-10 thousand feet of burial, the pore systems between outcrop and deep reservoir are remarkably similar. The two existing deep Madison wells at Madden are on stream, with a third deep Madison well currently drilling. The sequence stratigraphic framework and the diagenetic history of the Madison strongly suggests that outcrops and surface cores of the Madison in the Owl Creek Mountains will be useful in further development and detailed reservoir modeling of the Madden Deep Field.

  5. The deep Madden Field, a super-deep Madison gas reservoir, Wind River Basin, Wyoming

    SciTech Connect

    Moore, C.H. ); Hawkins, C. )

    1996-01-01

    Madison dolomites form the reservoir of a super deep, potential giant sour gas field developed on the Madden Anticline immediately in front of the Owl Creek Thrust along the northern rim of the Wind River Basin, central Wyoming. The Madison reservoir dolomites are presently buried to some 25,000 feet at Madden Field and exhibit porosity in excess of 15%. An equivalent dolomitized Madison sequence is exposed in outcrop only 5 miles to the north on the hanging wall of the Owl Creek thrust at Lysite Mountain. Preliminary comparative stratigraphic, geochemical and petrologic data, between outcrop and available cores and logs at Deep Madden suggests: (1) early, sea level-controlled, evaporite-related dolomitization of the reservoir and outcrop prior to significant burial; (2) both outcrop and deep reservoir dolomites underwent significant recrystallization during a common burial history until their connection was severed during Laramide faulting in the Eocene; (3) While the dolomite reservoir at Madden suffered additional diagenesis during an additional 7-10 thousand feet of burial, the pore systems between outcrop and deep reservoir are remarkably similar. The two existing deep Madison wells at Madden are on stream, with a third deep Madison well currently drilling. The sequence stratigraphic framework and the diagenetic history of the Madison strongly suggests that outcrops and surface cores of the Madison in the Owl Creek Mountains will be useful in further development and detailed reservoir modeling of the Madden Deep Field.

  6. North Atlantic Deep Water Production during the Last Glacial Maximum.

    PubMed

    Howe, Jacob N W; Piotrowski, Alexander M; Noble, Taryn L; Mulitza, Stefan; Chiessi, Cristiano M; Bayon, Germain

    2016-06-03

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial-interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ(13)C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters.

  7. North Atlantic Deep Water Production during the Last Glacial Maximum

    PubMed Central

    Howe, Jacob N. W.; Piotrowski, Alexander M.; Noble, Taryn L.; Mulitza, Stefan; Chiessi, Cristiano M.; Bayon, Germain

    2016-01-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial–interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ13C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters. PMID:27256826

  8. A Deep ALMA Image of the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Dunlop, J. S.

    2016-12-01

    Although primarily designed as a high-resolution imaging spectrometer at submillimetre/millimetre wavelengths, the Atacama Large Millimeter/submillimeter Array (ALMA) has a vital role to play in producing the key deep, unconfused, submillimetre/millimetre continuum surveys required to bridge the current gap in our understanding of visible and dust-obscured star formation in the young Universe. The first such survey has now been completed, comprising a mosaic of 45 ALMA pointings at a wavelength of 1.3 mm, covering the Hubble Ultra Deep Field (HUDF). This deep, homogeneous ALMA survey, combined with the wealth of existing data in the HUDF, has already provided new clarity on the nature of dusty star-forming galaxies, and the relative evolution of dust-obscured and unobscured star formation over cosmic time.

  9. APL-UW Deep Water Propagation: Philippine Sea Signal Physics and North Pacific Ambient Noise and NPANL Support

    DTIC Science & Technology

    2014-09-30

    APL-UW Deep Water Propagation: Philippine Sea Signal Physics and North Pacific Ambient Noise and NPANL Support Rex K. Andrew Principal...http://www.apl.washington.edu/projects/blue water LONG TERM GOALS Understand how the fundamental statistics of broadband low-frequency acoustical...signals evolve during propagation through a dynamically-varying deep ocean , and how the oceanic ambient noise field varies throughout deep ocean

  10. Deep suture zone in the North Barents Basin

    NASA Astrophysics Data System (ADS)

    Butsenko, Viktor; Kireev, Artem; Piskarev, Alexey; Savin, Vasily; Smirnov, Oleg

    2015-04-01

    Study of sedimentary basin evolution is a part of research for the forecast of oil and gas capacity of the North Barents shelf. Maps of potential fields anomalies are compiled on the basis of the latest geophysical databases, structural maps of the seismic horizons are analyzed, the location of sources of potential fields anomalies are calculated, 3D density and magnetic models of Earth's crust are constructed. Six seismic complexes are allocated in sedimentary cover structure: Devonian - Lower Carboniferous, Upper Carboniferous - Lower Permian, Mid Permian - Lower Triassic, Triassic - Lower Jurassic, Upper Jurassic - Lower Cretaceous, Lower Cretaceous - Quaternary. The research of lateral changes of allocated layers thickness gives an idea of sedimentation in the region on various time intervals. The structural and tectonic scheme of the region is made after analysis of new geologic-geophysical materials. Contact zones of heterogeneous blocks of the crystalline basement are marked, disjunctive dislocations in a sedimentary cover and the upper crust, and also zones of increase of sediments thickness in various seismic complexes are designated. The deep suture zone delimiting Mesozoic and Paleozoic sedimentary basins has the most important geological value among disjunctive zones of the region. This zone stretches along the Admiralty Arch in East part of the North Barents shelf and is marked by negative magnetic anomaly 30-50 km wide. In view of special tectonic value of the suture zone marked by this anomaly we have calculated the 3D magnetic crust model. The sedimentary layers of a model section is based on seismic data. As a result of modeling the studied anomaly of a magnetic field can be approximated by the block of basement rocks of the lowered magnetization (1.2 A/m). The surface of this block is located in a zone of anomaly at a depth of 12-14 km. The asymmetry of anomaly is accounted by an inclination to East of the borders of the block with low

  11. Early Oligocene initiation of North Atlantic Deep Water formation.

    PubMed

    Davies, R; Cartwright, J; Pike, J; Line, C

    2001-04-19

    Dating the onset of deep-water flow between the Arctic and North Atlantic oceans is critical for modelling climate change in the Northern Hemisphere and for explaining changes in global ocean circulation throughout the Cenozoic era (from about 65 million years ago to the present). In the early Cenozoic era, exchange between these two ocean basins was inhibited by the Greenland-Scotland ridge, but a gateway through the Faeroe-Shetland basin has been hypothesized. Previous estimates of the date marking the onset of deep-water circulation through this basin-on the basis of circumstantial evidence from neighbouring basins-have been contradictory, ranging from about 35 to 15 million years ago. Here we describe the newly discovered Southeast Faeroes drift, which extends for 120 km parallel to the basin axis. The onset of deposition in this drift has been dated to the early Oligocene epoch ( approximately 35 million years ago) from a petroleum exploration borehole. We show that the drift was deposited under a southerly flow regime, and conclude that the initiation of deep-water circulation from the Norwegian Sea into the North Atlantic Ocean took place much earlier than is currently assumed in most numerical models of ancient ocean circulation.

  12. Deep Spitzer/IRAC Imaging of the Subaru Deep Field

    NASA Astrophysics Data System (ADS)

    Jiang, Linhua; Egami, Eiichi; Cohen, Seth; Fan, Xiaohui; Ly, Chun; Mechtley, Matthew; Windhorst, Rogier

    2013-10-01

    The last decade saw great progress in our understanding of the distant Universe as a number of objects at z > 6 were discovered. The Subaru Deep Field (SDF) project has played an important role on study of high-z galaxies. The SDF is unique: it covers a large area of 850 sq arcmin; it has extremely deep optical images in a series of broad and narrow bands; it has the largest sample of spectroscopically-confirmed galaxies known at z >= 6, including ~100 Lyman alpha emitters (LAEs) and ~50 Lyman break galaxies (LBGs). Here we propose to carry out deep IRAC imaging observations of the central 75% of the SDF. The proposed observations together with those from our previous Spitzer programs will reach a depth of ~10 hours, and enable the first complete census of physical properties and stellar populations of spectroscopically-confirmed galaxies at the end of cosmic reionization. IRAC data is the key to measure stellar masses and constrain stellar populations in high-z galaxies. From SED modeling with secure redshifts, we will characterize the physical properties of these galaxies, and trace their mass assembly and star formation history. In particular, it allows us, for the first time, to study stellar populations in a large sample of z >=6 LAEs. We will also address some critical questions, such as whether LAEs and LBGs represent physically different galaxy populations. All these will help us to understand the earliest galaxy formation and evolution, and better constrain the galaxy contribution to reionization. The IRAC data will also cover 10,000 emission-line selected galaxies at z < 1.5, 50,000 UV and mass selected LBGs at 1.5 < z < 3, and more than 5,000 LBGs at 3 < z < 6. It will have a legacy value for SDF-related programs.

  13. Phosphorus cycling in the deep subseafloor biosphere at North Pond

    NASA Astrophysics Data System (ADS)

    Defforey, D.; Paytan, A.

    2013-12-01

    Phosphorus is a macronutrient involved both in functional and structural components of all living cells. This makes it an essential nutrient for life, including microbial life in the deep subseafloor habitat. Phosphorus availability in this environment is limited since it is thought to be mainly present in refractory mineral phases. However, recent estimates suggest that the deep biosphere may contain up to 1% of Earth's total biomass, which implies that microorganisms may possess mechanisms to harvest recalcitrant phosphorus compounds in this environment. This study sheds light on those mechanisms by investigating phosphorus cycling in deep open-ocean sediments using stable oxygen isotope ratios in phosphate. Furthermore, this study provides insight into changes in phosphorus bioavailability and mobility under a range of natural environmental conditions within the deep biosphere. Sediment samples were collected from four boreholes drilled during the IODP Expedition 336 to North Pond, an isolated sediment pond on the western flank of the Mid-Atlantic Ridge. Sedimentary phosphorus compounds are characterized using sequential extractions (SEDEX), which separate them into five distinct pools. Phosphate from the various extracts are then concentrated, purified through a series of steps, then converted to silver phosphate, which is pyrolyzed and analyzed by continuous-flow isotope ratio mass spectrometry (CF-IRMS). The isotopic signatures and/or fractionations associated with many of the potential reactions and transformations operating in the P cycle have been determined, and provide the basis for interpreting isotopic data that are obtained from the phosphate extracts.

  14. EXTERIOR OVERVIEW, LOOKING NORTH, OF THIS 400' DEEP LIMESTONE QUARRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR OVERVIEW, LOOKING NORTH, OF THIS 400' DEEP LIMESTONE QUARRY PIT ("THE OLD PIT") WITH LEDGE PREPARED FOR LIMESTONE EXTRACTION. AN ELEVEN-HOLE SHOT WILL DISLODGE APPROXIMATELY 25,000 TONS OF LIMESTONE WHICH, AFTER LOADING AND CRUSHING, WILL BE USED FOR ROAD CONSTRUCTION. THE CALERA QUARRY IS ONE OF FOUR ACTIVE VULCAN MATERIALS COMPANY QUARRIES IN THE DISTRICT. VULCAN MATERIALS, A FORTUNE 500 FIRM, ESTABLISHED IN BIRMINGHAM IN 1906 AS BIRMINGHAM SLAG COMPANY, VULCAN MATERIALS IS THE NATION'S FOREMOST PRODUCER OF CONSTRUCTION AGGREGATE AND A LEADING CHEMICALS MANUFACTURER - Vulcan Material Company, Calera Quarry, 1614 Highway 84, Calera, Shelby County, AL

  15. EXTERIOR OVERVIEW, LOOKING NORTH, OF THIS 400' DEEP LIMESTONE QUARRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR OVERVIEW, LOOKING NORTH, OF THIS 400' DEEP LIMESTONE QUARRY PIT ('THE OLD PIT') WITH LEDGE PREPARED FOR LIMESTONE EXTRACTION. AN ELEVEN-HOLE SHOT WILL DISLODGE APPROXIMATELY 25,000 TONS OF LIMESTONE WHICH, AFTER LOADING AND CRUSHING, WILL BE USED FOR ROAD CONSTRUCTION. THE CALERA QUARRY IS ONE OF FOUR ACTIVE VULCAN MATERIALS COMPANY QUARRIES IN THE DISTRICT. VULCAN MATERIALS, A FORTUNE 500 FIRM, ESTABLISHED IN BIRMINGHAM IN 1906 AS BIRMINGHAM SLAG COMPANY, VULCAN MATERIALS IS THE NATION'S FOREMOST PRODUCER OF CONSTRUCTION AGGREGATE AND A LEADING CHEMICALS MANUFACTURER. - Vulcan Material Company, Calera Quarry, 1614 Highway 84, Calera, Shelby County, AL

  16. Benchmark field study of deep neutron penetration

    SciTech Connect

    Morgan, J.F.; Sale, K. ); Gold, R.; Roberts, J.H.; Preston, C.C. )

    1991-06-10

    A unique benchmark neutron field has been established at the Lawrence Livermore National Laboratory (LLNL) to study deep penetration neutron transport. At LLNL, a tandem accelerator is used to generate a monoenergetic neutron source that permits investigation of deep neutron penetration under conditions that are virtually ideal to model, namely the transport of mono-energetic neutrons through a single material in a simple geometry. General features of the Lawrence Tandem (LATAN) benchmark field are described with emphasis on neutron source characteristics and room return background. The single material chosen for the first benchmark, LATAN-1, is a steel representative of Light Water Reactor (LWR) Pressure Vessels (PV). Also included is a brief description of the Little Boy replica, a critical reactor assembly designed to mimic the radiation doses from the atomic bomb dropped on Hiroshima, and its us in neutron spectrometry. 18 refs.

  17. The Local Group: the ultimate deep field

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael; Weisz, Daniel R.; Bullock, James S.; Cooper, Michael C.

    2016-10-01

    Near-field cosmology - using detailed observations of the Local Group and its environs to study wide-ranging questions in galaxy formation and dark matter physics - has become a mature and rich field over the past decade. There are lingering concerns, however, that the relatively small size of the present-day Local Group (˜2 Mpc diameter) imposes insurmountable sample-variance uncertainties, limiting its broader utility. We consider the region spanned by the Local Group's progenitors at earlier times and show that it reaches 3 arcmin ≈ 7 comoving Mpc in linear size (a volume of ≈350 Mpc3) at z = 7. This size at early cosmic epochs is large enough to be representative in terms of the matter density and counts of dark matter haloes with Mvir(z = 7) ≲ 2 × 109 M⊙. The Local Group's stellar fossil record traces the cosmic evolution of galaxies with 103 ≲ M⋆(z = 0)/M⊙ ≲ 109 (reaching M1500 > -9 at z ˜ 7) over a region that is comparable to or larger than the Hubble Ultra-Deep Field (HUDF) for the entire history of the Universe. In the JWST era, resolved stellar populations will probe regions larger than the HUDF and any deep JWST fields, further enhancing the value of near-field cosmology.

  18. Shaping field for deep tissue microscopy

    NASA Astrophysics Data System (ADS)

    Colon, J.; Lim, H.

    2015-05-01

    Information capacity of a lossless image-forming system is a conserved property determined by two imaging parameters - the resolution and the field of view (FOV). Adaptive optics improves the former by manipulating the phase, or wavefront, in the pupil plane. Here we describe a homologous approach, namely adaptive field microscopy, which aims to enhance the FOV by controlling the phase, or defocus, in the focal plane. In deep tissue imaging, the useful FOV can be severely limited if the region of interest is buried in a thick sample and not perpendicular to the optic axis. One must acquire many z-scans and reconstruct by post-processing, which exposes tissue to excessive radiation and is also time consuming. We demonstrate the effective FOV can be substantially enhanced by dynamic control of the image plane. Specifically, the tilt of the image plane is continuously adjusted in situ to match the oblique orientation of the sample plane within tissue. The utility of adaptive field microscopy is tested for imaging tissue with non-planar morphology. Ocular tissue of small animals was imaged by two-photon excited fluorescence. Our results show that adaptive field microscopy can utilize the full FOV. The freedom to adjust the image plane to account for the geometrical variations of sample could be extremely useful for 3D biological imaging. Furthermore, it could facilitate rapid surveillance of cellular features within deep tissue while avoiding photo damages, making it suitable for in vivo imaging.

  19. A deep ALMA image of the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Dunlop, J. S.; McLure, R. J.; Biggs, A. D.; Geach, J. E.; Michałowski, M. J.; Ivison, R. J.; Rujopakarn, W.; van Kampen, E.; Kirkpatrick, A.; Pope, A.; Scott, D.; Swinbank, A. M.; Targett, T. A.; Aretxaga, I.; Austermann, J. E.; Best, P. N.; Bruce, V. A.; Chapin, E. L.; Charlot, S.; Cirasuolo, M.; Coppin, K.; Ellis, R. S.; Finkelstein, S. L.; Hayward, C. C.; Hughes, D. H.; Ibar, E.; Jagannathan, P.; Khochfar, S.; Koprowski, M. P.; Narayanan, D.; Nyland, K.; Papovich, C.; Peacock, J. A.; Rieke, G. H.; Robertson, B.; Vernstrom, T.; Werf, P. P. van der; Wilson, G. W.; Yun, M.

    2017-04-01

    We present the results of the first, deep Atacama Large Millimeter Array (ALMA) imaging covering the full ≃4.5 arcmin2 of the Hubble Ultra Deep Field (HUDF) imaged with Wide Field Camera 3/IR on HST. Using a 45-pointing mosaic, we have obtained a homogeneous 1.3-mm image reaching σ1.3 ≃ 35 μJy, at a resolution of ≃0.7 arcsec. From an initial list of ≃50 > 3.5σ peaks, a rigorous analysis confirms 16 sources with S1.3 > 120 μJy. All of these have secure galaxy counterparts with robust redshifts ( = 2.15). Due to the unparalleled supporting data, the physical properties of the ALMA sources are well constrained, including their stellar masses (M*) and UV+FIR star formation rates (SFR). Our results show that stellar mass is the best predictor of SFR in the high-redshift Universe; indeed at z ≥ 2 our ALMA sample contains seven of the nine galaxies in the HUDF with M* ≥ 2 × 1010 M⊙, and we detect only one galaxy at z > 3.5, reflecting the rapid drop-off of high-mass galaxies with increasing redshift. The detections, coupled with stacking, allow us to probe the redshift/mass distribution of the 1.3-mm background down to S1.3 ≃ 10 μJy. We find strong evidence for a steep star-forming 'main sequence' at z ≃ 2, with SFR ∝M* and a mean specific SFR ≃ 2.2 Gyr-1. Moreover, we find that ≃85 per cent of total star formation at z ≃ 2 is enshrouded in dust, with ≃65 per cent of all star formation at this epoch occurring in high-mass galaxies (M* > 2 × 1010 M⊙), for which the average obscured:unobscured SF ratio is ≃200. Finally, we revisit the cosmic evolution of SFR density; we find this peaks at z ≃ 2.5, and that the star-forming Universe transits from primarily unobscured to primarily obscured at z ≃ 4.

  20. The Hubble Deep Field and its Legacy

    NASA Astrophysics Data System (ADS)

    Williams, Robert E.

    2014-01-01

    Although deep images of distant galaxies were hardly a novel concept at the time, various aspects of the Hubble Deep Field resulted in its influence on subsequent studies of high redshift objects and on the culture in which large projects are carried out on unique facilities. The sensitivity, spatial resolution, and low background of HST were essential in making the HDF a success in its imaging of galaxy evolution from after the epoch of reionization to the present time. Subsequent deep fields and follow up studies on HST and other facilities have produced a number of results important to our understanding of galaxy evolution. Among these are: establishing the credibility of photometric redshifts as a foundation for extragalactic research; determination of the rate of star formation over cosmological time; producing early, reliable maps of dark matter; providing essential SNe data that revealed dark energy; resolving the X-ray background; enabling the evolution of galaxy luminosity functions to be determined; and yielding detailed gravitational lensing maps that identify the locations of magnified images of z>10 objects around clusters of galaxies. Undertaken using HST Director’s Discretionary time the HDF set a precedent by providing unique non-proprietary observational data to the community in addition to a fully reduced dataset virtually immediately after the observations were taken. Collaborative follow up studies on other facilities, e.g., Keck spectroscopy, Chandra X-ray imaging, etc., that were important to the interpretation of the HDF images were arranged even before the HDF observations were taken in order to facilitate analysis of the joint data. These collaborative programs were as essential to the success of the HDF as the HST images themselves.

  1. The Ultra Deep Field - WFPC2 Parallels

    NASA Astrophysics Data System (ADS)

    Beckwith, Steven

    2003-07-01

    The ACS Ultra Deep Field {UDF} is a survey carried out by using Director's Discretionary time. The main science drivers are galaxy evolution and cosmology. The primary instrument is the Advanced Camera for Surveys but WFPC2, NICMOS, and STIS will also be used in pure parallel mode. The data will be made public. The UDF consists of a single ultra-deep field {410 orbits in total} within the CDF-S GOODS area. We request a modification of the default pure parallel programs. Rather than duplicate the redder bands which will be done much better with ACS, we propose to observe in the near-ultraviolet F300W filter. These data will enable study of the rest-frame ultraviolet morphology of galaxies at 0

  2. Deep Borehole Field Test Conceptual Design Report

    SciTech Connect

    Hardin, Ernest L.

    2016-09-30

    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBD concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.

  3. Oceanographic influences on Deep Scattering Layers across the North Atlantic

    NASA Astrophysics Data System (ADS)

    Fennell, Sheena; Rose, George

    2015-11-01

    The distribution and density of Deep Scattering Layers (DSLs) were quantified along North Atlantic transits from Ireland to the Grand Banks of Newfoundland in the springs of 2012, 2013 and 2014 employing a calibrated Simrad EK60 echo sounder at 38 kHz. Concurrently, Sippican T5 XBTs (eXpendable Bathy Thermographs) were used to profile temperatures to 1800 m. In each year the scattering layers spanned the deep basin at depths ranging from near surface to approximately 900 m, but annual mean densities differed significantly. Higher DSL densities were recorded during years that exhibited higher sea temperatures at the depths of major DSL concentration (400-600 m), higher sea level anomalies and stronger eastward geostrophic currents. The highest concentration of the DSLs in each year was found in the area east of the Grand Banks that corresponded with areas of anticyclonic eddies. In this region DSL densities in 2014 were among the highest recorded worldwide (>7000 m2 nautical mile-2). Midwater fishing indicated DSLs were dominated by Myctophids and Sternoptychids. Anticyclonic eddy formation is discussed as a possible means of transport and aggregation of the DSLs in that region, where oceanographic influences may play a dominant role in the distribution and density of the DSLs and upper trophic level fishes.

  4. VizieR Online Data Catalog: z~4-7 Lyman break galaxies in Hubble deep fields (Harikane+, 2016)

    NASA Astrophysics Data System (ADS)

    Harikane, Y.; Ouchi, M.; Ono, Y.; More, S.; Saito, S.; Lin, Y.-T.; Coupon, J.; Shimasaku, K.; Shibuya, T.; Price, P. A.; Lin, L.; Hsieh, B.-C.; Ishigaki, M.; Komiyama, Y.; Silverman, J.; Takata, T.; Tamazawa, H.; Toshikawa, J.

    2016-07-01

    We use 10 deep optical-near-IR imaging data sets of the Hubble Ultra Deep Field (HUDF), Great Observatories Origins Deep Survey (GOODS)-North-Deep, GOODS-North-Wide, GOODS-South-Deep, GOODS-South-Wide, Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS)-All-Wavelength Extended Groth Strip International Survey (AEGIS), CANDELS-Cosmological Evolution Survey (COSMOS), CANDELS-Ultra Deep Survey (UDS), Hubble Frontier Field (HFF)-Abell2744P, and HFF-MACS0416P that are taken with ACS and WFC3 on the HST. The total area of the Hubble data is ~600arcmin2. The typical FWHMs of the PSFs of ACS and WFC3 images are 0.1" and 0.2", respectively. (1 data file).

  5. MOVING OBJECTS IN THE HUBBLE ULTRA DEEP FIELD

    SciTech Connect

    Kilic, Mukremin; Gianninas, Alexandros; Von Hippel, Ted E-mail: alexg@nhn.ou.edu

    2013-09-01

    We identify proper motion objects in the Hubble Ultra Deep Field (UDF) using the optical data from the original UDF program in 2004 and the near-infrared data from the 128 orbit UDF 2012 campaign. There are 12 sources brighter than I = 27 mag that display >3{sigma} significant proper motions. We do not find any proper motion objects fainter than this magnitude limit. Combining optical and near-infrared photometry, we model the spectral energy distribution of each point-source using stellar templates and state-of-the-art white dwarf models. For I {<=} 27 mag, we identify 23 stars with K0-M6 spectral types and two faint blue objects that are clearly old, thick disk white dwarfs. We measure a thick disk white dwarf space density of 0.1-1.7 Multiplication-Sign 10{sup -3} pc{sup -3} from these two objects. There are no halo white dwarfs in the UDF down to I = 27 mag. Combining the Hubble Deep Field North, South, and the UDF data, we do not see any evidence for dark matter in the form of faint halo white dwarfs, and the observed population of white dwarfs can be explained with the standard Galactic models.

  6. Alaska's North Slope: developing the smaller fields

    SciTech Connect

    Bradner, M.

    1984-08-13

    Oil development on Alaska's North Slope is entering a new phase. There is an increasing emphasis on reducing the high development cost of small, marginally-economic reservoirs near the large Prudhoe Bay oilfield. The exploration hunt for Arctic super-giants continues in the Beaufort Sea and in remote areas like the Arctic National Wildlife Refuge. But meanwhile, North Slope oil companies are paying more attention to smaller, undeveloped fields near Prudhoe. Kuparuk, west of Prudhoe, has been in production since 1981, for example, but next year Conoco will build facilities for the small Milne Point field, tying into infrastructure built for Kuparuk. Likewise, Lisburne and Endicott, two other fields now ready for development, will tie into the larger Prudhoe Bay pipeline system. 1 figure.

  7. Hubble Deep Field guide star photometry

    NASA Astrophysics Data System (ADS)

    Zwintz, K.; Kuschnig, R.; Weiss, W. W.; Gray, R. O.; Jenkner, H.

    1999-03-01

    Since the advent of asteroseismology as a promising innovative tool for investigating internal stellar structure, numerous attempts to detect solar type oscillations in distant stars have been conducted. The three Fine Guidance Sensors of the Hubble Space Telescope can contribute to asteroseismology, but only after the data have been corrected for systematic effects, the South Atlantic Anomaly and terrestrial stray light being the most important. We have applied these corrections and obtained essentially photon noise-limited photometry for two guide stars used during the Hubble Deep Field program. Ground-based spectral classification has revealed that the brighter of the two guide stars is a solar-type star with a spectral type of G2mG0iv. Fine Guidance Sensor photometry for this star gives a noise level in the amplitude spectrum of only 23 ppm, which makes it a good candidate for detecting stochastically driven oscillations. We compare our result with theoretical predictions. The second guide star was classified as K1v and therefore is not a candidate for solar type oscillations. Based on observations made with the NASA/ESA {\\it Hubble Space Telescope}, obtained from the data archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  8. Deep Vadose Zone Applied Field Research Initiative (DVZ AFRI) - Overview

    SciTech Connect

    2011-02-01

    The Deep Vadoze Zone Applied Field Research Initiative (DVZ AFRI) was established to protect water resources and to address the challenge of preventing contamination in the deep vadose zone from reaching groundwater. This factsheet provides an overview of the initiative and the approach to integrate basic science and needs-driven applied research activities with cleanup operations.

  9. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea.

    PubMed

    Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E

    2013-10-01

    A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.

  10. Impact of Deep Convection on UTLS Composition -New Observations from Recent Airborne Field Studies

    NASA Astrophysics Data System (ADS)

    Pan, L.

    2014-12-01

    Deep convection redistributes chemical trace gas species throughout the troposphere. Tropopause-penetrating deep convection injects water vapor and pollutants into the lower stratosphere. To obtain the necessary information for characterizing its role in chemistry-climate coupling, the impact of deep convection on UTLS ozone, water vapor, and short-lived organic species has been a key component of several recent airborne field campaigns. We present selected findings and observational highlights from two airborne field campaigns. They are the CONvective TRansport of Active Species in the Tropics (CONTRAST) experiment, conducted January-February 2014 over the western Pacific using the NCAR GV research aircraft, in collaboration with the UK FAAM BAe146 and the NASA Global Hawk, and the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) experiment, conducted August-September 2013 over the north America using the NASA DC-8 and ER-2 research aircraft.

  11. Recharge to the North Richland well field

    SciTech Connect

    Law, A.G.

    1989-07-01

    The investigation was based on a preliminary ground-water flow model of the 1100 Area. Because few local data were available for this effort, an existing regional ground-water flow model of the Hanford Site was applied, which is based on the Variable Thickness Transient (VTT) ground-water flow code (Kipp et al., 1976). A submodel of the Hanford Site model was developed based on the VTT code. An independent model consisting of a simple representation of the local conditions in the vicinity of the North Richland well field was also used in the investigation. This model, based on the MODFLOW code (McDonald and Harbaugh, 1984), was used in a series of transient simulations to examine dynamic aspects of the well field/recharge basin. Results from this simple model also provide an independent, qualitative check of results produced with the 1100 Area model based on the VTT code. This report summarizes the 1100 Area modeling investigation, including the approach used to generate results for the regional and 1100 Area VTT models, the approach used in the transient MODFLOW model, results from some initial steady-state and transient simulations with the submodel and the MODFLOW models, and resulting conclusions and recommendations. Because local data were lacking to develop and calibrate the models, the investigation described in this report can best be described as a ''sensitivity analysis'' of ground-water flow in the 1100 Area. 4 refs., 10 figs., 2 tabs.

  12. North American deep underground laboratories: Soudan Underground Laboratory, SNOLab, and the Sanford Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Lesko, Kevin T.

    2015-08-01

    Over the past several decades, fundamental physics experiments have required access to deep underground laboratories to satisfy the increasingly strict requirements for ultra-low background environments and shielding from cosmic rays. In this presentation, I summarize the existing and anticipated physics programs and laboratory facilities of North America's deep facilities: The Soudan Underground Laboratory in Minnesota, SNOLab in Ontario, Canada, and the Sanford Underground Research Facility in Lead, South Dakota.

  13. Using Species-Area Relationships to Inform Baseline Conservation Targets for the Deep North East Atlantic

    PubMed Central

    Foster, Nicola L.; Foggo, Andrew; Howell, Kerry L.

    2013-01-01

    Demands on the resources of the deep-sea have increased in recent years. Consequently, the need to create and implement a comprehensive network of Marine Protected Areas (MPAs) to help manage and protect these resources has become a global political priority. Efforts are currently underway to implement MPA networks in the deep North East Atlantic. To ensure these networks are effective, it is essential that baseline information be available to inform the conservation planning process. Using empirical data, we calculated conservation targets for sessile benthic invertebrates in the deep North East Atlantic for consideration during the planning process. We assessed Species-Area Relationships across two depth bands (200–1100 m and 1100–1800 m) and nine substrata. Conservation targets were predicted for each substratum within each depth band using z-values obtained from fitting a power model to the Species-Area Relationships of observed and estimated species richness (Chao1). Results suggest an MPA network incorporating 10% of the North East Atlantic’s deep-sea area would protect approximately 58% and 49% of sessile benthic species for the depth bands 200–1100 m and 1100–1800 m, respectively. Species richness was shown to vary with substratum type indicating that, along with depth, substratum information needs to be incorporated into the conservation planning process to ensure the most effective MPA network is implemented in the deep North East Atlantic. PMID:23527053

  14. Rapid subduction in the deep North Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carminati, G.; Carr, J.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Flaminio, V.; Fratini, K.; Fritsch, U.; Fuda, J.-L.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Lucarelli, F.; Lyons, K.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Maurin, G.; Mazure, A.; Melissas, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, G.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Pillet, R.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Schoeck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Tamburini, C.; Tasca, L.; Taupier-Letage, I.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2010-03-01

    An Acoustic Doppler Current Profiler (ADCP) moored at the deep-sea ANTARES neutrino telescope site near Toulon, France, measured downward vertical currents of amplitudes up to 0.03 m s-1 in spring 2006. The currents were accompanied by enhanced levels of acoustic reflection by a factor of about 10 and by horizontal currents reaching 0.35 m s-1. These observations coincided with high levels of bioluminescence detected by the telescope. Although during winter 2006 deep dense-water formation occurred in this area, episodes of high levels of suspended particles and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for particles to be moved across the entire water column (2500 m) within a few days, is local convection, triggered by small-mesoscale phenomena, such as meanders including a bipolar vortex, linked with boundary current instabilities.

  15. Strong-mixing induced deep ocean heat uptake events in the North Atlantic.

    NASA Astrophysics Data System (ADS)

    Somavilla Cabrillo, Raquel; Gonzalez-Pola, Cesar; Schauer, Ursula; Budeus, Gedeon

    2015-04-01

    The deceleration of the upper ocean heat storage during the last decade has resulted in an active search for the 'missing heat' in the deep ocean. Modeling work has provided new insights into the role of the central Pacific Ocean on the present hiatus in global warming and the efficient transfer of heat to the deep ocean, but recent studies have highlighted also the large contribution of the North Atlantic basin to these processes, mainly based on ocean observations. The deep ocean heat uptake (below 300 m) in the North Atlantic is not confined to the subpolar gyre region but extends to mid-latitudes of the Eastern North Atlantic (ENA), requiring an additional process for its explanation other than deep convection considered until now. Here, using oceanographic in-situ data, we describe a mechanism of heat and salt injection to the deep ocean after years of warming and saltening at the surface occurred both in regions of mode (43°-48°N) and deep water (74°-76°N) formation in the ENA. The mechanism, although punctual meditated by strong winter mixing events, is between 2 and 6 times higher than the 2000-2010 ocean heat uptake at depths of mode (300-700m) and deep water (>2000m) formation, contributing significantly to the observed deep ocean heat uptake in the North Atlantic. Nutrient, hydrographic and reanalysis data indicate that the strong mixing-induced deep ocean heat uptake events at areas of mode and deep water formation in the North Atlantic are connected through the northward propagation of salty ENA mode waters triggered by the contraction of the subpolar gyre reinforced by the occurrences of blocking anomalies in the ENA. Such connection is not unique of the last decade but observed also during the 1960s. Natural climate variability seems the ultimate driver of the strong mixing-induced deep ocean heat uptake events, although the anthropogenic global warming and its forcing on the Arctic sea-ice retreat and frequency of extreme weather events could

  16. Deep Borehole Field Test Research Activities at LBNL

    SciTech Connect

    Dobson, Patrick; Tsang, Chin-Fu; Kneafsey, Timothy; Borglin, Sharon; Piceno, Yvette; Andersen, Gary; Nakagawa, Seiji; Nihei, Kurt; Rutqvist, Jonny; Doughty, Christine; Reagan, Matthew

    2016-08-19

    The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterized by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.

  17. Changes of the North Atlantic deep circulation at the Eirik Drift since the Pliocene

    NASA Astrophysics Data System (ADS)

    Müller-Michaelis, A.; Uenzelmann-Neben, G.

    2013-12-01

    The global climate and its changes are coupled to the ocean circulation. The surface ocean stores and transports heat and freshwater, interacts with the overlying atmosphere and thereby impacts the climate. The global Thermohaline circulation (THC) is described as a conveyor belt for heat and freshwater within the world's oceans. Deep-water formation in high latitudes is the driving mechanism of the THC. It connects the surface circulation with the reversed deep circulation. The Eirik Drift, located offshore southern Greenland, lies closely downstream of the deep-water formation regions of the Nordic Seas and is built under the influence of the deep branch of the North Atlantic THC. The sedimentary packages and structures of the Eirik Drift therefore bear information about strength and direction of the North Atlantic deep-water circulation in a changing climate. High-resolution seismic reflection data collected during RV Maria S. Merian cruise MSM12/2 in 2009 were incorporated with geological information from ODP Leg 105 Site 646 and IODP Expedition 303 Sites 1305-1307 and led to a seismostratigraphic analysis of the sedimentary structure of the Eirik Drift. For the Pliocene Epoch we observed an intensification of the deep circulation at the Eirik Drift along with the climate reversal to the early Pliocene warm period (~5.6 Ma, horizon R2). The maximum intensity of the deep circulation at the Eirik Drift is documented in an erosional unconformity at ~4.5 Ma. The deep circulation at the Eirik Drift remained strong during the transition to Pliocene cooling (~3.2 Ma) until ~2.5 Ma (horizon R1), when the onset of ice rafting documents the intensification of Northern Hemisphere glaciation. During the series of glaciations of the Pleistocene Epoch a shallowing and weakening of the deep current system at the Eirik Drift was observed. The observation of intensification of the deep circulation during warm climate conditions and weakening during cold climate phases is in

  18. Deep water formation in the North Pacific and deglacial CO2 rise

    NASA Astrophysics Data System (ADS)

    Rae, James W. B.; Sarnthein, Michael; Foster, Gavin L.; Ridgwell, Andy; Grootes, Pieter M.; Elliott, Tim

    2014-06-01

    Deep water formation in the North Atlantic and Southern Ocean is widely thought to influence deglacial CO2 rise and climate change; here we suggest that deep water formation in the North Pacific may also play an important role. We present paired radiocarbon and boron isotope data from foraminifera from sediment core MD02-2489 at 3640 m in the North East Pacific. These show a pronounced excursion during Heinrich Stadial 1, with benthic-planktic radiocarbon offsets dropping to ~350 years, accompanied by a decrease in benthic δ11B. We suggest that this is driven by the onset of deep convection in the North Pacific, which mixes young shallow waters to depth, old deep waters to the surface, and low-pH water from intermediate depths into the deep ocean. This deep water formation event was likely driven by an increase in surface salinity, due to subdued atmospheric/monsoonal freshwater flux during Heinrich Stadial 1. The ability of North Pacific Deep Water (NPDW) formation to explain the excursions seen in our data is demonstrated in a series of experiments with an intermediate complexity Earth system model. These experiments also show that breakdown of stratification in the North Pacific leads to a rapid ~30 ppm increase in atmospheric CO2, along with decreases in atmospheric δ13C and Δ14C, consistent with observations of the early deglaciation. Our inference of deep water formation is based mainly on results from a single sediment core, and our boron isotope data are unavoidably sparse in the key HS1 interval, so this hypothesis merits further testing. However, we note that there is independent support for breakdown of stratification in shallower waters during this period, including a minimum in δ15N, younging in intermediate water 14C, and regional warming. We also re-evaluate deglacial changes in North Pacific productivity and carbonate preservation in light of our new data and suggest that the regional pulse of export production observed during the B

  19. 3. OVERVIEW OF NORTH PART, SOLDIER FIELD, LOOKING NORTHEAST FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OVERVIEW OF NORTH PART, SOLDIER FIELD, LOOKING NORTHEAST FROM THE WALL ALONG THE WEST SIDE, OPPOSITE THE CHAPEL. NOTE STONE WALL AND PILASTERS IN THE FAR CENTRAL DISTANCE. - Presidio of Monterey, Soldier Field, Monterey, Monterey County, CA

  20. Transformations of organic matter in the deep biosphere at North Pond

    NASA Astrophysics Data System (ADS)

    Jaekel, U.; Dittmar, T.; Meyer, J. L.; Huber, J. A.; Glazer, B. T.; Girguis, P. R.

    2012-12-01

    It has been long known that the oceanic crust is the largest aquifer on Earth. However, relatively little is known about how this aquifer influences biogeochemical cycles in deep ocean sediments. Recent studies have shown that in some seafloor settings such as at North Pond, an isolated sediment pond at 22°45'N near the Mid-Atlantic Ridge, crustal aquifer fluids are replete with oxygen or nitrate, replenishing the deep sediments with additional oxidants. It remains unknown to what extend a recharge of oxidants from below affects the fate of the refractory organic carbon pool in deep sediments. Ultimately, an enhanced recycling of deep organic matter in deep sediments due to the supply of oxidants from below could affect the cycling of carbon between marine sediments and the water column, thereby also influencing atmospheric CO2 levels. To investigate the transformation of the dissolved organic matter (DOM) pool in sediments at North Pond, representative sediment samples for the upper oxic, the below anoxic and the deep and oxygen replete sediment horizons were collected from three boreholes, drilled during an Integrated Ocean Drilling Program (IODP) Expedition (336) at North Pond in 2011. Analyses of DOM within the contrasting redox horizons and across the three boreholes by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) was used to generate high-resolution profiles of the molecular composition of DOM. Comparative analyses of this data shed light on the transformations of DOM within these redox horizons and the ability of deep subsurface microorganisms to mineralize recalcitrant organic carbon in deep sediments that are replete in oxidants. Quantitative molecular approaches will be used to better examine the role of select microbial groups and functional genes involved in DOM transformations.

  1. Spatial correlation of large historical earthquakes and moderate shocks >10 km deep in eastern North America

    SciTech Connect

    Acharya, H.

    1980-12-01

    A good spatial correlation is noted between historical earthquakes with epicentral intensity > or =VIII (MM) and recent moderate size earthquakes with focal depth >10 km, suggesting that large historical earthquakes in eastern North America may be associated with deep-seated faults

  2. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic

    NASA Astrophysics Data System (ADS)

    Huld Jónasdóttir, Sigrún; Visser, André W.; Richardson, Katherine; Heath, Michael R.

    2015-09-01

    Estimates of carbon flux to the deep oceans are essential for our understanding of global carbon budgets. Sinking of detrital material ("biological pump") is usually thought to be the main biological component of this flux. Here, we identify an additional biological mechanism, the seasonal "lipid pump," which is highly efficient at sequestering carbon into the deep ocean. It involves the vertical transport and metabolism of carbon rich lipids by overwintering zooplankton. We show that one species, the copepod Calanus finmarchicus overwintering in the North Atlantic, sequesters an amount of carbon equivalent to the sinking flux of detrital material. The efficiency of the lipid pump derives from a near-complete decoupling between nutrient and carbon cycling-a "lipid shunt," and its direct transport of carbon through the mesopelagic zone to below the permanent thermocline with very little attenuation. Inclusion of the lipid pump almost doubles the previous estimates of deep-ocean carbon sequestration by biological processes in the North Atlantic.

  3. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic.

    PubMed

    Jónasdóttir, Sigrún Huld; Visser, André W; Richardson, Katherine; Heath, Michael R

    2015-09-29

    Estimates of carbon flux to the deep oceans are essential for our understanding of global carbon budgets. Sinking of detrital material ("biological pump") is usually thought to be the main biological component of this flux. Here, we identify an additional biological mechanism, the seasonal "lipid pump," which is highly efficient at sequestering carbon into the deep ocean. It involves the vertical transport and metabolism of carbon rich lipids by overwintering zooplankton. We show that one species, the copepod Calanus finmarchicus overwintering in the North Atlantic, sequesters an amount of carbon equivalent to the sinking flux of detrital material. The efficiency of the lipid pump derives from a near-complete decoupling between nutrient and carbon cycling—a "lipid shunt," and its direct transport of carbon through the mesopelagic zone to below the permanent thermocline with very little attenuation. Inclusion of the lipid pump almost doubles the previous estimates of deep-ocean carbon sequestration by biological processes in the North Atlantic.

  4. Making Data Mobile: The Hubble Deep Field Academy iPad app

    NASA Astrophysics Data System (ADS)

    Eisenhamer, Bonnie; Cordes, K.; Davis, S.; Eisenhamer, J.

    2013-01-01

    Many school districts are purchasing iPads for educators and students to use as learning tools in the classroom. Educators often prefer these devices to desktop and laptop computers because they offer portability and an intuitive design, while having a larger screen size when compared to smart phones. As a result, we began investigating the potential of adapting online activities for use on Apple’s iPad to enhance the dissemination and usage of these activities in instructional settings while continuing to meet educators’ needs. As a pilot effort, we are developing an iPad app for the “Hubble Deep Field Academy” - an activity that is currently available online and commonly used by middle school educators. The Hubble Deep Field Academy app features the HDF-North image while centering on the theme of how scientists use light to explore and study the universe. It also includes features such as embedded links to vocabulary, images and videos, teacher background materials, and readings about Hubble’s other deep field surveys. It is our goal is to impact students’ engagement in STEM-related activities, while enhancing educators’ usage of NASA data via new and innovative mediums. We also hope to develop and share lessons learned with the E/PO community that can be used to support similar projects. We plan to test the Hubble Deep Field Academy app during the school year to determine if this new activity format is beneficial to the education community.

  5. Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk

    NASA Astrophysics Data System (ADS)

    Gehlen, M.; Séférian, R.; Jones, D. O. B.; Roy, T.; Roth, R.; Barry, J.; Bopp, L.; Doney, S. C.; Dunne, J. P.; Heinze, C.; Joos, F.; Orr, J. C.; Resplandy, L.; Segschneider, J.; Tjiputra, J.

    2014-12-01

    This study aims to evaluate the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCPs). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding -0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environments. We report on major pH reductions over the deep North Atlantic seafloor (depth >500 m) and at important deep-sea features, such as seamounts and canyons. By 2100, and under the high CO2 scenario RCP8.5, pH reductions exceeding -0.2 (-0.3) units are projected in close to 23% (~15%) of North Atlantic deep-sea canyons and ~8% (3%) of seamounts - including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity, implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.

  6. Reduced admixture of North Atlantic Deep Water to the deep central South Pacific during the last two glacial periods

    NASA Astrophysics Data System (ADS)

    Molina-Kescher, Mario; Frank, Martin; Tapia, Raúl; Ronge, Thomas A.; Nürnberg, Dirk; Tiedemann, Ralf

    2016-06-01

    The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific Basin are exchanged. Here we reconstruct the deep water circulation of the central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by benthic stable carbon data obtained from two sediment cores located on the flanks of the East Pacific Rise. The records show small but consistent glacial/interglacial changes in all three isotopic systems with interglacial average values of -5.8 and 18.757 for ɛNd and 206Pb/204Pb, respectively, whereas glacial averages are -5.3 and 18.744. Comparison of this variability of Circumpolar Deep Water (CDW) to previously published records along the pathway of the global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep Water to CDW during cold stages. The absolute values and amplitudes of the benthic δ13C variations are essentially indistinguishable from other records of the Southern Hemisphere and confirm that the low central South Pacific sedimentation rates did not result in a significant reduction of the amplitude of any of the measured proxies. In addition, the combined detrital Nd and strontium (87Sr/86Sr) isotope signatures imply that Australian and New Zealand dust has remained the principal contributor of lithogenic material to the central South Pacific.

  7. Hydrogeochemical signatures of thermal springs compared to deep formation water of North Germany

    NASA Astrophysics Data System (ADS)

    Bozau, Elke; van Berk, Wolfgang

    2014-05-01

    Thermal springs and hot deep formation waters can be used for geothermal energy production. Depending on the chemical composition of the used waters, geothermal power plants have to deal with scaling and corrosion effects. Therefore, the understanding of the hydrogeochemical behaviour of such waters can be helpful to enhance the efficiency of the energy production. This study is comparing hydrogeochemical characteristics of thermal springs in the Harz Mountains (North Germany) and deep formation water of the North German Basin. The Harz Mountains consist of uplifted Palaeozoic rocks, whereas the North German Basin consists of sedimentary layers of Permian, Mesozoic and Cenozoic age. Volcanic rocks are included in the Permian layers. The thickness of the sedimentary basin varies between 2 km and more than 8 km. The deep aquifers of the North German Basin are mostly not involved in the recent meteoric water cycle. Their waters have contents of Total Dissolved Solids (TDS) up to about 400 g/L. Thermal springs of the Harz Mountains are situated close to the main fracture system of the region. These springs are connected to the meteoric water cycle and display lower contents of TDS (< 25 g/L). In both geological systems the TDS content is increasing with depth and temperature. The elemental ratios of the waters (e.g., Na/Cl, Cl/Br, Na/Ca) indicate similar hydrogeochemical formation processes in the Harz Mountains and the North German Basin. The concentrations of calcium, sodium, and chloride differ due to salt dissolution and feldspar transformation (albitisation) in the thermal springs as well as in the deep formation waters. Based on today's knowledge hydrochemical and stratigraphical data from the North German Basin can be used to elucidate the geological origin of the thermal springs in the Harz Mountains. Acknowledgements. The presented data are results of the collaborative research program "gebo" (Geothermal energy and high performance drilling), financed by the

  8. Modeling Extremely Deep Convection over North America as a Source of Stratospheric Water Vapor

    NASA Astrophysics Data System (ADS)

    Leroy, S. S.; Clapp, C.; Smith, J. B.; Anderson, J. G.

    2015-12-01

    We have run the Advanced Research Weather Research and Forecasting Model (ARW) at scales that numerically resolve convection over a broad swath of the north central U.S. Our intentions were to simulate convective events that generated stratospheric water vapor plumes observed during the SEAC4RS mission, to quantify the amount of water vapor injected into the stratosphere by extremely deep convection, and to investigate ARW as a potential tool to forecast multi-decadal trends in extremely deep convection over North America. We have run ARW for five and a half days beginning at 12 UTC on 26 August 2013 on a 3-km horizontal grid with 50 vertical levels. We used MERRA for the initial conditions and boundary conditions because of its skill in reanalysis of water vapor. ARW was able to simulate many of the fundamental features of deep convection over North America, including specific events. We have shown that the convection simulated by ARW bears many of the features of mesoscale convective systems, including the flow of cold air over warm moist air, cold downdrafts and gust fronts, mid-level inflow, and wedges reminiscent of squall lines. The source of water vapor for the convection is low-level eastward transport into the ARW domain. Convection is initiated where local maxima in equivalent potential temperature of surface air form. Convection regularly penetrates to the level of neutral buoyancy of the surface air and can even influence the concentration of water vapor above. A few convective events inject water vapor above the 400 K potential temperature surface. Surprisingly, deep convective events can also desiccate the upper air, even in the stratosphere. There is clear evidence of convection generating ducted internal gravity waves that propagate upstream to trigger more deep convection. We will present a quantification of the amount of water vapor injected into the stratosphere by extremely deep convection, the causes of desiccation, and the mechanisms

  9. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water

    PubMed Central

    Frank, Alexander H.; Garcia, Juan A. L.; Herndl, Gerhard J.

    2016-01-01

    Summary To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep‐water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. PMID:26914787

  10. North Pacific Acoustic Laboratory and Deep Water Acoustics

    DTIC Science & Technology

    2015-09-30

    of basin-wide sound speed ( temperature ) fields obtained by the combination of acoustic, altimetry, and other data types with ocean general...GOALS The ultimate limitations to the performance of long-range sonar are due to ocean sound speed perturbations and the characteristics of the...receptions. 5. To improve basin-scale ocean sound -speed predictions via assimilation of acoustic travel-time and other data into numerical ocean

  11. Abrupt changes in the southern extent of North Atlantic Deep Water during Dansgaard-Oeschger events

    NASA Astrophysics Data System (ADS)

    Gottschalk, Julia; Skinner, Luke C.; Misra, Sambuddha; Waelbroeck, Claire; Menviel, Laurie; Timmermann, Axel

    2015-12-01

    The glacial climate system transitioned rapidly between cold (stadial) and warm (interstadial) conditions in the Northern Hemisphere. This variability, referred to as Dansgaard-Oeschger variability, is widely believed to arise from perturbations of the Atlantic Meridional Overturning Circulation. Evidence for such changes during the longer Heinrich stadials has been identified, but direct evidence for overturning circulation changes during Dansgaard-Oeschger events has proven elusive. Here we reconstruct bottom water [CO32-] variability from B/Ca ratios of benthic foraminifera and indicators of sedimentary dissolution, and use these reconstructions to infer the flow of northern-sourced deep water to the deep central sub-Antarctic Atlantic Ocean. We find that nearly every Dansgaard-Oeschger interstadial is accompanied by a rapid incursion of North Atlantic Deep Water into the deep South Atlantic. Based on these results and transient climate model simulations, we conclude that North Atlantic stadial-interstadial climate variability was associated with significant Atlantic overturning circulation changes that were rapidly transmitted across the Atlantic. However, by demonstrating the persistent role of Atlantic overturning circulation changes in past abrupt climate variability, our reconstructions of carbonate chemistry further indicate that the carbon cycle response to abrupt climate change was not a simple function of North Atlantic overturning.

  12. The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331).

    PubMed

    Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H; Moyer, Craig L; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J; Takai, Ken

    2013-01-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu.

  13. The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331)

    PubMed Central

    Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M.; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H.; Moyer, Craig L.; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J.; Takai, Ken

    2013-01-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu. PMID:24265628

  14. VizieR Online Data Catalog: Spitzer-CANDELS catalog within 5 deep fields (Ashby+, 2015)

    NASA Astrophysics Data System (ADS)

    Ashby, M. L. N.; Willner, S. P.; Fazio, G. G.; Dunlop, J. S.; Egami, E.; Faber, S. M.; Ferguson, H. C.; Grogin, N. A.; Hora, J. L.; Huang, J.-S.; Koekemoer, A. M.; Labbe, I.; Wang, Z.

    2015-08-01

    We chose to locate S-CANDELS inside the wider and shallower fields already covered by Spitzer Extended Deep Survey (SEDS), in regions that enjoy deep optical and NIR imaging from HST/CANDELS. These S-CANDELS fields are thus the Extended GOODS-south (aka the GEMS field, hereafter ECDFS; Rix et al. 2004ApJS..152..163R; Castellano et al. 2010A&A...511A..20C), the Extended GOODS-north (HDFN; Giavalisco et al. 2004, II/261; Wang et al. 2010, J/ApJS/187/251; Hathi et al. 2012ApJ...757...43H; Lin et al. 2012ApJ...756...71L), the UKIDSS UDS (aka the Subaru/XMM Deep Field, Ouchi et al. 2001ApJ...558L..83O; Lawrence et al. 2007, II/319), a narrow field within the EGS (Davis et al. 2007ApJ...660L...1D; Bielby et al. 2012A&A...545A..23B), and a strip within the UltraVista deep survey of the larger COSMOS field (Scoville et al. 2007ApJS..172...38S; McCracken et al. 2012, J/A+A/544/A156). The S-CANDELS observing strategy was designed to maximize the area covered to full depth within the CANDELS area. Each field was visited twice with six months separating the two visits. Table 1 lists the epochs for each field. All of the IRAC full-depth coverage is within the SEDS area (Ashby et al. 2013, J/ApJ/769/80), and almost all is within the area covered by HST for CANDELS. (6 data files).

  15. Latitudinal gradients of species richness in the deep-sea benthos of the North Atlantic.

    PubMed

    Rex, M A; Stuart, C T; Coyne, G

    2000-04-11

    Latitudinal species diversity gradients (LSDGs) in the Northern Hemisphere are the most well established biogeographic patterns on Earth. Despite long-standing interest in LSDGs as a central problem in ecology, their explanation remains uncertain. In terrestrial as well as coastal and pelagic marine ecosystems, these poleward declines in diversity typically have been represented and interpreted in terms of species richness, the number of coexisting species. Newly discovered LSDGs in the bathyal (500-4,000 m) benthos of the North Atlantic may help to resolve the underlying causes of these large-scale trends because the deep sea is such a physically distinct environment. However, a major problem in comparing surface and deep-sea LSDGs is that the latter have been measured differently, by using species diversity indices that are affected by both species richness and the evenness of relative abundance. Here, we demonstrate that deep-sea isopods, gastropods, and bivalves in the North Atlantic do exhibit poleward decreases in species richness, just as those found in other environments. A comprehensive systematic revision of the largest deep-sea gastropod family (Turridae) has provided a unique database on geographic distributions that is directly comparable to those used to document LSDGs in surface biotas. This taxon also shows a poleward decline in the number of species. Seasonal organic enrichment from sinking phytodetritus is the most plausible ecological explanation for deep-sea LSDGs and is the environmental factor most consistently associated with depressed diversity in a variety of bathyal habitats.

  16. NICMOS Calibration Challenges in the Ultra Deep Field

    NASA Technical Reports Server (NTRS)

    Thompson, Rodger I.

    2006-01-01

    The reduction of NICMOS observations in the Hubble Ultra Deep Field required unique reduction and calibration techniques, not required for images containing brighter sources. This paper describes some of these techniques which may be useful in the reduction of other fields containing extremely faint sources. These techniques apply to NICMOS camera 3 which was the only NICMOS camera utilized in the observations. The absolute accuracy of the NICMOS camera 3 photometry was also investigated using the observations of the solar analog star P330-E. As a result the sensitivity of the camera in the F110W and F160W was found to be less than the sensitivities used in the construction of the Version 2.0 NICMOS Treasury catalog for the observations in the Hubble Ultra Deep Field. The catalog fluxes are too low by between 8 and 9%.

  17. Enhanced North Atlantic deep convection preceding Heinrich 1 glacial ice sheet destabilization

    NASA Astrophysics Data System (ADS)

    Seidenkrantz, Marit-Solveig; Kuijpers, Antoon; Lindgreen, Holger

    2015-04-01

    The Labrador Sea is a crucial center of action for North Atlantic meridional overturning circulation. This region is characterized in winter by strong cold and dry winds from land or ice surfaces inducing large heat and moisture fluxes at the ocean-atmosphere interface. Particularly in late winter these conditions favor deep-convection processes leading to the formation of a relatively homogeneous and oxygen-rich intermediate water mass (Labrador Sea Water, LSW) spreading to other parts of the North Atlantic at water depths between about 1,000 and 2,000 m. Sedimentary records from the Labrador Sea have previously indicated here the presence of North Atlantic Deep Water during periods in between glacial ('Heinrich') ice-rafting events. The present sediment core investigation based on clay mineralogical analysis and study of the benthic foraminiferal fauna shows a significant oxygenation event at 18000 cal.yrs BP recorded both in the Labrador Sea and at the northern margin of Rockall Trough at 2381 m and 1286 m water depth, respectively. We conclude this ventilation pulse to be related to a period of enhanced deep convection and formation of glacial North Atlantic Intermediate Water occupying those parts of the water column presently affected under conditions of strong LSW formation. This ventilation event implies an early, significant re-activation of North Atlantic meridional overturning circulation after the Last Glacial Maximum immediately prior to Heinrich 1 large-scale ice-sheet destabilization. This scenario points to an oceanic trigger mechanism for large-scale glacial iceberg surges around the northern North Atlantic, which involves enhanced northward ocean (sub)surface heat transport and subsequent enhanced bottom melting of floating outlet glaciers and ice shelves.

  18. Deep Borehole Field Test Requirements and Controlled Assumptions.

    SciTech Connect

    Hardin, Ernest

    2015-07-01

    This document presents design requirements and controlled assumptions intended for use in the engineering development and testing of: 1) prototype packages for radioactive waste disposal in deep boreholes; 2) a waste package surface handling system; and 3) a subsurface system for emplacing and retrieving packages in deep boreholes. Engineering development and testing is being performed as part of the Deep Borehole Field Test (DBFT; SNL 2014a). This document presents parallel sets of requirements for a waste disposal system and for the DBFT, showing the close relationship. In addition to design, it will also inform planning for drilling, construction, and scientific characterization activities for the DBFT. The information presented here follows typical preparations for engineering design. It includes functional and operating requirements for handling and emplacement/retrieval equipment, waste package design and emplacement requirements, borehole construction requirements, sealing requirements, and performance criteria. Assumptions are included where they could impact engineering design. Design solutions are avoided in the requirements discussion. Deep Borehole Field Test Requirements and Controlled Assumptions July 21, 2015 iv ACKNOWLEDGEMENTS This set of requirements and assumptions has benefited greatly from reviews by Gordon Appel, Geoff Freeze, Kris Kuhlman, Bob MacKinnon, Steve Pye, David Sassani, Dave Sevougian, and Jiann Su.

  19. Ultraviolet Galaxy Counts From STIS Observations of The Hubble Deep Fields

    NASA Technical Reports Server (NTRS)

    Gardner, J. P.; Brown, T. M.; Ferguson, H. C.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    We present galaxy counts in the near and far ultraviolet (NUV and FUV) obtained from Space Telescope Imaging Spectrograph (STIS) observations of portions of the Hubble Deep Field North, (HDFN), the Hubble Deep Field South, (HDFS) and a parallel field near the HDFN. All three fields have deep (AB>29) optical imaging, and we determine magnitudes by taking the ultraviolet flux detected within the limiting optical isophote. An analysis of the UV-optical colors of detected objects, combined with a visual inspection of the UV images, indicates that there are no detectable objects in the UV images which are not also detected in the optical. We measure the detection area and completeness as a function of magnitude by taking the size-magnitude distribution of galaxies in the entire HDFN WFPC2 V+I image, applying the measured UV-optical colors from the detected galaxies, and determining the total area over which each galaxy would have been detected in the UV images. The average area for the simulated galaxies in each UV magnitude bin, (including galaxies which would not be detected at all), provides the effective area and completeness for the bin. We test this procedure with Monte Carlo simulations. The galaxy counts reach to AB=29 in both the NUV and FUV; 1 magnitude fainter than the HDF F30OW counts, and 7 magnitudes fainter than balloon-based counts. We compare our measured counts to various models.

  20. Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk

    NASA Astrophysics Data System (ADS)

    Gehlen, M.; Séférian, R.; Jones, D. O. B.; Roy, T.; Roth, R.; Barry, J.; Bopp, L.; Doney, S. C.; Dunne, J. P.; Heinze, C.; Joos, F.; Orr, J. C.; Resplandy, L.; Segschneider, J.; Tjiputra, J.

    2014-06-01

    This study aims at evaluating the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCP). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully-coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding -0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environment. We report major potential consequences of pH reductions for deep-sea biodiversity hotspots, such as seamounts and canyons. By 2100 and under the high CO2 scenario RCP8.5 pH reductions exceeding -0.2, (respectively -0.3) units are projected in close to 23% (~ 15%) of North Atlantic deep-sea canyons and ~ 8% (3%) of seamounts - including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.

  1. Human Activities on the Deep Seafloor in the North East Atlantic: An Assessment of Spatial Extent

    PubMed Central

    Benn, Angela R.; Weaver, Philip P.; Billet, David S. M.; van den Hove, Sybille; Murdock, Andrew P.; Doneghan, Gemma B.; Le Bas, Tim

    2010-01-01

    Background Environmental impacts of human activities on the deep seafloor are of increasing concern. While activities within waters shallower than 200 m have been the focus of previous assessments of anthropogenic impacts, no study has quantified the extent of individual activities or determined the relative severity of each type of impact in the deep sea. Methodology The OSPAR maritime area of the North East Atlantic was chosen for the study because it is considered to be one of the most heavily impacted by human activities. In addition, it was assumed data would be accessible and comprehensive. Using the available data we map and estimate the spatial extent of five major human activities in the North East Atlantic that impact the deep seafloor: submarine communication cables, marine scientific research, oil and gas industry, bottom trawling and the historical dumping of radioactive waste, munitions and chemical weapons. It was not possible to map military activities. The extent of each activity has been quantified for a single year, 2005. Principal Findings Human activities on the deep seafloor of the OSPAR area of the North Atlantic are significant but their footprints vary. Some activities have an immediate impact after which seafloor communities could re-establish, while others can continue to make an impact for many years and the impact could extend far beyond the physical disturbance. The spatial extent of waste disposal, telecommunication cables, the hydrocarbon industry and marine research activities is relatively small. The extent of bottom trawling is very significant and, even on the lowest possible estimates, is an order of magnitude greater than the total extent of all the other activities. Conclusions/Significance To meet future ecosystem-based management and governance objectives for the deep sea significant improvements are required in data collection and availability as well as a greater awareness of the relative impact of each human activity

  2. Incursions of southern-sourced water into the deep North Atlantic during late Pliocene glacial intensification

    NASA Astrophysics Data System (ADS)

    Lang, David C.; Bailey, Ian; Wilson, Paul A.; Chalk, Thomas B.; Foster, Gavin L.; Gutjahr, Marcus

    2016-05-01

    The circulation and internal structure of the oceans exert a strong influence on Earth's climate because they control latitudinal heat transport and the segregation of carbon between the atmosphere and the abyss. Circulation change, particularly in the Atlantic Ocean, is widely suggested to have been instrumental in the intensification of Northern Hemisphere glaciation when large ice sheets first developed on North America and Eurasia during the late Pliocene, approximately 2.7 million years ago. Yet the mechanistic link and cause/effect relationship between ocean circulation and glaciation are debated. Here we present new records of North Atlantic Ocean structure using the carbon and neodymium isotopic composition of marine sediments recording deep water for both the Last Glacial to Holocene (35-5 thousand years ago) and the late Pliocene to earliest Pleistocene (3.3-2.4 million years ago). Our data show no secular change. Instead we document major southern-sourced water incursions into the deep North Atlantic during prominent glacials from 2.7 million years ago. Our results suggest that Atlantic circulation acts as a positive feedback rather than as an underlying cause of late Pliocene Northern Hemisphere glaciation. We propose that, once surface Southern Ocean stratification and/or extensive sea-ice cover was established, cold-stage expansions of southern-sourced water such as those documented here enhanced carbon dioxide storage in the deep ocean, helping to increase the amplitude of glacial cycles.

  3. Rapid reductions in North Atlantic Deep Water during the peak of the last interglacial period.

    PubMed

    Galaasen, Eirik Vinje; Ninnemann, Ulysses S; Irvalı, Nil; Kleiven, Helga Kikki F; Rosenthal, Yair; Kissel, Catherine; Hodell, David A

    2014-03-07

    Deep ocean circulation has been considered relatively stable during interglacial periods, yet little is known about its behavior on submillennial time scales. Using a subcentennially resolved epibenthic foraminiferal δ(13)C record, we show that the influence of North Atlantic Deep Water (NADW) was strong at the onset of the last interglacial period and was then interrupted by several prominent centennial-scale reductions. These NADW transients occurred during periods of increased ice rafting and southward expansions of polar water influence, suggesting that a buoyancy threshold for convective instability was triggered by freshwater and circum-Arctic cryosphere changes. The deep Atlantic chemical changes were similar in magnitude to those associated with glaciations, implying that the canonical view of a relatively stable interglacial circulation may not hold for conditions warmer and fresher than at present.

  4. Rapid freshening of the deep North Atlantic Ocean over the past four decades.

    PubMed

    Dickson, Bob; Yashayaev, Igor; Meincke, Jens; Turrell, Bill; Dye, Stephen; Holfort, Juergen

    2002-04-25

    The overflow and descent of cold, dense water from the sills of the Denmark Strait and the Faroe Shetland channel into the North Atlantic Ocean is the principal means of ventilating the deep oceans, and is therefore a key element of the global thermohaline circulation. Most computer simulations of the ocean system in a climate with increasing atmospheric greenhouse-gas concentrations predict a weakening thermohaline circulation in the North Atlantic as the subpolar seas become fresher and warmer, and it is assumed that this signal will be transferred to the deep ocean by the two overflows. From observations it has not been possible to detect whether the ocean's overturning circulation is changing, but recent evidence suggests that the transport over the sills may be slackening. Here we show, through the analysis of long hydrographic records, that the system of overflow and entrainment that ventilates the deep Atlantic has steadily changed over the past four decades. We find that these changes have already led to sustained and widespread freshening of the deep ocean.

  5. The sources of deep ocean infragravity waves observed in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Crawford, Wayne; Ballu, Valerie; Bertin, Xavier; Karpytchev, Mikhail

    2015-07-01

    Infragravity waves are long-period (25-250 s) ocean surface gravity waves generated in coastal zones through wave-wave interactions or oscillation of the breaking point. Most of the infragravity wave energy is trapped or dissipated near coastlines, but a small percentage escapes into the open oceans. The source of deep ocean infragravity waves is debated, specifically whether they come mostly from regions with strong source waves or from sites with particular morphologies/orientations. We correlate measurements of infragravity waves in the deep North Atlantic Ocean with infragravity wave generation parameters throughout the Atlantic Ocean to find the dominant sources of deep ocean infragravity wave energy in the North Atlantic Ocean. The deep ocean infragravity wave data are from a 5 year deployment of absolute pressure gauges west of the Azores islands (37°N, 35°W) and shorter data sets from seafloor tsunami gauges (DART buoys). Two main sources are identified: one off of the west coast of southern Europe and northern Africa (25°N-40°N) in northern hemisphere winter and the other off the west coast of equatorial Africa (the Gulf of Guinea) in southern hemisphere winter. These regions have relatively weak source waves and weak infragravity wave propagation paths to the main measurement site, indicating that that the site morphology/orientation dominates the creation of deep ocean infragravity waves. Both regions have also been identified as potential sources of global seismological noise, suggesting that the same mechanisms may be behind the generation of deep ocean infragravity waves and global seismological noise in the frequency band from 0.001 to 0.04 Hz.

  6. North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea

    DTIC Science & Technology

    2012-09-30

    high power, rubidium oscillator that is turned on once a day to check the frequency of a less precise, but low power, Q-Tech Microcomputer...understanding of (i) the basic physics of low- frequency , broadband propagation in deep water, including the effects of oceanographic variability on signal...stability and coherence, (ii) the structure of the ambient noise field in deep water at low frequencies , and (iii) the extent to which acoustic

  7. Reserve growth in oil fields of the North Sea

    USGS Publications Warehouse

    Klett, T.R.; Gautier, D.L.

    2005-01-01

    The assessment of petroleum resources of the North Sea, as well as other areas of the world, requires a viable means to forecast the amount of growth of reserve estimates (reserve growth) for discovered fields and to predict the potential fully developed sizes of undiscovered fields. This study investigates the utility of North Sea oil field data to construct reserve-growth models. Oil fields of the North Sea provide an excellent dataset in which to examine the mechanisms, characteristics, rates and quantities of reserve growth because of the high level of capital investments, implementation of sophisticated technologies and careful data collection. Additionally, these field data are well reported and available publicly. Increases in successive annual estimat es of recoverable crude oil volumes indicate that oil fields in the North Sea, collectively and in each country, experience reserve growth. Specific patterns of reserve growth are observed among countries and primary producing reservoir-rock types. Since 1985, Norwegian oil fields had the greatest volume increase; Danish oil fields increased by the greatest percentage relative to 1985 estimates; and British oil fields experienced an increase in recoverable oil estimates for the first ten years since 1985, followed by a slight reduction. Fields producing primarily from clastic reservoirs account for the majority of the estimated recoverable oil and, therefore, these fields had the largest volumetric increase. Fields producing primarily from chalk (limestone) reservoirs increased by a greater percentage relative to 1985 estimates than did fields producing primarily from clastic reservoirs. Additionally, the largest oil fields had the greatest volumetric increases. Although different reserve-growth patterns are observed among oil fields located in different countries, the small number of fields in Denmark precludes construction of reserve-growth models for that country. However, differences in reserve

  8. The transfer of bomb radiocarbon and anthropogenic lead to the deep North Atlantic Ocean observed from a deep sea coral

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Mi; Eltgroth, Selene F.; Boyle, Edward A.; Adkins, Jess F.

    2017-01-01

    Deep-ocean, Δ14C, Pb concentrations, and Pb isotopes were reconstructed from a deep-sea coral Enallopsammia rostrata from 1410 m depth off of Bermuda. Our high-resolution time series is created from closely spaced radial cross sections, with samples taken from the center of concentric coral growth bands that we show to be the oldest portion of the section. Prebomb radiocarbon ages from the coral demonstrate that the vertical growth rate of the coral is linear, and the age of the coral is estimated to be 560-630 yr old based on the growth rate. Using this age model to reconstruct Δ14C in deep seawater, we first detect bomb radiocarbon at the coral growth site around 1980, and show that Δ14C increased from - 80 ± 1 ‰ (average 1930-1979) to a plateau at - 39 ± 3 ‰ (1999-2001). Pb/Ca of the coral ranges between 1.1-4.5 nmol/mol during the 16th and 17th centuries, and Pb isotope ratios (206Pb/207Pb = 1.21, 208Pb/207Pb = 2.495) in this period agree with pre-anthropogenic values found in the pelagic sediments of the North Atlantic Ocean basin. Coral Pb/Ca is slightly elevated to 6.2 ± 0.9 nmol /mol between the 1740s and the 1850s and then increases to 25.1 ± 0.2 nmol /mol in the 1990s. The increase in coral Pb/Ca is accompanied by a decrease in coral 206Pb/207Pb and 208Pb/207Pb, indicating that the increase was caused by the infiltration of anthropogenic Pb to the coral growth site. Comparing our data to the surface coral Δ14C and Pb records from Bermuda reveals a time scale of tracer transport from the surface ocean to the coral growth site. Some characteristic features, e.g., the bomb-derived Δ14C increase, appear in the deep ocean approximately 25 yr later than the surface, but the overall increase of Δ14C and Pb in the deep ocean is smaller and slower than the surface, showing the importance of mixing during the transport of these tracers.

  9. Floating production systems hit stride in North Sea fields

    SciTech Connect

    Knott, D.

    1994-05-23

    Floating production system (FPS) technology has come of age in the North Sea. That's apparent in plans to use FPSs to tap two of Northwest Europe's largest offshore oil discoveries in the last 10 years. First North Sea oil production with a floater involved a converted semisubmersible drilling rig. Floaters have been in use for small field development projects ever since. Now, industry's rising interest in FPSs reflects two trends: As the North Sea matures, discoveries are likely to be in deeper, more remote locations; and Operators increasingly are under pressure to slash costs. The paper discusses UK trends, Norway's needs, the Norne field, Norne contract, discovery of oil west of the Shetland Islands, Shell-Esso plans, the UK Machar field test, the UK Fife field, and prospects for other potential floater developments.

  10. Climatic forcing of Quaternary deep-sea benthic communities in the North Pacific Ocean

    USGS Publications Warehouse

    Yasuhara, Moriaki; Hunt, G.; Cronin, T. M.; Hokanishi, N.; Kawahata, H.; Tsujimoto, Akira; Ishitake, M.

    2012-01-01

    There is growing evidence that changes in deep-sea benthic ecosystems are modulated by climate changes, but most evidence to date comes from the North Atlantic Ocean. Here we analyze new ostracod and published foraminiferal records for the last 250,000 years on Shatsky Rise in the North Pacific Ocean. Using linear models, we evaluate statistically the ability of environmental drivers (temperature, productivity, and seasonality of productivity) to predict changes in faunal diversity, abundance, and composition. These microfossil data show glacial-interglacial shifts in overall abundances and species diversities that are low during glacial intervals and high during interglacials. These patterns replicate those previously documented in the North Atlantic Ocean, suggesting that the climatic forcing of the deep-sea ecosystem is widespread, and possibly global in nature. However, these results also reveal differences with prior studies that probably reflect the isolated nature of Shatsky Rise as a remote oceanic plateau. Ostracod assemblages on Shatsky Rise are highly endemic but of low diversity, consistent with the limited dispersal potential of these animals. Benthic foraminifera, by contrast, have much greater dispersal ability and their assemblages at Shatsky Rise show diversities typical for deep-sea faunas in other regions. Statistical analyses also reveal ostracod-foraminferal differences in relationships between environmental drivers and biotic change. Rarefied diversity is best explained as a hump-shaped function of surface productivity in ostracods, but as having a weak and positive relationship with temperature in foraminifera. Abundance shows a positive relationship with both productivity and seasonality of productivity in foraminifera, and a hump-shaped relationship with productivity in ostracods. Finally, species composition in ostracods is influenced by both temperature and productivity, but only a temperature effect is evident in foraminifera. Though

  11. Gyre-scale deep convection in the subpolar North Atlantic Ocean during winter 2014-2015

    NASA Astrophysics Data System (ADS)

    Piron, A.; Thierry, V.; Mercier, H.; Caniaux, G.

    2017-02-01

    Using Argo floats, we show that a major deep convective activity occurred simultaneously in the Labrador Sea (LAB), south of Cape Farewell (SCF), and the Irminger Sea (IRM) during winter 2014-2015. Convection was driven by exceptional heat loss to the atmosphere (up to 50% higher than the climatological mean). This is the first observation of deep convection over such a widespread area. Mixed layer depths exceptionally reached 1700 m in SCF and 1400 m in IRM. The deep thermocline density gradient limited the mixed layer deepening in the Labrador Sea to 1800 m. Potential densities of deep waters were similar in the three basins (27.73-27.74 kg m-3) but warmer by 0.3°C and saltier by 0.04 in IRM than in LAB and SCF, meaning that each basin formed locally its own deep water. The cold anomaly that developed recently in the North Atlantic Ocean favored and was enhanced by this exceptional convection.

  12. Decoupling of Northern North Atlantic Sea Surface Temperature and Deep Circulation during Abrupt Glacial Climate Change

    NASA Astrophysics Data System (ADS)

    Jonkers, L.; Barker, S.; Hall, I. R.

    2014-12-01

    Abrupt climate change is a prominent feature of the ice ages. The prevailing view is that these changes are related to fluctuations in ocean circulation, possibly triggered by changes in freshwater forcing as a result of ice-rafting events in the North Atlantic. Here we investigate this view by presenting results from a sediment core in the Northern North Atlantic (ODP 983 60.4°N, 23.6°W, 1984m depth, ~12-35 kyr), which is ideally positioned to monitor changes in the flow speed of Iceland-Scotland Overflow Waters. The mean size of silt (10-63 μm) has been proposed as a useful flow speed indicator, but can be influenced the presence of ice-rafted detritus (IRD). We present grain size data obtained using a Coulter counter as well as a laser diffraction particle sizer, which we compare to the proportion of Neogloboquadrina pachyderma (proxy for sea surface temperature) and manually counted coarse IRD. Grain size results are comparable for the two techniques and the influence of IRD is clearly visible in the mean size data. We use end-member modelling to derive an IRD-free estimate of flow speed variability and find clear reductions in the flow speed associated with IRD input. Sea surface temperature however, appears to vary independently from IRD input and hence deep circulation. In particular, IRD appears and current speed decreases after the onset of cooling and additional temperature variability is observed that is not associated with IRD events or changes in the deep circulation. These results question the classical view of freshwater forcing as the driver of abrupt climate change. We suggest that North Atlantic temperature variability may be related to shifts in position of the polar front and that, while IRD events may be coeval with changes in the deep circulation, these changes are not required to explain the abrupt temperature variability in the Northern North Atlantic.

  13. Deglacial pulses of deep-ocean silicate into the subtropical North Atlantic Ocean.

    PubMed

    Meckler, A N; Sigman, D M; Gibson, K A; François, R; Martínez-García, A; Jaccard, S L; Röhl, U; Peterson, L C; Tiedemann, R; Haug, G H

    2013-03-28

    Growing evidence suggests that the low atmospheric CO2 concentration of the ice ages resulted from enhanced storage of CO2 in the ocean interior, largely as a result of changes in the Southern Ocean. Early in the most recent deglaciation, a reduction in North Atlantic overturning circulation seems to have driven CO2 release from the Southern Ocean, but the mechanism connecting the North Atlantic and the Southern Ocean remains unclear. Biogenic opal export in the low-latitude ocean relies on silicate from the underlying thermocline, the concentration of which is affected by the circulation of the ocean interior. Here we report a record of biogenic opal export from a coastal upwelling system off the coast of northwest Africa that shows pronounced opal maxima during each glacial termination over the past 550,000 years. These opal peaks are consistent with a strong deglacial reduction in the formation of silicate-poor glacial North Atlantic intermediate water (GNAIW). The loss of GNAIW allowed mixing with underlying silicate-rich deep water to increase the silicate supply to the surface ocean. An increase in westerly-wind-driven upwelling in the Southern Ocean in response to the North Atlantic change has been proposed to drive the deglacial rise in atmospheric CO2 (refs 3, 4). However, such a circulation change would have accelerated the formation of Antarctic intermediate water and sub-Antarctic mode water, which today have as little silicate as North Atlantic Deep Water and would have thus maintained low silicate concentrations in the Atlantic thermocline. The deglacial opal maxima reported here suggest an alternative mechanism for the deglacial CO2 release. Just as the reduction in GNAIW led to upward silicate transport, it should also have allowed the downward mixing of warm, low-density surface water to reach into the deep ocean. The resulting decrease in the density of the deep Atlantic relative to the Southern Ocean surface promoted Antarctic overturning

  14. Earthquakes and Ice Cores Point to Wet Feet at the NorthGRIP Deep Drill Site

    NASA Astrophysics Data System (ADS)

    Dahl-Jensen, D.; Dahl-Jensen, T.; Gundestrup, N. S.

    2001-12-01

    A seismic broadband station was placed at the NorthGRIP deep drill site (75N, 42W) on the Greenland Ice Cap for the summer 2000. During the 2 month acquisition period 15 earthquakes with sufficient quality for Receiver Function analysis aimed at crust and mantle structure under NorthGRIP were recorded. The models are consistent with the presence of a thin sedimentary layer at the base of the ice. The seismic velocities in the sediments are lower than in the ice, indicating wet sediments. The results from the deep drilling program reveal high basal temperatures at the base of the 3080 m thick ice at NorthGRIP. The measured temperatures and the observed layer thickness' in the ice core indicate that there is basal melting of the order of 5 mm /yr. and that the geothermal heatflow is of the order of 100 mW/m2 (REF), much higher than expected. A detailed radio echo mapping of the bedrock show that NorthGRIP is located in a large, flat-bottomed valley, suggesting that the sediments observed are lacustrine. The thin layer of sediments cannot account for the unexpected high heatflow causing equally unexpected basal melting. The geology is presumed to be Precambrian. Heatflow determined in a similar way at the GRIP deep drill site (73N, 38W) is 51 mW/ m2 (Dahl-Jensen et al, 1998), more in line with expected values. Magnetic anomaly data do not indicate any volcanic structures, which could help explain the high heatflow. Gravity anomaly data show that NorthGRIP is located at the edge of marked gravity discontinuity. The cause of the discontinuity is not known, but "edge effects" could be speculated upon to be the cause of the high heatflow. D. Dahl-Jensen, N. Gundestrup, H. Miller, O. Watanabe, S.J. Johnsen, J.P. Steffensen, H.B. Clausen, A. Svensson, L.B. Larsen in press: The NorthGRIP drilling program. Annals of Glaciology, vol 35 D. Dahl-Jensen, K Mosegaard, N. Grundestrup, G.D. Clow, S.J. Johnson and N. Balling 1998: Past Temperatures Directly from the Greenland Ice

  15. Anomalous Capacitive Sheath with Deep Radio Frequency Electric Field Penetration

    SciTech Connect

    Igor D. Kaganovich

    2002-01-18

    A novel nonlinear effect of anomalously deep penetration of an external radio-frequency electric field into a plasma is described. A self-consistent kinetic treatment reveals a transition region between the sheath and the plasma. Because of the electron velocity modulation in the sheath, bunches in the energetic electron density are formed in the transition region adjusted to the sheath. The width of the region is of order V(subscript T)/omega, where V(subscript T) is the electron thermal velocity, and w is frequency of the electric field. The presence of the electric field in the transition region results in a cooling of the energetic electrons and an additional heating of the cold electrons in comparison with the case when the transition region is neglected.

  16. Distribution of Thermophilic Marine Sulfate Reducers in North Sea Oil Field Waters and Oil Reservoirs

    PubMed Central

    Nilsen, R. K.; Beeder, J.; Thorstenson, T.; Torsvik, T.

    1996-01-01

    The distribution of thermophilic marine sulfate reducers in produced oil reservoir waters from the Gullfaks oil field in the Norwegian sector of the North Sea was investigated by using enrichment cultures and genus-specific fluorescent antibodies produced against the genera Archaeoglobus, Desulfotomaculum, and Thermodesulforhabdus. The thermophilic marine sulfate reducers in this environment could mainly be classified as species belonging to the genera Archaeoglobus and Thermodesulforhabdus. In addition, some unidentified sulfate reducers were present. Culturable thermophilic Desulfotomaculum strains were not detected. Specific strains of thermophilic sulfate reducers inhabited different parts of the oil reservoir. No correlation between the duration of seawater injection and the numbers of thermophilic sulfate reducers in the produced waters was observed. Neither was there any correlation between the concentration of hydrogen sulfide and the numbers of thermophilic sulfate reducers. The results indicate that thermophilic and hyperthermophilic sulfate reducers are indigenous to North Sea oil field reservoirs and that they belong to a deep subterranean biosphere. PMID:16535321

  17. Petrographically deduced triassic climate for the Deep River Basin, eastern piedmont of North Carolina

    SciTech Connect

    McCarn, S.T.; Mansfield, C.F.

    1985-01-01

    A petrographic comparison of Triassic, fluvial sandstones from the Deep River Basin in the eastern piedmont of North Carolina with nearby Holocene stream sands (1) indicates that he Triassic climate was more arid than today's and (2) distinguishes an eastern, more plutonic terrane from a western, more metamorphic source terrane. The paleoclimatic interpretation is based on differences in framework composition between modern and ancient sands of the same grain size, derived from the same rock type, transported similar distances and deposited in similar settings. The Triassic sandstones contain more lithic-fragments but less quartz than otherwise equivalent, modern sand in the Deep River Basin. Feldspar content is more complex, controlled by both source-rock composition and climate. Sand from the more plutonic terrane contains more feldspar and plutonic lithic-fragments than sand from the more metamorphic terrane, which contains more quartz and metamorphic lithic-fragments. This petrographic interpretation of the Triassic sandstones along with the presence of coal, limestone, chert and caliche in the middle of the section suggests that the Triassic climate was cyclic, changing from arid to humid and back to arid. Plate-tectonic reconstructions place the Deep River Basin between the Triassic equator and Tropic of cancer, where the easterly trade winds would predominate. Therefore, the arid portions of the cycle could have been due to a periodic, orographic, rain shadow formed as the result of intermittent movement along the Jonesboro Fault, creating a highland area east of the Deep River Basin.

  18. Nd isotopes in deep-sea corals in the North-eastern Atlantic

    NASA Astrophysics Data System (ADS)

    Copard, Kevin; Colin, Christophe; Douville, Eric; Freiwald, Andre; Gudmundsson, Gudmundur; De Mol, Ben; Frank, Norbert

    2010-09-01

    Neodymium (Nd) concentrations and isotopic signatures of living and fossil deep-sea coral species Lophelia pertusa, Desmophyllum dianthus and Madrepora oculata from the northeast Atlantic Ocean have been investigated in order to test the ability of deep-sea corals to reconstruct the seawater Nd isotopic signature and past changes of ocean circulation in the eastern North Atlantic. Small quantities of Nd—less than 45 ng/g—are incorporated into the aragonite skeleton of living deep-sea corals that dwell at upper intermediate depths throughout the Northeast Atlantic. Rigorous cleaning techniques are needed in order to avoid Nd contamination from manganese-oxide and iron hydroxide coatings. Moreover, Nd isotopic compositions have been measured using thermal ionization mass spectrometry (TIMS) by Nd-oxide method. Our data indicate that the isotopic signatures of modern corals are similar to those of adjacent water masses, implying that deep-sea corals can serve as an archive of the seawater Nd isotopic compositions in the past. The first results from few fully-cleaned fossils corals collected within the Porcupine Seabight and the southwest Rockall Bank reveal significantly higher ɛNd for corals dated between 150 ± 40 and 3060 ± 90 yrs than those of the living corals located in similar areas. This suggests rapid hydrological variations along the eastern margin of the North Atlantic Ocean at intermediate water depth with higher contribution of the Mediterranean Overflow Waters (MOW) or other temperate Atlantic mid-depth water masses (ENACW or NAC) in the past.

  19. Deep Medium-Band Subaru Imaging of the MUSYC Extended Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Urry, C. Megan; Cardamone, C.; van Dokkum, P.; Gawiser, E.; Brammer, G.; Taylor, N.; Treister, E.; Taniguchi, Y.; Sasaki, S.; Virani, S.; Kriek, M.

    2009-01-01

    We report on deep medium-band imaging with the Subaru telescope, in 18 filters from 427 nm to 856 nm, of the MUSYC survey field in the Extended Chandra Deep Field South. We detect 80,000 galaxies to equivalent magnitude R 27 mag, of which approximately 1,000 are X-ray-luminous AGN observed with Chandra and XMM. Combining the Subaru data with optical and IR data (in U,U38,B,V,R,I,z,J,K) we obtain photometric redshifts using EAZY, a fast public photometric redshift code, in the range 0

  20. The mantle flow field beneath western North America.

    PubMed

    Silver, P G; Holt, W E

    2002-02-08

    Although motions at the surface of tectonic plates are well determined, the accompanying horizontal mantle flow is not. We have combined observations of surface deformation and upper mantle seismic anisotropy to estimate this flow field for western North America. We find that the mantle velocity is 5.5 +/- 1.5 centimeters per year due east in a hot spot reference frame, nearly opposite to the direction of North American plate motion (west-southwest). The flow is only weakly coupled to the motion of the surface plate, producing a small drag force. This flow field is probably due to heterogeneity in mantle density associated with the former Farallon oceanic plate beneath North America.

  1. Instructor's Field Manual: North Carolina Outward Bound School.

    ERIC Educational Resources Information Center

    Outward Bound, Morganton, NC.

    A supplement to the North Carolina Outward Bound School's Instructor's Handbook, this field manual presents useful, but not required, information gleaned from old timers and resource books which may enable the instructor to conduct a better course. Section one considers advantages and disadvantages and provides directions and topographical maps…

  2. Meteoroid mayhem in Ole Virginny: source of the North American tektite strewn field

    USGS Publications Warehouse

    Poag, C.W.; Powars, D.S.; Poppe, L.J.; Mixon, R.B.

    1994-01-01

    New seismic reflection data from Chesapeake Bay reveal a buried, 85-km-wide, 1.5-2.0-km-deep, peak-ring impact crater, carved through upper Eocene to Lower Cretaceous sedimentary strata and into underlying pre-Mesozoic crystalline basement rocks. A polymictic, late Eocene impact breccia, composed mainly of locally derived sedimentary debris (determined from four continuous cores), surrounds and partly fills the crater. Structural and sedimentary characteristics of the Chesapeake Bay crater closely resemble those of the Miocene Ries peak-ring crater in southern Germany. It is speculated that the Chesapeake Bay crater is the source of the North American tektite strewn field. -Authors

  3. Meteoroid mayhem in Ole Virginny: Source of the North American tektite strewn field

    USGS Publications Warehouse

    Poag, C. Wylie; Powars, David S.; Poppe, Lawrence J.; Mixon, Robert B.

    1994-01-01

    New seismic reflection data from Chesapeake Bay reveal a buried, 85-km-wide, 1.5-2.0-km-deep, peak-ring impact crater, carved through upper Eocene to Lower Cretaceous sedimentary strata and into underlying pre-Mesozoic crystalline basement rocks. A polymictic, late Eocene impact breccia, composed mainly of locally derived sedimentary debris (determined from four continuous cores), surrounds and partly fills the crater. Structural and sedimentary characteristics of the Chesapeake Bay crater closely resemble those of the Miocene Ries peakring crater in southern Germany. We speculate that the Chesapeake Bay crater is the source of the North American tektite strewn field.

  4. Circulation and deep water export of the subpolar North Atlantic during the 1990's

    NASA Astrophysics Data System (ADS)

    Schott, Friedrich A.; Brandt, Peter

    Moored array observations and deep float trajectories have allowed an improved quantification of the deep subpolar circulation, in particular regarding the Deep Western Boundary Currents (DWBCs) at the exit of the subpolar gyre and the circulation of Labrador Sea Water (LSW). With the decrease of Labrador Sea deep convection during the mid 1990's, LSW salinity and temperature increased by 0.005/yr and 0.06°C/yr, respectively, over the past decade through eddy exchange with the warmer, saltier boundary current water. At the same time, water masses with upper LSW properties were generated in large quantities by shallow convection compensating the lack of classical LSW formation. Sea-level observations and model simulations have pointed to a decrease of the large-scale near-surface cyclonic subpolar gyre circulation over the past decade and we compare the associated gyre indices. The LSW-level currents at the exit of the Labrador Sea, however, show a strengthening during 1997-2005, while the DWBC east of the Grand Banks showed no significant changes from the period 1993-95 to 2005. The mean Meridional Overturning Circulation (MOC) at the exit of the subpolar gyre has been estimated by several inverse model studies to be 16±2 Sv and the corresponding heat transport at 0.61±0.07 PW. Inverse analysis for MOC variations among five hydrographic sections taken during 1993-2000 across the North Atlantic at approximately 48°N found no detectable decadal trend nor large changes, with the estimates of the MOC intensity varying among the five realizations only from 13.8 to 16.6 Sv. Two assimilation models, ECCO and SODA-POP, are evaluated for MOC variability at the exit of the subpolar basin. Only small MOC changes are found, with no indication of a decadal "MOC slowdown", in agreement also with the observed deep boundary currents in the western outflow regime.

  5. Taxonomy of quaternary deep-sea ostracods from the Western North Atlantic ocean

    USGS Publications Warehouse

    Yasuhara, Moriaki; Okahashi, H.; Cronin, T. M.

    2009-01-01

    Late Quaternary sediments from Ocean Drilling Program (ODP) Hole 1055B, Carolina Slope, western North Atlantic (32??47.041??? N, 76??17.179??? W; 1798m water depth) were examined for deep-sea ostracod taxonomy. A total of 13933 specimens were picked from 207 samples and c. 120 species were identified. Among them, 87 species were included and illustrated in this paper. Twenty-eight new species are described. The new species are: Ambocythere sturgio, Argilloecia abba, Argilloecia caju, Argilloecia keigwini, Argilloecia robinwhatleyi, Aversovalva carolinensis, Bythoceratina willemvandenboldi, Bythocythere eugeneschornikovi, Chejudocythere tenuis, Cytheropteron aielloi, Cytheropteron demenocali, Cytheropteron didieae, Cytheropteron richarddinglei, Cytheropteron fugu, Cytheropteron guerneti, Cytheropteron richardbensoni, Eucytherura hazeli, Eucytherura mayressi, Eucytherura namericana, Eucytherura spinicorona, Posacythere hunti, Paracytherois bondi, Pedicythere atroposopetasi, Pedicythere kennettopetasi, Pedicythere klothopetasi, Pedicythere lachesisopetasi, Ruggieriella mcmanusi and Xestoleberis oppoae. Taxonomic revisions of several common species were made to reduce taxonomic uncertainty in the literature. This study provides a robust taxonomic baseline for application to palaeoceanographical reconstruction and biodiversity analyses in the deep and intermediate-depth environments of the North Atlantic Ocean. ?? The Palaeontological Association, 2009.

  6. QSOs and Intervening Absorbers around the Hubble Deep Field

    NASA Astrophysics Data System (ADS)

    Vanden Berk, D. E.; Stoughton, C.; Crotts, A. P. S.; Tytler, D.; Kirkman, D.

    1999-12-01

    We have imaged a 45 arcmin by 45 arcmin area centered on the Hubble Deep Field (HDF) in UBVRI passbands, down to respective limiting magnitudes of approximately 21.5, 22.5, 22.2, 22.2 and 21.2. The principal goals of the survey are to identify QSOs and to map structure traced by luminous galaxies and QSO absorption line systems in a wide volume containing the HDF. The area surveyed is 400 times that of the HDF, and 40 times that of the HDF Flanking Fields. We have selected QSO candidates from color space, and identified four QSOs and two narrow emission-line galaxies (NELGs) which have not previously been discovered, bringing the total number of known QSOs in the area to 20. The bright z=1.31 QSO only 12 arcmin away from the HDF fulfills for the northern HDF the design goal of HDFS, which was selected for its proximity to a bright QSO. About half of the QSO candidates remain for spectroscopic verification. Absorption line spectroscopy has been obtained for three bright QSOs in the field, using the Keck 10m, McDonald 2.7m, and MDM 2.4m telescopes. Five heavy-element absorption line systems have been identified, three of which overlap the well-explored redshift range covered by deep galaxy redshift surveys towards the HDF. The two absorbers occur at the same redshift as the second most populated redshift peak in the galaxy distribution, but each is more than 7/h Mpc (comoving) away from the HDF line of sight in the transverse dimension, indicating large sheet-like structures traversing the HDF at high redshift.

  7. Deep Borehole Field Test Laboratory and Borehole Testing Strategy

    SciTech Connect

    Kuhlman, Kristopher L.; Brady, Patrick V.; MacKinnon, Robert J.; Heath, Jason E.; Herrick, Courtney G.; Jensen, Richard P.; Gardner, W. Payton; Sevougian, S. David; Bryan, Charles R.; Jang, Je-Hun; Stein, Emily R.; Bauer, Stephen J.; Daley, Tom; Freifeld, Barry M.; Birkholzer, Jens; Spane, Frank A.

    2016-09-19

    Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test design will demonstrate the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD. DOE sought input or expression of interest from States, local communities, individuals, private groups, academia, or any other stakeholders willing to host a Deep Borehole Field Test (DBFT). The DBFT includes drilling two boreholes nominally 200m [656’] apart to approximately 5 km [16,400’] total depth, in a region where crystalline basement is expected to begin at less than 2 km depth [6,560’]. The characterization borehole (CB) is the smaller-diameter borehole (i.e., 21.6 cm [8.5”] diameter at total depth), and will be drilled first. The geologic, hydrogeologic, geochemical, geomechanical and thermal testing will take place in the CB. The field test borehole (FTB) is the larger-diameter borehole (i.e., 43.2 cm [17”] diameter at total depth). Surface handling and borehole emplacement of test package will be demonstrated using the FTB to evaluate engineering feasibility and safety of disposal operations (SNL 2016).

  8. Site Characterization for a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Hardin, E. L.; Freeze, G. A.; Sassani, D.; Brady, P. V.

    2015-12-01

    The US Department of Energy Office of Nuclear Energy is at the beginning of 5-year Deep Borehole Field Test (DBFT) to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages over mined repositories, including incremental construction and loading, the enhanced natural barriers provided by deep continental crystalline basement, and reduced site characterization. Site characterization efforts need to determine an eligible site that does not have the following disqualifying characteristics: greater than 2 km to crystalline basement, upward vertical fluid potential gradients, presence of economically exploitable natural resources, presence of high permeability connection to the shallow subsurface, and significant probability of future seismic or volcanic activity. Site characterization activities for the DBFT will include geomechanical (i.e., rock in situ stress state, and fluid pressure), geological (i.e., rock and fracture infill lithology), hydrological (i.e., quantity of fluid, fluid convection properties, and solute transport mechanisms), and geochemical (i.e., rock-water interaction and natural tracers) aspects. Both direct (i.e., sampling and in situ testing) and indirect (i.e., borehole geophysical) methods are planned for efficient and effective characterization of these site aspects and physical processes. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth, and interpretation of material and system parameters relevant to numerical site simulation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  9. Deep Vadose Zone–Applied Field Research Initiative Fiscal Year 2012 Annual Report

    SciTech Connect

    Wellman, Dawn M.; Truex, Michael J.; Johnson, Timothy C.; Bunn, Amoret L.; Golovich, Elizabeth C.

    2013-03-14

    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2012.

  10. Grace-Derived Groundwater Depletion from Both Shallow and Deep Aquifers within North China Plain

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Huang, Z.; Yeh, P. J. F.; Gong, H.

    2014-12-01

    This study explores the capability of GRACE to detect groundwater storage variations in the two sub-regions in the North China Plain (NCP): the Piedmont Plain (PP, mainly shallow unconfined-aquifers) and East-Central Plain (ECP, mainly deep confined-aquifers), both of which have the areas smaller than the typical GRACE footprint (~200,000 km2). Our assessments were based on the forward modeling method using GRACE release-05 (RL-05) solutions, hydrological models (2003-2013), and in situ groundwater level measurements (2005~2010) from both shallow and deep aquifers. Results show that the GRACE-derived GWS variation in the PP experienced a severe depletion of GWS (-46.5±6.4 mm yr-1) over the past decade, nearly 3 times that of the ECP (-16.9±2.1 mm yr-1). There were apparent renewal episodes of GWS (e.g. since 2010) in PP, which may reveal the high replenishing capability of unconfined aquifers. Despite the lower depletion rate, the deep GWS with poor recoverability may have been overexploited. The depletion rate (-16.9±2.1 mm yr-1) exceeded the maximum allowable depletion rate (~12.4 mm yr-1) based on a 50-year groundwater budget.

  11. Advection of North Atlantic Deep Water from the Labrador Sea to the southern hemisphere

    NASA Astrophysics Data System (ADS)

    Rhein, Monika; Kieke, Dagmar; Steinfeldt, Reiner

    2015-04-01

    Recently formed Labrador Seawater (LSW) and overflow water from Denmark Strait (DSOW) are main components of the Atlantic Meridional Overturning Circulation. Both exhibit a distinct chlorofluorocarbon (CFC) maximum. Here we use 25 years of CFC observations in the Atlantic to study the main features of the circulation of LSW and DSOW. From the CFC data, the age and fraction of young deep water are inferred. Due to the superior spatial data resolution compared to former attempts, regional differences in the spreading velocity and pathways of young deep water become evident, dependent on the regional circulation. The observed distributions of young LSW and DSOW showed that the DWBC is the fastest pathway to reach the southern hemisphere. The downstream decrease of the fractions of young LSW in the DWBC is slower compared to model studies. From 47°N to 42°N, DWBC transports of young LSW and DSOW decrease by 44% and 49%, respectively. At 26°N, the DWBC transport of young water is still 39% of the LSW formation rate and 44% of the DSOW overflow transport. Interior pathways also exist, especially in the subpolar North Atlantic and in the transition zone between the subpolar and subtropical gyre. Compared to DSOW, the distributions indicate a higher tendency for LSW to follow additional interior pathways. North of 45°N the major part of LSW is younger than 20 years. The general weakening of new LSW formation since the 1990s worked toward a homogenization between the LSW in the western and the eastern subpolar North Atlantic.

  12. D" Discontinuity Structure Beneath the North Atlantic Based on Observations from the Deep 2010 Spanish Earthquake

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Whittaker, S.; Thorne, M. S.

    2014-12-01

    The D" discontinuity is typically observed as an increase in P- and S-wave velocity of 1-3% roughly 150-300 km above the CMB. The discontinuity shows strong laterally variability in spatial location and height above the CMB. Previous studies have revealed strong evidence for the existence of the discontinuity under North Central Asia, Alaska, the Arctic, Australasia, and Central America, but only a handful of observations have been made beneath the North Atlantic due to the limited numbers of deep earthquakes in Europe. We collected transverse component recordings from all available broadband stations in the USArray to examine the D" discontinuity structure under the North Atlantic using array processing techniques. We searched for earthquakes in the European region between Jan. 2005 and Jun. 2014 with moment magnitudes between 5.5 and 7.5, event depths greater than 75 km, and epicentral distances from 55° to 90°. A total of five events were found matching these criteria. We collected a total of 2077 transverse component seismograms. We inspected each trace manually and removed traces without clear S and ScS arrivals. The remaining traces were aligned and normalized to unity on the S-wave arrival and collected into 3° geographic bins. We calculated velocity seismograms (vespagrams) for each geographic bin and screened vespagrams based on signal-to-noise ratio and slowness resolution of S and ScS. Only the 616 km deep M6.3 southern Spain event of April 11th, 2010 demonstrated high enough data quality. A total of 372 transverse traces from this event were collected into 39 3° geographic bins. Clear Scd arrivals indicative of the D" discontinuity were identified on 20 out of 39 vespagrams. We calculated the height of the D" discontinuity above the CMB for each Scd observation based on the travel time difference between S and Scd. The results indicate a D" discontinuity with an average thickness of 261 km above the CMB beneath the North Atlantic between 45°-60° N

  13. The redshift evolution of clustering in the Hubble Deep Field

    NASA Astrophysics Data System (ADS)

    Magliocchetti, M.; Maddox, S. J.

    1999-07-01

    We present a correlation function analysis for the catalogue of photometric redshifts obtained from the Hubble Deep Field image by Fernandez-Soto, Lanzetta & Yahil. By dividing the catalogue into redshift bins of width Deltaz=0.4 we measured the angular correlation function w(theta) as a function of redshift up to z~4.8. From these measurements we derive the trend of the correlation length r_0. We find that r_0(z) is roughly constant with look-back time up to z~=2, and then increases to higher values at z>~2.4. We estimate the values of r_0, assuming xi(r,z)=[rr_0(z)]^-gamma, gamma=1.8 and various geometries. For Omega_0=1 we find r_0(z=3)~=7.00+/-4.87h^-1Mpc, in good agreement with the values obtained from analysis of the Lyman break galaxies.

  14. Deep Geothermal Energy for Lower Saxony (North Germany) - Combined Investigations of Geothermal Reservoir Characteristics

    NASA Astrophysics Data System (ADS)

    Hahne, Barbara; Thomas, Rüdiger

    2014-05-01

    In Germany, successful deep geothermal projects are mainly situated in Southern Germany in the Molassebecken, furthermore in the Upper Rhine Graben and, to a minor extend, in the North German Basin. Mostly they are hydrothermal projects with the aim of heat production. In a few cases, they are also constructed for the generation of electricity. In the North German Basin temperature gradients are moderate. Therefore, deep drilling of several thousand meters is necessary to reach temperatures high enough for electricity production. However, the porosity of the sedimentary rocks is not sufficient for hydrothermal projects, so that natural fracture zones have to be used or the rocks must be hydraulically stimulated. In order to make deep geothermal projects in Lower Saxony (Northern Germany) economically more attractive, the interdisciplinary research program "Geothermal Energy and High-Performance Drilling" (gebo) was initiated in 2009. It comprises four focus areas: Geosystem, Drilling Technology, Materials and Technical System and aims at improving exploration of the geothermal reservoir, reducing costs of drilling and optimizing exploitation. Here we want to give an overview of results of the focus area "Geosystem" which investigates geological, geophysical, geochemical and modeling aspects of the geothermal reservoir. Geological and rock mechanical investigations in quarrys and core samples give a comprehensive overview on rock properties and fracture zone characteristics in sandstones and carbonates. We also show that it is possible to transfer results of rock property measurements from quarry samples to core samples or to in situ conditions by use of empirical relations. Geophysical prospecting methods were tested near the surface in a North German Graben system. We aim at transferring the results to the prospection of deep situated fracture zones. The comparison of P- and S-wave measurements shows that we can get hints on a possible fluid content of the

  15. North south asymmetry in the coronal and photospheric magnetic fields

    NASA Astrophysics Data System (ADS)

    Virtanen, I.; Mursula, K.

    2013-12-01

    Several recent studies have shown that the Heliospheric current sheet (HCS) is southward shifted during about three years in the solar declining phase (the so-called bashful ballerina phenomenon). We study the hemispherical asymmetry in the photospheric and coronal magnetic fields using Wilcox Solar Observatory (WSO) measurements of the photospheric magnetic field since 1976 and the potential field source surface (PFSS) model. Multipole analysis of the photospheric magnetic field shows that during the late declining phase of solar cycles since 1970s, bashful ballerina phenomenon is a consequence of g02 quadrupole term, signed oppositely to the dipole moment. Surges of new flux transport magnetic field from low latitudes to the poles, thus leading to a systematically varying contribution to the g02-term from different latitudes. In the case of a north-south asymmetric flux production this is seen as a quadrupole contribution traveling towards higher latitudes. When the quadrupole term is largest the main contribution comes from the polar latitudes. At least during the four recent solar cycles the g02-term arises because the magnitude of the southern polar field is larger than in the north in the declining phase of the cycle. Magnetic flux is transported polewards by the meridional flow and it is most likely that besides the north-south asymmetric production of the magnetic flux, also the asymmetric transportation may significantly contribute to the observed asymmetry of polar field intensities. The overall activity during solar cycle is not significantly different in the northern and southern hemispheres, but hemispheres tend to develop in a different phase.

  16. North Field 󈨛 Rapid Runway Repair Test Report. Volume 1.

    DTIC Science & Technology

    1988-11-01

    the grass, south of the repair site. Paint, polymer, and solvent, as well as storage drums for paint and polymer wastes, were stored in a designated ...events began. Fire and crash rescue support was provided by North Auxiliary Field. A "hot brakes" area was designated at the intersection of the NE/SW...upheaval and sag limits for each repair. Computer simulations, using the results of a runway survey and a test limit of 80 percent design limit load for

  17. Site Guidelines for a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Sassani, D.; Kuhlman, K. L.; Freeze, G. A.; MacKinnon, R. J.; Perry, F.

    2015-12-01

    The US DOE Office of Nuclear Energy Used Nuclear Fuel Disposition Campaign (UFDC) is initiating a Deep Borehole Field Test (DBFT), without use of any radioactive waste, to evaluate the geoscience of the approach and technical capabilities for implementation. DOE has identified Sandia National Laboratories (SNL) as the Technical Lead for the UFDC DBFT Project, with the role of supporting DOE in (i) developing the overall DBFT Project Plan, (ii) management and integration of all DBFT Project activities, and (iii) providing Project technical guidance to DOE, other DOE National Laboratories, and university partners. The DBFT includes drilling one Characterization Borehole (CB-8.5" diameter), followed by an optional Field Test Borehole (FTB), to a depth of about 5,000 m (16,400 feet) into crystalline basement rock in a geologically stable continental location. The DBFT CB will be drilled and completed to facilitate downhole scientific testing and analyses. If site conditions are found to be favorable, DOE may drill the larger-diameter (17") FTB to facilitate proof-of-concept of handling, emplacement, and retrieval activities using surrogate waste containers. Guidelines for favorable DBFT site geohydrochemical and geomechanical conditions will be discussed and status of the DBFT Project will be provided. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6426A.

  18. Surface electric fields for North America during historical geomagnetic storms

    USGS Publications Warehouse

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  19. Surface electric fields for North America during historical geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Wei, Lisa H.; Homeier, Nicole; Gannon, Jennifer L.

    2013-08-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 "Quebec" storm and the 2003 "Halloween" storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  20. Evidence for deep-water production in the North Pacific Ocean during the early Cenozoic warm interval.

    PubMed

    Thomas, Deborah J

    2004-07-01

    The deep-ocean circulation is responsible for a significant component of global heat transport. In the present mode of circulation, deep waters form in the North Atlantic and Southern oceans where surface water becomes sufficiently cold and dense to sink. Polar temperatures during the warmest climatic interval of the Cenozoic era (approximately 65 to 40 million years (Myr) ago) were significantly warmer than today, and this may have been a consequence of enhanced oceanic heat transport. However, understanding the relationship between deep-ocean circulation and ancient climate is complicated by differences in oceanic gateways, which affect where deep waters form and how they circulate. Here I report records of neodymium isotopes from two cores in the Pacific Ocean that indicate a shift in deep-water production from the Southern Ocean to the North Pacific approximately 65 Myr ago. The source of deep waters reverted back to the Southern Ocean 40 Myr ago. The relative timing of changes in the neodymium and oxygen isotope records indicates that changes in Cenozoic deep-water circulation patterns were the consequence, not the cause, of extreme Cenozoic warmth.

  1. Egg brooding by deep-sea octopuses in the North Pacific Ocean.

    PubMed

    Voight, J R; Grehan, A J

    2000-02-01

    Videotapes made from the submersible Alvin on Baby Bare, a 2600-m-deep North Pacific basalt outcrop, and at two other deep-sea localities document that octopuses of the genera Graneledone and Benthoctopus attach their eggs to hard substrate and apparently brood them through development. The behavior of brooding females was generally similar to that of shallow-water octopuses, but the genera showed apparent differences. In addition to the high density of brooding females observed at Baby Bare, which may relate to the increased availability of exposed hard substrates for egg attachment and of prey, females are suggested to increasingly associate with hard substrates as they mature. The biology of Baby Bare may seem unduly unique because the outcrop is isolated on a sedimented plain and is among the few exposures of hard substrate other than hydrothermal vents that have been explored by submersible. On the sediment-covered ocean floor, the availability of hard substrate may strongly affect the distribution of brooding octopuses. The size and shape of boreholes in 19 of over 400 thyasirid clam shells collected from Baby Bare support the hypothesis that octopuses had preyed upon the clams.

  2. Climatic Impact of a Change in North Atlantic Deep Water Formation

    NASA Technical Reports Server (NTRS)

    Rind, D.

    1984-01-01

    The response of the ocean to climate changes is one of the most uncertain questions regarding the impact of increasing CO2 on climate and society. North Atlantic deep water (NADW) formation apparently depends on a complex confluence of different water masses originating in different areas, all of which will presumably be affected by changes in wind, evaporation, etc., as the atmosphere warms. To analyze from first principles what the effect will be on NADW formation is a task which requires an ocean modeling capability not yet available. As a substitute, past climates can be investigated to see if there is any evidence for alterations in NADW formation. In addition, the possible impact of such changes on climate can be explored. An estimate of NADW sensitivity (at least in the past) and of the climate consequences can be studied. The North Atlantic surface water temperatures can be reconstructed to indicate a substantial cooling between 11,000 and 10,000 years B.P. Were NADW formation to have ceased, it would have resulted in cooler surface waters; whether the reconstructed temperatures were due to this or some other effect cannot be determined at this time. Nevertheless, it was decided that it would be useful to see what the effect these colder temperatures would have had on the climate.

  3. Vertical diffusion and oxygen consumption during stagnation periods in the deep North Aegean

    NASA Astrophysics Data System (ADS)

    Zervakis, Vassilis; Krasakopoulou, Evangelia; Georgopoulos, Dimitris; Souvermezoglou, Ekaterini

    2003-01-01

    Ventilation of the deep basins of the North Aegean Sea takes place during relatively scarce events of massive dense water formation in that region. In the time intervals between such events, the bottom waters of each sub-basin are excluded from interaction with other water masses through advection or isopycnal mixing and the only process that changes their properties is diapycnal mixing with overlying waters. In this work we utilize a simple one-dimensional model in order to estimate the vertical eddy diffusion coefficient Kρ based on the observed rate of change of density and stratification. Vertical diffusivity is estimated for each of three sub-basins of the North Aegean, one of convex shape of the seabed and the other two of concave topography. It is noteworthy that the convex sub-basin exhibited much higher vertical diffusivity than the two concave sub-basins, a fact consistent with theoretical predictions that internal-wave-induced mixing is higher over the former shape of seabed. Furthermore, the estimates of Kρ are exploited in computing the vertical transport of dissolved oxygen through diffusion and the rate of oxygen consumption by decaying organic matter. The different levels of the estimated diffusion and oxygen consumption rates testify to the dynamical and biogeochemical characteristics of each basin.

  4. Deep Subsurface Life from North Pond: Enrichment, Isolation, Characterization and Genomes of Heterotrophic Bacteria

    PubMed Central

    Russell, Joseph A.; León-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F.

    2016-01-01

    Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic water-column west of the Mid-Atlantic Ridge at 22°N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sediment column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. The cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface. PMID:27242705

  5. Deep subsurface life from North Pond: Enrichment, isolation, characterization and genomes of heterotrophic bacteria

    DOE PAGES

    Russell, Joseph A.; Leon-Zayas, Rosa; Wrighton, Kelly; ...

    2016-05-10

    Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic watercolumn west of the Mid-Atlantic Ridge at 22° N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sedimentmore » column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. Furthermore, the cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.« less

  6. Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic’s interior

    NASA Astrophysics Data System (ADS)

    Reinthaler, Thomas; van Aken, Hendrik M.; Herndl, Gerhard J.

    2010-08-01

    Current estimates point to a mismatch of particulate organic carbon supply derived from the surface ocean and the microbial organic carbon demand in the meso- and bathypelagic realm. Based on recent findings that chemoautotrophic Crenarchaeota are abundant in the mesopelagic zone, we quantified dissolved inorganic carbon (DIC) fixation in the meso- and bathypelagic North Atlantic and compared it with heterotrophic microbial activity. Measuring 14C-bicarbonate fixation and 3H-leucine incorporation revealed that microbial DIC fixation is substantial in the mesopelagic water masses, ranging from 0.1 to 56.7 μmol C m -3 d -1, and is within the same order of magnitude as heterotrophic microbial activity. Integrated over the dark ocean's water column, DIC fixation ranged from 1-2.5 mmol C m -2 d -1, indicating that chemoautotrophy in the dark ocean represents a significant source of autochthonously produced 'new organic carbon' in the ocean's interior amounting to about 15-53% of the phytoplankton export production. Hence, chemoautotrophic DIC fixation in the oxygenated meso- and bathypelagic water column of the North Atlantic might substantially contribute to the organic carbon demand of the deep-water microbial food web.

  7. North Atlantic Surface and Deep-Water Hydrography during the Early Pliocene Warm Period

    NASA Astrophysics Data System (ADS)

    Voelker, A. H. L.; Evans, H. F.; Naafs, B. D.; Cavaleiro, C. D.; Rebotim, A.; Ventura, C.; Stein, R. H.; Channell, J. E. T.

    2014-12-01

    The early Pliocene, with atmospheric carbon dioxide concentrations at levels similar to today, is seen as a case study for Earth's future climate evolution. During this period the progressive closing of the Central American Seaway led to increased poleward heat and salt transport within the Atlantic with North Atlantic Deep Water (NADW) becoming warmer and saltier and resulting in an enhanced Atlantic Meridional Overturning Circulation (AMOC). In order to understand how stable the AMOC really was we produced millennial-scale (1-2 kyr) surface and deep-water records for IODP Site U1313 (41°N, 33°W, 3412m) for the interval from 3.4 to 4.1 Ma. This site is ideally located to monitor past AMOC changes with North Atlantic Drift waters at the surface and NADW in the deep. Although interglacial/glacial cycles are visible, the higher frequency oscillations recorded in both the planktonic G. ruber (white) and benthic Cibicidoides sp. δ18O records impede tuning to the LR04 stack (Lisiecki and Raymo, 2005). We therefore exploit a different approach: using the magnetic polarity chrons (Gilbert, Cochiti) as recorded at Site U1313 as framework, we tune our benthic δ18O record to that of ODP Site 1085 (on LR04 ages). The benthic δ13C record shows millennial-scale oscillations, and the values indicate nearly continuous NADW presence and confirm a strong AMOC, also during most of the glacial periods. Varying surface water conditions, especially during the younger interglacial periods, are reflected in the G. ruber isotope data and appear to be linked to salinity changes since they are not recorded in the alkenone sea-surface temperature data. Although glacial stages Gi 2 and Gi 4 show the expected higher benthic δ18O values, Gi 6 was the glacial period with the strongest impact on the AMOC as revealed by cooler, less ventilated surface waters and a less ventilated NADW. Overall, the AMOC was strong throughout, but experienced high frequency oscillations at a level similar to

  8. Lensing Signals in the Hubble Ultra-deep Field using all 2nd-order Shape Deformations

    SciTech Connect

    Irwin, John; Shmakova, Marina; Anderson, Jay; /Rice U.

    2006-07-17

    The long exposure times of the HST Ultra-Deep Field plus the use of an empirically derived position-dependent PSF, have enabled us to measure a cardioid/displacement distortion map coefficient as well as improving upon the sextupole map coefficient. We confirmed that curved background galaxies are clumped on the same angular scale as found in the HST Deep Field North. The new cardioid/displacement map coefficient is strongly correlated to a product of the sextupole and quadrupole coefficients. One would expect to see such a correlation from fits to background galaxies with quadrupole and sextupole moments. Events that depart from this correlation are expected to arise from map coefficient changes due to lensing, and several galaxy subsets selected using this criteria are indeed clumped.

  9. Geomechanical Considerations for the Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Park, B. Y.

    2015-12-01

    Deep borehole disposal of high-level radioactive waste is under consideration as a potential alternative to shallower mined repositories. The disposal concept consists of drilling a borehole into crystalline basement rocks to a depth of 5 km, emplacement of canisters containing solid waste in the lower 2 km, and plugging and sealing the upper 3 km of the borehole. Crystalline rocks such as granites are particularly attractive for borehole emplacement because of their low permeability and porosity at depth, and high mechanical strength to resist borehole deformation. In addition, high overburden pressures contribute to sealing of some of the fractures that provide transport pathways. We present geomechanical considerations during construction (e.g., borehole breakouts, disturbed rock zone development, and creep closure), relevant to both the smaller-diameter characterization borehole (8.5") and the larger-diameter field test borehole (17"). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. H-band observations of the Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Moy, E.; Barmby, P.; Rigopoulou, D.; Huang, J.-S.; Willner, S. P.; Fazio, G. G.

    2003-05-01

    We report results of our H-band survey of the Chandra Deep Field South (CDFS). The observations, made with SofI on the NTT, cover 0.027 square degrees to H< 20.5 and 0.17 square degrees to H< 19.8 (50% completeness limits). In total, 4819 objects were detected, of which 80% are galaxies based on the SExtractor parameter ``stellarity index'' having a value less than 0.5. Our astrometric solutions are in good agreement with those of the Las Campanas Infrared Survey (LCIRS), the COMBO-17, and the ESO-EIS surveys. Our photometry compares satisfactorily with the LCIRS results as well as with GOODS data. Galaxy number counts are ~ 50 000 galaxies per square degree at H< 20.75, in good agreement with those of LCIRS. The object catalog is published electronically at the CDS. The whole catalog is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/403/493}. Based on observations collected at the European Southern Observatory, Chile under programs 66.A-0451 and 68.A-0375.

  11. High-Redshift Supernovae in the Hubble Deep Field

    SciTech Connect

    Gilliland, R.L.; Nugent, P.E.; Phillips, M.M.

    1999-08-01

    Two supernovae detected in the Hubble Deep Field (HDF) using the original 1995 December epoch and data from a shorter (63,000 s in F814W) 1997 December visit with {ital HST} are discussed. The supernovae (SNe) are both associated with distinct galaxies at redshifts of 0.95 (spectroscopic) from Cohen et al. and 1.32 (photometric) from the work of Fern{acute a}ndez-Soto, Lanzetta, & Yahil. These redshifts are near, in the case of 0.95, and well beyond, for 1.32, the greatest distance reported previously for SNe. We show that our observations are sensitive to supernovae to z{approx_lt}1.8 in either epoch for an event near peak brightness. Detailed simulations are discussed that quantify the level at which false events from our search phase would start to arise and the completeness of our search as a function of both SN brightness and host galaxy redshift. The number of Type Ia and Type II SNe expected as a function of redshift in the two HDF epochs are discussed in relation to several published predictions and our own detailed calculations. A mean detection frequency of one SN per epoch for the small HDF area is consistent with expectations from current theory. {copyright} {ital {copyright} 1999.} {ital The American Astronomical Society}

  12. The Deep Convective Clouds and Chemistry (DC3) Field Experiment

    NASA Astrophysics Data System (ADS)

    Barth, M. C.; Brune, W. H.; Cantrell, C. A.; Rutledge, S. A.; Crawford, J. H.; Huntrieser, H.; Homeyer, C. R.; Nault, B.; Cohen, R. C.; Pan, L.; Ziemba, L. D.

    2014-12-01

    The Deep Convective Clouds and Chemistry (DC3) field experiment took place in the central U.S. in May and June 2012 and had the objectives of characterizing the effect of thunderstorms on the chemical composition of the lower atmosphere and determining the chemical aging of upper troposphere (UT) convective outflow plumes. DC3 employed ground-based radars, lightning mapping arrays, and weather balloon soundings in conjunction with aircraft measurements sampling the composition of the inflow and outflow of a variety of thunderstorms in northeast Colorado, West Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the UT convective plume. The DC3 data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, and chemistry in the UT that is affected by the convection. In this presentation, we give an overview of the DC3 field campaign and highlight results from the campaign that are relevant to the upper troposphere and lower stratosphere region. These highlights include stratosphere-troposphere exchange in connection with thunderstorms, the 0-12 hour chemical aging and new particle formation in the UT outflow of a dissipating mesoscale convective system observed on June 21, 2012, and UT chemical aging in convective outflow as sampled the day after convection occurred and modeled in the Weather Research and Forecasting coupled with Chemistry model.

  13. The life cycle of Anisakis simplex in the Norwegian Deep (northern North Sea).

    PubMed

    Klimpel, Sven; Palm, Harry W; Rückert, Sonja; Piatkowski, Uwe

    2004-09-01

    Copepoda (Calanus finmarchicus n = 1,722, Paraeuchaeta norvegica n = 1,955), Hyperiidae (n = 3,019), Euphausiacea (Meganyctiphanes norvegica n = 4,780), and the fishes Maurolicus muelleri (n = 500) and Pollachius virens (n = 33) were collected in the Norwegian Deep (northern North Sea) during summer 2001 to examine the importance of pelagic invertebrates and vertebrates as hosts of Anisakis simplex and their roles in the transfer of this nematode to its final hosts (Cetaceans). Third stage larvae (L3) of A. simplex were found in P. norvegica, M. muelleri and P. virens. The prevalence of A. simplex in dissected P. norvegica was 0.26%, with an intensity of 1. Prevalences in M. muelleri and P. virens were 49.6% and 100.0%, with mean intensities of 1.1-2.6 (total fish length >or=6.0-7.2) and 193.6, respectively. All specimens of C. finmarchicus and M. norvegica examined were free of anisakid nematode species and no other parasites were detected. P. norvegica, which harboured the third stage larvae, is the obligatory first intermediate host of A. simplex in the investigated area. Though there was no apparent development of larvae in M. muelleri, this fish can be considered as the obligatory second intermediate host of A. simplex in the Norwegian Deep. However, it is unlikely that the larva from P. norvegica can be successfully transmitted into the cetacean or pinniped final hosts, where they reach the adult stage. An additional growth phase and a second intermediate host is the next phase in the life cycle. Larger predators such as P. virens serve as paratenic hosts, accumulating the already infective stage from M. muelleri. The oceanic life cycle of A. simplex in the Norwegian Deep is very different in terms of hosts and proposed life cycle patterns of A. simplex from other regions, involving only a few intermediate hosts. In contrast to earlier suggestions, euphausiids have no importance at all for the successful transmission of A. simplex in the Norwegian Deep. This

  14. Deep X-ray spectroscopy of high-z obscured AGN in the Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Comastri, Andrea; Vignali, Cristian; Gilli, Roberto; Iwasawa, Kazushi; Georgantopoulos, Ioannis

    2012-07-01

    According to the recent models for the joint evolution of Super Massive Black Holes and their Host Galaxies, heavy obscuration represents an important phase and is expected to play a key role in the feedback mechanisms self regulating the SMBH growth. The smoking gun signature of heavy absorption is the presence of a heavily absorbed or reflected X-ray spectrum plus a strong Iron line. X-ray spectroscopy thus represents the most efficient method to uncover the most obscured sources. I will present the results of a systematic search for strong iron lines in the ultra-deep (3 Ms) XMM survey in the Chandra Deep Field South (CDFS). I will also highlight the power of deep spectroscopy to obtain redshift estimates more accurate and reliable than available photo-z. Some notable examples of synergies between ultra-deep Chandra (4 Ms) and XMM observations will be also reported.

  15. Variations of deep western boundary currents in the Melanesian Basin in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Kawabe, Masaki; Yanagimoto, Daigo; Kitagawa, Shoji

    2006-06-01

    Five moorings ML1-ML5 were deployed on the slope of the Solomon Rise in the Melanesian Basin in the western North Pacific, northeastward at increasing water depths. We measured the velocities of the western branch current of the deep western boundary current (DWBC) and the upper deep current carrying the Lower and Upper Circumpolar Waters (LCPW, UCPW), respectively. The daily mean velocity data from 1-3 February 1999 to 24-26 February 2000 were analyzed, and variability of the DWBCs was clarified. Although the current meters did not entirely cover the western branch current of the DWBC composed of two or three streams, a stream of the western branch current was observed at a depth of 4700 m at ML4 or 4260 m at ML5 for more than half of the observation period. The stream had a mean velocity of 3.7 cm s -1 and alternated between ML4 and ML5 at 20- to 40-day intervals without occupying both of ML4 and ML5 simultaneously. This shows that the width of the stream is less than 120 km (distance between ML4 and ML5), and the position changes in a similar range. In contrast to the velocity of the eastern branch current of the DWBC, that of the western branch current did not decrease with decreasing depths to 4000 m. This reflects the vertical division into the branch currents by the bifurcation of the DWBC. The western branch current of the DWBC is located at the deep side of the countercurrent which was almost always observed at depths of 3880 and 4080 m at ML3. The countercurrent was thought to be the return flow of the western branch current that is partly reversed in the East Mariana Basin. The previous estimate of geostrophic transport of LCPW at the time of the mooring deployment was corrected to 1.4 Sv (10 6 m 3 s -1) in the western branch current, 1.7 Sv in the countercurrent, and 1.1 Sv in the inflow to the East Caroline Basin. The upper deep current was located over the slope of the Solomon Rise with water depth less than 4500 m including ML1-ML3. It flowed at

  16. The JWST North Ecliptic Pole Survey Field for Time-domain Studies

    NASA Astrophysics Data System (ADS)

    Jansen, Rolf A.; Alpaslan, Mehmet; Ashby, Matthew; Ashcraft, Teresa; Cohen, Seth H.; Condon, James J.; Conselice, Christopher; Ferrara, Andrea; Frye, Brenda L.; Grogin, Norman A.; Hammel, Heidi B.; Hathi, Nimish P.; Joshi, Bhavin; Kim, Duho; Koekemoer, Anton M.; Mechtley, Matt; Milam, Stefanie N.; Rodney, Steven A.; Rutkowski, Michael J.; Strolger, Louis-Gregory; Trujillo, Chadwick A.; Willmer, Christopher; Windhorst, Rogier A.; Yan, Haojing

    2017-01-01

    The JWST North Ecliptic Pole (NEP) Survey field is located within JWST's northern Continuous Viewing Zone, will span ˜14‧ in diameter (˜10‧ with NIRISS coverage) and will be roughly circular in shape (initially sampled during Cycle 1 at 4 distinct orientations with JWST/NIRCam's 4.4‧×2.2‧ FoV —the JWST “windmill”) and will have NIRISS slitless grism spectroscopy taken in parallel, overlapping an alternate NIRCam orientation. This is the only region in the sky where JWST can observe a clean extragalactic deep survey field (free of bright foreground stars and with low Galactic foreground extinction AV) at arbitrary cadence or at arbitrary orientation. This will crucially enable a wide range of new and exciting time-domain science, including high redshift transient searches and monitoring (e.g., SNe), variability studies from Active Galactic Nuclei to brown dwarf atmospheres, as well as proper motions of extreme scattered Kuiper Belt and Oort Cloud Objects, and of nearby Galactic brown dwarfs, low-mass stars, and ultracool white dwarfs. We therefore welcome and encourage follow-up through GO programs of the initial GTO observations to realize its potential as a JWST time-domain community field. The JWST NEP Survey field was selected from an analysis of WISE 3.4+4.6 micron, 2MASS JHKs, and SDSS ugriz source counts and of Galactic foreground extinction, and is one of very few such ˜10‧ fields that are devoid of sources brighter than mAB = 16 mag. We have secured deep (mAB ˜ 26 mag) wide-field (˜23‧×25‧) Ugrz images of this field and its surroundings with LBT/LBC. We also expect that deep MMT/MMIRS YJHK images, deep 8-12 GHz VLA radio observations (pending), and possibly HST ACS/WFC and WFC3/UVIS ultraviolet-visible images will be available before JWST launches in Oct 2018.

  17. On the Angular Correlation Functions of the Hubble Deep Field

    NASA Astrophysics Data System (ADS)

    Roukema, B. F.

    Roukema & Valls-Gabaud (1997, RVG) reinforce the conclusion of Colley et al. (1996, 1997) that the Hubble Deep Field (HDF) ``galaxies'' are probably star-forming regions, not ``building-blocks''. Consider a ``building-block'' hypothesis: (1) all (colour-selected high z) HDF galaxy-like objects are galaxies; (2) these objects have a spatial correlation function xi(r,z) = b2 (r0 / r)gamma (1+z)-(3+epsilon-gamma) where b >> 1 is a strong bias factor at high z; and b > = 1, db/dr < 0 for all r,z; such that the projection of xi (3-D) into w (angular correlation; 2-D) (via Limber's equation) matches Figs 1a, 1d of Colley et al. (1996). Since w(1 arcsecond) > approx 1 in Figs 1a,1d of Colley et al. (1996), at least 50% of the 1 arcsecond object pairs can be considered ``excess pairs''. Table 1 of RVG therefore shows, conservatively, that of all the 1 arcsecond object pairs, and under the above hypotheses, 25% are spatially separated by a median of only 3-7h-1 kpc (proper units), and 45% are spatially separated by a median of 12-30h-1 kpc$, taking into account projection effects. Many excess pairs have theta approx 0.25 arcseconds. Hence, for a pure ``building-block'' model, galaxy formation models would have to post-dict the existence of many Rhalo << 2 kpc, very highly biased galaxies, at 2.5 < z < 5. This result is little sensitive to epsilon, Omega0, lambda0 or zmedian.

  18. TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    SciTech Connect

    Elmegreen, Bruce G.; Elmegreen, Debra Meloy E-mail: elmegreen@vassar.ed

    2010-10-20

    Tadpole galaxies have a head-tail shape with a large clump of star formation at the head and a diffuse tail or streak of stars off to one side. We measured the head and tail masses, ages, surface brightnesses, and sizes for 66 tadpoles in the Hubble Ultra Deep Field (UDF) and looked at the distribution of neighbor densities and tadpole orientations with respect to neighbors. The heads have masses of 10{sup 7}-10{sup 8} M{sub sun} and photometric ages of {approx}0.1 Gyr for z {approx} 2. The tails have slightly larger masses than the heads and comparable or slightly older ages. The most obvious interpretation of tadpoles as young merger remnants is difficult to verify. They have no enhanced proximity to other resolved galaxies as a class, and the heads, typically <0.2 kpc in diameter, usually have no obvious double-core structure. Another possibility is ram pressure interaction between a gas-rich galaxy and a diffuse cosmological flow. Ram pressure can trigger star formation on one side of a galaxy disk, giving the tadpole shape when viewed edge-on. Ram pressure can also strip away gas from a galaxy and put it into a tail, which then forms new stars and gravitationally drags along old stars with it. Such an effect might have already been observed in the Virgo Cluster. Another possibility is that tadpoles are edge-on disks with large, off-center clumps. Analogous lop-sided star formation in UDF clump clusters is shown.

  19. High-resolution and Deep Crustal Imaging Across The North Sicily Continental Margin (southern Tyrrhenian Sea)

    NASA Astrophysics Data System (ADS)

    Agate, M.; Bertotti, G.; Catalano, R.; Pepe, F.; Sulli, A.

    Three multichannel seismic reflection profiles across the North Sicily continental mar- gin have been reprocessed and interpreted. Data consist of an unpublished high pene- tration seismic profile (deep crust Italian CROP Project) and a high-resolution seismic line. These lines run in the NNE-SSW direction, from the Sicilian continental shelf to the Tyrrhenian abyssal plain (Marsili area), and are tied by a third, high penetration seismic line MS104 crossing the Sisifo High. The North Sicily continental margin represents the inner sector of the Sicilian-Maghrebian chain that is collapsed as con- sequence of extensional tectonics. The chain is formed by a tectonic wedge (12-15 km thick. It includes basinal Meso-Cenozoic carbonate units overthrusting carbonate platform rock units (Catalano et al., 2000). Presently, main culmination (e.g. Monte Solunto) and a number of tectonic depressions (e.g. Cefalù basin), filled by >1000 m thick Plio-Pleistocene sedimentary wedge, are observed along the investigated tran- sect. Seismic attributes and reflector pattern depicts a complex crustal structure. Be- tween the coast and the M. Solunto high, a transparent to diffractive band (assigned to the upper crust) is recognised above low frequency reflective layers (occurring be- tween 9 and 11 s/TWT) that dips towards the North. Their bottom can be correlated to the seismological (African?) Moho discontinuity which is (26 km deep in the Sicilian shelf (Scarascia et al., 1994). Beneath the Monte Solunto ridge, strongly deformed re- flectors occurring between 8 to 9.5 s/TWT (European lower crust?) overly the African (?) lower crust. The resulting geometry suggests underplating of the African crust respect to the European crust (?). The already deformed crustal edifice is dissected by a number of N-dipping normal faults that open extensional basins and are associ- ated with crustal thinning. The Plio-Pleistocene fill of the Cefalù basin can be subdi- vided into three subunits by

  20. Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre.

    PubMed

    Johnson, Kenneth S; Riser, Stephen C; Karl, David M

    2010-06-24

    Concentrations of dissolved inorganic carbon (DIC) decrease in the surface mixed layers during spring and summer in most of the oligotrophic ocean. Mass balance calculations require that the missing DIC is converted into particulate carbon by photosynthesis. This DIC uptake represents one of the largest components of net community production in the world ocean. However, mixed-layer waters in these regions of the ocean typically contain negligible concentrations of plant nutrients such as nitrate and phosphate. Combined nutrient supply mechanisms including nitrogen fixation, diffusive transport and vertical entrainment are believed to be insufficient to supply the required nutrients for photosynthesis. The basin-scale potential for episodic nutrient transport by eddy events is unresolved. As a result, it is not understood how biologically mediated DIC uptake can be supported in the absence of nutrients. Here we report on high-resolution measurements of nitrate (NO(3)(-)) and oxygen (O(2)) concentration made over 21 months using a profiling float deployed near the Hawaii Ocean Time-series station in the North Pacific subtropical gyre. Our measurements demonstrate that as O(2) was produced and DIC was consumed over two annual cycles, a corresponding seasonal deficit in dissolved NO(3)(-) appeared in water at depths from 100 to 250 m. The deep-water deficit in NO(3)(-) was in near-stoichiometric balance with the fixed nitrogen exported to depth. Thus, when the water column from the surface to 250 m is considered as a whole, there is near equivalence between nutrient supply and demand. Short-lived transport events (<10 days) that connect deep stocks of nitrate to nutrient-poor surface waters were clearly present in 12 of the 127 vertical profiles.

  1. Holocene Instabilities of Deep Circulation in the North Atlantic Based on nd and PB Isotope Sedimentary Records

    NASA Astrophysics Data System (ADS)

    Fagel, N.

    2013-12-01

    Many studies revealed the variability of deep ocean circulation over glacial/interglacial cycles. Instabilities in Holocene circulation and deep water production have been documented in marine archives. Unstable deep-water conditions prior to the mid-Holocene optimum were attributed to remnants of ice-sheets. However the millenial variability in Atlantic circulation continued after the melting of the ice-sheets. The correlation between observed NADW disturbances and surface cooling events in Nordic Seas argued for a linkage between surface variability and deep water masses over the Holocene. Nd and Pb isotopic compositions of the clay-size fraction of Holocene sediments were analysed in deep North Atlantic cores to trace the particle provenance. The aims are to identify the origin of the particles driven by deep currents and reconstruct deep circulation changes over the Holocene. Radiogenic signatures can be used as indirect paleoceanographic tracers. In particular Nd and Pb isotopes constitute suitable tracers for the origin of deep sediments in the Labrador Sea. The approach has been demonstrated over different timescales on cores collected at the southern tip of Greenland. Their sediment compositions reflect variable contributions of mantel-derived distal sources from mid-Atlantic Ridge and crustal-derived proximal inputs from Canadian and Greenland margins. As distal inputs are supplied by deep current the sedimentary isotopic composition record the fingerprint of the particles carried by the current. Here we compare the results from the Labrador Sea with three cores retrieved in fracture zones; two of them are located in the Island Basin along the gyre of North Atlantic Deep Water, and the third core is located off the present deep circulation gyre in the Labrador Sea. Whereas sedimentary supplies in the Labrador Sea were derived from proximal sources, the geochemical mixing trends in the Iceland Basin samples indicate pronounced changes in the relative

  2. Deep subsurface life from North Pond: Enrichment, isolation, characterization and genomes of heterotrophic bacteria

    SciTech Connect

    Russell, Joseph A.; Leon-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F.

    2016-05-10

    Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic watercolumn west of the Mid-Atlantic Ridge at 22° N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sediment column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. Furthermore, the cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.

  3. A reservoir model for the Lower Cretaceous deep marine sandstones in the Maloy Fault Block area, Norwegian North Sea

    SciTech Connect

    Kloster, A.; Areklett, E.K.; Milton, N.

    1995-08-01

    The Maloy Fault Block area of the North Viking Graben forms a platform to the east of the Sogn Graben next to the coast of Norway. This area is characterized by an unusual and thick Lower Cretaceous section containing a number of discrete sandstone packages. Wells drilled elsewhere in the Norwegian North Sea are in contrast dominated by a relatively thin mud and marl dominated section in the Lower Cretaceous. Two wells in block 35/3 (the Agat field) encountered gas bearing sandstones of Albian age interpreted to represent deposition in a deep marine environment. An integrated sequence stratigraphic approach to the Lower Cretaceous stratigraphy in the Maloy Fault Block area has led to a new and more detailed understanding of controls on deposition in this area. This is based both on a regional dataset and good quality 3D seismic data. A Valanginian-Hauterivian relict slope/shelf system is present along the eastern basin margin. It formed a long-lasting topographic feature and in some areas was not onlapped until the Campanian time. A dramatic change in the basin configuration took place most likely in the Aptian time. This was initiated by erosion of the slope/shelf system which cut multiple huge canyons along the basin-margin. The canyons focused sediment input to the basin along discrete and mappable transport routes, some of which are controlled by erosion features inherited from the Late Jurassic. A complex history of deposition and filling followed. This was controlled by a constantly changing basin floor topography and left a complex pattern of partly constrained fan deposition.

  4. Investigating completion strategies; Cormorant Field, U. K. North Sea

    SciTech Connect

    Stiles, J.H. Jr. ); Valenti, N.P. )

    1990-03-01

    This paper describes studies that evaluate various completion strategies for new subsea wells in the Cormorant field, U.K. North Sea. These studies, which complement work done by the field operator, include detailed reservoir description work to define oil-in-place (OIP) and permeability distribution and a waterflood simulation for a representative reservoir cross section. Wellbore, flowline, and pipeline hydraulics for the complex production/injection system are included to model well rates more accurately. The results provide general insight into the nature of displacement during waterflooding of a stratified section with a limited number of wells. They also provide specific guidance on dual vs. single completions; perforating, testing, and stimulation sequence; and the benefits of partially perforating high-permeability sands.

  5. A view of the Mid-Pleistocene Transition from the deep North Pacific

    NASA Astrophysics Data System (ADS)

    Ford, H. L.; Haynes, L.; Hoenisch, B.; Raymo, M. E.

    2015-12-01

    During the Mid-Pleistocene Transition (MPT, ~900 kyrs ago), the climate system's glacial/interglacial pacing, as reflected in benthic δ18O, changed from a dominant periodicity of 41,000 to one of 100,000 kyr, without a comparable change in orbital forcing. Proposed changes in the climate system that accompanied or could help explain this transition include an increase in the northern hemisphere and/or Antarctic ice volume, thermohaline circulation reorganization, and atmospheric pCO2 drawdown. Here we reconstruct bottom water temperature and δ18O of seawater (δ18Oseawater) from Mg/Ca and d18O signatures of Uvigerina spp., and carbonate ion concentration ([CO32-]) from B/Ca values of Cibicidoides wuellerstorfi to evaluate changes in ice volume and deep ocean carbon storage. The study is based on North Pacific ODP Site 1208 (36.13°N, 158.20°W, 3350 m water depth) and covers Marine Isotope Stages (MIS) 26 to 19 (~780-970 kyr). Our high-resolution (~2 kyrs) bottom water temperature record is largely in agreement with the high-resolution record from South Pacific ODP Site 1123 (Elderfield et al., 2012). At MIS 22, Site 1123 shows an abrupt 0.5 per mil δ18Oseawater increase that persists during subsequent glacial periods, interpreted by Elderfield et al. as a step-wise increase in glacial ice volume in Antarctica. By contrast, our preliminary Site 1208 δ18Oseawater record exhibits a transient increase in glacial δ18Oseawater at MIS 22, but suggests no significant, permanent glacial ice volume growth occurred. Preliminary low-resolution B/Ca results indicate a gradual and large decrease in [CO32-] from MIS 25 to MIS 21 at Site 1208, which may have been caused by a marked increase in deep ocean carbon storage over the MPT. Based on our preliminary analyses, we propose that thermohaline reorganization during the MPT may have changed deep ocean carbon storage and contributed to pCO2 drawdown.

  6. Deep HST imaging of distant weak radio and field galaxies

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Gordon, J. M.; Pascarelle, S. M.; Schmidtke, P. C.; Keel, W. C.; Burkey, J. M.; Dunlop, J. S.

    1994-01-01

    We present deep Hubble Space Telescope (HST) Wide-Field Camera (WFC) V- and I-band images of three distant weak radio galaxies with z = 0.311-2.390 and seven field galaxies with z = 0.131-0.58. The images were deconvolved with both the Lucy and multiresolution CLEAN methods, which yield a restoring Full Width at Half Maximum (FWHM) of less than or equal to 0.2 sec, (nearly) preserve photons and signal-to-noise ratio at low spatial frequencies, and produce consistent light profiles down to our 2 sigma surface brightness sensitivity limit of V approximately 27.2 and I approximately 25.9 mag/sq arcsec. Multi-component image modeling was used to provide deconvolution-independent estimates of structural parameters for symmetric galaxies. We present 12-band (m(sub 2750) UBVRIgriJHK) photometry for a subset of the galaxies and bootstrap the unknown FOC/48 zero point at 2750 A in three independent ways (yielding m(sub 2750) = 21.34 +/- 0.09 mag for 1.0 e(-)/s). Two radio galaxies with z = 0.311 and 0.528, as well as one field galaxy with z = 0.58, have the colors and spectra of early-type galaxies, and a(exp 1/4)-like light profiles in the HST images. The two at z greater than 0.5 have little or no color gradients in V - I and are likely giant ellipticals, while the z = 0.311 radio galaxy has a dim exponential disk and is likely an S0. Six of the seven field galaxies have light profiles that indicate (small) inner bulges following a(exp 1/4) laws and outer exponential disks, both with little or no color gradients. These are (early-type) spiral galaxies with z = 0.131-0.528. About half have faint companions or bars. One shows lumpy structure, possibly a merger. The compact narrow-line galaxy 53W002 at z = 2.390 has less than or = 30% +/- 10% of its HST V and I flux in the central kiloparsec (due to its weak Active Galactic Nucleus (AGN)). Most of its light (V approximately equal to 23.3) occurs in a symmetric envelope with a regular a(exp 1/4)-like profile of effective

  7. DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field

    PubMed Central

    Christiansen, Peter; Nielsen, Lars N.; Steen, Kim A.; Jørgensen, Rasmus N.; Karstoft, Henrik

    2016-01-01

    Convolutional neural network (CNN)-based systems are increasingly used in autonomous vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic segmentation) algorithms are trained for detecting and classifying a predefined set of object types. These algorithms have difficulties in detecting distant and heavily occluded objects and are, by definition, not capable of detecting unknown object types or unusual scenarios. The visual characteristics of an agriculture field is homogeneous, and obstacles, like people, animals and other obstacles, occur rarely and are of distinct appearance compared to the field. This paper introduces DeepAnomaly, an algorithm combining deep learning and anomaly detection to exploit the homogenous characteristics of a field to perform anomaly detection. We demonstrate DeepAnomaly as a fast state-of-the-art detector for obstacles that are distant, heavily occluded and unknown. DeepAnomaly is compared to state-of-the-art obstacle detectors including “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks” (RCNN). In a human detector test case, we demonstrate that DeepAnomaly detects humans at longer ranges (45–90 m) than RCNN. RCNN has a similar performance at a short range (0–30 m). However, DeepAnomaly has much fewer model parameters and (182 ms/25 ms =) a 7.28-times faster processing time per image. Unlike most CNN-based methods, the high accuracy, the low computation time and the low memory footprint make it suitable for a real-time system running on a embedded GPU (Graphics Processing Unit). PMID:27845717

  8. DeepAnomaly: Combining Background Subtraction and Deep Learning for Detecting Obstacles and Anomalies in an Agricultural Field.

    PubMed

    Christiansen, Peter; Nielsen, Lars N; Steen, Kim A; Jørgensen, Rasmus N; Karstoft, Henrik

    2016-11-11

    Convolutional neural network (CNN)-based systems are increasingly used in autonomous vehicles for detecting obstacles. CNN-based object detection and per-pixel classification (semantic segmentation) algorithms are trained for detecting and classifying a predefined set of object types. These algorithms have difficulties in detecting distant and heavily occluded objects and are, by definition, not capable of detecting unknown object types or unusual scenarios. The visual characteristics of an agriculture field is homogeneous, and obstacles, like people, animals and other obstacles, occur rarely and are of distinct appearance compared to the field. This paper introduces DeepAnomaly, an algorithm combining deep learning and anomaly detection to exploit the homogenous characteristics of a field to perform anomaly detection. We demonstrate DeepAnomaly as a fast state-of-the-art detector for obstacles that are distant, heavily occluded and unknown. DeepAnomaly is compared to state-of-the-art obstacle detectors including "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" (RCNN). In a human detector test case, we demonstrate that DeepAnomaly detects humans at longer ranges (45-90 m) than RCNN. RCNN has a similar performance at a short range (0-30 m). However, DeepAnomaly has much fewer model parameters and (182 ms/25 ms =) a 7.28-times faster processing time per image. Unlike most CNN-based methods, the high accuracy, the low computation time and the low memory footprint make it suitable for a real-time system running on a embedded GPU (Graphics Processing Unit).

  9. Bathymetric patterns of morphological disparity in deep-sea gastropods from the western North Atlantic basin.

    PubMed

    McClain, Craig R

    2005-07-01

    Understanding patterns of species richness requires knowledge of the individual roles species play in community structure. Here, I use gastropod shells as a source of information about both their ecological and their evolutionary functions in generating bathymetric gradients of diversity. Specifically, morphological disparity of shell architecture in deep-sea gastropods is evaluated over a depth gradient in the western North Atlantic by constructing an empirical morphospace based on an eigenshape analysis. Morphological disparity is quantified by calculating the centroid, total range, and dispersion of the morphospace at each station along the depth gradient. The results indicate that local faunas are drawn from a regional pool with the same variance but that average dissimilarity in forms reflects the number of species in the sample. The range of the morphospace at local scales is also less than at regional scales, resulting from the variability of the morphospace centroid over depth. Although the position of the morphospace changes with depth, morphological disparity remains unaffected. Despite the lack of bathymetric patterns in variance, patterns in nearest neighbor distance persist. The findings suggest the importance of interacting ecological and evolutionary processes at varying spatiotemporal scales for both morphological disparity and species richness.

  10. Revision of the biostratigraphy of the Chatham Group (Upper Triassic), Deep River basin, North Carolina, USA

    USGS Publications Warehouse

    Litwin, R.J.; Ash, S.R.

    1993-01-01

    Paleontological evidence from the Upper Triassic Chatham Group in the three subbasins of the Deep River basin (North Carolina, USA) supports a significant revision of the ages assigned to most of this non-marine continental sedimentary sequence. This study confirms an early(?) or mid-Carnian age in the Sanford subbasin for the base of the Pekin Formation, the lowest unit of the Chatham Group. However, diagnostic late Carnian palynomorphs have been recovered from coals in the lower part of the Cumnock Formation in the Sanford subbasin, and from a sample of the Cumnock Formation equivalent in the Wadesboro subbasin. Plant megafossils and fossil verebrates from rocks in the Sanford subbasin also support a late Carnian age for the Cumnock Formation and its equivalents. The overlying Sanford Formation, which has not yet been dated paleontologically, probably includes beds of Norian age, as over 1000 m of strata may be present between the Cumnock Formation coals (dated here as late Carnian) and the top of the Sanford Formation. This chronostratigraphic interval appears similar to, but slightly longer than, that preserved in the Dan River-Danville and Davie County basins 100 km to the northwest. Our evidence, therefore, indicates that the Chatham Group was deposited over a much longer time interval [early(?) to mid-Carnian through early Norian] than previously was believed. ?? 1993.

  11. Holocene eolian activity in the Minot dune field, North Dakota

    USGS Publications Warehouse

    Muhs, D.R.; Stafford, Thomas W.; Been, J.; Mahan, S.A.; Burdett, J.; Skipp, G.; Rowland, Z.M.

    1997-01-01

    Stabilized eolian sand is common over much of the Great Plains region of the United States and Canada, including a subhumid area of ??? 1500 km2 near Minot, North Dakota. Eolian landforms consist of sand sheets and northwest-trending parabolic dunes. Dunes and sand sheets in the Minot field are presently stabilized by a cover of prairie grasses or oak woodland. Stratigraphic studies and accelerator mass spectrometry radiocarbon dating of paleosols indicate at least two periods of eolian sand movement in the late Holocene. Pedologic data suggest that all of the dune field has experienced late Holocene dune activity, though not all parts of the dune field may have been active simultaneously. Similar immobile element (Ti, Zr, La, Ce) concentrations support the interpretation that eolian sands are derived from local glaciofluvial and glaciolacustrine sediments. However, glaciolacustrine and glaciofluvial source sediments have high Ca concentrations from carbonate minerals, whereas dune sands are depleted in Ca. Because noneolian-derived soils in the area are calcareous, these data indicate that the Minot dune field may have had extended periods of activity in the Holocene, such that eolian abrasion removed soft carbonate minerals. The southwest-facing parts of some presently stabilized dunes were active during the 1930s drought, but were revegetated during the wetter years of the 1940s. These observations indicate that severe droughts accompanied by high temperatures are the most likely cause of Holocene eolian activity.

  12. Handheld deep ultraviolet emission device based on aluminum nitride quantum wells and graphene nanoneedle field emitters.

    PubMed

    Matsumoto, Takahiro; Iwayama, Sho; Saito, Takao; Kawakami, Yasuyuki; Kubo, Fumio; Amano, Hiroshi

    2012-10-22

    We report the successful fabrication of a compact deep ultraviolet emission device via a marriage of AlGaN quantum wells and graphene nanoneedle field electron emitters. The device demonstrated a 20-mW deep ultraviolet output power and an approximately 4% power efficiency. The performance of this device may lead toward the realization of an environmentally friendly, convenient and practical deep ultraviolet light source.

  13. Deep formation waters of Western Europe, Russia and North America characterised by sodium, calcium, magnesium and chloride concentrations

    NASA Astrophysics Data System (ADS)

    Bozau, Elke; Hemme, Christina; Sattler, Carl-Diedrich; van Berk, Wolfgang

    2015-04-01

    Deep formation water can be classified according to depth, temperature, and salinity (e.g., Graf et al. 1966, Kharaka & Hanor 2007). Most of the deep formation waters contain dissolved solids in excess of sea water. The hydrogeochemical development of formation water has been discussed for a long time. It is widely accepted that deep aquifers are influenced by the meteoric cycle and geochemical processes within the crust (e.g., Hebig et al. 2012). Similar hydrogeochemical signatures are found in deep formation waters of all continents and can be explained by general geochemical processes within the deep reservoirs (e.g., Land 1995). Therefore, data of deep formation waters from Western Europe, Russia, and North America are collected and classified by the major water components. The data are used to identify important hydrogeochemical processes (e.g., halite dissolution and albitisation) leading to different compositions of formation water. Two significant water types are identified: Na-Cl water and Na-Ca-Cl water. Based on the collected hydrogeochemical data, development trends are stated for the formation waters, and albitisation is favoured as the main process for calcium enrichment. Furthermore, differences of formation water according to stratigraphical units are shown for deep reservoirs of the North German Basin and the North Sea. References: Graf, D.L., 1982. Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines. Geochimica Cosmochimica Acta 46, 1431-1448. Hebig, K.H., Ito, N., Scheytt, T., Marui, A., 2012. Review: Deep groundwater research with focus on Germany. Hydrogeology Journal 20, 227-243. Kharaka, Y.K., Hanor, J.S., 2007. Deep fluids in continents: I. Sedimentary Basins. Treatise on Geochemistry 5, 1-48. Land, L.S., 1995. The role of saline formation water in the crustal cycling. Aquatic Geochemistry 1, 137-145. Acknowledgements: The presented data are results of the collaborative research program "gebo" (Geothermal energy

  14. Wide Field Imaging of the Hubble Deep Field-South Region III: Catalog

    NASA Technical Reports Server (NTRS)

    Palunas, Povilas; Collins, Nicholas R.; Gardner, Jonathan P.; Hill, Robert S.; Malumuth, Eliot M.; Rhodes, Jason; Teplitz, Harry I.; Woodgate, Bruce E.

    2002-01-01

    We present 1/2 square degree uBVRI imaging around the Hubble Deep Field - South. These data have been used in earlier papers to examine the QSO population and the evolution of the correlation function in the region around the HDF-S. The images were obtained with the Big Throughput Camera at CTIO in September 1998. The images reach 5 sigma limits of u approx. 24.4, B approx. 25.6, V approx. 25.3, R approx. 24.9 and I approx. 23.9. We present a catalog of approx. 22,000 galaxies. We also present number-magnitude counts and a comparison with other observations of the same field. The data presented here are available over the world wide web.

  15. Archaeoglobus fulgidus Isolated from Hot North Sea Oil Field Waters

    PubMed Central

    Beeder, Janiche; Nilsen, Roald Kåre; Rosnes, Jan Thomas; Torsvik, Terje; Lien, Torleiv

    1994-01-01

    A hyperthermophilic sulfate reducer, strain 7324, was isolated from hot (75°C) oil field waters from an oil production platform in the Norwegian sector of the North Sea. It was enriched on a complex medium and isolated on lactate with sulfate. The cells were nonmotile, irregular coccoid to disc shaped, and 0.3 to 1.0 μm wide. The temperature for growth was between 60 and 85°C with an optimum of 76°C. Lactate, pyruvate, and valerate plus H2 were utilized as carbon and energy sources with sulfate as electron acceptor. Lactate was completely oxidized to CO2. The cells contained an active carbon monoxide dehydrogenase but no 2-oxoglutarate dehydrogenase activity, indicating that lactate was oxidized to CO2 via the acetyl coenzyme A/carbon monoxide dehydrogenase pathway. The cells produced small amounts of methane simultaneously with sulfate reduction. F420 was detected in the cells which showed a blue-green fluorescence at 420 nm. On the basis of morphological, physiological, and serological features, the isolate was classified as an Archaeoglobus sp. Strain 7324 showed 100% DNA-DNA homology with A. fulgidus Z, indicating that it belongs to the species A. fulgidus. Archaeoglobus sp. has been selectively enriched and immunomagnetically captured from oil field waters from three different platforms in the North Sea. Our results show that strain 7324 may grow in oil reservoirs at 70 to 85°C and contribute to hydrogen sulfide formation in this environment. Images PMID:16349231

  16. Snapshots from deep magma chambers: decoding field observations

    NASA Astrophysics Data System (ADS)

    De Campos, Cristina P.

    2014-05-01

    mingling, between contrasting magmas generated from different sources and depths. When flow patterns from these plutonic structures are compared to those obtained from experiments and numerical modeling, vortex-like systems may be locally recognized with chaotic regions among concentric regular flow cells, separated by major flow shearing zones. These patterns may be in remarkable good agreement with less complex flow patterns obtained for simpler dynamic systems. Differences in the magma supply and flow regimes between distinct plutons, in time and space, depict frozen moments in their evolution and therefore may explain some of the discrepancies in the different hybridization degrees for different complexes. The combination of detailed mapping of flow patterns in the field, numerical modeling and experimental results using natural magmatic products as end-members may provide new insights into the dynamics of magma chambers, specially for shallow chambers in a volcanic environment. Due to high viscosities and non-Newtonian behavior during a long time-interval, the application of fluid dynamics to understanding magmatic processes, especially those taking place in the deep crust, is still a major challenge to Geosciences. Extrapolation for plutonic environments remains therefore a great defiance. This discussion aims to show that it is nevertheless worthwhile.

  17. Hydrocarbon Source Rocks in the Deep River and Dan River Triassic Basins, North Carolina

    USGS Publications Warehouse

    Reid, Jeffrey C.; Milici, Robert C.

    2008-01-01

    This report presents an interpretation of the hydrocarbon source rock potential of the Triassic sedimentary rocks of the Deep River and Dan River basins, North Carolina, based on previously unpublished organic geochemistry data. The organic geochemical data, 87 samples from 28 drill holes, are from the Sanford sub-basin (Cumnock Formation) of the Deep River basin, and from the Dan River basin (Cow Branch Formation). The available organic geochemical data are biased, however, because many of the samples collected for analyses by industry were from drill holes that contained intrusive diabase dikes, sills, and sheets of early Mesozoic age. These intrusive rocks heated and metamorphosed the surrounding sediments and organic matter in the black shale and coal bed source rocks and, thus, masked the source rock potential that they would have had in an unaltered state. In places, heat from the intrusives generated over-mature vitrinite reflectance (%Ro) profiles and metamorphosed the coals to semi-anthracite, anthracite, and coke. The maximum burial depth of these coal beds is unknown, and depth of burial may also have contributed to elevated thermal maturation profiles. The organic geochemistry data show that potential source rocks exist in the Sanford sub-basin and Dan River basin and that the sediments are gas prone rather than oil prone, although both types of hydrocarbons were generated. Total organic carbon (TOC) data for 56 of the samples are greater than the conservative 1.4% TOC threshold necessary for hydrocarbon expulsion. Both the Cow Branch Formation (Dan River basin) and the Cumnock Formation (Deep River basin, Sanford sub-basin) contain potential source rocks for oil, but they are more likely to have yielded natural gas. The organic material in these formations was derived primarily from terrestrial Type III woody (coaly) material and secondarily from lacustrine Type I (algal) material. Both the thermal alteration index (TAI) and vitrinite reflectance data

  18. Nitrogen cycling in the deep sedimentary biosphere: nitrate isotopes in porewaters underlying the oligotrophic North Atlantic

    NASA Astrophysics Data System (ADS)

    Wankel, S. D.; Buchwald, C.; Ziebis, W.; Wenk, C. B.; Lehmann, M. F.

    2015-12-01

    Nitrogen (N) is a key component of fundamental biomolecules. Hence, its cycling and availability are central factors governing the extent of ecosystems across the Earth. In the organic-lean sediment porewaters underlying the oligotrophic ocean, where low levels of microbial activity persist despite limited organic matter delivery from overlying water, the extent and modes of nitrogen transformations have not been widely investigated. Here we use the N and oxygen (O) isotopic composition of porewater nitrate (NO3-) from a site in the oligotrophic North Atlantic (Integrated Ocean Drilling Program - IODP) to determine the extent and magnitude of microbial nitrate production (via nitrification) and consumption (via denitrification). We find that NO3- accumulates far above bottom seawater concentrations (~ 21 μM) throughout the sediment column (up to ~ 50 μM) down to the oceanic basement as deep as 90 m b.s.f. (below sea floor), reflecting the predominance of aerobic nitrification/remineralization within the deep marine sediments. Large changes in the δ15N and δ18O of nitrate, however, reveal variable influence of nitrate respiration across the three sites. We use an inverse porewater diffusion-reaction model, constrained by the N and O isotope systematics of nitrification and denitrification and the porewater NO3- isotopic composition, to estimate rates of nitrification and denitrification throughout the sediment column. Results indicate variability of reaction rates across and within the three boreholes that are generally consistent with the differential distribution of dissolved oxygen at this site, though not necessarily with the canonical view of how redox thresholds separate nitrate regeneration from dissimilative consumption spatially. That is, we provide stable isotopic evidence for expanded zones of co-occurring nitrification and denitrification. The isotope biogeochemical modeling also yielded estimates for the δ15N and δ18O of newly produced nitrate (

  19. X-ray observations of dust obscured galaxies in the Chandra deep field south

    NASA Astrophysics Data System (ADS)

    Corral, A.; Georgantopoulos, I.; Comastri, A.; Ranalli, P.; Akylas, A.; Salvato, M.; Lanzuisi, G.; Vignali, C.; Koutoulidis, L.

    2016-08-01

    We present the properties of X-ray detected dust obscured galaxies (DOGs) in the Chandra deep field south. In recent years, it has been proposed that a significant percentage of the elusive Compton-thick (CT) active galactic nuclei (AGN) could be hidden among DOGs. This type of galaxy is characterized by a very high infrared (IR) to optical flux ratio (f24 μm/fR > 1000), which in the case of CT AGN could be due to the suppression of AGN emission by absorption and its subsequent re-emission in the IR. The most reliable way of confirming the CT nature of an AGN is by X-ray spectroscopy. In a previous work, we presented the properties of X-ray detected DOGs by making use of the deepest X-ray observations available at that time, the 2Ms observations of the Chandra deep fields, the Chandra deep field north (CDF-N), and the Chandra deep field south (CDF-S). In that work, we only found a moderate percentage (<50%) of CT AGN among the DOGs sample. However, we pointed out that the limited photon statistics for most of the sources in the sample did not allow us to strongly constrain this number. In this paper, we further explore the properties of the sample of DOGs in the CDF-S presented in that work by using not only a deeper 6Ms Chandra survey of the CDF-S, but also by combining these data with the 3Ms XMM-Newton survey of the CDF-S. We also take advantage of the great coverage of the CDF-S region from the UV to the far-IR to fit the spectral energy distributions (SEDs) of our sources. Out of the 14 AGN composing our sample, 9 are highly absorbed (NH > 1023 cm-2), whereas 2 look unabsorbed, and the other 3 are only moderately absorbed. Among the highly absorbed AGN, we find that only three could be considered CT AGN. In only one of these three cases, we detect a strong Fe Kα emission line; the source is already classified as a CT AGN with Chandra data in a previous work. Here we confirm its CT nature by combining Chandra and XMM-Newton data. For the other two CT

  20. Clustering of the AKARI NEP Deep Field mid infrared selected galaxies

    NASA Astrophysics Data System (ADS)

    Solarz, Aleksandra; Pollo, Agnieszka; Takeuchi, Tsutomu T.; Małek, Katarzyna

    2016-06-01

    We present a method of selection of 24 μm galaxies from the AKARI North Ecliptic Pole (NEP) Deep Field and measurements of their two-point correlation function. We aim to associate different 24 μm selected galaxy populations with present day galaxies, and to investigate the impact of their environment on the direction of their subsequent evolution. We discuss the use of Support Vector Machines (SVM) algorithms applied to infrared photometric data to perform star-galaxy separation, in which we achieve an accuracy > 80%. We explore the redshift dependance of the correlation function parameters as well as the linear bias evolution (which relates galaxy distribution to the one of the underlying dark matter). We find that the bias parameter increases slowly with redshift, from b = 0.9 at z < 0.5 to b ˜ 1.9 at z ˜ 1.1. Total infrared luminosities (L_{TIR}) found for different samples, suggest that galaxies with higher L_{TIR} do not necessarily reside in higher mass dark matter halos. We find that luminous infrared galaxies (LIRGs) at z˜1 can be ancestors of present day L_{*} early type galaxies.

  1. A sub-millimetre survey of dust enshrouded galaxies in the Hubble Deep Field region

    NASA Astrophysics Data System (ADS)

    Borys, Colin James Kelvin

    This thesis investigates the emission of sub-millimetre- wave radiation from galaxies in the Hubble Deep Field North region. The data were obtained from dedicated observing runs from our group and others using the SCUBA camera on the James Clerk Maxwell Telescope. The data were combined using techniques specifically developed here for low signal-to-noise source recovery. The sources found represent over 10% of all cosmological sources SCUBA has detected since it was commissioned. The number of sub-mm galaxies we detect account for a significant fraction of the sub-mm back-ground, and we show that mild extrapolations can reproduce it entirely. We comment on their clustering properties, both with themselves and other high-redshift galaxy types. A multi-wavelength analysis of these galaxies shows that SCUBA sources do not all have similar properties, and are made of a collection including: star-forming radio galaxies; optically invisible objects; active galactic nuclei; and extremely red objects. Reasonable attempts to determine the redshift distribution of the sample show that SCUBA galaxies have a median redshift of around 2, and suggest that the global star formation rate may be dominated by such objects at redshifts beyond about 1. The thesis summarises the current state of extra-galactic sub-mm astronomy, and comments on how new surveys and detectors will allow us to place stronger constraints on the evolution properties of the high-redshift Universe.

  2. Hydrocarbon emissions in the Bakken oil field in North Dakota

    NASA Astrophysics Data System (ADS)

    Mielke-Maday, I.; Petron, G.; Miller, B.; Frost, G. J.; Peischl, J.; Kort, E. A.; Smith, M. L.; Karion, A.; Dlugokencky, E. J.; Montzka, S. A.; Sweeney, C.; Ryerson, T. B.; Tans, P. P.; Schnell, R. C.

    2014-12-01

    Within the past five years, the production of oil and natural gas in the United States from tight formations has increased rapidly due to advances in technology, such as horizontal drilling and hydraulic fracturing. With the expansion of oil and natural gas extraction operations comes the need to better quantify their emissions and potential impacts on climate forcing and air quality. The Bakken formation within the Williston Basin in North Dakota has emerged as a large contributor to the recent growth in oil production and accounts for over 10% of domestic production. Close to 30% of associated gas co-produced with the oil is flared. Very little independent information is currently available to assess the oil and gas industry emissions and their impacts on regional air quality. In May 2014, an airborne field campaign was conducted by the National Oceanic and Atmospheric Administration's (NOAA) Earth System Research Laboratory and the University of Michigan to investigate hydrocarbon emissions from operations in the oil field. Here, we present results from the analysis for methane, several non-methane hydrocarbons and combustion tracers in 72 discrete air samples collected by the aircraft on nine different flights. Samples were obtained in the boundary layer upwind and downwind of the operations and in the free troposphere. We will show results of a multiple species analysis and compare them with field campaign data from other U.S. oil and gas fields, measurements from NOAA's Global Monitoring Division long-term observing network, and available bottom-up information on emissions from oil and gas operations.

  3. Circulation and north atlantic deep water formation rates based on evolution of the cfc signal in the north atlantic ocean

    NASA Astrophysics Data System (ADS)

    Smethie, W.; Lebel, D.

    2003-04-01

    The first high quality CFC measurements in the North Atlantic were made in 1981 as part of the TTO program. The WOCE survey in 1996-1998 provided the first synoptic CFC survey of the entire North Atlantic, but CFC measurements were made throughout the North Atlantic on a non-synoptic basis prior to WOCE. The pre-WOCE and WOCE CFC data sets will be compared on a regional basis using maps of concentrations on neutral density surfaces, maps of CFC-11 inventories, and plots of CFCs verses potential temperature for the major components of NADW. Circulation patterns and time scales inferred from the CFC distributions will be presented. The CFC inventories reflect the formation rate of a given water mass and formation rates calculated from the CFC inventories will be presented and compared for pre-WOCE and WOCE data.

  4. Developments in deep brain stimulation using time dependent magnetic fields

    SciTech Connect

    Crowther, L.J.; Nlebedim, I.C.; Jiles, D.C.

    2012-03-07

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  5. Developments in deep brain stimulation using time dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Crowther, L. J.; Nlebedim, I. C.; Jiles, D. C.

    2012-04-01

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  6. Pliocene (3.2-2.4 Ma) ostracode faunal cycles and deep ocean circulation, North Atlantic Ocean

    USGS Publications Warehouse

    Cronin, T. M.; Raymo, M.E.; Kyle, K.P.

    1996-01-01

    Ostracode assemblages from Deep Sea Drilling Project Sites 607 (western Mid-Atlantic Ridge) and 610 (southeast Rockall Plateau) show rapid, systematic shifts during late Pliocene glacial-interglacial cycles that reflect deep-sea environmental change. Progressive decreases in North Atlantic deep-water taxa and increases in Southern Ocean taxa occur from 3.4 to 2.4 Ma, and high-amplitude faunal cycles begin near 2.8 Ma. Four ostracode assemblages, each with a characteristic phase relative to 41 k.y. obliquity glacial-interglacial ??18O cycles, characterize the benthic faunal record at Site 607. Cross-spectral analysis shows that the Site 607 glacial assemblage has a 41 k.y. periodicity significant at the 95% level; other assemblages show a less significant, but still obvious, concentration of variance at 41 k.y. Faunal patterns suggest climatically controlled reorganization of deep-sea benthic communities during glacial-interglacial cycles due to oscillating deep-sea environments.

  7. North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea

    DTIC Science & Technology

    2016-06-21

    Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea 5b. GRANT NUMBER NOOO 14-12-1 -0226 5c. PROGRAM ELEMENT NUMBER 6...the "Special Issue on Deep- water Ocean Acoustics" in the Journal of the Acoustical Society of America (Vol. 134, No . 4, Pt. 2 of 2 , October20 13...15. SUBJECT TERMS ocean acoustics, deep water acousti c propagati on 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF a. REPORT b. ABSTRACT c

  8. Soft sediment deformation associated with the passage of North Atlantic Deep water through the deep Ariel Graben, Mozambique Ridge southwest Indian Ocean.

    NASA Astrophysics Data System (ADS)

    Wiles, Errol; Green, Andrew; Watkeys, Mike; Jokat, Wilfried; Krocker, Ralph

    2014-05-01

    Interactions between bottom water currents and seafloor sediments are well known. Bottom current generated bedforms are varied both morphologicaly and sedimentologicaly. Sediment transport and deposition, associated with bottom water circulation, plays a significant role is sculpting seafloor morphology in all ocean basins. Indeed, bedforms have been used to great effect to define the presence, direction and strength of bottom water circulation globally. Here we present new multibeam swath bathymetry and high frequency seismic data from the Natal Valley and Mozambique Ridge, southwest Indian Ocean. These data show a deep (-3200 m) channel-like feature (Ariel Graben, situated at 28° 30"S on the Mozambique Ridge) connecting the northern Natal Valley to the Mozambique Basin. A distinct W - E change in seafloor morphology and seismic character is noted moving from the Natal Valley through the Ariel Graben. The northern flank of the graben exhibits smooth plastered drifts which give way to undulating seafloor in the east. The plastered drifts are characterised by distinct bottom echoes, with several discontinuous sub-bottom reflections. In contrast, the undulating seafloor is characterised by distinct hyperbolic echoes, with occasional indistinct sub-bottom reflectors. The W - E orientated undulations are straight crested, parallel / sub-parallel to the local isobaths. Wavelength is variable, ranging from 600 m to 1200 m. Cross-sectional symmetry of these features varies from symmetrical to asymmetrical, with board crests and narrow troughs. When asymmetrical, the lower (south-facing) limb is the longer (511.76 m average) than the upper (north-facing) limb (323.53 m average). The lower limbs are also steeper than the upper limbs; calculated averages being 3.80° and 1.55°, respectively. Overall, the slope on which the undulations are found, is south-facing with a gradient of 1.54°, however, the area affected by undulations is slightly steeper (average slope of 1.75

  9. Deep-sea ecosystem response to the Middle Eocene Climate Optimum (MECO) in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Bunzel, Dorothea; Schmiedl, Gerhard; Friedrich, Oliver

    2016-04-01

    We investigated the benthic foraminiferal diversity and species composition from North Atlantic IODP Site U1408 in order to document changes in deep-water circulation and organic matter fluxes across the Middle Eocene Climate Optimum (MECO). Site U1408 was drilled at a present water depth of 3022 m southeast of the coast of Newfoundland. The benthic foraminiferal faunas are characterized by generally high species diversity suggesting favorable environmental conditions throughout the studied interval. Among a total of 193 benthic foraminiferal taxa the most dominant genera include Nuttallides, Oridorsalis, Cibicidoides, Pullenia, Anomalinoides, Globocassidulina and Gyroidinoides. Increased abundances of elongate-cylindrical infaunal species suggest approximately 460 ka duration of the MECO (from around 40.19 to 39.73 Ma) and the presence of slightly less ventilated bottom waters and elevated food availability during this time interval. The duration of the MECO also coincides with the presence of the planktonic foraminifer Orbulinoides beckmanni, which therefore is used as an Eocene biostratigraphy marker defining the end of the warm interval with its Last Appearance Datum. Changes in the benthic foraminiferal fauna probably reflect the onset of deep-water formation in the northern North Atlantic Ocean as response to the long-term climatic cooling trend of the middle Eocene. The intensification of deep-water currents and increased influence of cold and well-ventilated deep-water masses is reflected by increased importance of the Nuttallides truempyi-fauna. Superimposed on this long-term faunal trend are changes in the distribution of Globocassidulina subglobosa at a period of approximately 200 ka suggesting an eccentricity forcing of deep-water formation and associated food quality at the sea floor.

  10. Lead isotopes in North Pacific deep water - Implications for past changes in input sources and circulation patterns

    USGS Publications Warehouse

    van de Flierdt, T.; Frank, M.; Halliday, A.N.; Hein, J.R.; Hattendorf, B.; Gunther, D.; Kubik, P.W.

    2003-01-01

    The sources of non-anthropogenic Pb in seawater have been the subject of debate. Here we present Pb isotope time-series that indicate that the non-anthropogenic Pb budget of the northernmost Pacific Ocean has been governed by ocean circulation and riverine inputs, which in turn have ultimately been controlled by tectonic processes. Despite the fact that the investigated locations are situated within the Asian dust plume, and proximal to extensive arc volcanism, eolian contributions have had little impact. We have obtained the first high-resolution and high-precision Pb isotope time-series of North Pacific deep water from two ferromanganese crusts from the Gulf of Alaska in the NE Pacific Ocean, and from the Detroit Seamount in the NW Pacific Ocean. Both crusts were dated applying 10 Be/9Be ratios and yield continuous time-series for the past 13.5 and 9.6 Myr, respectively. Lead isotopes show a monotonic evolution in 206Pb/204Pb from low values in the Miocene (??? 18.57) to high values at present day (??? 18.84) in both crusts, even though they are separated by more than 3000 km along the Aleutian Arc. The variation exceeds the amplitude found in Equatorial Pacific deep water records by about three-fold. There also is a striking similarity in 207Pb/204Pb and 208Pb/ 204Pb ratios of the two crusts, indicating the existence of a local circulation cell in the sub-polar North Pacific, where efficient lateral mixing has taken place but only limited exchange (in terms of Pb) with deep water from the Equatorial Pacific has occurred. Both crusts display well-defined trends with age in Pb-Pb isotope mixing plots, which require the involvement of at least four distinct Pb sources for North Pacific deep water. The Pb isotope time-series reveal that eolian supplies (volcanic ash and continent-derived loess) have only been of minor importance for the dissolved Pb budget of marginal sites in the deep North Pacific over the past 6 Myr. The two predominant sources have been young

  11. Lead isotopes in North Pacific deep water - implications for past changes in input sources and circulation patterns

    NASA Astrophysics Data System (ADS)

    van de Flierdt, Tina; Frank, Martin; Halliday, Alex N.; Hein, James R.; Hattendorf, Bodo; Günther, Detlef; Kubik, Peter W.

    2003-04-01

    The sources of non-anthropogenic Pb in seawater have been the subject of debate. Here we present Pb isotope time-series that indicate that the non-anthropogenic Pb budget of the northernmost Pacific Ocean has been governed by ocean circulation and riverine inputs, which in turn have ultimately been controlled by tectonic processes. Despite the fact that the investigated locations are situated within the Asian dust plume, and proximal to extensive arc volcanism, eolian contributions have had little impact. We have obtained the first high-resolution and high-precision Pb isotope time-series of North Pacific deep water from two ferromanganese crusts from the Gulf of Alaska in the NE Pacific Ocean, and from the Detroit Seamount in the NW Pacific Ocean. Both crusts were dated applying 10Be/ 9Be ratios and yield continuous time-series for the past 13.5 and 9.6 Myr, respectively. Lead isotopes show a monotonic evolution in 206Pb/ 204Pb from low values in the Miocene (≤18.57) to high values at present day (≥18.84) in both crusts, even though they are separated by more than 3000 km along the Aleutian Arc. The variation exceeds the amplitude found in Equatorial Pacific deep water records by about three-fold. There also is a striking similarity in 207Pb/ 204Pb and 208Pb/ 204Pb ratios of the two crusts, indicating the existence of a local circulation cell in the sub-polar North Pacific, where efficient lateral mixing has taken place but only limited exchange (in terms of Pb) with deep water from the Equatorial Pacific has occurred. Both crusts display well-defined trends with age in Pb-Pb isotope mixing plots, which require the involvement of at least four distinct Pb sources for North Pacific deep water. The Pb isotope time-series reveal that eolian supplies (volcanic ash and continent-derived loess) have only been of minor importance for the dissolved Pb budget of marginal sites in the deep North Pacific over the past 6 Myr. The two predominant sources have been young

  12. The Earthquake Loading Cycle and the Deep Structure of the North Anatolian Fault

    NASA Astrophysics Data System (ADS)

    Wright, T. J.; Cornwell, D. G.; Farrell, K.; Hawthorne, J. C.; Houseman, G. A.; Hussain, E.; Lloyd, G. E.; Phillips, R. J.; Thompson, D. A.; Rost, S.; Yamasaki, T.; Turkelli, N.; Gülen, L.

    2014-12-01

    Deformation of the Earth's upper crust is localized onto narrow fault zones, which may slip suddenly and catastrophically in earthquakes. Strain in the upper mantle is more broadly distributed and is thought to occur by continuous ductile creep. The properties of the lower crust are the primary control on the behavior of the coupled system during the earthquake loading cycle. However, the distribution of strain in the lower crust is poorly understood. Here we show that the North Anatolian Fault (NAF) continues as a narrow structure through most of the crust. We use scattering migration from an 18 month deployment of 73 broadband seismometers in a dense array (~7 km spacing) across the NAF in the location of the 1999 Izmit earthquake rupture. The results reveal clear discontinuities in the lower crust across the northern and southern branches of the NAF, which extend to a depth of at least 25 km. Seismicity, by contrast, is confined to the upper ~15 km. Deformation on the fault was well recorded both before and after the 1999 earthquakes. Prior to the earthquake, strain was focused in a ~50 km region around the fault. Following the earthquake, a rapid post-seismic transient was observed, which slowly decayed over the subsequent decade. Earthquake cycle models require at least two relaxation time constants to explain these observations - a strong material to allow focused interseismic strain, and a material capable of relaxing quickly, to give rapid postseismic deformation. We present two models capable of reproducing these observations - (i) a visco-elastic model in which the weak material is found in a zone beneath the seismogenic fault, and (ii) a model in which postseismic deformation occurs through afterslip on a deep extension of the seismogenic fault plane. The latter appears more consistent with the seismic images. We also present results from geological analogues of the mid-lower crust beneath the NAF, which are also consistent with the idea that strain is

  13. The deep biosphere below North Pond: A mid-Atlantic microbial observatory

    NASA Astrophysics Data System (ADS)

    Edwards, K. J.; Bach, W.; Klaus, A.

    2011-12-01

    IODP Expedition 336 (Sept-Nov 2011) was executed to address fundamental microbiological questions concerning the nature of the subseafloor deep biosphere in oceanic hydrological, geological, and biogeochemical context (Edwards et al., 2010). Our principal objective is to study the subseafloor microbiological communities in young igneous ocean crust, in order to understand their role in ocean crust alteration and their ecology in hydrological and biogeochemical context. Specifically, we are testing the hypothesis that microbes play an active role in ocean crust alteration, while also exploring broad based ecological questions such as how hydrological structure and geochemistry influence microbial community structures. We will accomplish this by installing borehole observatories (CORKs) for coupled microbiological, geochemical, and hydrological experiments. These CORKs will allow us to monitor conditions and study processes in-situ,after the drilling disturbance and contaminating influences in the borehole environment have dissipated. Operations during Expedition 336 will lay the foundation for long-term monitoring, experimentation, and observations by subsequent ROV or submersible dive expeditions. CORKs will be used in perturbation and monitoring points for single- and cross-hole experiments, and will use recently developed novel in-situ microbiological experimentation system "FLOCS" (Orcutt et al., 2010a; Orcutt et al., 2010b). This talk will present initial results from Expedition 336 and discuss plans for future observatory operations. Edwards KJ, Bach W, Klaus A (2010). Mid-Atlantic ridge flank microbiology: Initiation of long-term coupled microbiological, geochemical, and hydrological experimentation within the seafloor at North Pond, western flank of the Mid-Atlantic ridge. IODP Sci. Prosp., 336. Integrated Ocean Drilling Program: College Station, TX. p 62 pp.http://publications.iodp.org/scientific_prospectus/336/ Orcutt B, Wheat CG, Edwards KJ (2010a

  14. Contrasting patterns of α- and β-diversity in deep-sea bivalves of the eastern and western North Atlantic

    NASA Astrophysics Data System (ADS)

    Brault, Solange; Stuart, Carol T.; Wagstaff, Martine C.; McClain, Craig R.; Allen, John A.; Rex, Michael A.

    2013-08-01

    We analyzed patterns of α- and β-diversity in deep-sea bivalves collected by epibenthic sleds from the western North Atlantic south of New England, and from the eastern North Atlantic in the Rockall Trough, Porcupine Seabight and Porcupine Abyssal Plain. In the western North Atlantic, species diversity, measured as the normalized expected number of species, shows a unimodal bathymetric trend peaking at mid-bathyal depths. In the eastern North Atlantic, diversity increases monotonically with depth reaching a maximum at abyssal depths. We used Baselga's (2010) metrics to distinguish two separate components of β-diversity along depth gradients, species dissimilarity among sites due to spatial replacement (turnover) and species loss leading to nestedness. We also examined the rank order of nestedness with depth using Rodríguez-Gironés and Santamaría's (2006) BINMATNEST. The primary difference in β-diversity between west and east centers on the composition of abyssal communities. In the western North Atlantic, abyssal assemblages are nested subsets of bathyal assemblages. In the eastern North Atlantic, turnover dominates at all depths. These very fundamental differences in community structure between the basins may be attributable to differences in food supply, which is greater in the eastern North Atlantic region sampled. POC-flux to abyssal depths in the east may not reach levels low enough to depress species diversity as it does in the west. In the west, the abyssal fauna is largely an impoverished nested subset of the bathyal fauna that shows less endemism and may be maintained partly by source-sink dynamics.

  15. The distribution of deep-sea sponge aggregations in the North Atlantic and implications for their effective spatial management

    NASA Astrophysics Data System (ADS)

    Howell, Kerry-Louise; Piechaud, Nils; Downie, Anna-Leena; Kenny, Andrew

    2016-09-01

    Sponge aggregations have been recognised as key component of shallow benthic ecosystems providing several important functional roles including habitat building and nutrient recycling. Within the deep-sea ecosystem, sponge aggregations may be extensive and available evidence suggests they may also play important functional roles, however data on their ecology, extent and distribution in the North Atlantic is lacking, hampering conservation efforts. In this study, we used Maximum Entropy Modelling and presence data for two deep-sea sponge aggregation types, Pheronema carpenteri aggregations and ostur aggregations dominated by geodid sponges, to address the following questions: 1) What environmental factors drive the broad-scale distribution of these selected sponge grounds? 2) What is the predicted distribution of these grounds in the northern North Atlantic, Norwegian and Barents Sea? 3) How are these sponge grounds distributed between Exclusive Economic Zones (EEZs) and High Seas areas? 4) What percentage of these grounds in High Seas areas are protected by the current High Seas MPA network? Our results suggest that silicate concentration, temperature, depth and amount of particulate organic carbon are the most important drivers of sponge distribution. Most of the sponge grounds are located within national EEZs rather than in the High Seas. Coordinated conservation planning between nations with significant areas of sponge grounds such as Iceland, Greenland and Faroes (Denmark), Norway (coastal Norway and Svalbard), Portugal and the UK, should be implemented in order to effectively manage these communities in view of the increasing level of human activity within the deep-sea environment.

  16. Geochemistry of oil-field water from the North Slope

    SciTech Connect

    Kharaka, Y.K.; Carothers, W.W.

    1989-01-01

    Knowledge of the chemical composition of oil-field water is important in understanding the origin and migration of petroleum as well as the water mineral reactions that affect the porosity and permeability of the reservoir rocks. This knowledge is essential in interpreting electric logs and in determining potential pollution, corrosion, and disposal problems of water produced with oil and gas. Finally, the chemical composition of water is an important factor in determining the conditions (temperature, pressure) for the formation of clathrates. This chapter reports detailed chemical analyses of seven formation-water samples from wells within the NPRA and one surface-and two formation-water samples from the Prudhoe Bay oil field. The authors also report {delta}D and {delta}{sup 18}O values for eight of the water samples as well as analyses for gases from six wells. The formation-water samples were obtained from depths ranging from about 700 to 2800 m and from reservoir rocks ranging in age from Mississippian (Lisburne Group) to Triassic. The reservoir rocks are sandstone except for sample 79-AK-5, which was obtained from a limestone interbedded with sandstone. Generally, the pre-Cretaceous sandstone reservoir rocks on the North Slope have a similar mineral composition. Van de Kamp (1979) gave the following description of these sandstones: Quartz (usually monocrystalline) and chert are the major components; carbonate and clay are variable. Carbonate occurs as detrital grains and as cement, siderite being the most common type. Siderite can form as much as 30 percent of the rock. Clay occurs as a common matrix, generally making up less than 10 percent of the rock. Accessory minerals include pyrite, plagioclase, microcline, glauconite, zircon, sphene, tourmaline, and muscovite.

  17. Deep geothermal processes acting on faults and solid tides in coastal Xinzhou geothermal field, Guangdong, China

    NASA Astrophysics Data System (ADS)

    Lu, Guoping; Wang, Xiao; Li, Fusi; Xu, Fangyiming; Wang, Yanxin; Qi, Shihua; Yuen, David

    2017-03-01

    This paper investigated the deep fault thermal flow processes in the Xinzhou geothermal field in the Yangjiang region of Guangdong Province. Deep faults channel geothermal energy to the shallow ground, which makes it difficult to study due to the hidden nature. We conducted numerical experiments in order to investigate the physical states of the geothermal water inside the fault zone. We view the deep fault as a fast flow path for the thermal water from the deep crust driven up by the buoyancy. Temperature measurements at the springs or wells constrain the upper boundary, and the temperature inferred from the Currie temperature interface bounds the bottom. The deepened boundary allows the thermal reservoir to revolve rather than to be at a fixed temperature. The results detail the concept of a thermal reservoir in terms of its formation and heat distribution. The concept also reconciles the discrepancy in reservoir temperatures predicted from both quartz and Na-K-Mg. The downward displacement of the crust increases the pressure at the deep ground and leads to an elevated temperature and a lighter water density. Ultimately, our results are a first step in implementing numerical studies of deep faults through geothermal water flows; future works need to extend to cases of supercritical states. This approach is applicable to general deep-fault thermal flows and dissipation paths for the seismic energy from the deep crust.

  18. Deep-Water Benthic Foraminifers from the Paleocene and Eocene of the North Pacific Region: Paleontology, Biostratigraphy, and Paleoceanological Reconstructions

    NASA Astrophysics Data System (ADS)

    Olshanetskiy, D. M.

    2015-12-01

    A zonal scheme for the Lower Paleogene of the northern Pacific Ocean is proposed on the basis of the stratigraphic distribution of benthic foraminifers in the lower bathyal-abyssal beds studied in boreholes in the North and South Pacific regions. This scheme includes eight subdivisions (six zones and two subzones). The boundaries of the benthic zonal subdivisions are defined by bioevents (appearance or disappearance of stratigraphically important taxa) and are linked to the zonal scales based on planktonic foraminifers and calcareous nannoplankton. It is established that most of these bioevents are recognized subglobally. Apart from the evolutionary events, changes in the deep-water benthic foraminiferal assemblages were caused by changes in the paleooceanological environment. This allowed detailed characterization of a global mass extinction of assemblages of deep-water benthic foraminifers in the region studied. It is also established that changes in the assemblages of deep-water benthic foraminifers, observed in either change in their taxonomic composition or changes in abundance and diversity, resulted from the presence of different deep-water masses in the region.

  19. DSDP Site 603: First deep (>1000-m) penetration of the continental rise along the passive margin of eastern North America

    NASA Astrophysics Data System (ADS)

    van Hinte, Jan E.; Wise, Sherwood W., Jr.; Biart, Brian N. M.; Mitchener Covington, J.; Dunn, Dean A.; Haggerty, Janet A.; Johns, Mark W.; Meyers, Philip A.; Moullade, Michel R.; Muza, Jay P.; Ogg, James G.; Okamura, Makoto; Sarti, Massimo; von Rad, Ulrich

    1985-06-01

    Drilling at Deep Sea Drilling Project Site 603 has provided the first deep (>1000-m) penetration of strata beneath the continental rise off the Atlantic margin of North America. Nearly continuously cored through 1585 m of section down to Berriasian pelagic limestones, the site 435 km (270 mi) east of Cape Hatteras intersected an extensive Lower Cretaceous deep-sea fan complex, which provides new information on the petroleum potential of the continental rise. Hauterivian to early Aptian in age, this 208-m interval of interbedded limestones, sand, and black shale turbidites begs the existence of any post-Valanginian reefs along the Baltimore Canyon Trough. Less extensive terrigenous turbidites were encountered higher in the section up to the Cretaceous/Tertiary boundary, which is marked by a current-laminated sand rich in dark spherules. Pelagic early Paleogene clays are disconformably overlain by Miocene pelagic mud. Turbiditic silts and clays began to accumulate rapidly at this site during the middle Miocene, leading to deposition of muddy contourites that formed the Lower Continental Rise Hills of the Hatteras Outer Ridge as sand turbidites were ponded concurrently on its landward side. The section at Site 603 confirms the concept that eustatic and other large-scale events subdivide Earth history into distinct chapters allowing the correlation of deep-sea seismic sequence boundaries with continental shelf and margin unconformities.

  20. The demise of the early Eocene greenhouse - Decoupled deep and surface water cooling in the eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Bornemann, André; D'haenens, Simon; Norris, Richard D.; Speijer, Robert P.

    2016-10-01

    Early Paleogene greenhouse climate culminated during the early Eocene Climatic Optimum (EECO, 50 to 53 Ma). This episode of global warmth is subsequently followed by an almost 20 million year-long cooling trend leading to the Eocene-Oligocene glaciation of Antarctica. Here we present the first detailed planktic and benthic foraminiferal isotope single site record (δ13C, δ18O) of late Paleocene to middle Eocene age from the North Atlantic (Deep Sea Drilling Project Site 401, Bay of Biscay). Good core recovery in combination with well preserved foraminifera makes this site suitable for correlations and comparison with previously published long-term records from the Pacific Ocean (e.g. Allison Guyot, Shatsky Rise), the Southern Ocean (Maud Rise) and the equatorial Atlantic (Demerara Rise). Whereas our North Atlantic benthic foraminiferal δ18O and δ13C data agree with the global trend showing the long-term shift toward heavier δ18O values, we only observe minor surface water δ18O changes during the middle Eocene (if at all) in planktic foraminiferal data. Apparently, the surface North Atlantic did not cool substantially during the middle Eocene. Thus, the North Atlantic appears to have had a different surface ocean cooling history during the middle Eocene than the southern hemisphere, whereas cooler deep-water masses were comparatively well mixed. Our results are in agreement with previously published findings from Tanzania, which also support the idea of a muted post-EECO surface-water cooling outside the southern high-latitudes.

  1. North Pacific Acoustic Laboratory: Deep Water Acoustic Propagation in the Philippine Sea

    DTIC Science & Technology

    2014-06-09

    J. A., and Howe, B. M. (2013). "Deep seafloor arrivals in long range ocean acoustic propagation," J. Acoust. Soc. Am. 134,3307-3317. Udovydchenkov... Spread , steepness and skewness of surface slopes," Annual Review of Marine Science 1, 377-415. Skarsoulis, E. K., Comuelle, B. D., and Dzieciuch, M...Dzieciuch, M. A., Worcester, P. F., Andrew, R. K., Buck, L. J., Mercer, J. A., Colosi, J. A., and Howe, B. M. (2009). "Deep seafloor arrivals: An

  2. UVUDF: Ultraviolet imaging of the Hubble ultra deep field with wide-field camera 3

    SciTech Connect

    Teplitz, Harry I.; Rafelski, Marc; Colbert, James W.; Hanish, Daniel J.; Kurczynski, Peter; Gawiser, Eric; Bond, Nicholas A.; Gardner, Jonathan P.; De Mello, Duilia F.; Grogin, Norman; Koekemoer, Anton M.; Brown, Thomas M.; Coe, Dan; Ferguson, Henry C.; Atek, Hakim; Finkelstein, Steven L.; Giavalisco, Mauro; Gronwall, Caryl; Lee, Kyoung-Soo; Ravindranath, Swara; and others

    2013-12-01

    We present an overview of a 90 orbit Hubble Space Telescope treasury program to obtain near-ultraviolet imaging of the Hubble Ultra Deep Field using the Wide Field Camera 3 UVIS detector with the F225W, F275W, and F336W filters. This survey is designed to: (1) investigate the episode of peak star formation activity in galaxies at 1 < z < 2.5; (2) probe the evolution of massive galaxies by resolving sub-galactic units (clumps); (3) examine the escape fraction of ionizing radiation from galaxies at z ∼ 2-3; (4) greatly improve the reliability of photometric redshift estimates; and (5) measure the star formation rate efficiency of neutral atomic-dominated hydrogen gas at z ∼ 1-3. In this overview paper, we describe the survey details and data reduction challenges, including both the necessity of specialized calibrations and the effects of charge transfer inefficiency. We provide a stark demonstration of the effects of charge transfer inefficiency on resultant data products, which when uncorrected, result in uncertain photometry, elongation of morphology in the readout direction, and loss of faint sources far from the readout. We agree with the STScI recommendation that future UVIS observations that require very sensitive measurements use the instrument's capability to add background light through a 'post-flash'. Preliminary results on number counts of UV-selected galaxies and morphology of galaxies at z ∼ 1 are presented. We find that the number density of UV dropouts at redshifts 1.7, 2.1, and 2.7 is largely consistent with the number predicted by published luminosity functions. We also confirm that the image mosaics have sufficient sensitivity and resolution to support the analysis of the evolution of star-forming clumps, reaching 28-29th magnitude depth at 5σ in a 0.''2 radius aperture depending on filter and observing epoch.

  3. Near-field effects of asteroid impacts in deep water

    SciTech Connect

    Gisler, Galen R; Weaver, Robert P; Gittings, Michael L

    2009-06-11

    Our previous work has shown that ocean impacts of asteroids below 500 m in diameter do not produce devastating long-distance tsunamis. Nevertheless, a significant portion of the ocean lies close enough to land that near-field effects may prove to be the greatest danger from asteroid impacts in the ocean. Crown splashes and central jets that rise up many kilometres into the atmosphere can produce, upon their collapse, highly non-linear breaking waves that could devastate shorelines within a hundred kilometres of the impact site. We present illustrative calculations, in two and three dimensions, of such impacts for a range of asteroid sizes and impact angles. We find that, as for land impacts, the greatest dangers from oceanic impacts are the short-term near-field, and long-term atmospheric effects.

  4. Eruption style and flow emplacement in the Submarine North Arch Volcanic Field, Hawaii

    NASA Astrophysics Data System (ADS)

    Clague, David A.; Uto, Kozo; Satake, Kenji; Davis, Alicé S.

    The North Arch Volcanic Field covers about 24,000 km2 of seafloor north of Oahu and has an estimated volume between 1,000 and 1,250 km3. The field straddles the Hawaiian flexural arch about 250 km north of the axis of the island chain and surrounds numerous Cretaceous volcanic ridges, circular flat-topped volcanoes, and low-relief regions of sediment-covered seafloor. New SeaBeam bathymetric maps that cover about 1/3 of the flow field reveal nearly 100 volcanic structures ranging from low shields to steep cones. One shield is modified by a pit crater, approximately 1.1×1.25 km and 300 m deep. A lava flow in the SE part of the volcanic field covers about 3,600 km2, has an estimated volume of 36-72 km3, and apparently erupted from a 75-km-long NNW-trending fissure system. A 108-km-long flow advanced north in a graben parallel to the Cretaceous mid-ocean ridge that formed the crust; its surface gradient is 1.9 m/km (slope of 0.1°). Shinkai 6500 submersible dive 502 explored one of the composite volcanoes and observed and collected dense alkalic basalt sheet flows erupted after vesicular basanite pillow basalts and fragmental hyaloclastite that make up the steep-sided cone. Dive 503 collected alkalic basalt sheet flows and pillow basalt from the top 122 m of the southern wall of a pit crater that formed by collapse caused by a decrease in magma volume from a shallow storage chamber located 1-2 km below the surface. The volume change may have been caused by loss of gas bubbles from the stored magma when replenishment ceased at the end of the eruption. The surficial drapery-folded sheet flow is covered by only a few cm of sediment, indicating that it is younger than the 0.5-1.5 Ma ages previously estimated for North Arch flows and vents. The near-vent constructs and flow characteristics indicate that vigorous eruption of highly vesicular lava constructed steep-sided cones of pillow basalt and hyaloclastite whereas steady eruption of dense lava that had lost its bubbles

  5. The deep thermal field of the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias

    2017-01-01

    The Upper Rhine Graben has a significant socioeconomic relevance as it provides a great potential for geothermal energy production. The key for the utilisation of this energy resource is to understand the controlling factors of the thermal field in this area. We have therefore built a data-based lithospheric-scale 3D structural model of the Upper Rhine Graben and its adjacent areas. In addition, 3D gravity modelling was performed to constrain the internal structure of the crystalline crust consistent with seismic information. Based on this lithosphere scale 3D structural model the present-day conductive thermal field was calculated and compared to measured temperatures. Our results show that the regional thermal field is mainly controlled by the configuration of the upper crust, which has different thermal properties characteristic for the Variscan and Alpine domains. Temperature maxima are predicted for the Upper Rhine Graben where thick insulating Cenozoic sediments cause a thermal blanketing effect and where the underlying crustal units are characterised by high radiogenic heat production. The comparison of calculated and measured temperatures overall shows a reasonable fit, while locally occuring model deviations indicate where a larger influence of groundwater flow may be expected.

  6. Long Range Effect of The M7.8 April 2015 Nepal Earth Quake on the Deep Groudwater Outflow in a Thousand-Mile-Away Geothermal Field in Southern China's Guangdong

    NASA Astrophysics Data System (ADS)

    Lu, G.; Yu, S.; Xu, F.; Wang, X.; Yan, K.; Yuen, D. A.

    2015-12-01

    Deep ground waters sustain high temperature and pressure and are susceptible to impact from an earthquake. How an earthquake would have been associated with long-range effect on geological environment of deep groundwater is a question of interest to the scientific community and general public. The massive Richter 8.1 Nepal Earthquake (on April 25, 2015) provided a rare opportunity to test the response of deep groundwater systems. Deep ground waters at elevated temperature would naturally flow to ground surface along preferential flow path such as a deep fault, forming geothermal water flows. Geothermal water flows are susceptible to stress variation and can reflect the physical conditions of supercritical hot water kilometers deep down inside the crust. This paper introduces the monitoring work on the outflow in Xijiang Geothermal Field of Xinyi City, Guangdong Province in southern China. The geothermal field is one of typical geothermal fields with deep faults in Guangdong. The geothermal spring has characteristic daily variation of up to 72% in flow rate, which results from being associated with a north-south run deep fault susceptible to earthquake event. We use year-long monitoring data to illustrate how the Nepal earthquake would have affected the flows at the field site over 2.5 thousand kilometers away. The irregularity of flow is judged by deviation from otherwise good correlation of geothermal spring flow with solid earth tidal waves. This work could potentially provide the basis for further study of deep groundwater systems and insight to earthquake prediction.

  7. Phylogeographic analysis reveals a deep lineage split within North Atlantic Littorina saxatilis.

    PubMed

    Doellman, Meredith M; Trussell, Geoffrey C; Grahame, John W; Vollmer, Steve V

    2011-11-07

    Phylogeographic studies provide critical insight into the evolutionary histories of model organisms; yet, to date, range-wide data are lacking for the rough periwinkle Littorina saxatilis, a classic example of marine sympatric speciation. Here, we use mitochondrial DNA (mtDNA) sequence data to demonstrate that L. saxatilis is not monophyletic for this marker, but is composed of two distinct mtDNA lineages (I and II) that are shared with sister species Littorina arcana and Littorina compressa. Bayesian coalescent dating and phylogeographic patterns indicate that both L. saxatilis lineages originated in the eastern North Atlantic, around the British Isles, at approximately 0.64 Ma. Both lineages are now distributed broadly across the eastern, central and western North Atlantic, and show strong phylogeographic structure among regions. The Iberian Peninsula is genetically distinct, suggesting prolonged isolation from northeastern North Atlantic populations. Western North Atlantic populations of L. saxatilis lineages I and II predate the last glacial maximum and have been isolated from eastern North Atlantic populations since that time. This identification of two distinct, broadly distributed mtDNA lineages further complicates observed patterns of repeated incipient ecological speciation in L. saxatilis, because the sympatric origins of distinct ecotype pairs on eastern North Atlantic shores may be confounded by admixture of divergent lineages.

  8. Phylogeographic analysis reveals a deep lineage split within North Atlantic Littorina saxatilis

    PubMed Central

    Doellman, Meredith M.; Trussell, Geoffrey C.; Grahame, John W.; Vollmer, Steve V.

    2011-01-01

    Phylogeographic studies provide critical insight into the evolutionary histories of model organisms; yet, to date, range-wide data are lacking for the rough periwinkle Littorina saxatilis, a classic example of marine sympatric speciation. Here, we use mitochondrial DNA (mtDNA) sequence data to demonstrate that L. saxatilis is not monophyletic for this marker, but is composed of two distinct mtDNA lineages (I and II) that are shared with sister species Littorina arcana and Littorina compressa. Bayesian coalescent dating and phylogeographic patterns indicate that both L. saxatilis lineages originated in the eastern North Atlantic, around the British Isles, at approximately 0.64 Ma. Both lineages are now distributed broadly across the eastern, central and western North Atlantic, and show strong phylogeographic structure among regions. The Iberian Peninsula is genetically distinct, suggesting prolonged isolation from northeastern North Atlantic populations. Western North Atlantic populations of L. saxatilis lineages I and II predate the last glacial maximum and have been isolated from eastern North Atlantic populations since that time. This identification of two distinct, broadly distributed mtDNA lineages further complicates observed patterns of repeated incipient ecological speciation in L. saxatilis, because the sympatric origins of distinct ecotype pairs on eastern North Atlantic shores may be confounded by admixture of divergent lineages. PMID:21429920

  9. A PILOT FOR A VERY LARGE ARRAY H I DEEP FIELD

    SciTech Connect

    Fernandez, Ximena; Van Gorkom, J. H.; Schiminovich, David; Hess, Kelley M.; Pisano, D. J.; Kreckel, Kathryn; Momjian, Emmanuel; Popping, Attila; Oosterloo, Tom; Chomiuk, Laura; Verheijen, M. A. W.; Henning, Patricia A.; Bershady, Matthew A.; Wilcots, Eric M.; Scoville, Nick

    2013-06-20

    High-resolution 21 cm H I deep fields provide spatially and kinematically resolved images of neutral hydrogen at different redshifts, which are key to understanding galaxy evolution across cosmic time and testing predictions of cosmological simulations. Here we present results from a pilot for an H I deep field done with the Karl G. Jansky Very Large Array (VLA). We take advantage of the newly expanded capabilities of the telescope to probe the redshift interval 0 < z < 0.193 in one observation. We observe the COSMOS field for 50 hr, which contains 413 galaxies with optical spectroscopic redshifts in the imaged field of 34' Multiplication-Sign 34' and the observed redshift interval. We have detected neutral hydrogen gas in 33 galaxies in different environments spanning the probed redshift range, including three without a previously known spectroscopic redshift. The detections have a range of H I and stellar masses, indicating the diversity of galaxies we are probing. We discuss the observations, data reduction, results, and highlight interesting detections. We find that the VLA's B-array is the ideal configuration for H I deep fields since its long spacings mitigate radio frequency interference. This pilot shows that the VLA is ready to carry out such a survey, and serves as a test for future H I deep fields planned with other Square Kilometer Array pathfinders.

  10. Dynamic depositional and early diagenetic processes in a deep-water shelf setting, upper cretaceous Austin Chalk, North Texas

    SciTech Connect

    Hovorka, S.D.; Nance, H.S.

    1994-12-31

    The Austin Chalk of north Texas was deposited on a deep-water shelf north of the Sea Marcos Platform during a worldwide Coniacian and Santonian sea-level highstand. Transgressive (lowermost lower Austin Chalk), highstand (uppermost lower Austin Chalk), and regressive (middle and upper Austin Chalk) phases of cyclic chalk and marl sedimentation are recognized in excavations and tunnels created in Ellis County for the Superconducting Super Collider provide new evidence of sediment transport during Austin Chalk deposition. During transgression, bottom currents syndepositionally reworked nannoplankton oozes, incising channels as much as 120 ft across and 8 ft deep. Weakly burrowed channel fills having preservation of fine lamination document rapid infilling. Channel fills are composed of pyritized and carbonized wood and Inoceramus lag deposits, pellets, echinoderm fragments, and globigerinid grainstones, and coccolith ooze. During maximum highstand, bottom reworking was suppressed. Detrital content of highstand marls is low (>20 percent); organic content is high (1.4 to 3.5 percent). Coccolith preservation is excellent because of minimal diagenetic alteration. Regression is marked by resumed channel cutting and storm-bed winnowing in the middle and upper Austin Chalk. Suppressed resistivity log response and recessive weathering characteristics of the middle Austin Chalk are not primarily related to depositional environment but rather to increased input of volcanic ash during the accumulation of this interval. Early stabilization of ash produced clay-coated microfabrics in sediments that are otherwise similar to the transgressive deposits.

  11. The spatial distribution of X-ray selected AGN in the Chandra deep fields: a theoretical perspective

    NASA Astrophysics Data System (ADS)

    Marulli, Federico; Bonoli, Silvia; Branchini, Enzo; Gilli, Roberto; Moscardini, Lauro; Springel, Volker

    2009-07-01

    We study the spatial distribution of X-ray selected active galactic nuclei (AGN) in the framework of hierarchical coevolution of supermassive black holes and their host galaxies and dark matter haloes. To this end, we have applied the theoretical model developed by Croton et al., De Lucia & Blaizot and Marulli et al. to the output of the Millennium Run and obtained hundreds of realizations of past light cones from which we have extracted realistic mock AGN catalogues that mimic the Chandra deep fields. We find that the model AGN number counts are in fair agreement with observations both in the soft and in the hard X-ray bands, except at fluxes <~10-15ergcm-2s-1, where the model systematically overestimates the observations. However, a large fraction of these faint objects are typically excluded from the spectroscopic AGN samples of the Chandra fields. We find that the spatial two-point correlation function predicted by the model is well described by a power-law relation out to 20h-1Mpc, in close agreement with observations. Our model matches the correlation length r0 of AGN in the Chandra Deep Field-North but underestimates it in the Chandra Deep Field-South. When fixing the slope to γ = 1.4, as in Gilli et al., the statistical significance of the mismatch is 2σ-2.5σ, suggesting that the predicted cosmic variance, which dominates the error budget, may not account for the different correlation length of the AGN in the two fields. However, the overall mismatch between the model and the observed correlation function decreases when both r0 and γ are allowed to vary, suggesting that more realistic AGN models and a full account of all observational errors may significantly reduce the tension between AGN clustering in the two fields. While our results are robust to changes in the model prescriptions for the AGN light curves, the luminosity dependence of the clustering is sensitive to the different light-curve models adopted. However, irrespective of the model

  12. Research on Fast Nitriding by Direct Current Field Base on the Deep-layer QPQ Technology

    NASA Astrophysics Data System (ADS)

    Wang, K.; Luo, D. F.; Zhang, L.

    In recent years the QPQ technical innovator is the development and application of deep-layer QPQ. But also brings a lot of problems need to solve. This article introduces a new technology use direct current field at low temperature and short time base on the deep-layer QPQ. Use 45# as material, we make a comparative between DC treatment and normal treatment at the same condition. The results show that the DC treatment was beneficial forms of the nitrided layer and the performance index was the same as normal treatment. The formation of the nitrided layer in the direct current field situation is analyzed.

  13. Intermediate and deep water paleoceanography of the northern North Atlantic over the past 21,000 years

    NASA Astrophysics Data System (ADS)

    Thornalley, David J. R.; Elderfield, Harry; McCave, I. Nick

    2010-03-01

    Benthic foraminiferal stable isotope records from four high-resolution sediment cores, forming a depth transect between 1237 m and 2303 m on the South Iceland Rise, have been used to reconstruct intermediate and deep water paleoceanographic changes in the northern North Atlantic during the last 21 ka (spanning Termination I and the Holocene). Typically, a sampling resolution of ˜100 years is attained. Deglacial core chronologies are accurately tied to North Greenland Ice Core Project (NGRIP) ice core records through the correlation of tephra layers and changes in the percent abundance of Neogloboquadrina pachyderma (sinistral) with transitions in NGRIP. The evolution from the glacial mode of circulation to the present regime is punctuated by two periods with low benthic δ13C and δ18O values, which do not lie on glacial or Holocene water mass mixing lines. These periods correlate with the late Younger Dryas/Early Holocene (11.5-12.2 ka) and Heinrich Stadial 1 (14.7-16.8 ka) during which time freshwater input and sea-ice formation led to brine rejection both locally and as an overflow exported from the Nordic seas into the northern North Atlantic, as earlier reported by Meland et al. (2008). The export of brine with low δ13C values from the Nordic seas complicates traditional interpretations of low δ13C values during the deglaciation as incursions of southern sourced water, although the spatial extent of this brine is uncertain. The records also reveal that the onset of the Younger Dryas was accompanied by an abrupt and transient (˜200-300 year duration) decrease in the ventilation of the northern North Atlantic. During the Holocene, Iceland-Scotland Overflow Water only reached its modern flow strength and/or depth over the South Iceland Rise by 7-8 ka, in parallel with surface ocean reorganizations and a cessation in deglacial meltwater input to the North Atlantic.

  14. Deep significance of the field concept in contemporary biomedical sciences.

    PubMed

    Jerman, Igor; Krasovec, Rok; Leskovar, Robert T

    2009-01-01

    Since antiquity, biology has had two opposing views of life and organisms: holistic (organismic) and reductionist. In contemporary biology, the molecular reductionist approach prevails--its central entity being the gene. Organicism lingers on the margin of biology, having well-elaborated ideas but no empirical confirmation for the integrative biological entity. The latter could be found in the endogenous coherent EM field (ECEMF), since it organizes countless cellular processes, including cell's division, and through the coupling of coherence domains integrates the whole organism. A serious and thorough reconsideration of life and organisms in light of this new biological entity would have far-reaching consequences in all areas of biological science, i.e., in ontogeny, the theory of evolution, understanding and combating serious illnesses, and above all, cancer.

  15. North Atlantic demersal deep-water fish distribution and biology: present knowledge and challenges for the future.

    PubMed

    Bergstad, O A

    2013-12-01

    This paper summarizes knowledge and knowledge gaps on benthic and benthopelagic deep-water fishes of the North Atlantic Ocean, i.e. species inhabiting deep continental shelf areas, continental and island slopes, seamounts and the Mid-Atlantic Ridge. While several studies demonstrate that distribution patterns are species specific, several also show that assemblages of species can be defined and such assemblages are associated with circulatory features and water mass distributions. In many subareas, sampling has, however, been scattered, restricted to shallow areas or soft substrata, and results from different studies tend to be difficult to compare quantitatively because of sampler differences. Particularly, few studies have been conducted on isolated deep oceanic seamounts and in Arctic deep-water areas. Time series of data are very few and most series are short. Recent studies of population structure of widely distributed demersal species show less than expected present connectivity and considerable spatial genetic heterogeneity and complexity for some species. In other species, genetic homogeneity across wide ranges was discovered. Mechanisms underlying the observed patterns have been proposed, but to test emerging hypotheses more species should be investigated across their entire distribution ranges. Studies of population biology reveal greater diversity in life-history strategies than often assumed, even between co-occurring species of the same family. Some slope and ridge-associated species are rather short-lived, others very long-lived, and growth patterns also show considerable variation. Recent comparative studies suggest variation in life-history strategies along a continuum correlated with depth, ranging from shelf waters to the deep sea where comparatively more species have extended lifetimes, and slow rates of growth and reproduction. Reproductive biology remains too poorly known for most deep-water species, and temporal variation in recruitment has

  16. Neutralizing Carbonic Acid in Deep Carbonate Strata below the North Atlantic

    SciTech Connect

    Klaus Lackner; Charles Harvey; Bruce Watson

    2008-01-14

    Carbon dioxide injection into deep sea sediments below 2700 m water depth and a few hundred meters to fifteen hundred meters deep in the sediment column may provide permanent geologic storage by gravitational trapping. At high pressures and low temperatures common in deep sea sediments a few hundred meters below sea floor, CO{sub 2} will be in its liquid phase and will be denser than the overlying pore fluid. The lower density of the pore fluid provides a cap to the denser CO{sub 2} and ensures gravitational trapping in the short term. The overall storage capacity for CO{sub 2} in such deep sea formations below the ocean floor is primarily determined by the permeability, and will vary with seafloor depth, geothermal gradient, porosity, and pore water salinity. Furthermore, the dissemination of the injected CO{sub 2} in the sediments and potential chemical reactions between CO{sub 2}, pore fluid and sediments will define its fate in the storage reservoir. The main objectives of our research was to evaluate the potential for sub-seabed CO{sub 2} storage in deep sea sediments using a range of approaches including experiments, permeability analysis, and modeling. Over the course of the three-year award, our results support an important role for sub-seabed storage in a diverse portfolio of carbons sequestration options. Our analysis has shown the feasibility of this type of storage, and also emphasizes that escape or leakage from such sites would be negligible. The most difficult challenge is to overcome the low permeability of typical deep-sea sediments, and a variety of approaches are suggested for future research.

  17. Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain

    NASA Astrophysics Data System (ADS)

    Huang, Zhiyong; Pan, Yun; Gong, Huili; Yeh, Pat J.-F.; Li, Xiaojuan; Zhou, Demin; Zhao, Wenji

    2015-03-01

    This study explores the capability of Gravity Recovery and Climate Experiment (GRACE) to detect heterogeneous groundwater storage (GWS) variations in two subregions of the North China Plain: the Piedmont Plain (PP, ~54,000 km2, mainly exploiting shallow groundwater) and East Central Plain (ECP, ~86,000 km2, mainly exploiting deep groundwater). Results show that the GWS anomalies estimated from GRACE data (2003-2013) agree well with those estimated from in situ observations (2005-2010) for both PP (R2 = 0.91) and ECP (R2 = 0.75). The shallow GWS (2003-2013) in PP declines faster (-46.5 ± 6.8 mm/yr) than the deep GWS in ECP (-16.9 ± 1.9 mm/yr). However, the shallow GWS in PP recovered more quickly especially during the 2008-2011 drought period. Despite its lower magnitude, the GRACE-derived GWS depletion in ECP reveals the overexploitation of deep GWS. This study demonstrated that the heterogeneous GWS variations can potentially be detected by GRACE at the subregional scale smaller than the typical GRACE footprint (200,000 km2).

  18. Orbital and suborbital variability in North Atlantic bottom water temperature obtained from deep-sea ostracod Mg/Ca ratios

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, G.S.; Baker, P.A.; Rodriguez-Lazaro, J.; DeMartino, D.M.

    2000-01-01

    Magnesium/calcium (Mg/Ca) ratios were measured in the deep-sea ostracod (Crustacea) genus Krithe from Chain core 82-24-4PC from the western mid-Atlantic Ridge (3427 m) in order to estimate ocean circulation and bottom water temperature (BWT) variability over the past 200,000 years. Mg/Ca ratios have been used as a paleothermometer because the ratios are controlled primarily by ambient water temperatures at the time the organism secretes its adult carapace. Over the past two glacial-interglacial cycles, Mg/Ca values oscillated between about 7 mmol/mol and 12 mmol/mol, equivalent to a BWT range of 0 to > 3.5??C. The lowest values were obtained on specimens from glacial marine isotope stages (MISs) 2, 4 and 6; the highest values were obtained from specimens from the early part of the Holocene interglacial (MIS 1), and also from MISs 5 and 7. These trends suggest that BWTs in the North Atlantic Ocean fluctuate over orbital time scales. Suborbital variability in Mg/Ca ratios and BWT was also observed for the past 100,000 years. Ratios rose from ~8 mmol/mol to ~10 mmol/mol (implying a BWT increase of ~1 to 3??C) during 14 Mg/Ca excursions. The highest ratios were found in Krithe dated at approximately 32, 36-38, 43, 48, 73, 85 and 93 ka. Although the age model for the Chain 82-24-4PC and temporal resolution do not allow precise correlation, some of these deep-sea bottom temperature excursions appear to correspond to Heinrich events recorded in other regions of the North Atlantic and perhaps Dansgaard-Oeschger interstadial events recorded in Greenland ice cores. If confirmed, this would support the hypothesis that millennial-scale oscillations of climate in the North Atlantic are capable of affecting global climate via thermohaline circulation changes. (C) 2000 Elsevier Science B.V.

  19. 2011 North Plains research field 12-200 limited irrigation corn production study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The North Plains Water Conservation District started a water conservation project in 2010 on corn irrigation aimed at using just 12 inches of irrigation and producing 200 bu/ac of corn. This report is for 2011, the second year of the study, conducted at the North Plains Research Field (NPRF) in Ett...

  20. The VIMOS VLT Deep Survey. Public release of 1599 redshifts to IAB≤24 across the Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Le Fèvre, O.; Vettolani, G.; Paltani, S.; Tresse, L.; Zamorani, G.; Le Brun, V.; Moreau, C.; Bottini, D.; Maccagni, D.; Picat, J. P.; Scaramella, R.; Scodeggio, M.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Charlot, S.; Contini, T.; Foucaud, S.; Franzetti, P.; Garilli, B.; Gavignaud, I.; Guzzo, L.; Ilbert, O.; Iovino, A.; McCracken, H. J.; Mancini, D.; Marano, B.; Marinoni, C.; Mathez, G.; Mazure, A.; Meneux, B.; Merighi, R.; Pellò, R.; Pollo, A.; Pozzetti, L.; Radovich, M.; Zucca, E.; Arnaboldi, M.; Bondi, M.; Bongiorno, A.; Busarello, G.; Ciliegi, P.; Gregorini, L.; Mellier, Y.; Merluzzi, P.; Ripepi, V.; Rizzo, D.

    2004-12-01

    This paper presents the VIMOS VLT Deep Survey around the Chandra Deep Field South (CDFS). We have measured 1599 new redshifts with VIMOS on the European Observatory Very Large Telescope - UT3, in an area 21 × 21.6 arcmin2, including 784 redshifts in the Hubble Space Telescope - Advanced Camera for Surveys GOODS area. 30% of all objects with IAB=24 have been observed independently of magnitude, indicating that the sample is purely magnitude limited. We have reached an unprecedented completeness level of 84% in terms of the ratio of secure measurements vs. observed objects, while 95% of all objects have a redshift measurement. A total of 1452 galaxies, 139 stars, 8 QSOs have a redshift identification, 141 of these being unsecure measurements. The redshift distribution down to IAB=24 is peaked at a median redshift z=0.73, with a significant high redshift tail extending up to ˜4. Several high density peaks in the distribution of galaxies are identified. In particular, the strong peak at z=0.735 contains more than 130 galaxies in a velocity range ±2000 km s-1 distributed all across the transverse ˜20 h-1 Mpc of the survey. We are releasing all redshifts to the community, along with the cross identification with HST-ACS GOODS sources on the CENCOS database environment http://cencosw.oamp.fr. The data presented in this paper has been obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile.

  1. Results of study of deep underground structure of mud volcanoes in North-Western Caucasus by means of geological and geophysical methods

    NASA Astrophysics Data System (ADS)

    Sobissevitch, A. L.; Gorbatikov, A. V.; Ovsuychenko, A. N.; Sobissevitch, L. E.; Stepanova, M. Yu.; Morev, B. A.

    2009-04-01

    Results of complementary geological and geophysical studies of mud volcanic phenomena in North-Western Caucasus (Taman mud volcanic province) are presented. New technology for passive subsurface sounding of the Earth's crust has been originally developed at the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences. Patented since 2005, this technology represents the new kind of seismic survey based on specific features of propagation of the Rayleigh waves. It uses natural background microseismic noise as a sounding signal. By using the method of low-frequency microseismic sounding in the course of field works carried out in 2006 - 2008, there have been obtained three vertical cross-sections for the two mud volcanoes down to the depth of 25 km. For the two different mud volcanoes their deep subsurface structure has been revealed and discussed. The Gora Karabetova mud volcano is one of the most active mud volcanoes in the Taman peninsula with primarily explosive behaviour while the Shugo mud volcano's activity pattern is different, explosive events are rare and both types of phenomena may be explained by the configuration of their feeding systems, tectonic position and deep pathways of migration of fluids. Complementary interpretation of raw data sets delivered form geophysical and geological surveys allows considering principal differences of origin and mechanisms of mud volcanic activity for the Shugo and the Gora Karabetova mud volcanoes.

  2. Ultra-deep K-band Imaging of the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Brammer, G. B.; Marchesini, D.; Labbé, I.; Spitler, L.; Lange-Vagle, D.; Barker, E. A.; Tanaka, M.; Fontana, A.; Galametz, A.; Ferré-Mateu, A.; Kodama, T.; Lundgren, B.; Martis, N.; Muzzin, A.; Stefanon, M.; Toft, S.; van der Wel, A.; Vulcani, B.; Whitaker, K. E.

    2016-09-01

    We have recently completed a deep near-infrared imaging survey with the High Acuity Wide Field K-band Imager (HAWK-I), nicknamed KIFF (Ks-band Imaging of the Frontier Fields). KIFF provides ultra-deep images of six fields around massive galaxy clusters that have also recently been observed with the Hubble and Spitzer Space Telescopes as part of the Frontier Fields programme. Each of the KIFF mosaics is among the deepest Ks-band images ever obtained, and, with a boost from strong gravitational lensing by the galaxy clusters, they will be used to reveal the stellar populations of galaxies seen only a few hundred million years after the Big Bang. Fully reduced images are made available to the community through the Phase 3 infrastructure of the ESO Science Archive Facility.

  3. LINDLEY NURSERY COMPLEX NORTH loOKING SOUTHEAST ACROSS FORMER FIELDS THROUGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LINDLEY NURSERY COMPLEX NORTH loOKING SOUTHEAST ACROSS FORMER FIELDS THROUGH MORNING MIST - Overhills, Fort Bragg Military Reservation, Approximately 15 miles NW of Fayetteville, Overhills, Harnett County, NC

  4. Behavior of Deep Eutectic Solvents under External Electric Fields: A Molecular Dynamics Approach.

    PubMed

    Atilhan, Mert; Aparicio, Santiago

    2017-01-12

    The properties of selected deep eutectic solvents (DESs) comprising choline chloride as a hydrogen bond acceptor and several types of hydrogen bond donors under static and dynamic external electric fields (EEFs) have been studied in this work using classical molecular dynamics simulations. The effects of field intensities under static conditions and of field frequencies under dynamic conditions were simulated. The response of the fluids to the external fields was analyzed from the changes in dipolar arrangements, intermolecular interaction energies, nanoscopic arrangements, and molecular diffusion. These results show for the very first time the nonequilibrium behavior of DESs under EEFs.

  5. New Insights on the North American Monsoon from the 2004 Name Field Campaign

    NASA Astrophysics Data System (ADS)

    Johnson, R. H.

    2014-12-01

    The 2004 North American Monsoon Experiment (NAME) was an international field campaign conducted over northwestern Mexico, the Gulf of California, and the surrounding region. The overarching goal of NAME was the determination of the sources and limits of predictability of warm season precipitation over North America, with emphasis on time scales ranging from seasonal-to-interannual. The observational component of NAME involved measurements of a range of monsoon phenomena using aircraft, soundings, profilers, research radars, ships, surface stations, rain gauges, and surface flux sites. The NAME enhanced observational network has confirmed a number of previous theories and hypotheses with respect to North American Monsoon (NAM) processes, but also yielded new insight and details regarding specific phenomena of the NAM region. Several new findings stemming from NAME observations are: The 12-14 July 2004 overall gulf surge event was comprised of several stages: an initial disturbance identified as a Kelvin shock (an internal bore modified by rotation) followed by a general acceleration of the flow by multiple convectively generated gravity currents and bores along the span of the Gulf, then ending again in the northern Gulf as a Kelvin shock disturbance; A tropical upper-tropospheric trough (TUTT) associated with the 12-14 July Gulf Surged enhanced precipitation on its western flank as it passed over the mountains of northern Mexico. It is found that these upper-level disturbances modify the low-level flow and slightly increase CAPE so as to cause more highly organized mesoscale convective systems to move off the Sierra Madre Occidental toward the west and in doing so, strengthen moisture surges over the Gulf of California; and The diurnal cycle of convection determined from sounding-based heat and moisture budgets over the Sierra Madre Occidental (SMO) is characterized by shallow convection around noon, deep convection at 1800 LT, evolving to stratiform precipitation

  6. Methane hydrate potential and development of a shallow gas field in the arctic: The Walakpa Field North Slope Alaska

    SciTech Connect

    Glenn, R.K.

    1992-01-01

    The goal of the North Slope Hydrate Study is to evaluate the methane hydrate potential of the Walakpa gas field, a shallow gas field located near Barrow, Alaska. Observing, understanding, and predicting the production characteristics of the Walakpa field will be accomplished by the analysis of the reservoir geology, and of the individual well production data, derived from reservoir engineering studies conducted in the field.

  7. Methane hydrate potential and development of a shallow gas field in the arctic: The Walakpa Field North Slope Alaska

    SciTech Connect

    Glenn, R.K.

    1992-06-01

    The goal of the North Slope Hydrate Study is to evaluate the methane hydrate potential of the Walakpa gas field, a shallow gas field located near Barrow, Alaska. Observing, understanding, and predicting the production characteristics of the Walakpa field will be accomplished by the analysis of the reservoir geology, and of the individual well production data, derived from reservoir engineering studies conducted in the field.

  8. New estimates of area and mass for the North American tektite strewn field

    NASA Technical Reports Server (NTRS)

    Koeberl, C.

    1989-01-01

    A revised estimate is given for the total mass of the North American tektite material, which is based on a concept of patches or rays of distribution rather than on a continuous tektite and microtektite blanket. This concept yields a total mass of about 3 x 10 to the 14th g, which is less than a third of previous estimates. The shape of the North American tektite strewn field is in agreement with other tektite strewn fields.

  9. APL-UW Deep Water Propagation: Philippine Sea Signal Physics and North Pacific Ambient Noise

    DTIC Science & Technology

    2015-10-15

    ranges, and (3) the observed pulse intensity distribution at 200 Hz and 510 km (near exponential ) did not obviously follow from the observed pulse spread...distribution is near- exponential , indicative of the saturated scattering regime. The pulse spread is very small, indicative of the partially saturated...Sea 2010 experiment show deep fading. Tntensity fluctuations are near- exponentially distributed and scintillation indices are high (1.1-1.9). According

  10. Considerations for Deep Maneuver: Lessons from North Africa, 1941-1942.

    DTIC Science & Technology

    1985-01-01

    yields the greatest benefits.2 Despite this offensive orientation his army remained one that maneuvered by regiments and was tied to a cumbersome...82175 Both advocated deep penetration by mechanized forces to disrupt enemy command, control , and logistics; both realized the psychological impact of...everywhere. By splitting up their two available divisions into at least five separate elements, none of which were mutually supporting and most of which

  11. Dispersal Patterns of Pleistocene Sands on the North Atlantic Deep-Sea Floor.

    PubMed

    Hubert, J F

    1962-05-04

    Glauconitic, quartzose sands previously modified on the continental shelf from feldspathic glacial detritus were transported through submarine canyons onto the Hudson deep-sea fan, the Hatteras abyssal plain, and the western and central Sohm abyssal plain. These feldspar-poor, quartzose sands contrast with highly feldspathic sands derived directly from a glacial source and probably transported through the Newfoundland abyssal gap onto the eastern and southern Sohm abyssal plain.

  12. Observation of deep water microseisms in the North Atlantic Ocean using tide modulations

    NASA Astrophysics Data System (ADS)

    Beucler, Éric; Mocquet, Antoine; Schimmel, Martin; Chevrot, Sébastien; Quillard, Olivier; Vergne, Jérôme; Sylvander, Matthieu

    2015-01-01

    Ocean activity produces continuous and ubiquitous seismic energy mostly in the 2-20 s period band, known as microseismic noise. Between 2 and 10 s period, secondary microseisms (SM) are generated by swell reflections close to the shores and/or by opposing swells in the deep ocean. However, unique conditions are required in order for surface waves generated by deep-ocean microseisms to be observed on land. By comparing short-duration power spectral densities at both Atlantic shoreline and inland seismic stations, we show that ocean tides strongly modulate the seismic energy in a wide period band except between 2.5 and 5 s. This tidal proxy reveals the existence of an ex situ short-period contribution of the SM peak. Comparison with swell spectra at surrounding buoys suggests that the largest part of this extra energy comes from deep ocean-generated microseisms. The energy modulation might be also used in numerical models of microseismic generation to constrain coastal reflection coefficients.

  13. Near Infrared Imaging of the Hubble Deep Field with Keck Telescope

    NASA Technical Reports Server (NTRS)

    Hogg, David W.; Neugebauer, G.; Armus, Lee; Matthews, K.; Pahre, Michael A.; Soifer, B. T.; Weinberger, A. J.

    1997-01-01

    Two deep K-band (2.2 micrometer) images, with point-source detection limits of K=25.2 mag (one sigma), taken with the Keck Telescope in subfields of the Hubble Deep Field, are presented and analyzed. A sample of objects to K=24 mag is constructed and V(sub 606)- I(sub 814) and I(sub 814)-K colors are measured. By stacking visually selected objects, mean I(sub 814)-K colors can be measured to very faint levels, the mean I(sub 814)-K color is constant with apparent magnitude down to V(sub 606)=28 mag.

  14. Temporal variations of particle fluxes in the deep subtropical and tropical North Atlantic - Eulerian versus Lagrangian effects

    NASA Technical Reports Server (NTRS)

    Deuser, W. G.; Muller-Karger, F. E.; Hemleben, C.

    1988-01-01

    The flux of particles measured by sediment traps in the deep water of the Sargasso Sea and western tropical North Atlantic undergoes pronounced temporal variation. In the Sargasso Sea the variability is largely due to seasonal changes in mixed-layer depth and attendant changes in primary productivity affecting a wide region. By contrast, the variability in the western tropical Atlantic appears to be caused by patches of elevated nutrient and pigment concentrations which have their origin in the plumes of the Amazon and Orinoco rivers. Coastal zone color scanner scenes demonstrate the great seasonal and interannual differences in the direction and dispersal patterns of the plumes. The river plumes break up into irregular patches which may pass through the catchment area of a sediment trap at varying rates, thereby creating the impression of almost random temporal flux variability at a fixed trap site.

  15. Deep blank-field catalogue for medium- and large-sized telescopes

    NASA Astrophysics Data System (ADS)

    Jiménez Esteban, F. M.; Cabrera Lavers, A.; Cardiel, N.; Alacid, J. M.

    2012-11-01

    The observation of blank fields, defined as regions of the sky that are devoid of stars down to a given threshold magnitude, constitutes one of the most relevant calibration procedures required for the proper reduction of astronomical data obtained following typical observing strategies. In this work, we have used Delaunay triangulation to search for deep blank fields throughout the whole sky, with a minimum size of 10 arcmin in diameter and an increasing threshold magnitude from 15 to 18 in the R band of the USNO-B Catalog of the United States Naval Observatory. The result is a catalogue with the deepest blank fields known so far. A short sample of these regions has been tested with the 10.4-m Gran Telescopio Canarias, and it has been shown to be extremely useful for medium- and large-sized telescopes. Because some of the regions found could also be suitable for new extragalactic studies, we have estimated the galactic extinction in the direction of each deep blank field. This catalogue is accessible through the virtual observatory tool TESELA, and the user can retrieve - and visualize using ALADIN - the deep blank fields available near a given position in the sky.

  16. Insights into North Atlantic deep water formation during the peak interglacial interval of Marine Isotope Stage 9 (MIS 9)

    NASA Astrophysics Data System (ADS)

    Mokeddem, Zohra; McManus, Jerry F.

    2017-01-01

    Foraminifera abundance and stable isotope records from ODP Site 984 (61.25°N, 24.04°W, 1648 m) in the North Atlantic are used to reconstruct surface circulation variations and the relative strength of the North Atlantic Deep Water (NADW) formation over the period spanning the peak warmth of Marine Interglacial Stage (MIS) 9e ( 324-336 ka). This interval includes the preceding deglaciation, Termination 4 (T4), and the subsequent glacial inception of MIS 9d. The records indicate a greatly reduced contribution of NADW during T4, as observed in more recent deglaciations. In contrast with the most recent deglaciation, the lack of a significant NADW signal extended from T4 well into the peak interglacial MIS 9e and persisted nearly until the transition to the subsequent glacial stage MIS 9d. Although NADW formation resumed during MIS 9e, only depths greater than 2000 m appear to have been ventilated. The poorly ventilated intermediate depth of Site 984 (<2000 m) may have resulted on one hand from a general reduction of deep water ventilation by NADW during the study interval or, on the other hand, from different pathways of the spread of newly formed NADW that bypassed the study location. The intermediate depths may have also been invaded by southern-sourced waters as the formation of intermediate depth NADW weakened. The absence of any significant NADW signal at the water depth of Site 984 during the climatic optimum contrasts sharply with subsequent interglacial peaks (MIS 5e and the Holocene). Despite the perturbed intermediate depth circulation, oceanic heat transport northeastward was not interrupted and may have contributed to the relatively mild interglacial conditions of MIS 9e.

  17. Deep-Earth reactor: Nuclear fission, helium, and the geomagnetic field

    PubMed Central

    Hollenbach, D. F.; Herndon, J. M.

    2001-01-01

    Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having 3He/4He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power. PMID:11562483

  18. Deep-Earth reactor: nuclear fission, helium, and the geomagnetic field.

    PubMed

    Hollenbach, D F; Herndon, J M

    2001-09-25

    Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having (3)He/(4)He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power.

  19. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north-south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north-south differences. In the fall of 2010 (when the North Pole was most visible), there was a strong flow in the North while in the spring of 2011 (when the South Pole was most visible) the flow there was weaker. With these results, we have a possible solution to this polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun s polar regions in general and the polar meridional flow in particular.

  20. The deep structure of the Western Pyrenees: constraints from tomographic imaging, field and marine geological observations

    NASA Astrophysics Data System (ADS)

    Tugend, Julie; Manatschal, Gianreto; Chevrot, Sébastien; Mohn, Geoffroy

    2015-04-01

    Knowledge of magma-poor rifted margin architecture has significantly evolved over the past decades. Refraction seismic data combined with drill-hole observations unravelled the velocity structure and lithological assemblages of the most distal part of continental rifted margins. Present-day models of continental rifted margins include the occurrence of hyperextended domains consisting in extremely thinned continental crust and/or exhumed subcontinental mantle as described at many rifted margins. Studies in mountain belts revealed that remnants of hyperextended domains could also be identified in internal parts of collisional orogens. Integrating recent developments in the understanding of rifted margins in the study of mountain building processes, in particular the importance of the reactivation of inherited rift structures is therefore essential and may result in alternative interpretations of the lithospheric scale structure of collisional orogens. In this contribution, we focus on the western part of the Pyrenean orogen that resulted from the inversion of a complex Late Jurassic to Mid Cretaceous rift system. The transition from preserved oceanic and rift domains to the west (in the offshore Bay of Biscay) to their complete inversion in the east provides simultaneous access to seismically imaged and exposed parts of a hyperextended rift system. Based on a multi-scale dataset that combines sub-surface data (field and drill-hole observations) with tomographic imaging (PYROPE experiment) and integrating new concepts derived from the study of present-day rifted margins, we investigate the lithospheric-scale architecture of the Western Pyrenees. Our results suggest that the imaged north-dipping crustal root may correspond to the former exhumed mantle and hyperthinned domains that have been subducted/underthrust at the onset of convergence. This interpretation contrasts with the classical assumption that the crustal root is made of lower crustal rocks. This

  1. Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields.

    PubMed

    Liu, Fayao; Shen, Chunhua; Lin, Guosheng; Reid, Ian

    2016-10-01

    In this article, we tackle the problem of depth estimation from single monocular images. Compared with depth estimation using multiple images such as stereo depth perception, depth from monocular images is much more challenging. Prior work typically focuses on exploiting geometric priors or additional sources of information, most using hand-crafted features. Recently, there is mounting evidence that features from deep convolutional neural networks (CNN) set new records for various vision applications. On the other hand, considering the continuous characteristic of the depth values, depth estimation can be naturally formulated as a continuous conditional random field (CRF) learning problem. Therefore, here we present a deep convolutional neural field model for estimating depths from single monocular images, aiming to jointly explore the capacity of deep CNN and continuous CRF. In particular, we propose a deep structured learning scheme which learns the unary and pairwise potentials of continuous CRF in a unified deep CNN framework. We then further propose an equally effective model based on fully convolutional networks and a novel superpixel pooling method, which is about 10 times faster, to speedup the patch-wise convolutions in the deep model. With this more efficient model, we are able to design deeper networks to pursue better performance. Our proposed method can be used for depth estimation of general scenes with no geometric priors nor any extra information injected. In our case, the integral of the partition function can be calculated in a closed form such that we can exactly solve the log-likelihood maximization. Moreover, solving the inference problem for predicting depths of a test image is highly efficient as closed-form solutions exist. Experiments on both indoor and outdoor scene datasets demonstrate that the proposed method outperforms state-of-the-art depth estimation approaches.

  2. North Pecan Island field: a mature trend discovery in Miocene of southern Louisiana

    SciTech Connect

    Bauer, A.G.; McCormick, J.A.

    1985-02-01

    The Exxon 1 M.J. Epley discovery well for North Pecan Island field was completed in early 1982 as a discovery of significant new gas and condensate reserves in the mature Miocene trend of south Louisiana. The field is located in Vermilion Parish within a large megablock between 2 major down-to-the basin growth-fault systems and is on the southern end of a south-plunging structural nose. Traps in 2 fault segments are formed in southeasterly dipping beds upthrown to 2 north dipping, sealing faults. Six separate Robulus chambersi sandstones contain gas and condensate reserves. Major gas and condensate reserves from sandstone reservoirs in the R. chambersi section were discovered in the mid-1960s 3.3 mi. west in the Pecan island field and in the North Freshwater Bayou field, 5 mi northeast of the North Pecan Island field discovery. Several earlier dry holes just north of the discovery were drilled seeking to extend production from the upstructure Fire Island field (3 mi north), which produced a limited amount of gas and condensate from R. chambersi sandstones. Extensive structural and isopach mapping, aided by new high-resolution seismic data, revealed the North Pecan Island prospect to be structural high to production at Pecan Island and that the prospective section was deposited over a growing paleostructure. Four wells have been completed to date in the field, with flow rates as high as 30 MMCFGB. Current estimates place the new field recoverable at approximately 250 bcf of gas and 6 million bbl condensate.

  3. The diversity, distribution and status of deep-water elasmobranchs in the Rockall Trough, north-east Atlantic Ocean.

    PubMed

    Neat, F C; Burns, F; Jones, E; Blasdale, T

    2015-12-01

    Data from a scientific deep-water trawl fisheries survey in the north-east Atlantic were analysed to determine the spatial and bathymetric distribution of elasmobranch species and assess the change in relative abundance over the period 1998-2013. During this period, commercial fisheries for deep-water sharks went from being entirely unregulated, to being briefly managed, to being completely prohibited. A total of 22 species of shark and 10 species of skate were recorded between depths of 300 and 2030 m. All showed strong species-specific depth-related trends in abundance. Out of the 11 more common species, five showed no change in relative abundance over time, two (Centrophorus squamosus and Centroselachus crepidater) declined significantly and four increased in relative abundance (Apristurus aphyodes, Apristurus microps, Galeus melastomus and Deania calcea). Assuming these populations were depleted by fisheries in the past, the current data do not suggest there has been an overall recovery. Positive signs for some species in the most recent years suggest movement or recruitment back into the area; however, it is of concern that two species continued to decline. There is a continued need to have precautionary management of these elasmobranch species, and the current ban on landing these species in European waters remains appropriate.

  4. NeQuick 2 total electron content predictions for middle latitudes of North American region during a deep solar minimum

    NASA Astrophysics Data System (ADS)

    Ezquer, R. G.; Scidá, L. A.; Migoya Orué, Y. O.; Lescano, G. E.; Alazo-Cuartas, K.; Cabrera, M. A.; Radicella, S. M.

    2017-02-01

    The performance of NeQuick 2 model in computing the vertical total electron content (VTEC) over a wide region placed at middle latitudes of North America during the deep solar minimum that occurred in 2008 has been checked. The long term relationship between EUV irradiance and F10.7 solar flux has changed markedly during the cycle 23/24 minimum with EUV levels decreasing more than expected from F10.7 proxy. A decrease of ionization in the ionosphere could have occurred. Thus, it could be expected that the models overestimate the value of ionospheric parameters for that deep solar minimum. For this study a high density VTEC data grid that covers the Continental United States (CONUS) has been compared with monthly median maps constructed with NeQuick 2. The results show that NeQuick 2 generally gives good predictions for the region which lies between 35°N to 50°N suggesting that nothing exceptional was happening during the 2008 minimum in terms of VTEC NeQuick 2's predictive capabilities. Taking into account that the modeled value is obtained by integration in height of the electron density profile, NeQuick2 would be assuming an inadequate profile for the few highest deviations observed, between 30°N and 35°N. Overall, the model does not give significant overestimation of VTEC as could be expected.

  5. The GISMO two-millimeter deep field in GOODS-N

    SciTech Connect

    Staguhn, Johannes G.; Kovács, Attila; Arendt, Richard G.; Benford, Dominic J.; Dwek, Eli; Fixsen, Dale J.; Jhabvala, Christine A.; Maher, Stephen F.; Miller, Timothy M.; Moseley, S. Harvey; Sharp, Elmer H.; Wollack, Edward J.; Decarli, Roberto; Walter, Fabian; Hilton, Gene C.; Irwin, Kent D.; Karim, Alexander; Leclercq, Samuel

    2014-07-20

    We present deep continuum observations using the GISMO camera at a wavelength of 2 mm centered on the Hubble Deep Field in the GOODS-N field. These are the first deep field observations ever obtained at this wavelength. The 1σ sensitivity in the innermost ∼4' of the 7' diameter map is ∼135 μJy beam{sup –1}, a factor of three higher in flux/beam sensitivity than the deepest available SCUBA 850 μm observations, and almost a factor of four higher in flux/beam sensitivity than the combined MAMBO/AzTEC 1.2 mm observations of this region. Our source extraction algorithm identifies 12 sources directly, and another 3 through correlation with known sources at 1.2 mm and 850 μm. Five of the directly detected GISMO sources have counterparts in the MAMBO/AzTEC catalog, and four of those also have SCUBA counterparts. HDF850.1, one of the first blank-field detected submillimeter galaxies, is now detected at 2 mm. The median redshift of all sources with counterparts of known redshifts is z-tilde =2.91±0.94. Statistically, the detections are most likely real for five of the seven 2 mm sources without shorter wavelength counterparts, while the probability for none of them being real is negligible.

  6. Experience of cathodic protection, fabrication and installation of anodes for deep water pipelines in the North Sea and the Norwegian Sea

    SciTech Connect

    Eliassen, S.; Pettersen, N.H.

    1996-08-01

    Statoil is the major operator of the oil and gas pipelines in the North Sea and the Norwegian Sea. Different coating systems have been used for external corrosion protection of the pipelines. The paper presents the company`s experience regarding cathodic protection design and fabrication and installation of anodes for deep water pipelines.

  7. Neutralizing Carbonic Acid in Deep Carbonate Strata below the North Atlantic

    SciTech Connect

    Daniel P. Schrag

    2005-12-01

    Our research is aimed at investigating several technical issues associated with carbon dioxide sequestration in calcium carbonate sediments below the sea floor through laboratory experiments and chemical transport modeling. Our goal is to evaluate the basic feasibility of this approach, including an assessment of optimal depths, sediment types, and other issues related to site selection. Through laboratory and modeling efforts, we are studying the flow of liquid carbon dioxide and carbon dioxide-water mixtures through calcium carbonate sediments to better understand the geomechanical and structural stability of the sediments during and after injection. Our modeling efforts in the first year show that the idea is feasible, but requires more sophisticated analysis of fluid flow at high pressure in deep sea sediments. In addition, we are investigating the kinetics of calcium carbonate dissolution in the presence of CO{sub 2}-water fluids, which is a critical feature of the system as it allows for increased permeability during injection. Our experimental results from the first year of work have shown that the kinetics are likely to be fast enough to create dissolution which will affect permeability. However, additional experiments are needed at high pressures, which will be a focus for years 2 and 3. We are also investigating the possibility of carbon dioxide hydrate formation in the pore fluid, which might complicate the injection procedure by reducing sediment permeability but might also provide an upper seal in the sediment-pore fluid system, preventing release of CO{sub 2} into the deep ocean, particularly if depth and temperature at the injection point rule out immediate hydrate formation. Finally, we are in the beginning stages of an economic analysis to estimate costs of drilling and gas injection, site monitoring as well as the availability of potential disposal sites with particular emphasis on those sites that are within the 200-mile economic zone of the

  8. Spontaneous and Widespread Electricity Generation in Natural Deep-Sea Hydrothermal Fields.

    PubMed

    Yamamoto, Masahiro; Nakamura, Ryuhei; Kasaya, Takafumi; Kumagai, Hidenori; Suzuki, Katsuhiko; Takai, Ken

    2017-04-05

    Deep-sea hydrothermal vents discharge abundant reductive energy into oxidative seawater. Herein, we demonstrated that in situ measurements of redox potentials on the surfaces of active hydrothermal mineral deposits were more negative than the surrounding seawater potential, driving electrical current generation. We also demonstrated that negative potentials in the surface of minerals were widespread in the hydrothermal fields, regardless of the proximity to hydrothermal fluid discharges. Lab experiments verified that the negative potential of the mineral surface was induced by a distant electron transfer from the hydrothermal fluid through the metallic and catalytic properties of minerals. These results indicate that electric current is spontaneously and widely generated in natural mineral deposits in deep-sea hydrothermal fields. Our discovery provides important insights into the microbial communities that are supported by extracellular electron transfer and the prebiotic chemical and metabolic evolution of the ocean hydrothermal systems.

  9. Near-UV Sources in the Hubble Ultra Deep Field: The Catalog

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.; Voyrer, Elysse; de Mello, Duilia F.; Siana, Brian; Quirk, Cori; Teplitz, Harry I.

    2009-01-01

    The catalog from the first high resolution U-band image of the Hubble Ultra Deep Field, taken with Hubble s Wide Field Planetary Camera 2 through the F300W filter, is presented. We detect 96 U-band objects and compare and combine this catalog with a Great Observatories Origins Deep Survey (GOODS) B-selected catalog that provides B, V, i, and z photometry, spectral types, and photometric redshifts. We have also obtained Far-Ultraviolet (FUV, 1614 Angstroms) data with Hubble s Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) and with Galaxy Evolution Explorer (GALEX). We detected 31 sources with ACS/SBC, 28 with GALEX/FUV, and 45 with GALEX/NUV. The methods of observations, image processing, object identification, catalog preparation, and catalog matching are presented.

  10. [Book review] Lichens of the north woods: a field guide to 111 northern species, by Joe Walewski

    USGS Publications Warehouse

    Bennett, J.

    2007-01-01

    Review of: LICHENS OF THE NORTH WOODS, A FIELD GUIDE TO 111 NORTHERN SPECIES. Joe Walewski. 2007. North Woods Naturalist Series, Kollath & Stensaas Publishing, Duluth, Minnesota. 152 pp, softcover. ISBN: 0-9673793-50. $18.95.

  11. Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Somot, Samuel; Houpert, Loic; Sevault, Florence; Testor, Pierre; Bosse, Anthony; Taupier-Letage, Isabelle; Bouin, Marie-Noelle; Waldman, Robin; Cassou, Christophe; Sanchez-Gomez, Emilia; Durrieu de Madron, Xavier; Adloff, Fanny; Nabat, Pierre; Herrmann, Marine

    2016-08-01

    Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980-2013 and a detailed multi-indicator description of the period 2007-2013. Then a 1980-2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the

  12. Probing the Epoch of Reionization with the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Stiavelli, M.; Fall, S. M.; Panagia, N.

    2004-12-01

    We derive the expected properties of reionization sources with very low metallicity and show how the z=6 galaxies identified as i-band dropouts in the Hubble Ultra Deep Field and in the GOODS survey would be capable of reionizing the Universe provided their metallicity is very low and/or their mass function is top heavy. We discuss possible alternatives to that of a very low metallicity and how some of these alternatives could be tested with observations.

  13. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields

    PubMed Central

    Arai-Sanoh, Yumiko; Takai, Toshiyuki; Yoshinaga, Satoshi; Nakano, Hiroshi; Kojima, Mikiko; Sakakibara, Hitoshi; Kondo, Motohiko; Uga, Yusaku

    2014-01-01

    To clarify the effect of deep rooting on grain yield in rice (Oryza sativa L.) in an irrigated paddy field with or without fertilizer, we used the shallow-rooting IR64 and the deep-rooting Dro1-NIL (a near-isogenic line homozygous for the Kinandang Patong allele of DEEPER ROOTING 1 (DRO1) in the IR64 genetic background). Although total root length was similar in both lines, more roots were distributed within the lower soil layer of the paddy field in Dro1-NIL than in IR64, irrespective of fertilizer treatment. At maturity, Dro1-NIL showed approximately 10% higher grain yield than IR64, irrespective of fertilizer treatment. Higher grain yield of Dro1-NIL was mainly due to the increased 1000-kernel weight and increased percentage of ripened grains, which resulted in a higher harvest index. After heading, the uptake of nitrogen from soil and leaf nitrogen concentration were higher in Dro1-NIL than in IR64. At the mid-grain-filling stage, Dro1-NIL maintained higher cytokinin fluxes from roots to shoots than IR64. These results suggest that deep rooting by DRO1 enhances nitrogen uptake and cytokinin fluxes at late stages, resulting in better grain filling in Dro1-NIL in a paddy field in this study. PMID:24988911

  14. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north-south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north-south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun's polar regions in general and the polar meridonal flow in particular.

  15. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north ]south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north ]south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun fs polar regions in general and the polar meridional flow in particular

  16. Neutralizing Carbonic Acid in Deep Carbonate Strata below the North Atlantic

    SciTech Connect

    Daniel P. Schrag

    2006-07-14

    Our research is aimed at investigating several technical issues associated with carbon dioxide sequestration in calcium carbonate sediments below the sea floor through laboratory experiments and chemical transport modeling. Our goal is to evaluate the basic feasibility of this approach, including an assessment of optimal depths, sediment types, and other issues related to site selection. The results of our modeling efforts were published this past summer in the Proceedings of the National Academy of Sciences. We are expanding on that work through a variety of laboratory and modeling efforts. In the laboratories at Columbia and at Harvard, we are studying the flow of liquid carbon dioxide and carbon dioxide-water mixtures through calcium carbonate sediments to better understand the geomechanical and structural stability of the sediments during and after injection. We are currently preparing the results of these findings for publication. In addition, we are investigating the kinetics of calcium carbonate dissolution in the presence of CO{sub 2}-water fluids, which is a critical feature of the system as it allows for increased permeability during injection. We are also investigating the possibility of carbon dioxide hydrate formation in the pore fluid, which might complicate the injection procedure by reducing sediment permeability but might also provide an upper seal in the sediment-pore fluid system, preventing release of CO{sub 2} into the deep ocean, particularly if depth and temperature at the injection point rule out immediate hydrate formation. This is done by injecting liquid CO{sub 2} into various types of porous media, and then monitoring the changes in permeability. Finally, we are performing an economic analysis to estimate costs of drilling and gas injection, site monitoring as well as the availability of potential disposal sites with particular emphasis on those sites that are within the 200-mile economic zone of the United States. We present some

  17. Development of the Endicott field (Kekiktuk Formation), North Slope, Alaska

    SciTech Connect

    Metzger, R.R.; St. Aubin, L.A. )

    1991-03-01

    Endicott field, located 2 mi offshore in the Arctic Ocean, produces approximately 100 MBPD from Mississippian Kekiktuk Formation fluvial sands. The field is the first Arctic offshore development. Currently 65 wells have been drilled from two man-made gravel drilling and production islands. Production started in 1987 and 77 MMBO have been produced to date. Original volumes in place are estimated at 1 BSTB, 365 bcf of gas cap gas, and 750 bcf of solution gas. The Kekiktuk Formation, deposited by a southerly flowing fluvial system in response to the Ellesmerian orogeny, rests unconformably on Franklinian (Devonian) basement. The field is a combined structural/stratigraphic trap and is delineated by three major normal faults. Within the field, the Endicott Group sediments are truncated by the regional Lower Cretaceous Unconformity (LCU). A reservoir seal is provided by the overlying conformable Itkilyariak Formation carbonates and Cretaceous shales above the LCU. Due to complex reservoir geometry, a subzone approach to reservoir development, surveillance, and management has been implemented. Structural dip combined with continuous interbedded shales and sealing intrareservoir faults divide the reservoir into six separate hydrologic subzones. Additionally, structural dip creates narrow oil corridors in each reservoir subzone. All development wells are within {approximately}1500 ft of the updip gas cap and downdip aquifer. The high priority placed on incorporating reservoir description with surveillance data has resulted in optimal field management and minimized development risk.

  18. Magma mixing in the Kalaqin core complex, northern North China Craton: Linking deep lithospheric destruction and shallow extension

    NASA Astrophysics Data System (ADS)

    Fu, Lebing; Wei, Junhao; Tan, Jun; Santosh, M.; Zhang, Daohan; Chen, Jiajie; Li, Yanjun; Zhao, Shaoqing; Peng, Lina

    2016-09-01

    The widespread Mesozoic magmatism in the North China Craton (NCC) has received considerable attention as a trigger for large scale lithospheric destruction. Here we investigate the Early Cretaceous Jiguanzi adamellite from the northern part of the NCC which is contemporaneous with shallow extensional deformation and deep lithospheric destruction. This intrusion emplaced at ca. 133 Ma is located in the foot wall of the Kalaqin metamorphic core complex (MCC), and occurs as a synextensional ring complex with numerous magmatic equigranular (Group 1) and porphyritic (Group 2) enclaves. Hornblende and plagioclase from the host adamellite and xenocrysts of Group 2 enclaves show distinct inverse zoning with Mg- and Ca-rich mantle. The Group 2 enclaves are characterized by plagioclase xenocrysts hosting hornblende, biotite and apatite inclusions, quartz ocelli with fine-grained rim enriched in biotite and hornblende, and poikilitic biotite surrounded by hornblende. Geochemically, the host intrusion is calc-alkaline to alkaline and metaluminous with variable contents of SiO2 (60.70-72.20 wt.%), Al2O3 (14.19-17.22 wt.%), Na2O + K2O (6.16-9.42 wt.%), and Mg# values (28.0-47.7), whereas the Group 2 enclaves exhibit low SiO2 (54.05-55.55 wt.%), high Fe2O3 (8.18-8.64 wt.%) and TiO2 (2.08-2.28 wt.%), and moderate Mg# (44.0-44.1). Both the host intrusion and Group 2 enclaves are enriched in large-ion lithophile and light rare earth elements, and depleted in high field strength elements and heavy rare earth elements except that the latter has lower Ba and high Nb, Ta and Ti contents. The major and trace element contents of the Group 1 enclaves are broadly similar to those of the host intrusion. Analyses of Sr-Nd-Hf isotopes in the host intrusion, and in Group 1 and Group 2 enclaves show (87Sr/86Sr)ihost = 0.70600-0.70618, εNd(t)host = - 8.2 to - 9.6, T2DM(Nd)host = 1592-1706 Ma, εHf(t)host = - 9.2 to - 12.0, (87Sr/86Sr)iGroup 1 = 0.70590-0.70635, εNd(t)Group 1 = - 9.6 to - 10

  19. Empirical Predictions for (Sub-)millimeter Line and Continuum Deep Fields

    NASA Astrophysics Data System (ADS)

    da Cunha, Elisabete; Walter, Fabian; Decarli, Roberto; Bertoldi, Frank; Carilli, Chris; Daddi, Emanuele; Elbaz, David; Ivison, Rob; Maiolino, Roberto; Riechers, Dominik; Rix, Hans-Walter; Sargent, Mark; Smail, Ian; Weiss, Axel

    2013-03-01

    Modern (sub-)millimeter/radio interferometers such as ALMA, JVLA, and the PdBI successor NOEMA will enable us to measure the dust and molecular gas emission from galaxies that have luminosities lower than the Milky Way, out to high redshifts and with unprecedented spatial resolution and sensitivity. This will provide new constraints on the star formation properties and gas reservoir in galaxies throughout cosmic times through dedicated deep field campaigns targeting the CO/[C II] lines and dust continuum emission in the (sub-)millimeter regime. In this paper, we present empirical predictions for such line and continuum deep fields. We base these predictions on the deepest available optical/near-infrared Advanced Camera for Surveys and NICMOS data on the Hubble Ultra Deep Field (over an area of about 12 arcmin2). Using a physically motivated spectral energy distribution model, we fit the observed optical/near-infrared emission of 13,099 galaxies with redshifts up to z = 5, and obtain median-likelihood estimates of their stellar mass, star formation rate, dust attenuation, and dust luminosity. We combine the attenuated stellar spectra with a library of infrared emission models spanning a wide range of dust temperatures to derive statistical constraints on the dust emission in the infrared and (sub-)millimeter which are consistent with the observed optical/near-infrared emission in terms of energy balance. This allows us to estimate, for each galaxy, the (sub-)millimeter continuum flux densities in several ALMA, PdBI/NOEMA, and JVLA bands. As a consistency check, we verify that the 850 μm number counts and extragalactic background light derived using our predictions are consistent with previous observations. Using empirical relations between the observed CO/[C II] line luminosities and the infrared luminosity of star-forming galaxies, we infer the luminosity of the CO(1-0) and [C II] lines from the estimated infrared luminosity of each galaxy in our sample. We then

  20. An early to mid-Pleistocene deep Arctic Ocean ostracode fauna with North Atlantic affinities

    USGS Publications Warehouse

    DeNinno, Lauren H.; Cronin, Thomas M.; Rodriquez-Lazaro, J.; Brenner, Alec R.

    2015-01-01

    An early to middle Pleistocene ostracode fauna was discovered in sediment core P1-93-AR-23 (P23, 76.95°N, 155.07°W) from 951 meter water depth from the Northwind Ridge, western Arctic Ocean. Piston core P23 yielded more than 30,000 specimens and a total of about 30 species. Several early to mid-Pleistocene species in the genera Krithe,Echinocythereis, Pterygocythereis, and Arcacythere are now extinct in the Arctic and show taxonomic affinities to North Atlantic Ocean species. Our results suggest that there was a major ostracode faunal turnover during the global climate transitions known as the Mid-Pleistocene Transition (MPT, ~ 1.2 to 0.7 Ma) and the Mid-Brunhes Event (MBE, ~ 400 ka) reflecting the development of perennial sea ice during interglacial periods and large ice shelves during glacial periods over the last 400,000 years.

  1. CTEPP: RECRUITING AND FIELD SAMPLING IN NORTH CAROLINA AND OHIO

    EPA Science Inventory

    The research field study (CTEPP) of approximately 260 preschool children's exposures to persistent organic pollutants in their everyday environments began in early 2000. CTEPP is a multimedia study of the children's aggregate (total) exposures over a 48-hr period, both at thei...

  2. Quantification of deep percolation from two flood-irrigated alfalfa field, Roswell Basin, New Mexico

    USGS Publications Warehouse

    Roark, D. Michael; Healy, D.F.

    1998-01-01

    For many years water management in the Roswell ground-water basin (Roswell Basin) and other declared basins in New Mexico has been the responsibility of the State of New Mexico. One of the water management issues requiring better quantification is the amount of deep percolation from applied irrigation water. Two adjacent fields, planted in alfalfa, were studied to determine deep percolation by the water-budget, volumetric-moisture, and chloride mass-balance methods. Components of the water-budget method were measured, in study plots called borders, for both fields during the 1996 irrigation season. The amount of irrigation water applied in the west border was 95.8 centimeters and in the east border was 169.8 centimeters. The total amount of precipitation that fell during the irrigation season was 21.9 centimeters. The increase in soil-moisture storage from the beginning to the end of the irrigation season was 3.2 centimeters in the west border and 8.8 centimeters in the east border. Evapotranspiration, as estimated by the Bowen ratio energy balance technique, in the west border was 97.8 centimeters and in the east border was 101.0 centimeters. Deep percolation determined using the water-budget method was 16.4 centimeters in the west border and 81.6 centimeters in the east border. An average deep percolation of 22.3 centimeters in the west border and 31.6 centimeters in the east border was determined using the volumetric-moisture method. The chloride mass-balance method determined the multiyear deep percolation to be 15.0 centimeters in the west border and 38.0 centimeters in the east border. Large differences in the amount of deep percolation between the two borders calculated by the water-budget method are due to differences in the amount of water that was applied to each border. More water was required to flood the east border because of the greater permeability of the soils in that field and the smaller rate at which water could be applied.

  3. A MULTIWAVELENGTH STUDY OF TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    SciTech Connect

    Straughn, Amber N.; Eufrasio, Rafael T.; Gardner, Jonathan P.; Voyer, Elysse N.; Mello, Duilia de; Soto, Emmaris; Petty, Sara; Kassin, Susan; Ravindranath, Swara

    2015-12-01

    Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies’ morphological properties across cosmic time. Here we present the results of a multiwavelength investigation of the morphologies of “tadpole” galaxies at intermediate redshift (0.314 < z < 3.175) in the Hubble Ultra Deep Field. These galaxies were previously selected from deep Hubble Space Telescope (HST) F775W data based on their distinct asymmetric knot-plus-tail morphologies. Here we use deep Wide Field Camera 3 near-infrared imaging in addition to the HST optical data in order to study the rest-frame UV/optical morphologies of these galaxies across the redshift range 0.3 < z < 3.2. This study reveals that the majority of these galaxies do retain their general asymmetric morphology in the rest-frame optical over this redshift range, if not the distinct “tadpole” shape. The average stellar mass of tadpole galaxies is lower than that of field galaxies, with the effect being slightly greater at higher redshift within the errors. Estimated from spectral energy distribution fits, the average age of tadpole galaxies is younger than that of field galaxies in the lower-redshift bin, and the average metallicity is lower (whereas the specific star formation rate for tadpoles is roughly the same as field galaxies across the redshift range probed here). These average effects combined support the conclusion that this subset of galaxies is in an active phase of assembly, either late-stage merging or cold gas accretion causing localized clumpy star formation.

  4. Imaging the deep electrical conductivity structure of the Rennick Graben (North Victoria Land, Antartide)

    NASA Astrophysics Data System (ADS)

    Armadillo, E.; Tabellario, G.; Bozzo, E.; Caneva, G.

    2003-04-01

    A preliminary interpretation of the electrical conductivity structures beneath the Rennick Graben is presented based on Geomagnetic Depth Soundings (GDS) carried out the BACKTAM expedition (1999/2000). The Rennick Graben is the most important Cenozoic tectonics structure of NVL, a region of dominating NW-SE trending dextral slip. Its formation is framed in the contest of Austalia-Antarctica spreading and its study is fundamental to understanding the recent Meso-Cenozoic tectonics. The GDS provides a view on the internal conductivity distribution, of a region of interest, from measurements of the geomagnetic transient variations at discrete geographical points. In the initial stages of data processing, an advanced robust regression technique proposed by Egbert and Booker (1986), is applied to derive transfer functions used to diagnose the lateral conductivity distribution in the study region. The presentation of the transfer functions in the form of induction arrow helps to identify regions of enhanced conductivity. In this study we have considered the shorter periods, in the range 20-170 s, that are suitable to crustal investigations. The qualitative analysis of the induction arrows reveals an approximately 2D regional electrical conductivity pattern with a clear differentation between the three Terrains crossed by the GDS transect: the Robertson Bay, the Bowers and the Wilson Terrain. For the two dimensional inversion of our data set we have adopted the efficient variant of Siripunvaraporn and Egbert (2000) of the Occam inversion approach. Two dimensional models reveal a deep electrical conductivity anomaly (approximately 20-50 km) on the east side of the Rennick. Lateral discontinuities seem to be related with the Leap Year Fault and the Lanterman Fault on the east and the Daniels Range on the west.

  5. An Analysis of Near Fields of 34m Antennas of JPL/NASA Deep Space Network

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Juan, Nuria Llombart

    2011-01-01

    This paper addresses the issue of calculating near fields of the 34m Beam Waveguide (BWG) antennas of the NASA/JPL Deep Space Network (DSN). Calculating the near fields of DSN antennas are of interest in receive mode where the transmitting signals from nearby flying objects such as helicopters and airplanes could interfere with the operation of sensitive RF receiving system of DSN antennas, and in the transmit mode where fields from high-powered DSN antennas interfere with receivers on nearby flying objects, as well as safety considerations for the operators and visitors to the grounds surrounding the antenna sites. A complete and detailed analysis has been performed using PO/PTD techniques, including surface errors and support struts effects. Some results are presented, including comparisons with preliminary field tests.

  6. Early Pliocene closing of the Indonesian Seaway: evidence from north-east Indian Ocean and Tropical Pacific deep sea cores

    NASA Astrophysics Data System (ADS)

    Srinivasan, M. S.; Sinha, D. K.

    1998-04-01

    Deep sea cores from sites 214 and 758 A (Ninetyeast Ridge, north-east Indian Ocean), 761 B (Wombat Plateau, north-east Indian Ocean) and 586 B (Ontong Java Plateau, Tropical Pacific) are ideally located for comparison of late Neogene planktic foraminiferal biogeography and paleoceanographic records of tropical Indian and Pacific oceans to infer the timing of closing of the Indonesian Seaway. A consistent stratigraphy was developed between sites 214 and 586 B using graphic correlation and was integrated with the paleomagnetic time scale of Berggren et al. (1985) to provide an accurate chronology to compare interocean stratigraphic ranges of late Neogene planktic foraminifera. Tropical planktic foraminifera occur throughout each sequence at all sites. At each site the Miocene-Pliocene boundary is defined by the first appearance of Globorotalia tumida (5.2 Ma), the early/late Pliocene boundary by the first appearance of Globigerinoides fistulosus (3.2 Ma) and the Pliocene-Pleistocene boundary by the last appearance of G. fistulosus (1.6 Ma). Neogene planktic foraminiferal assemblages at sites 214, 758A, 761 B and 586B are generally similar until the beginning of the Pliocene (5.2 Ma) when the faunal record indicates divergence. A notable difference is complete absence of early Pliocene taxon Pulleniatina spectabilis from all the Indian Ocean sites. This difference suggests that the Indonesian Seaway became an effective biogeographic barrier to planktic foraminifera at the beginning of the Pliocene. However, there is still exchange of surface waters through this Seaway. Earlier studies suggested a Middle to Late Miocene occurrence for this biogeographic barrier. P. spectabilis evolved from P. primalis in the equatorial Pacific at about 5.2 Ma. It is a short-ranging early Pliocene species spanning about 1.3 my and occurred only in Pacific, unlike earlier suggestions of a broader distribution into the Indian Ocean.

  7. Deep-Sea Field Studies of the Biological Consequences of Direct Ocean CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Barry, J. P.; Seibel, B. A.; Lovera, C.

    2001-12-01

    While the notion of carbon sequestration by direct ocean disposal of CO2 in the deep ocean holds promise for mitigating atmospheric greenhouse warming, the consequences of this approach for deep-sea ecosystems are understood poorly, but are potentially large. Several factors suggest that deep-sea fauna may be more sensitive to deep-sea CO2 releases than related groups inhabiting the upper ocean. The evolution of deep-sea species in the relatively invariant environment of the deep ocean has likely led to the intolerance of many species to perturbations in seawater chemistry associated with direct CO2 injection (e.g. pH reduction) that may be more tolerable to shallow-living groups. Food limitation and reduced metabolic rates typical in deep-sea ecosystems may also limit the ability of many organisms to tolerate changes in pH (i.e. pH compensation) or CO2 (e.g. metabolic depression). We recently performed field experiments at depths from 3000 to 3600 m to evaluate the biological responses of representative deep-sea organisms to changes in seawater chemistry caused by carbon dioxide sequestration. Several small pools (ca. 15 l) of liquid CO2 were deployed on the seafloor from the ROV Tiburon operated by the Monterey Bay Aquarium Research Institute, using a novel CO2 release system. Rates of survival and aspects of the physiological condition of various elements of the seafloor faunal community were compared between sites near (<1 m) and distant (control sites >30 m away) from CO2 pools. Tidally oscillating currents swept a plume of CO2-rich water away from the pools as the liquid CO2 dissolved, resulting in periodic reductions of pH around the pools to 6.0 to 7.0 units within 1 m. Rates of survival for two common megafaunal echinoderms (echinoid 1 and holothurian 1) held in cages adjacent to CO2 pools were very low compared were compared to control sites. Decalcification of urchin spines and skeletal elements was evident for animals near CO2 pools. The abundances of

  8. Spatial correlation of the high intensity zone in deep-water acoustic field

    NASA Astrophysics Data System (ADS)

    Li, Jun; Li, Zheng-Lin; Ren, Yun

    2016-12-01

    The spatial correlations of acoustic field have important implications for underwater target detection and other applications in deep water. In this paper, the spatial correlations of the high intensity zone in the deep-water acoustic field are investigated by using the experimental data obtained in the South China Sea. The experimental results show that the structures of the spatial correlation coefficient at different ranges and depths are similar to the transmission loss structure in deep water. The main reason for this phenomenon is analyzed by combining the normal mode theory with the ray theory. It is shown that the received signals in the high intensity zone mainly include one or two main pulses which are contributed by the interference of a group of waterborne modes with similar phases. The horizontal-longitudinal correlations at the same receiver depth but in different high intensity zones are analyzed. At some positions, more pulses are received in the arrival structure of the signal due to bottom reflection and the horizontal-longitudinal correlation coefficient decreases accordingly. The multi-path arrival structure of receiving signal becomes more complex with increasing receiver depth. Project supported by the National Natural Science Foundation of China (Grant Nos. 11434012 and 41561144006).

  9. Optical Survey with KMTNet for Dusty Star-Forming Galaxies in the Akari Deep Field South

    NASA Astrophysics Data System (ADS)

    Jeong, Woong-Seob; Ko, Kyeongyeon; Kim, Minjin; Ko, Jongwan; Kim, Sam; Pyo, Jeonghyun; Kim, Seong Jin; Kim, Taehyun; Seo, Hyun Jong; Park, Won-Kee; Park, Sung-Joon; Kim, Min Gyu; Kim, Dong Jin; Cha, Sang-Mok; Lee, Yongseok; Lee, Chung-Uk; Kim, Seung-Lee; Matsuura, Shuji; Pearson, Chris; Matsuhara, Hideo

    2016-10-01

    We present an optical imaging survey of AKARI Deep Field South (ADF-S) using the Korea Microlensing Telescope Network (KMTNet), to find optical counterparts of dusty star-forming galaxies. The ADF-S is a deep far-infrared imaging survey region with AKARI covering around 12 deg^2, where the deep optical imaging data are not yet available. By utilizing the wide-field capability of the KMTNet telescopes (˜4 deg^2), we obtain optical images in B, R and I bands for three regions. The target depth of images in B, R and I bands is ˜24 mag (AB) at 5σ, which enables us to detect most dusty star-forming galaxies discovered by AKARI in the ADF-S. Those optical datasets will be helpful to constrain optical spectral energy distributions as well as to identify rare types of dusty star-forming galaxies such as dust-obscured galaxy, sub-millimeter galaxy at high redshift.}

  10. Contamination by field late-M, L, and T dwarfs in deep surveys

    NASA Astrophysics Data System (ADS)

    Caballero, J. A.; Burgasser, A. J.; Klement, R.

    2008-09-01

    Context: Deep photometric surveys of substellar objects in young clusters and high-redshift quasars are affected by contaminant sources at different heliocentric distances. If not correctly taken into account, the contamination may have a strong effect on the Initial Mass Function determination and on the identification of quasars. Aims: We calculate in detail the back- and foreground contamination by field dwarfs of very late spectral types (intermediate and late M, L, and T) in deep surveys and provide the data and tools for the computation. Methods: We adopt the latest models and data from the literature, which include the following: (i) a model of the Galactic thin disc by an exponential law; (ii) the length and height scales of late-type dwarfs; and (iii) the local spatial densities, absolute magnitudes, and colours of dwarfs for each spectral type. Results: We derive a simplified expression for the spatial density in the thin disc that depends on the heliocentric distance and the galactic coordinates (l, b) and integrate this into the truncated cone studied in the survey. As a practical application, we compute the numbers of L- and T-type field dwarfs in very deep (I = 21{-}29 mag) surveys in the direction of the young σ Orionis cluster. The increasing number of contaminants at the faintest magnitudes could inhibit the study of the opacity mass limit at M ⪉ 0.003 M_⊙ in the cluster.

  11. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    DOE PAGES

    Caselli, Niccolò; La China, Federico; Bao, Wei; ...

    2015-06-05

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magneticmore » intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. In conclusion, by exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.« less

  12. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    SciTech Connect

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H.; Pagliano, Francesco; Fiore, Andrea; Schuck, P. James; Cabrini, Stefano; Weber-Bargioni, Alexander; Gurioli, Massimo; Intonti, Francesca

    2015-06-05

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. In conclusion, by exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.

  13. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    PubMed Central

    Caselli, Niccolò; La China, Federico; Bao, Wei; Riboli, Francesco; Gerardino, Annamaria; Li, Lianhe; Linfield, Edmund H.; Pagliano, Francesco; Fiore, Andrea; Schuck, P. James; Cabrini, Stefano; Weber-Bargioni, Alexander; Gurioli, Massimo; Intonti, Francesca

    2015-01-01

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magnetic intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. By exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions. PMID:26045401

  14. Deep Vadose Zone-Applied Field Research Initiative Fiscal Year 2011 Annual Report

    SciTech Connect

    Wellman, Dawn M.; Johnson, Timothy C.; Smith, Ronald M.; Truex, Michael J.; Matthews, Hope E.

    2011-10-01

    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2011. The Department of Energy (DOE) Office of Technology Innovation and Development's (OTID) mission is to transform science into viable solutions for environmental cleanup. In 2010, OTID developed the Impact Plan, Science and Technology to Reduce the Life Cycle Cost of Closure to outline the benefits of research and development of the lifecycle cost of cleanup across the DOE complex. This plan outlines OTID's ability to reduce by $50 billion, the $200 billion life-cycle cost in waste processing, groundwater and soil, nuclear materials, and deactivation and decommissioning. The projected life-cycle costs and return on investment are based on actual savings realized from technology innovation, development, and insertion into remedial strategies and schedules at the Fernald, Mound, and Ashtabula sites. To achieve our goals, OTID developed Applied Field Research Initiatives to facilitate and accelerate collaborative development and implementation of new tools and approaches that reduce risk, cost and time for site closure. The primary mission of the Deep Vadose Zone-Applied Field Research Initiative (DVZ-AFRI) is to protect our nation's water resources, keeping them clean and safe for future generations. The DVZ-AFRI was established for the DOE to develop effective, science-based solutions for remediating, characterizing, monitoring, and predicting the behavior and fate of deep vadose zone contamination. Subsurface contaminants include radionuclides, metals, organics, and liquid waste that originated from various sources, including legacy waste from the nation's nuclear weapons complexes. The DVZ-AFRI project team is translating strategy into action by working to solve these complex challenges in a collaborative

  15. Measurements of laser-induced plasma temperature field in deep penetration laser welding

    NASA Astrophysics Data System (ADS)

    Chen, Genyu; Zhang, Mingjun; Zhao, Zhi; Zhang, Yi; Li, Shichun

    2013-02-01

    Laser-induced plasma in deep penetration laser welding is located inside or outside the keyhole, namely, keyhole plasma or plasma plume, respectively. The emergence of laser-induced plasma in laser welding reveals important information of the welding technological process. Generally, electron temperature and electron density are two important characteristic parameters of plasma. In this paper, spectroscopic measurements of electron temperature and electron density of the keyhole plasma and plasma plume in deep penetration laser welding conditions were carried out. To receive spectra from several points separately and simultaneously, an Optical Multi-channel Analyser (OMA) was developed. On the assumption that the plasma was in local thermal equilibrium, the temperature was calculated with the spectral relative intensity method. The spectra collected were processed with Abel inversion method to obtain the temperature fields of keyhole plasma and plasma plume.

  16. Unusual Long and Luminous Optical Transient in the Subaru Deep Field

    NASA Astrophysics Data System (ADS)

    Urata, Yuji; Tsai, Patrick P.; Huang, Kuiyun; Morokuma, Tomoki; Yasuda, Naoki; Tanaka, Masaomi; Motohara, Kentaro; Hayashi, Masao; Kashikawa, Nobunari; Ly, Chun; Malkan, Matthew A.

    2012-11-01

    We present observations of SDF-05M05, an unusual optical transient discovered in the Subaru Deep Field (SDF). The duration of the transient is > ~ 800 days in the observer frame, and the maximum brightness during observation reached approximately 23 mag in the i' and z' bands. The faint host galaxy is clearly identified in all five optical bands of the deep SDF images. The photometric redshift of the host yields z ~ 0.6 and the corresponding absolute magnitude at maximum is ~ - 20. This implies that this event shone with an absolute magnitude brighter than -19 mag for approximately 300 days in the rest frame, which is significantly longer than a typical supernova and ultraluminous supernova. The total radiated energy during our observation was 1 × 1051 erg. The light curves and color evolution are marginally consistent with some luminous IIn supernovae. We suggest that the transient may be a unique and peculiar supernova at intermediate redshift.

  17. Field Verification of Structural Performance of Thermoplastic Pipe Under Deep Backfill Conditions

    NASA Astrophysics Data System (ADS)

    Sargand, S.

    2002-05-01

    This report provides information regarding the structural performance of thermoplastic pipes under relatively deep soil cover conditions. The eighteen (12 HDPE, 6 PVC) thermoplastic pipes, with diameter ranging from 30 to 60 in., were instrumented with sensors, embedded with granular backfill in shallow trenches, and subjected to 20-ft or 40-ft high soil fill for about 10 months. Their installation plans involved two types of backfill soil, three relative compactions, and varying bedding thickness to study the effects of these installation parameters on the pipe performance. Once the field performance of each test pipe was presented and discussed, comparative cross examinations of the entire field data were made to identify the effects of various installation parameters on the pipe deformations/deflections and soil pressure against pipe. A comprehensive set of soil testing was performed in the laboratory to characterize each of the three soil types that existed in the field. Results from the shear strength tests were analyzed further to obtain hyperbolic model parameter values for these soils. Three analytical methods (modified Iowa formula, elastic solutions, and finite element) were applied to evaluate their abilities to predict the field performance of the thermoplastic pipes under relatively deep soil cover. In their applications, material properties measured in the laboratory were utilized as much as possible.

  18. The Pan-STARRS 1 Medium Deep Field Variable Star Catalog

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather

    2016-01-01

    We present the first Pan-STARRS 1 Medium Deep Field Variable Star Catalog (PS1-MDF-VSC). The Pan-STARRS 1 (PS1) telescope is a 1.8 meter survey telescope with a 1.4 Gigapixel camera, located in Haleakala, Hawaii. The Medium Deep survey, which consists of 10 fields located uniformly across the sky, totaling 70 square degrees, is observed each night, in 2-3 filters per field, with 8 exposures per filter, resulting in 3000-4000 data points per star over a time span of 3.5 years. To find the variables, we select objects with > 200 detections, and remove those flagged as saturated. No other cuts are used. There are approximately 2.4 million objects that fit this criteria, with magnitudes between 13th and 24th. These objects are then passed through a lomb-scargle fitting routine to determine periodicity. After a periodicity cut, the candidates are classified by eye into different types of variable stars. We have identified several thousand periodic variable stars, with periods ranging between a few minutes to a few days. We compare our findings to the variable star catalogs within Vizier and AAVSO. In particular, for field MD02, we recover all the variables that are faint in Vizier, and we find good agreement with the periods reported in Vizier.

  19. Deep wide-field imaging of main belt comets and asteroids

    NASA Astrophysics Data System (ADS)

    Rajagopal, Jayadev; Jewitt, David; Ridgway, Susan

    2014-02-01

    We propose to continue a deep imaging study, using the pODI optical imager on the WIYN telescope, of selected regions of the main asteroid belt that contain a known main-belt comet (MBC). An MBC is an asteroid that shows evidence of significant mass loss, seen as transient, comet- like tails and comae. In 2013, we were awarded 4 nights over the two semesters and obtained high-impact wide-field, deep images of two new MBCs, P/2010 A2 and P/2013 P5, to study their origins. In addition, we use the considerable pODI field-of-view to search for direct evidence of very low-level mass-loss activity in the sample of main belt asteroids that will also be detected. Asteroids could be repositories of primordial water and a supply for volatiles on earth. In order to test this possibility (suggested by the recent TALCS asteroid survey at CFHT) and further characterize the mass-loss in known MBC activity, we will observe ~ 25- arcminute fields around ~ 3 known MBCs to significantly deeper levels than TALCS with better resolution. More than half of the 2013A allocation was lost to weather. We request 4 nights in 2014A. With this additional time we are confident of reaching publishable results on low level mass-loss and on the evolution of the activity in known MBCs. We will follow the secular evolution of P/2010 A2. And, as in the previous two semesters, we hope to add a spectacular wide-field deep image of a new MBC.

  20. Origin of north Queensland Cenozoic volcanism: Relationships to long lava flow basaltic fields, Australia

    NASA Astrophysics Data System (ADS)

    Sutherland, F. L.

    1998-11-01

    A plume model proposed for north Queensland late Cenozoic volcanism and long lava flow distribution combines basalt ages with recent seismic studies of Australia's mantle, regional stress fields, and plate motion. Several basalt fields overlie mantle "thermal" anomalies, and other fields outside these anomalies can be traced to them through past lithospheric motion. Elsewhere, anomalies close to Australia's eastern rift margin show little volcanism, probably due to gravity-enhanced compression. Since final collision of north Queensland with New Guinea, areas of basaltic volcanism have developed over 10 Myr, and episodes appear to migrate southward from 15° to 20°S. Long lava flows increase southward as area/volume of fields increases, but topography, vent distributions, and uplifts play a role. This is attributed to magmatic plume activation within a tensional zone, as lithosphere moves over mantle thermal anomalies. The plume model predicts peak magmatism under the McBride field, coincident with the Undara long lava flow and that long lava flow fields will erupt for another 5-10 Myr. Queensland's movement over a major N-S thermal system imparts a consistent isotopic signature to its northern younger basalts, distinct to basalts from older or more southern thermal systems. Australia's motion toward this northern thermal system will give north Queensland fields continued vigorous volcanism, in contrast to the Victorian field which is leaving its southern thermal system.

  1. Monitoring Microseismicity in a Carbonate Oil Field, North Oman

    NASA Astrophysics Data System (ADS)

    El-Hussain, I.; Al-Lazki, A.; Al-Hashmi, S.; Al-Toubi, K.; Al-Shijbi, Y.; Al-Saifi, M.; Al-Kindy, F.; Ibi, O.

    2006-12-01

    Microseismicity was monitored continuously for 2003 and 2004 years using shallow downhole seismic network in a carbonate oil field in Northern Oman. A total of 406 microearthquake events were analyzed to assess events location relative to producing horizons. The depth of the microearthquakes ranges from 0 to 2.95 km below the ground surface. The events location is confined to the carbonate reservoir boundary and temporally correlates well with the gas production, total fluid productions and water injection for the 2003 year. There is no temporal correlation between oil production and seismic activity for the 2003. Direct month to month temporal correlation is not apparent between any of oil, gas, fluid productions/water injections and the microseismic activity for the 2004 year. However, a strong temporal correlation between gas production and the number of events and an improved correlation between the oil production and the number of events were obtained when applying a time lag of one month. The focal plane solutions for the largest events in the 2003 indicate normal faulting with extensional stress is in the NW-SE directions. The spatial and temporal distribution of seismic events in the carbonate field fit the characteristics of reservoir induced seismicity and the triggering mechanism can be explained by the Mohr envelope criterion. This indicates that the reservoir layers are critically stressed and the pore pressure is changing at variable rate.

  2. Ultra-deep K S-band Imaging of the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Brammer, Gabriel B.; Marchesini, Danilo; Labbé, Ivo; Spitler, Lee; Lange-Vagle, Daniel; Barker, Elizbeth A.; Tanaka, Masayuki; Fontana, Adriano; Galametz, Audrey; Ferré-Mateu, Anna; Kodama, Tadayuki; Lundgren, Britt; Martis, Nicholas; Muzzin, Adam; Stefanon, Mauro; Toft, Sune; van der Wel, Arjen; Vulcani, Benedetta; Whitaker, Katherine E.

    2016-09-01

    We present an overview of the “KIFF” project, which provides ultra-deep K s -band imaging of all six of the Hubble Frontier Fields clusters, Abell 2744, MACS-0416, Abell S1063, Abell 370, MACS-0717, and MACS-1149. All of these fields have recently been observed with large allocations of Directors’ Discretionary Time with the Hubble and Spitzer telescopes, covering 0.4\\lt λ \\lt 1.6 μ {{m}} and 3.6-4.5 μ {{m}}, respectively. VLT/HAWK-I integrations of the first four fields reach 5σ limiting depths of {K}s˜ 26.0 (AB, point sources) and have excellent image quality (FWHM ˜ 0.″4). The MACS-0717 and MACS-1149 fields are observable from the northern hemisphere, and shorter Keck/MOSFIRE integrations on those fields reach limiting depths of K s = 25.5 and 25.1, with a seeing FWHM of ˜ 0.″4 and 0\\buildrel{\\prime\\prime}\\over{.} 5. In all cases the K s -band mosaics cover the primary cluster and parallel HST/ACS+WFC3 fields. The total area of the K s -band coverage is 490 arcmin2. The K s -band at 2.2 μ {{m}} crucially fills the gap between the reddest HST filter (1.6 μ {{m}} ˜ H band) and the IRAC 3.6 μ {{m}} passband. While reaching the full depths of the space-based imaging is not currently feasible from the ground, the deep K s -band images provide important constraints on both the redshifts and the stellar population properties of galaxies extending well below the characteristic stellar mass across most of the age of the universe, down to and including the redshifts of the targeted galaxy clusters (z≲ 0.5). Reduced, aligned mosaics of all six survey fields are provided.

  3. Meiofauna assemblages of the Condor Seamount (North-East Atlantic Ocean) and adjacent deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Zeppilli, Daniela; Bongiorni, Lucia; Cattaneo, Antonio; Danovaro, Roberto; Santos, Ricardo Serrão

    2013-12-01

    Seamounts are currently considered hotspots of biodiversity and biomass for macro- and megabenthic taxa, but knowledge of meiofauna is still limited. Studies have revealed the existence of highly diverse meiofauna assemblages; however most data are mainly qualitative or focused only on specific groups, thus preventing comparisons among seamounts and with other deep-sea areas. This study, conducted on Condor Seamount (Azores, North-East Atlantic Ocean), describes variation in abundance, biomass, community structure and biodiversity of benthic meiofauna from five sites located on the Condor Seamount: and one site away from the seamount. While the summit of the seamount hosted the highest alpha biodiversity, the flanks and the bases showed a rich meiofauna assemblage in terms of abundance and biomass. The observed marked differences in grain size composition of sediments reflected the oceanographic conditions impacting different sectors of the Condor seamount, and could play an important role in the spatial distribution of different meiofaunal taxa. Trophic conditions (biochemical composition of organic matter) explained 78% of the variability in the meiofauna biomass pattern while sediment grain influenced the vertical distribution of meiofauna and only partially explained meiofaunal taxa composition. This study provides a further advancement in the knowledge of meiofaunal communities of seamounts. Only a deeper understanding of the whole benthic communities (including meiofauna) will allow to elaborate effective management and conservation tools for seamount ecosystems.

  4. Rhythms and community dynamics of a hydrothermal tubeworm assemblage at main endeavour field - a multidisciplinary deep-sea observatory approach.

    PubMed

    Cuvelier, Daphne; Legendre, Pierre; Laes, Agathe; Sarradin, Pierre-Marie; Sarrazin, Jozée

    2014-01-01

    The NEPTUNE cabled observatory network hosts an ecological module called TEMPO-mini that focuses on hydrothermal vent ecology and time series, granting us real-time access to data originating from the deep sea. In 2011-2012, during TEMPO-mini's first deployment on the NEPTUNE network, the module recorded high-resolution imagery, temperature, iron (Fe) and oxygen on a hydrothermal assemblage at 2186 m depth at Main Endeavour Field (North East Pacific). 23 days of continuous imagery were analysed with an hourly frequency. Community dynamics were analysed in detail for Ridgeia piscesae tubeworms, Polynoidae, Pycnogonida and Buccinidae, documenting faunal variations, natural change and biotic interactions in the filmed tubeworm assemblage as well as links with the local environment. Semi-diurnal and diurnal periods were identified both in fauna and environment, revealing the influence of tidal cycles. Species interactions were described and distribution patterns were indicative of possible microhabitat preference. The importance of high-resolution frequencies (<1 h) to fully comprehend rhythms in fauna and environment was emphasised, as well as the need for the development of automated or semi-automated imagery analysis tools.

  5. Relationship between neural activation and electric field distribution during deep brain stimulation.

    PubMed

    Åström, Mattias; Diczfalusy, Elin; Martens, Hubert; Wårdell, Karin

    2015-02-01

    Models and simulations are commonly used to study deep brain stimulation (DBS). Simulated stimulation fields are often defined and visualized by electric field isolevels or volumes of tissue activated (VTA). The aim of the present study was to evaluate the relationship between stimulation field strength as defined by the electric potential V, the electric field E, and the divergence of the electric field ∇(2) V, and neural activation. Axon cable models were developed and coupled to finite-element DBS models in three-dimensional (3-D). Field thresholds ( VT , ET, and ∇(2) VT ) were derived at the location of activation for various stimulation amplitudes (1 to 5 V), pulse widths (30 to 120 μs), and axon diameters (2.0 to 7.5 μm). Results showed that thresholds for VT and ∇(2) VT were highly dependent on the stimulation amplitude while ET were approximately independent of the amplitude for large axons. The activation field strength thresholds presented in this study may be used in future studies to approximate the VTA during model-based investigations of DBS without the need of computational axon models.

  6. The Chandra Deep Field South as a test case for Global Multi Conjugate Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Portaluri, E.; Viotto, V.; Ragazzoni, R.; Gullieuszik, M.; Bergomi, M.; Greggio, D.; Biondi, F.; Dima, M.; Magrin, D.; Farinato, J.

    2017-04-01

    The era of the next generation of giant telescopes requires not only the advent of new technologies but also the development of novel methods, in order to exploit fully the extraordinary potential they are built for. Global Multi Conjugate Adaptive Optics (GMCAO) pursues this approach, with the goal of achieving good performance over a field of view of a few arcmin and an increase in sky coverage. In this article, we show the gain offered by this technique to an astrophysical application, such as the photometric survey strategy applied to the Chandra Deep Field South as a case study. We simulated a close-to-real observation of a 500 × 500 arcsec2 extragalactic deep field with a 40-m class telescope that implements GMCAO. We analysed mock K-band images of 6000 high-redshift (up to z = 2.75) galaxies therein as if they were real to recover the initial input parameters. We attained 94.5 per cent completeness for source detection with SEXTRACTOR. We also measured the morphological parameters of all the sources with the two-dimensional fitting tools GALFIT. The agreement we found between recovered and intrinsic parameters demonstrates GMCAO as a reliable approach to assist extremely large telescope (ELT) observations of extragalactic interest.

  7. The Pan-STARRS 1 Medium Deep Field Variable Star Catalog

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather

    2015-01-01

    We present the first Pan-STARRS 1 Medium Deep Field Variable Star Catalog (PS1-MDF-VSC). The Pan-STARRS 1 (PS1) telescope is a 1.8 meter survey telescope with a 1.4 Gigapixel camera, located in Haleakala, Hawaii. The Medium Deep survey, which consists of 10 fields located uniformly across the sky, totalling 70 square degrees, is observed each night, in 2-3 filters per field, with 8 exposures per filter, resulting in 3000-4000 data points per star over a time span of 3.5 years. To find the variables, we select the stars with > 200 detections, between 16th and 21st magnitude. There are approximately 500k stars that fit this criteria, they then go through a lomb-scargle fitting routine to determine periodicity. After a periodicity cut, the ~400 candidates are classified by eye into different types of variable stars. We have identified several hundred variable stars, with periods ranging between a few minutes to a few days, and about half are not previously identified in the literature. We compare our results to the stripe 82 variable catalog, which overlaps part of the sky with the PS1 catalog.

  8. The Pan-STARRS 1 Medium Deep Field Variable Star Catalog

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather

    2015-08-01

    We present the first Pan-STARRS 1 Medium Deep Field Variable Star Catalog (PS1-MDF-VSC). The Pan-STARRS 1 (PS1) telescope is a 1.8 meter survey telescope with a 1.4 Gigapixel camera, located in Haleakala, Hawaii. The Medium Deep survey, which consists of 10 fields located uniformly across the sky, totalling 70 square degrees, is observed each night, in 2-3 filters per field, with 8 exposures per filter, resulting in 3000-4000 data points per star over a time span of 3.5 years. To find the variables, we select the stars with > 200 detections, between 16th and 21st magnitude. There are approximately 500k stars that fit this criteria, they then go through a lomb-scargle fitting routine to determine periodicity. After a periodicity cut, the ~400 candidates are classified by eye into different types of variable stars. We have identified several hundred variable stars, with periods ranging between a few minutes to a few days, and about half are not previously identified in the literature. We compare our results to the stripe 82 variable catalog, which overlaps part of the sky with the PS1 catalog.

  9. A systematic search for z ≥ 5 active galactic nuclei in the Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Weigel, Anna K.; Schawinski, Kevin; Treister, Ezequiel; Koss, Michael; Urry, C. Megan; Trakhtenbrot, Benny

    2015-01-01

    We investigate early black hole growth through the methodical search for z ≥ 5 AGN in the Chandra Deep Field South.We base our search on the Chandra 4-Ms data that should allow us to detect Compton-thin AGN with MBH >107 M⊙ accreting at Eddington ratios > 0.1.The Chandra Deep Field South contains over 600 z ≥ 5 Lyman Break Galaxies. These high-redshift galaxies are the progenitors of massive, local galaxies and based on lower redshift relations we would expect ~ 20 of them to host AGN.We combine the Chandra data with GOODS/ACS, CANDELS/WFC3 and Spitzer/IRAC data. After excluding clear low-redshift sources our sample consists of 58 high-redshift candidates. We use a range of redshift estimators including a photo-z code, stacking, colour criteria and the Lyman Break Technique. We also use the X-ray Hardness Ratio as additional information.The final z ≥ 5 candidates that remain after we combine our redshift tests, are likely to be low-redshift interlopers. We thus conclude that, contrary to our expectation of finding at least a few high-redshift AGN, the field does not contain any convincing z ≥ 5 AGN candidates.Our results place interesting constraints on early black hole growth and we discuss a range of possible explanations.

  10. The Magic Field Campaign in the Eastern North Pacific

    NASA Astrophysics Data System (ADS)

    Lewis, E. R.

    2013-12-01

    The MAGIC field campaign, funded and operated by the ARM (Atmospheric Radiation Measurement) Climate Research Facility of the US Department of Energy, occurred between September, 2012 and October, 2013 aboard the Horizon Lines cargo container ship Spirit making regular round trips between Los Angeles, CA and Honolulu, HI. Along this route, which lies very near the GPCI (GCSS Pacific Cross-Section Intercomparison) transect, the cloud regime changes from predominantly stratocumulus near the California coast to predominantly trade-wind cumulus near Hawaii. The transition between these two regimes is poorly understood and not accurately represented in climate models. The goal of the campaign was to improve the representation of this transition in models by acquiring statistics of the transition by making repeated transects through this region measuring properties of clouds and precipitation, aerosols, radiation, and atmospheric structure. To achieve these goals, the Second ARM Mobile Facility (AMF2) was deployed on the Horizon Spirit and nearly forty excursions through this transition were taken. The AMF2 consists of three 20-foot SeaTainers and other instruments that were installed on the Spirit. Two technicians accompanied the AMF2 and scientists rode as observers. Radiosondes were launched four times per day, and an overflight by the SPEC Learjet occurred in July. An overview of the deployment, preliminary results, and future plans will be presented.

  11. CANDELS Multiwavelength Catalogs: Source Identification and Photometry in the CANDELS UKIDSS Ultra-deep Survey Field

    NASA Astrophysics Data System (ADS)

    Galametz, Audrey; Grazian, Andrea; Fontana, Adriano; Ferguson, Henry C.; Ashby, M. L. N.; Barro, Guillermo; Castellano, Marco; Dahlen, Tomas; Donley, Jennifer L.; Faber, Sandy M.; Grogin, Norman; Guo, Yicheng; Huang, Kuang-Han; Kocevski, Dale D.; Koekemoer, Anton M.; Lee, Kyoung-Soo; McGrath, Elizabeth J.; Peth, Michael; Willner, S. P.; Almaini, Omar; Cooper, Michael; Cooray, Asantha; Conselice, Christopher J.; Dickinson, Mark; Dunlop, James S.; Fazio, G. G.; Foucaud, Sebastien; Gardner, Jonathan P.; Giavalisco, Mauro; Hathi, N. P.; Hartley, Will G.; Koo, David C.; Lai, Kamson; de Mello, Duilia F.; McLure, Ross J.; Lucas, Ray A.; Paris, Diego; Pentericci, Laura; Santini, Paola; Simpson, Chris; Sommariva, Veronica; Targett, Thomas; Weiner, Benjamin J.; Wuyts, Stijn; the CANDELS Team

    2013-06-01

    We present the multiwavelength—ultraviolet to mid-infrared—catalog of the UKIRT Infrared Deep Sky Survey (UKIDSS) Ultra-Deep Survey field observed as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). Based on publicly available data, the catalog includes the CANDELS data from the Hubble Space Telescope (near-infrared WFC3 F125W and F160W data and visible ACS F606W and F814W data); u-band data from CFHT/Megacam; B, V, Rc , i', and z' band data from Subaru/Suprime-Cam; Y and Ks band data from VLT/HAWK-I; J, H, and K band data from UKIDSS (Data Release 8); and Spitzer/IRAC data (3.6, 4.5 μm from SEDS; 5.8 and 8.0 μm from SpUDS). The present catalog is F160W-selected and contains 35, 932 sources over an area of 201.7 arcmin2 and includes radio- and X-ray-detected sources and spectroscopic redshifts available for 210 sources.

  12. Field testing of stiffened deep cement mixing piles under lateral cyclic loading

    NASA Astrophysics Data System (ADS)

    Raongjant, Werasak; Jing, Meng

    2013-06-01

    Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.

  13. CANDELS MULTIWAVELENGTH CATALOGS: SOURCE IDENTIFICATION AND PHOTOMETRY IN THE CANDELS UKIDSS ULTRA-DEEP SURVEY FIELD

    SciTech Connect

    Galametz, Audrey; Grazian, Andrea; Fontana, Adriano; Castellano, Marco; Ferguson, Henry C.; Dahlen, Tomas; Grogin, Norman; Huang, Kuang-Han; Koekemoer, Anton M.; Ashby, M. L. N.; Willner, S. P.; Barro, Guillermo; Faber, Sandy M.; Guo, Yicheng; Kocevski, Dale D.; Lee, Kyoung-Soo; McGrath, Elizabeth J.; Peth, Michael; Almaini, Omar; Collaboration: CANDELS team; and others

    2013-06-01

    We present the multiwavelength-ultraviolet to mid-infrared-catalog of the UKIRT Infrared Deep Sky Survey (UKIDSS) Ultra-Deep Survey field observed as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). Based on publicly available data, the catalog includes the CANDELS data from the Hubble Space Telescope (near-infrared WFC3 F125W and F160W data and visible ACS F606W and F814W data); u-band data from CFHT/Megacam; B, V, R{sub c} , i', and z' band data from Subaru/Suprime-Cam; Y and K{sub s} band data from VLT/HAWK-I; J, H, and K band data from UKIDSS (Data Release 8); and Spitzer/IRAC data (3.6, 4.5 {mu}m from SEDS; 5.8 and 8.0 {mu}m from SpUDS). The present catalog is F160W-selected and contains 35, 932 sources over an area of 201.7 arcmin{sup 2} and includes radio- and X-ray-detected sources and spectroscopic redshifts available for 210 sources.

  14. DEEP VADOSE ZONE APPLIED FIELD RESEARCH CENTER: TRANSFORMATIONAL TECHNOLOGY DEVELOPMENT FOR ENVIRONMENTAL REMEDIATION

    SciTech Connect

    Wellman, Dawn M.; Triplett, Mark B.; Freshley, Mark D.; Truex, Michael J.; Gephart, Roy E.; Johnson, Timothy C.; Chronister, Glen B.; Gerdes, Kurt D.; Chamberlain, Skip; Marble, Justin; Ramirez, Rosa

    2011-02-27

    DOE-EM, Office of Groundwater and Soil Remediation and DOE Richland, in collaboration with the Hanford site and Pacific Northwest National Laboratory, have established the Deep Vadose Zone Applied Field Research Center (DVZ-AFRC). The DVZ-AFRC leverages DOE investments in basic science from the Office of Science, applied research from DOE EM Office of Technology Innovation and Development, and site operation (e.g., site contractors [CH2M HILL Plateau Remediation Contractor and Washington River Protection Solutions], DOE-EM RL and ORP) in a collaborative effort to address the complex region of the deep vadose zone. Although the aim, goal, motivation, and contractual obligation of each organization is different, the integration of these activities into the framework of the DVZ-AFRC brings the resources and creativity of many to provide sites with viable alternative remedial strategies to current baseline approaches for persistent contaminants and deep vadose zone contamination. This cooperative strategy removes stove pipes, prevents duplication of efforts, maximizes resources, and facilitates development of the scientific foundation needed to make sound and defensible remedial decisions that will successfully meet the target cleanup goals for one of DOE EM's most intractable problems, in a manner that is acceptable by regulators.

  15. MULTIMEDIA CHEMICAL ANALYSIS PLAN FOR CHILDREN'S AGGREGATE EXPOSURE FIELD STUDIES IN NORTH CAROLINA AND OHIO

    EPA Science Inventory

    The samples collected in the CTEPP North Carolina and Ohio field campaigns were analyzed for a suite of organic chemicals in various compound classes, chosen because of their possible carcinogenicity, acute or chronic toxicity, or potential for endocrine system disruption. The...

  16. 2012 North Plains research field 12-200 limited irrigation corn production study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    2012 represented the third sequential year of research regarding the limited irrigation 12-200 corn production assessment study at the North Plains Research Field (NPRF) with the yield results being improved from that of the 2011 season but less than of the 2010 season. The study's purpose was to ev...

  17. First LNG from North field overcomes feed, start-up problems

    SciTech Connect

    Redha, A.; Rahman, A.; Al-Thani, N.H.; Ishikura, Masayuki; Kikkawa, Yoshitsugi

    1998-08-24

    Qatar Gas LNG is the first LNG project in the gas-development program of the world`s largest gas reservoir, North field. The LNG plant was completed within the budget and schedule. The paper discusses the LNG plant design, LNG storage and loading, alternative mercaptan removal, layout modification, information and control systems, training, data management systems, start-up, and performance testing.

  18. Infrared Faint Radio Sources in the Extended Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.

    2009-01-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).

  19. THE DEEP3 GALAXY REDSHIFT SURVEY: KECK/DEIMOS SPECTROSCOPY IN THE GOODS-N FIELD

    SciTech Connect

    Cooper, Michael C.; Aird, James A.; Coil, Alison L. E-mail: acoil@ucsd.edu

    2011-03-15

    We present the results of spectroscopic observations in the GOODS-N field completed using DEIMOS on the Keck II telescope as part of the DEEP3 Galaxy Redshift Survey. Observations of 370 unique targets down to a limiting magnitude of R {sub AB} = 24.4 yielded 156 secure redshifts. In addition to redshift information, we provide sky-subtracted one- and two-dimensional spectra of each target. Observations were conducted following the procedures of the Team Keck Redshift Survey (TKRS), thereby producing spectra that augment the TKRS sample while maintaining the uniformity of its spectral database.

  20. The 1.1-Ga Midcontinent Rift System, central North America: sedimentology of two deep boreholes, Lake Superior region

    NASA Astrophysics Data System (ADS)

    Ojakangas, Richard W.; Dickas, Albert B.

    2002-03-01

    The Midcontinent Rift System (MRS) of central North America is a 1.1-Ga, 2500-km long structural feature that has been interpreted as a triple-junction rift developed over a mantle plume. As much as 20 km of subaerial lava flows, mainly flood basalts, are overlain by as much as 10 km of sedimentary rocks that are mostly continental fluvial red beds. This rock sequence, known as the Keweenawan Supergroup, has been penetrated by a few deep boreholes in the search for petroleum. In this paper, two deep boreholes in the Upper Peninsula of Michigan are described in detail for the first time. Both the Amoco Production #1-29R test, herein referred to as the St. Amour well, and the nearby Hickey Creek well drilled by Cleveland Cliffs Mining Services, were 100% cored. The former is 7238 ft (2410 m) deep and the latter is 5345 ft (1780 m) deep. The entirety of the stratigraphic succession of the Hickey Creek core correlates very well with the upper portion of the St. Amour core, as determined by core description and point-counting of 43 thin sections selected out of 100 studied thin sections. Two Lower Paleozoic units and two Keweenawan red bed units—the Jacobsville Sandstone and the underlying Freda Sandstone—are described. The Jacobsville is largely a feldspatholithic sandstone and the Freda is largely a lithofeldspathic sandstone. Below the Freda, the remaining footage of the St. Amour core consists of a thick quartzose sandstone unit that overlies a heterogenous unit of intercalated red bed units of conglomerate, sandstone, siltstone, and shale; black shale; individual basalt flows; and a basal ignimbritic rhyolite. This lower portion of the St. Amour core presents an enigma, as it correlates very poorly with other key boreholes located to the west and southwest. While a black shale sequence is similar to the petroleum-bearing Nonesuch Formation farther west, there is no conglomerate unit to correlate with the Copper Harbor Conglomerate. Other key boreholes are

  1. Influence of heterogeneous and anisotropic tissue conductivity on electric field distribution in deep brain stimulation.

    PubMed

    Aström, Mattias; Lemaire, Jean-Jacques; Wårdell, Karin

    2012-01-01

    The aim was to quantify the influence of heterogeneous isotropic and heterogeneous anisotropic tissue on the spatial distribution of the electric field during deep brain stimulation (DBS). Three finite element tissue models were created of one patient treated with DBS. Tissue conductivity was modelled as (I) homogeneous isotropic, (II) heterogeneous isotropic based on MRI, and (III) heterogeneous anisotropic based on diffusion tensor MRI. Modelled DBS electrodes were positioned in the subthalamic area, the pallidum, and the internal capsule in each tissue model. Electric fields generated during DBS were simulated for each model and target-combination and visualized with isolevels at 0.20 (inner), and 0.05 V mm(-1) (outer). Statistical and vector analysis was used for evaluation of the distribution of the electric field. Heterogeneous isotropic tissue altered the spatial distribution of the electric field by up to 4% at inner, and up to 10% at outer isolevel. Heterogeneous anisotropic tissue influenced the distribution of the electric field by up to 18 and 15% at each isolevel, respectively. The influence of heterogeneous and anisotropic tissue on the electric field may be clinically relevant in anatomic regions that are functionally subdivided and surrounded by multiple fibres of passage.

  2. Eastern North Atlantic deep-sea corals: tracing upper intermediate water Δ 14C during the Holocene

    NASA Astrophysics Data System (ADS)

    Frank, Norbert; Paterne, Martine; Ayliffe, Linda; van Weering, Tjeerd; Henriet, Jean-Pierre; Blamart, Dominique

    2004-03-01

    Paired 230Th/U and 14C dating were performed on deep-sea corals (Lophelia pertusa and Madrepora oculata) from the northeastern North Atlantic at ∼730 m bsl to investigate past changes of the thermohaline circulation. These were estimated using the Δ14C value of the upper intermediate waters, based on the 14C ages of the top and base of each coral, where possible, and the 230Th/U dating. The reliability of these estimates was checked by dating two very young corals of the species L. pertusa. One of these corals, collected alive in 1999 AD, gave a 230Th/U age of 1995±4 AD after correction for non-radiogenic 230Th. Another coral, the top of which dated to 1969±6 AD, recorded the atmospheric 14C/12C increase due to the nuclear tests in the early 1960s. The calculated Δ14C values from these two corals agree with those measured at GEOSECS Station 23 in 1972-1973 [Östlund et al., Earth Planet. Sci. Lett. 23 (1974) 69-86] and 1991-1992 [Nydal and Gisfelos, Radiocarbon 38 (1996) 389-406]. This, together with the 100% aragonite content and the δ234U and 230Th/232Th values of all the dated corals, indicates that none of the corals behaved as open systems with respect to their U-series nuclides and that they closely represent the water mass properties in which they lived. The pre-anthropogenic Δ14C value of the North Atlantic intermediate waters was estimated at -69±4‰. The reservoir age varies from ∼400 years to ∼600 years, and this variation is due to atmospheric 14C/12C changes. A reservoir age of 610±80 years, close to the pre-anthropogenic value, was determined from one coral dated at 10 430±120 cal yr BP, when the global sea level was approximately at -35 m [Bard et al., Nature 382 (1996) 241-244]. This suggests a modern-like pattern of the oceanic circulation prevailed in the Northeast Atlantic Ocean at this time although the deglaciation was not completely achieved.

  3. Field guide to Laramide basin evolution and drilling activity in North Park and Middle Park, Colorado

    USGS Publications Warehouse

    Dechesne, Marieke; Cole, James Channing; Martin, Christopher B.

    2016-01-01

    Overview of the geologic history of the North Park–Middle Park area and its past and recent drilling activity. Field trip stops highlight basin formation and the consequences of geologic configuration on oil and gas plays and development. The starting point is the west flank of the Denver Basin to compare and contrast the latest Cretaceous through Eocene basin fill on both flanks of the Front Range, before exploring sediments of the same age in the North Park – Middle Park intermontane basin.

  4. Intermediate-wavelength magnetic anomaly field of the North Pacific and posible source distributions

    NASA Technical Reports Server (NTRS)

    Labrecque, J. L.; Cande, S. C.; Jarrard, R. D.

    1985-01-01

    A technique that eliminates external field sources and the effects of strike aliasing was used to extract from marine survey data the intermediate wavelength magnetic anomaly field for (B) in the North Pacific. A strong correlation exists between this field and the Magsat field although a directional sensitivity in the Magsat field can be detected. The intermediate wavelength field is correlated to tectonic features. Island arcs appear as positive anomalies of induced origin likely due to variations in crustal thickness. Seamount chains and oceanic plateaus also are manifested by strong anomalies. The primary contribution to many of these anomalies appears to be due to a remanent magnetization. The source parameters for the remainder of these features are presently unidentified ambiguous. Results indicate that the sea surface field is a valuable source of information for secular variation analysis and the resolution of intermediate wavelength source parameters.

  5. The intermediate wavelength magnetic anomaly field of the north Pacific and possible source distributions

    NASA Technical Reports Server (NTRS)

    Labrecque, J. L.; Cande, S. C.; Jarrard, R. D. (Principal Investigator)

    1983-01-01

    A technique that eliminates external field sources and the effects of strike aliasing was used to extract from marine survey data the intermediate wavelength magnetic anomaly field for (B) in the North Pacific. A strong correlation exists between this field and the MAGSAT field although a directional sensitivity in the MAGSAT field can be detected. The intermediate wavelength field is correlated to tectonic features. Island arcs appear as positive anomalies of induced origin likely due to variations in crustal thickness. Seamount chains and oceanic plateaus also are manifested by strong anomalies. The primary contribution to many of these anomalies appears to be due to a remanent magnetization. The source parameters for the remainder of these features are presently unidentified ambiguous. Results indicate that the sea surface field is a valuable source of information for secular variation analysis and the resolution of intermediate wavelength source parameters.

  6. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini; Donald A. Goddard

    2004-10-28

    The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification.

  7. Diffraction of a one-dimensional phase grating in the deep Fresnel field.

    PubMed

    Teng, Shuyun; Zhang, Ningyu; Dong, Qingrui; Cheng, Chuanfu

    2007-11-01

    We analyze theoretically the diffraction of phase gratings in the deep Fresnel field on the basis of the theory of scalar diffraction and Green's theorem and present the general formula for the diffraction intensity of a one-dimensional sinusoidal phase grating. The numerical calculations show that in the deep Fresnel region the diffraction distribution can be described by designating three characteristic regions that are influenced by the parameters of the grating. The microlensing effect of the interface of the phase grating provides the corresponding explanation. Moreover, according to the viewpoint that the diffraction intensity distribution is the result of the interference of the diffraction orders of the grating, we find that the diffraction patterns, depending on the carved depth of the phase grating, are determined by the contributing diffraction orders, their relative power, and the quasi-Talbot effect of the phase grating, which results from the second meeting of the diffraction orders carrying most of the power of the total field, as in the case of the amplitude grating.

  8. Condenser for ring-field deep-ultraviolet and extreme-ultraviolet lithography

    DOEpatents

    Chapman, Henry N.; Nugent, Keith A.

    2001-01-01

    A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated beam at grazing incidence. The ripple plate comprises a plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

  9. Condenser for ring-field deep ultraviolet and extreme ultraviolet lithography

    DOEpatents

    Chapman, Henry N.; Nugent, Keith A.

    2002-01-01

    A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated or converging beam at grazing incidence. The ripple plate comprises a flat or curved plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

  10. Comparison of ELTs, interferometers and hypertelescopes for deep field imaging and coronagraphy

    NASA Astrophysics Data System (ADS)

    Labeyrie, Antoine

    2007-04-01

    We compare the science potential of ELTs, interferometers and hypertelescopes having the same collecting area. Hypertelescopes with hundreds or thousands of small apertures overcome the ‘field crowding’ problem which interferometers have for aperture synthesis with few apertures. They also improve the signal/noise ratio as N if N is the number of apertures. With a modified laser guide star scheme, currently being explored, they become, in principle, suitable for observing deep fields of remote galaxies, with a limiting magnitude identical to an ELT, and with higher resolution. Before initiating major ground-based projects, the comparison of these architectures should be studied in more detail, for the various observing targets and science cases. To cite this article: A. Labeyrie, C. R. Physique 8 (2007).

  11. Organohalogen compounds in deep-sea fishes from the western North Pacific, off-Tohoku, Japan: Contamination status and bioaccumulation profiles.

    PubMed

    Takahashi, Shin; Oshihoi, Tomoko; Ramu, Karri; Isobe, Tomohiko; Ohmori, Koji; Kubodera, Tsunemi; Tanabe, Shinsuke

    2010-02-01

    Twelve species of deep-sea fishes collected in 2005 from the western North Pacific, off-Tohoku, Japan were analyzed for organohalogen compounds. Among the compounds analyzed, concentrations of DDTs and PCBs (up to 23,000 and 12,400 ng/g lipid wt, respectively) were the highest. The present study is the foremost to report the occurrence of brominated flame retardants such as PBDEs and HBCDs in deep-sea organisms from the North Pacific region. Significant positive correlations found between delta(15)N ( per thousand) and PCBs, DDTs and PBDEs suggest the high biomagnification potential of these contaminants in food web. The large variation in delta(13)C (per thousand) values observed between the species indicate multiple sources of carbon in the food web and specific accumulation of hydrophobic organohalogen compounds in benthic dwelling carnivore species like snubnosed eel. The results obtained in this study highlight the usefulness of deep-sea fishes as sentinel species to monitor the deep-sea environment.

  12. Deep 3-GHz observations of the Lockman Hole North with the Very Large Array - I. Source extraction and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Vernstrom, T.; Scott, Douglas; Wall, J. V.; Condon, J. J.; Cotton, W. D.; Perley, R. A.

    2016-09-01

    This is the first of two papers describing the observations and cataloguing of deep 3-GHz observations of the Lockman Hole North using the Karl G. Jansky Very Large Array. The aim of this paper is to investigate, through the use of simulated images, the uncertainties and accuracy of source-finding routines, as well as to quantify systematic effects due to resolution, such as source confusion and source size. While these effects are not new, this work is intended as a particular case study that can be scaled and translated to other surveys. We use the simulations to derive uncertainties in the fitted parameters, as well as bias corrections for the actual catalogue (presented in Paper II). We compare two different source-finding routines, OBIT and AEGEAN, and two different effective resolutions, 8 and 2.75 arcsec. We find that the two routines perform comparably well, with OBIT being slightly better at de-blending sources, but slightly worse at fitting resolved sources. We show that 30-70 per cent of sources are missed or fit inaccurately once the source size becomes larger than the beam, possibly explaining source count errors in high-resolution surveys. We also investigate the effect of blending, finding that any sources with separations smaller than the beam size are fit as single sources. We show that the use of machine-learning techniques can correctly identify blended sources up to 90 per cent of the time, and prior-driven fitting can lead to a 70 per cent improvement in the number of de-blended sources.

  13. Management of a giant deep field: El Furrial Field, Eastern Venezuela

    SciTech Connect

    Pinto, N.; Mengual, R.; Anz, J.; Rodney, C.

    1996-08-01

    The Furrial Field is located in Eastern Venezuela and produces a 25 to 30{degrees} API asphaltenic crude oil from a 1500 ft thick Oligocene sand interval at a depth of 15,000 ft. The bubble point is about 4500 psi as compared to an original pressure of 11,000 psi. Oil in place is approximately 6800 million STB. Currently production is 350 MB/D from 77 well streams (Naricual Formation), and water is being injected at 400 MB/D to maintain pressure. The combination of a volumetric reservoir and asphaltenic nature of crude oil resulted in a rapid decrease in well productivity and reservoir pressure, creating the necessity to maintain reservoir pressure to maximize recovery. Discussed in this paper are the reservoir management techniques and strategies used by Lagoven to develop and operate these complex reservoirs. Acquisition and analysis of these data adequate to properly implement these management techniques are covered in detail.

  14. The systematic search for z ≳ 5 active galactic nuclei in the Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Weigel, Anna K.; Schawinski, Kevin; Treister, Ezequiel; Urry, C. Megan; Koss, Michael; Trakhtenbrot, Benny

    2015-04-01

    We investigate early black hole (BH) growth through the methodical search for z ≳ 5 active galactic nuclei (AGN) in the Chandra Deep Field South. We base our search on the Chandra 4-Ms data with flux limits of 9.1 × 10-18 (soft, 0.5-2 keV) and 5.5 × 10-17 erg s-1 cm-2 (hard, 2-8 keV). At z ˜ 5, this corresponds to luminosities as low as ˜1042 (˜1043) erg s-1 in the soft (hard) band and should allow us to detect Compton-thin AGN with MBH > 107 M⊙ and Eddington ratios >0.1. Our field (0.03 deg2) contains over 600z ˜ 5 Lyman Break Galaxies. Based on lower redshift relations, we would expect ˜20 of them to host AGN. After combining the Chandra data with Great Observatories Origins Deep Survey (GOODS)/Advanced Camera for Surveys (ACS), CANDELS/Wide Field Camera 3 and Spitzer/Infrared Array Camera data, the sample consists of 58 high-redshift candidates. We run a photometric redshift code, stack the GOODS/ACS data, apply colour criteria and the Lyman Break Technique and use the X-ray Hardness Ratio. We combine our tests and using additional data find that all sources are most likely at low redshift. We also find five X-ray sources without a counterpart in the optical or infrared which might be spurious detections. We conclude that our field does not contain any convincing z ≳ 5 AGN. Explanations for this result include a low BH occupation fraction, a low AGN fraction, short, super-Eddington growth modes, BH growth through BH-BH mergers or in optically faint galaxies. By searching for z ≳ 5 AGN, we are setting the foundation for constraining early BH growth and seed formation scenarios.

  15. M4 - A Globular Cluster Hubble Deep Field: The Inner Halo Field Population

    NASA Astrophysics Data System (ADS)

    Rich, R. M.; Brewer, J.; Fahlman, G. G.; Gibson, B.; Hansen, B.; Ibata, R.; Limongi, M.; Richer, H. B.; Stetson, P. B.; Shara, M.

    2001-12-01

    We report analysis of our data from GO-8769, a 123 orbit exposure with HST/WFPC2 in F606W (wide V) and F814W (I) of a field in the globular cluster M4. Our photometry reaches to V ~ 30 and I ~ 28.5, and we are able to combine our data with imagery obtained 6 years earlier to produce a proper-motion selected sample. The reduced proper motion diagram shows two clumps: a very tight clump corresponding to members of M4, and a separate well-defined clump of stars with a much larger proper motion dispersion, which we attribute to the inner halo. M4 has l,b=(351,16) and the sight line therefore intersects in the inner halo roughly 2.5 kpc from the nucleus. Using the grouping in the reduced proper motion diagram, we are able to isolate those stars with membership in the inner halo (bulge?) population. We find a well defined main sequence extending to V≈ 29, or MV ~ +14 and this also will give one of the deepest luminosity functions ever constructed for the spheroid. The main sequence is substantially wider than that of the cluster, which we attribute both the dispersion in spatial location and metallicity. Our estimate of the proper motion dispersion gives 0.25 arcsec/century, or ≈ 100 km/sec at a distance of 8 kpc --- consistent with that found in other bulge fields. RMR acknowledges support from grant GO-8769 through the Space Telescope Science Institute.

  16. Emission-Line Galaxies from the PEARS Hubble Ultra Deep Field: A 2-D Detection Method and First Results

    NASA Technical Reports Server (NTRS)

    Gardner, J. P.; Straughn, Amber N.; Meurer, Gerhardt R.; Pirzkal, Norbert; Cohen, Seth H.; Malhotra, Sangeeta; Rhoads, james; Windhorst, Rogier A.; Gardner, Jonathan P.; Hathi, Nimish P.; Xu, Chun; Gronwall, Caryl; Koekemoer, Anton M.; Walsh, Jeremy; diSeregoAlighieri, Sperello

    2007-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) grism PEARS (Probing Evolution And Reionization Spectroscopically) survey provides a large dataset of low-resolution spectra from thousands of galaxies in the GOODS North and South fields. One important subset of objects in these data are emission-line galaxies (ELGs), and we have investigated several different methods aimed at systematically selecting these galaxies. Here we present a new methodology and results of a search for these ELGs in the PEARS observations of the Hubble Ultra Deep Field (HUDF) using a 2D detection method that utilizes the observation that many emission lines originate from clumpy knots within galaxies. This 2D line-finding method proves to be useful in detecting emission lines from compact knots within galaxies that might not otherwise be detected using more traditional 1D line-finding techniques. We find in total 96 emission lines in the HUDF, originating from 81 distinct "knots" within 63 individual galaxies. We find in general that [0 1111 emitters are the most common, comprising 44% of the sample, and on average have high equivalent widths (70% of [0 1111 emitters having rest-frame EW> 100A). There are 12 galaxies with multiple emitting knots; several show evidence of variations in H-alpha flux in the knots, suggesting that the differing star formation properties across a single galaxy can in general be probed at redshifts approximately greater than 0.2 - 0.4. The most prevalent morphologies are large face-on spirals and clumpy interacting systems, many being unique detections owing to the 2D method described here, thus highlighting the strength of this technique.

  17. Epicontinental- to deep marine environmental transitions in the Triassic rifted margin of the north Arabian plate, Israel

    NASA Astrophysics Data System (ADS)

    Korngreen, Dorit; Benjamini, Chaim

    2010-05-01

    The transition from the Arabian plate epicontinental margin toward the deeper marine depositional system of the Middle to Late Triassic is tracked using data from deep boreholes in northern Israel. Biotic, sedimentological and diagenetic components from borehole cuttings were used to construct a carbonate-evaporitic depositional facies model for the Triassic. Three N-S trending subparallel facies strips were recognized, trending along a narrow belt less than 45 km wide but 300 km long. The proximal stable inland region is an extension of the epicontinental marginal marine facies during the Anisian. To the north and west lies the second strip, characterized by a subsiding platform. In this strip, sections are consistently much thicker than the proximal strip, more richly fossiliferous with open marine microfauna, and where evaporitic, tend to have more salina -like features than the sabkhas typical of the more eastern facies strip. Despite these differences, these two facies strips have many features in common. A short-lived tectonic phase in the Pelsonian is recognized in both strips and interpreted as rifting, taking place over no more than 3 Myr. Both strips react to sea level rise in the Ladinian by increased deposition of carbonates, and to salinity changes in the Carnian by establishment of evaporitic regimes. A second short-lived rifting phase in the Tuvalian took place over no more than 7 Myr. Northward thickening commenced in the Anisian and continued into the late Carnian, to values well above average for the Triassic of the Arabian margin. Norian termination of rifting and evaporite deposition was accompanied by reversal of the subsidence pattern, with greater uplift towards the north. This uplift is apparently associated with volcanic thermal doming, but also represents the first phase of extensive uplift known regionally at the base of the Jurassic. The western-most strip is the more tectonically active coastal shelf-edge region, displaying a facies

  18. Deep X-ray spectroscopy of obscured AGN in the ultra-deep XMM surveys of the Chandra Deep Field South (CDFS)

    NASA Astrophysics Data System (ADS)

    Comastri, Andrea; Ranalli, P.; Vignali, C.; Cappelluti, N.; Gilli, R.; Iwasawa, K.; Carrera, F. J.; Brusa, M.; Vito, F.; Georgantopoulos, I.; Rovilos, E.; Fiore, F.; Civano, F.; Brandt, W. N.; Tozzi, P.; Barcons, X.; Puccetti, S.; Falocco, S.; Paolillo, M.

    2012-09-01

    According to the recent models for the joint evolution of Super Massive Black Holes and their Host Galaxies, heavy obscuration represents a crucial phase and is expected to play a key role in the feedback mechanisms self regulating the SMBH growth. The smoking gun signature of heavy absorption is the presence of a low energy cut-off and/or reflection signatures (i.e. iron lines and edges) in the X-ray spectrum. Deep X-ray spectroscopy represents the most efficient method to uncover the most obscured sources at cosmological distances. After a brief description of the XMM ultra-deep (3 Ms) survey in the CDFS, I will present the results of a systematic search for heavily obscured and Compton thick AGN and discuss the results in the light of recent phenomenological (i.e. XRB synthesis) and theoretical models. I will also highlight the power of deep spectral spectroscopy to obtain redshift estimates, via the iron line, more accurate and reliable than available photo-z. Synergies between ultra-deep Chandra (4 Ms) and XMM observations and perspectives for future surveys will be also reported.

  19. Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey -- UDS Field

    NASA Astrophysics Data System (ADS)

    Faber, Sandra

    2010-09-01

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey {CANDELS}is designed to document the ?rst third of galactic evolution from z =8 to 1.5 via deep imaging of more than 250,000 galaxies with WFC3/IRand ACS. It will also find the first Type Ia SNe beyond z > 1.5 andestablish their accuracy as standard candles for cosmology. Fivepremier multi-wavelength sky regions are selected from the SpitzerExtragalactic Deep Survey {SEDS} to provide complementary IRAC imagingdata down to 26.5 AB mag, a unique resource for stellar masses at allredshifts. The use of ?ve widely separated ?elds mitigates cosmicvariance and yields statistically robust and complete samples ofgalaxies down to 10^9 solar masses out to z 8.The program merges two originally separate MCT proposals. The Faberprogram incorporates a ?Wide? imaging survey in three separate fieldsto 2 orbit depth over 0.2 sq. degrees, plus a ?Deep? imaging surveyto 12 orbit depth in the two GOODS regions over 0.04 sq. degrees.In combination with ultra-deep imaging from the Hubble Ultradeep Fieldprogram {GO 11563}, the result is a three-tiered strategy that ef?cientlysamples both bright/rare and faint/common extragalactic objects. TheFerguson program adds an extensive high-redshift Type Ia SNe search,plus ultraviolet "daytime" UVIS exposures in GOODS-N to exploit theCVZ opportunity in that field.This program, GO 12064, is part of the Wide mosaic survey, which has thefollowing field centers and sizes: Field ID RA{2000} Dec{2000} WFC3 Dim. PA on sky UDS 02 17 38 -05 12 02 4x11 270 COSMOS 10 00 31 +02 24 00 4x11 180 EGS 14 19 31 +52 54 10 3x15 41 Science highlights from the Wide program: * Underlying structural properties of galaxies as revealed by WFC3-IR images sensitive to older stars {beyond the 4000-A break} and less affected by dust than ACS. A key redshift is z 2, where star-formation peaks, QSOs are most abundant, and where restframe B-band is still accessible to WFC3. Sample questions include: - Structure in young

  20. Marine litter on deep Arctic seafloor continues to increase and spreads to the North at the HAUSGARTEN observatory

    NASA Astrophysics Data System (ADS)

    Tekman, Mine B.; Krumpen, Thomas; Bergmann, Melanie

    2017-02-01

    The increased global production of plastics has been mirrored by greater accumulations of plastic litter in marine environments worldwide. Global plastic litter estimates based on field observations account only for 1% of the total volumes of plastic assumed to enter the marine ecosystem from land, raising again the question 'Where is all the plastic? '. Scant information exists on temporal trends on litter transport and litter accumulation on the deep seafloor. Here, we present the results of photographic time-series surveys indicating a strong increase in marine litter over the period of 2002-2014 at two stations of the HAUSGARTEN observatory in the Arctic (2500 m depth). Plastic accounted for the highest proportion (47%) of litter recorded at HAUSGARTEN for the whole study period. When the most southern station was considered separately, the proportion of plastic items was even higher (65%). Increasing quantities of small plastics raise concerns about fragmentation and future microplastic contamination. Analysis of litter types and sizes indicate temporal and spatial differences in the transport pathways to the deep sea for different categories of litter. Litter densities were positively correlated with the counts of ship entering harbour at Longyearbyen, the number of active fishing vessels and extent of summer sea ice. Sea ice may act as a transport vehicle for entrained litter, being released during periods of melting. The receding sea ice coverage associated with global change has opened hitherto largely inaccessible environments to humans and the impacts of tourism, industrial activities including shipping and fisheries, all of which are potential sources of marine litter.

  1. Deep probing of the photospheric sunspot penumbra: no evidence of field-free gaps

    NASA Astrophysics Data System (ADS)

    Borrero, J. M.; Asensio Ramos, A.; Collados, M.; Schlichenmaier, R.; Balthasar, H.; Franz, M.; Rezaei, R.; Kiess, C.; Orozco Suárez, D.; Pastor, A.; Berkefeld, T.; von der Lühe, O.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Soltau, D.; Volkmer, R.; Waldmann, T.; Denker, C.; Hofmann, A.; Staude, J.; Strassmeier, K. G.; Feller, A.; Lagg, A.; Solanki, S. K.; Sobotka, M.; Nicklas, H.

    2016-11-01

    Context. Some models for the topology of the magnetic field in sunspot penumbrae predict regions free of magnetic fields or with only dynamically weak fields in the deep photosphere. Aims: We aim to confirm or refute the existence of weak-field regions in the deepest photospheric layers of the penumbra. Methods: We investigated the magnetic field at log τ5 = 0 is by inverting spectropolarimetric data of two different sunspots located very close to disk center with a spatial resolution of approximately 0.4-0.45''. The data have been recorded using the GRIS instrument attached to the 1.5-m solar telescope GREGOR at the El Teide observatory. The data include three Fe i lines around 1565 nm, whose sensitivity to the magnetic field peaks half a pressure scale height deeper than the sensitivity of the widely used Fe i spectral line pair at 630 nm. Before the inversion, the data were corrected for the effects of scattered light using a deconvolution method with several point spread functions. Results: At log τ5 = 0 we find no evidence of regions with dynamically weak (B< 500 Gauss) magnetic fields in sunspot penumbrae. This result is much more reliable than previous investigations made on Fe i lines at 630 nm. Moreover, the result is independent of the number of nodes employed in the inversion, is independent of the point spread function used to deconvolve the data, and does not depend on the amount of stray light (i.e., wide-angle scattered light) considered.

  2. SIMULTANEOUS EXOPLANET CHARACTERIZATION AND DEEP WIDE-FIELD IMAGING WITH A DIFFRACTIVE PUPIL TELESCOPE

    SciTech Connect

    Guyon, Olivier; Eisner, Josh A.; Angel, Roger; Woolf, Neville J.; Bendek, Eduardo A.; Milster, Thomas D.; Ammons, S. Mark; Shao, Michael; Shaklan, Stuart; Levine, Marie; Nemati, Bijan; Martinache, Frantz; Pitman, Joe; Woodruff, Robert A.; Belikov, Ruslan

    2013-04-10

    High-precision astrometry can identify exoplanets and measure their orbits and masses while coronagraphic imaging enables detailed characterization of their physical properties and atmospheric compositions through spectroscopy. In a previous paper, we showed that a diffractive pupil telescope (DPT) in space can enable sub-{mu}as accuracy astrometric measurements from wide-field images by creating faint but sharp diffraction spikes around the bright target star. The DPT allows simultaneous astrometric measurement and coronagraphic imaging, and we discuss and quantify in this paper the scientific benefits of this combination for exoplanet science investigations: identification of exoplanets with increased sensitivity and robustness, and ability to measure planetary masses to high accuracy. We show how using both measurements to identify planets and measure their masses offers greater sensitivity and provides more reliable measurements than possible with separate missions, and therefore results in a large gain in mission efficiency. The combined measurements reliably identify potentially habitable planets in multiple systems with a few observations, while astrometry or imaging alone would require many measurements over a long time baseline. In addition, the combined measurement allows direct determination of stellar masses to percent-level accuracy, using planets as test particles. We also show that the DPT maintains the full sensitivity of the telescope for deep wide-field imaging, and is therefore compatible with simultaneous scientific observations unrelated to exoplanets. We conclude that astrometry, coronagraphy, and deep wide-field imaging can be performed simultaneously on a single telescope without significant negative impact on the performance of any of the three techniques.

  3. Changes in North Atlantic deep-sea temperature during climatic fluctuations of the last 25,000 years based on ostracode Mg/Ca ratios

    USGS Publications Warehouse

    Dwyer, Gary S.; Cronin, Thomas M.; Baker, Paul A.; Rodriguez-Lazaro, Julio

    2000-01-01

    We reconstructed three time series of last glacial-to-present deep-sea temperature from deep and intermediate water sediment cores from the western North Atlantic using Mg/Ca ratios of benthic ostracode shells. Although the Mg/Ca data show considerable variability (“scatter”) that is common to single-shell chemical analyses, comparisons between cores, between core top shells and modern bottom water temperatures (BWT), and comparison to other paleo-BWT proxies, among other factors, suggest that multiple-shell average Mg/Ca ratios provide reliable estimates of BWT history at these sites. The BWT records show not only glacial-to-interglacial variations but also indicate BWT changes during the deglacial and within the Holocene interglacial stage. At the deeper sites (4500- and 3400-m water depth), BWT decreased during the last glacial maximum (LGM), the late Holocene, and possibly during the Younger Dryas. Maximum deep-sea warming occurred during the latest deglacial and early Holocene, when BWT exceeded modern values by as much as 2.5°C. This warming was apparently most intense around 3000 m, the depth of the modern-day core of North Atlantic deep water (NADW). The BWT variations at the deeper water sites are consistent with changes in thermohaline circulation: warmer BWT signifies enhanced NADW influence relative to Antarctic bottom water (AABW). Thus maximum NADW production and associated heat flux likely occurred during the early Holocene and decreased abruptly around 6500 years B.P., a finding that is largely consistent with paleonutrient studies in the deep North Atlantic. BWT changes in intermediate waters (1000-m water depth) of the subtropical gyre roughly parallel the deep BWT variations including dramatic mid-Holocene cooling of around 4°C. Joint consideration of the Mg/Ca-based BWT estimates and benthic oxygen isotopes suggests that the cooling was accompanied by a decrease in salinity at this site. Subsequently, intermediate waters warmed to modern

  4. X-RAY GROUPS OF GALAXIES IN THE AEGIS DEEP AND WIDE FIELDS

    SciTech Connect

    Erfanianfar, G.; Lerchster, M.; Nandra, K.; Connelly, J. L.; Mirkazemi, M.; Finoguenov, A.; Tanaka, M.; Laird, E.; Bielby, R.; Faber, S. M.; Kocevski, D.; Jeltema, T.; Newman, J. A.; Coil, A. L.; Brimioulle, F.; Davis, M.; McCracken, H. J.; Willmer, C.; Gerke, B.; and others

    2013-03-10

    We present the results of a search for extended X-ray sources and their corresponding galaxy groups from 800 ks Chandra coverage of the All-wavelength Extended Groth Strip International Survey (AEGIS). This yields one of the largest X-ray-selected galaxy group catalogs from a blind survey to date. The red-sequence technique and spectroscopic redshifts allow us to identify 100% of reliable sources, leading to a catalog of 52 galaxy groups. These groups span the redshift range z {approx} 0.066-1.544 and virial mass range M{sub 200} {approx} 1.34 Multiplication-Sign 10{sup 13}-1.33 Multiplication-Sign 10{sup 14} M{sub Sun }. For the 49 extended sources that lie within DEEP2 and DEEP3 Galaxy Redshift Survey coverage, we identify spectroscopic counterparts and determine velocity dispersions. We select member galaxies by applying different cuts along the line of sight or in projected spatial coordinates. A constant cut along the line of sight can cause a large scatter in scaling relations in low-mass or high-mass systems depending on the size of the cut. A velocity-dispersion-based virial radius can cause a larger overestimation of velocity dispersion in comparison to an X-ray-based virial radius for low-mass systems. There is no significant difference between these two radial cuts for more massive systems. Independent of radial cut, an overestimation of velocity dispersion can be created in the case of the existence of significant substructure and compactness in X-ray emission, which mostly occur in low-mass systems. We also present a comparison between X-ray galaxy groups and optical galaxy groups detected using the Voronoi-Delaunay method for DEEP2 data in this field.

  5. Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions

    NASA Astrophysics Data System (ADS)

    Williams, George J.; Gilland, James H.

    2009-03-01

    The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high ISP (>105 s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

  6. DEEP GALEX UV SURVEY OF THE KEPLER FIELD. I. POINT SOURCE CATALOG

    SciTech Connect

    Olmedo, Manuel; Chávez, Miguel; Bertone, Emanuele; Lloyd, James; Mamajek, Eric E.; Martin, D. Christopher; Neill, James D.

    2015-11-10

    We report observations of a deep near-ultraviolet (NUV) survey of the Kepler field made in 2012 with the Galaxy Evolution Explorer (GALEX) Complete All-Sky UV Survey Extension (CAUSE). The GALEX-CAUSE Kepler survey (GCK) covers 104 square degrees of the Kepler field and reaches a limiting magnitude of NUV ≃ 22.6 at 3σ. Analysis of the GCK survey has yielded a catalog of 669,928 NUV sources, of which 475,164 are cross-matched with stars in the Kepler Input Catalog. Approximately 327 of 451 confirmed exoplanet host stars and 2614 of 4696 candidate exoplanet host stars identified by Kepler have NUV photometry in the GCK survey. The GCK catalog should enable the identification and characterization of UV-excess stars in the Kepler field (young solar-type and low-mass stars, chromospherically active binaries, white dwarfs, horizontal branch stars, etc.), and elucidation of various astrophysics problems related to the stars and planetary systems in the Kepler field.

  7. A 6 GHz Synoptic Survey of the COSMOS Deep Field with the JVLA

    NASA Astrophysics Data System (ADS)

    Sink, Joseph R.; Myers, Steven T.

    2016-01-01

    The Cosmic Evolution Survey (COSMOS) covers two square degrees, and is observed over a large portion of the electromagnetic spectrum from X-ray to Radio. Key science goals of COSMOS include probing the evolution of galaxies, AGN, and large scale structures of the Universe. As well as constraining cosmological models and the star and structure formation history of the Universe. The wide range of frequencies and deep surveys are suitable for many astrophysical studies.Beginning in 2013, observations of the COSMOS field in C-band (4 - 8 GHz) using the JVLA have been carried out in every configuration spanning 21 months (April 2013 - Jan 2015) for a total of 13 observations. The observations are comprised of 1 hour time blocks using a technique called On-The-Fly Mosaicking (OTFM). Using OTFM we see an increased efficiency for an allotted observation block by collecting data as the array scans across the field, rather than a pointed mosaic which requires settle down time after each new pointing. Each observation consists of 2160 1-second integrations on 432 phase centers that require calibration and image processing before they can be mosaicked to create the final image of the entire COSMOS field.The primary science goal of this survey is to identify, catalog, and study the variable and transient radio sources in the COSMOS field, comparing these to other radio, optical, IR, and X-ray observations. The main class of variables we are interested in Active Galactic Nuclei.

  8. Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions

    SciTech Connect

    Williams, George J.; Gilland, James H.

    2009-03-16

    The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high I{sub SP} (>10{sup 5} s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

  9. Deep Mantle Dynamics under the North American Continent Drives Localised Flow and Stress Below the New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Forte, A. M.; Mitrovica, J. X.; Moucha, R.; Simmons, N. A.; Grand, S. P.

    2007-12-01

    The origin of intraplate earthquakes represents one of the outstanding problems in modern geophysical research, and the major earthquake sequence that struck the central Mississippi River Valley in 1811-1812, the so-called New Madrid seismic sequence, has become a principal target of this research. As Johnston and Schweig (1996) have noted, the occurrence of such large magnitude earthquakes in "stable" North American crust, far from any plate boundaries, remains an enigma. To understand the possible origin of this enigmatic seismic activity we have developed a new high resolution model of mantle flow below North America. The model is constrained by simultaneously inverting global seismic and mantle-convection data sets and it includes an explicit treatment of the positive chemical buoyancy of the continental tectosphere. Moreover, it adopts a depth dependent mantle viscosity structure which reconciles both glacial isostatic adjustment (GIA) and convection data. The flow model successfully reproduces plate velocities and observations of surface gravity and topography, including the continent-scale quasi-linear depression (after corrections for GIA and crustal heterogeneity) extending from northern Alaska to Venezuela. The predictions also match lithospheric flow and stress fields inferred from local and regional measurements of seismic anisotropy and surface deformation. We demonstrate that these signals are largely driven by viscous flow coupled to density anomalies within the lower mantle associated with the descent of the ancient Kula-Farallon plate system. More importantly, the flow calculations elucidate how these large-scale heterogeneities give rise to flow and stress patterns below the New Madrid Seismic Zone which are favourably oriented with respect the local fault geometry in this portion of the Mississippi valley.

  10. Clusters, groups, and filaments in the Chandra deep field-south up to redshift 1

    SciTech Connect

    Dehghan, S.; Johnston-Hollitt, M.

    2014-03-01

    We present a comprehensive structure detection analysis of the 0.3 deg{sup 2} area of the MUSYC-ACES field, which covers the Chandra Deep Field-South (CDFS). Using a density-based clustering algorithm on the MUSYC and ACES photometric and spectroscopic catalogs, we find 62 overdense regions up to redshifts of 1, including clusters, groups, and filaments. We also present the detection of a relatively small void of ∼10 Mpc{sup 2} at z ∼ 0.53. All structures are confirmed using the DBSCAN method, including the detection of nine structures previously reported in the literature. We present a catalog of all structures present, including their central position, mean redshift, velocity dispersions, and classification based on their morphological and spectroscopic distributions. In particular, we find 13 galaxy clusters and 6 large groups/small clusters. Comparison of these massive structures with published XMM-Newton imaging (where available) shows that 80% of these structures are associated with diffuse, soft-band (0.4-1 keV) X-ray emission, including 90% of all objects classified as clusters. The presence of soft-band X-ray emission in these massive structures (M {sub 200} ≥ 4.9 × 10{sup 13} M {sub ☉}) provides a strong independent confirmation of our methodology and classification scheme. In the closest two clusters identified (z < 0.13) high-quality optical imaging from the Deep2c field of the Garching-Bonn Deep Survey reveals the cD galaxies and demonstrates that they sit at the center of the detected X-ray emission. Nearly 60% of the clusters, groups, and filaments are detected in the known enhanced density regions of the CDFS at z ≅ 0.13, 0.52, 0.68, and 0.73. Additionally, all of the clusters, bar the most distant, are found in these overdense redshift regions. Many of the clusters and groups exhibit signs of ongoing formation seen in their velocity distributions, position within the detected cosmic web, and in one case through the presence of tidally

  11. Selected First Results from the 7 Ms Chandra Deep Field-South Survey

    NASA Astrophysics Data System (ADS)

    Brandt, W. Niel; Chandra Deep Field-South Team

    2017-01-01

    The exposure on the Chandra Deep Field-South (CDF-S) has recently been increased to 7 Ms, making it the most sensitive extragalactic X-ray survey by a wide margin. About 1050 X-ray sources have been detected, primarily distant active galactic nuclei (AGNs) and starburst/normal galaxies. The unmatched deep multiwavelength coverage for these sources allows superb follow-up investigations; e.g., 98.4% of the X-ray sources have multiwavelength counterparts, and 97.8% have spectroscopic/photometric redshifts. I will briefly describe the source catalog for the 7 Ms CDF-S and some exciting first science results. The latter will likely include (1) constraints on SMBH growth in the first galaxies as revealed by direct detection and stacking; (2) long-term variability studies of the AGNs producing most of cosmic accretion power; (3) AGN/galaxy interactions as investigated via the host properties of X-ray AGNs; and (4) measurements of the evolving X-ray binary populations of normal and starburst galaxies.

  12. The Metal Abundances across Cosmic Time (MACT) Survey. I. Optical Spectroscopy in the Subaru Deep Field

    NASA Astrophysics Data System (ADS)

    Ly, Chun; Malhotra, Sangeeta; Malkan, Matthew A.; Rigby, Jane R.; Kashikawa, Nobunari; de los Reyes, Mithi A.; Rhoads, James E.

    2016-09-01

    Deep rest-frame optical spectroscopy is critical for characterizing and understanding the physical conditions and properties of the ionized gas in galaxies. Here, we present a new spectroscopic survey called “Metal Abundances across Cosmic Time” or { M }{ A }{ C }{ T }, which will obtain rest-frame optical spectra for ˜3000 emission-line galaxies. This paper describes the optical spectroscopy that has been conducted with MMT/Hectospec and Keck/DEIMOS for ≈1900 z = 0.1-1 emission-line galaxies selected from our narrowband and intermediate-band imaging in the Subaru Deep Field. In addition, we present a sample of 164 galaxies for which we have measured the weak [O iii]λ4363 line (66 with at least 3σ detections and 98 with significant upper limits). This nebular emission line determines the gas-phase metallicity by measuring the electron temperature of the ionized gas. This paper presents the optical spectra, emission-line measurements, interstellar properties (e.g., metallicity, gas density), and stellar properties (e.g., star formation rates, stellar mass). Paper II of the { M }{ A }{ C }{ T } survey (Ly et al.) presents the first results on the stellar mass-gas metallicity relation at z ≲ 1 using the sample with [O iii]λ4363 measurements.

  13. Implementation Plan for the Deep Vadose Zone-Applied Field Research Center

    SciTech Connect

    Wellman, Dawn M.; Truex, Michael J.; Freshley, Mark D.; Gephart, Roy E.; Triplett, Mark B.; Johnson, Timothy C.

    2011-02-11

    The Long-Range Deep Vadose Zone Program Plan was published in October 2010. It summarized the U.S. Department of Energy’s (DOE’s) state-of-knowledge about the contaminant remediation challenges facing the deep vadose zone (DVZ) beneath the Central Plateau of the Hanford Site and their approach to solving those challenges. Developing an implementation plan is the next step to address the knowledge and capabilities required to solve DVZ challenges when needed. This multi-year plan (FY-11 through FY-20) identifies the short to long-term research, management, and execution plans required to solve those problems facing the DVZ-Applied Field Research Center (DVZ-AFRC). The schedule supporting implementation overlies existing activities and milestones from Hanford’s DOE-Environmental Management (EM) end-user projects. Success relies upon multi-project teams focused on coordinated subsurface projects undertaken across the DOE Complex combined with facilitated, problem-focused, research investments implemented through the DVZ-AFRC.

  14. Deep ocean sound speed characteristics passively derived from the ambient acoustic noise field

    NASA Astrophysics Data System (ADS)

    Evers, L. G.; Wapenaar, K.; Heaney, K. D.; Snellen, M.

    2017-02-01

    The propagation of acoustic waves in the ocean strongly depends on the temperature. Low frequency acoustic waves can penetrate the ocean down to depths where few in-situ measurements are available. It is therefore attractive to obtain a measure of the deep ocean temperature from acoustic waves. The latter is especially true if the ambient acoustic noise field can be used instead of deterministic transient signals. In this study the acoustic velocity, and hence the temperature, is derived in an interferometric approach from hydrophone array recordings. The arrays were separated by over 125 km, near Ascension Island in the Atlantic Ocean, at a depth of 850m. Furthermore, the dispersive characteristics of the deep ocean sound channel are resolved based on the retrieved lag times for different modes. In addition, it is shown how the resolution of the interferometric approach can be increased by cross correlating array beams rather than recordings from single-sensor pairs. The observed acoustic lag times between the arrays corresponds well to modeled values, based on full-wave modeling through best-known oceanic models.

  15. Low-flow characteristics and profiles for the Deep River in the Cape Fear River basin, North Carolina

    USGS Publications Warehouse

    Weaver, J.C.

    1997-01-01

    Drainage area and low-flow discharge profiles are presented for the Deep River. The drainage-area profile shows downstream increases in basin size. At the mouth, the drainage area for the Deep River is 1,441 square miles. Low-flow discharge profiles for the Deep River include 7Q10, 30Q2, W7Q10, and 7Q2 discharges in a continuous profile with contributions from major tributaries included.

  16. Effects of Vegetated Field Borders on Arthropods in Cotton Fields in Eastern North Carolina

    PubMed Central

    Outward, Randy; Sorenson, Clyde E.; Bradley, J. R.

    2008-01-01

    The influence, if any, of 5m wide, feral, herbaceous field borders on pest and beneficial arthropods in commercial cotton, Gossypium hirsutum (L.) (Malvales: Malvaceae), fields was measured through a variety of sampling techniques over three years. In each year, 5 fields with managed, feral vegetation borders and five fields without such borders were examined. Sampling was stratified from the field border or edge in each field in an attempt to elucidate any edge effects that might have occurred. Early season thrips populations appeared to be unaffected by the presence of a border. Pitfall sampling disclosed no differences in ground-dwelling predaceous arthropods but did detect increased populations of crickets around fields with borders. Cotton aphid (Aphis gossypii Glover) (Hemiptera: Aphididae) populations were too low during the study to adequately assess border effects. Heliothines, Heliothis virescens (F.) and Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), egg numbers and damage rates were largely unaffected by the presence or absence of a border, although in one instance egg numbers were significantly lower in fields with borders. Overall, foliage-dwelling predaceous arthropods were somewhat more abundant in fields with borders than in fields without borders. Tarnished plant bugs, Lygus lineolaris (Palisot de Beauvois) (Heteroptera: Miridae) were significantly more abundant in fields with borders, but stink bugs, Acrosternum hilare (Say), and Euschistus servus (Say) (Hemiptera: Pentatomidae) numbers appeared to be largely unaffected by border treatment. Few taxa clearly exhibited distributional edge effects relative to the presence or absence of border vegetation. Field borders like those examined in this study likely will have little impact on insect pest management in cotton under current insect management regimens. PMID:20345293

  17. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Survey Description

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Decarli, Roberto; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Ivison, R. J.; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Inami, Hanae; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; van der Wel, Arjen; van der Werf, Paul; Wagg, Jeff

    2016-12-01

    We present the rationale for and the observational description of ASPECS: the ALMA SPECtroscopic Survey in the Hubble Ultra-Deep Field (UDF), the cosmological deep field that has the deepest multi-wavelength data available. Our overarching goal is to obtain an unbiased census of molecular gas and dust continuum emission in high-redshift (z > 0.5) galaxies. The ˜1‧ region covered within the UDF was chosen to overlap with the deepest available imaging from the Hubble Space Telescope. Our ALMA observations consist of full frequency scans in band 3 (84-115 GHz) and band 6 (212-272 GHz) at approximately uniform line sensitivity ({L}{CO}\\prime ˜ 2 × 109 K km s-1 pc2), and continuum noise levels of 3.8 μJy beam-1 and 12.7 μJy beam-1, respectively. The molecular surveys cover the different rotational transitions of the CO molecule, leading to essentially full redshift coverage. The [C ii] emission line is also covered at redshifts 6.0\\lt z\\lt 8.0. We present a customized algorithm to identify line candidates in the molecular line scans and quantify our ability to recover artificial sources from our data. Based on whether multiple CO lines are detected, and whether optical spectroscopic redshifts as well as optical counterparts exist, we constrain the most likely line identification. We report 10 (11) CO line candidates in the 3 mm (1 mm) band, and our statistical analysis shows that <4 of these (in each band) are likely spurious. Less than one-third of the total CO flux in the low-J CO line candidates are from sources that are not associated with an optical/NIR counterpart. We also present continuum maps of both the band 3 and band 6 observations. The data presented here form the basis of a number of dedicated studies that are presented in subsequent papers.

  18. A subsurface study of the North Frisco City field, Monroe County, Alabama

    SciTech Connect

    Stephanson, M.A.; Cox, J.G.; Harmount, M.; Bruno, L. )

    1993-09-01

    The 1991 discovery of the North Frisco City field has led to a resurgence of industry activity in the updip Jurassic trend of Monroe County, Alabama. Six wells in the field are presently delivering 6,000 BOPD and 5 MMJCFGP out of the Frisco City Sand Member of the lower Haynesville Formation. The North Frisco City field is a combination structural-stratigraphic trap associated with Paleozoic basement topography. A geological and geophysical exploration model for Haynesville production in Alabama was developed from existing subsurface and seismic control. The model predicted hydrocarbons generated from Smackover carbonates migrated through an incompetent or absent Buckner Anhydrite seal into the overlying Frisco City Sand. The Frisco City Sand is vertically sealed by overlying Haynesville shales and anhydrites. The sedimentary strata of the Frisco City Sand Member at North Frisco City field are interpreted to have accumulated as fluvial deposits. The predominant lithology is a coarse- to fine-grained sandstone deposited in a sandy braided-stream environment. The sandy braided-stream deposits occur in stacked fining-upward sequences and have excellent reservoir character. Some of these sequences are very gravel rich and may have accumulated in braided streams associated with alluvial fans. A nonconformity exists totally between the Jurassic sediments and the underlying crystalline metamorphic basement rock. A three-dimensional (3-D) seismic survey was acquired after the discovery well was drilled. The survey covered 8 mi[sup 2] of surface area with a bin size of 82.5 ft. This provided excellent structural control across the prospective area and resulted in better drilling decisions. Also, once 3-D acquisition was complete, the field was developed at an accelerated pace, which has had a positive impact on cash flow and field economics.

  19. STAR FORMATION IN THE CHANDRA DEEP FIELD SOUTH: OBSERVATIONS CONFRONT SIMULATIONS

    SciTech Connect

    Damen, Maaike; Franx, Marijn; Foerster Schreiber, Natascha M.; Labbe, Ivo; Toft, Sune; Van Dokkum, Pieter G.; Wuyts, Stijn

    2009-11-01

    We investigate the star formation history of the universe using FIREWORKS, a multiwavelength survey of the Chandra Deep Field South. We study the evolution of the specific star formation rate (sSFR) with redshift in different mass bins from z = 0 to z approx 3. We find that the sSFR increases with redshift for all masses. The logarithmic increase of the sSFR with redshift is nearly independent of mass, but this cannot yet be verified at the lowest-mass bins at z>0.8, due to incompleteness. We convert the sSFRs to a dimensionless growth rate to facilitate a comparison with a semianalytic galaxy formation model that was implemented on the Millennium Simulation. The model predicts that the growth rates and sSFRs increase similarly with redshift for all masses, consistent with the observations. However, we find that for all masses, the inferred observed growth rates increase more rapidly with redshift than the model predictions. We discuss several possible causes for this discrepancy, ranging from field-to-field variance, conversions to SFR, and shape of the initial mass function. We find that none of these can solve the discrepancy completely. We conclude that the models need to be adapted to produce the steep increase in growth rate between redshift z = 0 and z = 1.

  20. North Atlantic Deep Water export to the Southern Ocean over the past 14 Myr: Evidence from Nd and Pb isotopes in ferromanganese crusts

    USGS Publications Warehouse

    Frank, M.; Whiteley, N.; Kasten, S.; Hein, J.R.; O'Nions, K.

    2002-01-01

    The intensity of North Atlantic Deep Water (NADW) production has been one of the most important parameters controlling the global thermohaline ocean circulation system and climate. Here we present a new approach to reconstruct the overall strength of NADW export from the North Atlantic to the Southern Ocean over the past 14 Myr applying the deep water Nd and Pb isotope composition as recorded by ferromanganese crusts and nodules. We present the first long-term Nd and Pb isotope time series for deep Southern Ocean water masses, which are compared with previously published time series for NADW from the NW Atlantic Ocean. These data suggest a continuous and strong export of NADW, or a precursor of it, into the Southern Ocean between 14 and 3 Ma. An increasing difference in Nd and Pb isotope compositions between the NW Atlantic and the Southern Ocean over the past 3 Myr gives evidence for a progressive overall reduction of NADW export since the onset of Northern Hemisphere glaciation (NHG). The Nd isotope data allow us to assess at least semiquantitatively that the amount of this reduction has been in the range between 14 and 37% depending on location.

  1. Physical oceanographic field program offshore North Carolina. Second annual progress report

    SciTech Connect

    Not Available

    1994-01-01

    The purpose of the document is to summarize data gathering efforts during the second 12 months of the 'Physical Oceanographic Field Program Offshore North Carolina' funded under Minerals Management Service contract 14-35-0001-30599. No data products as such are included in this document, but rather a summary of the data collected and the quality control results is provided. A detailed analysis of instrument and mooring performance during the field program is presented along with calibration results for all CTD data. A brief description of flora and fauna observed on and near the various moorings is included as well.

  2. Hubble Space Telescope Medium Deep Survey. 2: Deconvolution of Wide Field Camera field galaxy images in the 13 hour + 43 deg field

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Schmidtke, P. C.; Pascarelle, S. M.; Gordon, J. M.; Griffiths, R. E.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G.; Glazebrook, K.

    1994-01-01

    We present isophotal profiles of six faint field galaxies from some of the first deep images taken for the Hubble Space Telescope (HST) Medium Deep Survey (MDS). These have redshifts in the range z = 0.126 to 0.402. The images were taken with the Wide Field Camera (WFC) in `parallel mode' and deconvolved with the Lucy method using as the point-spread function nearby stars in the image stack. The WFC deconvolutions have a dynamic range of 16 to 20 dB (4 to 5 mag) and an effective resolution approximately less than 0.2 sec (FWHM). The multiorbit HST images allow us to trace the morphology, light profiles, and color gradients of faint field galaxies down to V approximately equal to 22 to 23 mag at sub-kpc resolution, since the redshift range covered is z = 0.1 to 0.4. The goals of the MDS are to study the sub-kpc scale morphology, light profiles, and color gradients for a large samole of faint field galaxies down to V approximately equal to 23 mag, and to trace the fraction of early to late-type galaxies as function of cosmic time. In this paper we study the brighter MDS galaxies in the 13 hour + 43 deg MDS field in detail, and investigate to what extent model fits with pure exponential disks or a(exp 1/4) bulges are justified at V approximately less than 22 mag. Four of the six field galaxies have light profiles that indicate (small) inner bulges following r(exp 1/4) laws down to 0.2 sec resolution, plus a dominant surrounding exponential disk with little or no color gradients. Two occur in a group at z = 0.401, two are barred spiral galaxies at z = 0.179 and z = 0.302, and two are rather subluminous (and edge-on) disk galaxies at z = 0.126 and z = 0.179. Our deep MDS images can detect galaxies down to V, I approximately less than 25 to 26 mag, and demonstrate the impressive potential of HST--even with its pre-refurbished optics--to resolve morphological details in galaxies at cosmologically significant distances (v approximately less than 23 mag). Since the median

  3. Mid-infrared Variability from the Spitzer Deep Wide-field Survey

    NASA Astrophysics Data System (ADS)

    Kozłowski, Szymon; Kochanek, Christopher S.; Stern, Daniel; Ashby, Matthew L. N.; Assef, Roberto J.; Bock, J. J.; Borys, C.; Brand, K.; Brodwin, M.; Brown, M. J. I.; Cool, R.; Cooray, A.; Croft, S.; Dey, Arjun; Eisenhardt, P. R.; Gonzalez, A.; Gorjian, V.; Griffith, R.; Grogin, N.; Ivison, R.; Jacob, J.; Jannuzi, B. T.; Mainzer, A.; Moustakas, L.; Röttgering, H.; Seymour, N.; Smith, H. A.; Stanford, S. A.; Stauffer, J. R.; Sullivan, I. S.; van Breugel, W.; Willner, S. P.; Wright, E. L.

    2010-06-01

    We use the multi-epoch, mid-infrared Spitzer Deep Wide-Field Survey to investigate the variability of objects in 8.1 deg2 of the NOAO Deep Wide Field Survey Boötes field. We perform a Difference Image Analysis of the four available epochs between 2004 and 2008, focusing on the deeper 3.6 and 4.5 μm bands. Out of 474, 179 analyzed sources, 1.1% meet our standard variability selection criteria that the two light curves are strongly correlated (r>0.8) and that their joint variance (σ12) exceeds that for all sources with the same magnitude by 2σ. We then examine the mid-IR colors of the variable sources and match them with X-ray sources from the XBoötes survey, radio catalogs, 24 μm selected active galactic nucleus (AGN) candidates, and spectroscopically identified AGNs from the AGN and Galaxy Evolution Survey (AGES). Based on their mid-IR colors, most of the variable sources are AGNs (76%), with smaller contributions from stars (11%), galaxies (6%), and unclassified objects, although most of the stellar, galaxy, and unclassified sources are false positives. For our standard selection criteria, 11%-12% of the mid-IR counterparts to X-ray sources, 24 μm AGN candidates, and spectroscopically identified AGNs show variability. The exact fractions depend on both the search depth and the selection criteria. For example, 12% of the 1131 known z>1 AGNs in the field and 14%-17% of the known AGNs with well-measured fluxes in all four Infrared Array Camera bands meet our standard selection criteria. The mid-IR AGN variability can be well described by a single power-law structure function with an index of γ ≈ 0.5 at both 3.6 and 4.5 μm, and an amplitude of S 0 ~= 0.1 mag on rest-frame timescales of 2 yr. The variability amplitude is higher for shorter rest-frame wavelengths and lower luminosities.

  4. Innovative in-situ determination of unsaturated hydraulic properties in deep loess sediments in north-west Bulgaria

    SciTech Connect

    Mallants, Dirk; Perko, Janez; Antonov, Dimitar; Karastanev, Doncho

    2007-07-01

    In the framework of selecting a suitable site for final disposal of low- and intermediate level short-lived radioactive waste (LILW-SL) in Bulgaria, site characterization is ongoing at the Marichin Valog site, North-West Bulgaria. The site is characterized by a complex sequence of loess, clayey gravel, and clay layers, of which the first 30-40 m are unsaturated. Proper knowledge about unsaturated water flow and concomitant radionuclide transport is key input to safety assessment calculations. Constant-head infiltrometer tests were carried out at several meters below ground surface to determine the unsaturated hydraulic properties of silty loess, clayey loess, and clayey gravel layers. Individual infiltrometers were equipped with 0.5-m-long filter sections; the shallowest filter was from 2 to 2.5 m depth, whereas the deepest was from 9.5 to 10 m depth. Infiltration tests provided data on cumulative infiltration and progression of the wetting front in the initially unsaturated sediments surrounding the infiltrometer. A cylindrical time-domain reflectometry TRIME probe was used to measure water content variations with time during progression of the wetting front. Access tubes for the TRIME probe were installed at 0.3 to 0.5 m from the infiltrometer tubes. By means of an inverse optimization routine implemented in the finite element code HYDRUS-2D, field-scale soil hydraulic parameters were derived for all layers. Results show a great consistency in the optimized parameter values, although the test sites were several meters apart. Apparently the size of the affected volume of soil was large enough to reduce the effect of spatial variability and to produce average field-scale hydraulic parameters that are relevant for large-scale predictions of flow patterns and radionuclide migration pathways. (authors)

  5. Wave-current interactions in deep water conditions: field measurements and analyses

    NASA Astrophysics Data System (ADS)

    Rougier, Gilles; Rey, Vincent; Molcard, Anne

    2015-04-01

    The study of wave - current interaction has drawn interest in oceanography, ocean engineering, maritime navigation and for tides or waves power device design. In the context of the hydrodynamics study along the French Mediterranean coast, a current profiler was deployed near Toulon at the south of the "Port Cros" island. This coastal zone is characterized by a steep slope, the water depth varying from tens meters to several thousand meters over few kilometers from the coast. An ambient current, the "Northern Current", coming from the Ligurian sea (area of Genoa, Italy) and following the coast up to Toulon, is present all over the year. Its mean surface velocity is of about 0.30 m/s, its flow rate of about 1.5 Sv. The region is exposed to two dominating winds: the Mistral, coming from North-West, and Eastern winds. Both generate swell and/or wind waves in either following or opposing current conditions with respect to the Northern Current. A current profiler equipped with a wave tracking system (ACPD workhorse from RDI) was deployed from July to October 2014 in deep water conditions (depth of about 500m). The mooring system allowed the ADCP to measure the current profile from the sea surface down to 25m depth, which corresponds more or less to the depth of influence of waves of periods up to 10s. The collected data include energetic wave conditions in either following or opposing current conditions. The current intensity and its vertical profiles have shown a significant temporal variability according to the meteorological conditions. Effects of the wave conditions on the current properties are discussed. ACKNOWLEDGEMENTS This work was supported by the program BOMBYX and the ANR grant No ANR-13-ASTR-0007.

  6. Database compilation for the geologic map of the San Francisco volcanic field, north-central Arizona

    USGS Publications Warehouse

    Bard, Joseph A.; Ramsey, David W.; Wolfe, Edward W.; Ulrich, George E.; Newhall, Christopher G.; Moore, Richard B.; Bailey, Norman G.; Holm, Richard F.

    2016-01-08

    The orignial geologic maps were prepared under the Geothermal Research Program of the U.S. Geological Survey as a basis for interpreting the history of magmatic activity in the volcanic field. The San Francisco field, which is largely Pleistocene in age, is in northern Arizona, just north of the broad transition zone between the Colorado Plateau and the Basin and Range province. It is one of several dominantly basaltic volcanic fields of the late Cenozoic age situated near the margin of the Colorado Plateau. The volcanic field contains rocks ranging in composition from basalt to rhyolite—the products of eruption through Precambrian basement rocks and approximately a kilometer of overlying, nearly horizontal, Paleozoic and Mesozoic sedimentary rocks. About 500 km3 of erupted rocks cover about 5,000 km2 of predominantly Permian and locally preserved Triassic sedimentary rocks that form the erosionally stripped surface of the Colorado Plateau in Northern Arizona.

  7. Estimates of deep percolation beneath native vegetation, irrigated fields, and the Amargosa-River Channel, Amargosa Desert, Nye County, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Prudic, David E.; Laczniak, Randell J.; Akstin, Katherine C.; Boyd, Robert A.; Henkelman, Katherine K.

    2003-01-01

    The presence and approximate rates of deep percolation beneath areas of native vegetation, irrigated fields, and the Amargosa-River channel in the Amargosa Desert of southern Nevada were evaluated using the chloride mass-balance method and inferred downward velocities of chloride and nitrate peaks. Estimates of deep-percolation rates in the Amargosa Desert are needed for the analysis of regional ground-water flow and transport. An understanding of regional flow patterns is important because ground water originating on the Nevada Test Site may pass through the area before discharging from springs at lower elevations in the Amargosa Desert and in Death Valley. Nine boreholes 10 to 16 meters deep were cored nearly continuously using a hollow-stem auger designed for gravelly sediments. Two boreholes were drilled in each of three irrigated fields in the Amargosa-Farms area, two in the Amargosa-River channel, and one in an undisturbed area of native vegetation. Data from previously cored boreholes beneath undisturbed, native vegetation were compared with the new data to further assess deep percolation under current climatic conditions and provide information on spatial variability. The profiles beneath native vegetation were characterized by large amounts of accumulated chloride just below the root zone with almost no further accumulation at greater depths. This pattern is typical of profiles beneath interfluvial areas in arid alluvial basins of the southwestern United States, where salts have been accumulating since the end of the Pleistocene. The profiles beneath irrigated fields and the Amargosa-River channel contained more than twice the volume of water compared to profiles beneath native vegetation, consistent with active deep percolation beneath these sites. Chloride profiles beneath two older fields (cultivated since the 1960?s) as well as the upstream Amargosa-River site were indicative of long-term, quasi-steady deep percolation. Chloride profiles beneath the

  8. Alaska North Slope National Energy Strategy initiative: Analysis of five undeveloped fields

    SciTech Connect

    Thomas, C.P.; Allaire, R.B.; Doughty, T.C.; Faulder, D.D.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1993-05-01

    The US Department of Energy was directed in the National Energy Strategy to establish a federal interagency task force to identify specific technical and regulatory barriers to the development of five undeveloped North Slope Alaska fields and make recommendations for their resolution. The five fields are West Sak, Point Thomson, Gwydyr Bay, Seal Island/Northstar, and Sandpiper Island. Analysis of environmental, regulatory, technical, and economic information, and data relating to the development potential of the five fields leads to the following conclusions: Development of the five fields would result in an estimated total of 1,055 million barrels of oil and 4.4 trillion cubic feet of natural gas and total investment of $9.4 billion in 1992 dollars. It appears that all five of the fields will remain economically marginal developments unless there is significant improvement in world oil prices. Costs of regulatory compliance and mitigation, and costs to reduce or maintain environmental impacts at acceptable levels influence project investments and operating costs and must be considered in the development decision making process. The development of three of the fields (West Sak, Point Thomson, and Gwydyr Bay) that are marginally feasible would have an impact on North Slope production over the period from about 2000 to 2014 but cannot replace the decline in Prudhoe Bay Unit production or maintain the operation of the Trans-Alaska Pipeline System (TAPS) beyond about 2014 with the assumption that the TAPS will shut down when production declines to the range of 400 to 200 thousand barrels of oil/day. Recoverable reserves left in the ground in the currently producing fields and soon to be developed fields, Niakuk and Point McIntyre, would range from 1 billion to 500 million barrels of oil corresponding to the time period of 2008 to 2014 based on the TAPS shutdown assumption.

  9. Impact of explosive cyclones on the deep ocean in the North Pacific using an eddy-resolving ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Kuwano-Yoshida, Akira; Sasaki, Hideharu; Sasai, Yoshikazu

    2017-01-01

    The oceanic response to explosive cyclones over the North Pacific in winter is investigated using eddy-resolving 34 year hindcast simulation of a quasi-global ocean. Its response appears as a horizontal divergence of the surface layer above 60 m depth and upward flow that reaches 2000 m depth. A case study of a typical explosive cyclone using hourly outputs from January 2011 shows that the explosive cyclone induces horizontal divergence within the surface-mixed layer and upward flow that reaches 6000 m depths. The flow causes oceanic internal waves and temperature cooling because of the vertical advection in the deep ocean. The interannual variability of explosive cyclone activity in January affects the amplitude of the vertical motion and the daily-scale temperature variations in the deep ocean.

  10. Distinct protistan assemblages characterize the euphotic zone and deep sea (2500 m) of the western North Atlantic (Sargasso Sea and Gulf Stream).

    PubMed

    Countway, Peter D; Gast, Rebecca J; Dennett, Mark R; Savai, Pratik; Rose, Julie M; Caron, David A

    2007-05-01

    Protistan diversity was characterized at three locations in the western North Atlantic (Sargasso Sea and Gulf Stream) by sequencing 18S rRNA genes in samples from euphotic (< or = 125 m) and bathypelagic depths (2500 m). A total of 923 partial-length protistan sequences were analysed, revealing 324 distinct operational taxonomic units (OTUs) determined by an automated OTU-calling program set to 95% sequence similarity. Most OTUs were comprised of only one or two sequences suggesting a large but rare pool of protistan diversity. Many OTUs from both depth strata were associated with recently described novel alveolate and stramenopile lineages while many OTUs from the bathypelagic were affiliated with Acantharea, Polycystinea and Euglenozoa and were not observed in euphotic zone libraries. Protistan assemblages from the euphotic zone and the deep sea were largely composed of distinct OTUs; only 28 of the 324 protistan OTUs were detected in both shallow and deep sea clone libraries. The diversity of protistan assemblages in the deep sea was distinctly lower than the diversity of euphotic zone assemblages. Protistan assemblages from the Gulf Stream were the most diverse for either depth strata. Overall, protistan assemblages from different stations but comparable depths were more similar than the assemblages from different depths at the same station. These data suggest that particular groups of protistan OTUs formed distinct 'shallow' and 'deep-sea' assemblages across widely spaced oceanic locales.

  11. Mechanical stratigraphy of deep-water sandstones: insights from a multisciplinary field and laboratory study

    NASA Astrophysics Data System (ADS)

    Agosta, Fabrizio; di Celma, Claudio; Tondi, Emanuele; Corradetti, Amerigo; Cantalamessa, Gino

    2010-05-01

    Turbidite sandstones found in deep-water fold-and-thrust belts are increasingly exploited as hydrocarbon reservoirs. Within these rocks, the fluid flow is profoundly affected by the complex interaction between primary sedimentological and stratigraphic attributes (i.e, facies, layering, reservoir quality, stacking patterns, bed connectivity and lateral extent) and fracture characteristics (i.e., length, spacing, distribution, orientation, connectivity). Unfortunately, most of these features are at, or below, the resolution of conventional seismic datasets and, for this reason, their identification and localization represent one of the fundamental challenges facing exploration, appraisal and production of the sandstone reservoirs. In this respect, whereas considerable effort has been afforded to a characterization of the sedimentological and stratigraphic aspects of sandstones, detailed analysis of fractures in this type of successions has received significantly less attention. In this work, we combine field and laboratory analyses to assess the possible mechanical control exerted by the rock properties (grain size, intergranualr porosity, and Young modulus), as well as the influence of bed thickness, on joint density in turbidite sandstones. Joints are mode-I fractures occurring parallel to the greatest principle stress axis, which solve opening displacement and do not show evidence of shearing and enhance the values of total porosity forming preferential hydraulic conduits for fluid flow. Within layered rocks, commonly, joints form perpendicular to bedding due to overburden or exhumation. The empirical relation between joint spacing and bed thickness, documented in the field by many authors, has been mechanically related to the stress perturbation taking place around joints during their formation. Furthermore, close correlations between joint density and rock properties have been already established. In this present contribution, we focus on the bed

  12. Localization and Classification of Paddy Field Pests using a Saliency Map and Deep Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Liu, Ziyi; Gao, Junfeng; Yang, Guoguo; Zhang, Huan; He, Yong

    2016-02-01

    We present a pipeline for the visual localization and classification of agricultural pest insects by computing a saliency map and applying deep convolutional neural network (DCNN) learning. First, we used a global contrast region-based approach to compute a saliency map for localizing pest insect objects. Bounding squares containing targets were then extracted, resized to a fixed size, and used to construct a large standard database called Pest ID. This database was then utilized for self-learning of local image features which were, in turn, used for classification by DCNN. DCNN learning optimized the critical parameters, including size, number and convolutional stride of local receptive fields, dropout ratio and the final loss function. To demonstrate the practical utility of using DCNN, we explored different architectures by shrinking depth and width, and found effective sizes that can act as alternatives for practical applications. On the test set of paddy field images, our architectures achieved a mean Accuracy Precision (mAP) of 0.951, a significant improvement over previous methods.

  13. Predicting the effects of deep brain stimulation with diffusion tensor based electric field models.

    PubMed

    Butson, Christopher R; Cooper, Scott E; Henderson, Jaimie M; McIntyre, Cameron C

    2006-01-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of movement disorders, and has shown promising results for the treatment of a wide range of other neurological disorders. However, little is known about the mechanism of action of DBS or the volume of brain tissue affected by stimulation. We have developed methods that use anatomical and diffusion tensor MRI (DTI) data to predict the volume of tissue activated (VTA) during DBS. We co-register the imaging data with detailed finite element models of the brain and stimulating electrode to enable anatomically and electrically accurate predictions of the spread of stimulation. One critical component of the model is the DTI tensor field that is used to represent the 3-dimensionally anisotropic and inhomogeneous tissue conductivity. With this system we are able to fuse structural and functional information to study a relevant clinical problem: DBS of the subthalamic nucleus for the treatment of Parkinsons disease (PD). Our results show that inclusion of the tensor field in our model caused significant differences in the size and shape of the VTA when compared to a homogeneous, isotropic tissue volume. The magnitude of these differences was proportional to the stimulation voltage. Our model predictions are validated by comparing spread of predicted activation to observed effects of oculomotor nerve stimulation in a PD patient. In turn, the 3D tissue electrical properties of the brain play an important role in regulating the spread of neural activation generated by DBS.

  14. Deep-ultraviolet-light-driven reversible doping of WS2 field-effect transistors.

    PubMed

    Iqbal, Muhammad Waqas; Iqbal, Muhammad Zahir; Khan, Muhammad Farooq; Shehzad, Muhammad Arslan; Seo, Yongho; Eom, Jonghwa

    2015-01-14

    Improvement of the electrical and photoelectric characteristics is essential to achieve an advanced performance of field-effect transistors and optoelectronic devices. Here we have developed a doping technique to drastically improve electrical and photoelectric characteristics of single-layered, bi-layered and multi-layered WS2 field-effect transistors (FET). After illuminating with deep ultraviolet (DUV) light in a nitrogen environment, WS2 FET shows an enhanced charge carrier density, mobility and photocurrent response. The threshold voltage of WS2 FET shifted toward the negative gate voltage, and the positions of E and A1g peaks in Raman spectra shifted toward lower wavenumbers, indicating the n-type doping effect of the WS2 FET. The doping effect is reversible. The pristine characteristics of WS2 FET can be restored by DUV light illumination in an oxygen environment. The DUV-driven doping technique in a gas environment provides a very stable, effective, easily applicable way to enhance the performance of WS2 FET.

  15. The sub-mJy radio population in the Extended Chandra Deep Field South

    NASA Astrophysics Data System (ADS)

    Bonzini, M.

    2014-06-01

    Deep radio observations provide a dust unbiased view of both black hole (BH) and star formation (SF) activity and therefore represent a powerful tool to investigate their evolution and their possible mutual influence across cosmic time. Radio astronomy is therefore becoming increasingly important for galaxy evolution studies thanks also to the many new radio facilities under construction or being planned. To maximise the potentiality of these new instruments it is crucial to make predictions on what they will observe and to see how best to complement the radio data with multi-wavelength information. These are the motivations of my Thesis in which I studied a sample of 900 sources detected in one of the deepest radio surveys ever made. The observations have been performed at 1.4 GHz with the Very Large Array on the Extended Chandra Deep Field South. I developed a multi-wavelength method to identify the optical-infrared counterparts of the radio sources and to classify them as radio-loud active galactic nuclei (RL AGNs), radio-quiet (RQ) AGNs, and star forming galaxies (SFGs). I was able for the first time to quantify the relative contribution of these different classes of sources down to a radio flux density limit of ∼30 μJy. I characterized the host galaxy properties (stellar masses, optical colors, and morphology) of the radio sources; RQ AGN hosts and SFGs have similar properties with disk morphology and blue colors while radio-loud AGN hosts are more massive, redder and mostly ellipticals. This suggests that the RQ and RL activity occurs at two different evolutionary stages of the BH-host galaxy co-evolution. The RQ phase occurs at earlier times when the galaxy is still gas rich and actively forming stars while the radio activity of the BH appears when the galaxy has already formed the bulk of its stellar population, the gas supply is lower, and the SF is considerably reduced. I quantified the star formation rate (SFR) of the radio sources using two

  16. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

    2006-04-26

    The principal research effort for the first half of Year 3 of the project has been resource assessment. Emphasis has been on estimating the total volume of hydrocarbons generated and the potential amount of this resource that is classified as deep (>15,000 ft) gas in the North Louisiana Salt Basin, the Mississippi Interior Salt Basin, the Manila Subbasin and the Conecuh Subbasin. The amount of this resource that has been expelled, migrated and entrapped is also the focus of the first half of Year 3 of this study.

  17. Plasma Jet Motion Across the Geomagnetic Field in the ``North Star'' Active Geophysical Experiment

    NASA Astrophysics Data System (ADS)

    Gavrilov, B. G.; Zetzer, J. I.; Podgorny, I. M.; Sobyanin, D. B.; Meng, C.-I.; Erlandson, R. E.; Stenbaek-Nielsen, H. C.; Pfaff, R. F.; Lynch, K. A.

    2003-01-01

    The active geophysical rocket experiment ``North Star'' was carried out in the auroral ionosphere on January 22, 1999, at the Poker Flat Research Range (Alaska, USA) using the American research rocket Black Brant XII with explosive plasma generators on board. Separable modules with scientific equipment were located at distances of from 170 to 1595 m from the plasma source. The experiment continued the series of the Russian-American joint experiments started by the ``Fluxus'' experiment in 1997. Two injections of aluminum plasma across the magnetic field were conducted in the ``North Star'' experiment. They were different, since in the first injection a neutral gas cloud was formed in order to increase the plasma ionization due to the interaction of neutrals of the jet and cloud. The first and second injections were conducted at heights of 360 and 280 km, respectively. The measurements have shown that the charged particle density was two orders of magnitude higher in the experiment with the gas release. The magnetic field in the first injection was completely expelled by the dense plasma of the jet. The displacement of the magnetic field in the second injection was negligible. The plasma jet velocity in both injections decreased gradually due to its interaction with the geomagnetic field. One of the most interesting results of the experiment was the conservation of high plasma density during the propagation of the divergent jet to considerable distances. This fact can be explained by the action of the critical ionization velocity mechanism.

  18. Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska

    SciTech Connect

    Glenn, R.K.; Allen, W.W.

    1992-12-01

    The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

  19. The Impact of Devegetated Dune Fields on North American Climate During the Late Medieval Climate Anomaly

    NASA Technical Reports Server (NTRS)

    Cook, B. I.; Seager, R.; Miller, R. L.

    2011-01-01

    During the Medieval Climate Anomaly, North America experienced severe droughts and widespread mobilization of dune fields that persisted for decades. We use an atmosphere general circulation model, forced by a tropical Pacific sea surface temperature reconstruction and changes in the land surface consistent with estimates of dune mobilization (conceptualized as partial devegetation), to investigate whether the devegetation could have exacerbated the medieval droughts. Presence of devegetated dunes in the model significantly increases surface temperatures, but has little impact on precipitation or drought severity, as defined by either the Palmer Drought Severity Index or the ratio of precipitation to potential evapotranspiration. Results are similar to recent studies of the 1930s Dust Bowl drought, suggesting bare soil associated with the dunes, in and of itself, is not sufficient to amplify droughts over North America.

  20. The impact of devegetated dune fields on North American climate during the late Medieval Climate Anomaly

    NASA Astrophysics Data System (ADS)

    Cook, B. I.; Seager, R.; Miller, R. L.

    2011-07-01

    During the Medieval Climate Anomaly, North America experienced severe droughts and widespread mobilization of dune fields that persisted for decades. We use an atmosphere general circulation model, forced by a tropical Pacific sea surface temperature reconstruction and changes in the land surface consistent with estimates of dune mobilization (conceptualized as partial devegetation), to investigate whether the devegetation could have exacerbated the medieval droughts. Presence of devegetated dunes in the model significantly increases surface temperatures, but has little impact on precipitation or drought severity, as defined by either the Palmer Drought Severity Index or the ratio of precipitation to potential evapotranspiration. Results are similar to recent studies of the 1930s Dust Bowl drought, suggesting bare soil associated with the dunes, in and of itself, is not sufficient to amplify droughts over North America.

  1. Study on the time difference of solar polar field reversal between the north and south hemisphere

    NASA Astrophysics Data System (ADS)

    Shukuya, D.; Kusano, K.

    2013-12-01

    Dynamo is a mechanism whereby the kinetic energy of plasma is converted to the magnetic energy. This mechanism works to generate and maintain the solar and stellar magnetic field. Since the sun is only a star whose magnetic field can be directly observed, the understanding of solar dynamo can provide clues to clarify dynamo mechanisms. On the other hand, because solar activities, which are caused by solar dynamo, can influence the Earth's climate, solar variability is an important issue also to understand long-term evolution of the Earth's climate. It is widely known that the polarity of the solar magnetic fields on the north and south poles periodically reverses at every sunspot maxima. It is also known that the reversal at one pole is followed by that on the other pole. The time difference of magnetic field reversal between the poles was first noted by Babcock (1959) from the very first observation of polar field. Recently, it was confirmed by detailed observations with the HINODE satellite (Shiota et al. 2012). Svalgaard and Kamide (2013) indicated that there is a relationship between the time difference of the polarity reversal and the hemispheric asymmetry of the sunspot activity. However, the mechanisms for the hemispheric asymmetry are still open to be revealed. In this paper, we study the asymmetric feature of the solar dynamo based on the flux transport dynamo model (Chatterjee et al. 2004) to explain the time difference of magnetic polarity reversal between the north and south poles. In order to calculate long-term variations of solar activities, we use the mean field kinematic dynamo model, which is derived from magnetohydrodynamics (MHD) equation through the mean field and other approximations. We carried out the mean field dynamo simulations using the updated SURYA code which was developed originally by Choudhuri and his collaborators (2004). We decomposed the symmetric and asymmetric components of magnetic field, which correspond respectively to the

  2. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    NASA Astrophysics Data System (ADS)

    Ewing, Ryan C.; Peyret, Aymeric-Pierre B.; Kocurek, Gary; Bourke, Mary

    2010-08-01

    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that the pattern is complex, representing two constructional generations of dunes. The oldest and best-organized generation forms the primary crestlines and is transverse to circumpolar easterly winds. Gross bed form-normal analysis of the younger pattern of crestlines indicates that it emerged with both circumpolar easterly winds and NE winds and is reworking the older pattern. Mapping of secondary flow fields over the dunes indicates that the most recent transporting winds were from the NE. The younger pattern appears to represent an influx of sediment to the dune field associated with the development of the Olympia Cavi reentrant, with NE katabatic winds channeling through the reentrant. A model of the pattern reformation based upon the reconstructed primary winds and resulting secondary flow fields shows that the development of the secondary pattern is controlled by the boundary condition of the older dune topography.

  3. ALMA Deep Field in SSA22: Source Catalog and Number Counts

    NASA Astrophysics Data System (ADS)

    Umehata, Hideki; Tamura, Yoichi; Kohno, Kotaro; Ivison, R. J.; Smail, Ian; Hatsukade, Bunyo; Nakanishi, Kouichiro; Kato, Yuta; Ikarashi, Soh; Matsuda, Yuichi; Fujimoto, Seiji; Iono, Daisuke; Lee, Minju; Steidel, Charles C.; Saito, Tomoki; Alexander, D. M.; Yun, Min S.; Kubo, Mariko

    2017-01-01

    We present results from a deep 2‧ × 3‧ (comoving scale of 3.7 Mpc × 5.5 Mpc at z = 3) survey at 1.1 mm, taken with the Atacama Large Millimeter/submillimeter Array (ALMA) in the SSA22 field. We observe the core region of a z = 3.09 protocluster, achieving a typical rms sensitivity of 60 μJy beam‑1 at a spatial resolution of 0.″7. We detect 18 robust ALMA sources at a signal-to-noise ratio (S/N) > 5. Comparison between the ALMA map and a 1.1 mm map, taken with the AzTEC camera on the Atacama Submillimeter Telescope Experiment (ASTE), indicates that three submillimeter sources discovered by the AzTEC/ASTE survey are resolved into eight individual submillimeter galaxies (SMGs) by ALMA. At least 10 of our 18 ALMA SMGs have spectroscopic redshifts of z ≃ 3.09, placing them in the protocluster. This shows that a number of dusty starburst galaxies are forming simultaneously in the core of the protocluster. The nine brightest ALMA SMGs with S/N > 10 have a median intrinsic angular size of 0\\buildrel{\\prime\\prime}\\over{.} {32}-0.06+0.13 ({2.4}-0.4+1.0 physical kpc at z = 3.09), which is consistent with previous size measurements of SMGs in other fields. As expected, the source counts show a possible excess compared to the counts in the general fields at S1.1mm ≥ 1.0 mJy, due to the protocluster. Our contiguous mm mapping highlights the importance of large-scale structures on the formation of dusty starburst galaxies.

  4. Improved Force Field Model for the Deep Eutectic Solvent Ethaline: Reliable Physicochemical Properties.

    PubMed

    Ferreira, Elisabete S C; Voroshylova, Iuliia V; Pereira, Carlos M; D S Cordeiro, M Natália

    2016-09-13

    In this work, we combined various parameters found in the literature for the choline cation, chloride anion, and ethylene glycol to set up force field models (FFMs) for a eutectic mixture, namely, ethaline (1:2 choline chloride/ethylene glycol (ChCl:2EG)). The validation of these models was carried out on the basis of physical and chemical properties, such as the density, expansion coefficient, enthalpy of vaporization, self-diffusion coefficients, isothermal compressibility, surface tension, and shear viscosity. After the initial evaluation of the FFMs, a refinement was found necessary and accomplished by taking into account polarization effects in a mean-field manner. This was achieved by rescaling the electrostatic charges of the ions based on partial charges derived from ab initio molecular dynamics (MD) simulations of the bulk system. Classical all-atom MD simulations performed over a large range of temperatures (298.15-373.15 K) using the refined FFMs clearly showed improved results, allowing a better prediction of experimental properties. Specific structural properties (radial distribution functions and hydrogen bonding) were then analyzed in order to support the adequacy of the proposed refinement. The final selected FFM leads to excellent agreement between simulated and experimental data on dynamic and structural properties. Moreover, compared to the previously reported force field model (Perkins, S. L.; Painter, P.; Colina, C. M. Experimental and Computational Studies of Choline Chloride-Based Deep Eutectic Solvents. J. Chem. Eng. Data 2014, 59, 3652-3662), a 10% improvement in simulated transport properties, i.e., self-diffusion coefficients, was achieved. The isothermal compressibility, surface tension, and shear viscosity for ethaline are accessed in MD simulations for the first time.

  5. A Systematic Survey of Protoclusters at z ~ 3-6 in the CFHTLS Deep Fields

    NASA Astrophysics Data System (ADS)

    Toshikawa, Jun; Kashikawa, Nobunari; Overzier, Roderik; Malkan, Matthew A.; Furusawa, Hisanori; Ishikawa, Shogo; Onoue, Masafusa; Ota, Kazuaki; Tanaka, Masayuki; Niino, Yuu; Uchiyama, Hisakazu

    2016-08-01

    We present the discovery of three protoclusters at z ˜ 3-4 with spectroscopic confirmation in the Canada-France-Hawaii Telescope Legacy Survey Deep Fields. In these fields, we investigate the large-scale projected sky distribution of z ˜ 3-6 Lyman-break galaxies and identify 21 protocluster candidates from regions that are overdense at more than 4σ overdensity significance. Based on cosmological simulations, it is expected that more than 76% of these candidates will evolve into a galaxy cluster of at least a halo mass of 1014 M ⊙ at z = 0. We perform follow-up spectroscopy for eight of the candidates using Subaru/FOCAS, Keck II/DEIMOS, and Gemini-N/GMOS. In total we target 462 dropout candidates and obtain 138 spectroscopic redshifts. We confirm three real protoclusters at z = 3-4 with more than five members spectroscopically identified and find one to be an incidental overdense region by mere chance alignment. The other four candidate regions at z ˜ 5-6 require more spectroscopic follow-up in order to be conclusive. A z = 3.67 protocluster, which has 11 spectroscopically confirmed members, shows a remarkable core-like structure composed of a central small region (<0.5 physical Mpc) and an outskirts region (˜1.0 physical Mpc). The Lyα equivalent widths of members of the protocluster are significantly smaller than those of field galaxies at the same redshift, while there is no difference in the UV luminosity distributions. These results imply that some environmental effects start operating as early as at z ˜ 4 along with the growth of the protocluster structure. This study provides an important benchmark for our analysis of protoclusters in the upcoming Subaru/HSC imaging survey and its spectroscopic follow-up with the Subaru/PFS that will detect thousands of protoclusters up to z ˜ 6.

  6. Deep VLT/HAWKI and Keck/MOSFIRE K-band imaging of the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Brammer, Gabriel; Marchesini, Danilo

    2015-08-01

    We will present recently-obtained deep K-band imaging of the first four Frontier Fields, Abell 2744 and MACS 0416 with the VLT/HAWK-I instrument and MACS-0717 and MACS-1149 with Keck/MOSFIRE. The final HAWK-I mosaics reach a depth of K~26 AB (5-sigma) with superb ground-based image quality ~0.4" FWHM across the field; shorter integrations with MOSFIRE reach K~25 AB and with FWHM~0.5". The 7'x7' HAWKI field of view provides ideal simultaneous coverage of both the HST cluster and parallel fields (with additional area also covered by Subaru optical and IRAC imaging), and the K band at 2.2 µm crucially fills the gap between the deep space-based imaging bandpasses observed with HST and Spitzer. The addition of the 2.2 µm imaging and photometry greatly improves the constraints on both the photometric redshifts and the stellar-population properties of galaxies extending well below the characteristic stellar mass across most of the age of the universe, down to, and including, the redshifts of the targeted galaxy clusters. The reduced, aligned mosaics of all the K-band fields are made freely available to the Frontier Fields community; identical deep HAWK-I observations of the final two Frontier Fields (Abell 370 and Abell S1063) have been awarded and will be obtained in the upcoming ESO observing periods.

  7. North Atlantic Climate Changes During the Last 100 ky as Reflected in Deep Sea Ostracod Assemblages at IODP Site U1314

    NASA Astrophysics Data System (ADS)

    Alvarez Zarikian, C. A.; Stepanova, A. Y.

    2006-12-01

    Changes in the North Atlantic climate have influenced surface water productivity and deep-sea bottom water circulation patterns, thus affecting deep sea benthic assemblages. This study examines the ostracod assemblage composition over the last 100 ky in sediments drilled at IODP Site U1314 to establish the effects of climate change from the Late Pleistocene to Holocene. Site U1314 is located on the southern Gardar Drift at a water depth of 2820 m. At present, the location of the drill site lies under the influence of the lower portion of the relatively warm, highly saline and well oxygenated North Atlantic Deep Water (NADW), whereas during glacial times this water mass may have been replaced by the northward flowing nutrient-rich and low oxygen Southern Ocean Water [1]. The age model for the studied interval is based on an existent benthic oxygen isotope-based stratigraphy from Site 983 ODP Leg 162 in the northern Gardar Drift [2] and derived from the correlation of reflectance and magnetic susceptibility data from ODP Site 983 and IODP Site U1314 [3]. High amplitude fluctuations in ostracod abundance and diversity were observed at Site U1314. Krithe is the dominant genus in both glacial and interglacial assemblages (40-90 %), but exhibits slightly lower abundance during glacial intervals. Other common genera, such as Oxycythereis and Echinocythereis, display their highest relative abundances during interglacial times, whereas Rockallia and Cytheropteron seem to have their highest relative abundances during glacial and cooling conditions. Besides dominant taxa typical for colder climate, some other glacial-indicative genera (Nannocythere, ?Rhombobythere, Pseudocythere and Polycope) are usually present, although their relative abundances are low. The transition from Marine Isotope Stage 3 (MIS 3) to MIS 2 and the subsequent deglaciation are characterized by the highest ostracod abundance and diversity, although most of the species present exhibit very low abundance

  8. Monitoring Endeavour vent field deep-sea ecosystem dynamics through NEPTUNE Canada seafloor observatory

    NASA Astrophysics Data System (ADS)

    Matabos, M.; NC Endeavour Science Team

    2010-12-01

    Mid-ocean ridges are dynamic systems where the complex linkages between geological, biological, chemical, and physical processes are not yet well understood. Indeed, the poor accessibility to the marine environment has greatly limited our understanding of deep-sea ecosystems. Undersea cabled observatories offer the power and bandwidth required to conduct long-term and high-resolution time-series observations of the seafloor. Investigations of mid-ocean ridge hydrothermal ecosystem require interdisciplinary studies to better understand the dynamics of vent communities and the physico-chemical forces that influence them. NEPTUNE Canada (NC) regional observatory is located in the Northeast Pacific, off Vancouver Island (BC, Canada), and spans ecological environments from the beach to the abyss. In September-October 2010, NC will be instrumenting its 5th node, including deployment of a multi-disciplinary suite of instruments in two vent fields on the Endeavour Segment of the Juan de Fuca Ridge. These include a digital camera, an imaging sonar for vent plumes and flow characteristics (i.e. COVIS), temperature resistivity probes, a water sampler and seismometers. In 2011, the TEMPO-mini, a new custom-designed camera and sensor package created by IFREMER for real-time monitoring of hydrothermal faunal assemblages and their ecosystems (Sarrazin et al. 2007), and a microbial incubator, will added to the network in the Main Endeavour and Mothra vent fields. This multidisciplinary approach will involve a scientific community from different institutions and countries. Significant experience aids in this installation. For example, video systems connected to VENUS and NC have led to the development of new experimental protocols for time-series observations using seafloor cameras, including sampling design, camera calibration and image analysis methodologies (see communication by Aron et al. and Robert et al.). Similarly, autonomous deployment of many of the planned instruments

  9. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    SciTech Connect

    Ernest A. Mancini

    2006-09-30

    The objectives of the study were: (1) to perform resource assessment of the thermogenic gas resources in deeply buried (>15,000 ft) natural gas reservoirs of the onshore interior salt basins of the north central and northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling; and (2) to use the petroleum system based resource assessment to estimate the volume of the deep thermogenic gas resource that is available for potential recovery and to identify those areas in the interior salt basins with high potential for this thermogenic gas resource. Petroleum source rock analysis and petroleum system characterization and modeling, including thermal maturation and hydrocarbon expulsion modeling, have shown that the Upper Jurassic Smackover Formation served as the regional petroleum source rock in the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin. Thus, the estimates of the total hydrocarbons, oil, and gas generated and expelled are based on the assumption that the Smackover Formation is the main petroleum source rock in these basins and subbasins. The estimate of the total hydrocarbons generated for the North Louisiana Salt Basin in this study using a petroleum system approach compares favorably with the total volume of hydrocarbons generated published by Zimmermann (1999). In this study, the estimate is 2,870 billion barrels of total hydrocarbons generated using the method of Schmoker (1994), and the estimate is 2,640 billion barrels of total hydrocarbons generated using the Platte River software application. The estimate of Zimmermann (1999) is 2,000 to 2,500 billion barrels of total hydrocarbons generated. The estimate of gas generated for this basin is 6,400 TCF using the Platte River software application, and 12,800 TCF using the method of Schmoker (1994). Barnaby (2006) estimated that the total gas volume generated for this basin ranges from 4,000 to 8,000 TCF. Seventy

  10. Immunomagnetically Captured Thermophilic Sulfate-Reducing Bacteria from North Sea Oil Field Waters

    PubMed Central

    Christensen, Bjørn; Torsvik, Terje; Lien, Torleiv

    1992-01-01

    Immunomagnetic beads (IMB) were used to recover thermophilic sulfate-reducing bacteria from oil field waters from oil production platforms in the Norwegian sector of the North Sea. IMB coated with polyclonal antibodies against whole-cell antigens of the thermophilic Thermodesulfobacterium mobile captured strains GFA1, GFA2, and GFA3. GFA1 was serologically and morphologically identical to T. mobile. GFA2 and GFA3 were spore forming and similar to the Desulfotomaculum strains T90A and T93B previously isolated from North Sea oil field waters by a classical enrichment procedure. Western blots (immunoblots) of whole cells showed that GFA2, GFA3, T90A, and T93B are different serotypes of the same Desulfotomaculum species. Monoclonal antibodies (MAb) against T. mobile type strain cells were produced and used as capture agents on IMB. These MAb, named A4F4, were immunoglobulin M; they were specific to T. mobile and directed against lipopolysaccharides. The prevailing cells immunocaptured with MAb A4F4 were morphologically and serologically similar to T. mobile type strain cells. T. mobile was not detected in these oil field waters by classical enrichment procedures. Furthermore, extraction with antibody-coated IMB allowed pure strains to be isolated directly from primary enrichment cultures without prior time-consuming subculturing and consecutive transfers to selective media. Images PMID:16348693

  11. Summary of field operations Magazine Road North Wells MRN-1 and MRN-2

    SciTech Connect

    Fritts, J.E.; McCord, J.P.

    1996-03-01

    This report provides a summary of the field operations associated with the installation of the MRN-1 and MRN-2 test/monitoring wells. These wells were installed in December 1994 and January 1995 as part of the Site-Wide Hydrogeologic Characterization (SWHC) task field program. The SWHC task is part of the Sandia National Laboratories, New Mexico, Environmental Restoration Project carried out by the Environmental Operations Center, 7500. MRN-1 and MRN-2 are paired wells located near the western edge of Kirtland Air Force Base (KAFB), west of Technical Area 3 (TA3), and north of Magazine Road. (Note: MRN stands for Magazine Road North). During the MRN field operations, important subsurface geologic, hydrologic, chemical, and radiological data were obtained. Subsurface geologic data include descriptions of drill cuttings, core, and geophysical logs of the upper unit of the Santa Fe Group. The geology identified here can help determine the eastern limit of the ancestral Rio Grande lithofacies. Subsurface hydrologic data include borehole geophysical logs, and qualitative information obtained during well completion and development. In addition, future aquifer testing at the MRN site will generate data for the interpretation of aquifer parameters such as transmissivity. Samples were taken from core every 100 feet at MRN-1 for chemical and radiological analysis to provide background data for the Environmental Restoration Project.

  12. RESOURCE ASSESSMENT OF THE IN-PLACE AND POTENTIALLY RECOVERABLE DEEP NATURAL GAS RESOURCE OF THE ONSHORE INTERIOR SALT BASINS, NORTH CENTRAL AND NORTHEASTERN GULF OF MEXICO

    SciTech Connect

    Ernest A. Mancini

    2004-04-16

    The University of Alabama and Louisiana State University have undertaken a cooperative 3-year, advanced subsurface methodology resource assessment project, involving petroleum system identification, characterization and modeling, to facilitate exploration for a potential major source of natural gas that is deeply buried (below 15,000 feet) in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas. The project is designed to assist in the formulation of advanced exploration strategies for funding and maximizing the recovery from deep natural gas domestic resources at reduced costs and risks and with minimum impact. The results of the project should serve to enhance exploration efforts by domestic companies in their search for new petroleum resources, especially those deeply buried (below 15,000 feet) natural gas resources, and should support the domestic industry's endeavor to provide an increase in reliable and affordable supplies of fossil fuels. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification. The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The project objectives will be achieved through a 3-year effort. First, emphasis is on petroleum system identification and characterization in the North

  13. Controls on iron distributions in the deep water column of the North Pacific Ocean: Iron(III) hydroxide solubility and marine humic-type dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Kitayama, Saori; Kuma, Kenshi; Manabe, Eri; Sugie, Koji; Takata, Hyoe; Isoda, Yutaka; Toya, Kenji; Saitoh, Sei-Ichi; Takagi, Shohgo; Kamei, Yoshihiko; Sakaoka, Keiichiro

    2009-08-01

    Dissolved Fe in the western and central North Pacific Ocean was characterized by surface depletion, middepth maxima and, below that, a slight decrease with depth similar to the vertical distributions of nutrients, apparent oxygen utilization, Fe(III) hydroxide solubility, and humic-type fluorescence (H-flu) intensity. Dissolved Fe concentrations ([D-Fe], <0.22-μm fraction) in the deep water column were one-half lower in the central region (0.3-0.6 nM) than the western region (0.5-1.2 nM) although the Fe(III) solubility ([Fe(III)sol], <0.025-μm fraction) levels and distributions in deep waters were almost the same between both regions with middepth maxima (˜0.6 nM) at 500-1500-m depth range and then a gradual decrease to ˜0.3 nM at 5000-m depth. Higher [D-Fe] than [Fe(III)sol] in the deep water column of the western region results from the higher production of dissolved Fe from the decomposition of sinking particulate organic matter in the western region than the central region because of the high atmospheric and/or lateral Fe inputs in the western region. Similarity between [D-Fe] level and [Fe(III)sol] value at each deep water depth in the central region may be attributed to [D-Fe] being nearly in the solubility equilibrium with Fe(III) hydroxide in seawater. Strong linear correlation between [D-Fe] and H-flu intensity in the central region and relatively similar linear relationships between [Fe(III)sol] and H-flu intensity in the western and central regions are the first confirmation that humic-type fluorescent dissolved organic matter may be responsible for [D-Fe] in the deep water column as natural organic ligands complexing with Fe(III).

  14. Mortality of passerines adjacent to a North Carolina corn field treated with granular carbofuran.

    USGS Publications Warehouse

    Augspurger, Tom; Smith, Milton R.; Meteyer, Carol U.; Converse, Kathryn A.

    1996-01-01

    Red-winged blackbirds (Agelaius phoeniceus) were collected during an epizootic in southeastern North Carolina (USA). Activity of brain cholinesterase (ChE) was inhibited by 14 to 48% in three of five specimens, and returned to normal levels after incubation. Gastrointestinal tracts were analyzed for 30 anti-ChE agents. Carbofuran, the only compound detected, was present in all specimens at levels from 5.44 to 72.7 μg/g wet weight. Application of granular carbofuran in an adjacent corn field, results of necropsy examinations, and chemical analyses are consistent with a diagnosis of carbofuran poisoning in these specimens.

  15. Integration of potential-field and digital geologic data for two North American geoscience transects

    USGS Publications Warehouse

    Phillips, J.D.

    1990-01-01

    Two North American contributions to the Global Geoscience Transects Program, the Quebec-Maine-Gulf of Maine transect and the Great Lakes portion of the United States-Canadian Border transect, are among the first to produce digital geology in a form that can be combined with gridded gravity and aeromagnetic data. Maps of shaded relief and color-composite bandpass-filtered potential-field data combined with overlays of digitized geologic contacts and faults reveal significant new geologic information, including the relative thickness of plutons, the structure of poorly exposed or concealed magnetic units, and possible evidence for mineralized ground. -from Author

  16. Petrology and Geochemistry of Hydrothermally Altered Volcanic Rocks in the Iheya North Hydrothermal Field, Middle Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Yamasaki, T.

    2015-12-01

    The Iheya North hydrothermal field is located in the middle Okinawa Trough, a young and actively spreading back-arc basin extending behind the Ryukyu arc-trench system in the southeastern margin of the East China Sea. In this hydrothermal field, two scientific drilling expeditions (IODP Exp 331 and SIP CK14-04) were conducted using a deep-sea drilling vessel "Chikyu," and samples from a total of 27 holes were taken. Through these expeditions, Kuroko-type volcanogenic massive sulfide deposits (VMS), hydrothermally altered volcanic rocks, and pumiceous and pelagic sediments were recovered. The recovered core provided important information about the relationship between hydrothermal activity, alteration, and ore mineralization. Whole-rock major element composition and trace element (TE) patterns of pumices were very similar to those of rhyolites in the middle Okinawa Trough (RMO). However, pumices were relatively enriched in chalcophile elements Sr and Nb, which suggest incipient mineralization. Volcanic rock generally demonstrated strong silicification and was greenish pale gray in color. Regardless of severe alteration, some rock displayed major element composition broadly similar to the RMO. Alteration was evidenced by an increase in the content of SiO2 and MgO, and decrease in Al2O3, Na2O, and K2O content. The most striking geochemical feature of altered volcanic rock was the discordance between texture and the degree of modification of TEs. Some samples showed decussate texture occupied by petal-like quartz with severe silicification, but no prominent disturbance of concentration and patterns of TEs were observed. In contrast, samples with well-preserved igneous porphyritic texture showed very low TE content and modification of TE patterns. These results suggest that the modification of texture and composition of TEs, as well as silicification, do not occur by a uniform process, but several processes. This may reflect the differences in temperature and the

  17. SPECTROSCOPIC CONFIRMATION OF FAINT LYMAN BREAK GALAXIES NEAR REDSHIFT FIVE IN THE HUBBLE ULTRA DEEP FIELD

    SciTech Connect

    Rhoads, James E.; Malhotra, Sangeeta; Cohen, Seth; Grogin, Norman; Hathi, Nimish; Ryan, Russell; Straughn, Amber; Windhorst, Rogier A. Pirzkal, Norbert; Xu Chun; Koekemoer, Anton; Panagia, Nino; Dickinson, Mark; Ferreras, Ignacio; Gronwall, Caryl; Kuemmel, Martin; Walsh, Jeremy; Meurer, Gerhardt; Pasquali, Anna; Yan, H.-J.

    2009-05-20

    We present the faintest spectroscopically confirmed sample of z {approx} 5 Lyman break galaxies (LBGs) to date. The sample is based on slitless grism spectra of the Hubble Ultra Deep Field region from the Grism ACS Program for Extragalactic Science (GRAPES) and Probing Evolution and Reionization Spectroscopically (PEARS) projects, using the G800L grism on the Hubble Space Telescope Advanced Camera for Surveys. We report here confirmations of 39 galaxies, preselected as candidate LBGs using photometric selection criteria. We compare a 'traditional' V-dropout selection, based on the work of Giavalisco et al., to a more liberal one (with V - i > 0.9), and find that the traditional criteria are about 64% complete and 81% reliable. We also study the Ly{alpha} emission properties of our sample. We find that Ly{alpha} emission is detected in {approx}1/4 of the sample, and that the liberal V-dropout color selection includes {approx}55% of previously published line-selected Ly{alpha} sources. Finally, we examine our stacked two-dimensional spectra. We demonstrate that strong, spatially extended ({approx}1'') Ly{alpha} emission is not a generic property of these LBGs, but that a modest extension of the Ly{alpha} photosphere (compared to the starlight) may be present in those galaxies with prominent Ly{alpha} emission.

  18. RADIO AND MID-INFRARED IDENTIFICATION OF BLAST SOURCE COUNTERPARTS IN THE CHANDRA DEEP FIELD SOUTH

    SciTech Connect

    Dye, Simon; Ade, Peter A. R.; Eales, Stephen A.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Bock, James J.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Devlin, Mark J.; Klein, Jeff; Dunlop, James S.; Gundersen, Joshua O.; Hughes, David H.; Magnelli, Benjamin; Olmi, Luca

    2009-09-20

    We have identified radio and/or mid-infrared counterparts to 198 out of 350 sources detected at >=5{sigma} over {approx}9 deg{sup 2} centered on the Chandra Deep Field South by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) at 250, 350, and 500 {mu}m. We have matched 114 of these counterparts to optical sources with previously derived photometric redshifts and fitted spectral energy distributions to the BLAST fluxes and fluxes at 70 and 160 {mu}m acquired with the Spitzer Space Telescope. In this way, we have constrained dust temperatures, total far-infrared/submillimeter luminosities, and star formation rates for each source. Our findings show that, on average, the BLAST sources lie at significantly lower redshifts and have significantly lower rest-frame dust temperatures compared to submillimeter sources detected in surveys conducted at 850 {mu}m. We demonstrate that an apparent increase in dust temperature with redshift in our sample arises as a result of selection effects. Finally, we provide the full multiwavelength catalog of >=5{sigma} BLAST sources contained within the complete {approx}9 deg{sup 2} survey area.

  19. The galaxy luminosity-size relation and selection biases in the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Cameron, E.; Driver, S. P.

    2007-05-01

    We use the Hubble Ultra Deep Field to study the galaxy luminosity-size (M-Re) distribution. With a careful analysis of selection effects due to both detection completeness and measurement reliability, we identify bias-free regions in the M-Re plane for a series of volume-limited samples. By comparison to a nearby survey also having well-defined selection limits, namely the Millennium Galaxy Catalogue, we present clear evidence for evolution in surface brightness since z ~ 0.7. Specifically, we demonstrate that the mean, rest-frame B-band <μ>e for galaxies in a sample spanning 8 mag in luminosity between MB = -22 and -14 mag increases by ~1.0 mag arcsec-2 from z ~ 0.1 to 0.7. We also highlight the importance of considering surface brightness-dependent measurement biases in addition to incompleteness biases. In particular, the increasing, systematic underestimation of Kron fluxes towards low surface brightnesses may cause diffuse, yet luminous, systems to be mistaken for faint, compact objects.

  20. System Identification of Local Field Potentials under Deep Brain Stimulation in a Healthy Primate

    PubMed Central

    Pedoto, Gilda; Santaniello, Sabato; Montgomery, Erwin B.; Gale, John T.; Fiengo, Giovanni; Glielmo, Luigi; Sarma, Sridevi V.

    2013-01-01

    High frequency (HF) Deep Brain Stimulation (DBS) in the Sub-Thalamic Nucleus (STN) is a clinically recognized therapy for the treatment of motor disorders in Parkinson Disease (PD). The underlying mechanisms of DBS and how it impacts neighboring nuclei, however, are not yet completely understood. Electrophysiological data has been collected in PD patients and primates to better understand the impact of DBS on STN and the entire Basal Ganglia (BG) motor circuit. We use single unit recordings from Globus Pallidus, both pars interna and externa segments (GPi and GPe) in the BG, in a normal primate before and after DBS to reconstruct Local Field Potentials (LFPs) in the region. We then use system identification techniques to understand how GPe LFP activity and the DBS signal applied to STN influence GPi LFP activity. Our models suggest that when no stimulation is applied, the GPe LFPs have an inhibitory effect on GPi LFPs with a 2-3 ms delay, as is the case for single unit neuronal activity. On the other hand, when DBS is ON the models suggest that stimulation has a dominant effect on GPi LFPs which mask the inhibitory effects of GPe. PMID:21096635

  1. Influence of shallow flow on the deep geothermal field of Berlin - Results from 3D models

    NASA Astrophysics Data System (ADS)

    Frick, Maximilian; Sippel, Judith; Scheck-Wenderoth, Magdalena; Cacace, Mauro; Hassanzadegan, Alireza

    2015-04-01

    The goal of this study is to quantify the influence of fluid-driven heat transport on the subsurface temperature distribution of the city of Berlin, Germany. Berlin is located in the Northeast German Basin filled with several kilometers of sediments. Two of the clastic sedimentary units, namely the Middle Buntsandstein and the Sedimentary Rotliegend are of particular interest for geothermal exploration. Previous studies in the Northeast German Basin have already shown that subsurface temperature distributions are highly dependent on the geometries and properties of the geological units. Our work benefits strongly from these studies that involve numerical modeling of coupled conductive and convective heat transport. We follow a two-step approach where we first improve an existing structural model by integrating newly available 57 geological cross-sections, well data and deep seismics (down to ~4 km). Secondly, we perform a sensitivity analysis in which we investigate the effects of varying physical fluid and rock properties as well as hydraulic and thermal boundary conditions on the resulting temperature configuration. Computed temperatures are validated via comparison with existing well temperature measurements in the area. Of special interest for this study is the influence of the shallow aquifer systems on the subsurface temperature field. The major constituents of this system are the Quaternary silts and sands, the Tertiary Rupelian clay and the Tertiary sands beneath the Rupelian. These units have different hydraulic properties. The Rupelian clay represents a major aquitard in this respect hydraulically disconnecting the pre- and post-Rupelian succession. This aquitard shows a heterogeneous thickness distribution locally characterized by different hydrogeological windows (i.e. domains of no thickness) enabling intra-aquifer groundwater circulation at depth thus having a first-order effect on the shallow thermal field. As result of the simulations, we present

  2. North-South Asymmetries in Earth's Magnetic Field. Effects on High-Latitude Geospace

    NASA Astrophysics Data System (ADS)

    Laundal, K. M.; Cnossen, I.; Milan, S. E.; Haaland, S. E.; Coxon, J.; Pedatella, N. M.; Förster, M.; Reistad, J. P.

    2017-03-01

    The solar-wind magnetosphere interaction primarily occurs at altitudes where the dipole component of Earth's magnetic field is dominating. The disturbances that are created in this interaction propagate along magnetic field lines and interact with the ionosphere-thermosphere system. At ionospheric altitudes, the Earth's field deviates significantly from a dipole. North-South asymmetries in the magnetic field imply that the magnetosphere-ionosphere-thermosphere (M-I-T) coupling is different in the two hemispheres. In this paper we review the primary differences in the magnetic field at polar latitudes, and the consequences that these have for the M-I-T coupling. We focus on two interhemispheric differences which are thought to have the strongest effects: 1) A difference in the offset between magnetic and geographic poles in the Northern and Southern Hemispheres, and 2) differences in the magnetic field strength at magnetically conjugate regions. These asymmetries lead to differences in plasma convection, neutral winds, total electron content, ion outflow, ionospheric currents and auroral precipitation.

  3. Analogous effects of arbuscular mycorrhizal fungi in the laboratory and a North Carolina field.

    PubMed

    Pringle, Anne; Bever, James D

    2008-01-01

    Although arbuscular mycorrhizal (AM) fungi are ubiquitous symbionts of plants, the mutualism has rarely been tested in nature. In experiments designed to explore the ecological relevance of associations between different fungal and plant species in a natural environment, plant species were infected with different species of fungi and grown in separate trials in the laboratory and a North Carolina (USA) field. The benefits to plants varied dramatically as plant species were grown with different species of AM fungi. Effects of mycorrhizal fungi in nature were generally correlated to effects in the growth chamber, suggesting that laboratory data do reflect dynamics between plants and AM fungi in the field. Initial size at transplant and experimental block were also significant predictors of plant growth in the field. Correlation statistics between laboratory and field data were weaker when analyses involved plant species less responsive to infection by any AM fungus, suggesting that the response of a species to inoculation is a good predictor of its sensitivity to specific AM fungi in the field. AM fungal identity appears to influence the growth and reproduction of plants in the field.

  4. Rapid production of large-area deep sub-wavelength hybrid structures by femtosecond laser light-field tailoring

    SciTech Connect

    Wang, Lei; Chen, Qi-Dai E-mail: hbsun@jlu.edu.cn; Yang, Rui; Xu, Bin-Bin; Wang, Hai-Yu; Yang, Hai; Huo, Cheng-Song; Tu, Hai-Ling; Sun, Hong-Bo E-mail: hbsun@jlu.edu.cn

    2014-01-20

    The goal of creation of large-area deep sub-wavelength nanostructures by femtosecond laser irradiation onto various materials is being hindered by the limited coherence length. Here, we report solution of the problem by light field tailoring of the incident beam with a phase mask, which serves generation of wavelets. Direct interference between the wavelets, here the first-order diffracted beams, and interference between a wavelet and its induced waves such as surface plasmon polariton are responsible for creation of microgratings and superimposed nanogratings, respectively. The principle of wavelets interference enables extension of uniformly induced hybrid structures containing deep sub-wavelength nanofeatures to macro-dimension.

  5. Multi-proxy evidence for climate and North Atlantic Deep Water variability spanning the mid to late Holocene at the Erik sediment drift

    NASA Astrophysics Data System (ADS)

    Kleiven, H. F.; Ninnemann, U. S.; Irvali, N.

    2012-12-01

    The origin of Holocene abrupt climate changes like the 8.2 ka BP event, the 4.2 ka BP anomaly and the Little Ice Age, and in particular the role of ocean dynamics in these events, is a matter of considerable debate. The paucity of marine records capable of portraying both climate and North Atlantic Deep Water (NADW) properties during these anomalies has confounded efforts to determine how, or even if, deep ocean ventilation changed at these times. To elucidate the timing, magnitude, and nature of climate and deep-water changes spanning the mid to late Holocene we have generated a suite of high-resolution multi proxy records in cores MD03-2665 and GS06-144-MC03 (57°26.56N, 48°36.60W, 3440 m water depth) from the Erik Drift. The Holocene in this core is represented by ~5.6 m of sediment, and previous studies (Kleiven et al., 2008) demonstrate that the site is sensitively situated and provides the temporal fidelity to detect abrupt climate and deep circulation events. We reconstruct the bottom water physical and chemical properties of the deep overflowing branches from the Nordic Seas using oxygen and carbon isotopes of benthic foraminifera, whereas changes in the vigor of near bottom flow are inferred from size variations in mean sortable silt. Changes in North Atlantic hydrography are portrayed using records of planktonic foraminiferal isotopes and assemblage counts, ice-rafted debris counts, as well as modern analog technique sea surface temperature estimations. Major elements are also obtained throughout the core by XRF scanning. The planktonic foraminiferal oxygen isotopic and sea surface temperature reconstructions from 7 to 0 ka BP exhibit a distinct sequence of multi-centennial to millennial-scale cooling events. The first of these prominent coolings that characterize the late Holocene is initiated ~4.6 ka BP, and culminates at 4.0 ka BP. Similarly strong coolings occur between 2.9-2.5ka and at the onset of the Little Ice Age at ~0.5 ka BP (1450 AD). Many of

  6. Task Order 22 – Engineering and Technical Support, Deep Borehole Field Test. AREVA Summary Review Report

    SciTech Connect

    Denton, Mark A.

    2016-01-19

    Under Task Order 22 of the industry Advisory and Assistance Services (A&AS) Contract to the Department of Energy (DOE) DE-NE0000291, AREVA has been tasked with providing assistance with engineering, analysis, cost estimating, and design support of a system for disposal of radioactive wastes in deep boreholes (without the use of radioactive waste). As part of this task order, AREVA was requested, through a letter of technical direction, to evaluate Sandia National Laboratory’s (SNL’s) waste package borehole emplacement system concept recommendation using input from DOE and SNL. This summary review report (SRR) documents this evaluation, with its focus on the primary input document titled: “Deep Borehole Field Test Specifications/M2FT-15SN0817091” Rev. 1 [1], hereafter referred to as the “M2 report.” The M2 report focuses on the conceptual design development for the Deep Borehole Field Test (DBFT), mainly the test waste packages (WPs) and the system for demonstrating emplacement and retrieval of those packages in the Field Test Borehole (FTB). This SRR follows the same outline as the M2 report, which allows for easy correlation between AREVA’s review comments, discussion, potential proposed alternatives, and path forward with information established in the M2 report. AREVA’s assessment focused on three primary elements of the M2 report: the conceptual design of the WPs proposed for deep borehole disposal (DBD), the mode of emplacement of the WP into DBD, and the conceptual design of the DBFT. AREVA concurs with the M2 report’s selection of the wireline emplacement mode specifically over the drill-string emplacement mode and generically over alternative emplacement modes. Table 5-1 of this SRR compares the pros and cons of each emplacement mode considered viable for DBD. The primary positive characteristics of the wireline emplacement mode include: (1) considered a mature technology; (2) operations are relatively simple; (3) probability of a

  7. Holocene history of deep-seated landsliding in the North Fork Stillaguamish River valley from surface roughness analysis, radiocarbon dating, and numerical landscape evolution modeling

    NASA Astrophysics Data System (ADS)

    Booth, Adam M.; LaHusen, Sean R.; Duvall, Alison R.; Montgomery, David R.

    2017-02-01

    Documenting spatial and temporal patterns of past landsliding is a challenging step in quantifying the effect of landslides on landscape evolution. While landslide inventories can map spatial distributions, lack of dateable material, landslide reactivations, or time, access, and cost constraints generally limit dating large numbers of landslides to analyze temporal patterns. Here we quantify the record of the Holocene history of deep-seated landsliding along a 25 km stretch of the North Fork Stillaguamish River valley, Washington State, USA, including the 2014 Oso landslide, which killed 43 people. We estimate the ages of more than 200 deep-seated landslides in glacial sediment by defining an empirical relationship between landslide deposit age from radiocarbon dating and landslide deposit surface roughness. We show that roughness systematically decreases with age as a function of topographic wavelength, consistent with models of disturbance-driven soil transport. The age-roughness model predicts a peak in landslide frequency at 1000 calibrated (cal) years B.P., with very few landslide deposits older than 7000 cal years B.P. or younger than 100 cal years B.P., likely reflecting a combination of preservation bias and a complex history of changing climate, base level, and seismic shaking in the study area. Most recent landslides have occurred where channels actively interact with the toes of hillslopes composed of glacial sediments, suggesting that lateral channel migration is a primary control on the location of large deep-seated landslides in the valley.

  8. Lonely populations in the deep: genetic structure of red gorgonians at the heads of submarine canyons in the north-western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Pérez-Portela, Rocío; Cerro-Gálvez, Elena; Taboada, Sergi; Tidu, Carlo; Campillo-Campbell, Carolina; Mora, Joan; Riesgo, Ana

    2016-09-01

    The red gorgonian Paramuricea clavata plays a central role in coralligenous ecosystems of the Mediterranean Sea, being relatively abundant in shallow habitats (5-35 m depth). Recently, deeper populations have been discovered at the heads of submarine canyons in the north-western Mediterranean Sea, between 50 and 70 m deep. Colonies from some of these deeper populations were exceptionally large (>1 m high), contrasting with the general prevalence of smaller size classes in shallower populations. Importantly, the high pressure of trawling activities on the nearby continental shelf could threaten these populations of large and old colonies. Although the genetic diversity and structure of populations in shallow habitats is relatively well known, very little is known about deeper populations. We aimed to assess the genetic structure, connectivity and potential demographic decline of six deep populations of P. clavata located at the heads of La Fonera, Blanes and Arenys de Mar submarine canyons, as well as potential gene flow between those and the two nearest shallow populations. A total of 188 individuals were genotyped using nine microsatellite loci. Results showed strong genetic differentiation among populations in different submarine canyons, among populations within one of the canyons and between shallow and deep populations. Gene flow among populations was very limited, estimates of effective population size in some populations were small, and evidence of recent population reductions (bottlenecks) was detected in several populations. The large genetic differentiation in populations of P. clavata among canyons is related to limited effective dispersal.

  9. Vertical water mass structure in the North Atlantic influences the bathymetric distribution of species in the deep-sea coral genus Paramuricea

    NASA Astrophysics Data System (ADS)

    Radice, Veronica Z.; Quattrini, Andrea M.; Wareham, Vonda E.; Edinger, Evan N.; Cordes, Erik E.

    2016-10-01

    Deep-sea corals are the structural foundation of their ecosystems along continental margins worldwide, yet the factors driving their broad distribution are poorly understood. Environmental factors, especially depth-related variables including water mass properties, are thought to considerably affect the realized distribution of deep-sea corals. These factors are governed by local and regional oceanographic conditions that directly influence the dispersal of larvae, and therefore affect the ultimate distribution of adult corals. We used molecular barcoding of mitochondrial and nuclear sequences to identify species of octocorals in the genus Paramuricea collected from the Labrador Sea to the Grand Banks of Newfoundland, Canada at depths of 150-1500 m. The results of this study revealed overlapping bathymetric distributions of the Paramuricea species present off the eastern Canadian coast, including the presence of a few cryptic species previously designated as Paramuricea placomus. The distribution of Paramuricea species in the western North Atlantic differs from the Gulf of Mexico, where five Paramuricea species exhibit strong segregation by depth. The different patterns of Paramuricea species in these contrasting biogeographic regions provide insight into how water mass structure may shape species distribution. Investigating Paramuricea prevalence and distribution in conjunction with oceanographic conditions can help demonstrate the factors that generate and maintain deep-sea biodiversity.

  10. A new genus of Nanaloricidae (Loricifera) from deep-sea sediments of volcanic origin in the Kilinailau Trench north of Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Gad, Gunnar

    2004-02-01

    A new genus and species of Nanaloricidae (Loricifera), Phoeniciloricus simplidigitatus, is described inhabiting fine sand covered by a layer of volcanic ash at a water depth of 1,813 m in the New Ireland Basin near the Kilinailau Trench (north of Papua New Guinea). The described specimen is a postlarva enclosed in a larval exuvium. This is the first report of a species belonging to the Nanaloricidae from the deep sea. This occurrence is surprising, because Nanaloricidae are typical inhabitants of coarse sands in the intertidal or littoral zone. Preference for these shallow water habitats is reflected in many morphological features which characterize the Nanaloricidae, and are not normally found in Loricifera inhabiting fine-grained, clayish, deep-sea bottoms. The postlarva of the new species is characterized by a long narrow mouth tube, an urn-shaped lorica divided into ten plates, and 13 small lorica spikes. Distinguishing features of the Higgins-larva include short spinose toes lacking mucros but having small and slightly enlarged bases, short scalids on the introvert, many thoracic plates arranged in 6-8 rows, numerous small papillate flosculi in the collar and caudal regions, and three pairs of filiform, short locomotory appendages on the ventral side. Some features of the new species, especially of the Higgins-larva, are discussed as adaptations to the deep-sea environment.

  11. Mapping ERS-1 wind fields over north west Atlantic using a variational objective analysis

    NASA Technical Reports Server (NTRS)

    Siefridt, L.; Legler, D. M.; Barnier, B.; Obrien, J. J.

    1994-01-01

    A variational method is implemented to produce five day mean gridded ERS-1 analyzed wind fields in the north west Atlantic with the aim of providing for wind forcing of basin scale ocean models. The method consists of minimizing a cost functional, designed to measure misfits to prescribed weighted constraints which express a smoothed behavior and the proximity to input data vectors and curl. The weights are empirically determined by comparison with independent ship and buoy data over four five day periods. Root mean square differences between analyzed winds and independent data are thus further decreased: they range from 0.8 up to 1.8 m/s. Some problems present in the initial data remain; they are principally due to incomplete data coverage (instrumental problems), and possibly unresolved ambiguities. The resulting curl fields are smoothed and show coherent patterns. A comparison with the European Center for Medium range Weather Forecasting (ECMWF) analysis is encouraging.

  12. Differential speckle and wide-field imaging for the Gemini-North and WIYN telescopes

    NASA Astrophysics Data System (ADS)

    Scott, Nicholas J.; Howell, Steve B.; Horch, Elliott P.

    2016-07-01

    Two new instruments are currently being built for the Gemini-North and WIYN telescopes. They are based on the existing DSSI (Differential Speckle Survey Instrument), but the new dual-channel instruments will have both speckle and "wide-field" imaging capabilities. Nearly identical copies of the instrument will be installed as a public access permanent loan at the Gemini-N and WIYN telescopes. Many exoplanet targets will come from the NASA K2 and TESS missions. The faint limiting magnitude, for speckle observations, will remain around 16 to 17th magnitude depending on observing conditions, while wide-field, high speed imaging should be able to go to 21+. For Gemini, the instrument will be remotely operable from either the mid-level facility at Hale Pohaku or the remote operations base in Hilo.

  13. Gridded field observations of polybrominated diphenyl ethers and decabromodiphenyl ethane in the atmosphere of north China.

    PubMed

    Zhao, Yifan; Ma, Jin; Qiu, Xinghua; Lin, Yan; Yang, Qiaoyun; Zhu, Tong

    2013-08-06

    Brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) are important pollutants, yet few data on ambient BFRs levels have been available for North China, one of the most developed regions of the country. In this study, we investigated levels and spatial distributions of BFRs based on gridded field observations coupled with passive air sampling in the aforementioned region. A model incorporating both point and nonpoint sources was developed to simulate the spatial distribution and to achieve source apportionment. Although high concentration was observed at an electronic-waste (e-waste) recycling site, the median level of the sum of tri-, tetra-, hepta-, hexa-, and hepta-PBDEs (∑10PBDEs) was 0.56 ng/sample, which was lower than those observed previously in mainland China. Source apportionment revealed that nonpoint emissions contributed nearly 78% of ∑10PBDEs observed in this study. In contrast, high levels of BDE-209 and DBDPE were observed, with median concentrations of 4.0 and 10.2 ng/sample, respectively. Point sources located in the region around Laizhou Bay, Shandong Province were the major sources, which contributed 31% of BDE-209 and 70% of DBDPE observed in this study, indicating that this manufacturing base was the most important source region for atmospheric deca-BFRs in North China. To our knowledge, this is the first study to report source apportionment of atmospheric BFRs based on gridded field observations.

  14. The DEEP2 galaxy redshift survey: the evolution of the blue fraction in groups and the field

    NASA Astrophysics Data System (ADS)

    Gerke, Brian F.; Newman, Jeffrey A.; Faber, S. M.; Cooper, Michael C.; Croton, Darren J.; Davis, Marc; Willmer, Christopher N. A.; Yan, Renbin; Coil, Alison L.; Guhathakurta, Puragra; Koo, David C.; Weiner, Benjamin J.

    2007-04-01

    We explore the behaviour of the blue galaxy fraction over the redshift range 0.75 <= z <= 1.3 in the DEEP2 Survey, both for field galaxies and for galaxies in groups. The primary aim is to determine the role that groups play in driving the evolution of galaxy colour at high z. In pursuing this aim, it is essential to define a galaxy sample that does not suffer from redshift-dependent selection effects in colour-magnitude space. We develop four such samples for this study: at all redshifts considered, each one is complete in colour-magnitude space, and the selection also accounts for evolution in the galaxy luminosity function. These samples will also be useful for future evolutionary studies in DEEP2. The colour segregation observed between local group and field samples is already in place at z ~ 1: DEEP2 groups have a significantly lower blue fraction than the field. At fixed z, there is also a correlation between blue fraction and galaxy magnitude, such that brighter galaxies are more likely to be red, both in groups and in the field. In addition, there is a negative correlation between blue fraction and group richness. In terms of evolution, the blue fraction in groups and the field remains roughly constant from z = 0.75 to 1, but beyond this redshift the blue fraction in groups rises rapidly with z, and the group and field blue fractions become indistinguishable at z ~ 1.3. Careful tests indicate that this effect does not arise from known systematic or selection effects. To further ensure the robustness of this result, we build on previous mock DEEP2 catalogues to develop mock catalogues that reproduce the colour-overdensity relation observed in DEEP2 and use these to test our methods. The convergence between the group and field blue fractions at z ~ 1.3 implies that DEEP2 galaxy groups only became efficient at quenching star formation at z ~ 2; this result is broadly consistent with other recent observations and with current models of galaxy evolution and

  15. Seafloor bathymetry in deep and shallow water marine CSEM responses of Nigerian Niger Delta oil field: Effects and corrections

    NASA Astrophysics Data System (ADS)

    Folorunso, Adetayo Femi; Li, Yuguo

    2015-12-01

    Topography distortions in bathymetrically acquired marine Controlled-Source Electromagnetic (mCSEM) responses are capable of misleading interpretation to the presence or absence of the target if not corrected for. For this reason, the effects and correction of bathymetry distortions on the deep and shallow seafloor mCSEM responses of the Niger Delta Oil province were examined in this paper. Marine CSEM response of the Niger Delta geological structure was modelled by using a 2.5D adaptive finite element forward modelling code. In both the deep water and shallow water cases, the bathymetry distortions in the electric field amplitude and phase were found to get smaller with increasing Tx-Rx offsets and contain short-wavelength components in the amplitude curves which persist at all Tx-Rx offsets. In the deep water, topographic effects on the reservoir signatures are not significant, but as water depth reduces, bathymetric distortions become more significant as a result of the airwave effects, masking the target signatures. The correction technique produces a good agreement between the flat-seafloor reservoir model and its equivalent bathymetric model in deep water at 0.25 Hz, while in shallow water, the corrected response only shows good agreement at shorter offsets but becomes complicated at longer offsets due to airwave effects. Transmission frequency was extended above and below 0.25 Hz in the frequency spectrum and the correction method applied. The bathymetry correction at higher frequency (1.75 Hz) is not effective in removing the topographic effects in either deep or shallow water. At 0.05 Hz for both seafloor scenarios, we obtained the best corrected amplitude profiles, removing completely the distortions from both topographic undulation and airwave effects in the shallow water model. Overall, the work shows that the correction technique is effective in reducing bathymetric effects in deep water at medium frequency and in both deep and shallow waters at a low

  16. Deep oceanic circulation in subpolar North Atlantic over the last 60 ka : a synthesis of multi-proxy approach based on Marion Dufresne cores

    NASA Astrophysics Data System (ADS)

    Kissel, Catherine; Laj, Carlo; Van Toer, Aurélie; Wandres, Camille; Michel, Elisabeth

    2015-04-01

    Different cruises on board the R. V. Marion Dufresne allowed to take cores along the paths of the main overflow waters in sub-polar North Atlantic. The cores studied for glacial period are characterized by deposition rates ranging from 8 to 24 cm/ka and those studied for the Holocene period have sedimentation rates between about 90 and 15 cm/ka. Multi-proxy approach was conducted each time with the magnetic properties as the common studied parameters, used as bottom-current tracer. These properties were coupled, depending on the cores, with oxygen and carbon isotopes of planktonic and benthic foraminifera, sortable silt, IRD counting. The rationale for the study of magnetic properties is linked to the path of the overflow waters over the sills between Greenland and Iceland and between Iceland-Faeroe and Scotland after they form in the Nordic seas. These sills are rich in magnetic particles deposited from the volcanic-rich surrounding areas and they are then more or less efficiently transported in sub-polar North Atlantic by the overflow waters depending on the intensity of the later. During the last glacial period, all the CALYPSO cores distributed from the Norwegian sea to the Bermuda Rise exhibit the same pattern of variations in magnetic concentration. The age models are based on correlation between planktonic delta18O of a core nearby Greenland and delta18O in Greenland ice (Voelker et al., 1998) and confirmed by a perfect fit between the continuous earth magnetic field intensity profile retrieved from sediments and from ice via cosmogenic isotopes. It shows that every minimum in magnetic concentration, also characterized by high IRD content, fresh surface waters, fine mean grain size in the sortable silt range, coincides with cold periods in Greenland. A synthetic "contourite drift deposit" curve has been constructed and illustrate continuously the variations in the intensity of the overflow waters during glacial time. They mimic in phase and in relative

  17. Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}

    SciTech Connect

    Umekwe, Pascal; Mongrain, Joanna; Ahmadi, Mohabbat; Hanks, Catherine

    2013-03-15

    The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.

  18. Draft Genome Sequence of Alcanivorax sp. Strain KX64203 Isolated from Deep-Sea Sediments of Iheya North, Okinawa Trough

    PubMed Central

    Liu, Rui; Wang, Mengqiang; Wang, Hao; Gao, Qiang; Hou, Zhanhui; Gao, Dahai

    2016-01-01

    This report describes the draft genome sequence of Alcanivorax sp. strain KX64203, isolated from deep-sea sediment samples. The reads generated by an Ion Torrent PGM were assembled into contigs, with a total size of 4.76 Mb. The data will improve our understanding of the strain’s function in alkane degradation. PMID:27563046

  19. Regional and Local Trends in helium isotopes, basin and rangeprovince, western North America: Evidence for deep permeablepathways

    SciTech Connect

    Kennedy, B. Mack; van Soest, Matthijs C.

    2005-07-15

    Fluids from the western margin of the Basin and Range have helium isotope ratios as high as {approx}6-7 Ra, indicating a strong mantle melt influence and consistent with recent and current volcanic activity. Moving away from these areas, helium isotope ratios decrease rapidly to ''background'' values of around 0.6 Ra, and then gradually decrease toward the east to low values of {approx}0.1 Ra at the eastern margin of the Basin and Range. Superimposed on this general regional trend are isolated features with elevated helium isotope ratios (0.8-2.1 Ra) compared to the local background. Spring geochemistry and local geology indicate that these ''He-spikes'' are not related to current or recent magmatic activity, suggesting that the spikes may reflect either localized zones deep mantle melting or deep permeable pathways (faults) with high vertical fluid flowrates. A detailed study of one of the He-spikes (Dixie Valley and the Stillwater Range Front Fault system), indicates that features with high 3He/4He ratios are confined to the range front normal faults characteristic of the extensional regime in the Basin and Range, suggesting that these faults are deep permeable pathways. However, not all range front fault systems transmit fluids with a mantle signature, implying that not all have deep permeable pathways.

  20. Deep-fault connection characterization from combined field and geochemical methodology; examples from Green River and Haiti fault systems

    NASA Astrophysics Data System (ADS)

    Nadine, E. Z.; Frery, E.; Leroy, S.; Mercier De Lepinay, B. F.; Momplaisir, R.

    2011-12-01

    Fault transfer properties are depending on different parameters, such as fault plane geometry, regional to local offset guiding the morphology through time, but are also very sensitive on other factors which may vary through time and space. Detailed along-strike observations and analyses of the Green River Fault system (Utah) outline the strong impact of several parameters; pre-existing structures or basement heterogeneities, lateral variation of the host-rock mechanical properties, the change of paleostress field through time which creates complex fault intersections. This last parameter, is often associated either with along-and-across fluid drainage (fault leaking) or with abnormal sealing deformation and uplifts corresponding to the locked fault segments. Along the Green River anticline, which is dissected by Salt wash and Little Grand wash major faults, several leaking segments are distributed. They have been analysed for geochemical characterization. In fact, carbon dioxide rich waters expelled from natural or artificial (well-driven geyser) springs, are located preferentially at structural intersection points. Changes in fault transfer properties has been proved as discontinuous from detailed datings (U/Th datings: see Frery et al AGU 2011 this meeting) on the top-fault travertines precipitation. The correlation with fault mineralisation at depth is still under investigation. In this area, not considered as very seismic one compared to the adjacent Basin and Ranges area, fault activity relates both on slow processes indicating a long seismic recurrence time, and on local reservoir short-time de-pressurisation processes. The same methods of investigation will be used on the very active Haitian fault system. The new constraints applied on the Enriquillo-Plantain-garden Fault (EPGF) responsible for the initial deep tectonic stress release (12 January 2010), have not been expressed by a clear surface fault rupture (surface locked segment), but by a northward

  1. Tropical deep convection, entrainment, and dilution during the dynamo field campaign

    NASA Astrophysics Data System (ADS)

    Hannah, Walter

    This dissertation presents a study of outstanding questions in tropical meteorology relating to tropical deep convection, entrainment, and dilution. Much of the discussion in this study will focus on an important convectively-coupled phenomenon in the tropical atmosphere known as the Madden-Julian Oscillation (MJO), which is an eastward propagating atmospheric disturbance over the Indian and West Pacific Oceans that dominates the tropical variability on intraseasonal timescales (30-90 days). A field campaign known as the "Dynamics of the MJO" (DYNAMO) was conducted in the boreal winter months from October 2011 through February 2012 to study the initialization of the MJO with in-situ observations. The first part of this study examines hindcast simulations of the first two MJO events during DYNAMO in a general circulation model (GCM). The model used for this is the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM5) version 5, which uses parameterized convection. In these simulations, an entrainment rate parameter is varied to test its effects on the representation of the MJO, following previous studies. Hindcast simulations with CAM5 reveal that the entrainment parameter can improve the representation of the MJO. However, analysis of the column integrated moist static energy (MSE) budget reveals that this improvement is the right answer for the wrong reason. CAM5 incorrectly enhances vertical MSE advection, which compensates for cloud radiative feedbacks that are too weak. A promising theory for the MJOs fundamental dynamics is that of a moisture mode. The second part of the study examines hindcasts using the super-parameterized version of CAM5 (SP-CAM) that uses embedded cloud-resolving models (CRM) to explicitly simulate convection on the sub-grid scale. SP-CAM was used for these hindcast simulations because previous studies have shown this type of model can reproduce the MJO much better than conventional GCMs. SP-CAM hindcasts yield

  2. Final closure assessment work plan for sites 2 and 10, 119th Fighter-Interceptor Group, North Dakota Air National Guard Base, Hector Field, Fargo, North Dakota

    SciTech Connect

    1994-06-01

    This Work Plan (WP) outlines closure assessment activities to be conducted at two sites at the North Dakota Air National Guard (NDANG) Base, Hector International Airport (also known as Hector Field), Fargo, North Dakota. The sites to be assessed include one 300-gal nominal capacity waste oil underground storage tank (UST) which is scheduled to be removed (Site 2), and a former fire training area (Site 10) where removal of contaminated soils is scheduled. The objectives of the assessment are to provide documentation of soil and water conditions following excavation of the UST at Site 2 and excavation of contaminated soils at Site 10 in order to support closure in accordance with applicable North Dakota State Department of Health and Consolidated Laboratories requirements.

  3. Discovery of Slow Rotators in The Jovian Trojan Population from Pan-STARRS Medium Deep Fields

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Ip, W.; Lin, H.; Chen, Y.; Chen, W.

    2013-12-01

    Pan-STARRS 1 (PS1) project is the largest optical sky survey project in the current time-domain astronomy. It provides a wealth of high-cadence and high quality data for the study of solar system small bodies like asteroids and the trans-Neptunian objects. We analyzed four of the PS1 Medium Deep (MD) fields around the elliptic plane and developed a new method to determine the rotation curves and surface colors of solar system objects in those dataset. The basic concept of our method is the merge of all photometric data separated in four PS1 filters (g, r, i, z) in order to improve the time coverage of measurements available for each object. We used the predicted brightness as a standard in each epoch and calculated the difference between the apparent brightness and predicted magnitude (Δm). The Δm values of individual filter pairs can then be used to shift all of the brightness data points to the same baseline to obtain a unified time-series lightcurve and determine the brightness variation and the corresponding amplitude, sometimes even the rotation periods. In this manner, we found five slow rotators with rotation periods longer than 10 days among the 92 Jovian Trojans we have examined. Four of these slow rotators, (7543), (216421), (248978) and (343993), have large rotation amplitudes and are possibly contact binary systems. The surface colors of three of these five slow rotators belong to the C-type taxonomic class which is unusual in the L4 population.

  4. Theoretical analysis of the local field potential in deep brain stimulation applications.

    PubMed

    Lempka, Scott F; McIntyre, Cameron C

    2013-01-01

    Deep brain stimulation (DBS) is a common therapy for treating movement disorders, such as Parkinson's disease (PD), and provides a unique opportunity to study the neural activity of various subcortical structures in human patients. Local field potential (LFP) recordings are often performed with either intraoperative microelectrodes or DBS leads and reflect oscillatory activity within nuclei of the basal ganglia. These LFP recordings have numerous clinical implications and might someday be used to optimize DBS outcomes in closed-loop systems. However, the origin of the recorded LFP is poorly understood. Therefore, the goal of this study was to theoretically analyze LFP recordings within the context of clinical DBS applications. This goal was achieved with a detailed recording model of beta oscillations (∼20 Hz) in the subthalamic nucleus. The recording model consisted of finite element models of intraoperative microelectrodes and DBS macroelectrodes implanted in the brain along with multi-compartment cable models of STN projection neurons. Model analysis permitted systematic investigation into a number of variables that can affect the composition of the recorded LFP (e.g. electrode size, electrode impedance, recording configuration, and filtering effects of the brain, electrode-electrolyte interface, and recording electronics). The results of the study suggest that the spatial reach of the LFP can extend several millimeters. Model analysis also showed that variables such as electrode geometry and recording configuration can have a significant effect on LFP amplitude and spatial reach, while the effects of other variables, such as electrode impedance, are often negligible. The results of this study provide insight into the origin of the LFP and identify variables that need to be considered when analyzing LFP recordings in clinical DBS applications.

  5. The Chandra Deep Field-South Survey: 7 Ms Source Catalogs

    NASA Astrophysics Data System (ADS)

    Luo, B.; Brandt, W. N.; Xue, Y. Q.; Lehmer, B.; Alexander, D. M.; Bauer, F. E.; Vito, F.; Yang, G.; Basu-Zych, A. R.; Comastri, A.; Gilli, R.; Gu, Q.-S.; Hornschemeier, A. E.; Koekemoer, A.; Liu, T.; Mainieri, V.; Paolillo, M.; Ranalli, P.; Rosati, P.; Schneider, D. P.; Shemmer, O.; Smail, I.; Sun, M.; Tozzi, P.; Vignali, C.; Wang, J.-X.

    2017-01-01

    We present X-ray source catalogs for the ≈7 Ms exposure of the Chandra Deep Field-South (CDF-S), which covers a total area of 484.2 arcmin2. Utilizing wavdetect for initial source detection and ACIS Extract for photometric extraction and significance assessment, we create a main source catalog containing 1008 sources that are detected in up to three X-ray bands: 0.5–7.0 keV, 0.5–2.0 keV, and 2–7 keV. A supplementary source catalog is also provided, including 47 lower-significance sources that have bright ({K}s≤slant 23) near-infrared counterparts. We identify multiwavelength counterparts for 992 (98.4%) of the main-catalog sources, and we collect redshifts for 986 of these sources, including 653 spectroscopic redshifts and 333 photometric redshifts. Based on the X-ray and multiwavelength properties, we identify 711 active galactic nuclei (AGNs) from the main-catalog sources. Compared to the previous ≈4 Ms CDF-S catalogs, 291 of the main-catalog sources are new detections. We have achieved unprecedented X-ray sensitivity with average flux limits over the central ≈1 arcmin2 region of ≈1.9 × 10‑17, 6.4 × 10‑18, and 2.7 × 10‑17 erg cm‑2 s‑1 in the three X-ray bands, respectively. We provide cumulative number-count measurements observing, for the first time, that normal galaxies start to dominate the X-ray source population at the faintest 0.5–2.0 keV flux levels. The highest X-ray source density reaches ≈50,500 deg‑2, and 47% ± 4% of these sources are AGNs (≈23,900 deg‑2).

  6. Theoretical Analysis of the Local Field Potential in Deep Brain Stimulation Applications

    PubMed Central

    Lempka, Scott F.; McIntyre, Cameron C.

    2013-01-01

    Deep brain stimulation (DBS) is a common therapy for treating movement disorders, such as Parkinson’s disease (PD), and provides a unique opportunity to study the neural activity of various subcortical structures in human patients. Local field potential (LFP) recordings are often performed with either intraoperative microelectrodes or DBS leads and reflect oscillatory activity within nuclei of the basal ganglia. These LFP recordings have numerous clinical implications and might someday be used to optimize DBS outcomes in closed-loop systems. However, the origin of the recorded LFP is poorly understood. Therefore, the goal of this study was to theoretically analyze LFP recordings within the context of clinical DBS applications. This goal was achieved with a detailed recording model of beta oscillations (∼20 Hz) in the subthalamic nucleus. The recording model consisted of finite element models of intraoperative microelectrodes and DBS macroelectrodes implanted in the brain along with multi-compartment cable models of STN projection neurons. Model analysis permitted systematic investigation into a number of variables that can affect the composition of the recorded LFP (e.g. electrode size, electrode impedance, recording configuration, and filtering effects of the brain, electrode-electrolyte interface, and recording electronics). The results of the study suggest that the spatial reach of the LFP can extend several millimeters. Model analysis also showed that variables such as electrode geometry and recording configuration can have a significant effect on LFP amplitude and spatial reach, while the effects of other variables, such as electrode impedance, are often negligible. The results of this study provide insight into the origin of the LFP and identify variables that need to be considered when analyzing LFP recordings in clinical DBS applications. PMID:23555799

  7. Modeling discharge requirements for deep geothermal wells at the Cerro Prieto geothermal field, MX

    SciTech Connect

    Menzies, Anthony J.; Granados, Eduardo E.; Puente, Hector Gutierrez; Pierres, Luis Ortega

    1995-01-26

    During the mid-l980's, Comision Federal de Electricidad (CFE) drilled a number of deep wells (M-200 series) at the Cerro Prieto geothermal field, Baja California, Mexico to investigate the continuation of the geothermal reservoir to the east of the Cerro Prieto-II and III production areas. The wells encountered permeability at depths ranging from 2,800 to 4,400 m but due to the reservoir depth and the relatively cold temperatures encountered in the upper 1,000 to 2,000 m of the wells, it was not possible to discharge some of the wells. The wells at Cerro Prieto are generally discharged by injecting compressed air below the water level using 2-3/8-inch tubing installed with either a crane or workover rig. The objective of this technique is to lift sufficient water out of the well to stimulate flow from the reservoir into the wellbore. However, in the case of the M-200 series wells, the temperatures in the upper 1,000 to 2,000 m are generally below 50 C and the heat loss to the formation is therefore significant. The impact of heat loss on the stimulation process was evaluated using both a numerical model of the reservoir/wellbore system and steady-state wellbore modeling. The results from the study indicate that if a flow rate of at least 300 liters/minute can be sustained, the well can probably be successfully stimulated. This is consistent with the flow rates obtained during the successful stimulations of wells M-202 and M-203. If the flow rate is closer to 60 liters/minute, the heat loss is significant and it is unlikely that the well can be successfully discharged. These results are consistent with the unsuccessful discharge attempts in wells M-201 and M-205.

  8. SENSITIVE SEARCH FOR RADIO VARIABLES AND TRANSIENTS IN THE EXTENDED CHANDRA DEEP FIELD SOUTH

    SciTech Connect

    Mooley, K. P.; Kulkarni, S. R.; Horesh, A.; Frail, D. A.; Ofek, E. O.; Miller, N. A.

    2013-05-10

    We report on an analysis of the Extended Chandra Deep Field South (E-CDFS) region using archival data from the Very Large Array, with the goal of studying radio variability and transients at the sub-milliJansky level. The 49 epochs of E-CDFS observations at 1.4 GHz sample timescales from 1 day to 3 months. We find that only a fraction (1%) of unresolved radio sources above 40 {mu}Jy are variable at the 4{sigma} level. There is no evidence that the fractional variability changes along with the known transition of radio-source populations below 1 mJy. Optical identifications of the sources show that the variable radio emission is associated with the central regions of an active galactic nucleus or a star-forming galaxy. After a detailed comparison of the efficacy of various source-finding algorithms, we use the best to carry out a transient search. No transients were found. This implies that the areal density of transients with peak flux density greater than 0.21 mJy is less than 0.37 deg{sup -2} (at a confidence level of 95%). This result is approximately an order of magnitude below the transient rate measured at 5 GHz by Bower et al. but it is consistent with more recent upper limits from Frail et al. Our findings suggest that the radio sky at 1.4 GHz is relatively quiet. For multi-wavelength transient searches, such as the electromagnetic counterparts to gravitational waves, this frequency may be optimal for reducing the high background of false positives.

  9. Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding

    PubMed Central

    Wasson, A. P.; Rebetzke, G. J.; Kirkegaard, J. A.; Christopher, J.; Richards, R. A.; Watt, M.

    2014-01-01

    We aim to incorporate deep root traits into future wheat varieties to increase access to stored soil water during grain development, which is twice as valuable for yield as water captured at younger stages. Most root phenotyping efforts have been indirect studies in the laboratory, at young plant stages, or using indirect shoot measures. Here, soil coring to 2 m depth was used across three field environments to directly phenotype deep root traits on grain development (depth, descent rate, density, length, and distribution). Shoot phenotypes at coring included canopy temperature depression, chlorophyll reflectance, and green leaf scoring, with developmental stage, biomass, and yield. Current varieties, and genotypes with breeding histories and plant architectures expected to promote deep roots, were used to maximize identification of variation due to genetics. Variation was observed for deep root traits (e.g. 111.4–178.5cm (60%) for depth; 0.09–0.22cm/°C day (144%) for descent rate) using soil coring in the field environments. There was significant variation for root traits between sites, and variation in the relative performance of genotypes between sites. However, genotypes were identified that performed consistently well or poorly at both sites. Furthermore, high-performing genotypes were statistically superior in root traits than low-performing genotypes or commercial varieties. There was a weak but significant negative correlation between green leaf score (–0.5), CTD (0.45), and rooting depth and a positive correlation for chlorophyll reflectance (0.32). Shoot phenotypes did not predict other root traits. This study suggests that field coring can directly identify variation in deep root traits to speed up selection of genotypes for breeding programmes. PMID:24963000

  10. Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding.

    PubMed

    Wasson, A P; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Richards, R A; Watt, M

    2014-11-01

    We aim to incorporate deep root traits into future wheat varieties to increase access to stored soil water during grain development, which is twice as valuable for yield as water captured at younger stages. Most root phenotyping efforts have been indirect studies in the laboratory, at young plant stages, or using indirect shoot measures. Here, soil coring to 2 m depth was used across three field environments to directly phenotype deep root traits on grain development (depth, descent rate, density, length, and distribution). Shoot phenotypes at coring included canopy temperature depression, chlorophyll reflectance, and green leaf scoring, with developmental stage, biomass, and yield. Current varieties, and genotypes with breeding histories and plant architectures expected to promote deep roots, were used to maximize identification of variation due to genetics. Variation was observed for deep root traits (e.g. 111.4-178.5cm (60%) for depth; 0.09-0.22cm/°C day (144%) for descent rate) using soil coring in the field environments. There was significant variation for root traits between sites, and variation in the relative performance of genotypes between sites. However, genotypes were identified that performed consistently well or poorly at both sites. Furthermore, high-performing genotypes were statistically superior in root traits than low-performing genotypes or commercial varieties. There was a weak but significant negative correlation between green leaf score (-0.5), CTD (0.45), and rooting depth and a positive correlation for chlorophyll reflectance (0.32). Shoot phenotypes did not predict other root traits. This study suggests that field coring can directly identify variation in deep root traits to speed up selection of genotypes for breeding programmes.

  11. A Guide to Field Trip Sites in Coastal North Carolina. Project CAPE Teaching Module SC3a.

    ERIC Educational Resources Information Center

    Carroll, Walter B.; Carroll, Carolyn H.

    This guide provides information on preparing students in grades 4-10 for field trips and describes possible field trip sites in the northeastern, mid-eastern, and southeastern regions of North Carolina. Selected sites in the northeastern region (from Roanoke Island to Ocracoke) include the Dare Coastline and Cape Hatteras National Seashore.…

  12. Organic carbon cycling in deep-sea benthic ecosystem across the Paleocene-Eocene Thermal Maximum: Implication from ostracodes at Deep Sea Drilling Project Site 401, North Atlantic

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Norris, R. D.; Bornemann, A.

    2011-12-01

    An ecological function of marine benthos is to change contents of oxygen and organic matters in sediments. There has been much interest in how global environmental changes affect ecological functions of marine communities and the Paleocene-Eocene Thermal Maximum (PETM) that has been held up as a past analog to future environmental change. During the PETM, deep-sea benthic foraminifers decreased their body-size and increased their productivity, metabolic rates, and food consumption in response to abruptly increasing temperature and surface water productivity. This implies an increased organic carbon flux between foraminifera and sediments during the event. Here we find that marine ostracodes, multicellular benthos, experienced a reduction in species diversity and individual longevity in response to PETM warming. However, our results, based upon ostracode communities from the upper Paleocene to the lower Eocene sediments at DSDP Site 401, outer Bay of Biscay, show that reduced valve-sizes were probably caused by rapid growth due to higher bottom water temperature. Estimates of body volume, temperature, valve abundances, and sedimentation rates suggest a decline in lifetime metabolic rate, respiration, food consumption, and biomass flux in the ostracode community during and after the PETM. These declines suggest that changes in the benthic ecosystem structure such as food-web and reduction of organic carbon flux between the community and the sediment during the PETM and its afterward. The reduced ostracode carbon flux contrasts the benthic foraminiferal signal. The latter shows an increase in the organic carbon flux between sediment and benthic foraminifer and they switched their community composition towards lower oxygen contents or higher organic matter supply.

  13. North south asymmetry in the photospheric and coronal magnetic fields observed by different instruments

    NASA Astrophysics Data System (ADS)

    Virtanen, Ilpo; Mursula, Kalevi

    2015-04-01

    Several recent studies have shown that the solar and heliospheric magnetic fields are north-south asymmetric. The southward shift of the Heliospheric current sheet (HCS) (the so-called bashful ballerina phenomenon) is a persistent pattern, which occurs typically for about three years during the late declining phase of solar cycle. We study here the hemispherical asymmetry in the photospheric and coronal magnetic fields using Wilcox Solar Observatory (WSO), Mount Wilson, Kitt Peak, Solis, SOHO/MDI and SDO/HMI measurements of the photospheric magnetic field since the 1970s and the potential field source surface (PFSS) model.Multipole analysis of the photospheric magnetic field has shown that the bashful ballerina phenomenon is a consequence of g20 quadrupole term, which is oppositely signed to the dipole moment. We find that, at least during the four recent solar cycles, the g20 reflects the larger magnitude of the southern polar field during a few years in the declining phase of the cycle. Although the overall magnetic activity during the full solar cycle is not very different in the two hemispheres, the temporal distribution of activity is different, contributing to the asymmetry. The used data sets are in general in a good agreement with each other, but there are some significant deviations, especially in WSO data. Also, the data from Kitt Peak 512 channel magnetograph is known to suffer from zero level errors.We also note that the lowest harmonic coefficients do not scale with the overall magnitude in photospheric synoptic magnetic maps. Scaling factors based on histogram techniques can be as large as 10 (from Wilcox to HMI), but the corresponding difference in dipole strength is typically less than two. This is because the polar field has a dominant contribution to the dipole and quadrupole components. This should be noted, e.g., when using synoptic maps as input for coronal models.

  14. Observations of QSO J2233-606 in the Southern Hubble Deep Field

    NASA Astrophysics Data System (ADS)

    Sealey, K. M.; Drinkwater, M. J.; Webb, J. K.

    1998-06-01

    The Hubble Deep Field South (HDF-S) Hubble Space Telescope (HST) observations are expected to begin in 1998 October. We present a composite spectrum of the QSO in the HDF-S field covering UV/optical/near-IR wavelengths, obtained by combining data from the Australian National University 2.3 m telescope with STIS on the HST.1 This intermediate-resolution spectrum covers the range 1600-10000 Å and allows us to derive some basic information on the intervening absorption systems which will be important in planning future higher resolution studies of this QSO. The QSO J2233-606 coordinates are α = 22h33m37.6s, δ = -60°33'29" (J2000), the magnitude is B = 17.5, and its redshift is zem = 2.238, derived by simultaneously fitting several emission lines. The spectral index is α = -0.7 +/- 0.1, measured between the Lyα and Mg II emission lines. Many absorption systems are present, including systems with metal lines redward of the Lyα emission line at zabs = 2.204, 1.942, 1.870, 1.787 and a few very strong Lyα features at zabs = 2.077, 1.928, without similarly strong metal lines. There is a conspicuous Lyman limit (LL) absorption system that is most likely associated with the zabs = 1.942 system with a neutral hydrogen column density of NH I = (3.1 +/- 1.0) × 1017 cm-2. There is some evidence for the presence of a second LL absorber just to the blue of the conspicuous system at z = 1.870. We have employed a new technique, based on an analysis of the shape of the observed spectrum in the region of the LL absorption, to explore the properties of the gas. We tentatively conclude that this system might have suitable characteristics for measuring the deuterium-to-hydrogen (D/H) ratio.

  15. DEEP, WIDE-FIELD CCD PHOTOMETRY FOR THE OPEN CLUSTER NGC 3532

    SciTech Connect

    Clem, James L.; Landolt, Arlo U.; Hoard, D. W.; Wachter, Stefanie E-mail: landolt@phys.lsu.edu E-mail: wachter@ipac.caltech.edu

    2011-04-15

    We present the results of a deep, wide-field CCD survey for the open cluster NGC 3532. Our new BV(RI){sub c} photometry effectively covers a one square degree area and reaches an unprecedented depth of V {approx} 21 to reveal that NGC 3532 is a rich open cluster that harbors a large number of faint, low-mass stars. We employ a number of methods to reduce the impact of field star contamination in the cluster color-magnitude diagrams (CMDs), including supplementing our photometry with JHK{sub s} data from the 2MASS catalog. These efforts allow us to define a robust sample of candidate main-sequence stars suitable for a purely empirical determination of the cluster's parameters by comparing them to the well-established Hyades main sequence. Our results confirm previous findings that NGC 3532 lies fairly near to the Sun [(m - M){sub 0} = 8.46 {+-} 0.05; 492{sup +12}{sub -11} pc] and has an extremely low reddening for its location near the Galactic plane [E(B - V) = 0.028 {+-} 0.006]. Moreover, an age of {approx}300 Myr has been derived for the cluster by fitting a set of overshooting isochrones to the well-populated upper main sequence. This new photometry also extends faint enough to reach the cluster white dwarf sequence, as confirmed by our photometric recovery of eight spectroscopically identified members of the cluster. Using the location of these eight members, along with the latest theoretical cooling tracks, we have identified {approx}30 additional white dwarf stars in the [V, (B - V)] CMD that have a high probability of belonging to NGC 3532. Reassuringly, the age we derive from fitting white dwarf isochrones to the locus of these stars, 300 {+-} 100 Myr, is consistent with the age derived from the turnoff. Our analysis of the photometry also includes an estimation of the binary star fraction as well as a determination of the cluster's luminosity and mass functions.

  16. Megacrystic Clinopyroxene Basalts Sample A Deep Crustal Underplate To The Mount Taylor Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmidt, M. E.; Schrader, C. M.; Crumpler, L. S.; Wolff, J. A.

    2012-12-01

    The alkaline and compositionally diverse (basanite to high-Si rhyolite) Mount Taylor Volcanic Field (MTVF), New Mexico comprises 4 regions that cover ~75 x 40 km2: (1) Mount Taylor, a large composite volcano and a surrounding field of basaltic vents; (2) Grants Ridge, constructed of topaz rhyolitic ignimbrite and coulees; (3) Mesa Chivato, a plateau of alkali basalts and mugearitic to trachytic domes; and (4) the Rio Puero basaltic necks. Distributed throughout its history (~3.6 to 1.26 Ma; Crumpler and Goff, 2012) and area (excepting Rio Puerco Necks) is a texturally distinct family of differentiated basalts (Mg# 43.2-53.4). These basalts contain resorbed and moth-eaten megacrysts (up to 2 cm) of plagioclase, clinopyroxene, and olivine ±Ti-magnetite ±ilmenite ±rare orthopyroxene. Some megacrystic lava flows have gabbroic cumulate inclusions with mineral compositions similar to the megacrysts, suggesting a common origin. For instance, gabbroic and megacrystic clinopyroxenes form linear positive arrays in TiO2 (0.2-2.3 wt%) with respect to Al2O3 (0.7-9.3 wt%). The lowest Al clinopyroxenes are found in a gabbroic inclusion and are associated with partially melted intercumulus orthopyroxene. Megacrystic and gabbroic plagioclase (An 41-80) in 4 representative thin sections were analyzed for 87Sr/86Sr by Laser Ablation ICP-MS. 87Sr/86Sr values for the suite range from 0.7036 to 0.7047. The low 87Sr/86Sr plagioclases (0.7036 to 0.7037) are associated with high Ti-Al clinopyroxenes. Likewise, the higher 87Sr/86Sr plagioclases (0.7043 to 0.7047) are associated with the low-Al clinopyroxenes. Taken together, these megacrysts track the differentiation of an intrusive body (or related bodies) from alkaline to Si-saturated conditions by fractional crystallization and crustal assimilation. The intrusive body likely underplates portions of the MTVF that have generated silicic magmas (Mount Taylor, Grants Ridge, Mesa Chivato). Although disequilibrium is implied by resorbed

  17. DEEP KECK u-BAND IMAGING OF THE HUBBLE ULTRA DEEP FIELD: A CATALOG OF z approx 3 LYMAN BREAK GALAXIES

    SciTech Connect

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, H.-W.; Armandroff, Taft E.; Wirth, Gregory D. E-mail: awolfe@ucsd.ed E-mail: hchen@oddjob.uchicago.ed E-mail: gwirth@keck.hawaii.ed

    2009-10-01

    We present a sample of 407 z approx 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1sigma depth of 30.7 mag arcsec{sup -2}, making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of approx50% of the z approx 3 LBGs, significantly reducing the traditional degeneracy of colors between z approx 3 and z approx 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z approx 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.

  18. Ectoparasitism on deep-sea fishes in the western North Atlantic: In situ observations from ROV surveys

    USGS Publications Warehouse

    Quattrini, Andrea; Demopoulos, Amanda

    2016-01-01

    A complete understanding of how parasites influence marine ecosystem functioning requires characterizing a broad range of parasite-host interactions while determining the effects of parasitism in a variety of habitats. In deep-sea fishes, the prevalence of parasitism remains poorly understood. Knowledge of ectoparasitism, in particular, is limited because collection methods often cause dislodgment of ectoparasites from their hosts. High-definition video collected during 43 remotely operated vehicle surveys (2013–2014) provided the opportunity to examine ectoparasitism on fishes across habitats (open slope, canyon, seamount, cold seep) and depths (494–4689 m) off the northeastern U.S., while providing high-resolution images and valuable observations of fish behavior. Only 9% (n = 125 individuals) of all observed fishes (25 species) were confirmed with ectoparasites, but higher percentages (∼33%) were observed for some of the most abundant fish species (e.g., Antimora rostrata). Ectoparasites included two copepod families (Lernaeopodidae, Sphyriidae) that infected four host species, two isopod families (Cymothoidae, Aegidae) that infected three host species, and one isopod family (Gnathiidae) that infected 19 host species. Hyperparasitism was also observed. As host diversity declined with depth, ectoparasite diversity declined; only gnathiids were observed at depths down to 3260 m. Thus, gnathiids appear to be the most successful group to infect a diversity of fishes across a broad depth range in the deep sea. For three dominant fishes (A. rostrata, Nezumia bairdii, Synaphobranchus spp.), the abundance and intensity of ectoparasitism peaked in different depths and habitats depending on the host species examined. Notably, gnathiid infections were most intense on A. rostrata, particularly in submarine canyons, suggesting that these habitats may increase ectoparasite infections. Although ectoparasitism is often overlooked in deep-sea benthic communities

  19. Ectoparasitism on deep-sea fishes in the western North Atlantic: In situ observations from ROV surveys.

    PubMed

    Quattrini, Andrea M; Demopoulos, Amanda W J

    2016-12-01

    A complete understanding of how parasites influence marine ecosystem functioning requires characterizing a broad range of parasite-host interactions while determining the effects of parasitism in a variety of habitats. In deep-sea fishes, the prevalence of parasitism remains poorly understood. Knowledge of ectoparasitism, in particular, is limited because collection methods often cause dislodgment of ectoparasites from their hosts. High-definition video collected during 43 remotely operated vehicle surveys (2013-2014) provided the opportunity to examine ectoparasitism on fishes across habitats (open slope, canyon, seamount, cold seep) and depths (494-4689 m) off the northeastern U.S., while providing high-resolution images and valuable observations of fish behavior. Only 9% (n = 125 individuals) of all observed fishes (25 species) were confirmed with ectoparasites, but higher percentages (∼33%) were observed for some of the most abundant fish species (e.g., Antimora rostrata). Ectoparasites included two copepod families (Lernaeopodidae, Sphyriidae) that infected four host species, two isopod families (Cymothoidae, Aegidae) that infected three host species, and one isopod family (Gnathiidae) that infected 19 host species. Hyperparasitism was also observed. As host diversity declined with depth, ectoparasite diversity declined; only gnathiids were observed at depths down to 3260 m. Thus, gnathiids appear to be the most successful group to infect a diversity of fishes across a broad depth range in the deep sea. For three dominant fishes (A. rostrata, Nezumia bairdii, Synaphobranchus spp.), the abundance and intensity of ectoparasitism peaked in different depths and habitats depending on the host species examined. Notably, gnathiid infections were most intense on A. rostrata, particularly in submarine canyons, suggesting that these habitats may increase ectoparasite infections. Although ectoparasitism is often overlooked in deep-sea benthic communities, our

  20. Respiration of four species of deep-sea demersal fishes measured in situ in the eastern North Pacific

    NASA Astrophysics Data System (ADS)

    Drazen, Jeffrey C.; Yeh, John

    2012-01-01

    The lack of data on the metabolism of deep-sea demersal fishes is a major gap in our ecological knowledge of the deep ocean. Metabolism influences individual rate processes such as resource utilization, growth, and reproduction. It also correlates with an animal's ability to accommodate ocean acidification. Here we describe an autonomous in situ respirometry system that is deployed autonomously from a ship to capture fishes attracted to bait, and measure their rate of oxygen consumption. This instrument is multi-chambered and relies on the fish to actuate the capture mechanism and start the experiments. Although capture rates were low, data on five fishes were obtained including Eptatretus deani, two Coryphaenoides acrolepis, Antimora microlepis, and Pachycara gymninium. The metabolisms of the latter two species were measured for the first time. The metabolic rates were low (0.09-0.40 μmols O 2 g -1 h -1 at temperatures of 1.8-4.0 °C) in comparison to shallow water species. After taking temperature differences into account only the metabolic rates of benthopelagic species, C. acrolepis and A. microlepis, were substantially lower, by an order of magnitude, than shallow water relatives such as cod and pollock. The metabolic rate of the deep-sea fishes varied considerably clearly warranting further experiments to ascertain which factors are likely to explain the differences.

  1. The ROSAT Deep Survey. 2; Optical Identification, Photometry and Spectra of X-Ray Sources in the Lockman Field

    NASA Technical Reports Server (NTRS)

    Schmidt, M.; Hasinger, G.; Gunn, J.; Schneider, D.; Burg, R.; Giacconi, R.; Lehmann, I.; MacKenty, J.; Truemper, J.; Zamorani, G.

    1998-01-01

    The ROSAT Deep Survey includes a complete sample of 50 X-ray sources with fluxes in the 0.5 - 2 keV band larger than 5.5 x 10(exp -15)erg/sq cm/s in the Lockman field (Hasinger et al., Paper 1). We have obtained deep broad-band CCD images of the field and spectra of many optical objects near the positions of the X-ray sources. We define systematically the process leading to the optical identifications of the X-ray sources. For this purpose, we introduce five identification (ID) classes that characterize the process in each case. Among the 50 X-ray sources, we identify 39 AGNs, 3 groups of galaxies, 1 galaxy and 3 galactic stars. Four X-ray sources remain unidentified so far; two of these objects may have an unusually large ratio of X-ray to optical flux.

  2. The 7 May 2001 induced seismic event in the Ekofisk oil field, North Sea

    NASA Astrophysics Data System (ADS)

    OttemöLler, L.; Nielsen, H. H.; Atakan, K.; Braunmiller, J.; Havskov, J.

    2005-10-01

    A moderate size seismic event on 7 May 2001 was strongly felt on platforms in the Ekofisk oil field, in the southern North Sea, but did not cause damage to platforms or wells. We combined near- and far-field observations to develop a consistent source model and to determine whether the event was induced. Seismic data placed the epicenter inside the Ekofisk field and suggested a shallow source depth based on spectral and moment tensor analysis. GPS data from the Ekofisk platforms displayed permanent vertical and horizontal movement due to the event. A topographic bulge in the sea bottom, revealed by differential bathymetry data, and overpressure in the overburden in the northeastern part of the field, detected only after the event, had been caused by unintentional water injection that started in 1999. The injection pressure and rate were sufficient to raise the overburden. Pressure gauge and compaction data ruled out that the event occurred at reservoir level, which was further supported by unaffected production rates and absence of well failure. We therefore conclude that the event occurred in the overburden, at less than 3 km depth. Initially, this appeared unlikely on account of very low shear strength of the overburden clay-rich shale and mud rocks. The seismic event was induced owing to stress changes caused by water injection. The event possibly initiated on the northern flank of the field near the water injector and may have involved flexure of the overburden into the depression bowl in the rest of the field. Moment tensor analysis is consistent with a pure double-couple source. We suggest that slip occurred on the near-horizontal rather than along the near-vertical nodal plane. Stress drop was low, and owing to the low overburden shear strength, the event released less energy than a typical stress drop event with similar source dimensions.

  3. HST/ACS Observations of RR Lyrae Stars in Six Ultra-Deep Fields of M31

    NASA Technical Reports Server (NTRS)

    Jeffery, E. J.; Smith, E.; Brown, T. M.; Sweigart, A. V.; Kalirai, J. S.; Ferguson, H. C.; Guhathakurta, P.; Renzini, A.; Rich, R. M.

    2010-01-01

    We present HST/ACS observations of RR Lyrae variable stars in six ultra deep fields of the Andromeda galaxy (M31), including parts of the halo, disk, and giant stellar stream. Past work on the RR Lyrae stars in M31 has focused on various aspects of the stellar populations that make up the galaxy s halo, including their distances and metallicities. This study builds upon this previous work by increasing the spatial coverage (something that has been lacking in previous studies) and by searching for these variable stars in constituents of the galaxy not yet explored. Besides the 55 RR Lyrae stars we found in our initial field located 11kpc from the galactic nucleus, we find additional RR Lyrae stars in four of the remaining five ultra deep fields as follows: 21 in the disk, 24 in the giant stellar stream, 3 in the halo field 21kpc from the galactic nucleus, and 5 in one of the halo fields at 35kpc. No RR Lyrae were found in the second halo field at 35kpc. The RR Lyrae populations of these fields appear to mostly be of Oosterhoff I type, although the 11kpc field appears to be intermediate or mixed. We will discuss the properties of these stars including period and reddening distributions. We calculate metallicities and distances for the stars in each of these fields using different methods and compare the results, to an extent that has not yet been done. We compare these methods not just on RR Lyrae in our M31 fields, but also on a data set of Milky Way field RR Lyrae stars.

  4. HST/ACS OBSERVATIONS OF RR LYRAE STARS IN SIX ULTRA-DEEP FIELDS OF M31

    SciTech Connect

    Jeffery, E. J.; Smith, E.; Brown, T. M.; Kalirai, J. S.; Ferguson, H. C.; Sweigart, A. V.; Rich, R. M.

    2011-05-15

    We present HST/ACS observations of RR Lyrae variable stars in six ultra-deep fields of the Andromeda galaxy (M31), including parts of the halo, disk, and giant stellar stream. Past work on the RR Lyrae stars in M31 has focused on various aspects of the stellar populations that make up the galaxy's halo, including their distances and metallicities. This study builds upon this previous work by increasing the spatial coverage (something that has been lacking in previous studies) and by searching for these variable stars in constituents of the galaxy not yet explored. Besides the 55 RR Lyrae stars we found in our initial field located 11 kpc from the galactic nucleus, we find additional RR Lyrae stars in four of the remaining five ultra-deep fields as follows: 21 in the disk, 24 in the giant stellar stream, three in the halo field 21 kpc from the galactic nucleus, and five in one of the halo fields at 35 kpc. No RR Lyrae stars were found in the second halo field at 35 kpc. The RR Lyrae populations of these fields appear to be mostly of Oosterhoff I type, although the 11 kpc field appears to be intermediate or mixed. We will discuss the properties of these stars including period and reddening distributions. We calculate metallicities and distances for the stars in each of these fields using different methods and compare the results, to an extent that has not yet been done. We compare these methods not just on RR Lyrae stars in our M31 fields, but also on a data set of Milky Way field RR Lyrae stars.

  5. Spatial distribution of polychlorinated naphthalenes in the atmosphere across North China based on gridded field observations.

    PubMed

    Lin, Yan; Zhao, Yifan; Qiu, Xinghua; Ma, Jin; Yang, Qiaoyun; Shao, Min; Zhu, Tong

    2013-09-01

    Polychlorinated naphthalenes (PCNs) belong to a group of dioxin-like pollutants; however little information is available on PCNs in North China. In this study, gridded field observations by passive air sampling at 90 sites were undertaken to determine the levels, spatial distributions, and sources of PCNs in the atmosphere of North China. A median concentration of 48 pg m(-3) (range: 10-2460 pg m(-3)) for ∑29PCNs indicated heavy PCN pollution. The compositional profile indicated that nearly 90% of PCNs observed were from thermal processes rather than from commercial mixtures. Regarding the source type, a quantitative apportionment suggested that local non-point emissions contributed two-thirds of the total PCNs observed in the study, whereas a point source of electronic-waste recycling site contributed a quarter of total PCNs. The estimated toxic equivalent quantity for dioxin-like PCNs ranged from 0.97 to 687 fg TEQ m(-3), with the electronic-waste recycling site with the highest risk.

  6. Burial diagenesis and reservoir development in North Haynesville (Smackover) Field, Louisiana

    SciTech Connect

    Ahr, W.M.; Hull, H.B.

    1983-09-01

    Smackover carbonates were deposited on a regional ramp which was locally affected by salt-generated paleotopography and basement structures. The paleobathymetry at North Haynesville field was a salt-generated high on which oolite grainstones accumulated. These shoals consisted of tide-dominated sand waves that were flanked by algal-rich grainstones and packstones which, in turn, were surrounded by open marine, peloidal wackestones. The sand shoals were lithified primarily in the marine phreatic environment, but as they had accumulated significant depositional relief, they became exposed during minor regressions. Consequently, the shoals were affected by early meteoric phreatic diagenesis. Blocky calcite cements and inversion of metastable allochems marked this diagenetic episode. Subsequent burial diagenetic history can be charted from early to late by the sequential appearance (in order) of the following characteristics: microstylolites, dolomitization, macrostylolites, poikilotopic calcite cements, baroque dolomite cements, and late leaching. Whole-rock trace element analyses indicate that magnesium, iron, and manganese correlate strongly with dolomitized horizons; strontium correlates with algal-encrusted grains; and aluminum correlates with tight, argillaceous micrites. The North Haynesville reservoir is both selective and nonselective for certain depositional microfacies. Selection is for those sand shoals that had the highest primary porosity and permeability and that were affected by dissolution enhancement in the subsurface. However, the same late dissolution processes affected both micrite and allochems in the nonfacies-selective sectors of the reservoir.

  7. Deep wide-field near-infrared survey of the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Preibisch, T.; Ratzka, T.; Kuderna, B.; Ohlendorf, H.; King, R. R.; Hodgkin, S.; Irwin, M.; Lewis, J. R.; McCaughrean, M. J.; Zinnecker, H.

    2011-06-01

    Context. The Great Nebula in Carina is a giant H ii region and a superb location in which to study the physics of violent massive star formation, but the population of the young low-mass stars remained very poorly studied until recently. Aims: Our aim was to produce a near-infrared survey that is deep enough to detect the full low-mass stellar population (i.e. down to ≈0.1 M⊙ and for extinctions up to AV ≈ 15 mag) and wide enough to cover all important parts of the Carina Nebula complex (CNC), including the clusters Tr 14, 15, and 16 as well as the South Pillars region. Methods: We used HAWK-I at the ESO VLT to survey the central ≈0.36 deg2 area of the Carina Nebula. These data reveal more than 600 000 individual infrared sources down to magnitudes as faint as J ≈ 23, H ≈ 22, and Ks ≈ 21. The results of a recent deep X-ray survey (which is complete down to stellar masses of ~0.5-1 M⊙) are used to distinguish between young stars in Carina and background contaminants. We analyze color - magnitude diagrams (CMDs) to derive information about the ages and masses of the low-mass stars. Results: The ages of the low-mass stars agree with previous age estimates for the massive stars. The CMD suggests that ≈3200 of the X-ray selected stars have masses of M∗ ≥ 1 M⊙; this number is in good agreement with extrapolations of the field IMF based on the number of high-mass (M∗ ≥ 20 M⊙) stars and shows that there is no deficit of low-mass stars in the CNC. The HAWK-I images confirm that about 50% of all young stars in Carina are in a widely distributed, non-clustered spatial configuration. Narrow-band images reveal six molecular hydrogen emission objects (MHOs) that trace jets from embedded protostars. However, none of the optical HH objects shows molecular hydrogen emission, suggesting that the jet-driving protostars are located very close to the edges of the globules in which they are embedded. Conclusions: The near-infrared excess fractions for the

  8. Food habits of the two-line eelpout ( Bothrocara brunneum: Zoarcidae) at two deep-sea sites in the eastern North Pacific

    NASA Astrophysics Data System (ADS)

    Ferry, Lara A.

    1997-03-01

    Two-line eelpouts were collected from two deep-sea sites in the eastern North Pacific in order to study food habits. The diet of this species is low in diversity, consisting primarily of shrimp-like crustaceans and secondarily of small zoarcid fishes. Although significant differences in diet exist between the two study sites, it appears that two-line eelpouts have a narrow dietary breadth. Previous and concurrent surveys of the region indicate that there is a wide range of potential prey available to two-line eelpouts; however, the species appears to be using a narrow range of benthopelagic fauna, suggesting that it is capable of some degree of prey specialization.

  9. Earth Science interpretations where GOCE improved the gravity field most: North Africa

    NASA Astrophysics Data System (ADS)

    Braitenberg, C.; Li, Y.; Pivetta, T.

    2012-04-01

    Our work is focused on the Solid Earth Science exploitation of the satellite mission GOCE. In Northern Africa the differences between the GOCE observations and the gravity field models that include terrestrial data, as EGM08, are one of the greatest worldwide. The differences are due to errors in, or lack of terrestrial data, and subsequent data infilling based on statistical assumptions. Therefore the analysis of the field in North Africa is particularly important, as the GOCE-observations and the derived third-generation products bring a safe improvement of the field. The usefulness of the gravity field is expressed in the improvement of the density inhomogeneities that are derived from it and by the newness of the conclusions regarding the tectonic or geodynamic interpretation. Beyond the first step of correlating the fields with the geologic lineaments and surface deposits (as e.g. for Africa Braitenberg et al., 2011) comes now the second step of modeling the density variations, starting from what is known already, and to determine what the novelties are which we recover with the GOCE-observations. This requires collecting the known information, assigning densities to the layers, calculating the gravity field and gradients and inverting the residuals formed by the difference between expected field and observations. Not indifferent is the choice of making the calculations at satellite observation height or at topography level, and has consequences on the adequateness of the computational software and lateral and depth extent of the model. We integrate known crustal layers as sediments and seismologic depths of the crust-mantle interface, where available, and determine the gravity residual. We discuss the residual in terms of the principal geological units and proceed to the inversion. The inverse problem of the gravity field being ill-posed, the solution depends on the model situations and constraints we choose to set. We set up the specific inversion

  10. Post-drilling hydrothermal vent and associated biological activities seen through artificial hydrothermal vents in the Iheya North field, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Takai, K.; Kawagucci, S.; Miyazaki, J.; Watsuji, T.; Ishibashi, J.; Yamamoto, H.; Nozaki, T.; Kashiwabara, T.; Shibuya, T.

    2012-12-01

    In 2010, IODP Expedition 331 was conducted in the Iheya North Field, the Okinawa Trough and drilled several sites in hydrothermally active subseafloor. In addition, during the IODP Expedition 331, four new hydrothermal vents were created. These post-drilling artificial hydrothermal vents provide excellent opportunities to investigate the physical, chemical and microbiological characteristics of the previously unexplored subseafloor hydrothermal fluid reservoirs, and to monitor and estimate how the anthropogenic drilling behaviors affect the deep-sea hydrothermal vent ecosystem. We were very much interested in the difference of hydrothermal fluid chemistry between the natural hydrothermal vents and the artificial hydrothermal vents. The IODP porewater chemistry of the cores pointed to the density-driven stratification of the phase-separated hydrothermal fluids and the natural vent fluids were likely derived only from the shallower vapor-enriched phases. However, the artificial hydrothermal vents had deeper fluid sources in the subseafloor hydrothermal fluid reservoirs composed of vapor-lost (Cl-enriched) phases. The fluids from the artificial hydrothermal vents were sampled by ROV at 5, 12 and 18 months after the IODP expedition. The artificial hydrothermal vent fluids were slightly enriched with Cl as compared to the natural hydrothermal vent fluids. Thus, the artificial hydrothermal vents successfully entrained the previously unexplored subseafloor hydrothermal fluids. The newly created hydrothermal vents also hosted the very quickly grown, enormous chimney structures, of which mineral compositions were highly variable among the vents. However, the quickly grown C0016B and C0016D vent chimneys were found to be typical Kuroko ore even though the chimney growth rates in the artificial vents were extremely faster than those in the natural vents. In addition, the IODP drilling operation not only created new hydrothermal vents by deep drilling but also induced the

  11. Habitat of oil in the Lindsborg field, Salina basin, north-central Kansas

    SciTech Connect

    Newell, K.D. )

    1991-03-01

    The Lindsborg field was discovered in 1938, and is now 14 mi in length and 1-2 mi in width. It has a projected ultimate recovery of 16 MMBO. Three pay zones (5-20 ft thick) produce in the field. The Simpson pay zone (Middle Ordovician) is a well-rounded, quartzitic sandstone that is interpreted to be a paralic, high-energy shelf deposit. The Viola pay (Middle Ordovician) appears to be a dolomitic, lime grainstone but no cores are available to confirm this. The uppermost pay zone, the Upper Ordovician Maquoketa, is a finely laminated, vuggy, cherry dolomite interpreted to have been deposited as a subtidal lime mudstone in a restricted lagoon. The Simpson and Viola pays are structurally trapped in culminations along the crest of the Lindsborg anticline. Although the Maquoketa pay is structurally trapped with the other pay zones in the southern half of the field, its locus of production in the north half of the fields extends 100 ft vertically down the western flank of the anticline. The trapping mechanism is unclear due to lack of core control and modern logging suites, but it may be subtle updip diagenetic change from vuggy to nonvuggy dolomite. The Simpson and Maquoketa oils are geochemically distinct. Both may reflect efficient local source-to-reservoir migration from originally rich but marginally mature Ordovician and Devonian shales that contact each pay zone. If oil in the Lindsborg field is locally generated, the prospectivity of the relatively unproductive and underexplored Salina basin may be enhanced.

  12. Suborbital-scale surface and deep water records in the subtropical North Atlantic: implications on thermohaline overturn

    NASA Astrophysics Data System (ADS)

    Billups, Katharina; Rabideaux, Nathan; Stoffel, Jared

    2011-10-01

    We reconstruct millennial-scale variations in sea surface hydrography and deep water flow in the northwestern subtropical Atlantic (Ocean Drilling Program Leg 172 Sites 1056 and 1063) with a focus on Marine Isotope Stage (MIS) 9. Together with published records from this region, the new data also afford a longer-term perspective on millennial-scale changes in meridional overturning circulation spanning two full interglacial intervals (MIS 9 and 11) as well as two full glacial intervals (MIS 10 and 12). Planktic foraminiferal δ 18O values indicate relatively stable conditions during the peak warmth of MIS 9, but three large cold excursions disrupt the otherwise smooth transition toward glacial MIS 8. There is no unique response in the Site 1063 benthic foraminiferal δ 13C values that would suggest a concomitant decrease in the relative flux of NADW during these events. Similarly, there is no persistent correlation between millennial-scale variations in surface and deep water hydrography over the entire MIS 8-13 interval. While millennial-scale variations at the sea surface are most pronounced during glacial intervals (and the transitions toward glacial intervals), millennial-scale variations in the deep water hydrography tend to be largest during the warm periods. This observation supports that rapid changes in thermohaline circulation are sensitive to driving forces other than those directly related to ice sheet size. Time series analysis shows that spectral power in the benthic foraminiferal δ 13C record contains periodicities related to the second (˜10 kyr) and fourth harmonics (˜5 kyr) of precession in this record (˜20 kyr) pointing to the importance of tropical processes.

  13. A deep redshift survey of field galaxies. Comments on the reality of the Butcher-Oemler effect

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Kron, Richard G.

    1987-01-01

    A spectroscopic survey of over 400 field galaxies has been completed in three fields for which we have deep UBVI photographic photometry. The galaxies typically range from B=20 to 22 and possess redshifts z from 0.1 to 0.5 that are often quite spiky in distribution. Little, if any, luminosity evolution is observed up to redshifts z approx 0.5. By such redshifts, however, an unexpectedly large fraction of luminous galaxies has very blue intrinsic colors that suggest extensive star formation; in contrast, the reddest galaxies still have colors that match those of present-day ellipticals.

  14. The fate of cetacean carcasses in the deep sea: observations on consumption rates and succession of scavenging species in the abyssal north-east Atlantic Ocean

    PubMed Central

    Jones, E. G.; Collins, M. A.; Bagley, P. M.; Addison, S.; Priede, I. G.

    1998-01-01

    The fate of cetacean carcasses in the deep sea was investigated using autonomous deep-sea lander vehicles incorporating time-lapse camera systems, fish and amphipod traps. Three lander deployments placed cetacean carcasses at depths of 4000 to 4800 m in the north-east Atlantic for periods of 36 h, 152 h and 276 h before being recovered. The photographic sequences revealed that carcasses were rapidly consumed by fish and invertebrate scavengers with removal rates ranging from 0.05 to 0.4 kg h-1. In the longest experiment the carcass was skeletonized within five days. In each deployment, approximately an hour after emplacement, the grenadier Coryphaenoides (Nematonurus) armatus and large numbers of lysianassid amphipods had arrived at the food-fall. The initially high numbers of grenadiers declined once the majority of the bait had been consumed and a variety of other fish and invertebrates were then observed, some taking up residence at the site. None of the fish species appeared to consume the carcass directly, but preyed upon amphipods instead. Funnel traps recovered with the carcass indicated a succession in the species composition of amphipods, with the specialist necrophages such as Paralicella spp. being replaced by more generalist feeders of the Orchomene species complex.

  15. Emplacement and Growth of the August 2014 to February 2015 Nornahraun Lava Flow Field North Iceland

    NASA Astrophysics Data System (ADS)

    Thordarson, T.; Hoskuldsson, A.; Jónsdottir, I.; Pedersen, G.; Gudmundsson, M. T.; Dürig, T.; Riishuus, M. S.; Moreland, W.; Gudnason, J.; Gallagher, C. R.; Askew, R. A.

    2015-12-01

    The 31.08.2014 to 27.02.2015 Nornahraun eruption in North Iceland is the largest eruption in Iceland in 232 years, producing an 85km2 lava flow field with a volume of 1.5-2km3. The eruption began on a 2 km long fissure that cut through the 1797AD Holuhraun vent system, spreading lava onto the flat (slope <0.4°) Dyngjujokull outwash plane. At mean magma discharge of 250 m3 the lava was transported from the vents via a 3.5km long lava channel, feeding a 1-2km wide rubbly pāhoehoe to 'a'a flow front advancing to the NE at rate of 1-2 km/day. This lava flow came to halt on 12 September at a distance of 18km from the vents and for the next 5 days it was subjected to endogenous growth reaching a mean thickness 12m and a volume 0.35km3. Mean magma discharge dropped to 150 m3/s on 18th and the vent activity was reduced to a 500 m long central segment of the fissure. A new lava flow formed, advancing along the southern margins of the first, coming to rest on 22 September at 11.5 km from the vents (vol. 0.09km3). On 23rd the third flow formed, advanced along south and north margins of the flow field, reaching a maximum length of 6.7 km as it came to rest on the 26th (vol. 0.06km3). Increase in magma discharge to about 220 m3/s is observed between 27 September and 8 October forming the 4th lava flow along the south margins of the flow field. This flow surged out to a distance of 15km in 12 days (vol. 0.22km3). Flow 5 formed between 9 to 30 October at mean discharge of 140 m3/s, advancing along the south side of flow 4 and reaching length of 11 km (vol. 0.30km3). Similarly, the sixth flow formed along flow 5 between 1-14 November at mean discharge of 110 m3/s and reaching length of 7.5km (vol. 0.11km3). This signaled the end of this gradual clockwise widening of the flow field, which coincided with partial crusting over of the lava channel and initiation of insulated flows that were emplaced on top of the earlier formed flows for the reminder of the eruption.

  16. Deep diving odontocetes foraging strategies and their prey field as determined by acoustic techniques

    NASA Astrophysics Data System (ADS)

    Giorli, Giacomo

    Deep diving odontocetes, like sperm whales, beaked whales, Risso's dolphins, and pilot whales are known to forage at deep depths in the ocean on squid and fish. These marine mammal species are top predators and for this reason are very important for the ecosystems they live in, since they can affect prey populations and control food web dynamics through top-down effects. The studies presented in this thesis investigate deep diving odontocetes. foraging strategies, and the density and size of their potential prey in the deep ocean using passive and active acoustic techniques. Ecological Acoustic Recorders (EAR) were used to monitor the foraging activity of deep diving odontocetes at three locations around the world: the Josephine Seamount High Sea Marine Protected Area (JHSMPA), the Ligurian Sea, and along the Kona coast of the island of Hawaii. In the JHSMPA, sperm whales. and beaked whales. foraging rates do not differ between night-time and day-time. However, in the Ligurian Sea, sperm whales switch to night-time foraging as the winter approaches, while beaked whales alternate between hunting mainly at night, and both at night and at day. Spatial differences were found in deep diving odontocetes. foraging activity in Hawaii where they forage most in areas with higher chlorophyll concentrations. Pilot whales (and false killer whales, clustered together in the category "blackfishes") and Risso's dolphins forage mainly at night at all locations. These two species adjust their foraging activity with the length of the night. The density and size of animals living in deep sea scattering layers was studied using a DIDSON imaging sonar at multiple stations along the Kona coast of Hawaii. The density of animals was affected by location, depth, month, and the time of day. The size of animals was influenced by station and month. The DIDSON proved to be a successful, non-invasive technique to study density and size of animals in the deep sea. Densities were found to be an

  17. Morphological, molecular, and in situ behavioral observations of the rare deep-sea anglerfish Chaunacops coloratus (Garman, 1899), order Lophiiformes, in the eastern North Pacific

    NASA Astrophysics Data System (ADS)

    Lundsten, Lonny; Johnson, Shannon B.; Cailliet, Gregor M.; DeVogelaere, Andrew P.; Clague, David A.

    2012-10-01

    In situ observations and collections of Chaunacops coloratus (Garman, 1899) from seamounts in the eastern North Pacific Ocean lend new behavioral, morphological and molecular data to an under-sampled, deep-sea group of fishes in the order Lophiiformes. Seven observations were made at Davidson Seamount, 130 km southwest of Monterey, CA, and from the Taney Seamount chain, 290 km west of Moss Landing, CA, from depths ranging from 2313 to 3297 m. Specimens were collected at both locations. Morphometric and meristic analyses were performed to identify individuals to the species level. These observations of C. coloratus provide greater latitude and depth distributions in the eastern North Pacific Ocean than previously known. Detailed habitat information indicated the fish occurred near manganese-encrusted volcanic talus slopes, a highly rugose habitat. Video observations revealed possible ontogenetic color changes in which small fish were blue and large fish were red. Video recorded rapid, vertical swimming as an escape response and maneuvering, or walking, with pectoral and pelvic fins and esca deployment. Phylogenetic analyses used here verify what has been known since Garman first described C. coloratus in 1899, that Chaunax and Chaunacops are closely related; molecular tools complement previous knowledge and genetic information created has been submitted to GenBank for further use by the scientific community.

  18. [Effect of tillage patterns on the structure of weed communities in oat fields in the cold and arid region of North China].

    PubMed

    Zhang, Li; Zhang, Li; Wu, Dong-Xia; Zhang, Jun-Jun

    2014-06-01

    In order to clarify the effects of tillage patterns on farmland weed community structure and crop production characteristics, based on 10 years location experiment with no-tillage, subsoiling and conventional tillage in the cold and arid region of North China, and supplementary experiment of plowing after 10 years no-tillage and subsoiling, oat was planted in 2 soils under different tillage patterns, and field weed total density, dominant weed types, weed diversity index, field weed biomass and oats yield were measured. The results showed that the regional weed community was dominated by foxtail weed (Setaira viridis); the weed density under long-term no-tillage was 2.20-5.14 times of tillage at different growing stages of oat, but there were no significant differences between conditional tillage and plowing after long-term no-tillage and subsoiling. Field weed Shannon diversity indices were 0.429 and 0.531, respectively, for sandy chestnut soil and loamy meadow soil under no-tillage conditions, and field weed biomass values were 1.35 and 2.26 times of plowing treatment, while the oat biomass values were only 2807.4 kg x hm(-2) and 4053.9 kg x hm(-2), decreased by 22.3% and 46.2%, respectively. The results showed that the weed community characteristics were affected by both tillage patterns and soil types. Long-term no-tillage farmland in the cold and arid region of North China could promote the natural evolution of plant communities by keeping more perennial weeds, and the plowing pattern lowered the annual weed density, eliminated perennial weeds with shallow roots, and stimulated perennial weeds with deep roots.

  19. North Atlantic Ocean deep-water processes and depositional environments: A study of the Cenozoic Norway Basin

    NASA Astrophysics Data System (ADS)

    Oline Hjelstuen, Berit; Andreassen, Elin V.

    2015-04-01

    Despite the enormous areas deep-water basins occupy in modern oceans, our knowledge about them remains poor. At depths of greater than 2000 m, the Cenozoic Norway Basin in the northernmost part of the Atlantic Ocean, is one such basin. Interpretation of 2D multichannel seismic data suggests a three-stage evolution for the Norway Basin. (1) Eocene-Pliocene. This time period is characterised by deposition of ooze-rich sediments in a widening and deepening basin. (2) Early-Middle Pleistocene. A significant shift in sedimentary processes and depositional environments took place in the Early Pleistocene. Mass failures initiated on the Norwegian continental slope, and three Early and Middle Pleistocene slide debrites, with maximum thicknesses of 600 m and sediment volumes of up to 25000 km3, were deposited. With ages estimated at c. 2.7-1.7 Ma, 1.7-1.1 Ma and 0.5 Ma, these slide deposits are among the largest identified worldwide, and among the oldest mapped along the entire NE Atlantic continental margin. (3) Late Pleistocene-Present. Since c. 0.5 Ma the Norway Basin has been effected by glacigenic debris flows, the Storegga Slide and hemipelagic-glacimarine sedimentation. These sedimentary processes were active during a time of repeated shelf-edge ice advances along the NE Atlantic continental margin. This study shows that deep-water basins represent dynamic depositional environments reflecting regional tectonic and climatic changes trough time.

  20. Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    van Haren, H.; Taupier-Letage, I.; Aguilar, J. A.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carminati, G.; Carr, J.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Flaminio, V.; Fratini, K.; Fritsch, U.; Fuda, J.-L.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Lucarelli, F.; Lyons, K.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Maurin, G.; Mazure, A.; Melissas, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, G.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Pillet, R.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Schoeck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-08-01

    An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the 'Northern Current'.

  1. Enhancing the Legacy of Spitzer and Herschel with the MOSFIRE Deep Evolution Field Survey

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen

    The next frontier for comprehensive galaxy surveys is the epoch at z~1.5-3.5, the peak of star formation and black hole activity. Despite the new windows that Spitzer and Herschel have opened up into the stellar and dust emission of distant galaxies and AGN during this key epoch, these studies have been limited by the lack of spectroscopic redshifts and the unknown physical conditions (e.g., metallicities, ionization) within the targeted galaxies. To realize the full potential of Spitzer and Herschel, we require a large spectroscopic survey that will: (a) efficiently assemble spectroscopic redshifts for large samples of galaxies at z=1.4-3.8; (b) yield the physical conditions, including the ionization and metallicities of these galaxies; and (c) easily obtain spectroscopic redshifts even for very dusty/confused galaxies. To this end, our team has been allocated a large program of 47 Keck nights with the multi-object near-IR spectrograph MOSFIRE to carry out the MOSFIRE Deep Evolution Field Survey (MOSDEF) in three of the Hubble CANDELS fields. MOSDEF will obtain rest-optical spectra of ~1500 galaxies at redshifts z=1.4-3.8, targeting many of the optical nebular emission lines and continuum features (e.g., [OII], [OIII], H-beta, H-alpha, [NII], [SII], 4000 Angstrom break, Ca H and K, and Mbg) that until now have been inaccessible for large samples of distant galaxies, but which are routinely used to measure the SFRs, dust attenuation, metal and gas content, and ionization and dynamical properties in nearby galaxies. MOSDEF spectroscopy provides a critical supporting role for the analysis of Spitzer and Herschel observations of distant galaxies. With this transformative dataset, we will perform the following analyses. First, we will use Spitzer and Herschel imaging, aided with spectroscopic redshifts from MOSDEF, to construct individual and mean dust SEDs for galaxies at redshifts 1.4

  2. SELFI: an object-based, Bayesian method for faint emission line source detection in MUSE deep field data cubes

    NASA Astrophysics Data System (ADS)

    Meillier, Céline; Chatelain, Florent; Michel, Olivier; Bacon, Roland; Piqueras, Laure; Bacher, Raphael; Ayasso, Hacheme

    2016-04-01

    We present SELFI, the Source Emission Line FInder, a new Bayesian method optimized for detection of faint galaxies in Multi Unit Spectroscopic Explorer (MUSE) deep fields. MUSE is the new panoramic integral field spectrograph at the Very Large Telescope (VLT) that has unique capabilities for spectroscopic investigation of the deep sky. It has provided data cubes with 324 million voxels over a single 1 arcmin2 field of view. To address the challenge of faint-galaxy detection in these large data cubes, we developed a new method that processes 3D data either for modeling or for estimation and extraction of source configurations. This object-based approach yields a natural sparse representation of the sources in massive data fields, such as MUSE data cubes. In the Bayesian framework, the parameters that describe the observed sources are considered random variables. The Bayesian model leads to a general and robust algorithm where the parameters are estimated in a fully data-driven way. This detection algorithm was applied to the MUSE observation of Hubble Deep Field-South. With 27 h total integration time, these observations provide a catalog of 189 sources of various categories and with secured redshift. The algorithm retrieved 91% of the galaxies with only 9% false detection. This method also allowed the discovery of three new Lyα emitters and one [OII] emitter, all without any Hubble Space Telescope counterpart. We analyzed the reasons for failure for some targets, and found that the most important limitation of the method is when faint sources are located in the vicinity of bright spatially resolved galaxies that cannot be approximated by the Sérsic elliptical profile. The software and its documentation are available on the MUSE science web service (muse-vlt.eu/science).

  3. An analysis of the photochemical environment over the western, North Pacific based on airborne field observations

    NASA Astrophysics Data System (ADS)

    Crawford, James Henry

    1997-12-01

    This study examines the influence of photochemistry on ozone distributions over the western, North Pacific based on observations gathered during NASA's PEM-West B campaign (February-March, 1994). During this time, strong outflow of continental emissions from Asia into the Pacific at extratropical latitudes (i.e., north of 20oN) resulted in elevated levels of photochemically important trace species (e.g., O3, NO, CO, and nonmethane hydrocarbons). Tropical data south of 20oN was more representative of remote marine tropospheric air. A major observation within the tropical region was the large shift in NO levels as a function of geographic location. High altitude NO levels exceeding 100 pptv were observed during portions of flights 5-8 while values almost never exceeded 20 pptv during flights 9 and 10. The geographic domains defined by these two flight groupings are labeled as 'high' and 'low' NO x regimes. A comparison of these two regimes based on back trajectories and chemical tracers suggests that the low NO x regime was predominantly impacted by marine convection; whereas, the high NO x regime shows evidence of having been more influenced by deep convection over a continental land mass. DMSP satellite observations point strongly toward lightning as a major source of NO x in the latter regime. Estimates of the net photochemical effect on the O3 column revealed that the high NO x regime led to a small net production. By contrast, the low NO x regime was shown to destroy O3 at the rate of 3.4%/day. Possible mechanisms for offsetting this large photochemical deficit are explored. Within the extratropical region (i.e., 20-50oN), two distinct photochemical environments were identified based on an abrupt drop in the tropopause height at 30oN accompanied by an increase in the O3 column density of nearly 150 Dobson units. This difference resulted in much lower rates of O3 formation and destruction for 30-50oN; however, both latitude ranges still exhibited net O3

  4. De-convoluting mixed crude oil in Prudhoe Bay Field, North Slope, Alaska

    USGS Publications Warehouse

    Peters, K.E.; Scott, Ramos L.; Zumberge, J.E.; Valin, Z.C.; Bird, K.J.

    2008-01-01

    Seventy-four crude oil samples from the Barrow arch on the North Slope of Alaska were studied to assess the relative volumetric contributions from different source rocks to the giant Prudhoe Bay Field. We applied alternating least squares to concentration data (ALS-C) for 46 biomarkers in the range C19-C35 to de-convolute mixtures of oil generated from carbonate rich Triassic Shublik Formation and clay rich Jurassic Kingak Shale and Cretaceous Hue Shale-gamma ray zone (Hue-GRZ) source rocks. ALS-C results for 23 oil samples from the prolific Ivishak Formation reservoir of the Prudhoe Bay Field indicate approximately equal contributions from Shublik Formation and Hue-GRZ source rocks (37% each), less from the Kingak Shale (26%), and little or no contribution from other source rocks. These results differ from published interpretations that most oil in the Prudhoe Bay Field originated from the Shublik Formation source rock. With few exceptions, the relative contribution of oil from the Shublik Formation decreases, while that from the Hue-GRZ increases in reservoirs along the Barrow arch from Point Barrow in the northwest to Point Thomson in the southeast (???250 miles or 400 km). The Shublik contribution also decreases to a lesser degree between fault blocks within the Ivishak pool from west to east across the Prudhoe Bay Field. ALS-C provides a robust means to calculate the relative amounts of two or more oil types in a mixture. Furthermore, ALS-C does not require that pure end member oils be identified prior to analysis or that laboratory mixtures of these oils be prepared to evaluate mixing. ALS-C of biomarkers reliably de-convolutes mixtures because the concentrations of compounds in mixtures vary as linear functions of the amount of each oil type. ALS of biomarker ratios (ALS-R) cannot be used to de-convolute mixtures because compound ratios vary as nonlinear functions of the amount of each oil type.

  5. Field demonstration of X-band photonic antenna remoting in the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Lutes, G.; Logan, R. T., Jr.; Maleki, L.

    1994-01-01

    We designed a photonic link for antenna remoting based on our integrated system analysis. With this 12-km link, we successfully demonstrated photonic antenna-remoting capability at X-band (8.4 GHz) at one of NASA's Deep Space Stations while tracking the Magellan spacecraft.

  6. THE TAIWAN ECDFS NEAR-INFRARED SURVEY: ULTRA-DEEP J AND K{sub S} IMAGING IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH

    SciTech Connect

    Hsieh, Bau-Ching; Wang, Wei-Hao; Hsieh, Chih-Chiang; Lin, Lihwai; Lim, Jeremy; Ho, Paul T. P.; Yan Haojing

    2012-12-15

    We present ultra-deep J and K{sub S} imaging observations covering a 30' Multiplication-Sign 30' area of the Extended Chandra Deep Field-South (ECDFS) carried out by our Taiwan ECDFS Near-Infrared Survey (TENIS). The median 5{sigma} limiting magnitudes for all detected objects in the ECDFS reach 24.5 and 23.9 mag (AB) for J and K{sub S} , respectively. In the inner 400 arcmin{sup 2} region where the sensitivity is more uniform, objects as faint as 25.6 and 25.0 mag are detected at 5{sigma}. Thus, this is by far the deepest J and K{sub S} data sets available for the ECDFS. To combine TENIS with the Spitzer IRAC data for obtaining better spectral energy distributions of high-redshift objects, we developed a novel deconvolution technique (IRACLEAN) to accurately estimate the IRAC fluxes. IRACLEAN can minimize the effect of blending in the IRAC images caused by the large point-spread functions and reduce the confusion noise. We applied IRACLEAN to the images from the Spitzer IRAC/MUSYC Public Legacy in the ECDFS survey (SIMPLE) and generated a J+K{sub S} -selected multi-wavelength catalog including the photometry of both the TENIS near-infrared and the SIMPLE IRAC data. We publicly release the data products derived from this work, including the J and K{sub S} images and the J+K{sub S} -selected multi-wavelength catalog.

  7. Development of a deep karst system within a transpressional structure of the Dolomites in north-east Italy

    NASA Astrophysics Data System (ADS)

    Sauro, Francesco; Zampieri, Dario; Filipponi, Marco

    2013-02-01

    The Piani Eterni karst system is one of the longest and deepest caves of Italy situated in the southern sector of the Dolomiti mountain range. The area where the cave was formed displays peculiar structural settings confined in a tectonic transpressive corridor between two regional thrusts (Belluno and Valsugana). During Miocene uplift of the range the inheritance of Mesozoic structures led to the formation of a deep and wide upward-branching flower (or palm tree) structure cutting the carbonate sequence and exposing the surrounding surface to karst processes after erosion. The relative lowering of the hydrologic base level, due both to the uplift of the area and then to the carving of deep glacial valleys in the Quaternary, allowed the formation of paleo-phreatic conduits at subsequently deeper levels, interconnected by vadose shafts and canyons. This work gives a detailed tectonic interpretation of the transpressive structure and picks out the tectonic features most favorable to the karst development. A detailed statistical analysis of the distribution and orientation of the karst conduits was performed using 31 km of 3D surveys showing that the development of the cave was strictly guided by a few favorable surfaces of stratigraphic and tectonic origin. These features are known in the literature as inception horizons and tectonic inception features, respectively. Cave levels are usually related to lithologic favorable conditions associated with standings of the paleo-water table. Here we suggest that some tectonic surface geometries could have led to the opening of voids in the active tectonic phase leading to the formation of the original proto-conduit network. Different types of tectonic inception features identified in the cave were described in terms of geometry and kinematics. Tensional fractures, as well as fault plane undulations and flexural slip surfaces between beds, are described as the most favorable tectonic surfaces for the development of the

  8. Field dissipation of four personal care products in biosolids-amended soils in North China.

    PubMed

    Chen, Feng; Ying, Guang-Guo; Ma, Yi-Bing; Chen, Zhi-Feng; Lai, Hua-Jie

    2014-11-01

    The present study investigated the dissipation behaviors of 4 typical personal care products (PCPs)-triclocarban (TCC), triclosan (TCS), tonalide (AHTN), and galaxolide (HHCB)- in soils amended with biosolids under field conditions in North China. The results showed that the 4 target compounds were detected in all biosolids-amended soils at levels of a few nanograms per gram to thousands of nanograms per gram (dry wt). The residual concentrations of the 4 PCPs were found in the following order: TCC > TCS > AHTN > HHCB. Significant dissipation of the 4 PCPs was observed in the biosolids-amended soils, with half-lives ranging from 26 d to 133 d. Furthermore, repeated biosolids applications and a higher biosolids application rate could lead to higher accumulation of the 4 PCPs in the agricultural soils. Based on the detected concentrations in the field trial and limited ecotoxicity data, high risks to soil organisms are expected for TCC, whereas low to medium risks are expected in most cases for AHTN, HHCB, and TCS.

  9. Epitope analysis of capsid and matrix proteins of North American ovine lentivirus field isolates.

    PubMed Central

    Marcom, K A; Pearson, L D; Chung, C S; Poulson, J M; DeMartini, J C

    1991-01-01

    Monoclonal antibodies (MAbs) directed against two phenotypically distinct ovine lentivirus (OvLV) strains were generated by fusion of BALB/c SP2/0-Ag 14 myeloma cells with spleen cells from mice immunized with purified OvLV. Hybridomas were selected by indirect enzyme-linked immunosorbent assay (ELISA) and analysis of reactivity on immunoblots. The majority (17 of 21) of the MAbs recognized the gag-encoded capsid protein, CA p27, of both strains. Four other MAbs recognized a smaller structural protein, presumably a matrix protein, MA p17. Three distinct epitopes on CA p27 and one on MA p17 were distinguished by the MAbs with competition ELISA. MAbs from each epitope group were able to recognize 17 North American field isolates of OvLV and the closely related caprine arthritis-encephalitis virus (CAEV). Analysis of the data indicated that these epitopes were highly conserved among naturally occurring isolates. A representative MAb from each epitope group of anti-CA p27 MAbs reacted with four field strains of OvLV and CAEV on immunoblots. An anti-MA p17 MAb recognized the same OvLV strains on immunoblots but failed to recognize CAEV. MAbs which recognize conserved epitopes of gag-encoded lentivirus proteins (CA p27 and MA p17) are valuable tools. These MAbs can be used to develop sensitive diagnostic assays and to study the pathogenesis of lentivirus infections in sheep and goats. Images PMID:1715884

  10. Fiber optic well monitoring for Shell`s North Sea field

    SciTech Connect

    1995-12-01

    After eight years of development work, Alcatel Kabel Norge has reached an agreement with Shell U.K. Exploration and Production to install Alcatel`s first commercial Sub-Sea Fiber Optic Well Monitoring (FOWM) system in Shell`s Guillemot A-OP2 well on its completion in August 1996. The FOWM project was started in 1988 by Norske Shell and Alcatel. BP Norway joined the project in 1991, and additional support has been contributed by Norsk Hydro and the Norwegian Research Council. The first Alcatel FOWM system was installed in onshore gas Well 7 in NAM`s Sleen field in the Netherlands in October 1993. The final offshore test took place in late 1994, in BP Norway`s Well 2/1 A-32 in Gyda field, in the Norwegian North Sea. FOWM is a new type of permanently installed downhole monitoring system based on an optical sensor system integrating simple passive silicon resonator sensors with optical communication. The system tolerates high pressure and high temperatures (HPHT). Main elements that contribute to its high reliability are discussed.

  11. Resource utilization by deep-sea sharks at the Le Danois Bank, Cantabrian Sea, north-east Atlantic Ocean.

    PubMed

    Preciado, I; Cartes, J E; Serrano, A; Velasco, F; Olaso, I; Sánchez, F; Frutos, I

    2009-10-01

    The feeding habits of birdbeak dogfish Deania calcea, velvet belly lantern shark Etmopterus spinax and blackmouth catshark Galeus melastomus at Le Danois Bank, Cantabrian Sea, south Bay of Biscay were studied in relation to their bathymetric distribution. Deep-sea sharks were collected during two multidisciplinary surveys carried out in October 2003 and April 2004 at the Le Danois Bank. Two different habitats were defined: (1) the top of the bank, ranging from 454 to 642 m depth and covered by fine-sand sediments with a low percentage of organic matter, and (2) the inner basin located between the bank and the Cantabrian Sea's continental shelf, at depths of 810-1048 m, which was characterized by a high proportion of silt and organic matter. Deania calcea was not present at the top of the bank but was abundant below 642 m, while E. spinax was abundant in the shallower top of the bank but was not found in the deeper inner basin. There was almost no bathymetric overlap between these two deep-sea shark species. Galeus melastomus was found over the whole depth range. There seemed to be an ontogenetic segregation with depth for this species, however, since 80% of the specimens collected at the top of the bank were < 600 mm total length (L(T)) (mean 510 mm L(T)), whereas larger individuals (mean 620 mm L(T)) inhabited deeper zones. Galeus melastomus exhibited a significantly higher feeding intensity than both E. spinax at the top of the bank and D. calcea in the inner basin. Little dietary overlap between D. calcea and G. melastomus in the inner basin was found, with D. calcea being an ichthyophagous predator while the diet of G. melastomus at these depths was composed of a variety of meso-bathypelagic shrimps (e.g. Acantephyra pelagica, Pasiphaea spp. and Sergia robusta), cephalopods and fishes. The diets of E. spinax and G. melastomus at the top of the bank showed a high dietary overlap of euphausiids, which represented the main prey taxa for both species. Euphausiids

  12. Petrology and provenance of deep sea drilling project sand and sandstone from the north pacific ocean and the bering sea

    NASA Astrophysics Data System (ADS)

    Gergen, Leslie Dickson; Ingersoll, Raymond V.

    1986-12-01

    Sand and sandstone compositions from different types of basins reflect provenance terranes governed by plate tectonics. One hundred and one thin sections of Upper Miocene to Holocene sand-sized material were examined from DSDP/IPOD Sites in the North Pacific Ocean and the Bering Sea. The Gazzi-Dickinson point-counting method was used to establish compositional characteristics of sands from different tectonic settings. Continental margin forearc sands from the western North America continental margin arc system are clearly different from backarc/marginal-sea sands from the Aleutian intraoceanic arc system. The forearc sands have average QFL percentages of 29-42-29, LmLvLst percentages of 32-34-34, 3 Fmwk%M and 0.82 P/F. Aleutian backarc sands have average QFL percentages of 8-22-69. LmLvLst percentages of 9-85-6, 0.5 Fmwk%M and 0.96 P/F. A trend of increasing QFL%Q and decreasing LmLvLst%Lv westward in the backarc region of the Aleutian Ridge reflects the influence of the Asiatic continental margin. Aleutian backarc sands without continental influence have average QFL percentages of 1-20-79, LmLvLst percentages of 1-98-1, 0 Fmwk%M and 0.99 P/F. Of the continental margin forearc samples, sands on the Astoria Fan (west of the Oregon—Washington trench) contain the highest LmLvLst%Lv and lowest P/F; sands from mixed transform-fault and trench settings (Delgada Fan and Gulf of Alaska samples) have slightly higher Qp/Q (0.03); and sands from the Pacific-Juan de Fuca-North America triple junction have the highest Fmwk%M. Delgada Fan and Gulf of Alaska sands have average QFL percentages of 27-38-35, LmLvLst percentages of 37-26-37, 2 Fmwk%M and 0.86 P/F. Astoria Fan sands have average QFL percentages of 35-41-24, LmLvLst percentages of 30-47-23, 3 Fmwk%M and 0.74 P/F. The triple-junction sands have average QFL percentages of 28-59-13, LmLvLst percentages of 25-26-49, 9 Fmwk%M and 0.87 P/F. The petrologic data from the modern ocean basins examined in this study can provide

  13. Present-Day 3D Velocity Field of Eastern North America Based on Continuous GPS Observations

    NASA Astrophysics Data System (ADS)

    Goudarzi, Mohammad Ali; Cocard, Marc; Santerre, Rock

    2016-07-01

    The Saint Lawrence River valley in eastern Canada was studied using observations of continuously operating GPS (CGPS) stations. The area is one of the most seismically active regions in eastern North America characterized by many earthquakes, which is also subject to an ongoing glacial isostatic adjustment. We present the current three-dimensional velocity field of eastern North America obtained from more than 14 years (9 years on average) of data at 112 CGPS stations. Bernese GNSS and GITSA software were used for CGPS data processing and position time series analysis, respectively. The results show the counterclockwise rotation of the North American plate in the No-Net-Rotation model with the average of 16.8 ± 0.7 mm/year constrained to ITRF 2008. We also present an ongoing uplift model for the study region based on the present-day CGPS observations. The model shows uplift all over eastern Canada with the maximum rate of 13.7 ± 1.2 mm/year and subsidence to the south mainly over northern USA with a typical rate of -1 to -2 mm/year and the minimum value of -2.7 ± 1.4 mm/year. We compared our model with the rate of radial displacements from the ICE-5G model. Both models agree within 0.02 mm/year at the best stations; however, our model shows a systematic spatial tilt compared to ICE-5G. The misfits between two models amount to the maximum relative subsidence of -6.1 ± 1.1 mm/year to the east and maximum relative uplift of 5.9 ± 2.7 mm/year to the west. The intraplate horizontal velocities are radially outward from the centers of maximum uplift and are inward to the centers of maximum subsidence with the typical velocity of 1-1.6 ± 0.4 mm/year that is in agreement with the ICE-5G model to the first order.

  14. Spore-Forming Thermophilic Sulfate-Reducing Bacteria Isolated from North Sea Oil Field Waters

    PubMed Central

    Rosnes, Jan Thomas; Torsvik, Terje; Lien, Torleiv

    1991-01-01

    Thermophilic sulfate-reducing bacteria were isolated from oil field waters from oil production platforms in the Norwegian sector of the North Sea. Spore-forming rods dominated in the enrichments when lactate, propionate, butyrate, or a mixture of aliphatic fatty acids (C4 through C6) was added as a carbon source and electron donor. Representative strains were isolated and characterized. The isolates grew autotrophically on H2-CO2 and heterotrophically on fatty acids such as formate, propionate, butyrate, caproate, valerate, pyruvate, and lactate and on alcohols such as methanol, ethanol, and propanol. Sulfate, sulfite, and thiosulfate but not nitrate could be used as an electron acceptor. The temperature range for growth was 43 to 78°C; the spores were extremely heat resistant and survived 131°C for 20 min. The optimum pH was 7.0. The isolates grew well in salt concentrations ranging from 0 to 800 mmol of NaCl per liter. Sulfite reductase P582 was present, but cytochrome c and desulfoviridin were not found. Electron micrographs revealed a gram-positive cell organization. The isolates were classified as a Desulfotomaculum sp. on the basis of spore formation, general physiological characteristics, and submicroscopic organization. To detect thermophilic spore-forming sulfate-reducing bacteria in oil field water, polyvalent antisera raised against antigens from two isolates were used. These bacteria were shown to be widespread in oil field water from different platforms. The origin of thermophilic sulfate-reducing bacteria in the pore water of oil reservoirs is discussed. Images PMID:16348538

  15. Vegetated dune morphodynamics during recent stabilization of the Mu Us dune field, north-central China

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwei; Mason, Joseph A.; Lu, Huayu

    2015-01-01

    The response of dune fields to changing environmental conditions can be better understood by investigating how changing vegetation cover affects dune morphodynamics. Significant increases in vegetation and widespread dune stabilization over the years 2000-2012 are evident in high-resolution satellite imagery of the Mu Us dune field in north-central China, possibly a lagged response to changing wind strength and temperature since the 1970s. These trends provide an opportunity to study how dune morphology changes with increasing vegetation stabilization. Vegetation expansion occurs mainly by expansion of pre-existing patches in interdunes. As vegetation spreads from interdunes onto surrounding dunes, it modifies their shapes in competition with wind-driven sand movement, primarily in three ways: 1) vegetation anchoring horns of barchans transforms them to parabolic dunes; 2) vegetation colonizes stoss faces of barchan and transverse dunes, resulting in lower dune height and an elongated stoss face, with shortening of barchan horns; and 3) on transverse dunes, the lee face is fixed by plants that survive sand burial. Along each of these pathways of stabilization, dune morphology tends to change from more barchanoid to more parabolic forms, but that transformation is not always completed before full stabilization. Artificial stabilization leads to an extreme case of "frozen" barchans or transverse dunes with original shapes preserved by rapid establishment of vegetation. Observations in the Mu Us dune field emphasize the point that vegetation growth and aeolian sand transport not only respond to external factors such as climate but also interact with each other. For example, some barchans lose sand mass during vegetation fixation, and actually migrate faster as they become smaller, and vegetation growth on a barchan's lower stoss face may alter sand transport over the dune in a way that favors more rapid stabilization. Conceptual models were generalized for the

  16. First North American field release of a vaccinia-rabies glycoprotein recombinant virus.

    PubMed

    Hanlon, C A; Niezgoda, M; Hamir, A N; Schumacher, C; Koprowski, H; Rupprecht, C E

    1998-04-01

    Following nearly 10 yr of extensive laboratory evaluation, a vaccinia-rabies glycoprotein (V-RG) vaccine was the first recombinant virus to undergo limited North American field release on 20 August 1990. The free-ranging raccoon population on Parramore Island (Virginia, USA) was exposed to a high density (10 baits/ha) of vaccine-laden baits distributed on a 300 ha vaccination area. An annual total of 887 raccoons were live-trapped for sedation, physical examination and blood collection for rabies antibody determination; there was no evidence of adverse effects or lesions due to the vaccine. Age and sex distributions, mean body weights, and live-capture histories of raccoons from the vaccination and non-baited control areas were compared. There were no statistically significant differences in survivorship between the baited and non-baited areas, nor between rabies antibody-positive and antibody-negative raccoons from the vaccination area. There was no trend in field mortality that suggested an association with either tetracycline or sulfadimethoxine, used as biomakers, or with vaccine contact determined by antibody status. No gross or histopathologic lesions due to the vaccine were demonstrated among a subsample of live-trapped raccoons collected for gross necropsy, biomarker analysis, histopathologic examination, and V-RG virus isolation attempts. Recovery of V-RG virus was limited to the tonsils of two biomarker-positive, clinically healthy raccoons collected from the vaccination area for postmortem examination on days 2 and 4 following bait distribution. These data reinforce the extensive body of safety data on the V-RG virus and extend it to include field evaluation where vaccine is offered free-choice in abundance, in baits designed to attract free-ranging raccoons, in a relatively simple ecosystem.

  17. "We Were Beet Workers, and that Was All": Beet Field Laborers in the North Platte Valley, 1902-1930

    ERIC Educational Resources Information Center

    Kipp, Dustin

    2011-01-01

    The experiences of the men, women, and children who labored in the beet fields of the North Platte Valley changed significantly as the sugar beet industry went through a period of rapid expansion prior to 1920 and then reached a relatively stable plateau. During the period of expansion, laborers were attracted by promises of reasonable wages, good…

  18. Ground-water flow in the Saginaw Aquifer in the vicinity of the north Lansing well field, Lansing, Michigan

    USGS Publications Warehouse

    Luukkonen, C.L.; Grannemann, N.G.; Holtschlag, D.J.

    1997-01-01

    Vinyl chloride has been detected in water from the Saginaw aquifer near Lansing Board of Water and Light wells in the north Lansing well field. These public-supply wells have the potential to withdraw contaminated ground water. Groundwater-flow simulations and particle-tracking analyses with a regional model were used to investigate local ground-water movement. The effectiveness of hypothetical purge wells to remove ground water containing vinyl chloride was also evaluated. Five pumping scenarios were developed to assess effects of existing groundwater pumping conditions and alternative groundwater management options on the movement of the vinyl chloride plume in the Saginaw aquifer. Results indicate that under 1995 average pumping conditions, four public-supply wells in the north Lansing well field will remove water that originates in a portion of the Saginaw aquifer known to be contaminated with vinyl chloride. When pumping rates by wells in the north Lansing well field are reduced to simulate winter withdrawals, four public-supply wells to the west and south of the north Lansing well field remove water that originates in a portion of the Saginaw aquifer known to be contaminated with vinyl chloride. Simulation results indicate that purge wells can be used to capture most contaminated water and prevent interception of contaminated water by supply wells. However, further analysis is needed to determine the full extent of the vinyl chloride plume and the potential impact on Lansing Board of Water and Light public-supply wells.

  19. THE HST EXTREME DEEP FIELD (XDF): COMBINING ALL ACS AND WFC3/IR DATA ON THE HUDF REGION INTO THE DEEPEST FIELD EVER

    SciTech Connect

    Illingworth, G. D.; Magee, D.; Oesch, P. A.; Stiavelli, M.; Van Dokkum, P. G.; Trenti, M.; Carollo, C. M.; Gonzalez, V.

    2013-11-01

    The eXtreme Deep Field (XDF) combines data from 10 years of observations with the Hubble Space Telescope Advanced Camera for Surveys (ACS) and the Wide-Field Camera 3 Infra-Red (WFC3/IR) into the deepest image of the sky ever in the optical/near-IR. Since the initial observations of the Hubble Ultra-Deep Field (HUDF) in 2003, numerous surveys and programs, including supernovae follow-up, HUDF09, CANDELS, and HUDF12, have contributed additional imaging data across this region. However, these images have never been combined and made available as one complete ultra-deep image dataset. We combine them now with the XDF program. Our new and improved processing techniques provide higher quality reductions of the total dataset. All WFC3/IR and optical ACS data sets have been fully combined and accurately matched, resulting in the deepest imaging ever taken at these wavelengths, ranging from 29.1 to 30.3 AB mag (5σ in a 0.''35 diameter aperture) in 9 filters. The combined image therefore reaches to 31.2 AB mag 5σ (32.9 at 1σ) for a flat f {sub ν} source. The gains in the optical for the four filters done in the original ACS HUDF correspond to a typical improvement of 0.15 mag, with gains of 0.25 mag in the deepest areas. Such gains are equivalent to adding ∼130 to ∼240 orbits of ACS data to the HUDF. Improved processing alone results in a typical gain of ∼0.1 mag. Our 5σ (optical+near-IR) SExtractor catalogs reveal about 14,140 sources in the full field and about 7121 galaxies in the deepest part of the XDF.

  20. Determination of the North-South Heliospheric Magnetic-Field Component from Inner-Corona Closed-Loop Propagation

    NASA Astrophysics Data System (ADS)

    Jackson, B. V.; Yu, H. S.; Hick, P. P.; Buffington, A.; Bisi, M. M.; Tokumaru, M.; Kim, J.; Hong, S.; Lee, B.; Yi, J.; Yun, J.

    2015-12-01

    We find that a portion of the north-south interplanetary magnetic field measured in situ near Earth is present from a direct outward mapping of closed fields from the low solar corona. Using the Current-Sheet Source Surface (CSSS) model (Zhao & Hoeksema, 1995 JGR 100, 19), these lower coronal fields are extrapolated upward from near the solar surface. Global velocities inferred from a combination of observations of interplanetary scintillation (IPS) matched to in-situ velocities and densities measured by spacecraft instrumentation provide an accurate outward timing to 1 AU from a model assuming conservation of mass and mass flux. The north-south field component at 1 AU is compared with the appropriate ACE magnetometer in-situ Normal (RTN) or Bn field coordinate (Jackson et al., 2015, ApJL, 803:L1). From a significant positive correlation between this method of determining the Bn field compared with in-situ measurements over a three-year period during the last solar minimum, we find that a small fraction of the low-coronal Bn component flux (~1%) regularly escapes from closed-field regions. Since the Bn field provides the major portion of the Geocentric Solar Magnetospheric (GSM) Bz field component that couples most closely to the Earth's geomagnetic field, the prospects for its determination using this technique for space weather use are being actively developed by our many colleague groups.

  1. Rhythms and Community Dynamics of a Hydrothermal Tubeworm Assemblage at Main Endeavour Field – A Multidisciplinary Deep-Sea Observatory Approach

    PubMed Central

    Cuvelier, Daphne; Legendre, Pierre; Laes, Agathe; Sarradin, Pierre-Marie; Sarrazin, Jozée

    2014-01-01

    The NEPTUNE cabled observatory network hosts an ecological module called TEMPO-mini that focuses on hydrothermal vent ecology and time series, granting us real-time access to data originating from the deep sea. In 2011–2012, during TEMPO-mini’s first deployment on the NEPTUNE network, the module recorded high-resolution imagery, temperature, iron (Fe) and oxygen on a hydrothermal assemblage at 2186 m depth at Main Endeavour Field (North East Pacific). 23 days of continuous imagery were analysed with an hourly frequency. Community dynamics were analysed in detail for Ridgeia piscesae tubeworms, Polynoidae, Pycnogonida and Buccinidae, documenting faunal variations, natural change and biotic interactions in the filmed tubeworm assemblage as well as links with the local environment. Semi-diurnal and diurnal periods were identified both in fauna and environment, revealing the influence of tidal cycles. Species interactions were described and distribution patterns were indicative of possible microhabitat preference. The importance of high-resolution frequencies (<1 h) to fully comprehend rhythms in fauna and environment was emphasised, as well as the need for the development of automated or semi-automated imagery analysis tools. PMID:24810603

  2. NEAR-INFRARED SURVEY OF THE GOODS-NORTH FIELD: SEARCH FOR LUMINOUS GALAXY CANDIDATES AT z {approx}> 6.5 {sup ,}

    SciTech Connect